add gated conv encoder to glow-tts

This commit is contained in:
erogol 2020-08-17 12:34:51 +02:00
parent 14356d3250
commit 1b238f04b2
3 changed files with 78 additions and 25 deletions

View File

@ -110,6 +110,7 @@ def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
kernel_size=3,
num_heads=2,
num_layers_enc=6,
encoder_type=c.encoder_type,
dropout_p=0.1,
num_flow_blocks_dec=12,
kernel_size_dec=5,

View File

@ -4,14 +4,53 @@ from torch import nn
from mozilla_voice_tts.tts.layers.glow_tts.transformer import Transformer
from mozilla_voice_tts.tts.utils.generic_utils import sequence_mask
from mozilla_voice_tts.tts.layers.glow_tts.glow import ConvLayerNorm
from mozilla_voice_tts.tts.layers.glow_tts.glow import ConvLayerNorm, LayerNorm
from mozilla_voice_tts.tts.layers.glow_tts.duration_predictor import DurationPredictor
class GatedConvBlock(nn.Module):
"""Gated convolutional block as in https://arxiv.org/pdf/1612.08083.pdf
Args:
in_out_channels (int): number of input/output channels.
kernel_size (int): convolution kernel size.
dropout_p (float): dropout rate.
"""
def __init__(self, in_out_channels, kernel_size, dropout_p, num_layers):
super().__init__()
# class arguments
self.dropout_p = dropout_p
self.num_layers = num_layers
# define layers
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.conv_layers += [
nn.Conv1d(in_out_channels,
2 * in_out_channels,
kernel_size,
padding=kernel_size // 2)
]
self.norm_layers += [LayerNorm(2 * in_out_channels)]
def forward(self, x, x_mask):
o = x
res = x
for idx in range(self.num_layers):
o = nn.functional.dropout(o,
p=self.dropout_p,
training=self.training)
o = self.conv_layers[idx](o * x_mask)
o = self.norm_layers[idx](o)
o = nn.functional.glu(o, dim=1)
o = res + o
res = o
return o
class Encoder(nn.Module):
"""Glow-TTS encoder module. We use Pytorch TransformerEncoder instead
of the one with relative position embedding. We use positional encoding
for capturing positiong information.
"""Glow-TTS encoder module. It uses Transformer with Relative Pos.Encoding
as in the original paper or GatedConvBlock as a faster alternative.
Args:
num_chars (int): number of characters.
@ -29,13 +68,13 @@ class Encoder(nn.Module):
Shapes:
- input: (B, T, C)
"""
def __init__(self,
num_chars,
out_channels,
hidden_channels,
filter_channels,
filter_channels_dp,
encoder_type,
num_heads,
num_layers,
kernel_size,
@ -59,26 +98,36 @@ class Encoder(nn.Module):
self.mean_only = mean_only
self.use_prenet = use_prenet
self.c_in_channels = c_in_channels
self.encoder_type = encoder_type
# embedding layer
self.emb = nn.Embedding(num_chars, hidden_channels)
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
# optional convolutional prenet
if use_prenet:
self.pre = ConvLayerNorm(hidden_channels,
hidden_channels,
hidden_channels,
kernel_size=5,
num_layers=3,
dropout_p=0.5)
# text encoder
self.encoder = Transformer(hidden_channels,
filter_channels,
num_heads,
num_layers,
kernel_size=kernel_size,
dropout_p=dropout_p,
rel_attn_window_size=rel_attn_window_size,
input_length=input_length)
# init encoder
if encoder_type.lower() == "transformer":
# optional convolutional prenet
if use_prenet:
self.pre = ConvLayerNorm(hidden_channels,
hidden_channels,
hidden_channels,
kernel_size=5,
num_layers=3,
dropout_p=0.5)
# text encoder
self.encoder = Transformer(
hidden_channels,
filter_channels,
num_heads,
num_layers,
kernel_size=kernel_size,
dropout_p=dropout_p,
rel_attn_window_size=rel_attn_window_size,
input_length=input_length)
elif encoder_type.lower() == 'gatedconv':
breakpoint()
self.encoder = GatedConvBlock(hidden_channels,
kernel_size=5,
dropout_p=dropout_p,
num_layers=3 + num_layers)
# final projection layers
self.proj_m = nn.Conv1d(hidden_channels, out_channels, 1)
if not mean_only:
@ -98,8 +147,9 @@ class Encoder(nn.Module):
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)),
1).to(x.dtype)
# pre-conv layers
if self.use_prenet:
x = self.pre(x, x_mask)
if self.encoder_type == 'transformer':
if self.use_prenet:
x = self.pre(x, x_mask)
# encoder
x = self.encoder(x, x_mask)
# set duration predictor input

View File

@ -36,7 +36,8 @@ class GlowTts(nn.Module):
mean_only=False,
hidden_channels_enc=None,
hidden_channels_dec=None,
use_encoder_prenet=False):
use_encoder_prenet=False,
encoder_type="transformer"):
super().__init__()
self.num_chars = num_chars
@ -72,6 +73,7 @@ class GlowTts(nn.Module):
hidden_channels_enc or hidden_channels,
filter_channels,
filter_channels_dp,
encoder_type,
num_heads,
num_layers_enc,
kernel_size,