Add evaluation encoder script

This commit is contained in:
Edresson Casanova 2022-03-02 10:44:39 -03:00
parent f811af7651
commit 0a06d1e67b
6 changed files with 119 additions and 5 deletions

View File

@ -53,10 +53,10 @@ speaker_manager = SpeakerManager(
speaker_mapping = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, list):
speaker_name = wav_file[2]
class_name = wav_file[2]
wav_file = wav_file[1]
else:
speaker_name = None
class_name = None
wav_file_name = os.path.basename(wav_file)
if args.old_file is not None and wav_file_name in speaker_manager.clip_ids:
@ -68,7 +68,7 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
# create speaker_mapping if target dataset is defined
speaker_mapping[wav_file_name] = {}
speaker_mapping[wav_file_name]["name"] = speaker_name
speaker_mapping[wav_file_name]["name"] = class_name
speaker_mapping[wav_file_name]["embedding"] = embedd
if speaker_mapping:

89
TTS/bin/eval_encoder.py Normal file
View File

@ -0,0 +1,89 @@
import argparse
import os
import torch
from argparse import RawTextHelpFormatter
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.speakers import SpeakerManager
parser = argparse.ArgumentParser(
description="""Compute the accuracy of the encoder.\n\n"""
"""
Example runs:
python TTS/bin/eval_encoder.py emotion_encoder_model.pth.tar emotion_encoder_config.json dataset_config.json
""",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
parser.add_argument(
"config_path",
type=str,
help="Path to model config file.",
)
parser.add_argument(
"config_dataset_path",
type=str,
help="Path to dataset config file.",
)
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args()
c_dataset = load_config(args.config_dataset_path)
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
wav_files = meta_data_train + meta_data_eval
speaker_manager = SpeakerManager(
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
)
if speaker_manager.speaker_encoder_config.map_classid_to_classname is not None:
map_classid_to_classname = speaker_manager.speaker_encoder_config.map_classid_to_classname
else:
map_classid_to_classname = None
# compute speaker embeddings
class_acc_dict = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, list):
class_name = wav_file[2]
wav_file = wav_file[1]
else:
class_name = None
# extract the embedding
embedd = speaker_manager.compute_d_vector_from_clip(wav_file)
if speaker_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
embedding = torch.FloatTensor(embedd).unsqueeze(0)
if args.use_cuda:
embedding = embedding.cuda()
class_id = speaker_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
predicted_label = map_classid_to_classname[str(class_id)]
else:
predicted_label = None
if class_name is not None and predicted_label is not None:
is_equal = int(class_name == predicted_label)
if class_name not in class_acc_dict:
class_acc_dict[class_name] = [is_equal]
else:
class_acc_dict[class_name].append(is_equal)
else:
print("Error: class_name or/and predicted_label are None")
exit()
acc_avg = 0
for key in class_acc_dict:
acc = sum(class_acc_dict[key])/len(class_acc_dict[key])
print("Class", key, "ACC:", acc)
acc_avg += acc
print("Average Acc:", acc_avg/len(class_acc_dict))

View File

@ -189,6 +189,11 @@ class SoftmaxLoss(nn.Module):
return L
def inference(self, embedding):
x = self.fc(embedding)
activations = torch.nn.functional.softmax(x, dim=1).squeeze(0)
class_id = torch.argmax(activations)
return class_id
class SoftmaxAngleProtoLoss(nn.Module):
"""

View File

@ -182,8 +182,18 @@ class LSTMSpeakerEncoder(nn.Module):
def load_checkpoint(self, config: dict, checkpoint_path: str, eval: bool = False, use_cuda: bool = False):
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"])
# load the criterion for emotion classification
if "criterion" in state and config.loss == "softmaxproto" and config.model == "emotion_encoder" and config.map_classid_to_classname is not None:
criterion = SoftmaxAngleProtoLoss(config.model_params["proj_dim"], len(config.map_classid_to_classname.keys()))
criterion.load_state_dict(state["criterion"])
else:
criterion = None
if use_cuda:
self.cuda()
if criterion is not None:
criterion = criterion.cuda()
if eval:
self.eval()
assert not self.training
return criterion

View File

@ -5,7 +5,7 @@ from torch import nn
# from TTS.utils.audio import TorchSTFT
from TTS.utils.io import load_fsspec
from TTS.encoder.losses import SoftmaxAngleProtoLoss
class PreEmphasis(nn.Module):
def __init__(self, coefficient=0.97):
@ -277,8 +277,18 @@ class ResNetSpeakerEncoder(nn.Module):
def load_checkpoint(self, config: dict, checkpoint_path: str, eval: bool = False, use_cuda: bool = False):
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"])
# load the criterion for emotion classification
if "criterion" in state and config.loss == "softmaxproto" and config.model == "emotion_encoder" and config.map_classid_to_classname is not None:
criterion = SoftmaxAngleProtoLoss(config.model_params["proj_dim"], len(config.map_classid_to_classname.keys()))
criterion.load_state_dict(state["criterion"])
else:
criterion = None
if use_cuda:
self.cuda()
if criterion is not None:
criterion = criterion.cuda()
if eval:
self.eval()
assert not self.training
return criterion

View File

@ -269,7 +269,7 @@ class SpeakerManager:
"""
self.speaker_encoder_config = load_config(config_path)
self.speaker_encoder = setup_speaker_encoder_model(self.speaker_encoder_config)
self.speaker_encoder.load_checkpoint(config_path, model_path, eval=True, use_cuda=self.use_cuda)
self.speaker_encoder_criterion = self.speaker_encoder.load_checkpoint(self.speaker_encoder_config, model_path, eval=True, use_cuda=self.use_cuda)
self.speaker_encoder_ap = AudioProcessor(**self.speaker_encoder_config.audio)
def compute_d_vector_from_clip(self, wav_file: Union[str, List[str]]) -> list: