mirror of https://github.com/coqui-ai/TTS.git
glow-tts with relative pos encoding
This commit is contained in:
parent
09ad6a09b0
commit
14356d3250
|
@ -121,6 +121,8 @@ def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
|
|||
num_splits=4,
|
||||
num_sqz=2,
|
||||
sigmoid_scale=False,
|
||||
rel_attn_window_size=4,
|
||||
input_length=None,
|
||||
mean_only=True,
|
||||
hidden_channels_enc=192,
|
||||
hidden_channels_dec=192,
|
||||
|
|
|
@ -18,24 +18,28 @@ from mozilla_voice_tts.tts.datasets.TTSDataset import MyDataset
|
|||
from mozilla_voice_tts.tts.layers.losses import GlowTTSLoss
|
||||
from mozilla_voice_tts.utils.console_logger import ConsoleLogger
|
||||
from mozilla_voice_tts.tts.utils.distribute import (DistributedSampler,
|
||||
init_distributed, reduce_tensor)
|
||||
init_distributed,
|
||||
reduce_tensor)
|
||||
from mozilla_voice_tts.tts.utils.generic_utils import check_config, setup_model
|
||||
from mozilla_voice_tts.tts.utils.io import save_best_model, save_checkpoint
|
||||
from mozilla_voice_tts.tts.utils.measures import alignment_diagonal_score
|
||||
from mozilla_voice_tts.tts.utils.speakers import (get_speakers, load_speaker_mapping,
|
||||
from mozilla_voice_tts.tts.utils.speakers import (get_speakers,
|
||||
load_speaker_mapping,
|
||||
save_speaker_mapping)
|
||||
from mozilla_voice_tts.tts.utils.synthesis import synthesis
|
||||
from mozilla_voice_tts.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
||||
from mozilla_voice_tts.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||
from mozilla_voice_tts.utils.audio import AudioProcessor
|
||||
from mozilla_voice_tts.utils.generic_utils import (KeepAverage, count_parameters,
|
||||
create_experiment_folder, get_git_branch,
|
||||
from mozilla_voice_tts.utils.generic_utils import (
|
||||
KeepAverage, count_parameters, create_experiment_folder, get_git_branch,
|
||||
remove_experiment_folder, set_init_dict)
|
||||
from mozilla_voice_tts.utils.io import copy_config_file, load_config
|
||||
from mozilla_voice_tts.utils.radam import RAdam
|
||||
from mozilla_voice_tts.utils.tensorboard_logger import TensorboardLogger
|
||||
from mozilla_voice_tts.utils.training import (NoamLR, adam_weight_decay, check_update,
|
||||
gradual_training_scheduler, set_weight_decay,
|
||||
from mozilla_voice_tts.utils.training import (NoamLR, adam_weight_decay,
|
||||
check_update,
|
||||
gradual_training_scheduler,
|
||||
set_weight_decay,
|
||||
setup_torch_training_env)
|
||||
|
||||
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
||||
|
|
|
@ -1,202 +0,0 @@
|
|||
import copy
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
out_channels,
|
||||
n_heads,
|
||||
window_size=None,
|
||||
heads_share=True,
|
||||
dropout_p=0.,
|
||||
input_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.input_length = input_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.dropout_p = dropout_p
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev)
|
||||
self.emb_rel_v = nn.Parameter(
|
||||
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
||||
* rel_stddev)
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = nn.Dropout(dropout_p)
|
||||
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
if proximal_init:
|
||||
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
||||
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels,
|
||||
t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels,
|
||||
t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(
|
||||
self.k_channels)
|
||||
if self.window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(
|
||||
query, key_relative_embeddings)
|
||||
rel_logits = self._relative_position_to_absolute_position(
|
||||
rel_logits)
|
||||
scores_local = rel_logits / math.sqrt(self.k_channels)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(
|
||||
device=scores.device, dtype=scores.dtype)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.input_length is not None:
|
||||
block_mask = torch.ones_like(scores).triu(
|
||||
-self.input_length).tril(self.input_length)
|
||||
scores = scores * block_mask + -1e4 * (1 - block_mask)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(
|
||||
p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(
|
||||
relative_weights, value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(
|
||||
b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
convert_pad_shape([[0, 0], [pad_length, pad_length],
|
||||
[0, 0]]))
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:,
|
||||
slice_start_position:
|
||||
slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
||||
1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(
|
||||
x_flat, convert_pad_shape([[0, 0], [0, 0], [0,
|
||||
length - 1]]))
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1,
|
||||
2 * length - 1])[:, :, :length, length - 1:]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(
|
||||
x,
|
||||
convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
|
||||
length - 1]]))
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(
|
||||
x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(
|
||||
torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
|
@ -1,63 +0,0 @@
|
|||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def maximum_path(value, mask, max_neg_val=-np.inf):
|
||||
""" Numpy-friendly version. It's about 4 times faster than torch version.
|
||||
value: [b, t_x, t_y]
|
||||
mask: [b, t_x, t_y]
|
||||
"""
|
||||
value = value * mask
|
||||
|
||||
device = value.device
|
||||
dtype = value.dtype
|
||||
value = value.cpu().detach().numpy()
|
||||
mask = mask.cpu().detach().numpy().astype(np.bool)
|
||||
|
||||
b, t_x, t_y = value.shape
|
||||
direction = np.zeros(value.shape, dtype=np.int64)
|
||||
v = np.zeros((b, t_x), dtype=np.float32)
|
||||
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1)
|
||||
for j in range(t_y):
|
||||
v0 = np.pad(v, [[0, 0], [1, 0]],
|
||||
mode="constant",
|
||||
constant_values=max_neg_val)[:, :-1]
|
||||
v1 = v
|
||||
max_mask = (v1 >= v0)
|
||||
v_max = np.where(max_mask, v1, v0)
|
||||
direction[:, :, j] = max_mask
|
||||
|
||||
index_mask = (x_range <= j)
|
||||
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
|
||||
direction = np.where(mask, direction, 1)
|
||||
|
||||
path = np.zeros(value.shape, dtype=np.float32)
|
||||
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
|
||||
index_range = np.arange(b)
|
||||
for j in reversed(range(t_y)):
|
||||
path[index_range, index, j] = 1
|
||||
index = index + direction[index_range, index, j] - 1
|
||||
path = path * mask.astype(np.float32)
|
||||
path = torch.from_numpy(path).to(device=device, dtype=dtype)
|
||||
return path
|
|
@ -1,21 +1,16 @@
|
|||
import copy
|
||||
import math
|
||||
import numpy as np
|
||||
import scipy
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(self, in_channels, filter_channels, kernel_size, dropout_p):
|
||||
super().__init__()
|
||||
|
||||
# class arguments
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dropout_p = dropout_p
|
||||
|
||||
# layers
|
||||
self.drop = nn.Dropout(dropout_p)
|
||||
self.conv_1 = nn.Conv1d(in_channels,
|
||||
filter_channels,
|
||||
|
@ -27,6 +22,7 @@ class DurationPredictor(nn.Module):
|
|||
kernel_size,
|
||||
padding=kernel_size // 2)
|
||||
self.norm_2 = nn.GroupNorm(1, filter_channels)
|
||||
# output layer
|
||||
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
|
|
|
@ -1,33 +1,13 @@
|
|||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from mozilla_voice_tts.tts.layers.glow_tts.transformer import Transformer
|
||||
from mozilla_voice_tts.tts.utils.generic_utils import sequence_mask
|
||||
from mozilla_voice_tts.tts.layers.glow_tts.glow import ConvLayerNorm
|
||||
from mozilla_voice_tts.tts.layers.glow_tts.duration_predictor import DurationPredictor
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, max_len=5000):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
self.register_buffer('pe', self._get_pe_matrix(d_model, max_len))
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.pe[:x.size(0)].unsqueeze(1)
|
||||
|
||||
def _get_pe_matrix(self, d_model, max_len):
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.pow(10000,
|
||||
torch.arange(0, d_model, 2).float() / d_model)
|
||||
|
||||
pe[:, 0::2] = torch.sin(position / div_term)
|
||||
pe[:, 1::2] = torch.cos(position / div_term)
|
||||
|
||||
return pe
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
"""Glow-TTS encoder module. We use Pytorch TransformerEncoder instead
|
||||
of the one with relative position embedding. We use positional encoding
|
||||
|
@ -60,12 +40,13 @@ class Encoder(nn.Module):
|
|||
num_layers,
|
||||
kernel_size,
|
||||
dropout_p,
|
||||
rel_attn_window_size=None,
|
||||
input_length=None,
|
||||
mean_only=False,
|
||||
use_prenet=False,
|
||||
c_in_channels=0):
|
||||
|
||||
super().__init__()
|
||||
|
||||
# class arguments
|
||||
self.num_chars = num_chars
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
|
@ -78,11 +59,10 @@ class Encoder(nn.Module):
|
|||
self.mean_only = mean_only
|
||||
self.use_prenet = use_prenet
|
||||
self.c_in_channels = c_in_channels
|
||||
|
||||
# embedding layer
|
||||
self.emb = nn.Embedding(num_chars, hidden_channels)
|
||||
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
||||
self.register_buffer('pe', PositionalEncoding(hidden_channels).pe)
|
||||
|
||||
# optional convolutional prenet
|
||||
if use_prenet:
|
||||
self.pre = ConvLayerNorm(hidden_channels,
|
||||
hidden_channels,
|
||||
|
@ -90,49 +70,50 @@ class Encoder(nn.Module):
|
|||
kernel_size=5,
|
||||
num_layers=3,
|
||||
dropout_p=0.5)
|
||||
|
||||
encoder = nn.TransformerEncoderLayer(hidden_channels,
|
||||
# text encoder
|
||||
self.encoder = Transformer(hidden_channels,
|
||||
filter_channels,
|
||||
num_heads,
|
||||
dim_feedforward=filter_channels,
|
||||
dropout=dropout_p)
|
||||
self.encoder = nn.TransformerEncoder(encoder, num_layers)
|
||||
|
||||
num_layers,
|
||||
kernel_size=kernel_size,
|
||||
dropout_p=dropout_p,
|
||||
rel_attn_window_size=rel_attn_window_size,
|
||||
input_length=input_length)
|
||||
# final projection layers
|
||||
self.proj_m = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
if not mean_only:
|
||||
self.proj_s = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
# duration predictor
|
||||
self.duration_predictor = DurationPredictor(
|
||||
hidden_channels + c_in_channels, filter_channels_dp, kernel_size,
|
||||
dropout_p)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
# pass embedding layer
|
||||
# embedding layer
|
||||
# [B ,T, D]
|
||||
x = self.emb(x) * math.sqrt(self.hidden_channels)
|
||||
x = x + self.pe[:x.shape[1]].unsqueeze(0)
|
||||
# [B, D, T]
|
||||
x = torch.transpose(x, 1, -1)
|
||||
# compute input sequence mask
|
||||
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)),
|
||||
1).to(x.dtype)
|
||||
# pass pre-conv layers
|
||||
# pre-conv layers
|
||||
if self.use_prenet:
|
||||
x = self.pre(x, x_mask)
|
||||
# pass encoder
|
||||
x = self.encoder(x.permute(2, 0, 1),
|
||||
src_key_padding_mask=~(x_mask.squeeze(1).to(bool)))
|
||||
x = x.permute(1, 2, 0)
|
||||
# encoder
|
||||
x = self.encoder(x, x_mask)
|
||||
# set duration predictor input
|
||||
if g is not None:
|
||||
g_exp = g.expand(-1, -1, x.size(-1))
|
||||
x_dp = torch.cat([torch.detach(x), g_exp], 1)
|
||||
else:
|
||||
x_dp = torch.detach(x)
|
||||
# pass final projection layer
|
||||
# final projection layer
|
||||
x_m = self.proj_m(x) * x_mask
|
||||
if not self.mean_only:
|
||||
x_logs = self.proj_s(x) * x_mask
|
||||
else:
|
||||
x_logs = torch.zeros_like(x_m)
|
||||
# pass duration predictor
|
||||
# duration predictor
|
||||
logw = self.duration_predictor(x_dp, x_mask)
|
||||
return x_m, x_logs, logw, x_mask
|
||||
|
|
|
@ -1,125 +0,0 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from mozilla_voice_tts.tts.utils.generic_utils import sequence_mask
|
||||
from mozilla_voice_tts.tts.layers.glow_tts.glow import InvConvNear, CouplingBlock, ActNorm, BatchNorm
|
||||
|
||||
|
||||
def squeeze(x, x_mask=None, num_sqz=2):
|
||||
b, c, t = x.size()
|
||||
|
||||
t = (t // num_sqz) * num_sqz
|
||||
x = x[:, :, :t]
|
||||
x_sqz = x.view(b, c, t // num_sqz, num_sqz)
|
||||
x_sqz = x_sqz.permute(0, 3, 1,
|
||||
2).contiguous().view(b, c * num_sqz, t // num_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask[:, :, num_sqz - 1::num_sqz]
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t // num_sqz).to(device=x.device,
|
||||
dtype=x.dtype)
|
||||
return x_sqz * x_mask, x_mask
|
||||
|
||||
|
||||
def unsqueeze(x, x_mask=None, num_sqz=2):
|
||||
b, c, t = x.size()
|
||||
|
||||
x_unsqz = x.view(b, num_sqz, c // num_sqz, t)
|
||||
x_unsqz = x_unsqz.permute(0, 2, 3,
|
||||
1).contiguous().view(b, c // num_sqz,
|
||||
t * num_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1,
|
||||
num_sqz).view(b, 1, t * num_sqz)
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t * num_sqz).to(device=x.device,
|
||||
dtype=x.dtype)
|
||||
return x_unsqz * x_mask, x_mask
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""Stack of Glow Modules"""
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
num_blocks,
|
||||
num_coupling_layers,
|
||||
dropout_p=0.,
|
||||
num_splits=4,
|
||||
num_sqz=2,
|
||||
sigmoid_scale=False,
|
||||
c_in_channels=0):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.num_blocks = num_blocks
|
||||
self.num_coupling_layers = num_coupling_layers
|
||||
self.dropout_p = dropout_p
|
||||
self.num_splits = num_splits
|
||||
self.num_sqz = num_sqz
|
||||
self.sigmoid_scale = sigmoid_scale
|
||||
self.c_in_channels = c_in_channels
|
||||
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.invconv_layers = nn.ModuleList()
|
||||
self.coupling_layers = nn.ModuleList()
|
||||
|
||||
for _ in range(num_blocks):
|
||||
self.norm_layers.append(ActNorm(in_channels=in_channels * num_sqz))
|
||||
self.invconv_layers.append(
|
||||
InvConvNear(channels=in_channels * num_sqz,
|
||||
num_splits=num_splits))
|
||||
self.coupling_layers.append(
|
||||
CouplingBlock(in_channels * num_sqz,
|
||||
hidden_channels,
|
||||
kernel_size=kernel_size,
|
||||
dilation_rate=dilation_rate,
|
||||
num_layers=num_coupling_layers,
|
||||
c_in_channels=c_in_channels,
|
||||
dropout_p=dropout_p,
|
||||
sigmoid_scale=sigmoid_scale))
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
if not reverse:
|
||||
# norm_layers = self.norm_layers
|
||||
invconv_layers = self.invconv_layers
|
||||
coupling_layers = self.coupling_layers
|
||||
logdet_tot = 0
|
||||
else:
|
||||
# norm_layers = reversed(self.norm_layers)
|
||||
invconv_layers = self.invconv_layers[::-1]
|
||||
coupling_layers = self.coupling_layers[::-1]
|
||||
logdet_tot = None
|
||||
|
||||
if self.num_sqz > 1:
|
||||
x, x_mask = squeeze(x, x_mask, self.num_sqz)
|
||||
for idx in range(len(self.invconv_layers)):
|
||||
if not reverse:
|
||||
# x, log_det = norm_layers[idx](x, reverse)
|
||||
# logdet_tot += log_det
|
||||
|
||||
x, log_det = invconv_layers[idx](x, x_mask, reverse)
|
||||
logdet_tot += log_det
|
||||
|
||||
x, log_det = coupling_layers[idx](x, x_mask, g=g, reverse=reverse)
|
||||
logdet_tot += log_det
|
||||
else:
|
||||
x, log_det = coupling_layers[idx](x, x_mask, g=g, reverse=reverse)
|
||||
x, log_det = invconv_layers[idx](x, x_mask, reverse)
|
||||
# x, logdet = norm_layers[idx](x, reverse)
|
||||
|
||||
if self.num_sqz > 1:
|
||||
x, x_mask = unsqueeze(x, x_mask, self.num_sqz)
|
||||
return x, logdet_tot
|
||||
|
||||
def store_inverse(self):
|
||||
for f in self.flows:
|
||||
f.store_inverse()
|
|
@ -1,67 +1,232 @@
|
|||
import copy
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from mozilla_voice_tts.tts.layers.glow_tts.attention import MultiHeadAttention
|
||||
from mozilla_voice_tts.tts.layers.glow_tts.glow import LayerNorm
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
class RelativePositionMultiHeadAttention(nn.Module):
|
||||
"""Implementation of https://arxiv.org/pdf/1803.02155.pdf
|
||||
Visualization of the algorithm
|
||||
https://raw.githubusercontent.com/Separius/CudaRelativeAttention/master/algorithm.png
|
||||
"""
|
||||
def __init__(self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
channels,
|
||||
out_channels,
|
||||
num_heads,
|
||||
num_layers,
|
||||
kernel_size=1,
|
||||
dropout_p=0.,
|
||||
rel_attn_window_size=None,
|
||||
heads_share=True,
|
||||
dropout_p=0.,
|
||||
input_length=None,
|
||||
**kwargs):
|
||||
proximal_bias=False,
|
||||
proximal_init=False):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
assert channels % num_heads == 0, " [!] channels should be divisible by num_heads."
|
||||
# class attributes
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.num_heads = num_heads
|
||||
self.num_layers = num_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.dropout_p = dropout_p
|
||||
self.rel_attn_window_size = rel_attn_window_size
|
||||
self.heads_share = heads_share
|
||||
self.input_length = input_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.dropout_p = dropout_p
|
||||
self.attn = None
|
||||
# query, key, value layers
|
||||
self.k_channels = channels // num_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
# output layers
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
# relative positional encoding layers
|
||||
if rel_attn_window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else num_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
emb_rel_k = nn.Parameter(
|
||||
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1,
|
||||
self.k_channels) * rel_stddev)
|
||||
emb_rel_v = nn.Parameter(
|
||||
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1,
|
||||
self.k_channels) * rel_stddev)
|
||||
self.register_parameter('emb_rel_k', emb_rel_k)
|
||||
self.register_parameter('emb_rel_v', emb_rel_v)
|
||||
|
||||
self.drop = nn.Dropout(dropout_p)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for _ in range(self.num_layers):
|
||||
self.attn_layers.append(
|
||||
MultiHeadAttention(hidden_channels,
|
||||
hidden_channels,
|
||||
num_heads,
|
||||
window_size=rel_attn_window_size,
|
||||
dropout_p=dropout_p,
|
||||
input_length=input_length))
|
||||
self.norm_layers_1.append(nn.GroupNorm(1, hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
dropout_p=dropout_p))
|
||||
self.norm_layers_2.append(nn.GroupNorm(1, hidden_channels))
|
||||
# init layers
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
# proximal bias
|
||||
if proximal_init:
|
||||
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
||||
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
for i in range(self.num_layers):
|
||||
x = x * x_mask
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.num_heads, self.k_channels,
|
||||
t_t).transpose(2, 3)
|
||||
key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.num_heads, self.k_channels,
|
||||
t_s).transpose(2, 3)
|
||||
# compute raw attention scores
|
||||
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(
|
||||
self.k_channels)
|
||||
# relative positional encoding
|
||||
if self.rel_attn_window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
# get relative key embeddings
|
||||
breakpoint()
|
||||
key_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(
|
||||
query, key_relative_embeddings)
|
||||
rel_logits = self._relative_position_to_absolute_position(
|
||||
rel_logits)
|
||||
scores_local = rel_logits / math.sqrt(self.k_channels)
|
||||
scores = scores + scores_local
|
||||
# proximan bias
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attn_proximity_bias(t_s).to(
|
||||
device=scores.device, dtype=scores.dtype)
|
||||
# attention score masking
|
||||
if mask is not None:
|
||||
# add small value to prevent oor error.
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.input_length is not None:
|
||||
block_mask = torch.ones_like(scores).triu(
|
||||
-self.input_length).tril(self.input_length)
|
||||
scores = scores * block_mask + -1e4 * (1 - block_mask)
|
||||
# attention score normalization
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
# apply dropout to attention weights
|
||||
p_attn = self.dropout(p_attn)
|
||||
# compute output
|
||||
output = torch.matmul(p_attn, value)
|
||||
# relative positional encoding for values
|
||||
if self.rel_attn_window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(
|
||||
p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(
|
||||
self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(
|
||||
relative_weights, value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(
|
||||
b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, p_attn, re):
|
||||
"""
|
||||
Args:
|
||||
p_attn (Tensor): attention weights.
|
||||
re (Tensor): relative value embedding vector. (a_(i,j)^V)
|
||||
|
||||
Shapes:
|
||||
p_attn: [B, H, T, V]
|
||||
re: [H or 1, V, D]
|
||||
logits: [B, H, T, D]
|
||||
"""
|
||||
logits = torch.matmul(p_attn, re.unsqueeze(0))
|
||||
return logits
|
||||
|
||||
@staticmethod
|
||||
def _matmul_with_relative_keys(query, re):
|
||||
"""
|
||||
Args:
|
||||
query (Tensor): batch of query vectors. (x*W^Q)
|
||||
re (Tensor): relative key embedding vector. (a_(i,j)^K)
|
||||
|
||||
Shapes:
|
||||
query: [B, H, T, D]
|
||||
re: [H or 1, V, D]
|
||||
logits: [B, H, T, V]
|
||||
"""
|
||||
# logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)])
|
||||
logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1))
|
||||
return logits
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
"""Convert embedding vestors to a tensor of embeddings
|
||||
"""
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.rel_attn_window_size + 1), 0)
|
||||
slice_start_position = max((self.rel_attn_window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:,
|
||||
slice_start_position:
|
||||
slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
@staticmethod
|
||||
def _relative_position_to_absolute_position(x):
|
||||
"""Converts tensor from relative to absolute indexing for local attention.
|
||||
Args:
|
||||
x: [B, D, length, 2 * length - 1]
|
||||
Returns:
|
||||
A Tensor of shape [B, D, length, length]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0])
|
||||
# Pad extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1,
|
||||
2 * length - 1])[:, :, :length, length - 1:]
|
||||
return x_final
|
||||
|
||||
@staticmethod
|
||||
def _absolute_position_to_relative_position(x):
|
||||
"""
|
||||
x: [B, H, T, T]
|
||||
ret: [B, H, T, 2*T-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
@staticmethod
|
||||
def _attn_proximity_bias(length):
|
||||
"""Produce an attention mask that discourages distant
|
||||
attention values.
|
||||
Args:
|
||||
length (int): an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
# L
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
# L x L
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
# scale mask values
|
||||
diff = -torch.log1p(torch.abs(diff))
|
||||
# 1 x 1 x L x L
|
||||
return diff.unsqueeze(0).unsqueeze(0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(self,
|
||||
|
@ -87,7 +252,7 @@ class FFN(nn.Module):
|
|||
out_channels,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2)
|
||||
self.drop = nn.Dropout(dropout_p)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(x * x_mask)
|
||||
|
@ -95,6 +260,63 @@ class FFN(nn.Module):
|
|||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.dropout(x)
|
||||
x = self.conv_2(x * x_mask)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
num_heads,
|
||||
num_layers,
|
||||
kernel_size=1,
|
||||
dropout_p=0.,
|
||||
rel_attn_window_size=None,
|
||||
input_length=None):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.num_heads = num_heads
|
||||
self.num_layers = num_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.dropout_p = dropout_p
|
||||
self.rel_attn_window_size = rel_attn_window_size
|
||||
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for _ in range(self.num_layers):
|
||||
self.attn_layers.append(
|
||||
RelativePositionMultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
num_heads,
|
||||
rel_attn_window_size=rel_attn_window_size,
|
||||
dropout_p=dropout_p,
|
||||
input_length=input_length))
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
dropout_p=dropout_p))
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
for i in range(self.num_layers):
|
||||
x = x * x_mask
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.dropout(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.dropout(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
|
|
@ -31,6 +31,8 @@ class GlowTts(nn.Module):
|
|||
num_splits=4,
|
||||
num_sqz=1,
|
||||
sigmoid_scale=False,
|
||||
rel_attn_window_size=None,
|
||||
input_length=None,
|
||||
mean_only=False,
|
||||
hidden_channels_enc=None,
|
||||
hidden_channels_dec=None,
|
||||
|
@ -56,6 +58,8 @@ class GlowTts(nn.Module):
|
|||
self.num_splits = num_splits
|
||||
self.num_sqz = num_sqz
|
||||
self.sigmoid_scale = sigmoid_scale
|
||||
self.rel_attn_window_size = rel_attn_window_size
|
||||
self.input_length = input_length
|
||||
self.mean_only = mean_only
|
||||
self.hidden_channels_enc = hidden_channels_enc
|
||||
self.hidden_channels_dec = hidden_channels_dec
|
||||
|
@ -72,6 +76,8 @@ class GlowTts(nn.Module):
|
|||
num_layers_enc,
|
||||
kernel_size,
|
||||
dropout_p,
|
||||
rel_attn_window_size=rel_attn_window_size,
|
||||
input_length=input_length,
|
||||
mean_only=mean_only,
|
||||
use_prenet=True,
|
||||
c_in_channels=c_in_channels)
|
||||
|
|
Loading…
Reference in New Issue