mirror of https://github.com/coqui-ai/TTS.git
small updates
This commit is contained in:
parent
2ee47e9568
commit
0becef4b58
|
@ -95,7 +95,6 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
end_time = time.time()
|
||||
c_logger.print_train_start()
|
||||
# train loop
|
||||
print(" > Training", flush=True)
|
||||
for num_iter, data in enumerate(data_loader):
|
||||
start_time = time.time()
|
||||
x_input, mels, y_coarse = format_data(data)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"run_name": "wavernn_test",
|
||||
"run_description": "wavernn_test training",
|
||||
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio": {
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
|
@ -29,7 +29,7 @@
|
|||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
},
|
||||
|
||||
|
||||
// Generating / Synthesizing
|
||||
"batched": true,
|
||||
"target_samples": 11000, // target number of samples to be generated in each batch entry
|
||||
|
@ -39,11 +39,11 @@
|
|||
// "backend": "nccl",
|
||||
// "url": "tcp:\/\/localhost:54321"
|
||||
// },
|
||||
|
||||
// MODEL MODE
|
||||
"mode": 10, // mold [string], gauss [string], bits [int]
|
||||
|
||||
// MODEL MODE
|
||||
"mode": "mold", // mold [string], gauss [string], bits [int]
|
||||
"mulaw": true, // apply mulaw if mode is bits
|
||||
|
||||
|
||||
// MODEL PARAMETERS
|
||||
"wavernn_model_params": {
|
||||
"rnn_dims": 512,
|
||||
|
@ -55,14 +55,14 @@
|
|||
"use_upsample_net": true,
|
||||
"upsample_factors": [4, 8, 8] // this needs to correctly factorise hop_length
|
||||
},
|
||||
|
||||
|
||||
// DATASET
|
||||
//"use_gta": true, // use computed gta features from the tts model
|
||||
"data_path": "/media/alexander/LinuxFS/SpeechData/GothicSpeech/NPC_Speech", // path containing training wav files
|
||||
"data_path": "/home/erogol/Data/LJSpeech-1.1/wavs/", // path containing training wav files
|
||||
"feature_path": null, // path containing computed features from wav files if null compute them
|
||||
"seq_len": 1280, // has to be devideable by hop_length
|
||||
"padding": 2, // pad the input for resnet to see wider input length
|
||||
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 64, // Batch size for training.
|
||||
"epochs": 10000, // total number of epochs to train.
|
||||
|
@ -70,7 +70,7 @@
|
|||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_every_epochs": 10, // Test after set number of epochs (Test every 10 epochs for example)
|
||||
|
||||
|
||||
// OPTIMIZER
|
||||
"grad_clip": 4, // apply gradient clipping if > 0
|
||||
"lr_scheduler": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
|
@ -79,19 +79,19 @@
|
|||
"milestones": [200000, 400000, 600000]
|
||||
},
|
||||
"lr": 1e-4, // initial learning rate
|
||||
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log traning on console.
|
||||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
|
||||
// DATA LOADING
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"eval_split_size": 50, // number of samples for testing
|
||||
|
||||
"eval_split_size": 50, // number of samples for testing
|
||||
|
||||
// PATHS
|
||||
"output_path": "output/training/path"
|
||||
"output_path": "/home/erogol/Models/LJSpeech/"
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue