mirror of https://github.com/coqui-ai/TTS.git
Fix Style tests
This commit is contained in:
parent
aebbdfc62b
commit
047cebd7b8
|
@ -1,8 +1,8 @@
|
|||
import argparse
|
||||
import os
|
||||
import torch
|
||||
from argparse import RawTextHelpFormatter
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from TTS.config import load_config
|
||||
|
@ -30,11 +30,11 @@ parser.add_argument(
|
|||
help="Path to dataset config file.",
|
||||
)
|
||||
parser.add_argument("output_path", type=str, help="path for output .json file.")
|
||||
parser.add_argument(
|
||||
"--old_file", type=str, help="Previous .json file, only compute for new audios.", default=None
|
||||
)
|
||||
parser.add_argument("--old_file", type=str, help="Previous .json file, only compute for new audios.", default=None)
|
||||
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
|
||||
parser.add_argument("--use_predicted_label", type=bool, help="If True and predicted label is available with will use it.", default=False)
|
||||
parser.add_argument(
|
||||
"--use_predicted_label", type=bool, help="If True and predicted label is available with will use it.", default=False
|
||||
)
|
||||
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
@ -71,7 +71,7 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
|
|||
embedd = encoder_manager.compute_embedding_from_clip(wav_file)
|
||||
|
||||
if args.use_predicted_label:
|
||||
map_classid_to_classname = getattr(encoder_manager.encoder_config, 'map_classid_to_classname', None)
|
||||
map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None)
|
||||
if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None:
|
||||
embedding = torch.FloatTensor(embedd).unsqueeze(0)
|
||||
if encoder_manager.use_cuda:
|
||||
|
@ -80,9 +80,7 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
|
|||
class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item()
|
||||
class_name = map_classid_to_classname[str(class_id)]
|
||||
else:
|
||||
raise RuntimeError(
|
||||
" [!] use_predicted_label is enable and predicted_labels is not available !!"
|
||||
)
|
||||
raise RuntimeError(" [!] use_predicted_label is enable and predicted_labels is not available !!")
|
||||
|
||||
# create class_mapping if target dataset is defined
|
||||
class_mapping[wav_file_name] = {}
|
||||
|
|
|
@ -12,7 +12,7 @@ from TTS.tts.utils.speakers import SpeakerManager
|
|||
def compute_encoder_accuracy(dataset_items, encoder_manager):
|
||||
|
||||
class_name_key = encoder_manager.encoder_config.class_name_key
|
||||
map_classid_to_classname = getattr(encoder_manager.encoder_config, 'map_classid_to_classname', None)
|
||||
map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None)
|
||||
class_acc_dict = {}
|
||||
|
||||
# compute embeddings for all wav_files
|
||||
|
|
|
@ -319,7 +319,7 @@ If you don't specify any models, then it uses LJSpeech based English model.
|
|||
args.speaker_wav,
|
||||
reference_wav=args.reference_wav,
|
||||
reference_speaker_name=args.reference_speaker_idx,
|
||||
emotion_name=args.emotion_idx
|
||||
emotion_name=args.emotion_idx,
|
||||
)
|
||||
|
||||
# save the results
|
||||
|
|
|
@ -422,9 +422,12 @@ class BaseTTS(BaseTrainerModel):
|
|||
|
||||
if hasattr(self, "emotion_manager") and self.emotion_manager is not None:
|
||||
output_path = os.path.join(trainer.output_path, "emotions.json")
|
||||
|
||||
|
||||
if hasattr(trainer.config, "model_args"):
|
||||
if trainer.config.model_args.use_emotion_embedding and not trainer.config.model_args.external_emotions_embs_file:
|
||||
if (
|
||||
trainer.config.model_args.use_emotion_embedding
|
||||
and not trainer.config.model_args.external_emotions_embs_file
|
||||
):
|
||||
self.emotion_manager.save_ids_to_file(output_path)
|
||||
trainer.config.model_args.emotions_ids_file = output_path
|
||||
else:
|
||||
|
@ -440,4 +443,4 @@ class BaseTTS(BaseTrainerModel):
|
|||
|
||||
trainer.config.save_json(os.path.join(trainer.output_path, "config.json"))
|
||||
print(f" > `emotions.json` is saved to {output_path}.")
|
||||
print(" > `emotions_ids_file` or `external_emotions_embs_file` is updated in the config.json.")
|
||||
print(" > `emotions_ids_file` or `external_emotions_embs_file` is updated in the config.json.")
|
||||
|
|
|
@ -22,10 +22,10 @@ from TTS.tts.layers.vits.discriminator import VitsDiscriminator
|
|||
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder
|
||||
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
|
||||
from TTS.tts.models.base_tts import BaseTTS
|
||||
from TTS.tts.utils.emotions import EmotionManager
|
||||
from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask
|
||||
from TTS.tts.utils.languages import LanguageManager
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.tts.utils.emotions import EmotionManager
|
||||
from TTS.tts.utils.synthesis import synthesis
|
||||
from TTS.tts.utils.text.characters import BaseCharacters, _characters, _pad, _phonemes, _punctuations
|
||||
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||
|
@ -666,8 +666,8 @@ class Vits(BaseTTS):
|
|||
def init_consistency_loss(self):
|
||||
if self.args.use_speaker_encoder_as_loss and self.args.use_emotion_encoder_as_loss:
|
||||
raise RuntimeError(
|
||||
" [!] The use of speaker consistency loss (SCL) and emotion consistency loss (ECL) together is not supported, please disable one of those !!"
|
||||
)
|
||||
" [!] The use of speaker consistency loss (SCL) and emotion consistency loss (ECL) together is not supported, please disable one of those !!"
|
||||
)
|
||||
|
||||
if self.args.use_speaker_encoder_as_loss:
|
||||
if self.speaker_manager.encoder is None and (
|
||||
|
@ -773,8 +773,14 @@ class Vits(BaseTTS):
|
|||
|
||||
def get_aux_input(self, aux_input: Dict):
|
||||
sid, g, lid, eid, eg = self._set_cond_input(aux_input)
|
||||
return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid,
|
||||
"emotion_embeddings": eg, "emotion_ids": eid}
|
||||
return {
|
||||
"speaker_ids": sid,
|
||||
"style_wav": None,
|
||||
"d_vectors": g,
|
||||
"language_ids": lid,
|
||||
"emotion_embeddings": eg,
|
||||
"emotion_ids": eid,
|
||||
}
|
||||
|
||||
def _freeze_layers(self):
|
||||
if self.args.freeze_encoder:
|
||||
|
@ -886,7 +892,13 @@ class Vits(BaseTTS):
|
|||
y: torch.tensor,
|
||||
y_lengths: torch.tensor,
|
||||
waveform: torch.tensor,
|
||||
aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None, "emotion_embeddings": None, "emotion_ids": None},
|
||||
aux_input={
|
||||
"d_vectors": None,
|
||||
"speaker_ids": None,
|
||||
"language_ids": None,
|
||||
"emotion_embeddings": None,
|
||||
"emotion_ids": None,
|
||||
},
|
||||
) -> Dict:
|
||||
"""Forward pass of the model.
|
||||
|
||||
|
@ -940,7 +952,7 @@ class Vits(BaseTTS):
|
|||
if g is None:
|
||||
g = eg
|
||||
else:
|
||||
g = torch.cat([g, eg], dim=1) # [b, h1+h2, 1]
|
||||
g = torch.cat([g, eg], dim=1) # [b, h1+h2, 1]
|
||||
|
||||
# language embedding
|
||||
lang_emb = None
|
||||
|
@ -974,7 +986,9 @@ class Vits(BaseTTS):
|
|||
)
|
||||
|
||||
if self.args.use_speaker_encoder_as_loss or self.args.use_emotion_encoder_as_loss:
|
||||
encoder = self.speaker_manager.encoder if self.args.use_speaker_encoder_as_loss else self.emotion_manager.encoder
|
||||
encoder = (
|
||||
self.speaker_manager.encoder if self.args.use_speaker_encoder_as_loss else self.emotion_manager.encoder
|
||||
)
|
||||
# concate generated and GT waveforms
|
||||
wavs_batch = torch.cat((wav_seg, o), dim=0)
|
||||
|
||||
|
@ -1018,7 +1032,16 @@ class Vits(BaseTTS):
|
|||
return torch.tensor(x.shape[1:2]).to(x.device)
|
||||
|
||||
def inference(
|
||||
self, x, aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None, "language_ids": None, "emotion_embeddings": None, "emotion_ids": None}
|
||||
self,
|
||||
x,
|
||||
aux_input={
|
||||
"x_lengths": None,
|
||||
"d_vectors": None,
|
||||
"speaker_ids": None,
|
||||
"language_ids": None,
|
||||
"emotion_embeddings": None,
|
||||
"emotion_ids": None,
|
||||
},
|
||||
): # pylint: disable=dangerous-default-value
|
||||
"""
|
||||
Note:
|
||||
|
@ -1054,7 +1077,7 @@ class Vits(BaseTTS):
|
|||
if g is None:
|
||||
g = eg
|
||||
else:
|
||||
g = torch.cat([g, eg], dim=1) # [b, h1+h2, 1]
|
||||
g = torch.cat([g, eg], dim=1) # [b, h1+h2, 1]
|
||||
|
||||
# language embedding
|
||||
lang_emb = None
|
||||
|
@ -1187,8 +1210,13 @@ class Vits(BaseTTS):
|
|||
spec,
|
||||
spec_lens,
|
||||
waveform,
|
||||
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids,
|
||||
"emotion_embeddings": emotion_embeddings, "emotion_ids": emotion_ids},
|
||||
aux_input={
|
||||
"d_vectors": d_vectors,
|
||||
"speaker_ids": speaker_ids,
|
||||
"language_ids": language_ids,
|
||||
"emotion_embeddings": emotion_embeddings,
|
||||
"emotion_ids": emotion_ids,
|
||||
},
|
||||
)
|
||||
|
||||
# cache tensors for the generator pass
|
||||
|
@ -1246,7 +1274,8 @@ class Vits(BaseTTS):
|
|||
feats_disc_fake=feats_disc_fake,
|
||||
feats_disc_real=feats_disc_real,
|
||||
loss_duration=self.model_outputs_cache["loss_duration"],
|
||||
use_encoder_consistency_loss=self.args.use_speaker_encoder_as_loss or self.args.use_emotion_encoder_as_loss,
|
||||
use_encoder_consistency_loss=self.args.use_speaker_encoder_as_loss
|
||||
or self.args.use_emotion_encoder_as_loss,
|
||||
gt_cons_emb=self.model_outputs_cache["gt_cons_emb"],
|
||||
syn_cons_emb=self.model_outputs_cache["syn_cons_emb"],
|
||||
)
|
||||
|
@ -1348,14 +1377,15 @@ class Vits(BaseTTS):
|
|||
if emotion_name is None:
|
||||
emotion_embedding = self.emotion_manager.get_random_embeddings()
|
||||
else:
|
||||
emotion_embedding = self.emotion_manager.get_mean_embedding(emotion_name, num_samples=None, randomize=False)
|
||||
emotion_embedding = self.emotion_manager.get_mean_embedding(
|
||||
emotion_name, num_samples=None, randomize=False
|
||||
)
|
||||
elif config.use_emotion_embedding:
|
||||
if emotion_name is None:
|
||||
emotion_id = self.emotion_manager.get_random_id()
|
||||
else:
|
||||
emotion_id = self.emotion_manager.ids[emotion_name]
|
||||
|
||||
|
||||
return {
|
||||
"text": text,
|
||||
"speaker_id": speaker_id,
|
||||
|
@ -1364,7 +1394,7 @@ class Vits(BaseTTS):
|
|||
"language_id": language_id,
|
||||
"language_name": language_name,
|
||||
"emotion_embedding": emotion_embedding,
|
||||
"emotion_ids": emotion_id
|
||||
"emotion_ids": emotion_id,
|
||||
}
|
||||
|
||||
@torch.no_grad()
|
||||
|
@ -1436,7 +1466,11 @@ class Vits(BaseTTS):
|
|||
language_ids = torch.LongTensor(language_ids)
|
||||
|
||||
# get emotion embedding
|
||||
if self.emotion_manager is not None and self.emotion_manager.embeddings and self.args.use_external_emotions_embeddings:
|
||||
if (
|
||||
self.emotion_manager is not None
|
||||
and self.emotion_manager.embeddings
|
||||
and self.args.use_external_emotions_embeddings
|
||||
):
|
||||
emotion_mapping = self.emotion_manager.embeddings
|
||||
emotion_embeddings = [emotion_mapping[w]["embedding"] for w in batch["audio_files"]]
|
||||
emotion_embeddings = torch.FloatTensor(emotion_embeddings)
|
||||
|
@ -1627,13 +1661,9 @@ class Vits(BaseTTS):
|
|||
emotion_manager = EmotionManager.init_from_config(config)
|
||||
|
||||
if config.model_args.encoder_model_path and speaker_manager is not None:
|
||||
speaker_manager.init_encoder(
|
||||
config.model_args.encoder_model_path, config.model_args.encoder_config_path
|
||||
)
|
||||
speaker_manager.init_encoder(config.model_args.encoder_model_path, config.model_args.encoder_config_path)
|
||||
elif config.model_args.encoder_model_path and emotion_manager is not None:
|
||||
emotion_manager.init_encoder(
|
||||
config.model_args.encoder_model_path, config.model_args.encoder_config_path
|
||||
)
|
||||
emotion_manager.init_encoder(config.model_args.encoder_model_path, config.model_args.encoder_config_path)
|
||||
|
||||
return Vits(new_config, ap, tokenizer, speaker_manager, language_manager, emotion_manager=emotion_manager)
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ from coqpit import Coqpit
|
|||
from TTS.config import get_from_config_or_model_args_with_default
|
||||
from TTS.tts.utils.managers import EmbeddingManager
|
||||
|
||||
|
||||
class EmotionManager(EmbeddingManager):
|
||||
"""Manage the emotions for emotional TTS. Load a datafile and parse the information
|
||||
in a way that can be queried by emotion or clip.
|
||||
|
@ -59,8 +60,8 @@ class EmotionManager(EmbeddingManager):
|
|||
id_file_path=emotion_id_file_path,
|
||||
encoder_model_path=encoder_model_path,
|
||||
encoder_config_path=encoder_config_path,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
use_cuda=use_cuda,
|
||||
)
|
||||
|
||||
@property
|
||||
def num_emotions(self):
|
||||
|
@ -98,13 +99,17 @@ class EmotionManager(EmbeddingManager):
|
|||
)
|
||||
elif get_from_config_or_model_args_with_default(config, "external_emotions_embs_file", None):
|
||||
emotion_manager = EmotionManager(
|
||||
embeddings_file_path=get_from_config_or_model_args_with_default(config, "external_emotions_embs_file", None)
|
||||
embeddings_file_path=get_from_config_or_model_args_with_default(
|
||||
config, "external_emotions_embs_file", None
|
||||
)
|
||||
)
|
||||
|
||||
if get_from_config_or_model_args_with_default(config, "use_external_emotions_embeddings", False):
|
||||
if get_from_config_or_model_args_with_default(config, "external_emotions_embs_file", None):
|
||||
emotion_manager = EmotionManager(
|
||||
embeddings_file_path=get_from_config_or_model_args_with_default(config, "external_emotions_embs_file", None)
|
||||
embeddings_file_path=get_from_config_or_model_args_with_default(
|
||||
config, "external_emotions_embs_file", None
|
||||
)
|
||||
)
|
||||
|
||||
return emotion_manager
|
||||
|
@ -159,7 +164,9 @@ def get_emotion_manager(c: Coqpit, restore_path: str = None, out_path: str = Non
|
|||
if c.use_external_emotions_embeddings:
|
||||
# restore emotion manager with the embedding file
|
||||
if not os.path.exists(emotions_ids_file):
|
||||
print("WARNING: emotions.json was not found in restore_path, trying to use CONFIG.external_emotions_embs_file")
|
||||
print(
|
||||
"WARNING: emotions.json was not found in restore_path, trying to use CONFIG.external_emotions_embs_file"
|
||||
)
|
||||
if not os.path.exists(c.external_emotions_embs_file):
|
||||
raise RuntimeError(
|
||||
"You must copy the file emotions.json to restore_path, or set a valid file in CONFIG.external_emotions_embs_file"
|
||||
|
@ -177,7 +184,7 @@ def get_emotion_manager(c: Coqpit, restore_path: str = None, out_path: str = Non
|
|||
elif c.use_emotion_embedding:
|
||||
if "emotions_ids_file" in c and c.emotions_ids_file:
|
||||
emotion_manager.load_ids_from_file(c.emotions_ids_file)
|
||||
else: # enable get ids from eternal embedding files
|
||||
else: # enable get ids from eternal embedding files
|
||||
emotion_manager.load_embeddings_from_file(c.external_emotions_embs_file)
|
||||
|
||||
if emotion_manager.num_emotions > 0:
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import os
|
||||
from typing import Any, Dict, List
|
||||
|
||||
|
||||
import fsspec
|
||||
import numpy as np
|
||||
import torch
|
||||
|
|
|
@ -65,9 +65,8 @@ class SpeakerManager(EmbeddingManager):
|
|||
id_file_path=speaker_id_file_path,
|
||||
encoder_model_path=encoder_model_path,
|
||||
encoder_config_path=encoder_config_path,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
use_cuda=use_cuda,
|
||||
)
|
||||
|
||||
if data_items:
|
||||
self.set_ids_from_data(data_items, parse_key="speaker_name")
|
||||
|
|
|
@ -124,7 +124,7 @@ def synthesis(
|
|||
d_vector=None,
|
||||
language_id=None,
|
||||
emotion_id=None,
|
||||
emotion_embedding=None
|
||||
emotion_embedding=None,
|
||||
):
|
||||
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to
|
||||
the vocoder model.
|
||||
|
@ -193,7 +193,16 @@ def synthesis(
|
|||
text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=use_cuda)
|
||||
text_inputs = text_inputs.unsqueeze(0)
|
||||
# synthesize voice
|
||||
outputs = run_model_torch(model, text_inputs, speaker_id, style_mel, d_vector=d_vector, language_id=language_id, emotion_id=emotion_id, emotion_embedding=emotion_embedding)
|
||||
outputs = run_model_torch(
|
||||
model,
|
||||
text_inputs,
|
||||
speaker_id,
|
||||
style_mel,
|
||||
d_vector=d_vector,
|
||||
language_id=language_id,
|
||||
emotion_id=emotion_id,
|
||||
emotion_embedding=emotion_embedding,
|
||||
)
|
||||
model_outputs = outputs["model_outputs"]
|
||||
model_outputs = model_outputs[0].data.cpu().numpy()
|
||||
alignments = outputs["alignments"]
|
||||
|
|
|
@ -121,26 +121,42 @@ class Synthesizer(object):
|
|||
if use_cuda:
|
||||
self.tts_model.cuda()
|
||||
|
||||
if self.encoder_checkpoint and hasattr(self.tts_model, "speaker_manager") and self.tts_model.speaker_manager is not None:
|
||||
if (
|
||||
self.encoder_checkpoint
|
||||
and hasattr(self.tts_model, "speaker_manager")
|
||||
and self.tts_model.speaker_manager is not None
|
||||
):
|
||||
self.tts_model.speaker_manager.init_encoder(self.encoder_checkpoint, self.encoder_config)
|
||||
|
||||
if self.tts_emotions_file and hasattr(self.tts_model, "emotion_manager") and self.tts_model.emotion_manager is not None:
|
||||
if getattr(self.tts_config, "use_external_emotions_embeddings", False) or (getattr(self.tts_config, "model_args", None) and getattr(self.tts_config.model_args, "use_external_emotions_embeddings", False)):
|
||||
if (
|
||||
self.tts_emotions_file
|
||||
and hasattr(self.tts_model, "emotion_manager")
|
||||
and self.tts_model.emotion_manager is not None
|
||||
):
|
||||
if getattr(self.tts_config, "use_external_emotions_embeddings", False) or (
|
||||
getattr(self.tts_config, "model_args", None)
|
||||
and getattr(self.tts_config.model_args, "use_external_emotions_embeddings", False)
|
||||
):
|
||||
self.tts_model.emotion_manager.load_embeddings_from_file(self.tts_emotions_file)
|
||||
else:
|
||||
self.tts_model.emotion_manager.load_ids_from_file(self.tts_emotions_file)
|
||||
|
||||
if self.tts_speakers_file and hasattr(self.tts_model, "speaker_manager") and self.tts_model.speaker_manager is not None:
|
||||
if getattr(self.tts_config, "use_d_vector_file", False) or (getattr(self.tts_config, "model_args", None) and getattr(self.tts_config.model_args, "use_d_vector_file", False)):
|
||||
if (
|
||||
self.tts_speakers_file
|
||||
and hasattr(self.tts_model, "speaker_manager")
|
||||
and self.tts_model.speaker_manager is not None
|
||||
):
|
||||
if getattr(self.tts_config, "use_d_vector_file", False) or (
|
||||
getattr(self.tts_config, "model_args", None)
|
||||
and getattr(self.tts_config.model_args, "use_d_vector_file", False)
|
||||
):
|
||||
self.tts_model.speaker_manager.load_embeddings_from_file(self.tts_speakers_file)
|
||||
else:
|
||||
self.tts_model.speaker_manager.load_ids_from_file(self.tts_speakers_file)
|
||||
|
||||
def _set_speaker_encoder_paths_from_tts_config(self):
|
||||
"""Set the encoder paths from the tts model config for models with speaker encoders."""
|
||||
if hasattr(self.tts_config, "model_args") and hasattr(
|
||||
self.tts_config.model_args, "encoder_config_path"
|
||||
):
|
||||
if hasattr(self.tts_config, "model_args") and hasattr(self.tts_config.model_args, "encoder_config_path"):
|
||||
self.encoder_checkpoint = self.tts_config.model_args.encoder_model_path
|
||||
self.encoder_config = self.tts_config.model_args.encoder_config_path
|
||||
|
||||
|
@ -273,11 +289,18 @@ class Synthesizer(object):
|
|||
|
||||
# handle emotion
|
||||
emotion_embedding, emotion_id = None, None
|
||||
if self.tts_emotions_file or (getattr(self.tts_model, "emotion_manager", None) and getattr(self.tts_model.emotion_manager, "ids", None)):
|
||||
if self.tts_emotions_file or (
|
||||
getattr(self.tts_model, "emotion_manager", None) and getattr(self.tts_model.emotion_manager, "ids", None)
|
||||
):
|
||||
if emotion_name and isinstance(emotion_name, str):
|
||||
if getattr(self.tts_config, "use_external_emotions_embeddings", False) or (getattr(self.tts_config, "model_args", None) and getattr(self.tts_config.model_args, "use_external_emotions_embeddings", False)):
|
||||
if getattr(self.tts_config, "use_external_emotions_embeddings", False) or (
|
||||
getattr(self.tts_config, "model_args", None)
|
||||
and getattr(self.tts_config.model_args, "use_external_emotions_embeddings", False)
|
||||
):
|
||||
# get the average speaker embedding from the saved embeddings.
|
||||
emotion_embedding = self.tts_model.emotion_manager.get_mean_embedding(emotion_name, num_samples=None, randomize=False)
|
||||
emotion_embedding = self.tts_model.emotion_manager.get_mean_embedding(
|
||||
emotion_name, num_samples=None, randomize=False
|
||||
)
|
||||
emotion_embedding = np.array(emotion_embedding)[None, :] # [1 x embedding_dim]
|
||||
else:
|
||||
# get speaker idx from the speaker name
|
||||
|
|
Loading…
Reference in New Issue