Add Perfect Sampler and remove storage

This commit is contained in:
Edresson Casanova 2022-03-04 15:09:51 -03:00
parent 8ba3385747
commit 0e372e0b9b
5 changed files with 189 additions and 184 deletions

View File

@ -13,6 +13,7 @@ from trainer.torch import NoamLR
from TTS.encoder.dataset import EncoderDataset
from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.encoder.utils.generic_utils import save_best_model, setup_speaker_encoder_model
from TTS.encoder.utils.samplers import PerfectBatchSampler
from TTS.encoder.utils.training import init_training
from TTS.encoder.utils.visual import plot_embeddings
from TTS.tts.datasets import load_tts_samples
@ -41,21 +42,24 @@ def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False
voice_len=c.voice_len,
num_utter_per_class=c.num_utter_per_class,
num_classes_in_batch=c.num_classes_in_batch,
use_storage=c.use_storage,
skip_classes=c.skip_classes,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
verbose=verbose,
augmentation_config=c.audio_augmentation if not is_val else None,
use_torch_spec=c.model_params.get("use_torch_spec", False),
)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
sampler = PerfectBatchSampler(
dataset.items,
dataset.get_class_list(),
batch_size=c.num_classes_in_batch*c.num_utter_per_class, # total batch size
num_classes_in_batch=c.num_classes_in_batch,
num_gpus=1,
shuffle=False if is_val else True,
drop_last=True)
loader = DataLoader(
dataset,
batch_size=c.num_classes_in_batch,
shuffle=False,
num_workers=c.num_loader_workers,
batch_sampler=sampler,
collate_fn=dataset.collate_fn,
)
@ -70,12 +74,31 @@ def train(model, optimizer, scheduler, criterion, data_loader, global_step):
avg_loss_all = 0
avg_loader_time = 0
end_time = time.time()
print(len(data_loader))
for _, data in enumerate(data_loader):
start_time = time.time()
# setup input data
inputs, labels = data
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
"""
labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
idx = 0
for j in range(0, c.num_classes_in_batch, 1):
for i in range(j, len(labels), c.num_classes_in_batch):
if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
print("Invalid")
print(labels)
exit()
idx += 1
labels = labels_converted
inputs = inputs_converted
print(labels)
print(inputs.shape)"""
loader_time = time.time() - end_time
global_step += 1
@ -159,9 +182,10 @@ def main(args): # pylint: disable=redefined-outer-name
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=c.wd)
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=False)
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True)
data_loader, num_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
train_data_loader, num_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
# eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method="softmax")
@ -211,7 +235,7 @@ def main(args): # pylint: disable=redefined-outer-name
criterion.cuda()
global_step = args.restore_step
_, global_step = train(model, optimizer, scheduler, criterion, data_loader, global_step)
_, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, global_step)
if __name__ == "__main__":

View File

@ -27,14 +27,6 @@ class BaseEncoderConfig(BaseTrainingConfig):
audio_augmentation: Dict = field(default_factory=lambda: {})
use_storage: bool = False
storage: Dict = field(
default_factory=lambda: {
"sample_from_storage_p": 0.66, # the probability with which we'll sample from the DataSet in-memory storage
"storage_size": 15, # the size of the in-memory storage with respect to a single batch
}
)
# training params
max_train_step: int = 1000000 # end training when number of training steps reaches this value.
loss: str = "angleproto"

View File

@ -6,7 +6,6 @@ from torch.utils.data import Dataset
from TTS.encoder.utils.generic_utils import AugmentWAV, Storage
class EncoderDataset(Dataset):
def __init__(
self,
@ -14,11 +13,7 @@ class EncoderDataset(Dataset):
meta_data,
voice_len=1.6,
num_classes_in_batch=64,
use_storage=False,
storage_size=1,
sample_from_storage_p=0.5,
num_utter_per_class=10,
skip_classes=False,
verbose=False,
augmentation_config=None,
use_torch_spec=None,
@ -34,30 +29,15 @@ class EncoderDataset(Dataset):
self.items = meta_data
self.sample_rate = ap.sample_rate
self.seq_len = int(voice_len * self.sample_rate)
self.num_classes_in_batch = num_classes_in_batch
self.num_utter_per_class = num_utter_per_class
self.skip_classes = skip_classes
self.use_storage = use_storage
self.ap = ap
self.verbose = verbose
self.use_torch_spec = use_torch_spec
self.__parse_items()
storage_max_size = storage_size * num_classes_in_batch
if self.use_storage:
self.storage = Storage(
maxsize=storage_max_size, storage_batchs=storage_size, num_classes_in_batch=num_classes_in_batch
)
self.sample_from_storage_p = float(sample_from_storage_p)
else:
self.storage = None
self.sample_from_storage_p = None
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
classes_aux = list(self.classes)
classes_aux.sort()
self.classname_to_classid = {key: i for i, key in enumerate(classes_aux)}
# Augmentation
# Data Augmentation
self.augmentator = None
self.gaussian_augmentation_config = None
if augmentation_config:
@ -71,12 +51,10 @@ class EncoderDataset(Dataset):
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Classes per Batch: {num_classes_in_batch}")
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_class} utters")
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num Classes: {len(self.classes)}")
print(f" | > Classes: {list(self.classes)}")
print(f" | > Classes: {self.classes}")
def load_wav(self, filename):
@ -84,173 +62,84 @@ class EncoderDataset(Dataset):
return audio
def __parse_items(self):
self.class_to_utters = {}
class_to_utters = {}
for i in self.items:
path_ = i["audio_file"]
speaker_ = i["speaker_name"]
if speaker_ in self.speaker_to_utters.keys():
self.speaker_to_utters[speaker_].append(path_)
if class_name in class_to_utters.keys():
class_to_utters[class_name].append(path_)
else:
self.class_to_utters[class_name] = [
class_to_utters[class_name] = [
path_,
]
if self.skip_classes:
self.class_to_utters = {
k: v for (k, v) in self.class_to_utters.items() if len(v) >= self.num_utter_per_class
}
# skip classes with number of samples >= self.num_utter_per_class
class_to_utters = {
k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class
}
self.classes = list(class_to_utters.keys())
self.classes.sort()
new_items = []
for item in self.items:
path_ = item[1]
class_name = item[2]
# ignore filtered classes
if class_name not in self.classes:
continue
# ignore small audios
if self.load_wav(path_).shape[0] - self.seq_len <= 0:
continue
new_items.append({"wav_file_path": path_, "class_name": class_name})
self.items = new_items
self.classes = [k for (k, v) in self.class_to_utters.items()]
def __len__(self):
return int(1e10)
return len(self.items)
def get_num_classes(self):
return len(self.classes)
def get_class_list(self):
return list(self.classes)
def get_map_classid_to_classname(self):
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
def __sample_class(self, ignore_classes=None):
class_name = random.sample(self.classes, 1)[0]
# if list of classes_id is provide make sure that it's will be ignored
if ignore_classes and self.classname_to_classid[class_name] in ignore_classes:
while True:
class_name = random.sample(self.classes, 1)[0]
if self.classname_to_classid[class_name] not in ignore_classes:
break
def __getitem__(self, idx):
return self.items[idx]
if self.num_utter_per_class > len(self.class_to_utters[class_name]):
utters = random.choices(self.class_to_utters[class_name], k=self.num_utter_per_class)
else:
utters = random.sample(self.class_to_utters[class_name], self.num_utter_per_class)
return class_name, utters
def __sample_class_utterances(self, class_name):
"""
Sample all M utterances for the given class_name.
"""
wavs = []
def collate_fn(self, batch):
# get the batch class_ids
labels = []
for _ in range(self.num_utter_per_class):
# TODO:dummy but works
while True:
# remove classes that have num_utter less than 2
if len(self.class_to_utters[class_name]) > 1:
utter = random.sample(self.class_to_utters[class_name], 1)[0]
else:
if class_name in self.classes:
self.classes.remove(class_name)
feats = []
for item in batch:
utter_path = item["wav_file_path"]
class_name = item["class_name"]
class_name, _ = self.__sample_class()
continue
wav = self.load_wav(utter)
if wav.shape[0] - self.seq_len > 0:
break
if utter in self.class_to_utters[class_name]:
self.class_to_utters[class_name].remove(utter)
# get classid
class_id = self.classname_to_classid[class_name]
# load wav file
wav = self.load_wav(utter_path)
offset = random.randint(0, wav.shape[0] - self.seq_len)
wav = wav[offset : offset + self.seq_len]
if self.augmentator is not None and self.data_augmentation_p:
if random.random() < self.data_augmentation_p:
wav = self.augmentator.apply_one(wav)
wavs.append(wav)
labels.append(self.classname_to_classid[class_name])
return wavs, labels
def __getitem__(self, idx):
class_name, _ = self.__sample_class()
class_id = self.classname_to_classid[class_name]
return class_name, class_id
def __load_from_disk_and_storage(self, class_name):
# don't sample from storage, but from HDD
wavs_, labels_ = self.__sample_class_utterances(class_name)
# put the newly loaded item into storage
if self.use_storage:
self.storage.append((wavs_, labels_))
return wavs_, labels_
def collate_fn(self, batch):
# get the batch class_ids
batch = np.array(batch)
classes_id_in_batch = set(batch[:, 1].astype(np.int32))
labels = []
feats = []
classes = set()
for class_name, class_id in batch:
class_id = int(class_id)
# ensure that an class appears only once in the batch
if class_id in classes:
# remove current class
if class_id in classes_id_in_batch:
classes_id_in_batch.remove(class_id)
class_name, _ = self.__sample_class(ignore_classes=classes_id_in_batch)
class_id = self.classname_to_classid[class_name]
classes_id_in_batch.add(class_id)
if self.use_storage and random.random() < self.sample_from_storage_p and self.storage.full():
# sample from storage (if full)
wavs_, labels_ = self.storage.get_random_sample_fast()
# force choose the current class or other not in batch
# It's necessary for ideal training with AngleProto and GE2E losses
if labels_[0] in classes_id_in_batch and labels_[0] != class_id:
attempts = 0
while True:
wavs_, labels_ = self.storage.get_random_sample_fast()
if labels_[0] == class_id or labels_[0] not in classes_id_in_batch:
break
attempts += 1
# Try 5 times after that load from disk
if attempts >= 5:
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
break
if not self.use_torch_spec:
mel = self.ap.melspectrogram(wav)
feats.append(torch.FloatTensor(mel))
else:
# don't sample from storage, but from HDD
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
feats.append(torch.FloatTensor(wav))
# append class for control
classes.add(labels_[0])
# remove current class and append other
if class_id in classes_id_in_batch:
classes_id_in_batch.remove(class_id)
classes_id_in_batch.add(labels_[0])
# get a random subset of each of the wavs and extract mel spectrograms.
feats_ = []
for wav in wavs_:
offset = random.randint(0, wav.shape[0] - self.seq_len)
wav = wav[offset : offset + self.seq_len]
# add random gaussian noise
if self.gaussian_augmentation_config and self.gaussian_augmentation_config["p"]:
if random.random() < self.gaussian_augmentation_config["p"]:
wav += np.random.normal(
self.gaussian_augmentation_config["min_amplitude"],
self.gaussian_augmentation_config["max_amplitude"],
size=len(wav),
)
if not self.use_torch_spec:
mel = self.ap.melspectrogram(wav)
feats_.append(torch.FloatTensor(mel))
else:
feats_.append(torch.FloatTensor(wav))
labels.append(torch.LongTensor(labels_))
feats.extend(feats_)
labels.append(class_id)
feats = torch.stack(feats)
labels = torch.stack(labels)
labels = torch.LongTensor(labels)
return feats, labels

View File

@ -0,0 +1,100 @@
import torch
import random
from torch.utils.data.sampler import Sampler, SubsetRandomSampler
class SubsetSampler(Sampler):
"""
Samples elements sequentially from a given list of indices.
Args:
indices (list): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class PerfectBatchSampler(Sampler):
"""
Samples a mini-batch of indices for a balanced class batching
Args:
dataset_items(list): dataset items to sample from.
classes (list): list of classes of dataset_items to sample from.
batch_size (int): total number of samples to be sampled in a mini-batch.
num_gpus (int): number of GPU in the data parallel mode.
shuffle (bool): if True, samples randomly, otherwise samples sequentially.
drop_last (bool): if True, drops last incomplete batch.
"""
def __init__(self, dataset_items, classes, batch_size, num_classes_in_batch, num_gpus=1, shuffle=True, drop_last=False):
assert batch_size % (len(classes) * num_gpus) == 0, (
'Batch size must be divisible by number of classes times the number of data parallel devices (if enabled).')
label_indices = {}
for idx in range(len(dataset_items)):
label = dataset_items[idx]['class_name']
if label not in label_indices: label_indices[label] = []
label_indices[label].append(idx)
if shuffle:
self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes]
else:
self._samplers = [SubsetSampler(label_indices[key]) for key in classes]
self._batch_size = batch_size
self._drop_last = drop_last
self._dp_devices = num_gpus
self._num_classes_in_batch = num_classes_in_batch
def __iter__(self):
batch = []
if self._num_classes_in_batch != len(self._samplers):
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
else:
valid_samplers_idx = None
iters = [iter(s) for s in self._samplers]
done = False
while True:
b = []
for i in range(len(iters)):
if valid_samplers_idx is not None and i not in valid_samplers_idx:
continue
it = iters[i]
idx = next(it, None)
if idx is None:
done = True
break
b.append(idx)
if done: break
batch += b
if len(batch) == self._batch_size:
yield batch
batch = []
if valid_samplers_idx is not None:
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
if not self._drop_last:
if len(batch) > 0:
groups = len(batch) // self._num_classes_in_batch
if groups % self._dp_devices == 0:
yield batch
else:
batch = batch[:(groups // self._dp_devices) * self._dp_devices * self._num_classes_in_batch]
if len(batch) > 0:
yield batch
def __len__(self):
class_batch_size = self._batch_size // self._num_classes_in_batch
return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers)