Merge pull request #3156 from coqui-ai/dev

v0.20.1
This commit is contained in:
Eren Gölge 2023-11-07 14:18:00 +01:00 committed by GitHub
commit 063556abf4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 168 additions and 2042 deletions

View File

@ -10,34 +10,22 @@
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/hash.md5"
],
"model_hash": "6a09d1ad43896f06041ed8195956c9698f13b6189dc80f1c74bdc2b8e8d15324",
"default_vocoder": null,
"commit": "480a6cdf7",
"license": "CPML",
"contact": "info@coqui.ai",
"tos_required": true
},
"xtts_v1": {
"description": "XTTS-v1 by Coqui with 13 languages and cross-language voice cloning.",
"hf_url": [
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/hifigan/model.pth",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/hifigan/config.json",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/hifigan/vocab.json"
],
"default_vocoder": null,
"commit": "e5140314",
"license": "CPML",
"contact": "info@coqui.ai",
"tos_required": true
},
"xtts_v1.1": {
"description": "XTTS-v1.1 by Coqui with 14 languages, cross-language voice cloning and reference leak fixed.",
"hf_url": [
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/model.pth",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/config.json",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/vocab.json",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/hash.md5"
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/model.pth",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/config.json",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/vocab.json",
"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/hash.md5"
],
"model_hash": "ae9e4b39e095fd5728fe7f7931ec66ad",
"model_hash": "7c62beaf58d39b729de287330dc254e7b515677416839b649a50e7cf74c3df59",
"default_vocoder": null,
"commit": "82910a63",
"license": "CPML",

View File

@ -1 +1 @@
0.20.0
0.20.1

View File

@ -30,7 +30,7 @@ class XttsConfig(BaseTTSConfig):
which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative),
length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences.
reperation_penalty (float):
repetition_penalty (float):
The parameter for repetition penalty. 1.0 means no penalty. Defaults to `2.0`.
top_p (float):

View File

@ -1548,4 +1548,4 @@ def expand_dims(v, dims):
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,) * (dims - 1)]
return v[(...,) + (None,) * (dims - 1)]

File diff suppressed because it is too large Load Diff

View File

@ -2,13 +2,10 @@ import os
import random
import sys
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
from torchaudio.backend.soundfile_backend import load as torchaudio_soundfile_load
from torchaudio.backend.sox_io_backend import load as torchaudio_sox_load
from TTS.tts.models.xtts import load_audio
torch.set_num_threads(1)
@ -50,31 +47,6 @@ def get_prompt_slice(gt_path, max_sample_length, min_sample_length, sample_rate,
return rel_clip, rel_clip.shape[-1], cond_idxs
def load_audio(audiopath, sampling_rate):
# better load setting following: https://github.com/faroit/python_audio_loading_benchmark
if audiopath[-4:] == ".mp3":
# it uses torchaudio with sox backend to load mp3
audio, lsr = torchaudio_sox_load(audiopath)
else:
# it uses torchaudio soundfile backend to load all the others data type
audio, lsr = torchaudio_soundfile_load(audiopath)
# stereo to mono if needed
if audio.size(0) != 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 10) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
# clip audio invalid values
audio.clip_(-1, 1)
return audio
class XTTSDataset(torch.utils.data.Dataset):
def __init__(self, config, samples, tokenizer, sample_rate, is_eval=False):
self.config = config

View File

@ -238,7 +238,6 @@ class GPTTrainer(BaseTTS):
s_info["speaker_wav"],
s_info["language"],
gpt_cond_len=3,
decoder="ne_hifigan",
)["wav"]
test_audios["{}-audio".format(idx)] = wav

View File

@ -1,385 +0,0 @@
import json
from dataclasses import dataclass
from enum import Enum
from typing import Callable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
MAX_WAV_VALUE = 32768.0
class KernelPredictor(torch.nn.Module):
"""Kernel predictor for the location-variable convolutions"""
def __init__(
self,
cond_channels,
conv_in_channels,
conv_out_channels,
conv_layers,
conv_kernel_size=3,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
kpnet_nonlinear_activation="LeakyReLU",
kpnet_nonlinear_activation_params={"negative_slope": 0.1},
):
"""
Args:
cond_channels (int): number of channel for the conditioning sequence,
conv_in_channels (int): number of channel for the input sequence,
conv_out_channels (int): number of channel for the output sequence,
conv_layers (int): number of layers
"""
super().__init__()
self.conv_in_channels = conv_in_channels
self.conv_out_channels = conv_out_channels
self.conv_kernel_size = conv_kernel_size
self.conv_layers = conv_layers
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w
kpnet_bias_channels = conv_out_channels * conv_layers # l_b
self.input_conv = nn.Sequential(
nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
self.residual_convs = nn.ModuleList()
padding = (kpnet_conv_size - 1) // 2
for _ in range(3):
self.residual_convs.append(
nn.Sequential(
nn.Dropout(kpnet_dropout),
nn.utils.weight_norm(
nn.Conv1d(
kpnet_hidden_channels,
kpnet_hidden_channels,
kpnet_conv_size,
padding=padding,
bias=True,
)
),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
nn.utils.weight_norm(
nn.Conv1d(
kpnet_hidden_channels,
kpnet_hidden_channels,
kpnet_conv_size,
padding=padding,
bias=True,
)
),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
)
self.kernel_conv = nn.utils.weight_norm(
nn.Conv1d(
kpnet_hidden_channels,
kpnet_kernel_channels,
kpnet_conv_size,
padding=padding,
bias=True,
)
)
self.bias_conv = nn.utils.weight_norm(
nn.Conv1d(
kpnet_hidden_channels,
kpnet_bias_channels,
kpnet_conv_size,
padding=padding,
bias=True,
)
)
def forward(self, c):
"""
Args:
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
"""
batch, _, cond_length = c.shape
c = self.input_conv(c)
for residual_conv in self.residual_convs:
residual_conv.to(c.device)
c = c + residual_conv(c)
k = self.kernel_conv(c)
b = self.bias_conv(c)
kernels = k.contiguous().view(
batch,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
cond_length,
)
bias = b.contiguous().view(
batch,
self.conv_layers,
self.conv_out_channels,
cond_length,
)
return kernels, bias
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input_conv[0])
nn.utils.remove_weight_norm(self.kernel_conv)
nn.utils.remove_weight_norm(self.bias_conv)
for block in self.residual_convs:
nn.utils.remove_weight_norm(block[1])
nn.utils.remove_weight_norm(block[3])
class LVCBlock(torch.nn.Module):
"""the location-variable convolutions"""
def __init__(
self,
in_channels,
cond_channels,
stride,
dilations=[1, 3, 9, 27],
lReLU_slope=0.2,
conv_kernel_size=3,
cond_hop_length=256,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
):
super().__init__()
self.cond_hop_length = cond_hop_length
self.conv_layers = len(dilations)
self.conv_kernel_size = conv_kernel_size
self.kernel_predictor = KernelPredictor(
cond_channels=cond_channels,
conv_in_channels=in_channels,
conv_out_channels=2 * in_channels,
conv_layers=len(dilations),
conv_kernel_size=conv_kernel_size,
kpnet_hidden_channels=kpnet_hidden_channels,
kpnet_conv_size=kpnet_conv_size,
kpnet_dropout=kpnet_dropout,
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope},
)
self.convt_pre = nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(
nn.ConvTranspose1d(
in_channels,
in_channels,
2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
output_padding=stride % 2,
)
),
)
self.conv_blocks = nn.ModuleList()
for dilation in dilations:
self.conv_blocks.append(
nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(
nn.Conv1d(
in_channels,
in_channels,
conv_kernel_size,
padding=dilation * (conv_kernel_size - 1) // 2,
dilation=dilation,
)
),
nn.LeakyReLU(lReLU_slope),
)
)
def forward(self, x, c):
"""forward propagation of the location-variable convolutions.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length)
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
Returns:
Tensor: the output sequence (batch, in_channels, in_length)
"""
_, in_channels, _ = x.shape # (B, c_g, L')
x = self.convt_pre(x) # (B, c_g, stride * L')
kernels, bias = self.kernel_predictor(c)
for i, conv in enumerate(self.conv_blocks):
output = conv(x) # (B, c_g, stride * L')
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length)
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length)
output = self.location_variable_convolution(
output, k, b, hop_size=self.cond_hop_length
) # (B, 2 * c_g, stride * L'): LVC
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh(
output[:, in_channels:, :]
) # (B, c_g, stride * L'): GAU
return x
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256):
"""perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length).
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
dilation (int): the dilation of convolution.
hop_size (int): the hop_size of the conditioning sequence.
Returns:
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
"""
batch, _, in_length = x.shape
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
padding = dilation * int((kernel_size - 1) / 2)
x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding)
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
if hop_size < dilation:
x = F.pad(x, (0, dilation), "constant", 0)
x = x.unfold(
3, dilation, dilation
) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
x = x[:, :, :, :, :hop_size]
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
o = torch.einsum("bildsk,biokl->bolsd", x, kernel)
o = o.to(memory_format=torch.channels_last_3d)
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
o = o + bias
o = o.contiguous().view(batch, out_channels, -1)
return o
def remove_weight_norm(self):
self.kernel_predictor.remove_weight_norm()
nn.utils.remove_weight_norm(self.convt_pre[1])
for block in self.conv_blocks:
nn.utils.remove_weight_norm(block[1])
class UnivNetGenerator(nn.Module):
"""
UnivNet Generator
Originally from https://github.com/mindslab-ai/univnet/blob/master/model/generator.py.
"""
def __init__(
self,
noise_dim=64,
channel_size=32,
dilations=[1, 3, 9, 27],
strides=[8, 8, 4],
lReLU_slope=0.2,
kpnet_conv_size=3,
# Below are MEL configurations options that this generator requires.
hop_length=256,
n_mel_channels=100,
):
super(UnivNetGenerator, self).__init__()
self.mel_channel = n_mel_channels
self.noise_dim = noise_dim
self.hop_length = hop_length
channel_size = channel_size
kpnet_conv_size = kpnet_conv_size
self.res_stack = nn.ModuleList()
hop_length = 1
for stride in strides:
hop_length = stride * hop_length
self.res_stack.append(
LVCBlock(
channel_size,
n_mel_channels,
stride=stride,
dilations=dilations,
lReLU_slope=lReLU_slope,
cond_hop_length=hop_length,
kpnet_conv_size=kpnet_conv_size,
)
)
self.conv_pre = nn.utils.weight_norm(nn.Conv1d(noise_dim, channel_size, 7, padding=3, padding_mode="reflect"))
self.conv_post = nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(nn.Conv1d(channel_size, 1, 7, padding=3, padding_mode="reflect")),
nn.Tanh(),
)
def forward(self, c, z):
"""
Args:
c (Tensor): the conditioning sequence of mel-spectrogram (batch, mel_channels, in_length)
z (Tensor): the noise sequence (batch, noise_dim, in_length)
"""
z = self.conv_pre(z) # (B, c_g, L)
for res_block in self.res_stack:
res_block.to(z.device)
z = res_block(z, c) # (B, c_g, L * s_0 * ... * s_i)
z = self.conv_post(z) # (B, 1, L * 256)
return z
def eval(self, inference=False):
super(UnivNetGenerator, self).eval()
# don't remove weight norm while validation in training loop
if inference:
self.remove_weight_norm()
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.conv_post:
if len(layer.state_dict()) != 0:
nn.utils.remove_weight_norm(layer)
for res_block in self.res_stack:
res_block.remove_weight_norm()
def inference(self, c, z=None):
# pad input mel with zeros to cut artifact
# see https://github.com/seungwonpark/melgan/issues/8
zero = torch.full((c.shape[0], self.mel_channel, 10), -11.5129).to(c.device)
mel = torch.cat((c, zero), dim=2)
if z is None:
z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device)
audio = self.forward(mel, z)
audio = audio[:, :, : -(self.hop_length * 10)]
audio = audio.clamp(min=-1, max=1)
return audio
if __name__ == "__main__":
model = UnivNetGenerator()
c = torch.randn(3, 100, 10)
z = torch.randn(3, 64, 10)
print(c.shape)
y = model(c, z)
print(y.shape)
assert y.shape == torch.Size([3, 1, 2560])
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(pytorch_total_params)

View File

@ -252,7 +252,12 @@ class BaseTacotron(BaseTTS):
def compute_capacitron_VAE_embedding(self, inputs, reference_mel_info, text_info=None, speaker_embedding=None):
"""Capacitron Variational Autoencoder"""
(VAE_outputs, posterior_distribution, prior_distribution, capacitron_beta,) = self.capacitron_vae_layer(
(
VAE_outputs,
posterior_distribution,
prior_distribution,
capacitron_beta,
) = self.capacitron_vae_layer(
reference_mel_info,
text_info,
speaker_embedding, # pylint: disable=not-callable

View File

@ -676,7 +676,12 @@ class Tortoise(BaseTTS):
), "Too much text provided. Break the text up into separate segments and re-try inference."
if voice_samples is not None:
(auto_conditioning, diffusion_conditioning, _, _,) = self.get_conditioning_latents(
(
auto_conditioning,
diffusion_conditioning,
_,
_,
) = self.get_conditioning_latents(
voice_samples,
return_mels=True,
latent_averaging_mode=latent_averaging_mode,

View File

@ -9,13 +9,10 @@ import torchaudio
from coqpit import Coqpit
from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, wav_to_univnet_mel
from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts
from TTS.tts.layers.xtts.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps
from TTS.tts.layers.xtts.gpt import GPT
from TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder
from TTS.tts.layers.xtts.stream_generator import init_stream_support
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer
from TTS.tts.layers.xtts.vocoder import UnivNetGenerator
from TTS.tts.models.base_tts import BaseTTS
from TTS.utils.io import load_fsspec
@ -70,6 +67,31 @@ def wav_to_mel_cloning(
return mel
def load_audio(audiopath, sampling_rate):
# better load setting following: https://github.com/faroit/python_audio_loading_benchmark
if audiopath[-4:] == ".mp3":
# it uses torchaudio with sox backend to load mp3
audio, lsr = torchaudio.backend.sox_io_backend.load(audiopath)
else:
# it uses torchaudio soundfile backend to load all the others data type
audio, lsr = torchaudio.backend.soundfile_backend.load(audiopath)
# stereo to mono if needed
if audio.size(0) != 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 10) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
# clip audio invalid values
audio.clip_(-1, 1)
return audio
def pad_or_truncate(t, length):
"""
Ensure a given tensor t has a specified sequence length by either padding it with zeros or clipping it.
@ -89,78 +111,6 @@ def pad_or_truncate(t, length):
return tp
def load_discrete_vocoder_diffuser(
trained_diffusion_steps=4000,
desired_diffusion_steps=200,
cond_free=True,
cond_free_k=1,
sampler="ddim",
):
"""
Load a GaussianDiffusion instance configured for use as a decoder.
Args:
trained_diffusion_steps (int): The number of diffusion steps used during training.
desired_diffusion_steps (int): The number of diffusion steps to use during inference.
cond_free (bool): Whether to use a conditioning-free model.
cond_free_k (int): The number of samples to use for conditioning-free models.
sampler (str): The name of the sampler to use.
Returns:
A SpacedDiffusion instance configured with the given parameters.
"""
return SpacedDiffusion(
use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]),
model_mean_type="epsilon",
model_var_type="learned_range",
loss_type="mse",
betas=get_named_beta_schedule("linear", trained_diffusion_steps),
conditioning_free=cond_free,
conditioning_free_k=cond_free_k,
sampler=sampler,
)
def do_spectrogram_diffusion(
diffusion_model,
diffuser,
latents,
conditioning_latents,
temperature=1,
):
"""
Generate a mel-spectrogram using a diffusion model and a diffuser.
Args:
diffusion_model (nn.Module): A diffusion model that converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
diffuser (Diffuser): A diffuser that generates a mel-spectrogram from noise.
latents (torch.Tensor): A tensor of shape (batch_size, seq_len, code_size) containing the input spectrogram codes.
conditioning_latents (torch.Tensor): A tensor of shape (batch_size, code_size) containing the conditioning codes.
temperature (float, optional): The temperature of the noise used by the diffuser. Defaults to 1.
Returns:
torch.Tensor: A tensor of shape (batch_size, mel_channels, mel_seq_len) containing the generated mel-spectrogram.
"""
with torch.no_grad():
output_seq_len = (
latents.shape[1] * 4 * 24000 // 22050
) # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
output_shape = (latents.shape[0], 100, output_seq_len)
precomputed_embeddings = diffusion_model.timestep_independent(
latents, conditioning_latents, output_seq_len, False
)
noise = torch.randn(output_shape, device=latents.device) * temperature
mel = diffuser.sample_loop(
diffusion_model,
output_shape,
noise=noise,
model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings},
progress=False,
)
return denormalize_tacotron_mel(mel)[:, :, :output_seq_len]
@dataclass
class XttsAudioConfig(Coqpit):
"""
@ -168,12 +118,10 @@ class XttsAudioConfig(Coqpit):
Args:
sample_rate (int): The sample rate in which the GPT operates.
diffusion_sample_rate (int): The sample rate of the diffusion audio waveform.
output_sample_rate (int): The sample rate of the output audio waveform.
"""
sample_rate: int = 22050
diffusion_sample_rate: int = 24000
output_sample_rate: int = 24000
@ -189,8 +137,6 @@ class XttsArgs(Coqpit):
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None.
decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None.
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255.
use_hifigan (bool, optional): Whether to use hifigan with implicit enhancement or diffusion + univnet as a decoder. Defaults to True.
use_ne_hifigan (bool, optional): Whether to use regular hifigan or diffusion + univnet as a decoder. Defaults to False.
For GPT model:
gpt_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604.
@ -228,8 +174,6 @@ class XttsArgs(Coqpit):
clvp_checkpoint: str = None
decoder_checkpoint: str = None
num_chars: int = 255
use_hifigan: bool = True
use_ne_hifigan: bool = False
# XTTS GPT Encoder params
tokenizer_file: str = ""
@ -326,43 +270,15 @@ class Xtts(BaseTTS):
code_stride_len=self.args.gpt_code_stride_len,
)
if self.args.use_hifigan:
self.hifigan_decoder = HifiDecoder(
input_sample_rate=self.args.input_sample_rate,
output_sample_rate=self.args.output_sample_rate,
output_hop_length=self.args.output_hop_length,
ar_mel_length_compression=self.args.gpt_code_stride_len,
decoder_input_dim=self.args.decoder_input_dim,
d_vector_dim=self.args.d_vector_dim,
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
)
if self.args.use_ne_hifigan:
self.ne_hifigan_decoder = HifiDecoder(
input_sample_rate=self.args.input_sample_rate,
output_sample_rate=self.args.output_sample_rate,
output_hop_length=self.args.output_hop_length,
ar_mel_length_compression=self.args.gpt_code_stride_len,
decoder_input_dim=self.args.decoder_input_dim,
d_vector_dim=self.args.d_vector_dim,
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
)
if not (self.args.use_hifigan or self.args.use_ne_hifigan):
self.diffusion_decoder = DiffusionTts(
model_channels=self.args.diff_model_channels,
num_layers=self.args.diff_num_layers,
in_channels=self.args.diff_in_channels,
out_channels=self.args.diff_out_channels,
in_latent_channels=self.args.diff_in_latent_channels,
in_tokens=self.args.diff_in_tokens,
dropout=self.args.diff_dropout,
use_fp16=self.args.diff_use_fp16,
num_heads=self.args.diff_num_heads,
layer_drop=self.args.diff_layer_drop,
unconditioned_percentage=self.args.diff_unconditioned_percentage,
)
self.vocoder = UnivNetGenerator()
self.hifigan_decoder = HifiDecoder(
input_sample_rate=self.args.input_sample_rate,
output_sample_rate=self.args.output_sample_rate,
output_hop_length=self.args.output_hop_length,
ar_mel_length_compression=self.args.gpt_code_stride_len,
decoder_input_dim=self.args.decoder_input_dim,
d_vector_dim=self.args.d_vector_dim,
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
)
@property
def device(self):
@ -373,7 +289,7 @@ class Xtts(BaseTTS):
"""Compute the conditioning latents for the GPT model from the given audio.
Args:
audio_path (str): Path to the audio file.
audio (tensor): audio tensor.
sr (int): Sample rate of the audio.
length (int): Length of the audio in seconds. Defaults to 3.
"""
@ -441,25 +357,42 @@ class Xtts(BaseTTS):
max_ref_length=10,
librosa_trim_db=None,
sound_norm_refs=False,
load_sr=24000,
):
speaker_embedding = None
diffusion_cond_latents = None
audio, sr = torchaudio.load(audio_path)
audio = audio[:, : sr * max_ref_length].to(self.device)
if audio.shape[0] > 1:
audio = audio.mean(0, keepdim=True)
if sound_norm_refs:
audio = (audio / torch.abs(audio).max()) * 0.75
if librosa_trim_db is not None:
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
if self.args.use_hifigan or self.args.use_ne_hifigan:
speaker_embedding = self.get_speaker_embedding(audio, sr)
# deal with multiples references
if not isinstance(audio_path, list):
audio_paths = [audio_path]
else:
diffusion_cond_latents = self.get_diffusion_cond_latents(audio, sr)
gpt_cond_latents = self.get_gpt_cond_latents(audio, sr, length=gpt_cond_len) # [1, 1024, T]
return gpt_cond_latents, diffusion_cond_latents, speaker_embedding
audio_paths = audio_path
speaker_embeddings = []
audios = []
speaker_embedding = None
for file_path in audio_paths:
# load the audio in 24khz to avoid issued with multiple sr references
audio = load_audio(file_path, load_sr)
audio = audio[:, : load_sr * max_ref_length].to(self.device)
if audio.shape[0] > 1:
audio = audio.mean(0, keepdim=True)
if sound_norm_refs:
audio = (audio / torch.abs(audio).max()) * 0.75
if librosa_trim_db is not None:
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
speaker_embedding = self.get_speaker_embedding(audio, load_sr)
speaker_embeddings.append(speaker_embedding)
audios.append(audio)
# use a merge of all references for gpt cond latents
full_audio = torch.cat(audios, dim=-1)
gpt_cond_latents = self.get_gpt_cond_latents(full_audio, load_sr, length=gpt_cond_len) # [1, 1024, T]
if speaker_embeddings:
speaker_embedding = torch.stack(speaker_embeddings)
speaker_embedding = speaker_embedding.mean(dim=0)
return gpt_cond_latents, speaker_embedding
def synthesize(self, text, config, speaker_wav, language, **kwargs):
"""Synthesize speech with the given input text.
@ -467,7 +400,7 @@ class Xtts(BaseTTS):
Args:
text (str): Input text.
config (XttsConfig): Config with inference parameters.
speaker_wav (str): Path to the speaker audio file for cloning.
speaker_wav (list): List of paths to the speaker audio files to be used for cloning.
language (str): Language ID of the speaker.
**kwargs: Inference settings. See `inference()`.
@ -477,11 +410,6 @@ class Xtts(BaseTTS):
as latents used at inference.
"""
# Make the synthesizer happy 🥳
if isinstance(speaker_wav, list):
speaker_wav = speaker_wav[0]
return self.inference_with_config(text, config, ref_audio_path=speaker_wav, language=language, **kwargs)
def inference_with_config(self, text, config, ref_audio_path, language, **kwargs):
@ -563,27 +491,6 @@ class Xtts(BaseTTS):
gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used
else the first `gpt_cond_len` secs is used. Defaults to 6 seconds.
decoder_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has
more chances to iteratively refine the output, which should theoretically mean a higher quality output.
Generally a value above 250 is not noticeably better, however. Defaults to 100.
cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion
performs two forward passes for each diffusion step: one with the outputs of the autoregressive model
and one with no conditioning priors. The output of the two is blended according to the cond_free_k
value below. Conditioning-free diffusion is the real deal, and dramatically improves realism.
Defaults to True.
cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the
conditioning-present signal. [0,inf]. As cond_free_k increases, the output becomes dominated by the
conditioning-free signal. Defaults to 2.0.
diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1].
Values at 0 re the "mean" prediction of the diffusion network and will sound bland and smeared.
Defaults to 1.0.
decoder: (str) Selects the decoder to use between ("hifigan", "ne_hifigan" and "diffusion")
Defaults to hifigan
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation
here: https://huggingface.co/docs/transformers/internal/generation_utils
@ -592,7 +499,7 @@ class Xtts(BaseTTS):
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
Sample rate is 24kHz.
"""
(gpt_cond_latent, diffusion_conditioning, speaker_embedding) = self.get_conditioning_latents(
(gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents(
audio_path=ref_audio_path,
gpt_cond_len=gpt_cond_len,
max_ref_length=max_ref_len,
@ -604,19 +511,12 @@ class Xtts(BaseTTS):
language,
gpt_cond_latent,
speaker_embedding,
diffusion_conditioning,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
decoder_iterations=decoder_iterations,
cond_free=cond_free,
cond_free_k=cond_free_k,
diffusion_temperature=diffusion_temperature,
decoder_sampler=decoder_sampler,
decoder=decoder,
**hf_generate_kwargs,
)
@ -627,7 +527,6 @@ class Xtts(BaseTTS):
language,
gpt_cond_latent,
speaker_embedding,
diffusion_conditioning,
# GPT inference
temperature=0.65,
length_penalty=1,
@ -635,13 +534,6 @@ class Xtts(BaseTTS):
top_k=50,
top_p=0.85,
do_sample=True,
# Decoder inference
decoder_iterations=100,
cond_free=True,
cond_free_k=2,
diffusion_temperature=1.0,
decoder_sampler="ddim",
decoder="hifigan",
num_beams=1,
**hf_generate_kwargs,
):
@ -656,14 +548,6 @@ class Xtts(BaseTTS):
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
if not self.args.use_hifigan:
diffuser = load_discrete_vocoder_diffuser(
desired_diffusion_steps=decoder_iterations,
cond_free=cond_free,
cond_free_k=cond_free_k,
sampler=decoder_sampler,
)
with torch.no_grad():
gpt_codes = self.gpt.generate(
cond_latents=gpt_cond_latent,
@ -705,34 +589,12 @@ class Xtts(BaseTTS):
gpt_latents = gpt_latents[:, :k]
break
if decoder == "hifigan":
assert hasattr(
self, "hifigan_decoder"
), "You must enable hifigan decoder to use it by setting config `use_hifigan: true`"
wav = self.hifigan_decoder(gpt_latents, g=speaker_embedding)
elif decoder == "ne_hifigan":
assert hasattr(
self, "ne_hifigan_decoder"
), "You must enable ne_hifigan decoder to use it by setting config `use_ne_hifigan: true`"
wav = self.ne_hifigan_decoder(gpt_latents, g=speaker_embedding)
else:
assert hasattr(
self, "diffusion_decoder"
), "You must disable hifigan decoders to use difffusion by setting config `use_ne_hifigan: false` and `use_hifigan: false`"
mel = do_spectrogram_diffusion(
self.diffusion_decoder,
diffuser,
gpt_latents,
diffusion_conditioning,
temperature=diffusion_temperature,
)
wav = self.vocoder.inference(mel)
wav = self.hifigan_decoder(gpt_latents, g=speaker_embedding)
return {
"wav": wav.cpu().numpy().squeeze(),
"gpt_latents": gpt_latents,
"speaker_embedding": speaker_embedding,
"diffusion_conditioning": diffusion_conditioning,
}
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
@ -766,13 +628,8 @@ class Xtts(BaseTTS):
top_k=50,
top_p=0.85,
do_sample=True,
# Decoder inference
decoder="hifigan",
**hf_generate_kwargs,
):
assert hasattr(
self, "hifigan_decoder"
), "`inference_stream` requires use_hifigan to be set to true in the config.model_args, diffusion is too slow to stream."
text = text.strip().lower()
text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device)
@ -811,18 +668,7 @@ class Xtts(BaseTTS):
if is_end or (stream_chunk_size > 0 and len(last_tokens) >= stream_chunk_size):
gpt_latents = torch.cat(all_latents, dim=0)[None, :]
if decoder == "hifigan":
assert hasattr(
self, "hifigan_decoder"
), "You must enable hifigan decoder to use it by setting config `use_hifigan: true`"
wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
elif decoder == "ne_hifigan":
assert hasattr(
self, "ne_hifigan_decoder"
), "You must enable ne_hifigan decoder to use it by setting config `use_ne_hifigan: true`"
wav_gen = self.ne_hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
else:
raise NotImplementedError("Diffusion for streaming inference not implemented.")
wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks(
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len
)
@ -850,11 +696,8 @@ class Xtts(BaseTTS):
def get_compatible_checkpoint_state_dict(self, model_path):
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
ignore_keys = ["diffusion_decoder", "vocoder"] if self.args.use_hifigan or self.args.use_ne_hifigan else []
ignore_keys += [] if self.args.use_hifigan else ["hifigan_decoder"]
ignore_keys += [] if self.args.use_ne_hifigan else ["ne_hifigan_decoder"]
# remove xtts gpt trainer extra keys
ignore_keys += ["torch_mel_spectrogram_style_encoder", "torch_mel_spectrogram_dvae", "dvae"]
ignore_keys = ["torch_mel_spectrogram_style_encoder", "torch_mel_spectrogram_dvae", "dvae"]
for key in list(checkpoint.keys()):
# check if it is from the coqui Trainer if so convert it
if key.startswith("xtts."):
@ -913,14 +756,7 @@ class Xtts(BaseTTS):
self.load_state_dict(checkpoint, strict=strict)
if eval:
if hasattr(self, "hifigan_decoder"):
self.hifigan_decoder.eval()
if hasattr(self, "ne_hifigan_decoder"):
self.hifigan_decoder.eval()
if hasattr(self, "diffusion_decoder"):
self.diffusion_decoder.eval()
if hasattr(self, "vocoder"):
self.vocoder.eval()
self.hifigan_decoder.eval()
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=use_deepspeed)
self.gpt.eval()

View File

@ -39,6 +39,7 @@ You can also mail us at info@coqui.ai.
### Inference
#### 🐸TTS API
##### Single reference
```python
from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=True)
@ -46,12 +47,25 @@ tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=True)
# generate speech by cloning a voice using default settings
tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
file_path="output.wav",
speaker_wav="/path/to/target/speaker.wav",
speaker_wav=["/path/to/target/speaker.wav"],
language="en")
```
##### Multiple references
```python
from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=True)
# generate speech by cloning a voice using default settings
tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
file_path="output.wav",
speaker_wav=["/path/to/target/speaker.wav", "/path/to/target/speaker_2.wav", "/path/to/target/speaker_3.wav"],
language="en")
```
#### 🐸TTS Command line
##### Single reference
```console
tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 \
--text "Bugün okula gitmek istemiyorum." \
@ -60,6 +74,25 @@ tts.tts_to_file(text="It took me quite a long time to develop a voice, and now t
--use_cuda true
```
##### Multiple references
```console
tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 \
--text "Bugün okula gitmek istemiyorum." \
--speaker_wav /path/to/target/speaker.wav /path/to/target/speaker_2.wav /path/to/target/speaker_3.wav \
--language_idx tr \
--use_cuda true
```
or for all wav files in a directory you can use:
```console
tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 \
--text "Bugün okula gitmek istemiyorum." \
--speaker_wav /path/to/target/*.wav \
--language_idx tr \
--use_cuda true
```
#### model directly
If you want to be able to run with `use_deepspeed=True` and enjoy the speedup, you need to install deepspeed first.
@ -83,7 +116,7 @@ model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=Tru
model.cuda()
print("Computing speaker latents...")
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path="reference.wav")
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"])
print("Inference...")
out = model.inference(
@ -120,7 +153,7 @@ model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=Tru
model.cuda()
print("Computing speaker latents...")
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path="reference.wav")
gpt_cond_latent, _, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"])
print("Inference...")
t0 = time.time()
@ -177,7 +210,7 @@ model.load_checkpoint(config, checkpoint_path=XTTS_CHECKPOINT, vocab_path=TOKENI
model.cuda()
print("Computing speaker latents...")
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=SPEAKER_REFERENCE)
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=[SPEAKER_REFERENCE])
print("Inference...")
out = model.inference(

View File

@ -41,8 +41,8 @@ os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/mel_stats.pth"
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, DVAE_CHECKPOINT_LINK.split("/")[-1])
@ -55,8 +55,8 @@ if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
# Download XTTS v1.1 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/model.pth"
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.2/model.pth"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, TOKENIZER_FILE_LINK.split("/")[-1]) # vocab.json file
@ -71,9 +71,9 @@ if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
# Training sentences generations
SPEAKER_REFERENCE = (
SPEAKER_REFERENCE = [
"./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
)
]
LANGUAGE = config_dataset.language
@ -94,12 +94,9 @@ def main():
gpt_num_audio_tokens=8194,
gpt_start_audio_token=8192,
gpt_stop_audio_token=8193,
use_ne_hifigan=True, # if it is true it will keep the non-enhanced keys on the output checkpoint
)
# define audio config
audio_config = XttsAudioConfig(
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
)
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
output_path=OUT_PATH,

View File

@ -41,27 +41,26 @@ os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/mel_stats.pth"
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, DVAE_CHECKPOINT_LINK.split("/")[-1])
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, MEL_NORM_LINK.split("/")[-1])
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# ToDo: Update links for XTTS v2.0
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v2.0/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v2.0/model.pth"
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, TOKENIZER_FILE_LINK.split("/")[-1]) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, XTTS_CHECKPOINT_LINK.split("/")[-1]) # model.pth file
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
@ -72,9 +71,9 @@ if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
# Training sentences generations
SPEAKER_REFERENCE = (
SPEAKER_REFERENCE = [
"./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
)
]
LANGUAGE = config_dataset.language
@ -90,17 +89,14 @@ def main():
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=8194,
gpt_start_audio_token=8192,
gpt_stop_audio_token=8193,
use_ne_hifigan=True, # if it is true it will keep the non-enhanced keys on the output checkpoint
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
)
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
output_path=OUT_PATH,

View File

@ -60,7 +60,7 @@ XTTS_CHECKPOINT = None # "/raid/edresson/dev/Checkpoints/XTTS_evaluation/xtts_s
# Training sentences generations
SPEAKER_REFERENCE = "tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
SPEAKER_REFERENCE = ["tests/data/ljspeech/wavs/LJ001-0002.wav"] # speaker reference to be used in training test sentences
LANGUAGE = config_dataset.language
@ -86,11 +86,8 @@ model_args = GPTArgs(
gpt_num_audio_tokens=8194,
gpt_start_audio_token=8192,
gpt_stop_audio_token=8193,
use_ne_hifigan=True,
)
audio_config = XttsAudioConfig(
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
)
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
config = GPTTrainerConfig(
epochs=1,
output_path=OUT_PATH,

View File

@ -58,7 +58,7 @@ XTTS_CHECKPOINT = None # "/raid/edresson/dev/Checkpoints/XTTS_evaluation/xtts_s
# Training sentences generations
SPEAKER_REFERENCE = "tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
SPEAKER_REFERENCE = ["tests/data/ljspeech/wavs/LJ001-0002.wav"] # speaker reference to be used in training test sentences
LANGUAGE = config_dataset.language
@ -86,11 +86,10 @@ model_args = GPTArgs(
gpt_stop_audio_token=8193,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
use_ne_hifigan=True,
)
audio_config = XttsAudioConfig(
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
)
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
config = GPTTrainerConfig(
epochs=1,
output_path=OUT_PATH,

View File

@ -101,7 +101,9 @@ def test_xtts_streaming():
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
speaker_wav = [os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")]
speaker_wav_2 = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0002.wav")
speaker_wav.append(speaker_wav_2)
model_path = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v1")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
@ -131,20 +133,21 @@ def test_xtts_v2():
"""XTTS is too big to run on github actions. We need to test it locally"""
output_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
speaker_wav_2 = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0002.wav")
use_gpu = torch.cuda.is_available()
if use_gpu:
run_cli(
"yes | "
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 "
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True '
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
f'--speaker_wav "{speaker_wav}" "{speaker_wav_2}" "--language_idx "en"'
)
else:
run_cli(
"yes | "
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v2 "
f'--text "This is an example." --out_path "{output_path}" --progress_bar False '
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
f'--speaker_wav "{speaker_wav}" "{speaker_wav_2}" --language_idx "en"'
)
@ -153,7 +156,7 @@ def test_xtts_v2_streaming():
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
speaker_wav = [os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")]
model_path = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))