mirror of https://github.com/coqui-ai/TTS.git
add: Configurable encoder dataset storage to reduce disk I/O
add: Averaged time for data loader to console and Tensorboard output
This commit is contained in:
parent
95d2906307
commit
1511076fde
|
@ -44,6 +44,8 @@ def setup_loader(ap, is_val=False, verbose=False):
|
|||
voice_len=1.6,
|
||||
num_utter_per_speaker=10,
|
||||
skip_speakers=False,
|
||||
storage_size=c.storage["storage_size"],
|
||||
sample_from_storage_p=c.storage["sample_from_storage_p"],
|
||||
verbose=verbose)
|
||||
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
||||
loader = DataLoader(dataset,
|
||||
|
@ -60,6 +62,7 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
|
|||
epoch_time = 0
|
||||
best_loss = float('inf')
|
||||
avg_loss = 0
|
||||
avg_loader_time = 0
|
||||
end_time = time.time()
|
||||
for _, data in enumerate(data_loader):
|
||||
start_time = time.time()
|
||||
|
@ -93,8 +96,12 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
|
|||
step_time = time.time() - start_time
|
||||
epoch_time += step_time
|
||||
|
||||
avg_loss = 0.01 * loss.item(
|
||||
) + 0.99 * avg_loss if avg_loss != 0 else loss.item()
|
||||
# Averaged Loss and Averaged Loader Time
|
||||
dataset_number_prefetched = 2 * c.num_loader_workers # this is hardcoded in pytorch
|
||||
avg_loss = 0.01 * loss.item() \
|
||||
+ 0.99 * avg_loss if avg_loss != 0 else loss.item()
|
||||
avg_loader_time = 1/dataset_number_prefetched * loader_time\
|
||||
+ (dataset_number_prefetched-1) / dataset_number_prefetched * avg_loader_time if avg_loader_time != 0 else loader_time
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
|
||||
if global_step % c.steps_plot_stats == 0:
|
||||
|
@ -103,7 +110,8 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
|
|||
"loss": avg_loss,
|
||||
"lr": current_lr,
|
||||
"grad_norm": grad_norm,
|
||||
"step_time": step_time
|
||||
"step_time": step_time,
|
||||
"loader_time": loader_time
|
||||
}
|
||||
tb_logger.tb_train_epoch_stats(global_step, train_stats)
|
||||
figures = {
|
||||
|
@ -116,9 +124,9 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
|
|||
if global_step % c.print_step == 0:
|
||||
print(
|
||||
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
|
||||
"StepTime:{:.2f} LoaderTime:{:.2f} LR:{:.6f}".format(
|
||||
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
|
||||
global_step, loss.item(), avg_loss, grad_norm, step_time,
|
||||
loader_time, current_lr),
|
||||
loader_time, avg_loader_time, current_lr),
|
||||
flush=True)
|
||||
|
||||
# save best model
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
"clip_norm": true, // clip normalized values into the range.
|
||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
"do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
|
||||
},
|
||||
"reinit_layers": [],
|
||||
|
@ -45,53 +45,57 @@
|
|||
"model": {
|
||||
"input_dim": 40,
|
||||
"proj_dim": 256,
|
||||
"lstm_dim": 256,
|
||||
"lstm_dim": 768,
|
||||
"num_lstm_layers": 3,
|
||||
"use_lstm_with_projection": false
|
||||
"use_lstm_with_projection": true
|
||||
},
|
||||
"storage": {
|
||||
"sample_from_storage_p": 0.42, // the probability with which we'll sample from the DataSet in-memory storage
|
||||
"storage_size": 5 // the size of the in-memory storage with respect to a single batch
|
||||
},
|
||||
"datasets":
|
||||
[
|
||||
{
|
||||
"name": "common_voice_wav",
|
||||
"path": "../../audio-datasets/en/MozillaCommonVoice",
|
||||
"meta_file_train": "train.tsv",
|
||||
"meta_file_val": "test.tsv"
|
||||
},
|
||||
{
|
||||
"name": "voxceleb1",
|
||||
"path": "../../audio-datasets/en/voxceleb1/",
|
||||
"meta_file_train": null,
|
||||
"meta_file_val": null
|
||||
},
|
||||
{
|
||||
"name": "voxceleb2",
|
||||
"path": "../../audio-datasets/en/voxceleb2/",
|
||||
"meta_file_train": null,
|
||||
"meta_file_val": null
|
||||
},
|
||||
{
|
||||
"name": "vctk",
|
||||
"name": "vctk_slim",
|
||||
"path": "../../audio-datasets/en/VCTK-Corpus/",
|
||||
"meta_file_train": null,
|
||||
"meta_file_val": null
|
||||
},
|
||||
{
|
||||
"name": "libri_tts",
|
||||
"path": "../../audio-datasets/en/LibriTTS/train-clean-100",
|
||||
"meta_file_train": null,
|
||||
"meta_file_val": null
|
||||
},
|
||||
{
|
||||
"name": "libri_tts",
|
||||
"path": "../../audio-datasets/en/LibriTTS/train-clean-360",
|
||||
"meta_file_train": null,
|
||||
"meta_file_val": null
|
||||
},
|
||||
{
|
||||
"name": "libri_tts",
|
||||
"path": "../../audio-datasets/en/LibriTTS/train-other-500",
|
||||
"meta_file_train": null,
|
||||
"meta_file_val": null
|
||||
}
|
||||
// {
|
||||
// "name": "libri_tts",
|
||||
// "path": "../../audio-datasets/en/LibriTTS/train-clean-100",
|
||||
// "meta_file_train": null,
|
||||
// "meta_file_val": null
|
||||
// },
|
||||
// {
|
||||
// "name": "libri_tts",
|
||||
// "path": "../../audio-datasets/en/LibriTTS/train-clean-360",
|
||||
// "meta_file_train": null,
|
||||
// "meta_file_val": null
|
||||
// },
|
||||
// {
|
||||
// "name": "libri_tts",
|
||||
// "path": "../../audio-datasets/en/LibriTTS/train-other-500",
|
||||
// "meta_file_train": null,
|
||||
// "meta_file_val": null
|
||||
// },
|
||||
// {
|
||||
// "name": "voxceleb1",
|
||||
// "path": "../../audio-datasets/en/voxceleb1/",
|
||||
// "meta_file_train": null,
|
||||
// "meta_file_val": null
|
||||
// },
|
||||
// {
|
||||
// "name": "voxceleb2",
|
||||
// "path": "../../audio-datasets/en/voxceleb2/",
|
||||
// "meta_file_train": null,
|
||||
// "meta_file_val": null
|
||||
// },
|
||||
// {
|
||||
// "name": "common_voice_wav",
|
||||
// "path": "../../audio-datasets/en/MozillaCommonVoice",
|
||||
// "meta_file_train": "train.tsv",
|
||||
// "meta_file_val": "test.tsv"
|
||||
// }
|
||||
]
|
||||
}
|
|
@ -1,4 +1,5 @@
|
|||
import numpy as np
|
||||
import queue
|
||||
import torch
|
||||
import random
|
||||
from torch.utils.data import Dataset
|
||||
|
@ -7,6 +8,7 @@ from tqdm import tqdm
|
|||
|
||||
class MyDataset(Dataset):
|
||||
def __init__(self, ap, meta_data, voice_len=1.6, num_speakers_in_batch=64,
|
||||
storage_size=1, sample_from_storage_p=0.5,
|
||||
num_utter_per_speaker=10, skip_speakers=False, verbose=False):
|
||||
"""
|
||||
Args:
|
||||
|
@ -25,8 +27,12 @@ class MyDataset(Dataset):
|
|||
self.ap = ap
|
||||
self.verbose = verbose
|
||||
self.__parse_items()
|
||||
self.storage = queue.Queue(maxsize=storage_size*num_speakers_in_batch)
|
||||
self.sample_from_storage_p = float(sample_from_storage_p)
|
||||
if self.verbose:
|
||||
print("\n > DataLoader initialization")
|
||||
print(f" | > Storage Size: {self.storage.maxsize} speakers, each with {num_utter_per_speaker} utters")
|
||||
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
|
||||
print(f" | > Number of instances : {len(self.items)}")
|
||||
print(f" | > Sequence length: {self.seq_len}")
|
||||
print(f" | > Num speakers: {len(self.speakers)}")
|
||||
|
@ -134,7 +140,17 @@ class MyDataset(Dataset):
|
|||
labels = []
|
||||
feats = []
|
||||
for speaker in batch:
|
||||
feats_, labels_ = self.__sample_speaker_utterances(speaker)
|
||||
if random.random() < self.sample_from_storage_p and self.storage.full():
|
||||
# sample from storage (if full), ignoring the speaker
|
||||
feats_, labels_ = random.choice(self.storage.queue)
|
||||
else:
|
||||
# don't sample from storage, but from HDD
|
||||
feats_, labels_ = self.__sample_speaker_utterances(speaker)
|
||||
# if storage is full, remove an item
|
||||
if self.storage.full():
|
||||
_ = self.storage.get_nowait()
|
||||
# put the newly loaded item into storage
|
||||
self.storage.put_nowait((feats_, labels_))
|
||||
labels.append(labels_)
|
||||
feats.extend(feats_)
|
||||
feats = torch.stack(feats)
|
||||
|
|
|
@ -23,7 +23,7 @@ def save_checkpoint(model, optimizer, model_loss, out_path,
|
|||
|
||||
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
|
||||
current_step):
|
||||
if model_loss < best_loss:
|
||||
if model_loss < best_loss and current_step > 1000:
|
||||
new_state_dict = model.state_dict()
|
||||
state = {
|
||||
'model': new_state_dict,
|
||||
|
@ -35,7 +35,7 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path,
|
|||
best_loss = model_loss
|
||||
bestmodel_path = 'best_model.pth.tar'
|
||||
bestmodel_path = os.path.join(out_path, bestmodel_path)
|
||||
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(
|
||||
model_loss, bestmodel_path))
|
||||
print("\n > NEW BEST MODEL ({0:.5f}) : {1:}".format(
|
||||
model_loss, os.path.abspath(bestmodel_path)))
|
||||
torch.save(state, bestmodel_path)
|
||||
return best_loss
|
||||
|
|
|
@ -17,10 +17,10 @@ def load_meta_data(datasets):
|
|||
root_path = dataset['path']
|
||||
meta_file_train = dataset['meta_file_train']
|
||||
meta_file_val = dataset['meta_file_val']
|
||||
print(f" | > Preprocessing {name}")
|
||||
preprocessor = get_preprocessor_by_name(name)
|
||||
|
||||
meta_data_train = preprocessor(root_path, meta_file_train)
|
||||
print(f"Found {len(meta_data_train)} files in {Path(root_path).absolute()}")
|
||||
print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}")
|
||||
if meta_file_val is None:
|
||||
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
|
||||
else:
|
||||
|
@ -257,6 +257,25 @@ def vctk(root_path, meta_files=None, wavs_path='wav48'):
|
|||
|
||||
return items
|
||||
|
||||
|
||||
def vctk_slim(root_path, meta_files=None, wavs_path='wav48'):
|
||||
test_speakers = meta_files
|
||||
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
|
||||
items = []
|
||||
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
||||
for meta_file in meta_files:
|
||||
_, speaker_id, txt_file = os.path.relpath(meta_file,
|
||||
root_path).split(os.sep)
|
||||
file_id = txt_file.split('.')[0]
|
||||
if isinstance(test_speakers, list): # if is list ignore this speakers ids
|
||||
if speaker_id in test_speakers:
|
||||
continue
|
||||
wav_file = os.path.join(root_path, wavs_path, speaker_id,
|
||||
file_id + '.wav')
|
||||
items.append([None, wav_file, 'VCTK_' + speaker_id])
|
||||
|
||||
return items
|
||||
|
||||
# ======================================== VOX CELEB ===========================================
|
||||
def voxceleb2(root_path, meta_file):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue