Implement most similar ref training approach

This commit is contained in:
Edresson Casanova 2023-10-25 18:50:35 -03:00 committed by Eren G??lge
parent 38f6f8f0bb
commit 077a849b3b
2 changed files with 21 additions and 7 deletions

View File

@ -88,6 +88,7 @@ class XTTSDataset(torch.utils.data.Dataset):
self.sample_rate = sample_rate
self.max_wav_len = model_args.max_wav_length
self.max_text_len = model_args.max_text_length
self.use_masking_gt_as_prompt = model_args.use_masking_gt_as_prompt
assert self.max_wav_len is not None and self.max_text_len is not None
self.samples = samples
@ -109,7 +110,7 @@ class XTTSDataset(torch.utils.data.Dataset):
try:
tseq, _, wav, _, _, _ = self.load_item(sample)
except:
pass
continue
# Basically, this audio file is nonexistent or too long to be supported by the dataset.
if (
wav is None
@ -140,10 +141,18 @@ class XTTSDataset(torch.utils.data.Dataset):
# Ultra short clips are also useless (and can cause problems within some models).
raise ValueError
# get a slice from GT to condition the model
cond, cond_len, cond_idxs = get_prompt_slice(
audiopath, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval
)
if self.use_masking_gt_as_prompt:
# get a slice from GT to condition the model
cond, cond_len, cond_idxs = get_prompt_slice(
audiopath, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval
)
else:
ref_sample = sample["reference_path"] if "reference_path" in sample and sample["reference_path"] is not None else audiopath
cond, cond_len, cond_idxs = get_prompt_slice(
ref_sample, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval
)
cond_idxs = torch.nan
cond_len = torch.nan
return tseq, audiopath, wav, cond, cond_len, cond_idxs
@ -199,8 +208,8 @@ class XTTSDataset(torch.utils.data.Dataset):
"wav_lengths": torch.tensor(wav.shape[-1], dtype=torch.long),
"filenames": audiopath,
"conditioning": cond.unsqueeze(1),
"cond_lens": torch.tensor(cond_len, dtype=torch.long),
"cond_idxs": torch.tensor(cond_idxs),
"cond_lens": torch.tensor(cond_len, dtype=torch.long) if cond_len is not torch.nan else torch.tensor([cond_len]),
"cond_idxs": torch.tensor(cond_idxs) if cond_idxs is not torch.nan else torch.tensor([cond_len]),
}
return res
@ -221,6 +230,10 @@ class XTTSDataset(torch.utils.data.Dataset):
batch["conditioning"] = torch.stack(batch["conditioning"])
batch["cond_lens"] = torch.stack(batch["cond_lens"])
batch["cond_idxs"] = torch.stack(batch["cond_idxs"])
if torch.any(batch["cond_idxs"].isnan()):
batch["cond_lens"] = None
batch["cond_idxs"] = None
max_text_len = batch["text_lengths"].max()
max_wav_len = batch["wav_lengths"].max()

View File

@ -52,6 +52,7 @@ class GPTArgs(XttsArgs):
xtts_checkpoint: str = ""
gpt_checkpoint: str = "" # if defined it will replace the gpt weights on xtts model
vocoder: str = "" # overide vocoder key on the config to avoid json write issues
use_masking_gt_as_prompt: bool = True
def callback_clearml_load_save(operation_type, model_info):