mirror of https://github.com/coqui-ai/TTS.git
fix: load weights only in torch.load
This commit is contained in:
parent
233dfb54ae
commit
17ca24c3d6
|
@ -118,7 +118,7 @@ def load_model(ckpt_path, device, config, model_type="text"):
|
|||
logger.info(f"{model_type} model not found, downloading...")
|
||||
_download(config.REMOTE_MODEL_PATHS[model_type]["path"], ckpt_path, config.CACHE_DIR)
|
||||
|
||||
checkpoint = torch.load(ckpt_path, map_location=device)
|
||||
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
|
||||
# this is a hack
|
||||
model_args = checkpoint["model_args"]
|
||||
if "input_vocab_size" not in model_args:
|
||||
|
|
|
@ -332,7 +332,7 @@ class TorchMelSpectrogram(nn.Module):
|
|||
self.mel_norm_file = mel_norm_file
|
||||
if self.mel_norm_file is not None:
|
||||
with fsspec.open(self.mel_norm_file) as f:
|
||||
self.mel_norms = torch.load(f)
|
||||
self.mel_norms = torch.load(f, weights_only=True)
|
||||
else:
|
||||
self.mel_norms = None
|
||||
|
||||
|
|
|
@ -124,7 +124,7 @@ def load_voice(voice: str, extra_voice_dirs: List[str] = []):
|
|||
voices = get_voices(extra_voice_dirs)
|
||||
paths = voices[voice]
|
||||
if len(paths) == 1 and paths[0].endswith(".pth"):
|
||||
return None, torch.load(paths[0])
|
||||
return None, torch.load(paths[0], weights_only=True)
|
||||
else:
|
||||
conds = []
|
||||
for cond_path in paths:
|
||||
|
|
|
@ -46,7 +46,7 @@ def dvae_wav_to_mel(
|
|||
mel = mel_stft(wav)
|
||||
mel = torch.log(torch.clamp(mel, min=1e-5))
|
||||
if mel_norms is None:
|
||||
mel_norms = torch.load(mel_norms_file, map_location=device)
|
||||
mel_norms = torch.load(mel_norms_file, map_location=device, weights_only=True)
|
||||
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
|
||||
return mel
|
||||
|
||||
|
|
|
@ -328,7 +328,7 @@ class HifiganGenerator(torch.nn.Module):
|
|||
def load_checkpoint(
|
||||
self, config, checkpoint_path, eval=False, cache=False
|
||||
): # pylint: disable=unused-argument, redefined-builtin
|
||||
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
||||
state = torch.load(checkpoint_path, map_location=torch.device("cpu"), weights_only=True)
|
||||
self.load_state_dict(state["model"])
|
||||
if eval:
|
||||
self.eval()
|
||||
|
|
|
@ -91,7 +91,7 @@ class GPTTrainer(BaseTTS):
|
|||
|
||||
# load GPT if available
|
||||
if self.args.gpt_checkpoint:
|
||||
gpt_checkpoint = torch.load(self.args.gpt_checkpoint, map_location=torch.device("cpu"))
|
||||
gpt_checkpoint = torch.load(self.args.gpt_checkpoint, map_location=torch.device("cpu"), weights_only=True)
|
||||
# deal with coqui Trainer exported model
|
||||
if "model" in gpt_checkpoint.keys() and "config" in gpt_checkpoint.keys():
|
||||
logger.info("Coqui Trainer checkpoint detected! Converting it!")
|
||||
|
@ -184,7 +184,7 @@ class GPTTrainer(BaseTTS):
|
|||
|
||||
self.dvae.eval()
|
||||
if self.args.dvae_checkpoint:
|
||||
dvae_checkpoint = torch.load(self.args.dvae_checkpoint, map_location=torch.device("cpu"))
|
||||
dvae_checkpoint = torch.load(self.args.dvae_checkpoint, map_location=torch.device("cpu"), weights_only=True)
|
||||
self.dvae.load_state_dict(dvae_checkpoint, strict=False)
|
||||
logger.info("DVAE weights restored from: %s", self.args.dvae_checkpoint)
|
||||
else:
|
||||
|
|
|
@ -3,7 +3,7 @@ import torch
|
|||
|
||||
class SpeakerManager:
|
||||
def __init__(self, speaker_file_path=None):
|
||||
self.speakers = torch.load(speaker_file_path)
|
||||
self.speakers = torch.load(speaker_file_path, weights_only=True)
|
||||
|
||||
@property
|
||||
def name_to_id(self):
|
||||
|
|
|
@ -107,7 +107,7 @@ class NeuralhmmTTS(BaseTTS):
|
|||
|
||||
def preprocess_batch(self, text, text_len, mels, mel_len):
|
||||
if self.mean.item() == 0 or self.std.item() == 1:
|
||||
statistics_dict = torch.load(self.mel_statistics_parameter_path)
|
||||
statistics_dict = torch.load(self.mel_statistics_parameter_path, weights_only=True)
|
||||
self.update_mean_std(statistics_dict)
|
||||
|
||||
mels = self.normalize(mels)
|
||||
|
@ -292,7 +292,7 @@ class NeuralhmmTTS(BaseTTS):
|
|||
"Data parameters found for: %s. Loading mel normalization parameters...",
|
||||
trainer.config.mel_statistics_parameter_path,
|
||||
)
|
||||
statistics = torch.load(trainer.config.mel_statistics_parameter_path)
|
||||
statistics = torch.load(trainer.config.mel_statistics_parameter_path, weights_only=True)
|
||||
data_mean, data_std, init_transition_prob = (
|
||||
statistics["mean"],
|
||||
statistics["std"],
|
||||
|
|
|
@ -120,7 +120,7 @@ class Overflow(BaseTTS):
|
|||
|
||||
def preprocess_batch(self, text, text_len, mels, mel_len):
|
||||
if self.mean.item() == 0 or self.std.item() == 1:
|
||||
statistics_dict = torch.load(self.mel_statistics_parameter_path)
|
||||
statistics_dict = torch.load(self.mel_statistics_parameter_path, weights_only=True)
|
||||
self.update_mean_std(statistics_dict)
|
||||
|
||||
mels = self.normalize(mels)
|
||||
|
@ -308,7 +308,7 @@ class Overflow(BaseTTS):
|
|||
"Data parameters found for: %s. Loading mel normalization parameters...",
|
||||
trainer.config.mel_statistics_parameter_path,
|
||||
)
|
||||
statistics = torch.load(trainer.config.mel_statistics_parameter_path)
|
||||
statistics = torch.load(trainer.config.mel_statistics_parameter_path, weights_only=True)
|
||||
data_mean, data_std, init_transition_prob = (
|
||||
statistics["mean"],
|
||||
statistics["std"],
|
||||
|
|
|
@ -170,7 +170,9 @@ def classify_audio_clip(clip, model_dir):
|
|||
kernel_size=5,
|
||||
distribute_zero_label=False,
|
||||
)
|
||||
classifier.load_state_dict(torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu")))
|
||||
classifier.load_state_dict(
|
||||
torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu"), weights_only=True)
|
||||
)
|
||||
clip = clip.cpu().unsqueeze(0)
|
||||
results = F.softmax(classifier(clip), dim=-1)
|
||||
return results[0][0]
|
||||
|
@ -488,6 +490,7 @@ class Tortoise(BaseTTS):
|
|||
torch.load(
|
||||
os.path.join(self.models_dir, "rlg_auto.pth"),
|
||||
map_location=torch.device("cpu"),
|
||||
weights_only=True,
|
||||
)
|
||||
)
|
||||
self.rlg_diffusion = RandomLatentConverter(2048).eval()
|
||||
|
@ -495,6 +498,7 @@ class Tortoise(BaseTTS):
|
|||
torch.load(
|
||||
os.path.join(self.models_dir, "rlg_diffuser.pth"),
|
||||
map_location=torch.device("cpu"),
|
||||
weights_only=True,
|
||||
)
|
||||
)
|
||||
with torch.no_grad():
|
||||
|
@ -881,17 +885,17 @@ class Tortoise(BaseTTS):
|
|||
|
||||
if os.path.exists(ar_path):
|
||||
# remove keys from the checkpoint that are not in the model
|
||||
checkpoint = torch.load(ar_path, map_location=torch.device("cpu"))
|
||||
checkpoint = torch.load(ar_path, map_location=torch.device("cpu"), weights_only=True)
|
||||
|
||||
# strict set False
|
||||
# due to removed `bias` and `masked_bias` changes in Transformers
|
||||
self.autoregressive.load_state_dict(checkpoint, strict=False)
|
||||
|
||||
if os.path.exists(diff_path):
|
||||
self.diffusion.load_state_dict(torch.load(diff_path), strict=strict)
|
||||
self.diffusion.load_state_dict(torch.load(diff_path, weights_only=True), strict=strict)
|
||||
|
||||
if os.path.exists(clvp_path):
|
||||
self.clvp.load_state_dict(torch.load(clvp_path), strict=strict)
|
||||
self.clvp.load_state_dict(torch.load(clvp_path, weights_only=True), strict=strict)
|
||||
|
||||
if os.path.exists(vocoder_checkpoint_path):
|
||||
self.vocoder.load_state_dict(
|
||||
|
@ -899,6 +903,7 @@ class Tortoise(BaseTTS):
|
|||
torch.load(
|
||||
vocoder_checkpoint_path,
|
||||
map_location=torch.device("cpu"),
|
||||
weights_only=True,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
|
|
@ -65,7 +65,7 @@ def wav_to_mel_cloning(
|
|||
mel = mel_stft(wav)
|
||||
mel = torch.log(torch.clamp(mel, min=1e-5))
|
||||
if mel_norms is None:
|
||||
mel_norms = torch.load(mel_norms_file, map_location=device)
|
||||
mel_norms = torch.load(mel_norms_file, map_location=device, weights_only=True)
|
||||
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
|
||||
return mel
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ import torch
|
|||
|
||||
|
||||
def rehash_fairseq_vits_checkpoint(checkpoint_file):
|
||||
chk = torch.load(checkpoint_file, map_location=torch.device("cpu"))["model"]
|
||||
chk = torch.load(checkpoint_file, map_location=torch.device("cpu"), weights_only=True)["model"]
|
||||
new_chk = {}
|
||||
for k, v in chk.items():
|
||||
if "enc_p." in k:
|
||||
|
|
|
@ -17,7 +17,7 @@ def load_file(path: str):
|
|||
return json.load(f)
|
||||
elif path.endswith(".pth"):
|
||||
with fsspec.open(path, "rb") as f:
|
||||
return torch.load(f, map_location="cpu")
|
||||
return torch.load(f, map_location="cpu", weights_only=True)
|
||||
else:
|
||||
raise ValueError("Unsupported file type")
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@ def get_wavlm(device="cpu"):
|
|||
logger.info("Downloading WavLM model to %s ...", output_path)
|
||||
urllib.request.urlretrieve(model_uri, output_path)
|
||||
|
||||
checkpoint = torch.load(output_path, map_location=torch.device(device))
|
||||
checkpoint = torch.load(output_path, map_location=torch.device(device), weights_only=True)
|
||||
cfg = WavLMConfig(checkpoint["cfg"])
|
||||
wavlm = WavLM(cfg).to(device)
|
||||
wavlm.load_state_dict(checkpoint["model"])
|
||||
|
|
|
@ -119,9 +119,9 @@
|
|||
"\n",
|
||||
"# load model state\n",
|
||||
"if use_cuda:\n",
|
||||
" cp = torch.load(MODEL_PATH)\n",
|
||||
" cp = torch.load(MODEL_PATH, weights_only=True)\n",
|
||||
"else:\n",
|
||||
" cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n",
|
||||
" cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage, weights_only=True)\n",
|
||||
"\n",
|
||||
"# load the model\n",
|
||||
"model.load_state_dict(cp['model'])\n",
|
||||
|
|
Loading…
Reference in New Issue