diff --git a/config.json b/config.json index 56b695ae..b4037a1d 100644 --- a/config.json +++ b/config.json @@ -1,6 +1,6 @@ { - "model_name": "queue", - "model_description": "Queue memory and change lower r incrementatlly", + "run_name": "queue", + "run_description": "Queue memory and change lower r incrementatlly", "audio":{ // Audio processing parameters @@ -19,9 +19,9 @@ "symmetric_norm": false, // move normalization to range [-1, 1] "max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. - "mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! - "mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!! - "do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) + "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! + "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! + "do_trim_silence": false // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) }, "distributed":{ @@ -29,22 +29,23 @@ "url": "tcp:\/\/localhost:54321" }, - "text_cleaner": "phoneme_cleaners", + "model": "Tacotron", // one of the model in models/ + "grad_clip": 0.02, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_decay": false, // if true, Noam learning rate decaying is applied through training. - "loss_weight": 0.0, // loss weight to emphasize lower frequencies. Lower frequencies are in general more important for speech signals. "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" "windowing": false, // Enables attention windowing. Used only in eval mode. - "memory_size": 5, // memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5. + "memory_size": 5, // TO BE IMPLEMENTED -- memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5. + "batch_group_size": 3, - "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. - "eval_batch_size":32, - "r": 5, // Number of frames to predict for step. - "wd": 0.00001, // Weight decay weight. + "batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention. + "eval_batch_size":16, + "r": 1, // Number of frames to predict for step. + "wd": 0.000005, // Weight decay weight. "checkpoint": true, // If true, it saves checkpoints per "save_step" - "save_step": 5000, // Number of training steps expected to save traning stats and checkpoints. - "print_step": 50, // Number of steps to log traning on console. + "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. + "print_step": 10, // Number of steps to log traning on console. "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "batch_group_size": 8, //Number of batches to shuffle after bucketing. @@ -55,11 +56,12 @@ "meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader. "dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training - "max_seq_len": 300, // DATASET-RELATED: maximum text length + "max_seq_len": 1000, // DATASET-RELATED: maximum text length "output_path": "/media/erogol/data_ssd/Data/models/ljspeech_models/", // DATASET-RELATED: output path for all training outputs. "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes. "phoneme_cache_path": "ljspeech_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder. "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. - "phoneme_language": "en-us" // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages + "text_cleaner": "phoneme_cleaners" }