refactor: use external package for monotonic alignment

This commit is contained in:
Enno Hermann 2024-11-07 00:33:54 +01:00
parent 59996fffa3
commit 0971bc236e
9 changed files with 11 additions and 126 deletions

View File

@ -5,6 +5,7 @@ from typing import Callable, Dict, Tuple
import torch
import torch.nn.functional as F
from coqpit import Coqpit
from monotonic_alignment_search import maximum_path
from torch import nn
from TTS.tts.layers.delightful_tts.conformer import Conformer
@ -19,7 +20,7 @@ from TTS.tts.layers.delightful_tts.phoneme_prosody_predictor import PhonemeProso
from TTS.tts.layers.delightful_tts.pitch_adaptor import PitchAdaptor
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor
from TTS.tts.layers.generic.aligner import AlignmentNetwork
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
from TTS.tts.utils.helpers import generate_path, sequence_mask
logger = logging.getLogger(__name__)

View File

@ -3,6 +3,7 @@ from typing import Dict, List, Union
import torch
from coqpit import Coqpit
from monotonic_alignment_search import maximum_path
from torch import nn
from trainer.io import load_fsspec
@ -12,7 +13,7 @@ from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
from TTS.tts.utils.helpers import generate_path, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram

View File

@ -4,6 +4,7 @@ from typing import Dict, List, Tuple, Union
import torch
from coqpit import Coqpit
from monotonic_alignment_search import maximum_path
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from trainer.io import load_fsspec
@ -14,7 +15,7 @@ from TTS.tts.layers.generic.aligner import AlignmentNetwork
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import average_over_durations, generate_path, maximum_path, sequence_mask
from TTS.tts.utils.helpers import average_over_durations, generate_path, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_avg_energy, plot_avg_pitch, plot_spectrogram

View File

@ -4,6 +4,7 @@ from typing import Dict, List, Tuple, Union
import torch
from coqpit import Coqpit
from monotonic_alignment_search import maximum_path
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F
@ -13,7 +14,7 @@ from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.tts.layers.glow_tts.decoder import Decoder
from TTS.tts.layers.glow_tts.encoder import Encoder
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
from TTS.tts.utils.helpers import generate_path, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.tokenizer import TTSTokenizer

View File

@ -11,6 +11,7 @@ import torch.distributed as dist
import torchaudio
from coqpit import Coqpit
from librosa.filters import mel as librosa_mel_fn
from monotonic_alignment_search import maximum_path
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F
@ -28,7 +29,7 @@ from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlock
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.fairseq import rehash_fairseq_vits_checkpoint
from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask
from TTS.tts.utils.helpers import generate_path, rand_segments, segment, sequence_mask
from TTS.tts.utils.languages import LanguageManager
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis

View File

@ -3,13 +3,6 @@ import torch
from scipy.stats import betabinom
from torch.nn import functional as F
try:
from TTS.tts.utils.monotonic_align.core import maximum_path_c
CYTHON = True
except ModuleNotFoundError:
CYTHON = False
class StandardScaler:
"""StandardScaler for mean-scale normalization with the given mean and scale values."""
@ -168,73 +161,6 @@ def generate_path(duration, mask):
return path
def maximum_path(value, mask):
if CYTHON:
return maximum_path_cython(value, mask)
return maximum_path_numpy(value, mask)
def maximum_path_cython(value, mask):
"""Cython optimised version.
Shapes:
- value: :math:`[B, T_en, T_de]`
- mask: :math:`[B, T_en, T_de]`
"""
value = value * mask
device = value.device
dtype = value.dtype
value = value.data.cpu().numpy().astype(np.float32)
path = np.zeros_like(value).astype(np.int32)
mask = mask.data.cpu().numpy()
t_x_max = mask.sum(1)[:, 0].astype(np.int32)
t_y_max = mask.sum(2)[:, 0].astype(np.int32)
maximum_path_c(path, value, t_x_max, t_y_max)
return torch.from_numpy(path).to(device=device, dtype=dtype)
def maximum_path_numpy(value, mask, max_neg_val=None):
"""
Monotonic alignment search algorithm
Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
if max_neg_val is None:
max_neg_val = -np.inf # Patch for Sphinx complaint
value = value * mask
device = value.device
dtype = value.dtype
value = value.cpu().detach().numpy()
mask = mask.cpu().detach().numpy().astype(bool)
b, t_x, t_y = value.shape
direction = np.zeros(value.shape, dtype=np.int64)
v = np.zeros((b, t_x), dtype=np.float32)
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1)
for j in range(t_y):
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = v1 >= v0
v_max = np.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = x_range <= j
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = np.where(mask, direction, 1)
path = np.zeros(value.shape, dtype=np.float32)
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
index_range = np.arange(b)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(np.float32)
path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0):
P, M = phoneme_count, mel_count
x = np.arange(0, P)

View File

@ -1,47 +0,0 @@
import numpy as np
cimport cython
cimport numpy as np
from cython.parallel import prange
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_x, int t_y, float max_neg_val) nogil:
cdef int x
cdef int y
cdef float v_prev
cdef float v_cur
cdef float tmp
cdef int index = t_x - 1
for y in range(t_y):
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = value[x, y-1]
if x == 0:
if y == 0:
v_prev = 0.
else:
v_prev = max_neg_val
else:
v_prev = value[x-1, y-1]
value[x, y] = max(v_cur, v_prev) + value[x, y]
for y in range(t_y - 1, -1, -1):
path[index, y] = 1
if index != 0 and (index == y or value[index, y-1] < value[index-1, y-1]):
index = index - 1
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_xs, int[::1] t_ys, float max_neg_val=-1e9) nogil:
cdef int b = values.shape[0]
cdef int i
for i in prange(b, nogil=True):
maximum_path_each(paths[i], values[i], t_xs[i], t_ys[i], max_neg_val)

View File

@ -64,6 +64,7 @@ dependencies = [
# Coqui stack
"coqui-tts-trainer>=0.1.4,<0.2.0",
"coqpit>=0.0.16",
"monotonic-alignment-search>=0.1.0",
# Gruut + supported languages
"gruut[de,es,fr]>=2.4.0",
# Tortoise