ROLE PREDICTION USING ELECTRONIC MEDICAL RECORD SYSTEM AUDITS

EXTENDED ABSTRACT BY
WEN ZHANG1, CARL A. GUNTER2, DAVID LIEBOVITZ3, JIAN TIAN5, AND BRADLEY MALIN1,4
1DEPT. OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE, VANDERBILT UNIVERSITY
2DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGNE
3DEPT. OF MEDICINE, NORTHWESTERN UNIVERSITY
4DEPT. OF BIOMEDICAL INFORMATICS, VANDERBILT UNIVERSITY

There are two dominant strategies for limiting access to Electronic Medical Records (EMRs) within enterprises such as hospitals. One strategy, known as Role Based Access Control (RBAC) [SandhuCFY96], groups access privileges into collections called roles and then assigns users to roles to determine their access privileges. This is commonly achieved by reviewing the job positions in the enterprise and the tasks the employees in these positions need to perform, then assigning privileges to positions, or variants of them, to enable the employees to do their assigned tasks. A second strategy, which we group under the general heading of Experience Based Access Management (EBAM) [GunterLM], emphasizes accountability and the use of audit data to reprimand abuse. An often referenced strategy for EBAM is to manually review audit logs of VIPs to determine infractions. Another strategy, called "break-the-glass" security, discourages abuse by warning users that certain types of access are manually reviewed.

However, at the current point in time, RBAC and EBAM are used without much common foundation. This is unfortunate because there seems to be significant opportunities for synergy between the techniques. For example, audit data may provide valuable information about roles, such as whether a new role would be beneficial or whether two existing roles should be merged. On the other hand, auditing analytics can show how more appropriate definitions for roles, or roles that are context-specific, may be applied to restrict access so that fewer checks are required on audits.

We consider how to use audit logs to predict whether a given user is associated with a given role, a concept we call role prediction. This extended abstract highlights and contextualizes several findings from a longer manuscript [ZhangGT]. Role prediction can be a valuable tool for the role engineer, that is, the security administrator responsible for creating roles and managing assignments to them. For instance, a pair of roles that are often confused in the role prediction process might be good candidates for merging. Moreover, role prediction can provide insights into role hierarchies, indicating whether the right relationships have been used. These capabilities provide a useful link between RBAC and EBAM. In our current work, we address two specific questions: (1) To what extent do expert-defined job titles in a hospital predict statistical behavior of personnel using these titles as roles? (2) To what extent does a hierarchical organization of roles permit more accurate predictions? Question (1) relates to the ability of audit logs to predict, for instance, the chance that a role prediction of a user as a student nurse might be inferred incorrectly for an emergency department biller. Question (2) relates to the extent to which this prediction capability is changed if one moves up the hierarchy and considers, for instance, whether a nurse is likely to be confused with a biller.

Our study of role prediction comprises a set of learning techniques to address the first of these two questions and an algorithm we call "Role-Up" to address the second. We tested these techniques on access log data from a commercial inpatient electronic medical record system at Northwestern Memorial Hospital, an 854 bed primary teaching affiliate of the Feinberg School of Medicine at Northwestern University. The cohort of accesses reviewed covers a three-month period of time for which patients were either in an "inpatient" status or an "observation" encounter status. Observation status refers to an admission for which discharge is expected within 24 hours. This is studied with respect to a collection of 140 positions used as a parameter in accesses. We describe the audit data and roles in turn.

An audit record consists of a tuple with the following fields: user, patient, time, service, user position (role), reason (for access), and location (portion of the hospital where the patient is located). Example: a user \(u \) accessed the record of patient \(p \) at time \(t \) in "OBSTETRICS" service as an "NMH Physician Office CPOE" for reason "Attending Phys/Prov" while the patient resided in Ward A. Our data set covered 8095 users in 43 services, with 140 positions using 143 reasons at 58 locations. There were 1,138,555 accesses with a user making, on average, 8132 accesses.

We collaborated with several clinicians at Northwestern to design a role generalization hierarchy for this study. This hierarchy, a section of which is depicted in Figure 1 consists of four levels. The lowest level is termed Specific-Position and consists of the 140 positions. The next level up, termed the General-Position level, removes...
Before applying the Role-Up algorithm, we first investigated the predictability of the roles when the system is trained and tested at each level of the role hierarchy. The results of this experiment were 51%, 52%, and 82% accuracy at the Specific-Position, General-Position, and Conceptual-Position levels respectively. So, a little more half of the users can be accurately predicted as having their corresponding job titles. Conversely, nearly half of the users may not be assigned to a role that reflects with their daily behaviors. When we step up the hierarchy to General-Position, there is only a marginal gain in performance, which was surprising because this level has less than half the number of roles than Specific-Position. However, when stepped up to Conceptual-Position, the system is significantly more predictable.

Role-Up solutions permit disparate roles to be managed at different levels in the hierarchy. We highlight several findings for demonstration. First, when biased toward accuracy, the number of resulting roles is relatively small (i.e., 27), but the accuracy of the system is relatively high (i.e., approximately 63%). When biased toward specificity, the number of roles is relatively high (i.e., 60 roles), but the accuracy is lower (i.e., approximately 52%).

This study illustrates that usage patterns of an EMR system can enable accurate prediction of certain roles. Additionally, integrating role hierarchies with information learned from EMR access logs, an automatic method can discover appropriate role management. Some drawbacks may exist. First, user positions (roles) are not defined in a single security engineering design but over time. Second, role-up algorithm does not lead to an optimal role sets. Finally, the extent to which Role-Up permits sufficient management will need to be assessed through empirical assessments with role engineers in HCOs.

References

