add: Configurable encoder dataset storage to reduce disk I/O

add: Averaged time for data loader to console and Tensorboard output
This commit is contained in:
mueller 2020-09-17 12:29:38 +02:00
parent 95d2906307
commit 1511076fde
5 changed files with 98 additions and 51 deletions

View File

@ -44,6 +44,8 @@ def setup_loader(ap, is_val=False, verbose=False):
voice_len=1.6,
num_utter_per_speaker=10,
skip_speakers=False,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
verbose=verbose)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
@ -60,6 +62,7 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
epoch_time = 0
best_loss = float('inf')
avg_loss = 0
avg_loader_time = 0
end_time = time.time()
for _, data in enumerate(data_loader):
start_time = time.time()
@ -93,8 +96,12 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
step_time = time.time() - start_time
epoch_time += step_time
avg_loss = 0.01 * loss.item(
) + 0.99 * avg_loss if avg_loss != 0 else loss.item()
# Averaged Loss and Averaged Loader Time
dataset_number_prefetched = 2 * c.num_loader_workers # this is hardcoded in pytorch
avg_loss = 0.01 * loss.item() \
+ 0.99 * avg_loss if avg_loss != 0 else loss.item()
avg_loader_time = 1/dataset_number_prefetched * loader_time\
+ (dataset_number_prefetched-1) / dataset_number_prefetched * avg_loader_time if avg_loader_time != 0 else loader_time
current_lr = optimizer.param_groups[0]['lr']
if global_step % c.steps_plot_stats == 0:
@ -103,7 +110,8 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time
"step_time": step_time,
"loader_time": loader_time
}
tb_logger.tb_train_epoch_stats(global_step, train_stats)
figures = {
@ -116,9 +124,9 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} LR:{:.6f}".format(
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), avg_loss, grad_norm, step_time,
loader_time, current_lr),
loader_time, avg_loader_time, current_lr),
flush=True)
# save best model

View File

@ -23,7 +23,7 @@
"clip_norm": true, // clip normalized values into the range.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
},
"reinit_layers": [],
@ -45,53 +45,57 @@
"model": {
"input_dim": 40,
"proj_dim": 256,
"lstm_dim": 256,
"lstm_dim": 768,
"num_lstm_layers": 3,
"use_lstm_with_projection": false
"use_lstm_with_projection": true
},
"storage": {
"sample_from_storage_p": 0.42, // the probability with which we'll sample from the DataSet in-memory storage
"storage_size": 5 // the size of the in-memory storage with respect to a single batch
},
"datasets":
[
{
"name": "common_voice_wav",
"path": "../../audio-datasets/en/MozillaCommonVoice",
"meta_file_train": "train.tsv",
"meta_file_val": "test.tsv"
},
{
"name": "voxceleb1",
"path": "../../audio-datasets/en/voxceleb1/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "voxceleb2",
"path": "../../audio-datasets/en/voxceleb2/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "vctk",
"name": "vctk_slim",
"path": "../../audio-datasets/en/VCTK-Corpus/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "libri_tts",
"path": "../../audio-datasets/en/LibriTTS/train-clean-100",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "libri_tts",
"path": "../../audio-datasets/en/LibriTTS/train-clean-360",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "libri_tts",
"path": "../../audio-datasets/en/LibriTTS/train-other-500",
"meta_file_train": null,
"meta_file_val": null
}
// {
// "name": "libri_tts",
// "path": "../../audio-datasets/en/LibriTTS/train-clean-100",
// "meta_file_train": null,
// "meta_file_val": null
// },
// {
// "name": "libri_tts",
// "path": "../../audio-datasets/en/LibriTTS/train-clean-360",
// "meta_file_train": null,
// "meta_file_val": null
// },
// {
// "name": "libri_tts",
// "path": "../../audio-datasets/en/LibriTTS/train-other-500",
// "meta_file_train": null,
// "meta_file_val": null
// },
// {
// "name": "voxceleb1",
// "path": "../../audio-datasets/en/voxceleb1/",
// "meta_file_train": null,
// "meta_file_val": null
// },
// {
// "name": "voxceleb2",
// "path": "../../audio-datasets/en/voxceleb2/",
// "meta_file_train": null,
// "meta_file_val": null
// },
// {
// "name": "common_voice_wav",
// "path": "../../audio-datasets/en/MozillaCommonVoice",
// "meta_file_train": "train.tsv",
// "meta_file_val": "test.tsv"
// }
]
}

View File

@ -1,4 +1,5 @@
import numpy as np
import queue
import torch
import random
from torch.utils.data import Dataset
@ -7,6 +8,7 @@ from tqdm import tqdm
class MyDataset(Dataset):
def __init__(self, ap, meta_data, voice_len=1.6, num_speakers_in_batch=64,
storage_size=1, sample_from_storage_p=0.5,
num_utter_per_speaker=10, skip_speakers=False, verbose=False):
"""
Args:
@ -25,8 +27,12 @@ class MyDataset(Dataset):
self.ap = ap
self.verbose = verbose
self.__parse_items()
self.storage = queue.Queue(maxsize=storage_size*num_speakers_in_batch)
self.sample_from_storage_p = float(sample_from_storage_p)
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Storage Size: {self.storage.maxsize} speakers, each with {num_utter_per_speaker} utters")
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num speakers: {len(self.speakers)}")
@ -134,7 +140,17 @@ class MyDataset(Dataset):
labels = []
feats = []
for speaker in batch:
feats_, labels_ = self.__sample_speaker_utterances(speaker)
if random.random() < self.sample_from_storage_p and self.storage.full():
# sample from storage (if full), ignoring the speaker
feats_, labels_ = random.choice(self.storage.queue)
else:
# don't sample from storage, but from HDD
feats_, labels_ = self.__sample_speaker_utterances(speaker)
# if storage is full, remove an item
if self.storage.full():
_ = self.storage.get_nowait()
# put the newly loaded item into storage
self.storage.put_nowait((feats_, labels_))
labels.append(labels_)
feats.extend(feats_)
feats = torch.stack(feats)

View File

@ -23,7 +23,7 @@ def save_checkpoint(model, optimizer, model_loss, out_path,
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
current_step):
if model_loss < best_loss:
if model_loss < best_loss and current_step > 1000:
new_state_dict = model.state_dict()
state = {
'model': new_state_dict,
@ -35,7 +35,7 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path,
best_loss = model_loss
bestmodel_path = 'best_model.pth.tar'
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(
model_loss, bestmodel_path))
print("\n > NEW BEST MODEL ({0:.5f}) : {1:}".format(
model_loss, os.path.abspath(bestmodel_path)))
torch.save(state, bestmodel_path)
return best_loss

View File

@ -17,10 +17,10 @@ def load_meta_data(datasets):
root_path = dataset['path']
meta_file_train = dataset['meta_file_train']
meta_file_val = dataset['meta_file_val']
print(f" | > Preprocessing {name}")
preprocessor = get_preprocessor_by_name(name)
meta_data_train = preprocessor(root_path, meta_file_train)
print(f"Found {len(meta_data_train)} files in {Path(root_path).absolute()}")
print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}")
if meta_file_val is None:
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
else:
@ -257,6 +257,25 @@ def vctk(root_path, meta_files=None, wavs_path='wav48'):
return items
def vctk_slim(root_path, meta_files=None, wavs_path='wav48'):
test_speakers = meta_files
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
items = []
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
for meta_file in meta_files:
_, speaker_id, txt_file = os.path.relpath(meta_file,
root_path).split(os.sep)
file_id = txt_file.split('.')[0]
if isinstance(test_speakers, list): # if is list ignore this speakers ids
if speaker_id in test_speakers:
continue
wav_file = os.path.join(root_path, wavs_path, speaker_id,
file_id + '.wav')
items.append([None, wav_file, 'VCTK_' + speaker_id])
return items
# ======================================== VOX CELEB ===========================================
def voxceleb2(root_path, meta_file):
"""