mirror of https://github.com/coqui-ai/TTS.git
enable saving model characters in io.py
This commit is contained in:
parent
f9fe167537
commit
0b33acdcca
|
@ -38,7 +38,15 @@ def load_checkpoint(model, checkpoint_path, amp=None, use_cuda=False, eval=False
|
|||
return model, state
|
||||
|
||||
|
||||
def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_dict=None, **kwargs):
|
||||
def save_model(model,
|
||||
optimizer,
|
||||
current_step,
|
||||
epoch,
|
||||
r,
|
||||
output_path,
|
||||
characters,
|
||||
amp_state_dict=None,
|
||||
**kwargs):
|
||||
"""Save ```TTS.tts.models``` states with extra fields.
|
||||
|
||||
Args:
|
||||
|
@ -48,6 +56,7 @@ def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_
|
|||
epoch (int): current number of training epochs.
|
||||
r (int): model reduction rate for Tacotron models.
|
||||
output_path (str): output path to save the model file.
|
||||
characters (list): list of characters used in the model.
|
||||
amp_state_dict (state_dict, optional): Apex.amp state dict if Apex is enabled. Defaults to None.
|
||||
"""
|
||||
if hasattr(model, 'module'):
|
||||
|
@ -60,7 +69,8 @@ def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_
|
|||
'step': current_step,
|
||||
'epoch': epoch,
|
||||
'date': datetime.date.today().strftime("%B %d, %Y"),
|
||||
'r': r
|
||||
'r': r,
|
||||
'characters': characters
|
||||
}
|
||||
if amp_state_dict:
|
||||
state['amp'] = amp_state_dict
|
||||
|
@ -68,7 +78,8 @@ def save_model(model, optimizer, current_step, epoch, r, output_path, amp_state_
|
|||
torch.save(state, output_path)
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs):
|
||||
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder,
|
||||
characters, **kwargs):
|
||||
"""Save model checkpoint, intended for saving checkpoints at training.
|
||||
|
||||
Args:
|
||||
|
@ -78,14 +89,16 @@ def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **k
|
|||
epoch (int): current number of training epochs.
|
||||
r (int): model reduction rate for Tacotron models.
|
||||
output_path (str): output path to save the model file.
|
||||
characters (list): list of characters used in the model.
|
||||
"""
|
||||
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
|
||||
checkpoint_path = os.path.join(output_folder, file_name)
|
||||
print(" > CHECKPOINT : {}".format(checkpoint_path))
|
||||
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs)
|
||||
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, characters, **kwargs)
|
||||
|
||||
|
||||
def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs):
|
||||
def save_best_model(target_loss, best_loss, model, optimizer, current_step,
|
||||
epoch, r, output_folder, characters, **kwargs):
|
||||
"""Save model checkpoint, intended for saving the best model after each epoch.
|
||||
It compares the current model loss with the best loss so far and saves the
|
||||
model if the current loss is better.
|
||||
|
@ -99,6 +112,7 @@ def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoc
|
|||
epoch (int): current number of training epochs.
|
||||
r (int): model reduction rate for Tacotron models.
|
||||
output_path (str): output path to save the model file.
|
||||
characters (list): list of characters used in the model.
|
||||
|
||||
Returns:
|
||||
float: updated current best loss.
|
||||
|
@ -107,6 +121,6 @@ def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoc
|
|||
file_name = 'best_model.pth.tar'
|
||||
checkpoint_path = os.path.join(output_folder, file_name)
|
||||
print(" >> BEST MODEL : {}".format(checkpoint_path))
|
||||
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs)
|
||||
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, characters, model_loss=target_loss, **kwargs)
|
||||
best_loss = target_loss
|
||||
return best_loss
|
||||
|
|
Loading…
Reference in New Issue