Make style and lint

This commit is contained in:
Eren Gölge 2022-03-02 13:25:35 +01:00
parent c68885b3fd
commit 1425a023fe
28 changed files with 108 additions and 67 deletions

View File

@ -229,7 +229,9 @@ def main(args): # pylint: disable=redefined-outer-name
ap = AudioProcessor(**c.audio) ap = AudioProcessor(**c.audio)
# load data instances # load data instances
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size) meta_data_train, meta_data_eval = load_tts_samples(
c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
)
# use eval and training partitions # use eval and training partitions
meta_data = meta_data_train + meta_data_eval meta_data = meta_data_train + meta_data_eval

View File

@ -23,7 +23,9 @@ def main():
c = load_config(args.config_path) c = load_config(args.config_path)
# load all datasets # load all datasets
train_items, eval_items = load_tts_samples(c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size) train_items, eval_items = load_tts_samples(
c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
)
items = train_items + eval_items items = train_items + eval_items

View File

@ -40,7 +40,9 @@ def main():
c = load_config(args.config_path) c = load_config(args.config_path)
# load all datasets # load all datasets
train_items, eval_items = load_tts_samples(c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size) train_items, eval_items = load_tts_samples(
c.datasets, eval_split=True, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
)
items = train_items + eval_items items = train_items + eval_items
print("Num items:", len(items)) print("Num items:", len(items))

View File

@ -44,7 +44,12 @@ def main():
config = register_config(config_base.model)() config = register_config(config_base.model)()
# load training samples # load training samples
train_samples, eval_samples = load_tts_samples(config.datasets, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
config.datasets,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the model from config # init the model from config
model = setup_model(config, train_samples + eval_samples) model = setup_model(config, train_samples + eval_samples)

View File

@ -12,20 +12,20 @@ from TTS.tts.datasets.formatters import *
def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01): def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
"""Split a dataset into train and eval. Consider speaker distribution in multi-speaker training. """Split a dataset into train and eval. Consider speaker distribution in multi-speaker training.
Args: Args:
<<<<<<< HEAD <<<<<<< HEAD
items (List[List]): items (List[List]):
A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`. A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`.
eval_split_max_size (int): eval_split_max_size (int):
Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled). Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).
eval_split_size (float): eval_split_size (float):
If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set. If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.
If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%). If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).
======= =======
items (List[List]): A list of samples. Each sample is a list of `[text, audio_path, speaker_id]`. items (List[List]): A list of samples. Each sample is a list of `[text, audio_path, speaker_id]`.
>>>>>>> Fix docstring >>>>>>> Fix docstring
""" """
speakers = [item["speaker_name"] for item in items] speakers = [item["speaker_name"] for item in items]
is_multi_speaker = len(set(speakers)) > 1 is_multi_speaker = len(set(speakers)) > 1
@ -37,7 +37,11 @@ def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
else: else:
eval_split_size = int(len(items) * eval_split_size) eval_split_size = int(len(items) * eval_split_size)
assert eval_split_size > 0, " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format(1/len(items)) assert (
eval_split_size > 0
), " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format(
1 / len(items)
)
np.random.seed(0) np.random.seed(0)
np.random.shuffle(items) np.random.shuffle(items)
if is_multi_speaker: if is_multi_speaker:
@ -56,8 +60,11 @@ def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
def load_tts_samples( def load_tts_samples(
datasets: Union[List[Dict], Dict], eval_split=True, formatter: Callable = None, datasets: Union[List[Dict], Dict],
eval_split_max_size=None, eval_split_size=0.01 eval_split=True,
formatter: Callable = None,
eval_split_max_size=None,
eval_split_size=0.01,
) -> Tuple[List[List], List[List]]: ) -> Tuple[List[List], List[List]]:
"""Parse the dataset from the datasets config, load the samples as a List and load the attention alignments if provided. """Parse the dataset from the datasets config, load the samples as a List and load the attention alignments if provided.
If `formatter` is not None, apply the formatter to the samples else pick the formatter from the available ones based If `formatter` is not None, apply the formatter to the samples else pick the formatter from the available ones based

View File

@ -132,7 +132,7 @@ def ljspeech_test(root_path, meta_file, **kwargs): # pylint: disable=unused-arg
speaker_id = 0 speaker_id = 0
for idx, line in enumerate(ttf): for idx, line in enumerate(ttf):
# 2 samples per speaker to avoid eval split issues # 2 samples per speaker to avoid eval split issues
if idx%2 == 0: if idx % 2 == 0:
speaker_id += 1 speaker_id += 1
cols = line.split("|") cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")

View File

@ -183,8 +183,8 @@ class GlowTTS(BaseTTS):
if g is not None: if g is not None:
if hasattr(self, "emb_g"): if hasattr(self, "emb_g"):
# use speaker embedding layer # use speaker embedding layer
if not g.size(): # if is a scalar if not g.size(): # if is a scalar
g = g.unsqueeze(0) # unsqueeze g = g.unsqueeze(0) # unsqueeze
g = F.normalize(self.emb_g(g)).unsqueeze(-1) # [b, h, 1] g = F.normalize(self.emb_g(g)).unsqueeze(-1) # [b, h, 1]
else: else:
# use d-vector # use d-vector

View File

@ -14,6 +14,7 @@ from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F from torch.nn import functional as F
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.tts.configs.shared_configs import CharactersConfig from TTS.tts.configs.shared_configs import CharactersConfig
from TTS.tts.datasets.dataset import TTSDataset, _parse_sample from TTS.tts.datasets.dataset import TTSDataset, _parse_sample
@ -29,7 +30,6 @@ from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.characters import BaseCharacters, _characters, _pad, _phonemes, _punctuations from TTS.tts.utils.text.characters import BaseCharacters, _characters, _pad, _phonemes, _punctuations
from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment from TTS.tts.utils.visual import plot_alignment
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.vocoder.models.hifigan_generator import HifiganGenerator from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results from TTS.vocoder.utils.generic_utils import plot_results
@ -1481,10 +1481,12 @@ class Vits(BaseTTS):
language_manager = LanguageManager.init_from_config(config) language_manager = LanguageManager.init_from_config(config)
if config.model_args.speaker_encoder_model_path is not None: if config.model_args.speaker_encoder_model_path is not None:
speaker_manager.init_speaker_encoder(config.model_args.speaker_encoder_model_path, speaker_manager.init_speaker_encoder(
config.model_args.speaker_encoder_config_path) config.model_args.speaker_encoder_model_path, config.model_args.speaker_encoder_config_path
)
return Vits(new_config, ap, tokenizer, speaker_manager, language_manager) return Vits(new_config, ap, tokenizer, speaker_manager, language_manager)
################################## ##################################
# VITS CHARACTERS # VITS CHARACTERS
################################## ##################################

View File

@ -7,10 +7,10 @@ from coqpit import Coqpit
from torch import nn from torch import nn
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_fsspec from TTS.utils.io import load_fsspec
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.vocoder.datasets.gan_dataset import GANDataset from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
from TTS.vocoder.models import setup_discriminator, setup_generator from TTS.vocoder.models import setup_discriminator, setup_generator

View File

@ -8,9 +8,9 @@ from torch import nn
from torch.nn.utils import weight_norm from torch.nn.utils import weight_norm
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.utils.io import load_fsspec from TTS.utils.io import load_fsspec
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.vocoder.datasets import WaveGradDataset from TTS.vocoder.datasets import WaveGradDataset
from TTS.vocoder.layers.wavegrad import Conv1d, DBlock, FiLM, UBlock from TTS.vocoder.layers.wavegrad import Conv1d, DBlock, FiLM, UBlock
from TTS.vocoder.models.base_vocoder import BaseVocoder from TTS.vocoder.models.base_vocoder import BaseVocoder

View File

@ -7,7 +7,7 @@ import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tests import get_tests_output_path from tests import get_tests_output_path
from TTS.tts.configs.shared_configs import BaseTTSConfig, BaseDatasetConfig from TTS.tts.configs.shared_configs import BaseDatasetConfig, BaseTTSConfig
from TTS.tts.datasets import TTSDataset, load_tts_samples from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor from TTS.utils.audio import AudioProcessor
@ -24,7 +24,7 @@ c.data_path = "tests/data/ljspeech/"
ok_ljspeech = os.path.exists(c.data_path) ok_ljspeech = os.path.exists(c.data_path)
dataset_config = BaseDatasetConfig( dataset_config = BaseDatasetConfig(
name="ljspeech_test", # ljspeech_test to multi-speaker name="ljspeech_test", # ljspeech_test to multi-speaker
meta_file_train="metadata.csv", meta_file_train="metadata.csv",
meta_file_val=None, meta_file_val=None,
path=c.data_path, path=c.data_path,
@ -106,9 +106,9 @@ class TestTTSDataset(unittest.TestCase):
# make sure that the computed mels and the waveform match and correctly computed # make sure that the computed mels and the waveform match and correctly computed
mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy()) mel_new = self.ap.melspectrogram(wavs[0].squeeze().numpy())
# remove padding in mel-spectrogram # remove padding in mel-spectrogram
mel_dataloader = mel_input[0].T.numpy()[:, :mel_lengths[0]] mel_dataloader = mel_input[0].T.numpy()[:, : mel_lengths[0]]
# guarantee that both mel-spectrograms have the same size and that we will remove waveform padding # guarantee that both mel-spectrograms have the same size and that we will remove waveform padding
mel_new = mel_new[:, :mel_lengths[0]] mel_new = mel_new[:, : mel_lengths[0]]
ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length) ignore_seg = -(1 + c.audio.win_length // c.audio.hop_length)
mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg] mel_diff = (mel_new[:, : mel_input.shape[1]] - mel_input[0].T.numpy())[:, 0:ignore_seg]
self.assertLess(abs(mel_diff.sum()), 1e-5) self.assertLess(abs(mel_diff.sum()), 1e-5)

View File

@ -1,13 +1,12 @@
import os import os
import unittest import unittest
from tests import get_tests_output_path
from TTS.config import load_config from TTS.config import load_config
from TTS.tts.models import setup_model from TTS.tts.models import setup_model
from TTS.utils.io import save_checkpoint from TTS.utils.io import save_checkpoint
from TTS.utils.synthesizer import Synthesizer from TTS.utils.synthesizer import Synthesizer
from tests import get_tests_output_path
class SynthesizerTest(unittest.TestCase): class SynthesizerTest(unittest.TestCase):
# pylint: disable=R0201 # pylint: disable=R0201

View File

@ -1,13 +1,20 @@
import unittest import unittest
from TTS.tts.utils.text.characters import BaseCharacters, Graphemes, IPAPhonemes, BaseVocabulary from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, Graphemes, IPAPhonemes
# pylint: disable=protected-access # pylint: disable=protected-access
class BaseVocabularyTest(unittest.TestCase): class BaseVocabularyTest(unittest.TestCase):
def setUp(self): def setUp(self):
self.phonemes = IPAPhonemes() self.phonemes = IPAPhonemes()
self.base_vocab = BaseVocabulary(vocab=self.phonemes._vocab, pad=self.phonemes.pad, blank=self.phonemes.blank, bos=self.phonemes.bos, eos=self.phonemes.eos) self.base_vocab = BaseVocabulary(
vocab=self.phonemes._vocab,
pad=self.phonemes.pad,
blank=self.phonemes.blank,
bos=self.phonemes.bos,
eos=self.phonemes.eos,
)
self.empty_vocab = BaseVocabulary({}) self.empty_vocab = BaseVocabulary({})
def test_pad_id(self): def test_pad_id(self):
@ -22,8 +29,8 @@ class BaseVocabularyTest(unittest.TestCase):
self.assertEqual(self.empty_vocab.vocab, {}) self.assertEqual(self.empty_vocab.vocab, {})
self.assertEqual(self.base_vocab.vocab, self.phonemes._vocab) self.assertEqual(self.base_vocab.vocab, self.phonemes._vocab)
def test_init_from_config(self): # def test_init_from_config(self):
... # ...
def test_num_chars(self): def test_num_chars(self):
self.assertEqual(self.empty_vocab.num_chars, 0) self.assertEqual(self.empty_vocab.num_chars, 0)

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.align_tts_config import AlignTTSConfig from TTS.tts.configs.align_tts_config import AlignTTSConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -51,7 +52,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)

View File

@ -2,10 +2,11 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseAudioConfig from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "fast_pitch_speaker_emb_config.json") config_path = os.path.join(get_tests_output_path(), "fast_pitch_speaker_emb_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -69,7 +70,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json") continue_speakers_path = os.path.join(continue_path, "speakers.json")

View File

@ -2,10 +2,11 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseAudioConfig from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -70,7 +71,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.glow_tts_config import GlowTTSConfig from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -56,7 +57,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
continue_speakers_path = config.d_vector_file continue_speakers_path = config.d_vector_file

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.glow_tts_config import GlowTTSConfig from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -53,7 +54,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json") continue_speakers_path = os.path.join(continue_path, "speakers.json")

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.glow_tts_config import GlowTTSConfig from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -52,7 +53,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_speedy_speech_config.json") config_path = os.path.join(get_tests_output_path(), "test_speedy_speech_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -51,7 +52,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example for it.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example for it.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config from TTS.tts.configs.tacotron2_config import Tacotron2Config
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -56,7 +57,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
continue_speakers_path = config.d_vector_file continue_speakers_path = config.d_vector_file

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config from TTS.tts.configs.tacotron2_config import Tacotron2Config
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -54,7 +55,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json") continue_speakers_path = os.path.join(continue_path, "speakers.json")

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config from TTS.tts.configs.tacotron2_config import Tacotron2Config
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -51,7 +52,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron_config import TacotronConfig from TTS.tts.configs.tacotron_config import TacotronConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -52,7 +53,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)

View File

@ -2,10 +2,11 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseDatasetConfig from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.configs.vits_config import VitsConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -85,7 +86,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech" speaker_id = "ljspeech"
languae_id = "en" languae_id = "en"
continue_speakers_path = os.path.join(continue_path, "speakers.json") continue_speakers_path = os.path.join(continue_path, "speakers.json")

View File

@ -2,10 +2,11 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.config.shared_configs import BaseDatasetConfig from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.configs.vits_config import VitsConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -89,7 +90,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
languae_id = "en" languae_id = "en"
continue_speakers_path = config.d_vector_file continue_speakers_path = config.d_vector_file

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.configs.vits_config import VitsConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -60,7 +61,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1" speaker_id = "ljspeech-1"
continue_speakers_path = os.path.join(continue_path, "speakers.json") continue_speakers_path = os.path.join(continue_path, "speakers.json")

View File

@ -2,9 +2,10 @@ import glob
import os import os
import shutil import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.configs.vits_config import VitsConfig
from trainer import get_last_checkpoint
config_path = os.path.join(get_tests_output_path(), "test_model_config.json") config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs") output_path = os.path.join(get_tests_output_path(), "train_outputs")
@ -51,7 +52,7 @@ continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getm
# Inference using TTS API # Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json") continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path) continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), 'output.wav') out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}" inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command) run_cli(inference_command)