mirror of https://github.com/coqui-ai/TTS.git
Add XTTS v2.0 training recipe
This commit is contained in:
parent
0664c843d8
commit
08e04322dd
|
@ -0,0 +1,179 @@
|
|||
import os
|
||||
|
||||
from trainer import Trainer, TrainerArgs
|
||||
|
||||
from TTS.config.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
|
||||
from TTS.utils.manage import ModelManager
|
||||
|
||||
|
||||
# Logging parameters
|
||||
RUN_NAME = "GPT_XTTS_v2.0_LJSpeech_FT"
|
||||
PROJECT_NAME = "XTTS_trainer"
|
||||
DASHBOARD_LOGGER = "tensorboard"
|
||||
LOGGER_URI = None
|
||||
|
||||
# Set here the path that the checkpoints will be saved. Default: ./run/training/
|
||||
OUT_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "run", "training")
|
||||
|
||||
# Training Parameters
|
||||
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
|
||||
START_WITH_EVAL = True # if True it will star with evaluation
|
||||
BATCH_SIZE = 3 # set here the batch size
|
||||
GRAD_ACUMM_STEPS = 84 # set here the grad accumulation steps
|
||||
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
|
||||
|
||||
# Define here the dataset that you want to use for the fine-tuning on.
|
||||
config_dataset = BaseDatasetConfig(
|
||||
formatter="ljspeech",
|
||||
dataset_name="ljspeech",
|
||||
path="/raid/datasets/LJSpeech-1.1_24khz/",
|
||||
meta_file_train="/raid/datasets/LJSpeech-1.1_24khz/metadata.csv",
|
||||
language="en",
|
||||
)
|
||||
|
||||
# Add here the configs of the datasets
|
||||
DATASETS_CONFIG_LIST = [config_dataset]
|
||||
|
||||
# Define the path where XTTS v2.0.1 files will be downloaded
|
||||
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
|
||||
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
|
||||
|
||||
|
||||
# DVAE files
|
||||
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/dvae.pth"
|
||||
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v1.1.1/mel_stats.pth"
|
||||
|
||||
# Set the path to the downloaded files
|
||||
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, DVAE_CHECKPOINT_LINK.split("/")[-1])
|
||||
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, MEL_NORM_LINK.split("/")[-1])
|
||||
|
||||
# download DVAE files if needed
|
||||
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
|
||||
print(" > Downloading DVAE files!")
|
||||
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
|
||||
|
||||
# ToDo: Update links for XTTS v2.0
|
||||
|
||||
# Download XTTS v2.0 checkpoint if needed
|
||||
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v2.0/vocab.json"
|
||||
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v1/v2.0/model.pth"
|
||||
|
||||
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
|
||||
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, TOKENIZER_FILE_LINK.split("/")[-1]) # vocab.json file
|
||||
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, XTTS_CHECKPOINT_LINK.split("/")[-1]) # model.pth file
|
||||
|
||||
# download XTTS v2.0 files if needed
|
||||
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
|
||||
print(" > Downloading XTTS v2.0 files!")
|
||||
ModelManager._download_model_files([TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
|
||||
|
||||
|
||||
# Training sentences generations
|
||||
SPEAKER_REFERENCE = (
|
||||
"./tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
|
||||
)
|
||||
LANGUAGE = config_dataset.language
|
||||
|
||||
|
||||
def main():
|
||||
# init args and config
|
||||
model_args = GPTArgs(
|
||||
max_conditioning_length=132300, # 6 secs
|
||||
min_conditioning_length=66150, # 3 secs
|
||||
debug_loading_failures=False,
|
||||
max_wav_length=255995, # ~11.6 seconds
|
||||
max_text_length=200,
|
||||
mel_norm_file=MEL_NORM_FILE,
|
||||
dvae_checkpoint=DVAE_CHECKPOINT,
|
||||
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
|
||||
tokenizer_file=TOKENIZER_FILE,
|
||||
gpt_num_audio_tokens=8194,
|
||||
gpt_start_audio_token=8192,
|
||||
gpt_stop_audio_token=8193,
|
||||
use_ne_hifigan=True, # if it is true it will keep the non-enhanced keys on the output checkpoint
|
||||
gpt_use_masking_gt_prompt_approach=True,
|
||||
gpt_use_perceiver_resampler=True,
|
||||
)
|
||||
# define audio config
|
||||
audio_config = XttsAudioConfig(
|
||||
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
|
||||
)
|
||||
# training parameters config
|
||||
config = GPTTrainerConfig(
|
||||
output_path=OUT_PATH,
|
||||
model_args=model_args,
|
||||
run_name=RUN_NAME,
|
||||
project_name=PROJECT_NAME,
|
||||
run_description="""
|
||||
GPT XTTS training
|
||||
""",
|
||||
dashboard_logger=DASHBOARD_LOGGER,
|
||||
logger_uri=LOGGER_URI,
|
||||
audio=audio_config,
|
||||
batch_size=BATCH_SIZE,
|
||||
batch_group_size=48,
|
||||
eval_batch_size=BATCH_SIZE,
|
||||
num_loader_workers=8,
|
||||
eval_split_max_size=256,
|
||||
print_step=50,
|
||||
plot_step=100,
|
||||
log_model_step=1000,
|
||||
save_step=10000,
|
||||
save_n_checkpoints=1,
|
||||
save_checkpoints=True,
|
||||
# target_loss="loss",
|
||||
print_eval=False,
|
||||
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
|
||||
optimizer="AdamW",
|
||||
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
|
||||
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
|
||||
lr=5e-06, # learning rate
|
||||
lr_scheduler="MultiStepLR",
|
||||
# it was adjusted accordly for the new step scheme
|
||||
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
|
||||
test_sentences=[
|
||||
{
|
||||
"text": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
||||
"speaker_wav": SPEAKER_REFERENCE,
|
||||
"language": LANGUAGE,
|
||||
},
|
||||
{
|
||||
"text": "This cake is great. It's so delicious and moist.",
|
||||
"speaker_wav": SPEAKER_REFERENCE,
|
||||
"language": LANGUAGE,
|
||||
},
|
||||
],
|
||||
)
|
||||
|
||||
# init the model from config
|
||||
model = GPTTrainer.init_from_config(config)
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(
|
||||
DATASETS_CONFIG_LIST,
|
||||
eval_split=True,
|
||||
eval_split_max_size=config.eval_split_max_size,
|
||||
eval_split_size=config.eval_split_size,
|
||||
)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainerArgs(
|
||||
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
|
||||
skip_train_epoch=False,
|
||||
start_with_eval=START_WITH_EVAL,
|
||||
grad_accum_steps=GRAD_ACUMM_STEPS,
|
||||
),
|
||||
config,
|
||||
output_path=OUT_PATH,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
)
|
||||
trainer.fit()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue