mirror of https://github.com/coqui-ai/TTS.git
Add compute_embeddings and resample_files functions to be able to reuse it
This commit is contained in:
parent
5d925eaa4d
commit
0bf274688f
|
@ -11,121 +11,151 @@ from TTS.tts.datasets import load_tts_samples
|
|||
from TTS.tts.utils.managers import save_file
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n"""
|
||||
"""
|
||||
Example runs:
|
||||
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json
|
||||
|
||||
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --fomatter vctk --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --metafile /path/to/vctk/metafile.csv
|
||||
""",
|
||||
formatter_class=RawTextHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
help="Path to model checkpoint file. It defaults to the released speaker encoder.",
|
||||
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_path",
|
||||
type=str,
|
||||
help="Path to model config file. It defaults to the released speaker encoder config.",
|
||||
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_dataset_path",
|
||||
type=str,
|
||||
help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth")
|
||||
parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None)
|
||||
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
|
||||
parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False)
|
||||
parser.add_argument(
|
||||
"--formatter_name",
|
||||
type=str,
|
||||
help="Name of the formatter to use. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_name",
|
||||
type=str,
|
||||
help="Name of the dataset to use. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_path",
|
||||
type=str,
|
||||
help="Path to the dataset. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metafile",
|
||||
type=str,
|
||||
help="Path to the meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
def compute_embeddings(
|
||||
model_path,
|
||||
config_path,
|
||||
output_path,
|
||||
old_spakers_file=None,
|
||||
config_dataset_path=None,
|
||||
formatter_name=None,
|
||||
dataset_name=None,
|
||||
dataset_path=None,
|
||||
meta_file_train=None,
|
||||
disable_cuda=False,
|
||||
no_eval=False,
|
||||
):
|
||||
use_cuda = torch.cuda.is_available() and not disable_cuda
|
||||
|
||||
use_cuda = torch.cuda.is_available() and not args.disable_cuda
|
||||
|
||||
if args.config_dataset_path is not None:
|
||||
c_dataset = load_config(args.config_dataset_path)
|
||||
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not args.no_eval)
|
||||
else:
|
||||
c_dataset = BaseDatasetConfig()
|
||||
c_dataset.formatter = args.formatter_name
|
||||
c_dataset.dataset_name = args.dataset_name
|
||||
c_dataset.path = args.dataset_path
|
||||
c_dataset.meta_file_train = args.metafile if args.metafile else None
|
||||
meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not args.no_eval)
|
||||
|
||||
|
||||
if meta_data_eval is None:
|
||||
samples = meta_data_train
|
||||
else:
|
||||
samples = meta_data_train + meta_data_eval
|
||||
|
||||
encoder_manager = SpeakerManager(
|
||||
encoder_model_path=args.model_path,
|
||||
encoder_config_path=args.config_path,
|
||||
d_vectors_file_path=args.old_file,
|
||||
use_cuda=use_cuda,
|
||||
)
|
||||
|
||||
class_name_key = encoder_manager.encoder_config.class_name_key
|
||||
|
||||
# compute speaker embeddings
|
||||
speaker_mapping = {}
|
||||
for idx, fields in enumerate(tqdm(samples)):
|
||||
class_name = fields[class_name_key]
|
||||
audio_file = fields["audio_file"]
|
||||
embedding_key = fields["audio_unique_name"]
|
||||
root_path = fields["root_path"]
|
||||
|
||||
if args.old_file is not None and embedding_key in encoder_manager.clip_ids:
|
||||
# get the embedding from the old file
|
||||
embedd = encoder_manager.get_embedding_by_clip(embedding_key)
|
||||
if config_dataset_path is not None:
|
||||
c_dataset = load_config(config_dataset_path)
|
||||
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval)
|
||||
else:
|
||||
# extract the embedding
|
||||
embedd = encoder_manager.compute_embedding_from_clip(audio_file)
|
||||
c_dataset = BaseDatasetConfig()
|
||||
c_dataset.formatter = formatter_name
|
||||
c_dataset.dataset_name = dataset_name
|
||||
c_dataset.path = dataset_path
|
||||
c_dataset.meta_file_train = meta_file_train if meta_file_train else None
|
||||
meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval)
|
||||
|
||||
# create speaker_mapping if target dataset is defined
|
||||
speaker_mapping[embedding_key] = {}
|
||||
speaker_mapping[embedding_key]["name"] = class_name
|
||||
speaker_mapping[embedding_key]["embedding"] = embedd
|
||||
|
||||
if speaker_mapping:
|
||||
# save speaker_mapping if target dataset is defined
|
||||
if os.path.isdir(args.output_path):
|
||||
mapping_file_path = os.path.join(args.output_path, "speakers.pth")
|
||||
if meta_data_eval is None:
|
||||
samples = meta_data_train
|
||||
else:
|
||||
mapping_file_path = args.output_path
|
||||
samples = meta_data_train + meta_data_eval
|
||||
|
||||
if os.path.dirname(mapping_file_path) != "":
|
||||
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
|
||||
encoder_manager = SpeakerManager(
|
||||
encoder_model_path=model_path,
|
||||
encoder_config_path=config_path,
|
||||
d_vectors_file_path=old_spakers_file,
|
||||
use_cuda=use_cuda,
|
||||
)
|
||||
|
||||
save_file(speaker_mapping, mapping_file_path)
|
||||
print("Speaker embeddings saved at:", mapping_file_path)
|
||||
class_name_key = encoder_manager.encoder_config.class_name_key
|
||||
|
||||
# compute speaker embeddings
|
||||
speaker_mapping = {}
|
||||
for fields in tqdm(samples):
|
||||
class_name = fields[class_name_key]
|
||||
audio_file = fields["audio_file"]
|
||||
embedding_key = fields["audio_unique_name"]
|
||||
|
||||
if old_spakers_file is not None and embedding_key in encoder_manager.clip_ids:
|
||||
# get the embedding from the old file
|
||||
embedd = encoder_manager.get_embedding_by_clip(embedding_key)
|
||||
else:
|
||||
# extract the embedding
|
||||
embedd = encoder_manager.compute_embedding_from_clip(audio_file)
|
||||
|
||||
# create speaker_mapping if target dataset is defined
|
||||
speaker_mapping[embedding_key] = {}
|
||||
speaker_mapping[embedding_key]["name"] = class_name
|
||||
speaker_mapping[embedding_key]["embedding"] = embedd
|
||||
|
||||
if speaker_mapping:
|
||||
# save speaker_mapping if target dataset is defined
|
||||
if os.path.isdir(output_path):
|
||||
mapping_file_path = os.path.join(output_path, "speakers.pth")
|
||||
else:
|
||||
mapping_file_path = output_path
|
||||
|
||||
if os.path.dirname(mapping_file_path) != "":
|
||||
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
|
||||
|
||||
save_file(speaker_mapping, mapping_file_path)
|
||||
print("Speaker embeddings saved at:", mapping_file_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n"""
|
||||
"""
|
||||
Example runs:
|
||||
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json
|
||||
|
||||
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --fomatter vctk --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --metafile /path/to/vctk/metafile.csv
|
||||
""",
|
||||
formatter_class=RawTextHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
type=str,
|
||||
help="Path to model checkpoint file. It defaults to the released speaker encoder.",
|
||||
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_path",
|
||||
type=str,
|
||||
help="Path to model config file. It defaults to the released speaker encoder config.",
|
||||
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_dataset_path",
|
||||
type=str,
|
||||
help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth")
|
||||
parser.add_argument(
|
||||
"--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None
|
||||
)
|
||||
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
|
||||
parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False)
|
||||
parser.add_argument(
|
||||
"--formatter_name",
|
||||
type=str,
|
||||
help="Name of the formatter to use. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_name",
|
||||
type=str,
|
||||
help="Name of the dataset to use. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_path",
|
||||
type=str,
|
||||
help="Path to the dataset. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--metafile",
|
||||
type=str,
|
||||
help="Path to the meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
|
||||
default=None,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
compute_embeddings(
|
||||
args.model_path,
|
||||
args.config_path,
|
||||
args.output_path,
|
||||
old_spakers_file=args.old_file,
|
||||
config_dataset_path=args.config_dataset_path,
|
||||
formatter_name=args.formatter_name,
|
||||
dataset_name=args.dataset_name,
|
||||
dataset_path=args.dataset_path,
|
||||
meta_file_train=args.metafile,
|
||||
disable_cuda=args.disable_cuda,
|
||||
no_eval=args.no_eval,
|
||||
)
|
||||
|
|
|
@ -16,6 +16,24 @@ def resample_file(func_args):
|
|||
sf.write(filename, y, sr)
|
||||
|
||||
|
||||
def resample_files(input_dir, output_sr, output_dir=None, file_ext="wav", n_jobs=10):
|
||||
if output_dir:
|
||||
print("Recursively copying the input folder...")
|
||||
copy_tree(input_dir, output_dir)
|
||||
input_dir = output_dir
|
||||
|
||||
print("Resampling the audio files...")
|
||||
audio_files = glob.glob(os.path.join(input_dir, f"**/*.{file_ext}"), recursive=True)
|
||||
print(f"Found {len(audio_files)} files...")
|
||||
audio_files = list(zip(audio_files, len(audio_files) * [output_sr]))
|
||||
with Pool(processes=n_jobs) as p:
|
||||
with tqdm(total=len(audio_files)) as pbar:
|
||||
for _, _ in enumerate(p.imap_unordered(resample_file, audio_files)):
|
||||
pbar.update()
|
||||
|
||||
print("Done !")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
|
@ -70,18 +88,4 @@ if __name__ == "__main__":
|
|||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.output_dir:
|
||||
print("Recursively copying the input folder...")
|
||||
copy_tree(args.input_dir, args.output_dir)
|
||||
args.input_dir = args.output_dir
|
||||
|
||||
print("Resampling the audio files...")
|
||||
audio_files = glob.glob(os.path.join(args.input_dir, f"**/*.{args.file_ext}"), recursive=True)
|
||||
print(f"Found {len(audio_files)} files...")
|
||||
audio_files = list(zip(audio_files, len(audio_files) * [args.output_sr]))
|
||||
with Pool(processes=args.n_jobs) as p:
|
||||
with tqdm(total=len(audio_files)) as pbar:
|
||||
for i, _ in enumerate(p.imap_unordered(resample_file, audio_files)):
|
||||
pbar.update()
|
||||
|
||||
print("Done !")
|
||||
resample_files(args.input_dir, args.output_sr, args.output_dir, args.file_ext, args.n_jobs)
|
||||
|
|
Loading…
Reference in New Issue