mirror of https://github.com/coqui-ai/TTS.git
remove old graves
This commit is contained in:
parent
284daba116
commit
0d17019d22
|
@ -111,8 +111,9 @@ class LocationLayer(nn.Module):
|
|||
|
||||
|
||||
class GravesAttention(nn.Module):
|
||||
""" Graves attention as described here:
|
||||
""" Discretized Graves attention:
|
||||
- https://arxiv.org/abs/1910.10288
|
||||
- https://arxiv.org/pdf/1906.01083.pdf
|
||||
"""
|
||||
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
|
||||
|
||||
|
@ -368,82 +369,6 @@ class OriginalAttention(nn.Module):
|
|||
return context
|
||||
|
||||
|
||||
class GravesAttention(nn.Module):
|
||||
""" Graves attention as described here:
|
||||
- https://arxiv.org/abs/1910.10288
|
||||
"""
|
||||
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
|
||||
|
||||
def __init__(self, query_dim, K):
|
||||
super(GravesAttention, self).__init__()
|
||||
self._mask_value = 0.0
|
||||
self.K = K
|
||||
# self.attention_alignment = 0.05
|
||||
self.eps = 1e-5
|
||||
self.J = None
|
||||
self.N_a = nn.Sequential(
|
||||
nn.Linear(query_dim, query_dim, bias=True),
|
||||
nn.ReLU(),
|
||||
nn.Linear(query_dim, 3*K, bias=True))
|
||||
self.attention_weights = None
|
||||
self.mu_prev = None
|
||||
self.init_layers()
|
||||
|
||||
def init_layers(self):
|
||||
torch.nn.init.constant_(self.N_a[2].bias[(2*self.K):(3*self.K)], 1.)
|
||||
torch.nn.init.constant_(self.N_a[2].bias[self.K:(2*self.K)], 10)
|
||||
|
||||
def init_states(self, inputs):
|
||||
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
|
||||
self.J = torch.arange(0, inputs.shape[1]).to(inputs.device)
|
||||
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
|
||||
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
|
||||
|
||||
# pylint: disable=R0201
|
||||
# pylint: disable=unused-argument
|
||||
def preprocess_inputs(self, inputs):
|
||||
return None
|
||||
|
||||
def forward(self, query, inputs, processed_inputs, mask):
|
||||
"""
|
||||
shapes:
|
||||
query: B x D_attention_rnn
|
||||
inputs: B x T_in x D_encoder
|
||||
processed_inputs: place_holder
|
||||
mask: B x T_in
|
||||
"""
|
||||
gbk_t = self.N_a(query)
|
||||
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
|
||||
|
||||
# attention model parameters
|
||||
# each B x K
|
||||
g_t = gbk_t[:, 0, :]
|
||||
b_t = gbk_t[:, 1, :]
|
||||
k_t = gbk_t[:, 2, :]
|
||||
|
||||
# attention GMM parameters
|
||||
sig_t = torch.nn.functional.softplus(b_t) + self.eps
|
||||
|
||||
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
||||
g_t = torch.softmax(g_t, dim=-1) / sig_t + self.eps
|
||||
|
||||
# each B x K x T_in
|
||||
j = self.J[:inputs.size(1)]
|
||||
|
||||
# attention weights
|
||||
phi_t = g_t.unsqueeze(-1) * torch.exp(-0.5 * (mu_t.unsqueeze(-1) - j)**2 / (sig_t.unsqueeze(-1)**2))
|
||||
alpha_t = self.COEF * torch.sum(phi_t, 1)
|
||||
|
||||
# apply masking
|
||||
if mask is not None:
|
||||
alpha_t.data.masked_fill_(~mask, self._mask_value)
|
||||
|
||||
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
|
||||
self.attention_weights = alpha_t
|
||||
self.mu_prev = mu_t
|
||||
return context
|
||||
|
||||
|
||||
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
|
||||
location_attention, attention_location_n_filters,
|
||||
attention_location_kernel_size, windowing, norm, forward_attn,
|
||||
|
|
Loading…
Reference in New Issue