Japanese Tacotron 2 model

This commit is contained in:
Katsuya Iida 2021-05-22 17:12:19 +09:00
parent 5482a0f62d
commit 0536aa6d0f
7 changed files with 597 additions and 0 deletions

View File

@ -0,0 +1,173 @@
{
"model": "Tacotron2",
"run_name": "kokoro-ddc",
"run_description": "tacotron2 with DDC and differential spectral loss.",
// AUDIO PARAMETERS
"audio":{
// stft parameters
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// Griffin-Lim
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 1,
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": "./scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
// VOCABULARY PARAMETERS
// if custom character set is not defined,
// default set in symbols.py is used
"characters":{
"pad": "_",
"eos": "~",
"bos": "^",
"characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
"punctuations": "!'(),-.:;? ",
"phonemes": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
},
// DISTRIBUTED TRAINING
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// TRAINING
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
// LOSS SETTINGS
"loss_masking": true, // enable / disable loss masking against the sequence padding.
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
// VALIDATION
"run_eval": true,
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": false, // use noam warmup and lr schedule.
"grad_clip": 1.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
// TACOTRON PRENET
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
"prenet_type": "original", // "original" or "bn".
"prenet_dropout": true, // enable/disable dropout at prenet.
// TACOTRON ATTENTION
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution'
"attention_heads": 4, // number of attention heads (only for 'graves')
"attention_norm": "sigmoid", // softmax or sigmoid.
"windowing": false, // Enables attention windowing. Used only in eval mode.
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
"transition_agent": false, // enable/disable transition agent of forward attention.
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
"ddc_r": 7, // reduction rate for coarse decoder.
// STOPNET
"stopnet": true, // Train stopnet predicting the end of synthesis.
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log training on console.
"tb_plot_step": 100, // Number of steps to plot TB training figures.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING
"text_cleaner": "basic_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 153, // DATASET-RELATED: maximum text length
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
"use_noise_augment": true,
// PATHS
"output_path": "./Models/Kokoro/",
// PHONEMES
"phoneme_cache_path": "./phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "ja-jp", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"use_gst": false, // use global style tokens
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"gst": { // gst parameter if gst is enabled
"gst_style_input": null, // Condition the style input either on a
// -> wave file [path to wave] or
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
// with the dictionary being len(dict) <= len(gst_style_tokens).
"gst_embedding_dim": 512,
"gst_num_heads": 4,
"gst_style_tokens": 10,
"gst_use_speaker_embedding": false
},
// DATASETS
"datasets": // List of datasets. They all merged and they get different speaker_ids.
[
{
"name": "kokoro",
"path": "./kokoro-speech-v1_1-small/",
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
"meta_file_val": null
}
]
}

View File

@ -424,3 +424,17 @@ def baker(root_path: str, meta_file: str) -> List[List[str]]:
wav_path = os.path.join(root_path, "clips_22", wav_name)
items.append([text, wav_path, speaker_name])
return items
def kokoro(root_path, meta_file):
"""Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "kokoro"
with open(txt_file, "r") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + '.wav')
text = cols[2].replace(" ", "")
items.append([text, wav_file, speaker_name])
return items

View File

@ -0,0 +1 @@
from .text import japanese_text2phone

View File

@ -0,0 +1,380 @@
# Convert Japanese text to phonemes which is
# compatible with Julius https://github.com/julius-speech/segmentation-kit
import re
import MeCab
from typing import List, Tuple
_CONVRULES = [
# Conversion of 2 letters
'アァ/ a a',
'イィ/ i i',
'イェ/ i e',
'イャ/ y a',
'ウゥ/ u:',
'エェ/ e e',
'オォ/ o:',
'カァ/ k a:',
'キィ/ k i:',
'クゥ/ k u:',
'クャ/ ky a',
'クュ/ ky u',
'クョ/ ky o',
'ケェ/ k e:',
'コォ/ k o:',
'ガァ/ g a:',
'ギィ/ g i:',
'グゥ/ g u:',
'グャ/ gy a',
'グュ/ gy u',
'グョ/ gy o',
'ゲェ/ g e:',
'ゴォ/ g o:',
'サァ/ s a:',
'シィ/ sh i:',
'スゥ/ s u:',
'スャ/ sh a',
'スュ/ sh u',
'スョ/ sh o',
'セェ/ s e:',
'ソォ/ s o:',
'ザァ/ z a:',
'ジィ/ j i:',
'ズゥ/ z u:',
'ズャ/ zy a',
'ズュ/ zy u',
'ズョ/ zy o',
'ゼェ/ z e:',
'ゾォ/ z o:',
'タァ/ t a:',
'チィ/ ch i:',
'ツァ/ ts a',
'ツィ/ ts i',
'ツゥ/ ts u:',
'ツャ/ ch a',
'ツュ/ ch u',
'ツョ/ ch o',
'ツェ/ ts e',
'ツォ/ ts o',
'テェ/ t e:',
'トォ/ t o:',
'ダァ/ d a:',
'ヂィ/ j i:',
'ヅゥ/ d u:',
'ヅャ/ zy a',
'ヅュ/ zy u',
'ヅョ/ zy o',
'デェ/ d e:',
'ドォ/ d o:',
'ナァ/ n a:',
'ニィ/ n i:',
'ヌゥ/ n u:',
'ヌャ/ ny a',
'ヌュ/ ny u',
'ヌョ/ ny o',
'ネェ/ n e:',
'ノォ/ n o:',
'ハァ/ h a:',
'ヒィ/ h i:',
'フゥ/ f u:',
'フャ/ hy a',
'フュ/ hy u',
'フョ/ hy o',
'ヘェ/ h e:',
'ホォ/ h o:',
'バァ/ b a:',
'ビィ/ b i:',
'ブゥ/ b u:',
'フャ/ hy a',
'ブュ/ by u',
'フョ/ hy o',
'ベェ/ b e:',
'ボォ/ b o:',
'パァ/ p a:',
'ピィ/ p i:',
'プゥ/ p u:',
'プャ/ py a',
'プュ/ py u',
'プョ/ py o',
'ペェ/ p e:',
'ポォ/ p o:',
'マァ/ m a:',
'ミィ/ m i:',
'ムゥ/ m u:',
'ムャ/ my a',
'ムュ/ my u',
'ムョ/ my o',
'メェ/ m e:',
'モォ/ m o:',
'ヤァ/ y a:',
'ユゥ/ y u:',
'ユャ/ y a:',
'ユュ/ y u:',
'ユョ/ y o:',
'ヨォ/ y o:',
'ラァ/ r a:',
'リィ/ r i:',
'ルゥ/ r u:',
'ルャ/ ry a',
'ルュ/ ry u',
'ルョ/ ry o',
'レェ/ r e:',
'ロォ/ r o:',
'ワァ/ w a:',
'ヲォ/ o:',
'ディ/ d i',
'デェ/ d e:',
'デャ/ dy a',
'デュ/ dy u',
'デョ/ dy o',
'ティ/ t i',
'テェ/ t e:',
'テャ/ ty a',
'テュ/ ty u',
'テョ/ ty o',
'スィ/ s i',
'ズァ/ z u a',
'ズィ/ z i',
'ズゥ/ z u',
'ズャ/ zy a',
'ズュ/ zy u',
'ズョ/ zy o',
'ズェ/ z e',
'ズォ/ z o',
'キャ/ ky a',
'キュ/ ky u',
'キョ/ ky o',
'シャ/ sh a',
'シュ/ sh u',
'シェ/ sh e',
'ショ/ sh o',
'チャ/ ch a',
'チュ/ ch u',
'チェ/ ch e',
'チョ/ ch o',
'トゥ/ t u',
'トャ/ ty a',
'トュ/ ty u',
'トョ/ ty o',
'ドァ/ d o a',
'ドゥ/ d u',
'ドャ/ dy a',
'ドュ/ dy u',
'ドョ/ dy o',
'ドォ/ d o:',
'ニャ/ ny a',
'ニュ/ ny u',
'ニョ/ ny o',
'ヒャ/ hy a',
'ヒュ/ hy u',
'ヒョ/ hy o',
'ミャ/ my a',
'ミュ/ my u',
'ミョ/ my o',
'リャ/ ry a',
'リュ/ ry u',
'リョ/ ry o',
'ギャ/ gy a',
'ギュ/ gy u',
'ギョ/ gy o',
'ヂェ/ j e',
'ヂャ/ j a',
'ヂュ/ j u',
'ヂョ/ j o',
'ジェ/ j e',
'ジャ/ j a',
'ジュ/ j u',
'ジョ/ j o',
'ビャ/ by a',
'ビュ/ by u',
'ビョ/ by o',
'ピャ/ py a',
'ピュ/ py u',
'ピョ/ py o',
'ウァ/ u a',
'ウィ/ w i',
'ウェ/ w e',
'ウォ/ w o',
'ファ/ f a',
'フィ/ f i',
'フゥ/ f u',
'フャ/ hy a',
'フュ/ hy u',
'フョ/ hy o',
'フェ/ f e',
'フォ/ f o',
'ヴァ/ b a',
'ヴィ/ b i',
'ヴェ/ b e',
'ヴォ/ b o',
'ヴュ/ by u',
# Conversion of 1 letter
'ア/ a',
'イ/ i',
'ウ/ u',
'エ/ e',
'オ/ o',
'カ/ k a',
'キ/ k i',
'ク/ k u',
'ケ/ k e',
'コ/ k o',
'サ/ s a',
'シ/ sh i',
'ス/ s u',
'セ/ s e',
'ソ/ s o',
'タ/ t a',
'チ/ ch i',
'ツ/ ts u',
'テ/ t e',
'ト/ t o',
'ナ/ n a',
'ニ/ n i',
'ヌ/ n u',
'ネ/ n e',
'/ n o',
'ハ/ h a',
'ヒ/ h i',
'フ/ f u',
'ヘ/ h e',
'ホ/ h o',
'マ/ m a',
'ミ/ m i',
'ム/ m u',
'メ/ m e',
'モ/ m o',
'ラ/ r a',
'リ/ r i',
'ル/ r u',
'レ/ r e',
'ロ/ r o',
'ガ/ g a',
'ギ/ g i',
'グ/ g u',
'ゲ/ g e',
'ゴ/ g o',
'ザ/ z a',
'ジ/ j i',
'ズ/ z u',
'ゼ/ z e',
'ゾ/ z o',
'ダ/ d a',
'ヂ/ j i',
'ヅ/ z u',
'デ/ d e',
'ド/ d o',
'バ/ b a',
'ビ/ b i',
'ブ/ b u',
'ベ/ b e',
'ボ/ b o',
'パ/ p a',
'ピ/ p i',
'プ/ p u',
'ペ/ p e',
'ポ/ p o',
'ヤ/ y a',
'ユ/ y u',
'ヨ/ y o',
'ワ/ w a',
'ヰ/ i',
'ヱ/ e',
'ヲ/ o',
'ン/ N',
'ッ/ q',
'ヴ/ b u',
'ー/:',
# Try converting broken text
'ァ/ a',
'ィ/ i',
'ゥ/ u',
'ェ/ e',
'ォ/ o',
'ヮ/ w a',
'ォ/ o',
# Symbols
'、/ ,',
'。/ .',
'/ !',
'/ ?',
'・/ ,'
]
_COLON_RX = re.compile(':+')
_REJECT_RX = re.compile('[^ a-zA-Z:,.?]')
def _makerulemap():
l = [tuple(x.split('/')) for x in _CONVRULES]
return tuple(
{k: v for k, v in l if len(k) == i}
for i in (1, 2)
)
_RULEMAP1, _RULEMAP2 = _makerulemap()
def kata2phoneme(text: str) -> str:
"""Convert katakana text to phonemes.
"""
text = text.strip()
res = ''
while text:
if len(text) >= 2:
x = _RULEMAP2.get(text[:2])
if x is not None:
text = text[2:]
res += x
continue
x = _RULEMAP1.get(text[0])
if x is not None:
text = text[1:]
res += x
continue
res += ' ' + text[0]
text = text[1:]
res = _COLON_RX.sub(':', res)
return res[1:]
_KATAKANA = ''.join(chr(ch) for ch in range(ord(''), ord('') + 1))
_HIRAGANA = ''.join(chr(ch) for ch in range(ord(''), ord('') + 1))
_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
def hira2kata(text: str) -> str:
text = text.translate(_HIRA2KATATRANS)
return text.replace('う゛', '')
_SYMBOL_TOKENS = set(list('・、。?!'))
_NO_YOMI_TOKENS = set(list('「」『』―()[][] …'))
_TAGGER = MeCab.Tagger()
def text2kata(text: str) -> str:
parsed = _TAGGER.parse(text)
res = []
for line in parsed.split('\n'):
if line == 'EOS':
break
parts = line.split('\t')
word, yomi = parts[0], parts[1]
if yomi:
res.append(yomi)
else:
if word in _SYMBOL_TOKENS:
res.append(word)
elif word == '' or word == '':
res.append('')
elif word in _NO_YOMI_TOKENS:
pass
else:
res.append(word)
return hira2kata(''.join(res))
def japanese_text2phone(text: str) -> str:
"""Convert Japanese text to phonemes.
"""
res = text2kata(text)
res = kata2phoneme(res)
return res.replace(' ', '')

View File

@ -0,0 +1,22 @@
import unittest
from . import japanese_text2phone
_TEST_CASES = '''
どちらに行きますか/dochiraniikimasuka?
今日は温泉に行きます/kyo:waoNseNni,ikimasu.
AからZまでです/AkaraZmadedesu.
そうですね/so:desune!
クジラは哺乳類です/kujirawahonyu:ruidesu.
ヴィディオを見ます/bidioomimasu.
ky o: w a o N s e N n i , i k i m a s u ./kyo:waoNseNni,ikimasu.
'''
class TestText(unittest.TestCase):
def test_text2phone(self):
for line in _TEST_CASES.strip().split('\n'):
text, phone = line.split('/')
self.assertEqual(japanese_text2phone(text), phone)
if __name__ == '__main__':
unittest.main()

View File

@ -39,6 +39,11 @@ def text2phone(text, language):
if language == "zh-CN":
ph = chinese_text_to_phonemes(text)
return ph
elif language == "ja-jp":
from TTS.tts.utils.japanese import japanese_text2phone
ph = japanese_text2phone(text)
return ph
raise ValueError(f" [!] Language {language} is not supported for phonemization.")

View File

@ -19,3 +19,5 @@ numba==0.52
umap-learn==0.4.6
unidecode==0.4.20
coqpit
mecab-python3
unidic-lite