Update TTS.tts formatters (#1228)

* Return Dict from tts formatters

* Make style
This commit is contained in:
Eren Gölge 2022-02-11 23:03:43 +01:00 committed by GitHub
parent 5e3f499a69
commit 127118c637
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
41 changed files with 153 additions and 141 deletions

View File

@ -29,7 +29,9 @@ parser.add_argument(
help="Path to dataset config file.",
)
parser.add_argument("output_path", type=str, help="path for output speakers.json and/or speakers.npy.")
parser.add_argument("--old_file", type=str, help="Previous speakers.json file, only compute for new audios.", default=None)
parser.add_argument(
"--old_file", type=str, help="Previous speakers.json file, only compute for new audios.", default=None
)
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
@ -41,7 +43,10 @@ meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_spli
wav_files = meta_data_train + meta_data_eval
speaker_manager = SpeakerManager(
encoder_model_path=args.model_path, encoder_config_path=args.config_path, d_vectors_file_path=args.old_file, use_cuda=args.use_cuda
encoder_model_path=args.model_path,
encoder_config_path=args.config_path,
d_vectors_file_path=args.old_file,
use_cuda=args.use_cuda,
)
# compute speaker embeddings

View File

@ -51,7 +51,7 @@ def main():
N = 0
for item in tqdm(dataset_items):
# compute features
wav = ap.load_wav(item if isinstance(item, str) else item[1])
wav = ap.load_wav(item if isinstance(item, str) else item["audio_file"])
linear = ap.spectrogram(wav)
mel = ap.melspectrogram(wav)

View File

@ -24,6 +24,7 @@ def main():
# load all datasets
train_items, eval_items = load_tts_samples(c.datasets, eval_split=True)
items = train_items + eval_items
texts = "".join(item[0] for item in items)

View File

@ -43,6 +43,11 @@ def main():
items = train_items + eval_items
print("Num items:", len(items))
is_lang_def = all(item["language"] for item in items)
if not c.phoneme_language or not is_lang_def:
raise ValueError("Phoneme language must be defined in config.")
phonemes = process_map(compute_phonemes, items, max_workers=multiprocessing.cpu_count(), chunksize=15)
phones = []
for ph in phonemes:

View File

@ -1,4 +1,5 @@
import os
import torch
from TTS.config import check_config_and_model_args, get_from_config_or_model_args, load_config, register_config

View File

@ -78,12 +78,12 @@ class SpeakerEncoderDataset(Dataset):
mel = self.ap.melspectrogram(wav).astype("float32")
# sample seq_len
assert text.size > 0, self.items[idx][1]
assert wav.size > 0, self.items[idx][1]
assert text.size > 0, self.items[idx]["audio_file"]
assert wav.size > 0, self.items[idx]["audio_file"]
sample = {
"mel": mel,
"item_idx": self.items[idx][1],
"item_idx": self.items[idx]["audio_file"],
"speaker_name": speaker_name,
}
return sample
@ -91,8 +91,8 @@ class SpeakerEncoderDataset(Dataset):
def __parse_items(self):
self.speaker_to_utters = {}
for i in self.items:
path_ = i[1]
speaker_ = i[2]
path_ = i["audio_file"]
speaker_ = i["speaker_name"]
if speaker_ in self.speaker_to_utters.keys():
self.speaker_to_utters[speaker_].append(path_)
else:

View File

@ -75,14 +75,14 @@ def load_tts_samples(
formatter = _get_formatter_by_name(name)
# load train set
meta_data_train = formatter(root_path, meta_file_train, ignored_speakers=ignored_speakers)
meta_data_train = [[*item, language] for item in meta_data_train]
meta_data_train = [{**item, **{"language": language}} for item in meta_data_train]
print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}")
# load evaluation split if set
if eval_split:
if meta_file_val:
meta_data_eval = formatter(root_path, meta_file_val, ignored_speakers=ignored_speakers)
meta_data_eval = [[*item, language] for item in meta_data_eval]
meta_data_eval = [{**item, **{"language": language}} for item in meta_data_eval]
else:
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
meta_data_eval_all += meta_data_eval
@ -91,12 +91,12 @@ def load_tts_samples(
if dataset.meta_file_attn_mask:
meta_data = dict(load_attention_mask_meta_data(dataset["meta_file_attn_mask"]))
for idx, ins in enumerate(meta_data_train_all):
attn_file = meta_data[ins[1]].strip()
meta_data_train_all[idx].append(attn_file)
attn_file = meta_data[ins["audio_file"]].strip()
meta_data_train_all[idx].update({"alignment_file": attn_file})
if meta_data_eval_all:
for idx, ins in enumerate(meta_data_eval_all):
attn_file = meta_data[ins[1]].strip()
meta_data_eval_all[idx].append(attn_file)
attn_file = meta_data[ins["audio_file"]].strip()
meta_data_eval_all[idx].update({"alignment_file": attn_file})
# set none for the next iter
formatter = None
return meta_data_train_all, meta_data_eval_all

View File

@ -21,7 +21,7 @@ class TTSDataset(Dataset):
text_cleaner: list,
compute_linear_spec: bool,
ap: AudioProcessor,
meta_data: List[List],
meta_data: List[Dict],
compute_f0: bool = False,
f0_cache_path: str = None,
characters: Dict = None,
@ -54,7 +54,7 @@ class TTSDataset(Dataset):
ap (TTS.tts.utils.AudioProcessor): Audio processor object.
meta_data (list): List of dataset instances.
meta_data (list): List of dataset samples.
compute_f0 (bool): compute f0 if True. Defaults to False.
@ -199,15 +199,9 @@ class TTSDataset(Dataset):
def load_data(self, idx):
item = self.items[idx]
raw_text = item["text"]
if len(item) == 5:
text, wav_file, speaker_name, language_name, attn_file = item
else:
text, wav_file, speaker_name, language_name = item
attn = None
raw_text = text
wav = np.asarray(self.load_wav(wav_file), dtype=np.float32)
wav = np.asarray(self.load_wav(item["audio_file"]), dtype=np.float32)
# apply noise for augmentation
if self.use_noise_augment:
@ -216,12 +210,12 @@ class TTSDataset(Dataset):
if not self.input_seq_computed:
if self.use_phonemes:
text = self._load_or_generate_phoneme_sequence(
wav_file,
text,
item["audio_file"],
item["text"],
self.phoneme_cache_path,
self.enable_eos_bos,
self.cleaners,
language_name if language_name else self.phoneme_language,
item["language"] if item["language"] else self.phoneme_language,
self.custom_symbols,
self.characters,
self.add_blank,
@ -229,7 +223,7 @@ class TTSDataset(Dataset):
else:
text = np.asarray(
text_to_sequence(
text,
item["text"],
[self.cleaners],
custom_symbols=self.custom_symbols,
tp=self.characters,
@ -238,11 +232,12 @@ class TTSDataset(Dataset):
dtype=np.int32,
)
assert text.size > 0, self.items[idx][1]
assert wav.size > 0, self.items[idx][1]
assert text.size > 0, self.items[idx]["audio_file"]
assert wav.size > 0, self.items[idx]["audio_file"]
if "attn_file" in locals():
attn = np.load(attn_file)
attn = None
if "alignment_file" in item:
attn = np.load(item["alignment_file"])
if len(text) > self.max_seq_len:
# return a different sample if the phonemized
@ -252,7 +247,7 @@ class TTSDataset(Dataset):
pitch = None
if self.compute_f0:
pitch = self.pitch_extractor.load_or_compute_pitch(self.ap, wav_file, self.f0_cache_path)
pitch = self.pitch_extractor.load_or_compute_pitch(self.ap, item["audio_file"], self.f0_cache_path)
pitch = self.pitch_extractor.normalize_pitch(pitch.astype(np.float32))
sample = {
@ -261,10 +256,10 @@ class TTSDataset(Dataset):
"wav": wav,
"pitch": pitch,
"attn": attn,
"item_idx": self.items[idx][1],
"speaker_name": speaker_name,
"language_name": language_name,
"wav_file_name": os.path.basename(wav_file),
"item_idx": item["audio_file"],
"speaker_name": item["speaker_name"],
"language_name": item["language"],
"wav_file_name": os.path.basename(item["audio_file"]),
}
return sample
@ -272,11 +267,10 @@ class TTSDataset(Dataset):
def _phoneme_worker(args):
item = args[0]
func_args = args[1]
text, wav_file, *_ = item
func_args[3] = (
item[3] if item[3] else func_args[3]
item["language"] if "language" in item and item["language"] else func_args[3]
) # override phoneme language if specified by the dataset formatter
phonemes = TTSDataset._load_or_generate_phoneme_sequence(wav_file, text, *func_args)
phonemes = TTSDataset._load_or_generate_phoneme_sequence(item["audio_file"], item["text"], *func_args)
return phonemes
def compute_input_seq(self, num_workers=0):
@ -286,10 +280,9 @@ class TTSDataset(Dataset):
if self.verbose:
print(" | > Computing input sequences ...")
for idx, item in enumerate(tqdm.tqdm(self.items)):
text, *_ = item
sequence = np.asarray(
text_to_sequence(
text,
item["text"],
[self.cleaners],
custom_symbols=self.custom_symbols,
tp=self.characters,
@ -337,10 +330,10 @@ class TTSDataset(Dataset):
if by_audio_len:
lengths = []
for item in self.items:
lengths.append(os.path.getsize(item[1]) / 16 * 8) # assuming 16bit audio
lengths.append(os.path.getsize(item["audio_file"]) / 16 * 8) # assuming 16bit audio
lengths = np.array(lengths)
else:
lengths = np.array([len(ins[0]) for ins in self.items])
lengths = np.array([len(ins["text"]) for ins in self.items])
idxs = np.argsort(lengths)
new_items = []
@ -555,7 +548,7 @@ class PitchExtractor:
def __init__(
self,
items: List[List],
items: List[Dict],
verbose=False,
):
self.items = items
@ -614,10 +607,9 @@ class PitchExtractor:
item = args[0]
ap = args[1]
cache_path = args[2]
_, wav_file, *_ = item
pitch_file = PitchExtractor.create_pitch_file_path(wav_file, cache_path)
pitch_file = PitchExtractor.create_pitch_file_path(item["audio_file"], cache_path)
if not os.path.exists(pitch_file):
pitch = PitchExtractor._compute_and_save_pitch(ap, wav_file, pitch_file)
pitch = PitchExtractor._compute_and_save_pitch(ap, item["audio_file"], pitch_file)
return pitch
return None

View File

@ -24,7 +24,7 @@ def tweb(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
cols = line.split("\t")
wav_file = os.path.join(root_path, cols[0] + ".wav")
text = cols[1]
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -39,7 +39,7 @@ def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
wav_file = cols[1].strip()
text = cols[0].strip()
wav_file = os.path.join(root_path, "wavs", wav_file)
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -55,7 +55,7 @@ def mozilla_de(root_path, meta_file, **kwargs): # pylint: disable=unused-argume
text = cols[1].strip()
folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL"
wav_file = os.path.join(root_path, folder_name, wav_file)
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -101,7 +101,7 @@ def mailabs(root_path, meta_files=None, ignored_speakers=None):
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav")
if os.path.isfile(wav_file):
text = cols[1].strip()
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
else:
# M-AI-Labs have some missing samples, so just print the warning
print("> File %s does not exist!" % (wav_file))
@ -119,7 +119,7 @@ def ljspeech(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[2]
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -133,7 +133,7 @@ def ljspeech_test(root_path, meta_file, **kwargs): # pylint: disable=unused-arg
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[2]
items.append([text, wav_file, f"ljspeech-{idx}"])
items.append({"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{idx}"})
return items
@ -150,7 +150,7 @@ def sam_accenture(root_path, meta_file, **kwargs): # pylint: disable=unused-arg
if not os.path.exists(wav_file):
print(f" [!] {wav_file} in metafile does not exist. Skipping...")
continue
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -165,7 +165,7 @@ def ruslan(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
cols = line.split("|")
wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav")
text = cols[1]
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -179,7 +179,7 @@ def css10(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
cols = line.split("|")
wav_file = os.path.join(root_path, cols[0])
text = cols[1]
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -193,7 +193,7 @@ def nancy(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
utt_id = line.split()[1]
text = line[line.find('"') + 1 : line.rfind('"') - 1]
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
@ -213,7 +213,7 @@ def common_voice(root_path, meta_file, ignored_speakers=None):
if speaker_name in ignored_speakers:
continue
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav"))
items.append([text, wav_file, "MCV_" + speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name})
return items
@ -240,7 +240,7 @@ def libri_tts(root_path, meta_files=None, ignored_speakers=None):
if isinstance(ignored_speakers, list):
if speaker_name in ignored_speakers:
continue
items.append([text, wav_file, "LTTS_" + speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": f"LTTS_{speaker_name}"})
for item in items:
assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}"
return items
@ -259,7 +259,7 @@ def custom_turkish(root_path, meta_file, **kwargs): # pylint: disable=unused-ar
skipped_files.append(wav_file)
continue
text = cols[1].strip()
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
print(f" [!] {len(skipped_files)} files skipped. They don't exist...")
return items
@ -281,7 +281,7 @@ def brspeech(root_path, meta_file, ignored_speakers=None):
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
items.append([text, wav_file, speaker_id])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id})
return items
@ -299,7 +299,7 @@ def vctk(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None):
with open(meta_file, "r", encoding="utf-8") as file_text:
text = file_text.readlines()[0]
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav")
items.append([text, wav_file, "VCTK_" + speaker_id])
items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id})
return items
@ -334,7 +334,7 @@ def mls(root_path, meta_files=None, ignored_speakers=None):
if isinstance(ignored_speakers, list):
if speaker in ignored_speakers:
continue
items.append([text, wav_file, "MLS_" + speaker])
items.append({"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker})
return items
@ -404,7 +404,7 @@ def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]: # pylin
for line in ttf:
wav_name, text = line.rstrip("\n").split("|")
wav_path = os.path.join(root_path, "clips_22", wav_name)
items.append([text, wav_path, speaker_name])
items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name})
return items
@ -418,5 +418,5 @@ def kokoro(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[2].replace(" ", "")
items.append([text, wav_file, speaker_name])
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items

View File

@ -4,7 +4,6 @@ from itertools import chain
from typing import Dict, List, Tuple
import torch
import torchaudio
from coqpit import Coqpit
from torch import nn
@ -692,10 +691,17 @@ class Vits(BaseTTS):
if self.args.use_sdp:
logw = self.duration_predictor(
x, x_mask, g=g if self.args.condition_dp_on_speaker else None, reverse=True, noise_scale=self.inference_noise_scale_dp, lang_emb=lang_emb
x,
x_mask,
g=g if self.args.condition_dp_on_speaker else None,
reverse=True,
noise_scale=self.inference_noise_scale_dp,
lang_emb=lang_emb,
)
else:
logw = self.duration_predictor(x, x_mask, g=g if self.args.condition_dp_on_speaker else None, lang_emb=lang_emb)
logw = self.duration_predictor(
x, x_mask, g=g if self.args.condition_dp_on_speaker else None, lang_emb=lang_emb
)
w = torch.exp(logw) * x_mask * self.length_scale
w_ceil = torch.ceil(w)

View File

@ -113,7 +113,7 @@ def _set_file_path(path):
def get_language_weighted_sampler(items: list):
language_names = np.array([item[3] for item in items])
language_names = np.array([item["language"] for item in items])
unique_language_names = np.unique(language_names).tolist()
language_ids = [unique_language_names.index(l) for l in language_names]
language_count = np.array([len(np.where(language_names == l)[0]) for l in unique_language_names])

View File

@ -118,7 +118,7 @@ class SpeakerManager:
Returns:
Tuple[Dict, int]: speaker IDs and number of speakers.
"""
speakers = sorted({item[2] for item in items})
speakers = sorted({item["speaker_name"] for item in items})
speaker_ids = {name: i for i, name in enumerate(speakers)}
num_speakers = len(speaker_ids)
return speaker_ids, num_speakers
@ -414,7 +414,7 @@ def get_speaker_manager(c: Coqpit, data: List = None, restore_path: str = None,
def get_speaker_weighted_sampler(items: list):
speaker_names = np.array([item[2] for item in items])
speaker_names = np.array([item["speaker_name"] for item in items])
unique_speaker_names = np.unique(speaker_names).tolist()
speaker_ids = [unique_speaker_names.index(l) for l in speaker_names]
speaker_count = np.array([len(np.where(speaker_names == l)[0]) for l in unique_speaker_names])

View File

@ -127,5 +127,7 @@ class ParallelWaveganConfig(BaseGANVocoderConfig):
lr_scheduler_gen: str = "StepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1})
lr_scheduler_disc: str = "StepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1})
lr_scheduler_disc_params: dict = field(
default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1}
)
scheduler_after_epoch: bool = False

View File

@ -5,13 +5,13 @@ from tests import get_tests_input_path
from TTS.tts.datasets.formatters import common_voice
class TestPreprocessors(unittest.TestCase):
class TestTTSFormatters(unittest.TestCase):
def test_common_voice_preprocessor(self): # pylint: disable=no-self-use
root_path = get_tests_input_path()
meta_file = "common_voice.tsv"
items = common_voice(root_path, meta_file)
assert items[0][0] == "The applicants are invited for coffee and visa is given immediately."
assert items[0][1] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_20005954.wav")
assert items[0]["text"] == "The applicants are invited for coffee and visa is given immediately."
assert items[0]["audio_file"] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_20005954.wav")
assert items[-1][0] == "Competition for limited resources has also resulted in some local conflicts."
assert items[-1][1] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_19737074.wav")
assert items[-1]["text"] == "Competition for limited resources has also resulted in some local conflicts."
assert items[-1]["audio_file"] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_19737074.wav")