diff --git a/datasets/LJSpeech.py b/datasets/LJSpeech.py index 7638e708..0c90ab75 100644 --- a/datasets/LJSpeech.py +++ b/datasets/LJSpeech.py @@ -18,7 +18,7 @@ class LJSpeechDataset(Dataset): frame_length_ms, preemphasis, ref_level_db, num_freq, power, min_seq_len=0): - with open(csv_file, "r") as f: + with open(csv_file, "r", encoding="utf8") as f: self.frames = [line.split('|') for line in f] self.root_dir = root_dir self.outputs_per_step = outputs_per_step diff --git a/train.py b/train.py index 837b5f24..a227a1ac 100644 --- a/train.py +++ b/train.py @@ -48,12 +48,6 @@ OUT_PATH = create_experiment_folder(OUT_PATH, c.model_name, args.debug) CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints') shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json')) -parser.add_argument('--finetine_path', type=str) -# save config to tmp place to be loaded by subsequent modules. -file_name = str(os.getpid()) -tmp_path = os.path.join("/tmp/", file_name+'_tts') -pickle.dump(c, open(tmp_path, "wb")) - # setup tensorboard LOG_DIR = OUT_PATH tb = SummaryWriter(LOG_DIR) @@ -150,9 +144,9 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st, # ('grad_norm_st', grad_norm_st.item())]) if current_step % c.print_step == 0: - print(" | | > Step:{} GlobalStep:{} TotalLoss:{:.5f} LinearLoss:{:.5f} MelLoss:\ - {:.5f} StopLoss:{:.5f} GradNorm:{:.5f} \ - GradNormST:{:.5f} StepTime:{:.2f}".format(num_iter, current_step, + print(" | | > Step:{} GlobalStep:{} TotalLoss:{:.5f} LinearLoss:{:.5f}"\ + "MelLoss:{:.5f} StopLoss:{:.5f} GradNorm:{:.5f}"\ + "GradNormST:{:.5f} StepTime:{:.2f}".format(num_iter, current_step, loss.item(), linear_loss.item(), mel_loss.item(), @@ -215,9 +209,9 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st, avg_total_loss = avg_mel_loss + avg_linear_loss + avg_stop_loss # print epoch stats - print(" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f} \ - AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f} \ - AvgStopLoss:{:.5f} EpochTime:{:.2f}".format(current_step, + print(" | | > EPOCH END -- GlobalStep:{} AvgTotalLoss:{:.5f}"\ + "AvgLinearLoss:{:.5f} AvgMelLoss:{:.5f}"\ + "AvgStopLoss:{:.5f} EpochTime:{:.2f}".format(current_step, avg_total_loss, avg_linear_loss, avg_mel_loss, @@ -290,8 +284,8 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step): # ('mel_loss', mel_loss.item()), # ('stop_loss', stop_loss.item())]) if current_step % c.print_step == 0: - print(" | | > TotalLoss: {:.5f} LinearLoss: {:.5f} MelLoss: \ - {:.5f} StopLoss: {:.5f} ".format(loss.item(), + print(" | | > TotalLoss: {:.5f} LinearLoss: {:.5f} MelLoss:{:.5f}"\ + "StopLoss: {:.5f} ".format(loss.item(), linear_loss.item(), mel_loss.item(), stop_loss.item()))