diff --git a/layers/tacotron.py b/layers/tacotron.py index c9c8c5b3..9b31d02b 100644 --- a/layers/tacotron.py +++ b/layers/tacotron.py @@ -213,7 +213,7 @@ class Decoder(nn.Module): r (int): number of outputs per time step. eps (float): threshold for detecting the end of a sentence. """ - def __init__(self, in_features, memory_dim, r, eps=0.2): + def __init__(self, in_features, memory_dim, r, eps=0.05): super(Decoder, self).__init__() self.max_decoder_steps = 200 self.memory_dim = memory_dim diff --git a/notebooks/TacotronPlayGround.ipynb b/notebooks/TacotronPlayGround.ipynb index d122d25f..31aa7ffd 100644 --- a/notebooks/TacotronPlayGround.ipynb +++ b/notebooks/TacotronPlayGround.ipynb @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -91,268 +91,22 @@ ] }, { - "data": { - "text/plain": [ - "Tacotron(\n", - " (embedding): Embedding(149, 256)\n", - " (encoder): Encoder(\n", - " (prenet): Prenet(\n", - " (layers): ModuleList(\n", - " (0): Linear(in_features=256, out_features=256)\n", - " (1): Linear(in_features=256, out_features=128)\n", - " )\n", - " (relu): ReLU()\n", - " (dropout): Dropout(p=0.5)\n", - " )\n", - " (cbhg): CBHG(\n", - " (relu): ReLU()\n", - " (conv1d_banks): ModuleList(\n", - " (0): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(1,), stride=(1,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (1): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(2,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (2): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (3): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(4,), stride=(1,), padding=(2,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (4): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (5): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(6,), stride=(1,), padding=(3,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (6): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(7,), stride=(1,), padding=(3,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (7): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(8,), stride=(1,), padding=(4,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (8): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (9): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(10,), stride=(1,), padding=(5,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (10): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(11,), stride=(1,), padding=(5,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (11): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(12,), stride=(1,), padding=(6,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (12): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(13,), stride=(1,), padding=(6,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (13): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(14,), stride=(1,), padding=(7,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (14): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(15,), stride=(1,), padding=(7,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (15): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(16,), stride=(1,), padding=(8,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " )\n", - " (max_pool1d): MaxPool1d(kernel_size=2, stride=1, padding=1, dilation=1, ceil_mode=False)\n", - " (conv1d_projections): ModuleList(\n", - " (0): BatchNormConv1d(\n", - " (conv1d): Conv1d (2048, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (1): BatchNormConv1d(\n", - " (conv1d): Conv1d (128, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n", - " )\n", - " )\n", - " (pre_highway): Linear(in_features=128, out_features=128)\n", - " (highways): ModuleList(\n", - " (0): Highway(\n", - " (H): Linear(in_features=128, out_features=128)\n", - " (T): Linear(in_features=128, out_features=128)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " (1): Highway(\n", - " (H): Linear(in_features=128, out_features=128)\n", - " (T): Linear(in_features=128, out_features=128)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " (2): Highway(\n", - " (H): Linear(in_features=128, out_features=128)\n", - " (T): Linear(in_features=128, out_features=128)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " (3): Highway(\n", - " (H): Linear(in_features=128, out_features=128)\n", - " (T): Linear(in_features=128, out_features=128)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " )\n", - " (gru): GRU(128, 128, batch_first=True, bidirectional=True)\n", - " )\n", - " )\n", - " (decoder): Decoder(\n", - " (input_layer): Linear(in_features=256, out_features=256)\n", - " (prenet): Prenet(\n", - " (layers): ModuleList(\n", - " (0): Linear(in_features=400, out_features=256)\n", - " (1): Linear(in_features=256, out_features=128)\n", - " )\n", - " (relu): ReLU()\n", - " (dropout): Dropout(p=0.5)\n", - " )\n", - " (attention_rnn): AttentionWrapper(\n", - " (rnn_cell): GRUCell(384, 256)\n", - " (alignment_model): BahdanauAttention(\n", - " (query_layer): Linear(in_features=256, out_features=256)\n", - " (tanh): Tanh()\n", - " (v): Linear(in_features=256, out_features=1)\n", - " )\n", - " )\n", - " (project_to_decoder_in): Linear(in_features=512, out_features=256)\n", - " (decoder_rnns): ModuleList(\n", - " (0): GRUCell(256, 256)\n", - " (1): GRUCell(256, 256)\n", - " )\n", - " (proj_to_mel): Linear(in_features=256, out_features=400)\n", - " )\n", - " (postnet): CBHG(\n", - " (relu): ReLU()\n", - " (conv1d_banks): ModuleList(\n", - " (0): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(1,), stride=(1,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (1): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(2,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (2): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (3): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(4,), stride=(1,), padding=(2,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (4): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (5): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(6,), stride=(1,), padding=(3,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (6): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(7,), stride=(1,), padding=(3,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (7): BatchNormConv1d(\n", - " (conv1d): Conv1d (80, 80, kernel_size=(8,), stride=(1,), padding=(4,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " )\n", - " (max_pool1d): MaxPool1d(kernel_size=2, stride=1, padding=1, dilation=1, ceil_mode=False)\n", - " (conv1d_projections): ModuleList(\n", - " (0): BatchNormConv1d(\n", - " (conv1d): Conv1d (640, 256, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(256, eps=0.001, momentum=0.99, affine=True)\n", - " (activation): ReLU()\n", - " )\n", - " (1): BatchNormConv1d(\n", - " (conv1d): Conv1d (256, 80, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n", - " (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n", - " )\n", - " )\n", - " (pre_highway): Linear(in_features=80, out_features=80)\n", - " (highways): ModuleList(\n", - " (0): Highway(\n", - " (H): Linear(in_features=80, out_features=80)\n", - " (T): Linear(in_features=80, out_features=80)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " (1): Highway(\n", - " (H): Linear(in_features=80, out_features=80)\n", - " (T): Linear(in_features=80, out_features=80)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " (2): Highway(\n", - " (H): Linear(in_features=80, out_features=80)\n", - " (T): Linear(in_features=80, out_features=80)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " (3): Highway(\n", - " (H): Linear(in_features=80, out_features=80)\n", - " (T): Linear(in_features=80, out_features=80)\n", - " (relu): ReLU()\n", - " (sigmoid): Sigmoid()\n", - " )\n", - " )\n", - " (gru): GRU(80, 80, batch_first=True, bidirectional=True)\n", - " )\n", - " (last_linear): Linear(in_features=160, out_features=1025)\n", - ")" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" + "ename": "KeyError", + "evalue": "'unexpected key \"module.embedding.weight\" in state_dict'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;31m# load the model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 25\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_state_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'model'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 26\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[0;34m(self, state_dict, strict)\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mstrict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 489\u001b[0m raise KeyError('unexpected key \"{}\" in state_dict'\n\u001b[0;32m--> 490\u001b[0;31m .format(name))\n\u001b[0m\u001b[1;32m 491\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstrict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[0mmissing\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mown_state\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'unexpected key \"module.embedding.weight\" in state_dict'" + ] } ], "source": [ "# load the model\n", "model = Tacotron(CONFIG.embedding_size, CONFIG.hidden_size,\n", - " CONFIG.num_mels, CONFIG.num_freq, CONFIG.r)\n", + " CONFIG.num_mels, CONFIG.num_freq, CONFIG.r)\n", "\n", "# load the audio processor\n", "ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db,\n", @@ -366,7 +120,7 @@ "else:\n", " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", "\n", - "# small trick to remove DataParallel wrapper\n", + "# # small trick to remove DataParallel wrapper\n", "new_state_dict = OrderedDict()\n", "for k, v in cp['model'].items():\n", " name = k[7:] # remove `module.`\n", @@ -377,12 +131,25674 @@ "model.load_state_dict(cp['model'])\n", "if use_cuda:\n", " model.cuda()\n", - "# model.eval()\n", - "# model.encoder.eval()\n", - "# model.\n", "model.eval()" ] }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('module.embedding.weight', \n", + " -3.5297e-02 -3.2110e-02 1.5772e-02 ... 1.5752e-03 8.5511e-02 -2.4540e-03\n", + " 2.2812e-02 4.3733e-02 -8.5045e-02 ... 3.9608e-02 5.9179e-02 2.2359e-02\n", + " -5.6533e-02 2.8566e-01 -5.8419e-01 ... -1.9973e-01 3.0205e-01 9.3615e-02\n", + " ... ⋱ ... \n", + " -2.3212e-01 1.7337e-01 -1.8613e-01 ... -2.9493e-02 -2.2340e-03 8.0515e-03\n", + " -3.9615e-01 1.3994e-01 -4.2236e-02 ... 2.7774e-01 -2.1261e-02 4.8095e-01\n", + " 1.0893e-01 3.4349e-01 6.2014e-01 ... 4.3346e-01 -2.2796e-01 -2.4084e-01\n", + " [torch.FloatTensor of size 149x256]),\n", + " ('module.encoder.prenet.layers.0.weight', \n", + " -1.0014e-01 2.9802e-02 -2.4292e-01 ... -1.8605e-01 -7.1386e-02 -2.3602e-02\n", + " 3.2112e-01 -1.7793e-02 -4.7806e-02 ... -6.9432e-02 -2.0528e-02 -9.1605e-02\n", + " 1.8654e-01 6.4952e-02 9.3887e-02 ... -1.0719e-02 3.4214e-02 6.8752e-02\n", + " ... ⋱ ... \n", + " 6.9887e-03 1.6763e-01 1.2888e-03 ... 7.4507e-03 -6.6574e-02 -6.5742e-04\n", + " 2.4360e-01 3.5927e-02 3.5399e-02 ... 1.2186e-01 -1.2406e-02 -1.6318e-01\n", + " -1.1759e-02 -8.7780e-03 -1.9734e-01 ... -5.8825e-02 6.7379e-02 -1.0530e-02\n", + " [torch.FloatTensor of size 256x256]),\n", + " ('module.encoder.prenet.layers.0.bias', \n", + " -0.0704\n", + " -0.2325\n", + " -0.1103\n", + " -0.0531\n", + " -0.1821\n", + " -0.0734\n", + " -0.0968\n", + " -0.1854\n", + " -0.0928\n", + " -0.2251\n", + " -0.1243\n", + " -0.0883\n", + " -0.0765\n", + " -0.0324\n", + " -0.1123\n", + " -0.2250\n", + " -0.0198\n", + " -0.2890\n", + " -0.0232\n", + " -0.0220\n", + " 0.0422\n", + " -0.0454\n", + " 0.0288\n", + " -0.1473\n", + " -0.0470\n", + " -0.1018\n", + " -0.0934\n", + " -0.1430\n", + " -0.0440\n", + " -0.1701\n", + " -0.1629\n", + " -0.1001\n", + " 0.0394\n", + " -0.0823\n", + " -0.0032\n", + " -0.0437\n", + " -0.1353\n", + " -0.3906\n", + " -0.1264\n", + " -0.0330\n", + " 0.0433\n", + " -0.1669\n", + " -0.1263\n", + " -0.0900\n", + " -0.1593\n", + " -0.1618\n", + " -0.1133\n", + " -0.0787\n", + " -0.1686\n", + " -0.0694\n", + " -0.0861\n", + " 0.0319\n", + " -0.0489\n", + " -0.0673\n", + " -0.2221\n", + " -0.1320\n", + " -0.0541\n", + " -0.4774\n", + " -0.0294\n", + " -0.0766\n", + " 0.0717\n", + " -0.1841\n", + " -0.0333\n", + " -0.1523\n", + " -0.1103\n", + " -0.0361\n", + " -0.0648\n", + " -0.0957\n", + " -0.1330\n", + " -0.1408\n", + " 0.0165\n", + " -0.1503\n", + " -0.1603\n", + " -0.0686\n", + " -0.0476\n", + " -0.2059\n", + " -0.1780\n", + " -0.0734\n", + " -0.1016\n", + " -0.0711\n", + " -0.1130\n", + " -0.2282\n", + " -0.0068\n", + " -0.1549\n", + " -0.1033\n", + " 0.0493\n", + " -0.2593\n", + " -0.0633\n", + " -0.2569\n", + " -0.1936\n", + " -0.3189\n", + " -0.0126\n", + " -0.2992\n", + " -0.0018\n", + " -0.0711\n", + " -0.0621\n", + " -0.2238\n", + " -0.1572\n", + " -0.0731\n", + " -0.0806\n", + " -0.0980\n", + " 0.0449\n", + " -0.1195\n", + " -0.1380\n", + " -0.1631\n", + " -0.0250\n", + " -0.1572\n", + " -0.0357\n", + " -0.1325\n", + " -0.0770\n", + " -0.2003\n", + " 0.0232\n", + " -0.0048\n", + " -0.1999\n", + " 0.0309\n", + " -0.1343\n", + " -0.2083\n", + " -0.1762\n", + " -0.1273\n", + " -0.1509\n", + " -0.1643\n", + " 0.0228\n", + " -0.1819\n", + " -0.0917\n", + " 0.0122\n", + " -0.0810\n", + " -0.2499\n", + " -0.1043\n", + " -0.0875\n", + " -0.0225\n", + " 0.0012\n", + " -0.1237\n", + " -0.1153\n", + " -0.0151\n", + " 0.0029\n", + " -0.0437\n", + " -0.3011\n", + " 0.0030\n", + " -0.0078\n", + " -0.0594\n", + " -0.0669\n", + " -0.2825\n", + " -0.0541\n", + " -0.0008\n", + " -0.0352\n", + " -0.1139\n", + " -0.0350\n", + " -0.2285\n", + " -0.2661\n", + " -0.0469\n", + " -0.0023\n", + " -0.1536\n", + " -0.1614\n", + " 0.0145\n", + " -0.1819\n", + " -0.0677\n", + " -0.0682\n", + " -0.0521\n", + " -0.0962\n", + " -0.0995\n", + " -0.0487\n", + " -0.0144\n", + " -0.1920\n", + " -0.1974\n", + " -0.0702\n", + " -0.0893\n", + " -0.0509\n", + " -0.0741\n", + " -0.1373\n", + " 0.0637\n", + " -0.2082\n", + " -0.1559\n", + " -0.2094\n", + " -0.2431\n", + " -0.1071\n", + " -0.0244\n", + " -0.1300\n", + " -0.1789\n", + " 0.0219\n", + " -0.2220\n", + " -0.0408\n", + " -0.2379\n", + " -0.2404\n", + " -0.0639\n", + " -0.0447\n", + " -0.1562\n", + " -0.0362\n", + " -0.2018\n", + " -0.0858\n", + " -0.0118\n", + " -0.0631\n", + " -0.0660\n", + " -0.0260\n", + " -0.1357\n", + " -0.3616\n", + " -0.4833\n", + " -0.0934\n", + " -0.0108\n", + " -0.0121\n", + " -0.0484\n", + " -0.2504\n", + " -0.1337\n", + " -0.1002\n", + " -0.1239\n", + " -0.0047\n", + " 0.0031\n", + " -0.1129\n", + " 0.0301\n", + " 0.0399\n", + " -0.0143\n", + " -0.1699\n", + " -0.0369\n", + " -0.0570\n", + " -0.1132\n", + " -0.0772\n", + " -0.0208\n", + " -0.0780\n", + " -0.0719\n", + " -0.0142\n", + " 0.0278\n", + " -0.0418\n", + " -0.0729\n", + " -0.0724\n", + " -0.0749\n", + " -0.0849\n", + " -0.0984\n", + " -0.1697\n", + " -0.0529\n", + " -0.3286\n", + " -0.0006\n", + " 0.0464\n", + " -0.0439\n", + " -0.0135\n", + " -0.1863\n", + " -0.0453\n", + " -0.1910\n", + " -0.1649\n", + " -0.1927\n", + " -0.1597\n", + " -0.0844\n", + " -0.1204\n", + " -0.0122\n", + " -0.2126\n", + " -0.0206\n", + " -0.2664\n", + " -0.0634\n", + " -0.3220\n", + " -0.0365\n", + " -0.0187\n", + " -0.1900\n", + " -0.2600\n", + " -0.0692\n", + " -0.1204\n", + " -0.3588\n", + " -0.0812\n", + " -0.0753\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.encoder.prenet.layers.1.weight', \n", + " -1.6126e-01 2.8914e-02 -1.0028e-01 ... -3.5420e-02 -1.3256e-01 -3.0317e-03\n", + " -8.8005e-01 -5.2990e-01 -1.5287e-01 ... 2.2524e-02 1.0137e-01 -1.0721e-01\n", + " -1.4194e+00 -4.4239e-01 -1.8868e-02 ... -2.4959e-01 -8.1351e-01 -1.4342e+00\n", + " ... ⋱ ... \n", + " -9.7612e-01 -5.1730e-01 -7.7711e-01 ... -5.1752e-02 -6.2894e-01 -8.6156e-01\n", + " -2.0189e-01 -5.1400e-01 -4.7799e-01 ... -2.3133e-01 1.4875e-01 -3.8852e-01\n", + " -3.5884e-02 -1.0765e-01 -2.2468e-01 ... -1.0134e-01 -8.1144e-02 2.8081e-02\n", + " [torch.FloatTensor of size 128x256]),\n", + " ('module.encoder.prenet.layers.1.bias', \n", + " -0.3585\n", + " 1.6995\n", + " 2.3166\n", + " 1.7364\n", + " 0.4701\n", + " 1.5738\n", + " 2.1307\n", + " 1.2531\n", + " 1.6245\n", + " 2.1560\n", + " 0.9820\n", + " 1.8875\n", + " 2.4729\n", + " 1.0907\n", + " 2.2598\n", + " 1.9542\n", + " 1.9548\n", + " 1.5077\n", + " 1.0076\n", + " 2.6810\n", + " 2.4430\n", + " 1.9737\n", + " -0.0700\n", + " 1.8026\n", + " -0.4326\n", + " 1.5797\n", + " 1.2291\n", + " 1.4399\n", + " 1.8057\n", + " 2.7138\n", + " 0.3383\n", + " 2.0052\n", + " 1.9785\n", + " 2.7670\n", + " 2.1501\n", + " 0.8639\n", + " 2.3999\n", + " 2.3451\n", + " 1.7723\n", + " 1.1212\n", + " -0.2053\n", + " 1.8817\n", + " 2.6431\n", + " 1.9419\n", + " -0.2995\n", + " 1.9662\n", + " 1.1049\n", + " 1.8972\n", + " 1.4069\n", + " 1.3095\n", + " 2.8848\n", + " 2.2875\n", + " 2.4240\n", + " 1.6281\n", + " 2.4198\n", + " 1.2517\n", + " 1.8351\n", + " 2.3133\n", + " 1.7785\n", + " -0.3808\n", + " 2.4419\n", + " 2.2181\n", + " 2.6447\n", + " 2.2217\n", + " 1.2486\n", + " 0.3046\n", + " 0.6007\n", + " 0.9984\n", + " 2.0237\n", + " 2.5613\n", + " 0.9227\n", + " 0.3079\n", + " 2.2933\n", + " 1.0479\n", + " 1.7179\n", + " 1.8413\n", + " 2.2759\n", + " 1.6229\n", + " 0.4718\n", + " 1.7324\n", + " 2.0497\n", + " 3.0045\n", + " 0.8048\n", + " 1.7378\n", + " 2.7005\n", + " 1.3603\n", + " 1.8880\n", + " 0.8904\n", + " 0.4747\n", + " 2.2508\n", + " 2.0709\n", + " 1.5177\n", + " -0.3586\n", + " 0.9661\n", + " 1.7081\n", + " 2.5825\n", + " 1.9696\n", + " 2.3685\n", + " 2.0387\n", + " 1.4500\n", + " 2.4367\n", + " 0.4283\n", + " 1.3150\n", + " 2.2226\n", + " 2.4524\n", + " 2.1837\n", + " 0.7118\n", + " 2.1082\n", + " 2.2519\n", + " 1.7399\n", + " 1.9642\n", + " 1.2885\n", + " 2.7799\n", + " -0.4589\n", + " 1.0244\n", + " 0.5252\n", + " 1.9328\n", + " 1.9372\n", + " 1.6940\n", + " 0.9164\n", + " 2.0596\n", + " 0.9265\n", + " 1.7577\n", + " 2.0141\n", + " 1.5980\n", + " 2.5939\n", + " 0.3658\n", + " -0.3199\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.0.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -6.6251e-02\n", + " -6.8183e-01\n", + " -8.8998e-01\n", + " ⋮ \n", + " -7.3685e-02\n", + " -1.7196e-01\n", + " -6.8184e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " -3.6669e-02\n", + " 1.0216e-01\n", + " 2.9180e-01\n", + " ⋮ \n", + " -4.3819e-01\n", + " 1.1236e-02\n", + " -8.6161e-02\n", + " \n", + " ( 2 ,.,.) = \n", + " 3.1580e-02\n", + " -4.6436e-02\n", + " -3.1578e-02\n", + " ⋮ \n", + " -2.9636e-01\n", + " -3.1398e-01\n", + " -9.8746e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -4.8537e-02\n", + " -9.7628e-01\n", + " -4.7115e-02\n", + " ⋮ \n", + " 3.7837e-02\n", + " -2.5917e-01\n", + " -4.0414e-01\n", + " \n", + " (126,.,.) = \n", + " -1.0193e-01\n", + " 4.4068e-01\n", + " -5.4034e-01\n", + " ⋮ \n", + " -1.7104e-01\n", + " -2.3850e-01\n", + " -1.6505e-01\n", + " \n", + " (127,.,.) = \n", + " 2.5536e-02\n", + " -9.0031e-01\n", + " -7.3607e-01\n", + " ⋮ \n", + " -3.3190e-01\n", + " -7.5025e-03\n", + " -1.0425e-01\n", + " [torch.FloatTensor of size 128x128x1]),\n", + " ('module.encoder.cbhg.conv1d_banks.0.bn.weight', \n", + " 0.6591\n", + " -1.2572\n", + " 0.8739\n", + " 0.0423\n", + " -0.8999\n", + " 0.4206\n", + " 1.2460\n", + " -1.7693\n", + " 1.1016\n", + " 0.3619\n", + " -1.5488\n", + " -0.4151\n", + " 0.0202\n", + " -1.1553\n", + " 0.6241\n", + " -0.7603\n", + " 0.1831\n", + " -1.3233\n", + " -1.1399\n", + " 0.2576\n", + " 0.3289\n", + " 0.1837\n", + " -0.3407\n", + " 0.3372\n", + " -0.7382\n", + " 0.3482\n", + " 0.3916\n", + " 0.6138\n", + " -0.0488\n", + " -1.7011\n", + " 0.5796\n", + " 0.2722\n", + " -0.4631\n", + " 0.0869\n", + " -1.8734\n", + " 0.7504\n", + " -0.4008\n", + " -0.0150\n", + " -1.9485\n", + " -1.5207\n", + " 0.1789\n", + " -1.8307\n", + " 0.4566\n", + " 0.4261\n", + " 0.8417\n", + " -0.2912\n", + " 0.0864\n", + " 0.0459\n", + " 0.3181\n", + " -0.5764\n", + " -0.1530\n", + " 0.0720\n", + " 0.4791\n", + " 0.1626\n", + " -1.7365\n", + " 0.9922\n", + " 0.2440\n", + " 0.3228\n", + " 0.2166\n", + " 0.2625\n", + " -1.8546\n", + " -2.8205\n", + " 0.4102\n", + " 0.2564\n", + " 0.8064\n", + " -1.9707\n", + " -1.5620\n", + " 0.2139\n", + " 1.7856\n", + " 0.1005\n", + " 0.6677\n", + " 1.7832\n", + " 0.2558\n", + " 0.4171\n", + " -1.5547\n", + " -0.3117\n", + " 0.2358\n", + " -0.7742\n", + " 0.1305\n", + " -0.0683\n", + " -1.2802\n", + " -1.3206\n", + " -0.0826\n", + " 0.5054\n", + " -1.3429\n", + " -0.8753\n", + " -1.3754\n", + " -0.0851\n", + " 0.4566\n", + " 1.2336\n", + " 0.3783\n", + " -2.4549\n", + " -1.1048\n", + " 1.9755\n", + " 0.7881\n", + " -0.1720\n", + " 0.5107\n", + " -1.2934\n", + " -1.0566\n", + " -1.4817\n", + " -0.9210\n", + " -0.1149\n", + " 0.8603\n", + " 1.7239\n", + " -0.0900\n", + " -0.0847\n", + " 0.0394\n", + " 0.5084\n", + " 0.2656\n", + " 0.4883\n", + " 0.6596\n", + " -1.0905\n", + " -0.5039\n", + " -2.9462\n", + " 0.0330\n", + " -0.0026\n", + " -0.0639\n", + " 0.7629\n", + " 0.7044\n", + " 0.5001\n", + " 0.0064\n", + " -0.9646\n", + " 0.0032\n", + " 0.0372\n", + " 1.2075\n", + " 0.9911\n", + " 0.2357\n", + " 0.8908\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.0.bn.bias', \n", + " 0.0496\n", + " -0.3761\n", + " 0.1720\n", + " 0.0088\n", + " -0.1417\n", + " 0.0287\n", + " 0.1284\n", + " -0.6863\n", + " 0.1531\n", + " 0.1071\n", + " -0.3297\n", + " -0.1519\n", + " -0.0036\n", + " -0.3632\n", + " 0.1521\n", + " -0.3017\n", + " 0.0584\n", + " -0.2840\n", + " -0.2838\n", + " 0.0796\n", + " 0.1045\n", + " 0.0586\n", + " -0.1395\n", + " 0.0719\n", + " -0.2271\n", + " 0.0499\n", + " 0.0884\n", + " 0.2548\n", + " -0.0211\n", + " -0.2821\n", + " 0.1719\n", + " 0.0869\n", + " -0.1280\n", + " 0.0238\n", + " -0.3729\n", + " 0.2631\n", + " -0.1296\n", + " -0.0357\n", + " -0.2797\n", + " -0.4018\n", + " 0.0218\n", + " -0.4129\n", + " 0.1654\n", + " 0.0324\n", + " 0.1249\n", + " -0.0757\n", + " -0.0278\n", + " 0.0114\n", + " 0.1644\n", + " -0.0654\n", + " -0.0445\n", + " 0.0206\n", + " 0.2573\n", + " -0.0784\n", + " -0.4035\n", + " 0.2922\n", + " -0.0144\n", + " 0.0615\n", + " 0.0280\n", + " 0.0292\n", + " -0.2697\n", + " -0.3457\n", + " 0.2012\n", + " -0.0295\n", + " 0.2810\n", + " -0.3361\n", + " -0.2685\n", + " 0.0690\n", + " 0.2289\n", + " 0.0216\n", + " 0.1789\n", + " 0.1590\n", + " 0.0330\n", + " 0.1722\n", + " -0.3000\n", + " -0.0665\n", + " 0.0471\n", + " -0.2774\n", + " 0.0282\n", + " -0.0082\n", + " -0.4068\n", + " -0.3256\n", + " -0.0221\n", + " 0.1838\n", + " -0.3682\n", + " -0.2745\n", + " -0.3362\n", + " -0.0176\n", + " 0.0966\n", + " 0.0550\n", + " 0.0761\n", + " -0.2648\n", + " -0.4274\n", + " 0.2190\n", + " 0.3803\n", + " -0.0387\n", + " 0.0363\n", + " -0.3328\n", + " -0.2526\n", + " -0.3576\n", + " -0.4342\n", + " -0.0747\n", + " 0.1348\n", + " 0.2771\n", + " 0.0020\n", + " -0.0246\n", + " -0.0045\n", + " 0.1549\n", + " 0.0506\n", + " -0.0160\n", + " 0.2828\n", + " -0.3593\n", + " -0.2290\n", + " -0.4338\n", + " -0.0021\n", + " -0.0034\n", + " -0.0237\n", + " 0.1105\n", + " 0.0896\n", + " 0.0697\n", + " -0.0307\n", + " -0.1974\n", + " -0.0047\n", + " 0.0069\n", + " 0.1067\n", + " 0.2567\n", + " -0.0471\n", + " 0.2444\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.0.bn.running_mean', \n", + " 0.0870\n", + " 0.8101\n", + " 0.5247\n", + " 2.2122\n", + " 0.4873\n", + " 0.0197\n", + " 0.0576\n", + " 3.7668\n", + " 0.3194\n", + " 0.2192\n", + " 1.2198\n", + " 1.0392\n", + " 1.1233\n", + " 6.1512\n", + " 0.6100\n", + " 4.5341\n", + " 0.1639\n", + " 2.1069\n", + " 0.4447\n", + " 0.6375\n", + " 0.0551\n", + " 0.7121\n", + " 1.6102\n", + " 0.1971\n", + " 2.0502\n", + " 0.1030\n", + " 0.0089\n", + " 0.0028\n", + " 2.7830\n", + " 0.3154\n", + " 0.5923\n", + " 0.0087\n", + " 1.6420\n", + " 0.1864\n", + " 0.3373\n", + " 0.4181\n", + " 1.1021\n", + " 1.2134\n", + " 0.4320\n", + " 1.1481\n", + " 0.0204\n", + " 0.7017\n", + " 0.2296\n", + " 0.0967\n", + " 0.0505\n", + " 0.6132\n", + " 0.1166\n", + " 0.9885\n", + " 3.3698\n", + " 0.0310\n", + " 0.7492\n", + " 0.5738\n", + " 0.2248\n", + " 2.9998\n", + " 0.6050\n", + " 0.0560\n", + " 0.6973\n", + " 0.1761\n", + " 0.2494\n", + " 0.1141\n", + " 0.7000\n", + " 2.7446\n", + " 0.0505\n", + " 0.1667\n", + " 0.3415\n", + " 1.4325\n", + " 0.5639\n", + " 0.0893\n", + " 0.1094\n", + " 4.7658\n", + " 0.3892\n", + " 0.2030\n", + " 0.0042\n", + " 0.0783\n", + " 0.4031\n", + " 0.6467\n", + " 0.1158\n", + " 2.0079\n", + " 0.1498\n", + " 1.2992\n", + " 1.4152\n", + " 1.1754\n", + " 1.8695\n", + " 0.0708\n", + " 2.6983\n", + " 0.7383\n", + " 0.8094\n", + " 0.4446\n", + " 0.5453\n", + " 0.9943\n", + " 0.4924\n", + " 0.1364\n", + " 1.9822\n", + " 0.1972\n", + " 1.9096\n", + " 0.8834\n", + " 0.0014\n", + " 2.7301\n", + " 0.6040\n", + " 1.6772\n", + " 1.4184\n", + " 1.2977\n", + " 0.0487\n", + " 0.6774\n", + " 1.9628\n", + " 1.7026\n", + " 1.2595\n", + " 0.0462\n", + " 1.2077\n", + " 0.0032\n", + " 1.5108\n", + " 2.9752\n", + " 2.2626\n", + " 0.1426\n", + " 0.5018\n", + " 1.4696\n", + " 1.5673\n", + " 1.3662\n", + " 2.2242\n", + " 0.0077\n", + " 2.6727\n", + " 3.0063\n", + " 2.0216\n", + " 0.5201\n", + " 0.1247\n", + " 0.2195\n", + " 0.3367\n", + " 0.2375\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.0.bn.running_var', \n", + " 0.3437\n", + " 3.1590\n", + " 3.5308\n", + " 16.8469\n", + " 3.0804\n", + " 0.0273\n", + " 0.2468\n", + " 31.7647\n", + " 1.4386\n", + " 0.9426\n", + " 6.6400\n", + " 3.8405\n", + " 9.8438\n", + " 50.8472\n", + " 4.1808\n", + " 21.3124\n", + " 0.5102\n", + " 9.6467\n", + " 1.7094\n", + " 2.8162\n", + " 0.1607\n", + " 2.5650\n", + " 5.6620\n", + " 1.3423\n", + " 10.7854\n", + " 0.3705\n", + " 0.0262\n", + " 0.0040\n", + " 16.0253\n", + " 1.5826\n", + " 2.8785\n", + " 0.0123\n", + " 7.1599\n", + " 0.4248\n", + " 1.3036\n", + " 3.5653\n", + " 5.6428\n", + " 11.3821\n", + " 1.8151\n", + " 6.7774\n", + " 0.0608\n", + " 3.9251\n", + " 0.9103\n", + " 0.3961\n", + " 0.1327\n", + " 2.1445\n", + " 0.2094\n", + " 5.4538\n", + " 25.3652\n", + " 0.0586\n", + " 4.3396\n", + " 2.1219\n", + " 0.9367\n", + " 6.9949\n", + " 3.4362\n", + " 0.3150\n", + " 3.5132\n", + " 0.9837\n", + " 0.8066\n", + " 0.2909\n", + " 3.5503\n", + " 22.5505\n", + " 0.1241\n", + " 0.4674\n", + " 1.4275\n", + " 8.2066\n", + " 2.8071\n", + " 0.3559\n", + " 0.2892\n", + " 18.5240\n", + " 3.1646\n", + " 1.0415\n", + " 0.0045\n", + " 0.3100\n", + " 2.6372\n", + " 3.3976\n", + " 0.2980\n", + " 8.8771\n", + " 0.4361\n", + " 3.1446\n", + " 12.0329\n", + " 5.2685\n", + " 8.6919\n", + " 0.3742\n", + " 15.9113\n", + " 3.2323\n", + " 3.6449\n", + " 2.1727\n", + " 2.5035\n", + " 5.6634\n", + " 5.1186\n", + " 0.7378\n", + " 10.0247\n", + " 1.0395\n", + " 33.3002\n", + " 3.8079\n", + " 0.0013\n", + " 14.0447\n", + " 3.7312\n", + " 10.0017\n", + " 6.9413\n", + " 6.1180\n", + " 0.1488\n", + " 3.0287\n", + " 11.6265\n", + " 6.9702\n", + " 3.3300\n", + " 0.1468\n", + " 7.1564\n", + " 0.0031\n", + " 14.6520\n", + " 18.4089\n", + " 12.1343\n", + " 0.4487\n", + " 2.2629\n", + " 9.2180\n", + " 5.7901\n", + " 7.2934\n", + " 18.6814\n", + " 0.0180\n", + " 14.8378\n", + " 14.6351\n", + " 8.0705\n", + " 2.4461\n", + " 0.8510\n", + " 1.0535\n", + " 1.1406\n", + " 0.7860\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.1.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -1.7469e-03 -5.8269e-02\n", + " 6.7772e-02 -8.3827e-01\n", + " -1.9679e+00 3.3696e-01\n", + " ⋮ \n", + " -6.3320e-01 -4.1194e-01\n", + " -6.1837e-01 -4.3298e-01\n", + " 1.2093e-01 -2.6532e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -7.0265e-02 -4.4727e-02\n", + " -1.3089e-02 1.0594e-01\n", + " -1.4405e-01 3.7635e-01\n", + " ⋮ \n", + " 3.0504e-01 5.5851e-02\n", + " 3.3968e-01 -7.2954e-03\n", + " 5.3568e-02 1.9476e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 1.2149e-02 -6.5031e-02\n", + " -1.1192e-02 2.0588e-02\n", + " -9.9884e-02 2.7532e-01\n", + " ⋮ \n", + " 2.2661e-01 -1.4156e-01\n", + " 1.0049e-01 3.1395e-03\n", + " 7.0527e-02 -2.9458e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -4.5840e-02 -3.6793e-02\n", + " 1.6884e-01 -4.0931e-01\n", + " 2.5989e-01 2.7923e-01\n", + " ⋮ \n", + " -2.6109e-01 -3.3987e-01\n", + " 1.5648e-01 -6.1283e-02\n", + " -5.4954e-01 -1.1350e-01\n", + " \n", + " (126,.,.) = \n", + " -6.2937e-02 4.4589e-02\n", + " -6.2535e-02 -5.3324e-01\n", + " 2.1476e-01 -3.5696e-01\n", + " ⋮ \n", + " 2.1135e-01 -5.8720e-01\n", + " -1.0717e-01 -4.9246e-02\n", + " 2.3508e-01 -8.5545e-03\n", + " \n", + " (127,.,.) = \n", + " 1.0879e-01 -3.1740e-02\n", + " 4.4000e-03 -1.4642e+00\n", + " 3.1502e-01 2.8231e-01\n", + " ⋮ \n", + " -7.7851e-01 5.1266e-02\n", + " -1.2681e-03 -2.2417e-01\n", + " -2.1902e-01 -3.5927e-01\n", + " [torch.FloatTensor of size 128x128x2]),\n", + " ('module.encoder.cbhg.conv1d_banks.1.bn.weight', \n", + " 0.4733\n", + " 0.0235\n", + " -0.0062\n", + " 0.4201\n", + " 1.3014\n", + " 0.1988\n", + " -0.0900\n", + " 1.3110\n", + " 0.3646\n", + " 0.4270\n", + " -1.1778\n", + " 0.7919\n", + " 0.1093\n", + " -0.0262\n", + " 0.7808\n", + " 0.4058\n", + " 1.0810\n", + " -0.0285\n", + " 0.4852\n", + " 0.3591\n", + " 0.5424\n", + " 0.8443\n", + " 0.5654\n", + " -0.3290\n", + " 1.2563\n", + " 0.2957\n", + " 0.6080\n", + " -1.0073\n", + " -0.6875\n", + " 0.6321\n", + " 0.6867\n", + " -1.3513\n", + " -0.3735\n", + " 1.0324\n", + " 0.4403\n", + " -1.3225\n", + " 1.0055\n", + " -1.0831\n", + " 0.3380\n", + " -0.7721\n", + " -0.0921\n", + " 0.6735\n", + " 0.7410\n", + " 0.0396\n", + " 1.0561\n", + " 0.0040\n", + " 1.0135\n", + " 0.8185\n", + " 0.7132\n", + " 1.1297\n", + " -0.0641\n", + " 0.5488\n", + " 0.6189\n", + " 0.6287\n", + " 1.6989\n", + " 0.2293\n", + " 0.5385\n", + " 0.7866\n", + " -0.0101\n", + " 0.7307\n", + " -0.8609\n", + " 0.1057\n", + " 1.3026\n", + " 0.3684\n", + " 1.4587\n", + " -0.1244\n", + " 0.6186\n", + " -1.1850\n", + " 1.2956\n", + " -1.2645\n", + " 0.4718\n", + " 0.0087\n", + " 0.2734\n", + " -0.3027\n", + " -0.9086\n", + " -0.7481\n", + " -0.0305\n", + " 0.1738\n", + " 0.6157\n", + " 0.2185\n", + " -0.5635\n", + " 0.4902\n", + " 0.4909\n", + " -0.7121\n", + " -1.4196\n", + " 0.0211\n", + " 0.2764\n", + " 0.8459\n", + " -1.0611\n", + " -1.9599\n", + " 0.6789\n", + " -0.0087\n", + " 0.8961\n", + " 0.4669\n", + " 0.3157\n", + " 0.9896\n", + " 0.5475\n", + " 0.4048\n", + " -0.7899\n", + " 0.9126\n", + " -0.2827\n", + " 0.0139\n", + " -1.1461\n", + " 1.1425\n", + " 0.2756\n", + " 1.0780\n", + " -1.2292\n", + " 0.5387\n", + " 0.2735\n", + " 1.2863\n", + " -1.5314\n", + " -0.0675\n", + " 0.3419\n", + " 0.9257\n", + " 0.5979\n", + " -0.1600\n", + " 0.6024\n", + " 0.3802\n", + " -0.0378\n", + " 0.4436\n", + " 0.4443\n", + " 1.3742\n", + " 0.3733\n", + " 0.0133\n", + " -1.9551\n", + " -1.2258\n", + " -0.9844\n", + " 0.5876\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.1.bn.bias', \n", + " 0.1701\n", + " -0.0081\n", + " -0.0007\n", + " 0.2301\n", + " 0.2036\n", + " 0.0267\n", + " -0.0508\n", + " 0.1225\n", + " 0.1918\n", + " 0.2228\n", + " -0.2664\n", + " 0.3788\n", + " 0.0042\n", + " -0.0011\n", + " 0.0979\n", + " 0.0099\n", + " 0.0533\n", + " -0.0044\n", + " 0.0644\n", + " 0.1301\n", + " 0.1707\n", + " 0.0083\n", + " -0.1809\n", + " -0.0810\n", + " 0.1219\n", + " 0.0308\n", + " -0.0266\n", + " -0.3285\n", + " -0.1071\n", + " 0.0112\n", + " 0.0175\n", + " -0.3918\n", + " -0.0652\n", + " 0.2522\n", + " 0.1066\n", + " -0.1811\n", + " 0.0816\n", + " -0.2488\n", + " 0.1812\n", + " -0.3955\n", + " -0.0276\n", + " -0.0875\n", + " 0.0278\n", + " 0.0080\n", + " 0.1422\n", + " 0.0212\n", + " 0.1189\n", + " 0.0657\n", + " 0.1570\n", + " 0.4617\n", + " -0.0123\n", + " 0.2006\n", + " 0.1181\n", + " 0.2937\n", + " 0.2162\n", + " 0.0653\n", + " -0.0357\n", + " 0.1045\n", + " -0.0054\n", + " 0.0629\n", + " -0.2165\n", + " 0.0177\n", + " 0.1745\n", + " 0.1962\n", + " 0.1149\n", + " -0.0463\n", + " 0.0938\n", + " -0.2009\n", + " 0.1857\n", + " -0.3686\n", + " 0.1085\n", + " 0.0068\n", + " 0.0247\n", + " -0.0742\n", + " -0.3292\n", + " -0.1746\n", + " -0.0137\n", + " -0.0106\n", + " 0.1596\n", + " 0.0604\n", + " -0.1541\n", + " -0.1548\n", + " 0.0034\n", + " -0.1204\n", + " -0.1631\n", + " -0.0175\n", + " 0.1083\n", + " 0.0942\n", + " -0.1659\n", + " -0.3056\n", + " 0.5220\n", + " 0.0009\n", + " 0.1898\n", + " 0.0333\n", + " 0.1392\n", + " 0.1659\n", + " -0.1028\n", + " 0.0858\n", + " -0.2728\n", + " 0.3501\n", + " -0.0931\n", + " -0.0023\n", + " -0.0371\n", + " 0.0988\n", + " -0.0181\n", + " 0.0447\n", + " -0.3148\n", + " 0.0571\n", + " 0.0850\n", + " 0.1255\n", + " -0.2664\n", + " -0.0209\n", + " 0.0853\n", + " 0.1626\n", + " 0.0210\n", + " -0.0426\n", + " 0.1644\n", + " 0.0993\n", + " -0.0196\n", + " 0.0656\n", + " 0.0561\n", + " 0.3851\n", + " -0.0397\n", + " -0.0042\n", + " -0.1487\n", + " -0.2297\n", + " -0.2560\n", + " -0.1302\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.1.bn.running_mean', \n", + " 0.2278\n", + " 1.3284\n", + " 5.4859\n", + " 2.7325\n", + " 0.3709\n", + " 5.2223\n", + " 1.6543\n", + " 0.0211\n", + " 1.6813\n", + " 0.9461\n", + " 4.6698\n", + " 0.6030\n", + " 1.4935\n", + " 4.3162\n", + " 0.2561\n", + " 2.1722\n", + " 0.7438\n", + " 6.9892\n", + " 0.5223\n", + " 7.1926\n", + " 1.5904\n", + " 1.4662\n", + " 0.9416\n", + " 1.1059\n", + " 0.3037\n", + " 5.7653\n", + " 0.0300\n", + " 3.2579\n", + " 0.8365\n", + " 0.2451\n", + " 0.2678\n", + " 0.8860\n", + " 0.8639\n", + " 0.2315\n", + " 2.2403\n", + " 3.4847\n", + " 0.1228\n", + " 0.8269\n", + " 1.9055\n", + " 4.1844\n", + " 1.5615\n", + " 0.3953\n", + " 0.8498\n", + " 2.7287\n", + " 1.2589\n", + " 4.2431\n", + " 0.3563\n", + " 0.3371\n", + " 1.4904\n", + " 1.7422\n", + " 0.9660\n", + " 3.5193\n", + " 0.1304\n", + " 3.3561\n", + " 0.1678\n", + " 5.5767\n", + " 0.2415\n", + " 0.0174\n", + " 0.2963\n", + " 0.2006\n", + " 2.3182\n", + " 6.5804\n", + " 0.2712\n", + " 0.9532\n", + " 0.2055\n", + " 2.6334\n", + " 0.2016\n", + " 0.6562\n", + " 0.1193\n", + " 1.0522\n", + " 7.8449\n", + " 1.7169\n", + " 0.6664\n", + " 1.3208\n", + " 1.4695\n", + " 2.0873\n", + " 2.7356\n", + " 0.6997\n", + " 0.2519\n", + " 5.0028\n", + " 1.6218\n", + " 0.1138\n", + " 0.2069\n", + " 0.7647\n", + " 0.1726\n", + " 4.4857\n", + " 0.3926\n", + " 0.2857\n", + " 0.9989\n", + " 0.3531\n", + " 4.2766\n", + " 1.1147\n", + " 0.1493\n", + " 0.5459\n", + " 6.1042\n", + " 0.0601\n", + " 0.2063\n", + " 0.1297\n", + " 2.2081\n", + " 1.3151\n", + " 2.6887\n", + " 7.2990\n", + " 0.0021\n", + " 0.3346\n", + " 1.2581\n", + " 0.3534\n", + " 2.4283\n", + " 0.1082\n", + " 5.4669\n", + " 0.1340\n", + " 0.2159\n", + " 2.2148\n", + " 0.6639\n", + " 0.2035\n", + " 1.0627\n", + " 1.4622\n", + " 1.6266\n", + " 1.6433\n", + " 1.1739\n", + " 0.0596\n", + " 9.3307\n", + " 0.6544\n", + " 1.2687\n", + " 2.7657\n", + " 0.4171\n", + " 1.5379\n", + " 1.2445\n", + " 0.3488\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.1.bn.running_var', \n", + " 1.3367\n", + " 7.6086\n", + " 29.6188\n", + " 19.9479\n", + " 1.9745\n", + " 22.7413\n", + " 5.9792\n", + " 0.0637\n", + " 10.5301\n", + " 6.9245\n", + " 45.1371\n", + " 4.3097\n", + " 7.0463\n", + " 30.0321\n", + " 1.6828\n", + " 10.8739\n", + " 3.6743\n", + " 33.7168\n", + " 3.1064\n", + " 33.4510\n", + " 12.2032\n", + " 11.5044\n", + " 4.9928\n", + " 4.6164\n", + " 2.3413\n", + " 29.8270\n", + " 0.0870\n", + " 22.6399\n", + " 4.5027\n", + " 1.0404\n", + " 2.8947\n", + " 5.9069\n", + " 4.3338\n", + " 1.4424\n", + " 15.1429\n", + " 31.3466\n", + " 0.4048\n", + " 4.3270\n", + " 11.8973\n", + " 27.4739\n", + " 5.2958\n", + " 1.8844\n", + " 5.1403\n", + " 11.1396\n", + " 10.1982\n", + " 25.9107\n", + " 2.5645\n", + " 1.8474\n", + " 7.7697\n", + " 23.2299\n", + " 3.5681\n", + " 23.7102\n", + " 0.5725\n", + " 42.8053\n", + " 0.8816\n", + " 44.7615\n", + " 1.0349\n", + " 0.0376\n", + " 0.9509\n", + " 1.1513\n", + " 18.1707\n", + " 42.8582\n", + " 1.3485\n", + " 5.3684\n", + " 0.9533\n", + " 13.0618\n", + " 1.1537\n", + " 3.8212\n", + " 0.4204\n", + " 6.5487\n", + " 41.9320\n", + " 16.4796\n", + " 4.3733\n", + " 6.8044\n", + " 10.9295\n", + " 13.2641\n", + " 11.7745\n", + " 3.6665\n", + " 1.6709\n", + " 25.2989\n", + " 11.1395\n", + " 0.4067\n", + " 0.7982\n", + " 4.9462\n", + " 1.2926\n", + " 12.2255\n", + " 1.8526\n", + " 1.4234\n", + " 6.5699\n", + " 2.1196\n", + " 46.5058\n", + " 5.0214\n", + " 0.5336\n", + " 4.7017\n", + " 35.4098\n", + " 0.2543\n", + " 1.0787\n", + " 0.7361\n", + " 15.2158\n", + " 9.3967\n", + " 14.4744\n", + " 47.6725\n", + " 0.0015\n", + " 1.4966\n", + " 8.1529\n", + " 2.0170\n", + " 24.5650\n", + " 0.4699\n", + " 24.9536\n", + " 0.6458\n", + " 1.1774\n", + " 8.2636\n", + " 5.0634\n", + " 0.8180\n", + " 10.3734\n", + " 7.5653\n", + " 9.4897\n", + " 11.5371\n", + " 4.4367\n", + " 0.2274\n", + " 46.4561\n", + " 6.3732\n", + " 8.3160\n", + " 14.7590\n", + " 2.9065\n", + " 15.0195\n", + " 8.1915\n", + " 1.9411\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.2.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -5.4286e-02 -9.4237e-02 4.7910e-02\n", + " -2.0761e-01 1.6850e-01 -1.9503e+00\n", + " -4.2229e-01 -1.3163e+00 -2.3051e-01\n", + " ⋮ \n", + " 6.4546e-02 -1.0657e+00 -1.1922e+00\n", + " 5.5012e-02 -5.6582e-01 -2.0700e-01\n", + " 2.8215e-02 -1.4465e-01 -1.5023e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -2.9313e-02 -4.5640e-03 -2.5330e-02\n", + " -1.8320e+00 9.9294e-02 2.6152e-01\n", + " 1.1664e-01 9.9127e-02 -2.0662e+00\n", + " ⋮ \n", + " -8.1441e-01 -8.7617e-01 1.7442e-02\n", + " -1.5637e-01 1.0771e-01 -6.5480e-01\n", + " 1.2788e-01 1.0396e-01 -5.3307e-02\n", + " \n", + " ( 2 ,.,.) = \n", + " 1.3774e-02 -2.2764e-02 1.7160e-02\n", + " -5.4339e-01 8.6952e-02 8.0073e-03\n", + " -2.6484e-01 -1.3497e+00 8.9788e-02\n", + " ⋮ \n", + " 1.1648e-01 -7.7175e-01 1.5116e-01\n", + " -2.1602e-01 2.5640e-01 1.0208e-01\n", + " 1.2165e-01 -2.6676e-02 -4.5937e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -4.6806e-02 -3.6873e-02 3.9662e-02\n", + " -7.0332e-02 -8.7892e-01 -1.4400e+00\n", + " 1.8573e-01 9.4182e-02 1.1713e-01\n", + " ⋮ \n", + " 1.5029e-01 -3.6476e-02 6.7077e-02\n", + " 2.8011e-01 -4.7094e-02 2.2105e-01\n", + " -2.4804e-01 -1.3658e-02 -3.4306e-03\n", + " \n", + " (126,.,.) = \n", + " -1.9260e-02 -1.2697e-02 -1.4019e-02\n", + " -1.3391e-01 -3.4813e-01 -4.7117e-01\n", + " 1.4140e-01 1.4029e-01 -1.3311e-01\n", + " ⋮ \n", + " 1.8775e-01 5.7309e-02 2.6160e-01\n", + " 2.2137e-01 -2.6558e-02 -3.1574e-02\n", + " 1.0015e-02 -1.2476e-01 -3.1886e-02\n", + " \n", + " (127,.,.) = \n", + " 2.4374e-02 1.2599e-02 1.4980e-02\n", + " -1.8930e-01 -3.1155e-02 -2.2507e-01\n", + " 3.4954e-01 -6.2865e-02 4.2429e-01\n", + " ⋮ \n", + " 2.4214e-01 -4.6694e-02 -1.8781e-01\n", + " -2.5548e-01 2.9772e-01 4.9350e-01\n", + " 1.5860e-01 -2.1079e-01 1.1477e-01\n", + " [torch.FloatTensor of size 128x128x3]),\n", + " ('module.encoder.cbhg.conv1d_banks.2.bn.weight', \n", + " 0.7882\n", + " 1.1679\n", + " 0.6868\n", + " -0.5602\n", + " 0.6926\n", + " 0.3480\n", + " 1.3040\n", + " -0.5898\n", + " 0.8252\n", + " -0.1509\n", + " 0.6994\n", + " 0.5404\n", + " 0.7474\n", + " 0.9570\n", + " 0.1598\n", + " 0.5288\n", + " 0.8474\n", + " -0.4721\n", + " 0.7928\n", + " 0.6296\n", + " 0.9907\n", + " -0.6676\n", + " -0.1030\n", + " -1.0869\n", + " 0.4828\n", + " 1.1944\n", + " -0.3796\n", + " 0.7430\n", + " 0.5693\n", + " 0.4382\n", + " 0.3220\n", + " 0.3703\n", + " 0.8995\n", + " 0.7451\n", + " -1.3021\n", + " -0.8754\n", + " -0.8579\n", + " 0.5799\n", + " 0.4983\n", + " 0.5480\n", + " -2.1142\n", + " 0.9737\n", + " 1.2022\n", + " 0.3887\n", + " 0.5268\n", + " 1.2057\n", + " 0.8936\n", + " 0.3334\n", + " 0.7513\n", + " 0.6445\n", + " -0.7795\n", + " 1.0365\n", + " 0.4544\n", + " 0.5647\n", + " 0.7380\n", + " 1.1126\n", + " 0.6847\n", + " 0.2264\n", + " 0.3797\n", + " -1.0073\n", + " 0.9932\n", + " 0.5080\n", + " -1.0126\n", + " 0.8422\n", + " -0.9466\n", + " 0.4633\n", + " 1.2529\n", + " 0.7878\n", + " 0.3980\n", + " 0.9587\n", + " 0.5316\n", + " -0.5880\n", + " 0.6710\n", + " 0.7551\n", + " 0.5722\n", + " 0.5651\n", + " -0.8144\n", + " 0.8886\n", + " 0.4788\n", + " 0.6518\n", + " 0.9727\n", + " -0.7357\n", + " 1.2086\n", + " 0.5821\n", + " 0.2523\n", + " 1.3351\n", + " 1.0008\n", + " 1.0258\n", + " -0.8218\n", + " 0.2004\n", + " 0.4271\n", + " 0.9437\n", + " -0.3267\n", + " 1.2607\n", + " 0.6416\n", + " 0.6931\n", + " -0.6647\n", + " -1.7838\n", + " 0.9953\n", + " -0.5783\n", + " -0.8165\n", + " 0.8011\n", + " 0.8279\n", + " 1.0071\n", + " -0.9063\n", + " 0.7007\n", + " -1.4719\n", + " -1.4968\n", + " -1.0625\n", + " 0.8999\n", + " 0.7239\n", + " 0.0646\n", + " -0.9613\n", + " 0.6627\n", + " 0.7891\n", + " 1.0621\n", + " 0.6897\n", + " 0.7706\n", + " 0.5824\n", + " 0.7817\n", + " -1.3201\n", + " -0.9172\n", + " 0.3756\n", + " -1.4005\n", + " 0.8096\n", + " 0.6342\n", + " -0.7933\n", + " 0.1299\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.2.bn.bias', \n", + " 0.0638\n", + " 0.0563\n", + " 0.2731\n", + " -0.1831\n", + " 0.0058\n", + " -0.1194\n", + " 0.1583\n", + " -0.1720\n", + " 0.0106\n", + " -0.0349\n", + " 0.0823\n", + " 0.0839\n", + " 0.2265\n", + " 0.3051\n", + " 0.0007\n", + " -0.1692\n", + " 0.1714\n", + " -0.0963\n", + " 0.0330\n", + " 0.0207\n", + " -0.1119\n", + " -0.1277\n", + " -0.0389\n", + " -0.3312\n", + " -0.0054\n", + " 0.0919\n", + " -0.0990\n", + " 0.2415\n", + " 0.1045\n", + " 0.0839\n", + " -0.0179\n", + " 0.1326\n", + " 0.1313\n", + " 0.3185\n", + " -0.1222\n", + " -0.2094\n", + " -0.2618\n", + " -0.1596\n", + " 0.2535\n", + " -0.0093\n", + " -0.0895\n", + " 0.1695\n", + " 0.1285\n", + " 0.1045\n", + " 0.0112\n", + " 0.0559\n", + " 0.2153\n", + " -0.0550\n", + " 0.1243\n", + " 0.0311\n", + " -0.0646\n", + " 0.3177\n", + " 0.0043\n", + " 0.0961\n", + " 0.0593\n", + " 0.0338\n", + " 0.0701\n", + " 0.0092\n", + " -0.0261\n", + " -0.3211\n", + " 0.1917\n", + " 0.0501\n", + " -0.1208\n", + " 0.2013\n", + " 0.0326\n", + " 0.0782\n", + " 0.3299\n", + " 0.0598\n", + " 0.0763\n", + " -0.0259\n", + " 0.2968\n", + " -0.1930\n", + " 0.2456\n", + " 0.0162\n", + " 0.0692\n", + " 0.1265\n", + " -0.1297\n", + " 0.4153\n", + " -0.0290\n", + " 0.0303\n", + " 0.2357\n", + " -0.2576\n", + " 0.2377\n", + " 0.0680\n", + " 0.1226\n", + " 0.3216\n", + " 0.1055\n", + " 0.1506\n", + " -0.1748\n", + " 0.1498\n", + " -0.1754\n", + " -0.0923\n", + " -0.0671\n", + " 0.0901\n", + " -0.0195\n", + " 0.0387\n", + " -0.1568\n", + " -0.2594\n", + " -0.0551\n", + " -0.0781\n", + " -0.1634\n", + " 0.0727\n", + " -0.0663\n", + " 0.1575\n", + " -0.2397\n", + " 0.1048\n", + " -0.1084\n", + " -0.3413\n", + " -0.1369\n", + " 0.1626\n", + " 0.0728\n", + " -0.0186\n", + " -0.1495\n", + " -0.0135\n", + " 0.1119\n", + " 0.1673\n", + " 0.0699\n", + " 0.1361\n", + " 0.3015\n", + " 0.2214\n", + " -0.1587\n", + " -0.2259\n", + " 0.2413\n", + " -0.1080\n", + " 0.0616\n", + " 0.3122\n", + " -0.2073\n", + " 0.0341\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.2.bn.running_mean', \n", + " 1.1630\n", + " 0.2190\n", + " 0.6604\n", + " 6.8502\n", + " 0.5800\n", + " 0.7456\n", + " 0.8671\n", + " 4.6402\n", + " 0.1669\n", + " 3.2986\n", + " 0.3361\n", + " 1.2620\n", + " 0.4217\n", + " 0.3617\n", + " 1.4444\n", + " 0.6314\n", + " 0.9157\n", + " 1.0370\n", + " 1.7103\n", + " 0.1520\n", + " 0.2035\n", + " 3.8058\n", + " 1.4098\n", + " 3.0435\n", + " 1.8632\n", + " 0.2145\n", + " 1.3484\n", + " 0.0739\n", + " 3.0820\n", + " 4.6308\n", + " 0.8663\n", + " 5.6400\n", + " 1.1108\n", + " 1.6447\n", + " 0.2646\n", + " 2.1980\n", + " 3.5989\n", + " 0.5466\n", + " 0.4014\n", + " 0.5370\n", + " 0.1492\n", + " 0.4578\n", + " 0.0107\n", + " 0.9942\n", + " 1.0825\n", + " 0.5560\n", + " 0.4456\n", + " 1.5005\n", + " 2.0964\n", + " 1.6159\n", + " 0.0207\n", + " 1.3731\n", + " 1.0164\n", + " 0.6175\n", + " 0.9700\n", + " 0.0986\n", + " 2.0744\n", + " 1.9988\n", + " 1.1954\n", + " 2.7618\n", + " 0.1706\n", + " 0.0942\n", + " 1.4422\n", + " 0.9258\n", + " 1.6989\n", + " 12.8986\n", + " 0.7410\n", + " 0.3696\n", + " 0.9520\n", + " 0.4256\n", + " 0.8205\n", + " 4.3940\n", + " 1.5047\n", + " 0.6868\n", + " 3.1306\n", + " 2.5420\n", + " 1.0325\n", + " 0.3960\n", + " 0.7334\n", + " 1.4882\n", + " 0.5329\n", + " 2.3058\n", + " 0.0159\n", + " 0.7815\n", + " 10.4380\n", + " 0.1061\n", + " 0.1331\n", + " 0.6696\n", + " 2.0808\n", + " 3.2479\n", + " 4.0375\n", + " 0.5901\n", + " 1.7219\n", + " 0.2626\n", + " 1.2888\n", + " 2.9755\n", + " 2.2197\n", + " 0.2895\n", + " 0.9920\n", + " 1.0100\n", + " 1.7728\n", + " 0.3082\n", + " 0.1416\n", + " 0.2235\n", + " 2.5931\n", + " 0.0869\n", + " 0.4106\n", + " 0.7252\n", + " 1.9628\n", + " 0.0089\n", + " 1.1316\n", + " 4.9027\n", + " 1.3078\n", + " 0.1001\n", + " 0.2413\n", + " 0.2598\n", + " 0.3739\n", + " 0.1684\n", + " 1.3397\n", + " 0.2249\n", + " 1.6900\n", + " 1.6697\n", + " 1.3694\n", + " 0.4396\n", + " 0.8980\n", + " 0.2888\n", + " 1.2549\n", + " 4.6069\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.2.bn.running_var', \n", + " 9.7994\n", + " 1.2514\n", + " 4.1081\n", + " 46.8629\n", + " 3.6430\n", + " 4.7418\n", + " 6.4415\n", + " 33.7882\n", + " 0.9173\n", + " 15.8640\n", + " 3.5358\n", + " 11.0178\n", + " 3.2181\n", + " 2.7233\n", + " 6.4556\n", + " 5.5252\n", + " 7.7024\n", + " 5.3057\n", + " 14.0739\n", + " 1.0280\n", + " 1.1828\n", + " 28.1004\n", + " 7.1049\n", + " 23.1384\n", + " 13.8020\n", + " 1.1702\n", + " 8.0575\n", + " 0.3680\n", + " 29.6075\n", + " 42.2086\n", + " 5.7056\n", + " 61.3984\n", + " 8.8590\n", + " 14.3460\n", + " 1.8237\n", + " 17.0321\n", + " 38.5890\n", + " 4.8810\n", + " 3.5166\n", + " 3.8442\n", + " 1.1839\n", + " 2.8182\n", + " 0.0253\n", + " 13.5511\n", + " 8.0220\n", + " 3.5922\n", + " 3.4204\n", + " 13.1982\n", + " 14.3898\n", + " 15.3038\n", + " 0.0906\n", + " 13.9396\n", + " 7.8078\n", + " 5.1677\n", + " 7.0526\n", + " 0.5769\n", + " 16.6135\n", + " 13.2465\n", + " 9.8636\n", + " 23.3770\n", + " 0.9680\n", + " 0.6132\n", + " 11.0925\n", + " 7.6960\n", + " 15.5853\n", + " 49.7492\n", + " 5.7911\n", + " 1.9542\n", + " 6.6985\n", + " 2.6736\n", + " 6.1363\n", + " 38.2642\n", + " 14.4988\n", + " 4.6359\n", + " 34.5189\n", + " 19.9102\n", + " 7.4275\n", + " 2.7323\n", + " 7.2089\n", + " 12.1778\n", + " 2.7965\n", + " 21.4060\n", + " 0.0439\n", + " 5.3728\n", + " 58.0339\n", + " 0.5599\n", + " 0.6702\n", + " 4.5155\n", + " 19.7068\n", + " 24.7468\n", + " 32.4359\n", + " 3.7611\n", + " 8.8014\n", + " 1.4880\n", + " 9.7919\n", + " 22.7541\n", + " 17.9358\n", + " 1.9441\n", + " 7.9773\n", + " 5.0693\n", + " 15.6299\n", + " 2.0215\n", + " 0.7720\n", + " 1.1532\n", + " 23.9688\n", + " 0.3376\n", + " 2.5808\n", + " 6.6397\n", + " 15.5070\n", + " 0.0205\n", + " 9.0777\n", + " 22.0513\n", + " 11.2502\n", + " 0.5872\n", + " 1.3869\n", + " 1.4350\n", + " 2.5002\n", + " 0.9065\n", + " 11.0231\n", + " 1.2137\n", + " 12.7303\n", + " 15.6336\n", + " 9.6978\n", + " 3.0546\n", + " 6.9087\n", + " 2.1190\n", + " 8.6749\n", + " 36.0892\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.3.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -3.0199e-02 -4.5101e-02 4.1657e-02 -1.3989e-01\n", + " 5.9655e-02 1.3077e-01 -1.0970e+00 9.7011e-03\n", + " -1.3781e+00 2.7077e-01 -1.9742e-02 2.1801e-02\n", + " ⋮ \n", + " -9.1431e-02 1.5480e-01 2.4212e-02 7.3165e-02\n", + " 1.4958e-01 -4.2327e-01 1.9488e-01 -6.6253e-01\n", + " -1.3541e-01 -2.3292e-01 -3.2272e-01 -1.7024e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " 3.2595e-02 -3.2977e-03 4.1706e-02 -1.3661e-03\n", + " -1.0077e+00 -2.9712e-01 -4.7499e-02 -5.7860e-01\n", + " 2.7742e-01 5.4497e-02 2.4373e-01 -1.1944e+00\n", + " ⋮ \n", + " -7.5219e-01 5.6820e-02 -4.2962e-01 -2.7082e-01\n", + " 6.5423e-02 2.2855e-01 -7.5106e-02 2.1938e-01\n", + " -1.2268e-01 -2.7853e-02 8.2643e-02 -2.9314e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " -3.8005e-02 -1.8723e-02 9.9610e-03 -1.8004e-02\n", + " 2.8541e-01 -4.0136e-01 -6.4734e-01 -9.4345e-01\n", + " -4.9899e-03 1.0887e-01 -5.8836e-02 -5.9108e-01\n", + " ⋮ \n", + " -5.1846e-01 4.7479e-03 -4.8246e-01 -1.0629e-01\n", + " 8.4392e-02 9.2139e-02 -5.7263e-02 -2.2137e-01\n", + " -2.2947e-01 -8.1368e-02 -1.8130e-01 1.4157e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -1.9266e-02 -5.8194e-03 -5.9193e-02 1.2790e-02\n", + " 7.3518e-02 1.8488e-01 1.2557e-01 1.2247e-01\n", + " -1.3630e-01 5.6454e-02 1.3659e-01 -6.8306e-02\n", + " ⋮ \n", + " 4.1640e-01 -1.0616e-01 -2.5067e-01 1.5842e-01\n", + " -7.1185e-02 1.9634e-01 -1.7411e-01 2.7764e-01\n", + " 3.3945e-03 -3.4820e-03 8.2969e-02 -1.0172e-01\n", + " \n", + " (126,.,.) = \n", + " -1.9898e-02 1.1437e-02 -6.1109e-02 -2.0294e-02\n", + " -1.9157e-01 1.5399e-01 -2.3774e+00 -1.2851e+00\n", + " 4.7223e-02 -8.3199e-01 1.5482e-01 -1.4128e+00\n", + " ⋮ \n", + " 9.8303e-02 8.7049e-02 -4.9641e-01 1.8631e-02\n", + " -1.5819e-01 -7.8419e-01 -4.9958e-01 -4.4801e-01\n", + " -2.3128e-01 -8.0637e-02 -1.0088e-01 3.4297e-02\n", + " \n", + " (127,.,.) = \n", + " -4.6688e-02 2.6377e-02 -1.1830e-01 4.1776e-02\n", + " 1.7381e-01 7.2495e-02 -4.0078e-02 1.2306e-01\n", + " -1.6091e-01 -1.0786e-01 -1.6649e-01 3.2966e-02\n", + " ⋮ \n", + " 2.8699e-01 2.1908e-01 -4.5487e-01 -2.5770e-02\n", + " 2.0351e-01 -4.6262e-01 1.0559e-01 -3.1717e-01\n", + " -4.0802e-02 6.2488e-02 1.3862e-01 -1.4880e-02\n", + " [torch.FloatTensor of size 128x128x4]),\n", + " ('module.encoder.cbhg.conv1d_banks.3.bn.weight', \n", + " 0.6762\n", + " 1.2839\n", + " 0.5925\n", + " 0.4043\n", + " 0.5573\n", + " 0.4524\n", + " 0.4971\n", + " -0.5960\n", + " 0.5021\n", + " -0.9494\n", + " 0.5080\n", + " -0.8624\n", + " 0.6140\n", + " 0.5730\n", + " -1.2350\n", + " 0.7618\n", + " 0.4530\n", + " 1.6662\n", + " -0.3794\n", + " 0.5542\n", + " 0.4506\n", + " 0.5946\n", + " 0.5797\n", + " 0.4881\n", + " 0.4952\n", + " -0.5356\n", + " 0.6488\n", + " -0.8908\n", + " 0.4057\n", + " 0.6898\n", + " 0.6750\n", + " -0.1251\n", + " 0.6325\n", + " 0.4851\n", + " 0.4389\n", + " 0.4041\n", + " 0.4299\n", + " 0.7708\n", + " 0.7325\n", + " -0.0463\n", + " 0.6394\n", + " 0.5451\n", + " 0.3378\n", + " 0.7166\n", + " 0.6030\n", + " 1.1028\n", + " 0.3994\n", + " -0.9556\n", + " 0.3748\n", + " 0.5475\n", + " 0.4361\n", + " 0.3910\n", + " 0.7346\n", + " 0.6367\n", + " 0.5006\n", + " 0.6014\n", + " 0.6725\n", + " 0.4923\n", + " 0.6960\n", + " 0.3339\n", + " 0.3371\n", + " 0.3961\n", + " 0.4107\n", + " 0.5951\n", + " 0.4860\n", + " 0.5769\n", + " -0.7742\n", + " 0.4339\n", + " 0.7209\n", + " 0.4315\n", + " 0.5832\n", + " 0.5863\n", + " 0.5736\n", + " 0.4677\n", + " -1.0682\n", + " 0.9264\n", + " 0.7246\n", + " 0.7324\n", + " 0.4137\n", + " -0.5774\n", + " 0.4973\n", + " 0.7447\n", + " 0.3545\n", + " 0.7746\n", + " 0.6656\n", + " 0.5835\n", + " 0.5291\n", + " 1.1132\n", + " 0.4102\n", + " 0.5999\n", + " 0.3807\n", + " 0.3736\n", + " 0.6172\n", + " 1.1931\n", + " -0.0256\n", + " 0.4723\n", + " 0.6797\n", + " 0.8751\n", + " 0.4438\n", + " 0.4281\n", + " 0.3294\n", + " 0.9565\n", + " 0.7108\n", + " 0.8660\n", + " 0.7950\n", + " 1.0954\n", + " -0.0163\n", + " 0.0693\n", + " 0.4338\n", + " -0.0255\n", + " 0.0793\n", + " -0.7395\n", + " 0.0218\n", + " 0.3456\n", + " 0.6162\n", + " -0.6018\n", + " 1.5660\n", + " 0.7036\n", + " 0.8461\n", + " 0.6650\n", + " 0.3238\n", + " -0.1641\n", + " 0.3654\n", + " 0.6098\n", + " 0.6175\n", + " -0.5964\n", + " 0.6494\n", + " 0.3895\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.3.bn.bias', \n", + " 0.1157\n", + " 0.4014\n", + " 0.1449\n", + " 0.0870\n", + " 0.0422\n", + " -0.1932\n", + " 0.2791\n", + " -0.1141\n", + " 0.0616\n", + " -0.1564\n", + " 0.1885\n", + " -0.1000\n", + " 0.0900\n", + " 0.1455\n", + " -0.3226\n", + " 0.0664\n", + " 0.1438\n", + " 0.0250\n", + " -0.0582\n", + " 0.0415\n", + " 0.0589\n", + " 0.1084\n", + " 0.0381\n", + " -0.0546\n", + " 0.0147\n", + " -0.1381\n", + " -0.0526\n", + " -0.1121\n", + " 0.0751\n", + " 0.0238\n", + " 0.0121\n", + " -0.0361\n", + " 0.1103\n", + " 0.1307\n", + " -0.0235\n", + " -0.0487\n", + " 0.0064\n", + " 0.1435\n", + " -0.2283\n", + " -0.0059\n", + " 0.0107\n", + " -0.0105\n", + " 0.0806\n", + " 0.0485\n", + " 0.0593\n", + " 0.2291\n", + " -0.0547\n", + " -0.2096\n", + " -0.1142\n", + " 0.0520\n", + " 0.0096\n", + " -0.0157\n", + " 0.0705\n", + " -0.1203\n", + " 0.2084\n", + " 0.0232\n", + " 0.1335\n", + " 0.0985\n", + " -0.0865\n", + " 0.0218\n", + " -0.0995\n", + " 0.1750\n", + " 0.0665\n", + " 0.1305\n", + " 0.1409\n", + " -0.0519\n", + " -0.2571\n", + " -0.2469\n", + " 0.1067\n", + " -0.1175\n", + " -0.0143\n", + " 0.0273\n", + " 0.1013\n", + " -0.1832\n", + " -0.0928\n", + " 0.1175\n", + " 0.0343\n", + " 0.1175\n", + " 0.1041\n", + " 0.0484\n", + " 0.2421\n", + " 0.1170\n", + " -0.0565\n", + " 0.1435\n", + " 0.0914\n", + " 0.1470\n", + " -0.1090\n", + " 0.2005\n", + " 0.0871\n", + " 0.0101\n", + " 0.0458\n", + " -0.0110\n", + " 0.1671\n", + " 0.0892\n", + " 0.0073\n", + " 0.0335\n", + " 0.0925\n", + " 0.1804\n", + " -0.0319\n", + " -0.0401\n", + " 0.1655\n", + " 0.1278\n", + " 0.1544\n", + " 0.2714\n", + " -0.1484\n", + " 0.0515\n", + " -0.0145\n", + " 0.0018\n", + " 0.0577\n", + " 0.0064\n", + " -0.0056\n", + " -0.0825\n", + " -0.0013\n", + " 0.0528\n", + " -0.0137\n", + " -0.1068\n", + " 0.0190\n", + " 0.0481\n", + " 0.0621\n", + " 0.1866\n", + " 0.0732\n", + " -0.0291\n", + " -0.0383\n", + " 0.2391\n", + " 0.1083\n", + " -0.1501\n", + " -0.0074\n", + " -0.0611\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.3.bn.running_mean', \n", + " 0.2907\n", + " 0.9724\n", + " 0.0591\n", + " 7.0921\n", + " 0.3564\n", + " 1.5779\n", + " 13.5156\n", + " 1.0280\n", + " 0.5696\n", + " 2.6036\n", + " 0.2261\n", + " 2.1813\n", + " 0.6724\n", + " 0.6929\n", + " 0.7458\n", + " 0.3476\n", + " 1.9931\n", + " 0.1909\n", + " 7.2323\n", + " 0.5527\n", + " 0.3362\n", + " 2.3720\n", + " 1.5167\n", + " 3.6392\n", + " 1.3306\n", + " 2.6000\n", + " 0.5801\n", + " 1.3793\n", + " 1.9162\n", + " 0.3574\n", + " 0.1882\n", + " 1.2014\n", + " 1.2526\n", + " 0.7860\n", + " 0.5745\n", + " 0.3189\n", + " 0.7388\n", + " 0.7234\n", + " 0.0937\n", + " 9.9037\n", + " 1.0526\n", + " 0.1291\n", + " 1.8733\n", + " 0.9669\n", + " 1.0198\n", + " 0.0990\n", + " 10.1295\n", + " 1.1176\n", + " 1.2340\n", + " 1.5836\n", + " 2.7698\n", + " 1.7052\n", + " 1.6756\n", + " 0.2054\n", + " 1.8708\n", + " 0.8747\n", + " 0.3102\n", + " 4.3427\n", + " 0.2556\n", + " 1.4933\n", + " 1.1341\n", + " 10.7140\n", + " 1.2381\n", + " 0.5267\n", + " 0.3254\n", + " 0.1514\n", + " 2.8627\n", + " 0.3161\n", + " 0.6128\n", + " 3.2774\n", + " 1.0922\n", + " 1.4499\n", + " 0.1820\n", + " 0.3361\n", + " 4.7489\n", + " 0.9300\n", + " 0.3193\n", + " 0.1965\n", + " 0.1582\n", + " 4.3853\n", + " 0.7887\n", + " 0.7031\n", + " 2.5427\n", + " 0.1071\n", + " 0.4976\n", + " 0.3115\n", + " 0.3476\n", + " 0.3716\n", + " 0.8462\n", + " 0.5684\n", + " 0.4245\n", + " 0.4826\n", + " 0.9536\n", + " 0.1709\n", + " 5.0987\n", + " 2.5484\n", + " 0.1011\n", + " 0.0435\n", + " 1.7191\n", + " 0.7203\n", + " 0.7345\n", + " 1.1218\n", + " 0.2452\n", + " 5.0673\n", + " 0.8436\n", + " 0.0573\n", + " 8.1118\n", + " 3.5657\n", + " 1.1770\n", + " 3.5329\n", + " 1.3464\n", + " 1.5698\n", + " 5.1944\n", + " 3.2881\n", + " 0.3376\n", + " 4.2355\n", + " 1.4871\n", + " 2.0011\n", + " 0.0229\n", + " 1.0462\n", + " 2.2058\n", + " 3.6935\n", + " 0.6207\n", + " 2.2306\n", + " 0.3112\n", + " 2.4165\n", + " 0.1631\n", + " 2.1980\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.3.bn.running_var', \n", + " 1.8418\n", + " 12.1676\n", + " 0.4626\n", + " 43.6007\n", + " 4.3930\n", + " 15.3208\n", + " 87.6767\n", + " 7.0887\n", + " 5.4963\n", + " 25.9627\n", + " 2.0877\n", + " 20.8844\n", + " 5.1665\n", + " 5.3227\n", + " 6.8652\n", + " 2.6800\n", + " 16.6571\n", + " 4.4653\n", + " 43.1472\n", + " 3.8001\n", + " 2.2434\n", + " 23.9898\n", + " 15.3317\n", + " 31.4329\n", + " 9.5696\n", + " 18.6807\n", + " 6.8543\n", + " 12.6780\n", + " 21.7198\n", + " 2.8985\n", + " 1.4760\n", + " 5.6311\n", + " 10.7562\n", + " 7.2283\n", + " 5.4736\n", + " 3.2340\n", + " 7.0783\n", + " 6.1088\n", + " 0.5139\n", + " 48.0629\n", + " 13.1178\n", + " 0.7780\n", + " 15.6500\n", + " 8.2420\n", + " 9.1927\n", + " 0.6737\n", + " 64.0188\n", + " 7.9275\n", + " 12.5226\n", + " 18.7606\n", + " 29.9964\n", + " 13.7883\n", + " 15.7356\n", + " 1.4478\n", + " 15.4805\n", + " 7.1590\n", + " 2.7078\n", + " 36.3994\n", + " 1.7871\n", + " 9.7304\n", + " 10.0635\n", + " 72.9783\n", + " 9.4999\n", + " 5.3499\n", + " 2.3363\n", + " 0.9517\n", + " 26.1254\n", + " 2.6923\n", + " 4.6281\n", + " 26.8849\n", + " 10.3987\n", + " 13.1628\n", + " 1.4532\n", + " 2.4368\n", + " 52.3030\n", + " 13.3247\n", + " 2.5919\n", + " 1.7007\n", + " 1.1596\n", + " 42.2475\n", + " 6.4425\n", + " 5.6024\n", + " 19.3698\n", + " 0.5629\n", + " 3.6024\n", + " 2.4057\n", + " 2.8786\n", + " 2.9411\n", + " 7.8058\n", + " 4.0184\n", + " 4.0513\n", + " 4.5486\n", + " 10.3213\n", + " 1.0285\n", + " 26.9182\n", + " 23.5436\n", + " 0.7894\n", + " 0.2378\n", + " 17.0778\n", + " 5.9807\n", + " 6.3857\n", + " 8.9704\n", + " 1.8861\n", + " 65.6700\n", + " 7.0327\n", + " 0.2992\n", + " 74.7671\n", + " 15.9068\n", + " 12.2373\n", + " 14.9016\n", + " 6.7227\n", + " 13.5921\n", + " 39.4942\n", + " 22.5308\n", + " 2.6461\n", + " 29.9793\n", + " 11.1880\n", + " 17.1316\n", + " 0.0988\n", + " 9.8629\n", + " 14.2450\n", + " 27.3753\n", + " 5.3518\n", + " 21.6821\n", + " 2.3591\n", + " 19.7895\n", + " 1.0592\n", + " 17.0844\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.4.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 1.8676e-02 4.3095e-02 -1.5726e-02 -4.3661e-02 -9.8139e-03\n", + " -2.0828e-02 3.0502e-01 -2.4855e-01 -1.1689e-01 -1.2934e-02\n", + " -2.4981e-01 6.2893e-02 -1.9024e-01 -5.0738e-02 3.3915e-01\n", + " ⋮ \n", + " 1.6444e-01 -6.0511e-01 -5.3369e-01 -2.9930e-01 3.1245e-01\n", + " -2.8105e-01 2.4210e-01 -5.1733e-01 -5.1014e-01 -3.4072e-01\n", + " -2.4825e-01 -7.7791e-02 -2.0725e-02 -4.8233e-02 -9.1717e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " 6.9531e-02 -4.4087e-02 9.2566e-02 -4.6828e-02 3.0438e-02\n", + " 1.0145e-01 1.8946e-01 -2.9237e+00 -2.4120e+00 1.6530e-01\n", + " -4.3283e-02 -7.5086e-02 -6.1910e-01 -1.1024e+00 3.5328e-01\n", + " ⋮ \n", + " -1.2166e-01 1.3522e-01 2.8608e-04 2.4502e-01 -7.5205e-02\n", + " -4.6553e-02 1.3329e-02 -8.7335e-01 -3.2406e-02 2.4081e-01\n", + " 1.9314e-01 3.8841e-02 -6.1874e-01 4.3118e-02 -2.3558e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 1.9084e-02 -6.8872e-03 -4.7294e-02 -1.1103e-03 5.2093e-02\n", + " 3.9098e-01 -4.9400e-02 -5.5011e-02 -1.4766e-01 3.7494e-01\n", + " -3.2525e-01 1.6407e-01 1.2210e-01 2.1276e-01 3.4819e-02\n", + " ⋮ \n", + " -1.2377e-01 3.4028e-02 2.1447e-01 -4.6228e-01 8.3448e-02\n", + " -4.6388e-01 2.2220e-01 -3.5371e-01 2.5234e-01 3.4024e-01\n", + " 3.3419e-02 1.7029e-01 3.2783e-02 -5.3499e-02 9.5706e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -4.0932e-02 -2.5763e-02 7.7512e-03 3.6522e-02 3.7960e-02\n", + " -3.4469e-02 -1.0437e+00 -7.4566e-01 -1.6032e-02 1.0350e-01\n", + " -8.7426e-01 1.6048e-01 -8.3122e-02 -1.8413e-03 -9.7011e-01\n", + " ⋮ \n", + " -1.6335e-01 7.2348e-02 -1.1172e+00 -4.5718e-01 -1.0383e+00\n", + " 2.5089e-01 1.4073e-01 -5.9574e-01 -9.8118e-01 1.5447e-01\n", + " -1.8739e-01 -4.8575e-01 -1.2125e-01 -3.5486e-01 -4.8543e-01\n", + " \n", + " (126,.,.) = \n", + " 4.5631e-02 1.0822e-02 -2.5906e-02 8.9613e-03 -4.3499e-02\n", + " -6.0878e-01 -9.8588e-01 -5.2404e-01 -8.0881e-01 -3.5317e-01\n", + " -3.4792e-02 -1.0723e+00 -7.0286e-01 -5.1342e-01 8.7097e-03\n", + " ⋮ \n", + " 1.7486e-01 5.7678e-02 -5.5733e-01 -1.9898e-01 -3.2039e-01\n", + " 1.6729e-01 -2.5874e-01 -3.0634e-01 -4.0217e-01 7.8019e-02\n", + " -3.8354e-02 5.5831e-02 -1.5912e-01 -1.3364e-01 -1.0953e-01\n", + " \n", + " (127,.,.) = \n", + " -3.2366e-02 2.3642e-02 3.2589e-02 -1.1044e-02 8.8390e-03\n", + " -7.1364e-01 -3.9804e-01 2.8420e-02 -1.2269e+00 -4.1309e-01\n", + " -1.2522e-01 5.2512e-02 1.4330e-02 9.9259e-02 3.5246e-02\n", + " ⋮ \n", + " -1.6750e-02 -4.6182e-01 -8.4984e-01 -7.7151e-01 6.1423e-02\n", + " 8.0939e-02 -4.9918e-01 -3.9325e-02 -3.2784e-01 -4.4412e-01\n", + " 7.7830e-02 -6.5344e-02 1.7677e-02 -5.8119e-02 2.2737e-02\n", + " [torch.FloatTensor of size 128x128x5]),\n", + " ('module.encoder.cbhg.conv1d_banks.4.bn.weight', \n", + " 0.3426\n", + " 0.6003\n", + " 0.2337\n", + " 0.2767\n", + " -1.5664\n", + " 0.6790\n", + " 0.2967\n", + " 0.6112\n", + " 0.5981\n", + " 1.2043\n", + " 0.8861\n", + " 0.4381\n", + " 0.5049\n", + " 0.4052\n", + " 1.1499\n", + " 0.0001\n", + " 0.5920\n", + " -0.6619\n", + " 0.5119\n", + " 0.8957\n", + " 0.4586\n", + " 0.8248\n", + " 0.5741\n", + " 0.3737\n", + " -0.7913\n", + " 0.3334\n", + " 0.4213\n", + " 0.7619\n", + " 0.9248\n", + " 0.8743\n", + " 0.8350\n", + " 1.1013\n", + " 1.1371\n", + " 0.4845\n", + " 0.5254\n", + " 0.3206\n", + " 0.4344\n", + " 0.5647\n", + " 0.5539\n", + " 0.8183\n", + " 0.6006\n", + " 0.4469\n", + " 1.2965\n", + " -0.6258\n", + " 0.4940\n", + " 0.6888\n", + " 0.5895\n", + " 0.5103\n", + " 0.1940\n", + " -0.0739\n", + " 0.4408\n", + " -1.0388\n", + " 0.4637\n", + " 0.5204\n", + " 0.5693\n", + " 0.7005\n", + " 0.3624\n", + " 0.5829\n", + " 0.5393\n", + " 0.5945\n", + " 0.2330\n", + " 0.2835\n", + " 0.7863\n", + " 0.4587\n", + " 0.5319\n", + " -0.6582\n", + " -1.5175\n", + " 0.5959\n", + " 0.3762\n", + " 0.4533\n", + " 0.8087\n", + " 0.7461\n", + " 0.7765\n", + " 0.4178\n", + " 0.5040\n", + " 0.5407\n", + " 0.7416\n", + " -0.9143\n", + " -1.0565\n", + " 1.1500\n", + " -1.2856\n", + " 0.4806\n", + " 0.5750\n", + " 1.2181\n", + " 0.7721\n", + " 0.6361\n", + " 0.4319\n", + " 0.5130\n", + " 0.0221\n", + " -0.9896\n", + " -1.1924\n", + " 0.4069\n", + " 0.6089\n", + " 0.3713\n", + " -0.1563\n", + " 0.4905\n", + " 0.3348\n", + " 0.5328\n", + " 0.5235\n", + " 0.5093\n", + " 0.4743\n", + " 0.5250\n", + " 0.6474\n", + " 0.3690\n", + " 0.4880\n", + " 0.5428\n", + " 0.5635\n", + " 0.4048\n", + " 0.4607\n", + " -0.8978\n", + " 0.6659\n", + " 0.6544\n", + " -1.4788\n", + " -1.0401\n", + " 0.9904\n", + " 0.5127\n", + " 0.4872\n", + " 0.4587\n", + " 0.7145\n", + " 0.7750\n", + " 0.3730\n", + " -1.0018\n", + " 0.5827\n", + " 0.3664\n", + " 0.6188\n", + " 0.6160\n", + " -1.4819\n", + " 0.7840\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.4.bn.bias', \n", + " 0.1269\n", + " 0.1285\n", + " 0.0361\n", + " -0.0386\n", + " -0.1509\n", + " 0.0291\n", + " -0.0117\n", + " 0.0266\n", + " 0.1041\n", + " 0.1785\n", + " 0.2022\n", + " -0.1472\n", + " 0.0636\n", + " -0.0567\n", + " 0.0901\n", + " -0.0037\n", + " 0.0677\n", + " -0.0685\n", + " 0.0430\n", + " 0.0297\n", + " 0.0887\n", + " -0.1836\n", + " 0.1372\n", + " -0.1900\n", + " -0.0034\n", + " -0.1570\n", + " 0.0834\n", + " 0.1421\n", + " 0.1412\n", + " -0.0480\n", + " 0.0061\n", + " -0.0238\n", + " 0.0758\n", + " -0.0220\n", + " 0.0793\n", + " 0.0252\n", + " -0.0169\n", + " 0.1349\n", + " -0.0997\n", + " -0.0222\n", + " 0.0424\n", + " 0.2772\n", + " 0.2115\n", + " -0.1162\n", + " -0.0630\n", + " -0.1354\n", + " 0.0988\n", + " 0.0382\n", + " -0.0212\n", + " -0.0052\n", + " -0.0553\n", + " -0.2416\n", + " 0.0796\n", + " 0.1696\n", + " 0.0128\n", + " 0.2235\n", + " 0.0418\n", + " 0.0549\n", + " 0.0119\n", + " -0.2704\n", + " -0.0125\n", + " 0.0839\n", + " 0.0265\n", + " 0.0725\n", + " 0.1788\n", + " -0.0850\n", + " -0.0673\n", + " 0.2108\n", + " -0.0181\n", + " -0.0814\n", + " 0.0149\n", + " 0.0042\n", + " 0.1059\n", + " -0.0182\n", + " 0.0980\n", + " 0.1088\n", + " 0.1629\n", + " -0.1967\n", + " -0.1704\n", + " 0.0361\n", + " -0.2944\n", + " -0.0876\n", + " 0.0523\n", + " 0.0819\n", + " 0.1366\n", + " -0.2225\n", + " -0.1965\n", + " 0.0689\n", + " -0.0139\n", + " -0.2385\n", + " -0.2867\n", + " 0.0257\n", + " -0.1125\n", + " 0.0647\n", + " -0.0456\n", + " 0.0824\n", + " 0.1223\n", + " 0.0441\n", + " -0.0074\n", + " 0.1459\n", + " 0.0766\n", + " 0.2161\n", + " 0.0482\n", + " -0.0085\n", + " 0.1937\n", + " 0.1123\n", + " 0.1412\n", + " -0.0042\n", + " 0.0901\n", + " -0.1947\n", + " 0.0449\n", + " -0.0446\n", + " -0.0334\n", + " -0.2068\n", + " 0.1845\n", + " -0.0796\n", + " 0.0236\n", + " 0.0239\n", + " 0.0896\n", + " 0.0036\n", + " 0.0559\n", + " 0.0695\n", + " 0.0764\n", + " -0.0007\n", + " -0.1054\n", + " 0.0849\n", + " -0.1300\n", + " 0.0266\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.4.bn.running_mean', \n", + " 1.1662e+00\n", + " 5.7806e-01\n", + " 8.6421e+00\n", + " 1.5111e+00\n", + " 1.4286e-01\n", + " 4.7887e-01\n", + " 2.5149e+00\n", + " 4.1017e-01\n", + " 1.7029e+00\n", + " 6.8182e-01\n", + " 5.2371e-01\n", + " 4.1583e+00\n", + " 9.4160e-02\n", + " 1.1704e+00\n", + " 2.1705e-02\n", + " 1.2901e+01\n", + " 5.2419e+00\n", + " 4.7075e-01\n", + " 7.1928e-02\n", + " 8.2839e-02\n", + " 3.8725e-01\n", + " 1.5272e-01\n", + " 2.7374e+00\n", + " 1.2776e+00\n", + " 4.3609e-09\n", + " 2.0726e+00\n", + " 1.1753e+00\n", + " 5.5592e-01\n", + " 3.3004e-01\n", + " 1.3981e+00\n", + " 4.9237e-02\n", + " 2.0195e-01\n", + " 3.9373e-01\n", + " 9.7453e-01\n", + " 1.2037e+01\n", + " 1.4995e+00\n", + " 6.6274e-01\n", + " 3.8213e-01\n", + " 6.1267e-01\n", + " 4.6233e-02\n", + " 1.9922e-01\n", + " 4.2108e-01\n", + " 2.4134e+00\n", + " 3.7927e+00\n", + " 8.8383e-01\n", + " 2.1092e+00\n", + " 3.5873e-02\n", + " 1.0479e+00\n", + " 2.5503e+00\n", + " 4.3555e+00\n", + " 9.6033e-01\n", + " 1.9151e+00\n", + " 8.3043e-01\n", + " 9.1108e-01\n", + " 6.2211e-01\n", + " 6.0335e-02\n", + " 1.8175e+00\n", + " 2.3355e-01\n", + " 6.3597e-01\n", + " 3.3824e-01\n", + " 4.1144e+00\n", + " 1.0162e+01\n", + " 2.9306e-01\n", + " 1.6782e-01\n", + " 3.0191e+00\n", + " 1.3903e+00\n", + " 7.1522e-02\n", + " 2.3149e-01\n", + " 7.9709e-01\n", + " 4.1425e-01\n", + " 5.9430e-02\n", + " 6.7193e-02\n", + " 1.7077e-01\n", + " 8.2555e+00\n", + " 1.0324e+00\n", + " 2.9795e-01\n", + " 2.9554e+00\n", + " 3.0318e+00\n", + " 1.3888e+00\n", + " 4.4584e-02\n", + " 7.3407e-01\n", + " 3.9918e+00\n", + " 4.1640e-01\n", + " 4.0112e-01\n", + " 1.1698e-01\n", + " 1.3736e+00\n", + " 8.5450e-01\n", + " 3.1089e+00\n", + " 9.4334e+00\n", + " 2.0476e+00\n", + " 2.7410e+00\n", + " 2.9759e-01\n", + " 3.9749e-01\n", + " 3.2181e-01\n", + " 7.5011e+00\n", + " 4.1735e-01\n", + " 1.6323e+01\n", + " 3.7291e-01\n", + " 5.9362e-01\n", + " 7.4685e-01\n", + " 5.1302e-01\n", + " 4.3762e-01\n", + " 1.5844e+00\n", + " 4.9481e-01\n", + " 1.2357e+00\n", + " 6.6337e-01\n", + " 3.1602e-01\n", + " 7.9581e+00\n", + " 5.7080e+00\n", + " 1.7927e+00\n", + " 1.4669e+00\n", + " 1.4931e+00\n", + " 6.7405e-03\n", + " 1.7772e+00\n", + " 5.2709e-01\n", + " 3.7220e-01\n", + " 8.1531e-01\n", + " 1.0348e+00\n", + " 8.1878e-02\n", + " 3.5830e-01\n", + " 1.9062e+00\n", + " 1.2071e+00\n", + " 2.6719e-01\n", + " 8.8440e-01\n", + " 7.4879e-01\n", + " 4.4662e-01\n", + " 8.5571e-02\n", + " 8.4275e-02\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.4.bn.running_var', \n", + " 1.1161e+01\n", + " 5.8489e+00\n", + " 6.2559e+01\n", + " 1.3760e+01\n", + " 1.1316e+00\n", + " 4.6863e+00\n", + " 2.8584e+01\n", + " 4.4339e+00\n", + " 2.0113e+01\n", + " 7.2040e+00\n", + " 4.8571e+00\n", + " 3.6512e+01\n", + " 6.5280e-01\n", + " 1.0856e+01\n", + " 1.2327e-01\n", + " 9.9910e+01\n", + " 6.3146e+01\n", + " 3.9984e+00\n", + " 5.3184e-01\n", + " 5.8083e-01\n", + " 2.9553e+00\n", + " 1.1699e+00\n", + " 3.3601e+01\n", + " 1.3705e+01\n", + " 3.9209e-09\n", + " 1.9752e+01\n", + " 1.3838e+01\n", + " 4.7755e+00\n", + " 3.3254e+00\n", + " 1.4998e+01\n", + " 2.8412e-01\n", + " 1.9239e+00\n", + " 3.3981e+00\n", + " 9.1401e+00\n", + " 8.0982e+01\n", + " 1.4672e+01\n", + " 7.0427e+00\n", + " 3.5584e+00\n", + " 5.6003e+00\n", + " 3.3115e-01\n", + " 1.5336e+00\n", + " 4.0793e+00\n", + " 2.8563e+01\n", + " 3.5319e+01\n", + " 7.8510e+00\n", + " 2.2402e+01\n", + " 2.3532e-01\n", + " 1.1328e+01\n", + " 1.2928e+01\n", + " 2.3886e+01\n", + " 8.7510e+00\n", + " 1.8744e+01\n", + " 7.6653e+00\n", + " 9.4153e+00\n", + " 5.6654e+00\n", + " 4.7516e-01\n", + " 1.8806e+01\n", + " 2.1668e+00\n", + " 6.3653e+00\n", + " 2.6073e+00\n", + " 3.9408e+01\n", + " 6.9438e+01\n", + " 2.9417e+00\n", + " 1.2135e+00\n", + " 2.8289e+01\n", + " 1.4237e+01\n", + " 4.5265e-01\n", + " 2.0719e+00\n", + " 7.5292e+00\n", + " 3.9462e+00\n", + " 3.8858e-01\n", + " 4.1534e-01\n", + " 1.1462e+00\n", + " 6.7391e+01\n", + " 1.1868e+01\n", + " 2.6739e+00\n", + " 3.1718e+01\n", + " 3.5087e+01\n", + " 1.3465e+01\n", + " 3.2188e-01\n", + " 6.7510e+00\n", + " 4.8879e+01\n", + " 4.4594e+00\n", + " 3.8057e+00\n", + " 8.5733e-01\n", + " 1.1967e+01\n", + " 8.7259e+00\n", + " 3.7869e+01\n", + " 8.3978e+01\n", + " 2.3187e+01\n", + " 3.3431e+01\n", + " 2.8585e+00\n", + " 3.4761e+00\n", + " 3.1597e+00\n", + " 3.5961e+01\n", + " 3.7471e+00\n", + " 9.6401e+01\n", + " 3.2155e+00\n", + " 6.9874e+00\n", + " 7.7710e+00\n", + " 4.5784e+00\n", + " 4.4322e+00\n", + " 1.7687e+01\n", + " 4.4191e+00\n", + " 1.1004e+01\n", + " 6.7891e+00\n", + " 2.8761e+00\n", + " 4.6781e+01\n", + " 4.7436e+01\n", + " 1.9463e+01\n", + " 1.4606e+01\n", + " 1.7952e+01\n", + " 4.9074e-02\n", + " 2.2192e+01\n", + " 5.1112e+00\n", + " 2.9833e+00\n", + " 9.0143e+00\n", + " 1.0664e+01\n", + " 6.4345e-01\n", + " 2.8626e+00\n", + " 2.0771e+01\n", + " 1.2641e+01\n", + " 2.3985e+00\n", + " 7.9465e+00\n", + " 6.2094e+00\n", + " 4.9007e+00\n", + " 6.8326e-01\n", + " 5.1287e-01\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.5.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -1.6707e-02 1.5062e-02 -2.4290e-02 -2.0553e-02 7.6927e-02 2.5556e-02\n", + " -1.5825e-01 1.8375e-01 -1.3715e+00 -1.0272e-01 -1.0912e+00 5.3088e-03\n", + " -2.9068e-01 -4.3543e-01 -4.9879e-02 1.9555e-02 1.5983e-01 7.6618e-02\n", + " ⋮ \n", + " -3.8250e-03 -8.1282e-02 7.3171e-02 1.9127e-02 1.2154e-01 -1.3264e+00\n", + " -5.9122e-02 -4.1025e-01 -3.0630e-01 -8.2133e-02 -5.3492e-01 1.9383e-01\n", + " 1.1465e-01 -8.7856e-02 1.9600e-01 -2.7086e-01 -3.4039e-02 -6.0773e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " -5.3984e-04 9.0873e-04 9.3033e-03 -9.9289e-03 -2.5024e-02 6.0367e-02\n", + " -4.0239e-01 1.9475e-02 -5.3144e-01 -2.0597e+00 -9.3734e-02 1.1011e-01\n", + " 1.1027e-01 -8.8092e-02 -6.0984e-01 2.7714e-01 -2.5632e+00 -1.7113e-02\n", + " ⋮ \n", + " -7.9546e-01 -1.1268e+00 5.8257e-02 1.1209e-01 1.2857e-01 -1.9039e-01\n", + " 1.4975e-01 1.0255e-01 -5.6228e-01 -4.2333e-01 -4.6771e-01 5.2113e-02\n", + " 9.4120e-02 -2.0300e-01 -1.4289e-01 -3.4866e-01 -3.5331e-01 6.1327e-03\n", + " \n", + " ( 2 ,.,.) = \n", + " 8.2903e-02 -2.8668e-02 -4.9796e-03 8.3328e-02 7.2743e-03 -1.2039e-03\n", + " 1.2976e-01 3.7283e-02 5.2159e-02 2.3635e-01 7.3198e-02 -1.5133e+00\n", + " 1.3264e-01 -1.4702e-01 1.6758e-01 1.0320e-01 -8.4526e-02 6.9735e-02\n", + " ⋮ \n", + " -1.4193e-01 -1.2630e-02 1.8733e-01 1.9073e-01 -2.8929e-01 -3.8090e-02\n", + " -3.0786e-01 -6.9524e-01 -2.1240e-01 -8.6229e-01 -2.4218e-02 9.6994e-02\n", + " -1.9311e-01 9.7328e-03 -2.3853e-01 -6.1829e-02 2.2485e-02 2.0454e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -1.9382e-02 -5.8581e-02 2.0791e-02 -3.7576e-02 -2.6406e-02 -1.5199e-02\n", + " 2.0389e-02 -1.8575e-01 -1.1484e-01 1.1992e-01 -1.4563e-02 -6.6121e-02\n", + " 3.8035e-02 -1.8355e-02 -3.8509e-01 1.3890e-01 -3.7742e-01 3.6402e-02\n", + " ⋮ \n", + " 3.2539e-01 1.4324e-01 1.2824e-01 7.3527e-02 -1.1932e-01 -2.4204e-01\n", + " -1.6890e-01 7.2598e-02 -7.4014e-03 -8.6582e-02 -2.3952e-01 9.7968e-02\n", + " 5.8235e-02 -7.7000e-02 5.9546e-02 4.4890e-02 3.4878e-01 -2.8980e-01\n", + " \n", + " (126,.,.) = \n", + " 6.8186e-02 2.5241e-02 8.6074e-03 -5.2280e-02 -2.3363e-02 3.2551e-02\n", + " 1.8539e-01 -5.2975e-02 -4.4095e-01 -1.0673e+00 2.9257e-01 1.3955e-01\n", + " 4.7721e-03 1.0114e-01 -4.3054e-01 -1.8220e-01 -3.3834e-01 -3.7529e-01\n", + " ⋮ \n", + " -1.3286e-01 6.4792e-03 1.3652e-01 -1.6517e+00 -3.3156e-01 2.8734e-01\n", + " -9.4012e-01 3.8226e-01 1.5905e-01 -3.5121e-01 6.5831e-02 -1.9648e-01\n", + " 6.5724e-02 -1.5490e-01 6.5657e-02 -1.0527e-01 -1.5488e-01 -9.4005e-03\n", + " \n", + " (127,.,.) = \n", + " -2.3498e-02 6.9453e-03 4.4837e-02 2.5762e-02 4.6459e-02 2.5738e-02\n", + " 1.3858e-01 -5.1303e-01 -2.2565e-02 9.0544e-02 1.9153e-01 1.7328e-01\n", + " -8.9238e-02 -5.8354e-02 5.8674e-02 1.4331e-02 -1.2725e-01 -9.0258e-02\n", + " ⋮ \n", + " 5.6267e-02 7.4358e-02 -2.7942e-01 -1.4918e+00 -1.2619e+00 -7.9139e-03\n", + " -1.6702e-01 2.0627e-01 -7.0767e-02 6.5989e-03 6.8970e-02 1.4741e-01\n", + " 8.9828e-02 -1.9443e-01 -1.1682e-01 1.7129e-01 5.7646e-02 1.2306e-02\n", + " [torch.FloatTensor of size 128x128x6]),\n", + " ('module.encoder.cbhg.conv1d_banks.5.bn.weight', \n", + " 0.6030\n", + " 0.4659\n", + " 0.6145\n", + " 0.5868\n", + " 0.5053\n", + " 0.4299\n", + " 0.3208\n", + " 0.3690\n", + " 0.5187\n", + " 0.3643\n", + " 0.7580\n", + " 0.5170\n", + " -0.9788\n", + " 0.2888\n", + " 0.6778\n", + " 0.5030\n", + " 0.3522\n", + " 0.5321\n", + " 0.6273\n", + " -1.3146\n", + " 0.4277\n", + " 0.6141\n", + " 0.4835\n", + " 0.4332\n", + " 0.5083\n", + " -0.9616\n", + " -0.8252\n", + " 0.4086\n", + " -0.6273\n", + " 0.5303\n", + " 0.5253\n", + " 0.4767\n", + " 0.4248\n", + " 0.6602\n", + " 0.6277\n", + " 0.6253\n", + " 0.4188\n", + " 0.6715\n", + " 0.6525\n", + " 0.4297\n", + " 0.4657\n", + " 0.3448\n", + " 0.6934\n", + " -0.0343\n", + " 0.6080\n", + " 0.4010\n", + " 0.4177\n", + " 0.4304\n", + " 0.5196\n", + " -0.9563\n", + " 0.5729\n", + " 0.4634\n", + " 0.5252\n", + " 0.4574\n", + " 0.4260\n", + " 0.5545\n", + " 0.7378\n", + " 0.5902\n", + " -0.9966\n", + " 0.6326\n", + " 0.5971\n", + " -0.9012\n", + " -0.6216\n", + " 0.2051\n", + " 0.5022\n", + " 0.4865\n", + " -0.9215\n", + " 0.4763\n", + " 0.3403\n", + " 0.3322\n", + " -0.7515\n", + " 1.1560\n", + " 0.4566\n", + " 0.5261\n", + " 0.3933\n", + " 0.4992\n", + " 0.3358\n", + " 0.4127\n", + " 0.4077\n", + " 0.4432\n", + " 1.0589\n", + " 0.6539\n", + " 0.2347\n", + " -0.8491\n", + " 0.6595\n", + " 0.5311\n", + " 0.4118\n", + " 0.4477\n", + " 0.1726\n", + " 0.5200\n", + " 0.4053\n", + " 0.4654\n", + " 0.9625\n", + " 0.5017\n", + " 0.5881\n", + " 0.5774\n", + " 0.4825\n", + " 0.3396\n", + " -0.7531\n", + " 0.3112\n", + " 0.5963\n", + " 1.0316\n", + " 0.3974\n", + " 0.5853\n", + " 0.7602\n", + " 0.4758\n", + " 0.3991\n", + " 0.4226\n", + " 0.5176\n", + " 0.7534\n", + " 0.6088\n", + " 0.5584\n", + " -0.8560\n", + " 0.7328\n", + " 0.4891\n", + " -0.8217\n", + " 0.4753\n", + " 0.6604\n", + " 0.6666\n", + " 0.4886\n", + " 0.5125\n", + " 0.4264\n", + " 0.5448\n", + " -1.0820\n", + " 0.3960\n", + " 0.2083\n", + " 0.5247\n", + " 0.9695\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.5.bn.bias', \n", + " 0.0947\n", + " 0.0718\n", + " 0.0124\n", + " 0.2336\n", + " 0.0085\n", + " 0.1004\n", + " -0.0893\n", + " -0.0778\n", + " -0.0524\n", + " 0.0065\n", + " 0.1136\n", + " -0.0418\n", + " -0.1065\n", + " -0.0254\n", + " 0.1232\n", + " 0.0879\n", + " 0.0633\n", + " -0.0840\n", + " 0.1193\n", + " -0.2054\n", + " 0.1677\n", + " 0.2151\n", + " 0.0697\n", + " 0.0597\n", + " 0.0166\n", + " -0.1709\n", + " -0.1288\n", + " 0.0489\n", + " -0.1630\n", + " -0.0754\n", + " 0.0570\n", + " 0.0086\n", + " 0.1426\n", + " 0.0505\n", + " 0.0564\n", + " 0.2278\n", + " 0.0128\n", + " -0.0277\n", + " 0.0535\n", + " 0.0196\n", + " 0.0594\n", + " 0.0252\n", + " -0.0084\n", + " 0.0057\n", + " 0.0969\n", + " 0.0142\n", + " -0.1417\n", + " 0.1198\n", + " -0.1133\n", + " -0.2663\n", + " 0.2193\n", + " 0.0708\n", + " 0.0075\n", + " 0.0174\n", + " 0.0811\n", + " -0.0021\n", + " 0.0313\n", + " 0.1300\n", + " -0.1708\n", + " 0.0537\n", + " 0.1554\n", + " -0.1699\n", + " -0.1159\n", + " -0.0202\n", + " -0.0004\n", + " 0.0829\n", + " -0.2699\n", + " -0.0136\n", + " 0.0054\n", + " -0.0462\n", + " -0.1225\n", + " 0.0095\n", + " 0.0144\n", + " 0.1135\n", + " -0.0139\n", + " 0.0421\n", + " -0.0032\n", + " 0.0377\n", + " 0.0843\n", + " 0.0332\n", + " 0.1215\n", + " 0.3692\n", + " -0.0251\n", + " -0.1014\n", + " -0.1097\n", + " 0.0472\n", + " 0.1536\n", + " 0.0918\n", + " -0.0179\n", + " 0.1474\n", + " -0.0726\n", + " 0.0957\n", + " 0.1166\n", + " 0.0688\n", + " 0.2160\n", + " 0.0116\n", + " -0.0253\n", + " 0.1411\n", + " -0.0984\n", + " -0.0216\n", + " 0.1054\n", + " -0.0392\n", + " -0.1219\n", + " 0.1568\n", + " -0.0006\n", + " -0.0553\n", + " -0.0160\n", + " 0.0574\n", + " -0.0736\n", + " 0.0534\n", + " -0.0771\n", + " 0.0323\n", + " -0.1174\n", + " -0.0647\n", + " 0.0409\n", + " -0.0897\n", + " 0.1087\n", + " 0.0810\n", + " -0.0016\n", + " -0.0134\n", + " 0.0187\n", + " 0.0645\n", + " -0.0278\n", + " -0.1699\n", + " 0.0223\n", + " 0.0254\n", + " -0.1488\n", + " 0.0309\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.5.bn.running_mean', \n", + " 0.1942\n", + " 0.2407\n", + " 2.3295\n", + " 13.7009\n", + " 0.5646\n", + " 1.5938\n", + " 1.6236\n", + " 0.1412\n", + " 3.5567\n", + " 0.3877\n", + " 0.1246\n", + " 1.3773\n", + " 2.0049\n", + " 5.1180\n", + " 0.4043\n", + " 0.2196\n", + " 2.6233\n", + " 0.2074\n", + " 0.4685\n", + " 0.4912\n", + " 1.4852\n", + " 0.0517\n", + " 2.0695\n", + " 0.3175\n", + " 0.1819\n", + " 2.0328\n", + " 2.0154\n", + " 0.4518\n", + " 7.0997\n", + " 0.6767\n", + " 0.0989\n", + " 0.8559\n", + " 0.5069\n", + " 0.0173\n", + " 0.0892\n", + " 0.3716\n", + " 2.1047\n", + " 0.4246\n", + " 0.1018\n", + " 4.0117\n", + " 0.4722\n", + " 1.4483\n", + " 0.3713\n", + " 9.8769\n", + " 1.0078\n", + " 2.7833\n", + " 0.2142\n", + " 2.5666\n", + " 2.5710\n", + " 3.1552\n", + " 1.3968\n", + " 0.2538\n", + " 0.8166\n", + " 1.4437\n", + " 0.2308\n", + " 6.6636\n", + " 0.3067\n", + " 0.1399\n", + " 0.7262\n", + " 0.1478\n", + " 0.1166\n", + " 3.7425\n", + " 6.9665\n", + " 1.8447\n", + " 1.2830\n", + " 0.4066\n", + " 3.4474\n", + " 0.5367\n", + " 0.3763\n", + " 0.4006\n", + " 2.5741\n", + " 0.1998\n", + " 0.4160\n", + " 0.3257\n", + " 1.5232\n", + " 1.1630\n", + " 2.7245\n", + " 0.2250\n", + " 0.8890\n", + " 2.0377\n", + " 0.0878\n", + " 2.4357\n", + " 0.8960\n", + " 2.0837\n", + " 0.5346\n", + " 0.0699\n", + " 0.7732\n", + " 0.5608\n", + " 1.8463\n", + " 0.0790\n", + " 1.3423\n", + " 0.4863\n", + " 0.1751\n", + " 2.8209\n", + " 2.3684\n", + " 0.3946\n", + " 0.8917\n", + " 14.5403\n", + " 1.9912\n", + " 6.0808\n", + " 0.5597\n", + " 0.0064\n", + " 1.8138\n", + " 0.5429\n", + " 0.1226\n", + " 0.2695\n", + " 0.4319\n", + " 0.6293\n", + " 0.2789\n", + " 0.0554\n", + " 0.9388\n", + " 0.0294\n", + " 2.7917\n", + " 0.2053\n", + " 0.1704\n", + " 4.8849\n", + " 0.4043\n", + " 0.2905\n", + " 0.2785\n", + " 0.2442\n", + " 3.3915\n", + " 6.8654\n", + " 0.8866\n", + " 0.8732\n", + " 2.7530\n", + " 2.3496\n", + " 2.6061\n", + " 0.6980\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.5.bn.running_var', \n", + " 2.0262\n", + " 1.9987\n", + " 25.1144\n", + " 218.8765\n", + " 6.4417\n", + " 17.2455\n", + " 17.5415\n", + " 1.4495\n", + " 46.8464\n", + " 4.0630\n", + " 1.1017\n", + " 16.3569\n", + " 23.2124\n", + " 31.4073\n", + " 3.9895\n", + " 2.2963\n", + " 22.1562\n", + " 2.0646\n", + " 5.9942\n", + " 4.7428\n", + " 17.5209\n", + " 0.3373\n", + " 26.3400\n", + " 3.9097\n", + " 1.7637\n", + " 25.6737\n", + " 22.4007\n", + " 4.7676\n", + " 54.8449\n", + " 8.0765\n", + " 0.8915\n", + " 8.6571\n", + " 4.9478\n", + " 0.1151\n", + " 0.8361\n", + " 3.9047\n", + " 19.3890\n", + " 5.0134\n", + " 0.8813\n", + " 32.9457\n", + " 4.8735\n", + " 15.3827\n", + " 3.2114\n", + " 72.7250\n", + " 10.3798\n", + " 27.6761\n", + " 2.1794\n", + " 24.0510\n", + " 35.4656\n", + " 40.1592\n", + " 17.1983\n", + " 2.5397\n", + " 8.5297\n", + " 13.3604\n", + " 2.1418\n", + " 61.0993\n", + " 2.9829\n", + " 1.3570\n", + " 7.2358\n", + " 1.4686\n", + " 1.0055\n", + " 53.2624\n", + " 58.9634\n", + " 11.5873\n", + " 13.8819\n", + " 4.3137\n", + " 48.9352\n", + " 5.7693\n", + " 3.6650\n", + " 4.0847\n", + " 30.2679\n", + " 1.4583\n", + " 3.7447\n", + " 3.1868\n", + " 17.5012\n", + " 11.1999\n", + " 36.6523\n", + " 2.1900\n", + " 12.0475\n", + " 17.7696\n", + " 0.7518\n", + " 28.8415\n", + " 7.9658\n", + " 24.2708\n", + " 5.0903\n", + " 0.5693\n", + " 8.9742\n", + " 5.9398\n", + " 12.8828\n", + " 0.5220\n", + " 17.0810\n", + " 5.1503\n", + " 1.5296\n", + " 26.6620\n", + " 25.7122\n", + " 4.1311\n", + " 11.0452\n", + " 105.3546\n", + " 16.2668\n", + " 40.0044\n", + " 5.6596\n", + " 0.0321\n", + " 25.1323\n", + " 5.5465\n", + " 1.2754\n", + " 5.0395\n", + " 4.8464\n", + " 7.7836\n", + " 2.8487\n", + " 0.3995\n", + " 12.0627\n", + " 0.2450\n", + " 34.3101\n", + " 2.2691\n", + " 1.5937\n", + " 65.4531\n", + " 3.9816\n", + " 3.0409\n", + " 2.7536\n", + " 2.6018\n", + " 47.5258\n", + " 63.4379\n", + " 11.8568\n", + " 9.6248\n", + " 23.6316\n", + " 16.6635\n", + " 31.3495\n", + " 8.4266\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.6.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -4.5353e-03 4.5222e-03 -3.9971e-02 ... -3.5038e-02 4.8943e-02 -5.0395e-03\n", + " 8.4028e-02 2.2407e-02 -6.3263e-01 ... -2.4554e-01 -4.2537e-03 -8.9171e-01\n", + " -4.7564e-02 6.2109e-02 -9.9553e-01 ... 1.4646e-01 -9.9596e-01 1.6758e-01\n", + " ... ⋱ ... \n", + " 2.2037e-01 1.9275e-01 1.5566e-01 ... -4.8230e-01 -9.3068e-01 -1.2051e-01\n", + " -2.5592e-02 -6.7962e-01 -2.8601e-01 ... 1.0041e-01 -3.2003e-01 -2.3566e-02\n", + " 9.6592e-02 -1.9106e-01 8.4323e-02 ... -7.2522e-01 -4.6632e-02 1.1757e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " 3.8156e-02 3.8708e-02 9.7287e-03 ... 4.9475e-02 4.8088e-02 3.4232e-02\n", + " -1.2674e-01 1.4788e-01 -2.9398e-01 ... 1.5944e-01 -1.7241e-02 7.4101e-02\n", + " 3.7165e-01 -1.2560e-01 1.2577e-01 ... -1.2738e-01 5.0040e-01 -6.6209e-01\n", + " ... ⋱ ... \n", + " 1.1140e-01 2.7386e-01 -4.2877e-01 ... 2.7582e-01 9.3554e-02 -5.7552e-01\n", + " -5.0430e-01 1.2536e-01 -3.1027e-01 ... -4.4512e-01 -4.1321e-01 7.5062e-02\n", + " -2.2296e-01 9.1203e-02 -1.4282e-01 ... -1.0473e-01 2.4301e-01 -1.2898e-03\n", + " \n", + " ( 2 ,.,.) = \n", + " -3.0079e-02 1.5203e-02 -2.8322e-02 ... -4.0184e-03 -1.2454e-02 8.4558e-04\n", + " 6.6261e-02 -7.0814e-02 -6.4725e-02 ... 7.4598e-02 -5.3767e-01 -4.6577e-02\n", + " -1.0299e-01 -6.4324e-02 -9.7807e-02 ... -6.6077e-01 -6.5349e-02 -4.2513e-02\n", + " ... ⋱ ... \n", + " -2.4065e-01 2.6608e-01 1.7404e-01 ... -6.9059e-02 -4.1446e-01 9.7021e-02\n", + " -9.1595e-02 -2.3584e-01 1.2416e-01 ... -9.2408e-01 4.9623e-02 -5.6548e-01\n", + " -7.9593e-02 -9.2951e-02 -1.1617e-01 ... -4.8386e-02 -9.6230e-02 -1.4643e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " 1.0336e-02 -2.2211e-03 3.0974e-02 ... 5.5323e-02 7.0989e-03 1.1988e-02\n", + " -3.3972e-02 -2.6190e-01 3.3510e-02 ... -2.2103e+00 -1.2093e+00 -8.1943e-02\n", + " 1.9794e-02 -1.1747e-01 2.1005e-01 ... -3.2863e-02 6.6548e-02 1.8791e-01\n", + " ... ⋱ ... \n", + " 1.8541e-01 2.1995e-01 -9.6276e-01 ... -1.6338e-01 -8.7571e-01 -1.0884e+00\n", + " 2.3457e-01 2.4633e-01 1.5244e-01 ... -2.2887e-01 -2.0436e-01 9.2099e-02\n", + " 7.3668e-02 -1.5229e-01 -2.5827e-01 ... -1.0859e-01 -4.0845e-01 -2.8507e-02\n", + " \n", + " (126,.,.) = \n", + " -1.6866e-02 2.1091e-02 -1.3386e-02 ... -4.4216e-03 6.1371e-02 -1.1978e-02\n", + " 5.1298e-02 -1.8507e-01 1.7350e-01 ... -6.8860e-01 1.3121e-01 1.1693e-01\n", + " -2.1713e-02 9.1121e-02 -8.1626e-01 ... -8.0668e-02 7.9635e-02 -1.6500e-01\n", + " ... ⋱ ... \n", + " 5.4700e-02 -1.4175e-01 7.1425e-02 ... -9.5701e-01 3.1120e-01 -2.1914e-02\n", + " -3.2772e-01 4.5213e-02 -4.7685e-01 ... -3.1668e-01 -3.9196e-01 2.9794e-02\n", + " 2.3587e-01 6.2199e-02 9.8133e-02 ... -2.6222e-01 -2.2871e-02 8.5439e-02\n", + " \n", + " (127,.,.) = \n", + " 3.3882e-02 -5.7220e-03 -2.2094e-02 ... 9.1597e-03 4.2177e-03 6.7870e-02\n", + " -1.4162e+00 -7.0018e-02 -7.7413e-01 ... -9.2951e-01 -1.7080e+00 -1.0842e-01\n", + " -2.1010e-03 1.1678e-01 -3.1630e-01 ... -3.0953e-01 2.2892e-01 -1.1174e+00\n", + " ... ⋱ ... \n", + " -6.8819e-02 -2.1103e-03 2.1246e-02 ... 1.1823e-01 -8.3776e-01 -1.3537e+00\n", + " -1.6399e-01 2.0398e-01 -8.5368e-01 ... -5.6074e-01 -5.9672e-01 1.0280e-01\n", + " 1.9300e-01 1.8914e-02 -8.1840e-02 ... 1.1959e-01 -3.3886e-01 -3.0645e-01\n", + " [torch.FloatTensor of size 128x128x7]),\n", + " ('module.encoder.cbhg.conv1d_banks.6.bn.weight', \n", + " 0.7607\n", + " 0.5658\n", + " 0.4069\n", + " 0.5596\n", + " 0.4923\n", + " 0.3722\n", + " 0.5383\n", + " 0.5383\n", + " 0.5162\n", + " 0.4805\n", + " 0.3922\n", + " 0.6085\n", + " 0.3954\n", + " 0.3648\n", + " 0.3961\n", + " 0.7022\n", + " 0.4645\n", + " 0.4231\n", + " 0.6034\n", + " 0.4023\n", + " 0.4413\n", + " 0.3966\n", + " 0.7327\n", + " -1.1406\n", + " 0.4644\n", + " 0.4746\n", + " 0.4408\n", + " -0.9712\n", + " 0.4288\n", + " 0.6129\n", + " 0.5061\n", + " 0.5056\n", + " 0.4656\n", + " -0.9311\n", + " 0.4196\n", + " 0.4411\n", + " 0.4886\n", + " 0.6136\n", + " -0.6578\n", + " 0.4390\n", + " -1.1062\n", + " 0.4580\n", + " 0.4731\n", + " 0.4692\n", + " 0.5310\n", + " -0.8401\n", + " 0.5045\n", + " 0.4854\n", + " 0.6072\n", + " 0.4684\n", + " 0.5032\n", + " 0.5790\n", + " -0.8204\n", + " 0.4661\n", + " 0.4229\n", + " 0.5374\n", + " 0.3683\n", + " 0.4203\n", + " 0.3933\n", + " 0.4200\n", + " 1.0160\n", + " 0.5978\n", + " 0.4463\n", + " 0.5107\n", + " 0.5004\n", + " 0.5872\n", + " 0.6598\n", + " -1.0738\n", + " 0.5930\n", + " 0.5918\n", + " 0.6508\n", + " 0.5747\n", + " 0.5351\n", + " 0.4417\n", + " 0.5006\n", + " 0.4125\n", + " 0.8759\n", + " 0.4766\n", + " 0.6038\n", + " 0.5418\n", + " -1.2765\n", + " 0.6014\n", + " 0.5849\n", + " 0.4119\n", + " 0.4250\n", + " 0.5348\n", + " 0.5735\n", + " 0.4446\n", + " 0.8250\n", + " 0.3214\n", + " 0.5479\n", + " 0.2924\n", + " 0.3977\n", + " 0.4694\n", + " 0.5606\n", + " 0.5359\n", + " 0.5207\n", + " 0.5898\n", + " 0.5368\n", + " -0.6191\n", + " 0.5788\n", + " 0.7520\n", + " 0.4601\n", + " 0.5408\n", + " 0.4477\n", + " 0.7225\n", + " 0.4985\n", + " -0.5981\n", + " 0.3489\n", + " 0.4543\n", + " 0.4469\n", + " 0.5317\n", + " 0.4642\n", + " 0.5542\n", + " 0.3984\n", + " 0.7196\n", + " 0.7181\n", + " 0.5273\n", + " 0.4640\n", + " 0.0085\n", + " 0.5395\n", + " 0.5949\n", + " 0.6260\n", + " 0.8270\n", + " 0.4650\n", + " 0.5774\n", + " 0.5891\n", + " 0.6750\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.6.bn.bias', \n", + " 0.0465\n", + " 0.2987\n", + " 0.0744\n", + " 0.1089\n", + " 0.0278\n", + " -0.0894\n", + " 0.1110\n", + " -0.0822\n", + " 0.1167\n", + " 0.0487\n", + " 0.0298\n", + " 0.1312\n", + " -0.1109\n", + " 0.1366\n", + " 0.0715\n", + " 0.1303\n", + " 0.0864\n", + " 0.0792\n", + " -0.0341\n", + " -0.0299\n", + " 0.0299\n", + " 0.0357\n", + " 0.1634\n", + " -0.1350\n", + " 0.0503\n", + " -0.0015\n", + " -0.0014\n", + " -0.1345\n", + " 0.0592\n", + " 0.1044\n", + " 0.1948\n", + " -0.0091\n", + " 0.0063\n", + " -0.0762\n", + " 0.0760\n", + " 0.0956\n", + " 0.0144\n", + " 0.0784\n", + " -0.1574\n", + " -0.1276\n", + " -0.1545\n", + " -0.0514\n", + " 0.0524\n", + " 0.0895\n", + " -0.0015\n", + " -0.2377\n", + " 0.0847\n", + " -0.0527\n", + " 0.1217\n", + " 0.0508\n", + " -0.0818\n", + " 0.1196\n", + " -0.1154\n", + " 0.0045\n", + " -0.1345\n", + " 0.0840\n", + " 0.0765\n", + " 0.1920\n", + " 0.1128\n", + " 0.0415\n", + " 0.0997\n", + " -0.1596\n", + " -0.0704\n", + " 0.0274\n", + " 0.0970\n", + " -0.0021\n", + " 0.0329\n", + " -0.1977\n", + " -0.0295\n", + " 0.1885\n", + " 0.0173\n", + " 0.0856\n", + " 0.1171\n", + " -0.0773\n", + " -0.0033\n", + " 0.0388\n", + " 0.1215\n", + " -0.1076\n", + " -0.0509\n", + " 0.0968\n", + " -0.3588\n", + " 0.1007\n", + " -0.0009\n", + " -0.0015\n", + " 0.0628\n", + " 0.1344\n", + " 0.1188\n", + " -0.1710\n", + " 0.1497\n", + " -0.0175\n", + " 0.1135\n", + " 0.1049\n", + " 0.0318\n", + " -0.0166\n", + " 0.0242\n", + " 0.0569\n", + " 0.1420\n", + " -0.1035\n", + " 0.0536\n", + " -0.1027\n", + " -0.1302\n", + " 0.0295\n", + " 0.0140\n", + " 0.1080\n", + " 0.0770\n", + " 0.1285\n", + " -0.0579\n", + " -0.0593\n", + " 0.0450\n", + " -0.2370\n", + " 0.0294\n", + " 0.2751\n", + " -0.0870\n", + " 0.0337\n", + " 0.0056\n", + " 0.0325\n", + " -0.0473\n", + " 0.0454\n", + " -0.0045\n", + " -0.0056\n", + " 0.1151\n", + " 0.0345\n", + " 0.0490\n", + " 0.2114\n", + " -0.0237\n", + " 0.0176\n", + " 0.0554\n", + " 0.0154\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.6.bn.running_mean', \n", + " 0.1225\n", + " 5.6629\n", + " 0.3841\n", + " 0.4293\n", + " 0.3980\n", + " 0.9333\n", + " 0.3633\n", + " 0.5193\n", + " 0.8983\n", + " 0.3812\n", + " 1.3739\n", + " 0.1601\n", + " 0.3842\n", + " 3.3985\n", + " 0.5929\n", + " 0.0909\n", + " 0.8515\n", + " 0.3350\n", + " 0.0835\n", + " 0.5757\n", + " 1.8449\n", + " 1.4684\n", + " 0.2797\n", + " 0.8511\n", + " 5.5845\n", + " 0.9328\n", + " 0.2805\n", + " 0.1486\n", + " 0.2183\n", + " 0.4159\n", + " 0.2561\n", + " 1.0573\n", + " 0.6213\n", + " 2.2505\n", + " 1.3800\n", + " 2.7031\n", + " 11.2693\n", + " 1.5261\n", + " 5.5516\n", + " 1.0681\n", + " 2.6043\n", + " 0.8857\n", + " 0.4740\n", + " 0.1695\n", + " 7.5865\n", + " 3.3979\n", + " 0.3413\n", + " 1.0511\n", + " 0.4375\n", + " 1.3408\n", + " 0.9484\n", + " 1.4140\n", + " 1.3673\n", + " 1.3293\n", + " 0.9539\n", + " 0.2955\n", + " 1.1923\n", + " 0.7360\n", + " 0.4612\n", + " 0.2043\n", + " 0.0889\n", + " 0.5241\n", + " 1.0609\n", + " 0.3513\n", + " 0.7633\n", + " 0.6991\n", + " 0.3560\n", + " 1.9585\n", + " 0.5934\n", + " 0.5133\n", + " 2.8330\n", + " 0.4533\n", + " 0.0918\n", + " 0.5697\n", + " 0.3809\n", + " 3.3425\n", + " 0.1446\n", + " 0.1284\n", + " 0.1832\n", + " 1.7694\n", + " 1.3482\n", + " 5.0727\n", + " 0.4330\n", + " 0.9860\n", + " 0.6478\n", + " 11.7975\n", + " 1.7110\n", + " 0.7188\n", + " 0.0323\n", + " 5.5869\n", + " 0.2135\n", + " 0.7491\n", + " 0.2602\n", + " 0.3105\n", + " 1.0022\n", + " 1.0937\n", + " 0.0551\n", + " 0.4785\n", + " 0.1808\n", + " 7.3116\n", + " 1.1992\n", + " 0.0383\n", + " 0.5896\n", + " 0.3206\n", + " 6.3004\n", + " 0.6682\n", + " 0.2665\n", + " 0.4015\n", + " 0.9495\n", + " 1.3414\n", + " 1.7563\n", + " 2.1910\n", + " 0.1055\n", + " 0.1848\n", + " 0.6613\n", + " 0.0694\n", + " 1.1714\n", + " 1.0957\n", + " 0.2106\n", + " 14.4284\n", + " 1.2125\n", + " 0.2225\n", + " 0.1841\n", + " 0.0471\n", + " 0.5587\n", + " 0.3019\n", + " 3.0310\n", + " 0.1366\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.6.bn.running_var', \n", + " 1.2599\n", + " 73.2295\n", + " 3.8698\n", + " 5.0350\n", + " 4.1386\n", + " 11.7909\n", + " 4.4939\n", + " 6.1335\n", + " 11.6138\n", + " 4.7495\n", + " 17.9012\n", + " 1.8395\n", + " 3.5470\n", + " 35.2414\n", + " 7.7309\n", + " 0.8977\n", + " 10.8892\n", + " 3.6262\n", + " 0.9323\n", + " 6.7581\n", + " 20.3248\n", + " 18.4403\n", + " 2.6988\n", + " 11.7070\n", + " 46.7139\n", + " 12.6321\n", + " 3.6993\n", + " 1.2615\n", + " 2.0364\n", + " 5.4538\n", + " 2.9888\n", + " 11.9071\n", + " 7.0494\n", + " 28.3594\n", + " 15.1422\n", + " 27.9737\n", + " 82.0041\n", + " 20.0873\n", + " 57.2968\n", + " 12.5148\n", + " 35.7018\n", + " 10.4392\n", + " 6.3748\n", + " 2.0117\n", + " 100.2919\n", + " 41.9469\n", + " 3.8628\n", + " 11.7238\n", + " 4.9764\n", + " 17.7406\n", + " 12.6431\n", + " 14.7179\n", + " 12.8097\n", + " 14.9661\n", + " 10.4469\n", + " 3.3374\n", + " 12.9786\n", + " 9.2808\n", + " 5.3461\n", + " 1.6822\n", + " 0.9324\n", + " 7.0337\n", + " 11.8969\n", + " 3.9069\n", + " 9.7212\n", + " 7.7170\n", + " 4.3436\n", + " 22.5543\n", + " 6.9971\n", + " 5.5269\n", + " 46.4625\n", + " 7.0761\n", + " 0.9344\n", + " 6.4191\n", + " 4.1967\n", + " 31.3372\n", + " 1.3874\n", + " 1.0796\n", + " 1.6380\n", + " 24.6118\n", + " 19.2409\n", + " 54.6652\n", + " 5.4432\n", + " 10.5934\n", + " 8.4867\n", + " 127.3044\n", + " 25.4032\n", + " 8.7970\n", + " 0.4156\n", + " 36.1659\n", + " 2.5299\n", + " 8.9533\n", + " 3.0954\n", + " 3.1635\n", + " 11.6492\n", + " 9.1341\n", + " 0.7056\n", + " 5.0821\n", + " 1.6385\n", + " 72.9483\n", + " 14.3235\n", + " 0.3451\n", + " 7.7560\n", + " 3.5609\n", + " 73.2377\n", + " 8.5205\n", + " 3.3550\n", + " 4.4147\n", + " 12.5989\n", + " 14.3726\n", + " 20.5676\n", + " 25.9159\n", + " 1.0745\n", + " 2.0458\n", + " 7.9261\n", + " 0.6185\n", + " 16.3564\n", + " 11.1497\n", + " 2.3524\n", + " 212.2715\n", + " 13.2993\n", + " 2.2799\n", + " 2.1828\n", + " 0.4154\n", + " 6.3970\n", + " 3.1219\n", + " 35.8959\n", + " 1.4659\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.7.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 5.8847e-03 2.1921e-03 -1.8377e-02 ... -1.3964e-02 2.6978e-02 5.5054e-02\n", + " 7.2680e-02 -3.6535e-01 -5.2221e-03 ... -2.3408e-01 1.2410e-01 3.1972e-03\n", + " 1.3844e-02 -1.1377e-01 1.9315e-02 ... 3.8549e-02 -1.6374e+00 4.1895e-01\n", + " ... ⋱ ... \n", + " -4.8199e-01 3.3490e-01 -3.2895e-01 ... 8.4339e-02 6.1372e-02 -1.5737e+00\n", + " -1.0041e+00 -1.5568e-01 5.7800e-02 ... -5.0289e-01 9.4830e-02 1.0988e-02\n", + " -1.4340e-01 -3.7784e-01 1.9994e-01 ... -1.7842e-01 -5.8743e-02 -7.0364e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " -3.3945e-02 -8.2994e-04 1.3010e-02 ... 1.9219e-02 -2.1708e-02 3.9321e-02\n", + " 3.4651e-02 -1.7901e-01 -5.5429e-01 ... -7.5145e-01 -4.6915e-01 6.6311e-02\n", + " 2.7764e-01 -9.3591e-02 1.3791e-01 ... -2.7145e-01 2.8122e-02 1.0651e-01\n", + " ... ⋱ ... \n", + " 8.7166e-02 1.5260e-01 -7.1763e-02 ... -1.3844e+00 -1.0487e+00 -1.2397e+00\n", + " -1.2803e-01 -3.3113e-02 -3.9552e-01 ... -3.1659e-01 1.0684e-01 8.3546e-02\n", + " -8.9448e-02 2.4670e-02 2.8182e-02 ... 1.6902e-01 -5.5595e-02 -2.6387e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 2.4514e-02 2.0854e-02 -3.0092e-02 ... 4.2989e-02 3.4699e-02 3.5149e-02\n", + " -8.7910e-02 -3.7414e-02 -1.6182e-02 ... 1.3356e-01 -3.4510e-01 2.9737e-01\n", + " -5.0063e-02 -2.8385e-01 2.0934e-01 ... 2.8240e-02 8.9445e-02 -7.5023e-01\n", + " ... ⋱ ... \n", + " -1.0467e-01 -2.0252e-01 -9.7439e-02 ... -1.9067e-03 7.2500e-02 -3.6290e-02\n", + " 5.2983e-01 3.4188e-02 -1.1855e-01 ... -2.9443e-02 -2.1767e-01 -1.4374e-01\n", + " 2.0587e-01 -5.5229e-02 1.2016e-01 ... 1.0737e-01 2.8937e-03 9.0145e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " 2.3339e-02 -2.2911e-02 -2.5257e-02 ... 3.4837e-02 -3.6842e-03 -2.4066e-02\n", + " 1.7219e-01 2.6568e-01 3.3388e-02 ... -8.4869e-02 1.0888e-01 -1.6184e-01\n", + " 1.4101e-01 1.0440e-01 -1.5647e-01 ... 1.7188e-01 -1.0538e+00 -1.3552e+00\n", + " ... ⋱ ... \n", + " -3.3658e-01 1.9421e-01 7.1169e-04 ... -4.4340e-01 -1.4363e+00 1.1073e-01\n", + " -2.8200e-01 -2.7627e-01 -3.5717e-01 ... -2.6617e-01 1.8424e-01 -5.1155e-02\n", + " -2.2967e-01 -9.3827e-02 1.8522e-01 ... -3.8467e-01 -8.9247e-02 -5.5430e-02\n", + " \n", + " (126,.,.) = \n", + " -1.6671e-02 -4.0164e-02 -3.8903e-02 ... -6.3660e-02 -3.1307e-02 -2.3072e-02\n", + " -2.9091e-01 1.1981e-01 8.3795e-02 ... -1.5997e+00 -1.1918e+00 -9.8389e-02\n", + " 1.3939e-01 1.5886e-01 1.7142e-01 ... 2.3185e-01 -5.8920e-01 2.3799e-01\n", + " ... ⋱ ... \n", + " 3.5581e-02 2.9580e-02 1.4395e-01 ... -6.6605e-01 -1.4438e+00 -7.2258e-01\n", + " 1.3443e-02 -1.0530e-01 -6.6303e-01 ... -5.2410e-01 -1.6476e-01 9.5399e-02\n", + " 2.5848e-02 -8.6919e-02 -1.2343e-01 ... 7.9862e-02 -1.0104e-02 -3.2548e-01\n", + " \n", + " (127,.,.) = \n", + " 1.3345e-02 1.6564e-02 -3.3550e-02 ... 2.5938e-02 2.8583e-02 -4.1905e-02\n", + " 1.3643e-01 -1.3233e-01 1.6668e-01 ... 1.4648e-01 -1.8051e-01 -9.3971e-02\n", + " 7.5661e-02 1.2190e-01 -1.9221e-01 ... 6.9154e-03 -1.6507e-02 -5.3025e-02\n", + " ... ⋱ ... \n", + " 3.2565e-01 1.2659e-01 1.3699e-01 ... -1.9743e-01 2.6545e-01 -3.4281e-02\n", + " -1.7613e-02 -8.1578e-02 4.1549e-01 ... -1.9517e-01 4.2245e-01 2.1490e-02\n", + " 9.5571e-02 1.0512e-01 -6.3192e-02 ... 1.4061e-01 2.6262e-01 1.6268e-01\n", + " [torch.FloatTensor of size 128x128x8]),\n", + " ('module.encoder.cbhg.conv1d_banks.7.bn.weight', \n", + " 0.5201\n", + " 0.6178\n", + " 0.3503\n", + " 0.1448\n", + " 0.5527\n", + " 0.4999\n", + " 0.7059\n", + " 0.4651\n", + " 0.4145\n", + " 0.4550\n", + " 0.5447\n", + " 0.4034\n", + " 0.4155\n", + " 0.3661\n", + " 0.5640\n", + " 0.5221\n", + " 0.3899\n", + " 0.4972\n", + " 0.5214\n", + " 0.4538\n", + " 0.5328\n", + " -1.0370\n", + " 0.6178\n", + " 0.5419\n", + " 0.4244\n", + " 0.3987\n", + " -1.6089\n", + " 0.4248\n", + " 0.3864\n", + " 0.4433\n", + " 0.4740\n", + " 0.5513\n", + " 0.4550\n", + " -1.1776\n", + " 0.5307\n", + " 0.5215\n", + " 0.4541\n", + " 0.5152\n", + " 0.4265\n", + " -0.4415\n", + " 0.4885\n", + " 0.6703\n", + " 0.4037\n", + " 0.5493\n", + " 0.3952\n", + " 0.3893\n", + " 0.4978\n", + " 0.5512\n", + " 0.4581\n", + " 0.0155\n", + " 0.6011\n", + " 0.4262\n", + " 0.4914\n", + " 0.4226\n", + " 0.4978\n", + " 0.5835\n", + " 0.4875\n", + " 0.3945\n", + " 0.3939\n", + " 0.4874\n", + " 0.5940\n", + " 0.5797\n", + " -0.9385\n", + " 0.6759\n", + " 0.5902\n", + " 0.5815\n", + " 0.5256\n", + " 0.4608\n", + " -1.2700\n", + " 0.4835\n", + " 0.5862\n", + " 0.8845\n", + " 0.5304\n", + " 0.3843\n", + " 0.4911\n", + " 0.4653\n", + " -0.8797\n", + " 0.4928\n", + " -1.0461\n", + " 0.4720\n", + " 0.5692\n", + " -0.8213\n", + " 0.4002\n", + " 0.4373\n", + " 0.5114\n", + " 0.4222\n", + " 0.3675\n", + " -1.3332\n", + " 0.4836\n", + " 0.5117\n", + " 0.4860\n", + " 0.4630\n", + " 0.4095\n", + " -0.6982\n", + " -0.8360\n", + " 0.5048\n", + " 0.4621\n", + " 0.4235\n", + " -0.8588\n", + " 0.5175\n", + " 0.3910\n", + " 0.5467\n", + " 0.5042\n", + " 0.5353\n", + " 0.4100\n", + " -1.0143\n", + " 0.4884\n", + " 0.4789\n", + " 0.4557\n", + " 0.6047\n", + " 0.4890\n", + " 1.0135\n", + " 0.6491\n", + " -0.9885\n", + " 0.4902\n", + " 0.4262\n", + " 0.5985\n", + " 0.3811\n", + " 0.4982\n", + " 0.4380\n", + " -1.0503\n", + " 0.5028\n", + " 0.3959\n", + " -0.9950\n", + " 0.5104\n", + " 0.4080\n", + " 0.5989\n", + " -0.7140\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.7.bn.bias', \n", + " 0.0531\n", + " 0.1352\n", + " -0.1326\n", + " -0.0226\n", + " 0.1226\n", + " -0.0110\n", + " -0.0515\n", + " -0.1070\n", + " -0.0722\n", + " 0.0605\n", + " 0.0245\n", + " 0.1540\n", + " 0.0093\n", + " 0.0824\n", + " -0.1027\n", + " 0.0786\n", + " 0.0775\n", + " 0.0218\n", + " 0.0305\n", + " -0.0334\n", + " -0.0583\n", + " -0.2360\n", + " 0.1077\n", + " 0.0735\n", + " 0.0465\n", + " 0.0191\n", + " -0.1012\n", + " -0.0647\n", + " -0.0001\n", + " 0.1090\n", + " -0.0216\n", + " 0.0867\n", + " -0.1156\n", + " -0.0776\n", + " 0.0726\n", + " -0.0987\n", + " 0.2782\n", + " 0.0555\n", + " -0.0561\n", + " -0.0393\n", + " 0.1253\n", + " 0.0206\n", + " -0.1254\n", + " 0.0507\n", + " 0.0083\n", + " 0.0365\n", + " 0.0373\n", + " 0.0833\n", + " 0.1624\n", + " -0.0043\n", + " 0.1495\n", + " 0.0487\n", + " 0.0595\n", + " -0.0549\n", + " 0.1385\n", + " 0.0319\n", + " 0.0761\n", + " 0.1448\n", + " -0.0136\n", + " 0.0397\n", + " 0.2314\n", + " 0.2268\n", + " -0.0985\n", + " 0.1825\n", + " 0.1466\n", + " -0.0436\n", + " 0.0372\n", + " 0.0725\n", + " -0.0878\n", + " -0.0063\n", + " 0.1393\n", + " 0.1552\n", + " -0.0325\n", + " 0.0941\n", + " 0.0756\n", + " 0.1570\n", + " -0.1996\n", + " -0.0028\n", + " -0.2038\n", + " 0.0497\n", + " 0.0060\n", + " -0.1240\n", + " -0.0317\n", + " 0.0253\n", + " 0.0478\n", + " -0.0950\n", + " 0.0721\n", + " -0.2091\n", + " 0.0940\n", + " -0.1020\n", + " 0.0115\n", + " 0.0147\n", + " 0.1373\n", + " -0.1032\n", + " 0.0048\n", + " -0.1266\n", + " -0.1190\n", + " 0.1090\n", + " -0.0406\n", + " 0.1024\n", + " -0.1009\n", + " 0.0821\n", + " 0.0140\n", + " 0.2145\n", + " 0.0478\n", + " -0.2095\n", + " -0.1442\n", + " 0.0544\n", + " 0.0345\n", + " 0.0340\n", + " 0.0834\n", + " 0.2172\n", + " 0.1414\n", + " -0.1626\n", + " -0.0807\n", + " 0.0232\n", + " -0.0692\n", + " -0.0451\n", + " 0.0634\n", + " 0.0790\n", + " -0.1703\n", + " 0.0544\n", + " 0.0259\n", + " -0.2925\n", + " -0.1293\n", + " 0.0527\n", + " 0.0511\n", + " -0.0644\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.7.bn.running_mean', \n", + " 0.2812\n", + " 0.1372\n", + " 3.9745\n", + " 7.4301\n", + " 1.2966\n", + " 2.3002\n", + " 0.3036\n", + " 1.0330\n", + " 0.1696\n", + " 0.1970\n", + " 0.0372\n", + " 0.8095\n", + " 3.5538\n", + " 0.6015\n", + " 1.1094\n", + " 0.5394\n", + " 6.0354\n", + " 0.2902\n", + " 1.2992\n", + " 1.0459\n", + " 1.4696\n", + " 3.5347\n", + " 1.2122\n", + " 0.8080\n", + " 0.5515\n", + " 0.7807\n", + " 0.0896\n", + " 0.6803\n", + " 1.1137\n", + " 0.1049\n", + " 2.4879\n", + " 0.1218\n", + " 0.5865\n", + " 1.5523\n", + " 4.8728\n", + " 0.9130\n", + " 0.9491\n", + " 1.5586\n", + " 2.0178\n", + " 12.4710\n", + " 0.8012\n", + " 0.3510\n", + " 0.3879\n", + " 8.8085\n", + " 1.0802\n", + " 0.4705\n", + " 0.9743\n", + " 0.4803\n", + " 0.5677\n", + " 9.9005\n", + " 1.3111\n", + " 0.3241\n", + " 1.5443\n", + " 0.9569\n", + " 1.3462\n", + " 1.8252\n", + " 0.9787\n", + " 1.1744\n", + " 0.8573\n", + " 0.9252\n", + " 4.9456\n", + " 4.2871\n", + " 0.0392\n", + " 0.4906\n", + " 3.7855\n", + " 0.1991\n", + " 0.8360\n", + " 0.8939\n", + " 0.3714\n", + " 0.2258\n", + " 2.8575\n", + " 0.2458\n", + " 0.1251\n", + " 0.9596\n", + " 0.2072\n", + " 0.5053\n", + " 3.7698\n", + " 9.7333\n", + " 1.5940\n", + " 1.2681\n", + " 0.1128\n", + " 3.9079\n", + " 4.3071\n", + " 0.1252\n", + " 0.5050\n", + " 1.4095\n", + " 1.2890\n", + " 0.6643\n", + " 0.2945\n", + " 0.3837\n", + " 1.9824\n", + " 0.4402\n", + " 0.7092\n", + " 2.5530\n", + " 6.0500\n", + " 0.6629\n", + " 0.4099\n", + " 1.3019\n", + " 5.8735\n", + " 0.8943\n", + " 0.2518\n", + " 0.9939\n", + " 0.1958\n", + " 2.5477\n", + " 0.3094\n", + " 2.3750\n", + " 0.7993\n", + " 1.1749\n", + " 0.4016\n", + " 8.2615\n", + " 0.7854\n", + " 0.1583\n", + " 1.5999\n", + " 5.3653\n", + " 0.5013\n", + " 0.9868\n", + " 0.3480\n", + " 0.2088\n", + " 0.2505\n", + " 0.3646\n", + " 1.0942\n", + " 0.3739\n", + " 0.5132\n", + " 3.1107\n", + " 0.9551\n", + " 0.9754\n", + " 0.0634\n", + " 5.9613\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.7.bn.running_var', \n", + " 3.4528\n", + " 1.4335\n", + " 56.6181\n", + " 43.0498\n", + " 19.2615\n", + " 33.8639\n", + " 3.2992\n", + " 13.0646\n", + " 1.7917\n", + " 2.1548\n", + " 0.5802\n", + " 10.7251\n", + " 53.0717\n", + " 7.4029\n", + " 16.0876\n", + " 7.8325\n", + " 64.2025\n", + " 3.4285\n", + " 17.8234\n", + " 14.2309\n", + " 20.2142\n", + " 46.8463\n", + " 13.8736\n", + " 11.6845\n", + " 6.8415\n", + " 10.1249\n", + " 0.5939\n", + " 7.8891\n", + " 14.9711\n", + " 1.2082\n", + " 26.2391\n", + " 1.4065\n", + " 7.8775\n", + " 21.0462\n", + " 59.2802\n", + " 12.7272\n", + " 15.2322\n", + " 23.1035\n", + " 29.2466\n", + " 100.4376\n", + " 11.8395\n", + " 4.3766\n", + " 4.0224\n", + " 99.0680\n", + " 14.3279\n", + " 4.6216\n", + " 10.4203\n", + " 7.0414\n", + " 7.9117\n", + " 88.7863\n", + " 14.2661\n", + " 3.8882\n", + " 23.2832\n", + " 12.0185\n", + " 20.1529\n", + " 22.3754\n", + " 13.8920\n", + " 15.9952\n", + " 10.1813\n", + " 13.3677\n", + " 67.4268\n", + " 49.7770\n", + " 0.2859\n", + " 7.1800\n", + " 45.6419\n", + " 2.0598\n", + " 11.4943\n", + " 10.0566\n", + " 3.6953\n", + " 2.3665\n", + " 36.3690\n", + " 2.9168\n", + " 1.4601\n", + " 12.4855\n", + " 2.7109\n", + " 6.1154\n", + " 47.0909\n", + " 84.9703\n", + " 28.9722\n", + " 17.3121\n", + " 1.7708\n", + " 46.1098\n", + " 40.3095\n", + " 1.3421\n", + " 6.2969\n", + " 19.3591\n", + " 18.4596\n", + " 8.4604\n", + " 3.7825\n", + " 4.2503\n", + " 28.9321\n", + " 4.7093\n", + " 9.0993\n", + " 26.3167\n", + " 79.0112\n", + " 8.9691\n", + " 4.0326\n", + " 19.4620\n", + " 78.8674\n", + " 12.4432\n", + " 3.5051\n", + " 12.4378\n", + " 2.4673\n", + " 29.6752\n", + " 3.7716\n", + " 32.0126\n", + " 10.5445\n", + " 13.3852\n", + " 5.1200\n", + " 84.1416\n", + " 12.3769\n", + " 1.6237\n", + " 19.6032\n", + " 71.8491\n", + " 5.8113\n", + " 10.7161\n", + " 4.0810\n", + " 2.1904\n", + " 2.5760\n", + " 5.0541\n", + " 12.6978\n", + " 4.9397\n", + " 5.0230\n", + " 37.5503\n", + " 12.6321\n", + " 13.6513\n", + " 0.5706\n", + " 66.9323\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.8.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -2.7547e-02 4.2572e-02 4.9609e-02 ... 3.9734e-02 4.3074e-02 3.7359e-02\n", + " 7.7272e-02 1.5924e-01 1.1967e-01 ... -1.0723e+00 -1.3182e+00 8.4199e-02\n", + " 1.2160e-01 -2.6351e-01 -9.3865e-02 ... 1.9552e-01 3.4170e-01 -3.8920e-01\n", + " ... ⋱ ... \n", + " 8.6547e-02 1.8861e-02 1.8739e-01 ... -1.3392e+00 1.6523e-01 -7.8392e-01\n", + " 6.9175e-02 5.4181e-02 2.3608e-01 ... -6.6663e-01 -8.3389e-02 -2.4729e-01\n", + " -1.6154e-01 -5.3170e-02 7.6704e-02 ... -8.9796e-02 -4.5192e-02 -1.7497e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " 2.0992e-02 -6.3350e-03 5.8229e-03 ... -7.8143e-03 1.5739e-02 9.7577e-04\n", + " -6.3255e-02 1.6842e-01 2.9652e-01 ... -1.1351e+00 2.6696e-02 -2.3831e-01\n", + " -7.5772e-03 4.0876e-01 2.8722e-02 ... -3.6409e-01 1.6402e-02 6.1327e-02\n", + " ... ⋱ ... \n", + " 4.7118e-03 4.9662e-02 -1.0712e-01 ... 2.1898e-01 2.2844e-01 4.2636e-01\n", + " -1.5443e-01 -4.4623e-02 -4.2821e-02 ... 3.0447e-01 -1.1925e+00 -1.1519e-01\n", + " -6.3182e-02 8.5808e-02 -1.1307e-01 ... 5.1514e-02 -1.5927e-01 -2.3402e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " -8.6872e-03 9.8962e-03 -1.3881e-02 ... 6.4804e-03 1.7940e-02 -1.6702e-02\n", + " -5.5718e-02 -3.8603e-02 3.3173e-01 ... -5.4399e-02 -2.6046e-02 -1.8899e-01\n", + " 1.7230e-01 -3.0073e-01 1.2899e-01 ... 1.5112e-01 -2.3045e-01 -2.2903e-01\n", + " ... ⋱ ... \n", + " -6.5743e-02 -4.2672e-03 1.5176e-01 ... 6.4832e-03 1.4361e-01 3.0495e-02\n", + " 1.7581e-01 -1.3613e-01 -1.2332e-01 ... -1.2568e-01 -4.6832e-03 -2.4509e-01\n", + " -4.4992e-02 -1.2710e-01 1.3147e-02 ... -3.4621e-02 2.4574e-02 -4.5390e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -1.7292e-02 -7.6999e-03 1.0731e-02 ... 6.0297e-03 3.7521e-03 2.6006e-02\n", + " -7.9919e-02 -4.9393e-02 -5.8662e-01 ... -3.1168e-01 -1.3692e+00 -9.1817e-01\n", + " -3.7842e-01 5.7602e-02 -7.9871e-02 ... 9.0100e-03 -9.7410e-02 5.3491e-02\n", + " ... ⋱ ... \n", + " -2.0529e-01 6.3498e-02 2.7442e-02 ... -7.3926e-01 1.5999e-01 -1.1082e-01\n", + " -2.1393e-01 1.3996e-01 -7.4514e-02 ... -1.9744e-01 -4.8600e-01 -4.3896e-01\n", + " 1.2696e-02 -1.9454e-01 5.5097e-02 ... -9.6668e-03 -7.0573e-01 -4.2450e-01\n", + " \n", + " (126,.,.) = \n", + " 9.5369e-03 -1.4266e-02 -9.3971e-03 ... 1.1653e-02 -4.1660e-03 1.2811e-02\n", + " 1.8217e-01 2.1676e-02 -3.0760e-01 ... 1.6222e-01 1.0926e-01 -4.7690e-02\n", + " 5.3789e-02 -2.5205e-01 2.3654e-01 ... -5.4497e-03 7.4248e-02 -2.2669e-01\n", + " ... ⋱ ... \n", + " -1.6270e-01 -8.9960e-02 -6.6290e-02 ... 5.3901e-02 2.5797e-04 7.1787e-01\n", + " -1.0061e-01 1.4840e-01 -1.0621e-01 ... -5.7225e-01 3.4818e-02 4.1044e-01\n", + " -3.5203e-02 -7.5935e-03 8.3569e-02 ... 1.1512e-01 1.9343e-02 -8.4515e-02\n", + " \n", + " (127,.,.) = \n", + " 1.7825e-02 5.7461e-03 -5.2420e-02 ... -8.4316e-03 3.7530e-02 7.4160e-03\n", + " -7.5303e-01 2.5693e-01 -5.4925e-01 ... -1.6473e-01 9.0183e-03 -1.2218e-01\n", + " -3.1759e-01 5.5704e-02 -2.5702e-01 ... 1.2007e-01 -5.1170e-01 -5.0482e-01\n", + " ... ⋱ ... \n", + " 7.2999e-02 2.4884e-01 -6.3399e-01 ... -1.0819e-01 -8.2761e-01 -3.9823e-02\n", + " -6.4678e-02 2.1777e-01 1.4814e-01 ... -2.4322e-01 2.4405e-01 -5.4170e-01\n", + " 1.5825e-01 -1.0545e-01 8.2131e-02 ... 3.3050e-01 -3.3931e-01 -6.4139e-02\n", + " [torch.FloatTensor of size 128x128x9]),\n", + " ('module.encoder.cbhg.conv1d_banks.8.bn.weight', \n", + " 0.5771\n", + " 0.4581\n", + " -0.7716\n", + " 0.6157\n", + " -0.0321\n", + " 0.5181\n", + " -0.9333\n", + " 0.9233\n", + " 0.4347\n", + " 0.4704\n", + " -1.3071\n", + " 0.4834\n", + " 0.4864\n", + " 0.3935\n", + " 0.4802\n", + " 0.4552\n", + " 0.4248\n", + " 0.5687\n", + " 0.4133\n", + " 0.5554\n", + " 0.5055\n", + " 0.5408\n", + " 0.4969\n", + " 0.4613\n", + " -0.9117\n", + " 0.6503\n", + " 0.3440\n", + " 0.4934\n", + " 0.4743\n", + " 0.7277\n", + " 0.5781\n", + " -0.9944\n", + " 0.4250\n", + " 0.4817\n", + " 0.4396\n", + " 0.6737\n", + " 0.4569\n", + " 0.4752\n", + " 0.4585\n", + " 0.4791\n", + " 0.7359\n", + " 0.5473\n", + " 0.5542\n", + " 0.8879\n", + " 0.4969\n", + " 0.4156\n", + " 0.4636\n", + " 0.5663\n", + " 0.6065\n", + " 0.4312\n", + " 0.4343\n", + " -1.1273\n", + " -1.2112\n", + " 0.4511\n", + " -1.0567\n", + " 0.4800\n", + " 0.7169\n", + " 0.6837\n", + " 0.4633\n", + " 0.4376\n", + " 0.4631\n", + " 0.3726\n", + " 0.4705\n", + " 0.4251\n", + " -0.7982\n", + " -1.0721\n", + " 0.6287\n", + " 0.3680\n", + " 0.4368\n", + " 0.4333\n", + " -0.9332\n", + " 0.3998\n", + " 0.4077\n", + " 0.4922\n", + " 0.4723\n", + " 0.5908\n", + " 0.5140\n", + " -0.8896\n", + " -0.7219\n", + " 0.4918\n", + " 0.5012\n", + " 0.4491\n", + " 0.3801\n", + " 0.3578\n", + " 0.3361\n", + " -0.8209\n", + " 0.5648\n", + " 0.5712\n", + " 0.4660\n", + " 0.5767\n", + " -0.9550\n", + " 0.5229\n", + " 1.1241\n", + " 0.4727\n", + " 0.4580\n", + " 0.4395\n", + " 0.4749\n", + " 0.4501\n", + " 0.4727\n", + " 0.4406\n", + " -0.0748\n", + " 0.5233\n", + " 0.3423\n", + " 0.5639\n", + " 0.5692\n", + " 0.6152\n", + " 0.4194\n", + " -1.0430\n", + " -0.9918\n", + " 0.5580\n", + " 0.4808\n", + " 0.4698\n", + " 0.5428\n", + " 0.4862\n", + " 0.4849\n", + " 0.3935\n", + " 0.4148\n", + " 0.6059\n", + " 0.3756\n", + " 0.4541\n", + " 0.4012\n", + " 0.4700\n", + " -1.0728\n", + " 0.4493\n", + " 0.5653\n", + " 0.5266\n", + " -0.7840\n", + " 0.5118\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.8.bn.bias', \n", + " 0.0501\n", + " -0.0455\n", + " -0.1282\n", + " 0.0573\n", + " -0.0026\n", + " 0.2111\n", + " -0.2480\n", + " 0.1674\n", + " -0.0672\n", + " 0.1419\n", + " -0.1950\n", + " -0.0008\n", + " 0.0860\n", + " 0.0740\n", + " -0.0304\n", + " 0.0451\n", + " 0.0265\n", + " 0.0886\n", + " -0.0701\n", + " 0.0380\n", + " 0.0024\n", + " 0.1123\n", + " 0.0816\n", + " -0.0170\n", + " -0.0699\n", + " 0.2331\n", + " 0.0394\n", + " 0.0186\n", + " -0.0887\n", + " 0.1286\n", + " 0.0954\n", + " -0.3693\n", + " 0.2549\n", + " 0.0197\n", + " 0.0338\n", + " -0.0266\n", + " 0.0174\n", + " 0.1036\n", + " -0.0043\n", + " 0.1029\n", + " 0.1415\n", + " 0.0642\n", + " 0.1490\n", + " 0.1656\n", + " 0.0606\n", + " 0.1683\n", + " 0.0088\n", + " 0.0462\n", + " -0.0647\n", + " -0.0888\n", + " -0.1728\n", + " -0.2408\n", + " -0.0847\n", + " -0.0096\n", + " -0.0791\n", + " -0.2313\n", + " -0.0319\n", + " 0.1064\n", + " 0.0187\n", + " 0.0005\n", + " -0.0566\n", + " 0.1294\n", + " 0.0037\n", + " -0.0533\n", + " -0.0811\n", + " -0.1528\n", + " 0.1238\n", + " -0.0294\n", + " 0.1289\n", + " -0.1212\n", + " -0.2811\n", + " 0.1584\n", + " 0.0270\n", + " 0.0790\n", + " 0.1521\n", + " -0.0276\n", + " 0.0304\n", + " -0.2490\n", + " -0.0301\n", + " -0.0343\n", + " 0.0026\n", + " -0.0490\n", + " -0.0082\n", + " 0.0151\n", + " 0.0540\n", + " -0.0843\n", + " 0.2147\n", + " 0.1075\n", + " 0.0691\n", + " 0.0812\n", + " -0.1074\n", + " 0.0371\n", + " 0.0939\n", + " 0.0553\n", + " 0.0268\n", + " -0.0289\n", + " 0.0969\n", + " 0.0376\n", + " 0.0850\n", + " 0.0560\n", + " -0.0032\n", + " 0.1189\n", + " -0.1336\n", + " 0.1118\n", + " 0.0979\n", + " -0.1019\n", + " 0.0585\n", + " -0.1189\n", + " -0.2122\n", + " 0.0355\n", + " 0.0324\n", + " 0.1024\n", + " -0.0053\n", + " 0.0846\n", + " -0.0164\n", + " 0.0347\n", + " -0.0575\n", + " 0.1198\n", + " 0.0437\n", + " 0.0006\n", + " 0.0076\n", + " 0.0700\n", + " -0.3651\n", + " 0.1086\n", + " -0.0448\n", + " 0.1511\n", + " -0.1061\n", + " 0.0879\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.8.bn.running_mean', \n", + " 0.2172\n", + " 1.0771\n", + " 4.1651\n", + " 0.9412\n", + " 9.1795\n", + " 0.7024\n", + " 4.9453\n", + " 0.0088\n", + " 0.4241\n", + " 0.5401\n", + " 0.4936\n", + " 0.9792\n", + " 0.2949\n", + " 0.4522\n", + " 1.2292\n", + " 0.4527\n", + " 0.2819\n", + " 0.3859\n", + " 0.1360\n", + " 5.6269\n", + " 1.4467\n", + " 0.9929\n", + " 0.6515\n", + " 0.1727\n", + " 1.0151\n", + " 0.8062\n", + " 0.8452\n", + " 0.2774\n", + " 1.3303\n", + " 1.9343\n", + " 0.2595\n", + " 7.0958\n", + " 1.3832\n", + " 0.1969\n", + " 1.2018\n", + " 0.2215\n", + " 0.3508\n", + " 0.1674\n", + " 0.1257\n", + " 0.6598\n", + " 0.2392\n", + " 0.0863\n", + " 1.0187\n", + " 0.2623\n", + " 2.1649\n", + " 0.8956\n", + " 1.5223\n", + " 0.0435\n", + " 0.5574\n", + " 0.6954\n", + " 0.8634\n", + " 2.5703\n", + " 1.4503\n", + " 1.2198\n", + " 2.5609\n", + " 0.5472\n", + " 0.1622\n", + " 0.7101\n", + " 0.7225\n", + " 0.1451\n", + " 0.8528\n", + " 1.9435\n", + " 0.5099\n", + " 0.2758\n", + " 7.3982\n", + " 1.0463\n", + " 1.3533\n", + " 0.1834\n", + " 0.3139\n", + " 1.3081\n", + " 9.1900\n", + " 1.7530\n", + " 0.3186\n", + " 0.0864\n", + " 0.3088\n", + " 3.5589\n", + " 3.8022\n", + " 4.5939\n", + " 0.1067\n", + " 2.4051\n", + " 1.6988\n", + " 3.5461\n", + " 1.2979\n", + " 0.2601\n", + " 0.2093\n", + " 0.6377\n", + " 0.9761\n", + " 0.7301\n", + " 0.8001\n", + " 0.1085\n", + " 2.1115\n", + " 0.2482\n", + " 0.0415\n", + " 0.0286\n", + " 0.4192\n", + " 0.9545\n", + " 0.8663\n", + " 0.3971\n", + " 1.4581\n", + " 0.2442\n", + " 8.4836\n", + " 0.1308\n", + " 1.3314\n", + " 0.4853\n", + " 0.2627\n", + " 20.8991\n", + " 0.4634\n", + " 6.1021\n", + " 3.4489\n", + " 1.1361\n", + " 1.6796\n", + " 0.4814\n", + " 0.1891\n", + " 0.5700\n", + " 0.7645\n", + " 0.5785\n", + " 0.9796\n", + " 0.2983\n", + " 2.0324\n", + " 0.8786\n", + " 0.2386\n", + " 1.3299\n", + " 3.0389\n", + " 0.8985\n", + " 0.3829\n", + " 0.1680\n", + " 6.3584\n", + " 0.9019\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.8.bn.running_var', \n", + " 2.6072\n", + " 15.8986\n", + " 41.4874\n", + " 12.6203\n", + " 120.1542\n", + " 9.2696\n", + " 69.7438\n", + " 0.1051\n", + " 5.7360\n", + " 7.4304\n", + " 5.7254\n", + " 13.7302\n", + " 3.6712\n", + " 5.7503\n", + " 19.8554\n", + " 5.4608\n", + " 3.6343\n", + " 4.9982\n", + " 1.3920\n", + " 56.8145\n", + " 23.1102\n", + " 13.2925\n", + " 8.4560\n", + " 2.5918\n", + " 14.3851\n", + " 12.5008\n", + " 11.4232\n", + " 3.0210\n", + " 22.5177\n", + " 24.3255\n", + " 3.4395\n", + " 105.0245\n", + " 20.6933\n", + " 2.8084\n", + " 18.2451\n", + " 3.1466\n", + " 4.5639\n", + " 2.3411\n", + " 1.3012\n", + " 9.6010\n", + " 3.1274\n", + " 1.0201\n", + " 16.0106\n", + " 4.2138\n", + " 34.5435\n", + " 12.2854\n", + " 23.6870\n", + " 0.5350\n", + " 7.4291\n", + " 8.9021\n", + " 11.7848\n", + " 36.8306\n", + " 20.2813\n", + " 17.7479\n", + " 36.3394\n", + " 7.2768\n", + " 2.1176\n", + " 10.1342\n", + " 11.8166\n", + " 2.0295\n", + " 10.7391\n", + " 28.6486\n", + " 6.8892\n", + " 4.2384\n", + " 101.8086\n", + " 10.5774\n", + " 15.8857\n", + " 2.3810\n", + " 3.1255\n", + " 19.9336\n", + " 109.9822\n", + " 27.0445\n", + " 3.5758\n", + " 1.2688\n", + " 4.0835\n", + " 55.7266\n", + " 59.2590\n", + " 59.2517\n", + " 1.0412\n", + " 31.4357\n", + " 22.5261\n", + " 39.3778\n", + " 23.9771\n", + " 1.8874\n", + " 1.7850\n", + " 6.1222\n", + " 13.9891\n", + " 8.8358\n", + " 11.9521\n", + " 0.9764\n", + " 29.9719\n", + " 3.0948\n", + " 0.4055\n", + " 0.3364\n", + " 4.8352\n", + " 13.7660\n", + " 12.5649\n", + " 5.3636\n", + " 24.2606\n", + " 3.5150\n", + " 38.5196\n", + " 1.5219\n", + " 13.0963\n", + " 6.5039\n", + " 3.6606\n", + " 184.7602\n", + " 7.0112\n", + " 75.9883\n", + " 56.8520\n", + " 17.2093\n", + " 27.7894\n", + " 6.7595\n", + " 2.5488\n", + " 8.0841\n", + " 10.2645\n", + " 7.5262\n", + " 12.5878\n", + " 3.9603\n", + " 28.3046\n", + " 11.7080\n", + " 2.7740\n", + " 20.5979\n", + " 48.2758\n", + " 11.8036\n", + " 5.0028\n", + " 1.9099\n", + " 58.3826\n", + " 12.9609\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.9.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -1.2490e-03 -2.1708e-02 -1.3717e-02 ... -3.0470e-02 2.3697e-02 -2.0284e-02\n", + " 5.8066e-04 -1.5938e-01 1.0033e-01 ... -1.2398e-01 7.3970e-02 -2.7781e-01\n", + " 5.9249e-03 4.6126e-02 1.9371e-02 ... 3.9461e-01 -4.0300e-01 -8.3866e-02\n", + " ... ⋱ ... \n", + " 2.8160e-01 3.5017e-01 4.8683e-03 ... -4.4023e-01 -1.8014e+00 1.0488e-01\n", + " -2.9543e-01 9.8797e-02 -4.6013e-02 ... -1.5038e-01 1.5641e-01 -1.1150e+00\n", + " -1.8047e-01 4.8216e-02 -8.1360e-02 ... -7.3457e-02 -1.7689e-01 1.3239e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -1.8107e-02 -1.6579e-02 -2.2401e-02 ... -3.5960e-03 2.1527e-02 1.0929e-02\n", + " -1.8054e-01 -2.7563e-01 4.2408e-02 ... 3.0541e-02 -4.6706e-02 -1.8934e-01\n", + " -1.1431e-01 2.2401e-01 -2.3183e-01 ... 2.9956e-02 -2.6556e-02 4.7747e-02\n", + " ... ⋱ ... \n", + " -1.4706e-01 -3.5813e-02 3.4498e-01 ... -5.3065e-02 3.5055e-03 -4.3279e-02\n", + " 6.3806e-02 -1.0685e-01 1.2551e-01 ... 1.1024e-01 1.9199e-01 2.5452e-01\n", + " -2.1525e-02 -5.1525e-02 1.2442e-02 ... 2.5958e-02 -6.9614e-02 1.0687e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 2.2546e-02 3.1870e-02 6.1550e-03 ... 2.5899e-02 2.4231e-03 -2.4090e-02\n", + " 1.6648e-01 -2.2620e-01 1.8013e-03 ... 2.6781e-01 -2.2226e-01 -2.3612e-01\n", + " -2.5657e-01 1.0353e-02 6.2530e-02 ... 9.9296e-02 2.0786e-01 3.0163e-01\n", + " ... ⋱ ... \n", + " -5.6254e-01 -1.4620e-01 -1.5079e-01 ... -1.5648e-02 1.4819e-01 -2.9422e-01\n", + " 7.9525e-02 4.4902e-01 -1.9844e-01 ... 2.4591e-01 -2.6186e-02 9.1251e-02\n", + " -2.2625e-02 -3.3239e-01 5.0177e-02 ... -1.7797e-01 1.0420e-01 -4.0915e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " 1.6619e-02 -1.2193e-02 1.8705e-02 ... -3.8572e-02 1.2710e-02 -4.4064e-03\n", + " -9.2771e-03 -2.2271e-01 1.7887e-01 ... 1.1817e-01 -1.3845e-01 1.2891e-01\n", + " -3.6453e-02 -2.4411e-01 3.2742e-01 ... 2.4662e-01 -1.0074e-01 -7.5640e-01\n", + " ... ⋱ ... \n", + " 1.5101e-01 4.6638e-02 -4.4681e-01 ... -2.7759e-01 -2.9360e-01 -4.4486e-03\n", + " 5.1798e-01 -5.7905e-01 -5.9879e-01 ... 1.4691e-01 3.9102e-01 -2.4114e-02\n", + " -4.9070e-02 7.3786e-02 1.1952e-01 ... 6.9462e-02 -4.3941e-02 -1.3187e-01\n", + " \n", + " (126,.,.) = \n", + " -2.0730e-02 -2.2372e-02 -1.4065e-02 ... -6.3372e-02 3.2751e-02 5.6936e-02\n", + " -1.6303e-01 -3.9686e-01 4.6270e-02 ... -8.9372e-02 -1.7251e-01 1.2557e-01\n", + " 3.6537e-02 1.4654e-01 5.6433e-01 ... 3.5981e-01 4.9119e-02 -1.3890e-01\n", + " ... ⋱ ... \n", + " -1.7771e-01 -1.9284e-01 3.4713e-01 ... 1.7397e-01 -3.4972e-02 4.2198e-01\n", + " -3.6182e-01 -2.9011e-01 -8.5047e-01 ... 2.9102e-02 -8.1940e-01 6.1122e-02\n", + " 4.3997e-02 1.5453e-01 -7.1149e-02 ... -5.7751e-02 1.6488e-01 -2.2338e-01\n", + " \n", + " (127,.,.) = \n", + " -2.2192e-02 -2.3334e-02 -1.8660e-02 ... -1.6811e-02 1.4472e-02 -2.1724e-02\n", + " -3.5289e-01 7.6216e-02 1.3014e-01 ... 3.1498e-02 1.8133e-01 -8.8622e-02\n", + " 2.3091e-01 -7.8763e-02 1.1455e-01 ... -4.8957e-02 -2.1180e-02 9.7200e-02\n", + " ... ⋱ ... \n", + " -1.1430e-01 -9.1477e-02 5.9393e-02 ... -7.1157e-02 -3.4201e-02 -7.4520e-02\n", + " 2.3236e-01 -9.3504e-02 8.0771e-02 ... -1.7873e-01 -3.8356e-02 -7.7936e-02\n", + " -3.5841e-02 -4.4784e-02 -3.8030e-02 ... 3.6888e-02 1.9318e-02 -3.7652e-03\n", + " [torch.FloatTensor of size 128x128x10]),\n", + " ('module.encoder.cbhg.conv1d_banks.9.bn.weight', \n", + " 0.4393\n", + " -0.9549\n", + " -1.0875\n", + " -1.0638\n", + " 0.4982\n", + " -0.2653\n", + " -1.0011\n", + " 0.5027\n", + " 0.4402\n", + " 0.6328\n", + " -1.1375\n", + " 0.5881\n", + " -1.0941\n", + " 0.4750\n", + " 0.5537\n", + " -1.1034\n", + " 0.4594\n", + " 0.4753\n", + " 0.4670\n", + " 0.4599\n", + " 0.3778\n", + " 0.5000\n", + " 0.4827\n", + " 0.2698\n", + " 0.4689\n", + " 0.5821\n", + " 0.4883\n", + " 0.5259\n", + " 0.6125\n", + " 0.4771\n", + " 0.4144\n", + " 0.4943\n", + " 0.9913\n", + " 0.3862\n", + " 0.4912\n", + " 0.6556\n", + " 0.5625\n", + " -1.0870\n", + " 0.3494\n", + " 0.4605\n", + " 0.5620\n", + " 0.5033\n", + " -1.0619\n", + " 0.5407\n", + " 0.4440\n", + " 0.5110\n", + " 0.4817\n", + " 0.4087\n", + " 0.3723\n", + " 0.4755\n", + " 0.5537\n", + " 0.5215\n", + " 0.4659\n", + " 0.4154\n", + " 0.4723\n", + " 0.5282\n", + " 0.4582\n", + " 0.4558\n", + " 0.4564\n", + " -1.0588\n", + " 0.4236\n", + " -0.9117\n", + " 0.4967\n", + " 0.4320\n", + " -0.9488\n", + " 0.4758\n", + " 0.5198\n", + " 0.4111\n", + " 0.5109\n", + " 0.4726\n", + " 0.5565\n", + " 0.5091\n", + " -1.0525\n", + " 0.4263\n", + " 0.4744\n", + " 0.4414\n", + " 0.6061\n", + " 0.4788\n", + " 0.4085\n", + " 0.3768\n", + " 0.5847\n", + " 0.4593\n", + " -0.5649\n", + " 0.4581\n", + " 0.3943\n", + " -1.1525\n", + " 0.4698\n", + " 0.5119\n", + " 0.7235\n", + " 0.4772\n", + " -1.0129\n", + " 0.4497\n", + " 0.4374\n", + " 0.4186\n", + " 0.5272\n", + " -1.0513\n", + " 0.4193\n", + " 0.5946\n", + " 0.5846\n", + " 0.6834\n", + " 0.5183\n", + " -1.0543\n", + " 0.5302\n", + " -0.9866\n", + " 0.5402\n", + " 0.4783\n", + " 0.4794\n", + " -1.0009\n", + " -1.0717\n", + " 0.4186\n", + " 0.5195\n", + " 0.4428\n", + " 0.4568\n", + " 0.4693\n", + " 0.4228\n", + " 0.5647\n", + " 0.3728\n", + " 0.5470\n", + " 0.3970\n", + " 0.6895\n", + " 0.3913\n", + " 0.4568\n", + " 0.4436\n", + " 0.5078\n", + " 0.5220\n", + " 0.4835\n", + " 0.4882\n", + " -0.4537\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.9.bn.bias', \n", + " 0.0586\n", + " -0.1105\n", + " -0.1877\n", + " -0.2257\n", + " 0.1193\n", + " -0.0651\n", + " -0.0004\n", + " 0.0020\n", + " 0.0956\n", + " 0.1345\n", + " -0.1910\n", + " 0.1584\n", + " -0.2718\n", + " 0.0781\n", + " 0.0980\n", + " -0.2071\n", + " 0.0967\n", + " 0.0668\n", + " 0.0064\n", + " -0.0072\n", + " 0.0819\n", + " 0.0101\n", + " -0.0022\n", + " 0.0207\n", + " -0.0344\n", + " -0.0508\n", + " 0.0962\n", + " -0.1183\n", + " 0.0321\n", + " 0.0021\n", + " -0.1047\n", + " 0.1579\n", + " 0.0669\n", + " 0.0278\n", + " 0.1390\n", + " 0.0801\n", + " 0.0536\n", + " -0.1815\n", + " 0.0936\n", + " 0.0856\n", + " 0.0218\n", + " 0.1254\n", + " -0.1436\n", + " 0.0402\n", + " -0.0151\n", + " 0.1040\n", + " 0.0806\n", + " 0.0061\n", + " 0.0105\n", + " -0.0671\n", + " -0.0062\n", + " 0.1902\n", + " 0.0505\n", + " 0.0838\n", + " 0.0965\n", + " 0.2213\n", + " 0.0852\n", + " 0.0050\n", + " 0.0234\n", + " -0.1593\n", + " 0.0914\n", + " -0.2165\n", + " -0.0612\n", + " 0.0422\n", + " -0.2179\n", + " -0.1791\n", + " -0.0908\n", + " 0.0078\n", + " 0.0684\n", + " -0.0234\n", + " -0.0024\n", + " 0.0164\n", + " -0.2556\n", + " -0.0098\n", + " 0.0991\n", + " 0.0982\n", + " -0.0484\n", + " -0.1098\n", + " 0.0130\n", + " 0.0209\n", + " 0.0349\n", + " 0.0068\n", + " -0.0038\n", + " 0.2075\n", + " 0.1310\n", + " -0.0343\n", + " 0.0645\n", + " 0.1235\n", + " 0.0625\n", + " 0.0277\n", + " -0.2461\n", + " -0.1395\n", + " 0.1059\n", + " -0.0418\n", + " 0.0936\n", + " -0.2501\n", + " 0.1003\n", + " 0.0725\n", + " 0.0844\n", + " 0.1106\n", + " 0.0130\n", + " -0.2846\n", + " 0.1275\n", + " -0.2598\n", + " 0.0714\n", + " 0.0708\n", + " -0.0137\n", + " -0.0779\n", + " -0.0494\n", + " -0.1282\n", + " 0.0250\n", + " -0.0276\n", + " 0.0298\n", + " -0.0035\n", + " 0.1645\n", + " 0.0869\n", + " 0.0116\n", + " 0.0805\n", + " 0.0296\n", + " 0.1166\n", + " 0.0299\n", + " 0.0568\n", + " -0.0186\n", + " 0.1003\n", + " 0.1489\n", + " 0.1541\n", + " -0.0144\n", + " -0.0573\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.9.bn.running_mean', \n", + " 6.5877e-01\n", + " 1.1888e+00\n", + " 4.0905e+00\n", + " 3.5394e+00\n", + " 4.6724e-01\n", + " 5.0541e+00\n", + " 1.5191e-02\n", + " 6.1297e-01\n", + " 9.2574e-01\n", + " 8.4650e-02\n", + " 4.4347e+00\n", + " 9.4158e+00\n", + " 1.8806e+00\n", + " 2.5577e+00\n", + " 3.9566e-01\n", + " 2.4452e+00\n", + " 2.2579e-01\n", + " 2.1187e+00\n", + " 4.6313e-01\n", + " 7.4665e-01\n", + " 4.7345e-01\n", + " 8.1957e-01\n", + " 4.6520e-01\n", + " 3.9985e+00\n", + " 1.0356e+00\n", + " 4.9184e-01\n", + " 3.4647e-01\n", + " 2.6489e-01\n", + " 7.6358e-01\n", + " 1.5014e+00\n", + " 7.5902e-01\n", + " 6.3828e-01\n", + " 4.4555e-02\n", + " 7.4685e-01\n", + " 1.3885e-01\n", + " 2.2320e-01\n", + " 4.3190e-01\n", + " 2.1437e+00\n", + " 3.7883e-01\n", + " 1.0564e+00\n", + " 8.6116e-01\n", + " 5.1337e-01\n", + " 3.4238e+00\n", + " 5.4124e-02\n", + " 2.4536e-01\n", + " 5.7007e-01\n", + " 5.2306e-01\n", + " 2.8920e+00\n", + " 1.4835e+00\n", + " 8.9156e-01\n", + " 2.7911e+00\n", + " 2.8729e-01\n", + " 1.4278e+00\n", + " 6.7166e-01\n", + " 3.4051e-01\n", + " 1.7970e+00\n", + " 4.4385e-01\n", + " 2.7944e-01\n", + " 2.3780e+00\n", + " 2.4005e+00\n", + " 2.5483e-01\n", + " 3.9349e+00\n", + " 1.3342e+00\n", + " 5.1655e-01\n", + " 4.9710e+00\n", + " 1.4501e+00\n", + " 1.9810e+00\n", + " 4.1460e-01\n", + " 1.2548e+00\n", + " 1.2262e+00\n", + " 4.2413e-26\n", + " 7.5281e-01\n", + " 2.9965e+00\n", + " 3.6136e-01\n", + " 1.4276e+00\n", + " 7.1920e-02\n", + " 7.4376e+00\n", + " 1.5449e+00\n", + " 7.0433e-01\n", + " 1.1369e+00\n", + " 8.1408e+00\n", + " 1.8017e+00\n", + " 5.4147e+00\n", + " 2.7499e-01\n", + " 2.8041e-01\n", + " 2.9431e+00\n", + " 3.9210e-01\n", + " 1.4347e+00\n", + " 1.0004e-01\n", + " 1.0050e+01\n", + " 2.4921e+00\n", + " 1.3566e+00\n", + " 3.3763e-01\n", + " 5.7150e-01\n", + " 3.5560e-01\n", + " 5.6552e+00\n", + " 3.4802e-01\n", + " 7.8090e+00\n", + " 1.4393e+00\n", + " 2.0824e-01\n", + " 1.2301e-01\n", + " 2.5660e+00\n", + " 2.9211e-01\n", + " 2.7372e+00\n", + " 4.3169e-02\n", + " 1.8924e-01\n", + " 7.7597e-01\n", + " 3.7526e+00\n", + " 3.0975e+00\n", + " 4.3442e-01\n", + " 3.6992e-01\n", + " 1.2951e+00\n", + " 9.7277e-01\n", + " 5.0649e-01\n", + " 8.0088e-01\n", + " 2.7125e-01\n", + " 4.7215e-01\n", + " 4.0176e-02\n", + " 1.7603e+00\n", + " 8.2303e-02\n", + " 2.1448e-01\n", + " 8.7293e-01\n", + " 1.0862e+00\n", + " 6.3130e-01\n", + " 1.8604e+01\n", + " 9.2569e-01\n", + " 3.1713e+00\n", + " 1.8322e+00\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.9.bn.running_var', \n", + " 1.1393e+01\n", + " 1.2072e+01\n", + " 6.1747e+01\n", + " 5.2921e+01\n", + " 7.0069e+00\n", + " 3.7881e+01\n", + " 2.4796e-01\n", + " 1.0894e+01\n", + " 1.3262e+01\n", + " 1.5698e+00\n", + " 7.2534e+01\n", + " 1.1644e+02\n", + " 2.9410e+01\n", + " 3.6548e+01\n", + " 5.2717e+00\n", + " 3.9736e+01\n", + " 2.7101e+00\n", + " 3.0697e+01\n", + " 6.0937e+00\n", + " 9.7516e+00\n", + " 6.7279e+00\n", + " 1.3124e+01\n", + " 5.1916e+00\n", + " 4.5021e+01\n", + " 1.5338e+01\n", + " 7.6580e+00\n", + " 4.9303e+00\n", + " 4.1603e+00\n", + " 1.1069e+01\n", + " 2.3312e+01\n", + " 1.0472e+01\n", + " 9.4337e+00\n", + " 6.0192e-01\n", + " 1.1085e+01\n", + " 1.5251e+00\n", + " 2.9384e+00\n", + " 8.5122e+00\n", + " 2.9296e+01\n", + " 5.6508e+00\n", + " 1.0549e+01\n", + " 1.1747e+01\n", + " 7.0393e+00\n", + " 5.2226e+01\n", + " 8.6393e-01\n", + " 2.9830e+00\n", + " 7.4713e+00\n", + " 8.0775e+00\n", + " 4.7513e+01\n", + " 2.4230e+01\n", + " 1.3114e+01\n", + " 4.0316e+01\n", + " 3.8614e+00\n", + " 2.1979e+01\n", + " 9.1312e+00\n", + " 6.1349e+00\n", + " 2.4939e+01\n", + " 6.3974e+00\n", + " 4.5273e+00\n", + " 2.5589e+01\n", + " 3.2393e+01\n", + " 3.5256e+00\n", + " 6.0869e+01\n", + " 2.2742e+01\n", + " 6.9768e+00\n", + " 7.8588e+01\n", + " 2.3854e+01\n", + " 2.8853e+01\n", + " 4.8536e+00\n", + " 1.8289e+01\n", + " 1.7872e+01\n", + " 1.3410e-25\n", + " 1.1533e+01\n", + " 4.3636e+01\n", + " 5.7138e+00\n", + " 2.2906e+01\n", + " 7.8805e-01\n", + " 8.7948e+01\n", + " 2.0688e+01\n", + " 9.1638e+00\n", + " 1.7218e+01\n", + " 9.7784e+01\n", + " 2.0290e+01\n", + " 6.1067e+01\n", + " 4.0045e+00\n", + " 3.5471e+00\n", + " 4.0518e+01\n", + " 5.4415e+00\n", + " 1.6939e+01\n", + " 1.4608e+00\n", + " 8.3743e+01\n", + " 2.9854e+01\n", + " 2.1994e+01\n", + " 4.8434e+00\n", + " 7.4962e+00\n", + " 5.7864e+00\n", + " 8.8313e+01\n", + " 4.5509e+00\n", + " 1.0137e+02\n", + " 2.2057e+01\n", + " 3.6852e+00\n", + " 1.6732e+00\n", + " 4.1326e+01\n", + " 3.7805e+00\n", + " 4.0370e+01\n", + " 5.2707e-01\n", + " 2.1986e+00\n", + " 1.0860e+01\n", + " 4.0454e+01\n", + " 4.4730e+01\n", + " 4.9725e+00\n", + " 4.6923e+00\n", + " 1.9501e+01\n", + " 1.6277e+01\n", + " 7.7052e+00\n", + " 1.2423e+01\n", + " 4.5366e+00\n", + " 7.3450e+00\n", + " 4.4356e-01\n", + " 2.6865e+01\n", + " 1.0230e+00\n", + " 3.0405e+00\n", + " 1.2984e+01\n", + " 1.7935e+01\n", + " 9.7486e+00\n", + " 1.5390e+02\n", + " 1.1770e+01\n", + " 5.4263e+01\n", + " 1.4682e+01\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.10.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 3.1965e-02 -2.1600e-02 -1.0129e-02 ... -3.9500e-02 2.4110e-02 -5.2788e-02\n", + " -3.4690e-01 -2.2403e-01 -1.4392e-01 ... 1.9043e-01 -4.2190e-02 9.6729e-02\n", + " -5.6671e-02 8.6796e-02 4.9753e-02 ... 4.1030e-01 -5.7082e-02 -2.4434e-01\n", + " ... ⋱ ... \n", + " -3.9421e-01 -3.9091e-01 1.9921e-01 ... -5.9211e-04 7.9745e-02 2.5677e-01\n", + " 5.6460e-02 -4.6051e-01 -7.2606e-01 ... 1.4965e-01 2.2783e-02 2.5805e-01\n", + " -6.5163e-02 -6.0904e-02 -1.0758e-01 ... -1.2326e-01 1.9627e-01 5.3745e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " -1.1012e-02 -2.4141e-02 7.4641e-03 ... -3.5029e-02 2.1609e-02 2.7473e-02\n", + " 6.4160e-02 -4.5087e-02 2.4176e-02 ... -2.1199e+00 1.6511e-01 7.0646e-02\n", + " -2.0581e-02 -3.0219e-01 2.2424e-01 ... -1.9432e+00 -2.2556e-02 2.3356e-01\n", + " ... ⋱ ... \n", + " 3.6412e-02 8.1937e-02 -3.6133e-01 ... -1.4206e-01 -1.0086e-01 3.7693e-03\n", + " -1.2741e-01 2.0047e-01 -3.4011e-01 ... -2.2786e-01 9.9893e-02 -9.1123e-02\n", + " 4.0323e-02 -6.2912e-02 -1.3398e-01 ... 1.2671e-01 -3.4339e-01 5.6047e-03\n", + " \n", + " ( 2 ,.,.) = \n", + " 2.4882e-02 6.8116e-03 -2.3403e-03 ... 1.7273e-02 -3.0395e-02 1.5216e-02\n", + " -7.1228e-02 1.7549e-02 1.7411e-01 ... -3.0658e-01 -3.1027e-01 -1.8680e-02\n", + " 2.0702e-02 3.8690e-01 3.5982e-01 ... -1.4068e-02 4.9060e-01 -6.0749e-01\n", + " ... ⋱ ... \n", + " -3.4607e-01 1.7243e-01 -2.9192e-01 ... -1.2063e-01 -6.2334e-01 1.5975e-01\n", + " 4.4745e-02 -6.6337e-01 9.9555e-02 ... 1.0091e-01 -5.8471e-01 -6.7909e-01\n", + " -3.9671e-01 3.0501e-02 -2.3217e-01 ... 5.8709e-02 -1.5712e-01 -1.7326e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " 8.0183e-04 4.9156e-02 3.7375e-02 ... 3.8611e-02 -2.6888e-02 2.1561e-02\n", + " 2.7643e-01 -4.8574e-01 3.0004e-01 ... -5.0056e-01 1.2600e-01 6.9725e-02\n", + " -1.2696e-01 -7.3011e-01 -2.5322e-01 ... 1.9872e-01 -4.8887e-01 3.7973e-01\n", + " ... ⋱ ... \n", + " -5.3998e-01 9.9488e-02 5.8411e-02 ... -1.0019e+00 -3.1663e-01 -9.8524e-02\n", + " -2.3971e-01 6.2732e-02 -5.4200e-01 ... 1.1759e-01 -1.0818e+00 -4.4208e-01\n", + " -5.9369e-03 -2.3910e-02 -3.4175e-02 ... -4.2960e-01 1.6119e-01 -1.5830e-01\n", + " \n", + " (126,.,.) = \n", + " 3.0219e-02 -1.9569e-02 2.2828e-02 ... -4.9221e-03 -1.5746e-04 1.6835e-03\n", + " -5.2897e-02 -1.0896e+00 -2.5633e-02 ... -1.3852e+00 8.2560e-02 -3.2648e-01\n", + " 1.7529e-01 3.1022e-01 7.6865e-02 ... -6.4377e-01 -1.1810e+00 -5.8760e-03\n", + " ... ⋱ ... \n", + " -1.1371e-01 2.4317e-01 -2.2551e-01 ... 1.5635e-01 3.2738e-02 -2.9651e-01\n", + " -3.6801e-01 1.8591e-01 -8.9321e-01 ... -2.3886e-01 -2.5043e-02 -3.4334e-01\n", + " 9.4663e-02 -1.5956e-02 4.3235e-03 ... 6.6401e-02 7.0955e-02 -9.5309e-02\n", + " \n", + " (127,.,.) = \n", + " 7.3776e-03 -1.5134e-02 -2.4655e-02 ... 3.2836e-02 2.8032e-03 8.1508e-03\n", + " -1.9972e-01 8.0481e-02 -3.8044e-02 ... 5.5677e-02 -1.1366e-01 -2.4903e-01\n", + " -9.5893e-02 2.1776e-02 3.0244e-01 ... -6.6698e-01 6.8781e-02 -3.9274e-01\n", + " ... ⋱ ... \n", + " -7.4045e-01 -7.1610e-02 8.1012e-02 ... -9.6516e-01 -4.3659e-01 5.7861e-02\n", + " 4.5081e-02 -8.4197e-03 -2.9812e-01 ... 9.3342e-02 -2.5426e-01 6.9766e-02\n", + " -2.3646e-01 -1.3777e-01 -2.1241e-01 ... -2.0303e-01 -3.3080e-01 -3.8868e-02\n", + " [torch.FloatTensor of size 128x128x11]),\n", + " ('module.encoder.cbhg.conv1d_banks.10.bn.weight', \n", + " 0.4344\n", + " 0.6601\n", + " 0.5257\n", + " 0.4728\n", + " 0.5926\n", + " 0.6298\n", + " 0.4142\n", + " 0.4840\n", + " 0.5788\n", + " 0.5373\n", + " 0.4757\n", + " 0.4920\n", + " -1.0094\n", + " 0.4214\n", + " -0.4071\n", + " 0.4764\n", + " 0.5595\n", + " 0.4574\n", + " 0.4613\n", + " 0.4398\n", + " -0.1176\n", + " 0.4166\n", + " -1.0335\n", + " 0.4902\n", + " 0.4966\n", + " 0.5661\n", + " 0.4466\n", + " 0.4938\n", + " 0.5169\n", + " 0.4404\n", + " 0.4754\n", + " 0.3960\n", + " 0.5418\n", + " 0.4070\n", + " 0.6619\n", + " 0.4451\n", + " 0.5086\n", + " 0.5592\n", + " 0.4527\n", + " 0.4330\n", + " 0.5056\n", + " -1.0021\n", + " 0.5319\n", + " 0.4430\n", + " 0.5225\n", + " 0.4582\n", + " -1.1048\n", + " 0.5603\n", + " 0.4973\n", + " 0.5415\n", + " 0.3753\n", + " 0.4543\n", + " 0.5833\n", + " -1.1240\n", + " 0.5791\n", + " 0.5694\n", + " 0.4648\n", + " -1.1631\n", + " 0.4888\n", + " 0.5441\n", + " 0.4827\n", + " 0.5610\n", + " 0.4867\n", + " 0.5662\n", + " 0.6429\n", + " -0.8323\n", + " -1.2634\n", + " 0.4140\n", + " 0.4953\n", + " -1.0699\n", + " 0.4622\n", + " 0.5307\n", + " 0.5351\n", + " 0.3556\n", + " 0.5135\n", + " 0.4880\n", + " 0.9097\n", + " 0.6635\n", + " 0.6228\n", + " 0.6124\n", + " 0.5160\n", + " 0.5250\n", + " 0.5747\n", + " -0.9779\n", + " -1.1890\n", + " 0.3801\n", + " -0.8307\n", + " 0.4638\n", + " 0.5340\n", + " 0.4631\n", + " -1.1818\n", + " -0.0781\n", + " 0.4186\n", + " 0.4079\n", + " 0.4136\n", + " 0.5133\n", + " 0.6921\n", + " 0.7630\n", + " 0.5433\n", + " -1.1873\n", + " 0.4674\n", + " 0.6153\n", + " 0.4806\n", + " -1.1369\n", + " 0.4613\n", + " 0.5009\n", + " 0.4665\n", + " 0.4379\n", + " 0.5447\n", + " 0.4623\n", + " 0.5299\n", + " 0.5023\n", + " 0.5153\n", + " -1.1337\n", + " 0.5276\n", + " 0.5530\n", + " 0.2472\n", + " 0.9015\n", + " 0.8050\n", + " 0.4522\n", + " 0.4985\n", + " 0.4078\n", + " 0.5552\n", + " 0.5015\n", + " 0.4041\n", + " 0.5260\n", + " 0.5415\n", + " 0.5411\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.10.bn.bias', \n", + " 0.0919\n", + " 0.1599\n", + " -0.1932\n", + " -0.0641\n", + " -0.0096\n", + " -0.0893\n", + " 0.1003\n", + " -0.0897\n", + " -0.0102\n", + " -0.0688\n", + " 0.0816\n", + " 0.1825\n", + " 0.0328\n", + " 0.0858\n", + " -0.1020\n", + " -0.0027\n", + " 0.1956\n", + " 0.0956\n", + " 0.1314\n", + " 0.0746\n", + " -0.0201\n", + " 0.0738\n", + " -0.0781\n", + " -0.0908\n", + " 0.0215\n", + " 0.0816\n", + " 0.0249\n", + " -0.2307\n", + " 0.0006\n", + " 0.0656\n", + " -0.0424\n", + " -0.1228\n", + " 0.0058\n", + " -0.1347\n", + " 0.1288\n", + " 0.1105\n", + " -0.1432\n", + " 0.1302\n", + " 0.0002\n", + " -0.0217\n", + " 0.0076\n", + " -0.2547\n", + " -0.0165\n", + " -0.0844\n", + " -0.0056\n", + " 0.0757\n", + " -0.1091\n", + " -0.1264\n", + " 0.0169\n", + " 0.0392\n", + " -0.0662\n", + " -0.0453\n", + " 0.2432\n", + " -0.1353\n", + " 0.0020\n", + " 0.1203\n", + " 0.1139\n", + " -0.2315\n", + " -0.0388\n", + " 0.1765\n", + " 0.0539\n", + " 0.0279\n", + " 0.0893\n", + " -0.0326\n", + " 0.0203\n", + " -0.0750\n", + " -0.2031\n", + " 0.1531\n", + " -0.0247\n", + " -0.1084\n", + " 0.0231\n", + " 0.1744\n", + " 0.0488\n", + " 0.0008\n", + " 0.0818\n", + " 0.1781\n", + " 0.0758\n", + " 0.0973\n", + " 0.0312\n", + " -0.0496\n", + " 0.0482\n", + " 0.0648\n", + " -0.0318\n", + " -0.2598\n", + " -0.1971\n", + " -0.1048\n", + " 0.0023\n", + " 0.0289\n", + " -0.0186\n", + " 0.1050\n", + " -0.1225\n", + " -0.0108\n", + " -0.0859\n", + " 0.0186\n", + " 0.0906\n", + " 0.1087\n", + " 0.1233\n", + " 0.0986\n", + " -0.0136\n", + " -0.2576\n", + " 0.0323\n", + " 0.2639\n", + " -0.0318\n", + " -0.1497\n", + " 0.1004\n", + " 0.0851\n", + " -0.0893\n", + " 0.0045\n", + " 0.0408\n", + " -0.0955\n", + " 0.0782\n", + " 0.0695\n", + " -0.1207\n", + " -0.3635\n", + " 0.1621\n", + " 0.1723\n", + " -0.0080\n", + " 0.1664\n", + " 0.1579\n", + " 0.1677\n", + " -0.0714\n", + " 0.0826\n", + " 0.0476\n", + " 0.0803\n", + " 0.0645\n", + " 0.1041\n", + " 0.0326\n", + " 0.0649\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.10.bn.running_mean', \n", + " 0.5715\n", + " 0.4787\n", + " 0.5886\n", + " 0.8980\n", + " 3.5874\n", + " 0.8712\n", + " 0.4066\n", + " 0.3407\n", + " 0.2876\n", + " 0.2127\n", + " 0.7389\n", + " 3.5558\n", + " 1.7456\n", + " 0.2775\n", + " 10.9636\n", + " 0.4779\n", + " 1.1393\n", + " 0.6408\n", + " 1.8196\n", + " 1.6055\n", + " 4.1998\n", + " 1.6512\n", + " 5.2940\n", + " 1.6774\n", + " 0.4384\n", + " 0.6230\n", + " 0.7512\n", + " 3.3535\n", + " 2.6237\n", + " 1.3885\n", + " 0.3585\n", + " 0.4600\n", + " 2.8188\n", + " 0.5538\n", + " 1.7370\n", + " 0.5905\n", + " 1.5130\n", + " 3.0031\n", + " 0.8443\n", + " 1.7084\n", + " 0.1227\n", + " 4.0383\n", + " 0.4113\n", + " 0.1819\n", + " 2.9395\n", + " 0.2186\n", + " 0.2448\n", + " 1.1199\n", + " 1.2371\n", + " 1.2992\n", + " 0.3041\n", + " 0.1607\n", + " 2.4229\n", + " 3.3267\n", + " 0.1393\n", + " 1.7397\n", + " 0.4127\n", + " 1.6051\n", + " 0.1115\n", + " 0.7717\n", + " 0.9341\n", + " 0.1516\n", + " 0.5486\n", + " 1.1999\n", + " 4.9575\n", + " 11.2588\n", + " 1.5768\n", + " 0.4544\n", + " 0.6733\n", + " 1.8999\n", + " 0.4666\n", + " 1.3727\n", + " 0.1095\n", + " 0.3338\n", + " 1.1352\n", + " 0.4972\n", + " 0.0371\n", + " 1.5335\n", + " 0.0357\n", + " 0.5844\n", + " 0.1059\n", + " 1.0272\n", + " 2.3088\n", + " 4.1160\n", + " 0.6063\n", + " 0.2265\n", + " 7.8183\n", + " 0.6386\n", + " 0.2476\n", + " 0.3767\n", + " 1.3118\n", + " 8.1675\n", + " 0.7651\n", + " 0.0587\n", + " 0.9415\n", + " 0.7294\n", + " 12.8802\n", + " 1.8015\n", + " 3.8814\n", + " 2.8758\n", + " 0.6577\n", + " 3.3869\n", + " 0.5129\n", + " 2.2430\n", + " 1.4347\n", + " 1.2082\n", + " 0.2646\n", + " 0.8686\n", + " 0.6948\n", + " 0.9758\n", + " 0.3923\n", + " 0.1918\n", + " 0.5296\n", + " 5.1353\n", + " 0.9857\n", + " 2.3894\n", + " 2.8527\n", + " 0.0900\n", + " 2.0014\n", + " 0.7127\n", + " 1.4246\n", + " 0.3800\n", + " 0.1628\n", + " 0.5197\n", + " 0.3114\n", + " 0.9503\n", + " 0.6195\n", + " 0.0770\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.10.bn.running_var', \n", + " 8.2030\n", + " 6.9862\n", + " 9.9357\n", + " 15.2206\n", + " 63.2403\n", + " 13.4121\n", + " 7.2176\n", + " 5.0432\n", + " 4.0066\n", + " 2.1296\n", + " 12.5899\n", + " 53.5196\n", + " 28.3303\n", + " 3.4958\n", + " 74.1906\n", + " 7.4082\n", + " 16.8727\n", + " 10.0798\n", + " 28.3960\n", + " 28.3827\n", + " 34.1655\n", + " 25.4091\n", + " 98.1128\n", + " 28.2085\n", + " 6.3762\n", + " 10.2647\n", + " 10.9746\n", + " 48.4148\n", + " 42.2198\n", + " 15.5746\n", + " 4.7592\n", + " 5.8319\n", + " 39.3070\n", + " 8.7624\n", + " 32.9965\n", + " 9.7541\n", + " 21.1747\n", + " 38.0584\n", + " 13.8016\n", + " 14.1439\n", + " 1.4819\n", + " 63.9721\n", + " 5.7939\n", + " 2.3634\n", + " 42.8073\n", + " 3.4405\n", + " 2.6276\n", + " 18.2133\n", + " 19.6721\n", + " 22.8966\n", + " 3.9301\n", + " 2.2315\n", + " 33.0830\n", + " 50.7738\n", + " 1.7183\n", + " 22.4970\n", + " 5.4776\n", + " 24.4470\n", + " 1.9185\n", + " 12.9313\n", + " 14.1143\n", + " 2.5983\n", + " 8.1474\n", + " 18.5348\n", + " 71.7504\n", + " 126.3550\n", + " 23.6516\n", + " 7.1524\n", + " 9.9798\n", + " 25.4920\n", + " 7.4487\n", + " 20.8167\n", + " 1.6687\n", + " 4.8173\n", + " 15.6865\n", + " 5.9931\n", + " 0.5863\n", + " 21.7323\n", + " 0.3726\n", + " 8.5008\n", + " 1.6352\n", + " 14.4115\n", + " 32.1514\n", + " 70.6772\n", + " 8.6440\n", + " 3.3432\n", + " 124.2477\n", + " 8.7533\n", + " 3.7762\n", + " 6.4966\n", + " 17.0977\n", + " 49.6824\n", + " 11.3608\n", + " 0.8637\n", + " 12.2889\n", + " 11.0555\n", + " 175.4644\n", + " 26.1177\n", + " 70.9077\n", + " 44.7209\n", + " 10.0761\n", + " 47.5161\n", + " 7.7064\n", + " 32.5647\n", + " 23.2061\n", + " 20.2472\n", + " 3.1556\n", + " 13.3795\n", + " 11.0379\n", + " 17.0404\n", + " 6.6057\n", + " 2.9541\n", + " 8.3151\n", + " 84.5365\n", + " 17.6665\n", + " 32.6644\n", + " 18.0309\n", + " 0.8674\n", + " 32.1254\n", + " 10.9736\n", + " 21.6199\n", + " 5.6371\n", + " 2.2261\n", + " 7.9350\n", + " 4.4895\n", + " 15.9966\n", + " 8.4143\n", + " 1.1489\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.11.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 1.4652e-02 5.3001e-03 1.0720e-03 ... 1.5744e-02 1.2328e-02 1.4525e-02\n", + " 7.5329e-02 -1.8212e-01 -5.1388e-01 ... -1.1485e+00 -8.6555e-02 9.2271e-02\n", + " -1.5347e-01 -1.8767e-01 3.9370e-02 ... -7.1084e-02 6.2531e-02 -1.3709e-01\n", + " ... ⋱ ... \n", + " -7.7978e-02 -2.1314e-02 4.5352e-02 ... -1.2343e-02 -3.4504e-01 -8.0914e-03\n", + " -6.4026e-01 6.0411e-02 -9.7488e-01 ... -2.4730e-01 -3.6128e-01 1.5796e-02\n", + " -1.0371e-01 -1.2962e-01 3.2543e-01 ... 4.1171e-03 -5.8695e-01 -6.4797e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -1.0019e-02 -2.5829e-02 4.0702e-03 ... -3.8123e-02 8.5839e-04 -1.2530e-02\n", + " 9.8703e-02 2.6438e-01 -2.0426e-02 ... -1.3528e+00 3.5872e-02 6.7084e-02\n", + " -8.0820e-03 -7.2237e-02 -2.2399e-01 ... -5.5380e-02 -2.0954e-01 -3.6943e-01\n", + " ... ⋱ ... \n", + " -3.1969e-02 2.7417e-01 1.2250e-01 ... -1.4495e-01 -8.4950e-01 -2.2803e-01\n", + " 3.2143e-01 1.2398e-01 -4.5293e-01 ... -1.4413e-01 2.1823e-01 -3.8627e-01\n", + " 1.7834e-02 2.2267e-02 -7.0417e-02 ... 4.2893e-02 -2.8627e-01 3.4247e-02\n", + " \n", + " ( 2 ,.,.) = \n", + " 1.9375e-02 2.3812e-02 1.1276e-02 ... 5.1828e-03 -2.3985e-02 2.3789e-02\n", + " -4.3739e-01 2.0894e-01 -3.8575e-02 ... 3.2274e-01 1.7369e-01 1.0408e-01\n", + " 1.8813e-01 2.6524e-01 5.7974e-01 ... -8.7242e-03 -1.0690e-01 -7.8983e-01\n", + " ... ⋱ ... \n", + " 2.3529e-01 -6.2904e-02 -1.4557e-01 ... -4.5544e-02 1.7732e-01 8.4309e-03\n", + " 3.3294e-01 -8.4541e-02 8.7829e-02 ... -1.1917e-01 -4.7819e-02 -7.6159e-01\n", + " 1.3981e-02 -1.6293e-02 -3.2810e-03 ... -2.1877e-01 1.0173e-01 -1.8190e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " 3.4189e-03 -2.0456e-02 1.4243e-02 ... -2.3227e-03 9.3239e-04 -1.0247e-03\n", + " -3.3739e-02 -1.0891e-01 4.8999e-02 ... 1.4597e-02 1.6591e-01 5.4610e-01\n", + " 2.9653e-01 -1.0343e-01 1.2764e-01 ... -2.8191e-01 1.4097e-01 -1.2534e-01\n", + " ... ⋱ ... \n", + " -2.1604e-01 4.4984e-02 -2.8327e-03 ... -2.6177e-02 2.6116e-01 -3.5064e-01\n", + " -3.2880e-03 -4.0734e-02 -1.9771e-02 ... -1.2193e-01 -2.4205e-01 3.3782e-02\n", + " -5.5796e-02 3.7811e-02 2.0099e-02 ... 7.9827e-02 1.1639e-01 -3.2006e-01\n", + " \n", + " (126,.,.) = \n", + " -1.4516e-02 1.7064e-02 -9.8402e-03 ... -2.3872e-02 -3.4032e-02 1.4728e-02\n", + " 1.5041e-01 -9.3227e-02 6.9412e-03 ... 1.4876e-01 1.2624e-01 -8.2570e-03\n", + " 1.4423e-01 5.5396e-02 3.7413e-01 ... -3.2377e-02 9.6140e-03 -1.9368e-01\n", + " ... ⋱ ... \n", + " -1.3670e-01 1.9511e-01 1.7143e-02 ... 2.1694e-01 2.6442e-01 1.4836e-01\n", + " 1.3229e-01 -1.1568e-01 -2.9643e-01 ... 2.0208e-02 -8.4069e-01 -3.5946e-01\n", + " -5.8840e-02 3.1408e-02 4.1788e-02 ... 1.1578e-01 8.8983e-02 -9.6329e-02\n", + " \n", + " (127,.,.) = \n", + " 2.7546e-02 -5.6759e-03 1.0084e-02 ... 2.6578e-02 1.1931e-02 -1.4826e-02\n", + " -1.6599e-01 -2.7726e-02 1.0764e-01 ... -2.8034e-02 1.1052e-01 1.5459e-01\n", + " 4.3881e-01 -1.1269e-01 -5.1397e-01 ... 1.1887e-01 -5.0752e-03 1.7655e-02\n", + " ... ⋱ ... \n", + " -1.3443e-01 -3.9785e-01 -6.7975e-01 ... 2.2963e-01 -2.1617e-01 -5.5946e-01\n", + " -1.4329e-01 -7.1816e-02 8.6829e-02 ... -2.5498e-01 1.2733e-01 -5.0500e-01\n", + " -2.2701e-02 -3.5109e-02 8.2566e-02 ... 6.8880e-02 -2.8114e-02 -2.3018e-02\n", + " [torch.FloatTensor of size 128x128x12]),\n", + " ('module.encoder.cbhg.conv1d_banks.11.bn.weight', \n", + " 0.4696\n", + " 0.5719\n", + " -1.1061\n", + " 0.5807\n", + " -0.7647\n", + " 0.4872\n", + " 0.4623\n", + " 0.4274\n", + " -1.3260\n", + " 0.4248\n", + " 0.4323\n", + " 0.4575\n", + " 0.5025\n", + " 0.4771\n", + " 0.4064\n", + " 0.5374\n", + " 0.6726\n", + " 0.4568\n", + " 0.4295\n", + " 0.7191\n", + " 0.4623\n", + " 0.5528\n", + " -1.2894\n", + " 0.4423\n", + " 0.5022\n", + " -1.1094\n", + " 0.4809\n", + " 0.5221\n", + " 0.4350\n", + " 0.5107\n", + " 0.4495\n", + " 0.5038\n", + " -0.9673\n", + " -1.2126\n", + " 0.7197\n", + " 0.5469\n", + " 0.7150\n", + " 0.6002\n", + " 0.4375\n", + " 0.4025\n", + " 0.5752\n", + " 0.4551\n", + " -1.1043\n", + " 0.4402\n", + " 0.5183\n", + " -1.0622\n", + " 0.7087\n", + " 0.5022\n", + " 0.4157\n", + " 0.4661\n", + " 0.4746\n", + " -1.0687\n", + " 0.4714\n", + " 0.4893\n", + " -1.1576\n", + " 0.4664\n", + " 0.4239\n", + " -1.0739\n", + " 0.5324\n", + " 0.5097\n", + " 0.3901\n", + " 0.5238\n", + " 0.5563\n", + " 0.4259\n", + " 0.4894\n", + " 0.4330\n", + " -1.1346\n", + " 0.4826\n", + " 0.4866\n", + " -1.1332\n", + " 0.5377\n", + " -1.0953\n", + " 0.4420\n", + " -0.9456\n", + " 0.4166\n", + " 0.5060\n", + " -1.2205\n", + " 0.4793\n", + " -1.0951\n", + " 0.4486\n", + " 0.5078\n", + " 0.5554\n", + " 0.8730\n", + " 0.6453\n", + " 0.4621\n", + " -0.6677\n", + " 0.4828\n", + " 0.5072\n", + " 0.4975\n", + " 0.6089\n", + " -0.9835\n", + " -0.0207\n", + " 0.5271\n", + " 0.6392\n", + " -0.8556\n", + " -1.2751\n", + " -1.1145\n", + " 0.4019\n", + " 0.4133\n", + " 0.5971\n", + " 0.5816\n", + " 0.4599\n", + " 0.4032\n", + " 0.9104\n", + " 0.5933\n", + " 0.4664\n", + " 0.4314\n", + " 0.4786\n", + " 0.4945\n", + " -1.2253\n", + " 0.6391\n", + " 0.5243\n", + " 0.5276\n", + " 0.5435\n", + " 0.4402\n", + " 0.4819\n", + " -1.0076\n", + " 0.4569\n", + " 0.4705\n", + " 0.4374\n", + " 0.4443\n", + " 0.6577\n", + " 0.4741\n", + " 0.5412\n", + " 0.4809\n", + " -0.2688\n", + " 0.4772\n", + " -1.3877\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.11.bn.bias', \n", + " -0.1058\n", + " 0.1084\n", + " -0.3531\n", + " 0.1187\n", + " -0.0526\n", + " -0.0250\n", + " 0.0292\n", + " 0.0647\n", + " -0.2039\n", + " -0.0704\n", + " 0.0664\n", + " 0.0294\n", + " -0.0517\n", + " 0.0872\n", + " 0.1567\n", + " 0.0910\n", + " -0.1163\n", + " 0.0101\n", + " 0.0445\n", + " -0.0107\n", + " 0.1458\n", + " -0.0375\n", + " -0.2707\n", + " 0.0549\n", + " 0.0212\n", + " -0.1040\n", + " 0.0820\n", + " 0.1413\n", + " -0.1988\n", + " 0.0427\n", + " 0.1023\n", + " 0.0553\n", + " -0.2724\n", + " -0.2291\n", + " 0.1637\n", + " -0.0511\n", + " 0.0080\n", + " -0.0833\n", + " -0.0119\n", + " 0.0671\n", + " 0.0635\n", + " -0.0437\n", + " -0.1125\n", + " 0.0252\n", + " -0.1392\n", + " -0.2180\n", + " 0.2414\n", + " 0.0596\n", + " -0.0395\n", + " 0.0883\n", + " -0.3027\n", + " -0.1139\n", + " -0.0174\n", + " -0.0760\n", + " -0.3178\n", + " -0.0409\n", + " -0.0582\n", + " -0.1743\n", + " 0.0023\n", + " -0.1353\n", + " 0.0581\n", + " 0.0447\n", + " -0.0721\n", + " 0.0643\n", + " 0.1069\n", + " 0.0617\n", + " -0.1114\n", + " 0.0584\n", + " 0.0626\n", + " -0.2247\n", + " 0.0815\n", + " -0.0843\n", + " 0.0049\n", + " -0.1601\n", + " 0.0536\n", + " -0.0974\n", + " -0.1126\n", + " -0.0245\n", + " -0.2789\n", + " 0.0085\n", + " -0.1055\n", + " 0.1799\n", + " 0.0619\n", + " 0.0099\n", + " -0.0358\n", + " 0.0111\n", + " 0.0501\n", + " -0.0037\n", + " 0.0825\n", + " 0.0898\n", + " 0.0390\n", + " -0.0124\n", + " 0.0855\n", + " 0.0772\n", + " -0.0457\n", + " -0.1813\n", + " -0.1343\n", + " -0.1044\n", + " -0.1445\n", + " 0.1514\n", + " 0.2075\n", + " -0.1159\n", + " -0.0705\n", + " -0.0395\n", + " -0.0904\n", + " 0.1480\n", + " -0.0233\n", + " 0.0901\n", + " 0.0267\n", + " -0.1453\n", + " 0.1292\n", + " -0.0030\n", + " -0.0621\n", + " 0.0499\n", + " -0.1750\n", + " 0.1231\n", + " -0.1312\n", + " -0.0642\n", + " 0.0314\n", + " -0.0623\n", + " -0.0681\n", + " -0.2011\n", + " 0.1394\n", + " 0.0520\n", + " 0.1993\n", + " -0.0699\n", + " -0.0923\n", + " -0.2286\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.11.bn.running_mean', \n", + " 0.8973\n", + " 1.0403\n", + " 4.8064\n", + " 2.1079\n", + " 0.1551\n", + " 0.8337\n", + " 1.7971\n", + " 0.6739\n", + " 4.2610\n", + " 1.1109\n", + " 0.9439\n", + " 0.5355\n", + " 1.3070\n", + " 0.2914\n", + " 1.5545\n", + " 1.5114\n", + " 6.3411\n", + " 0.3893\n", + " 1.6662\n", + " 3.2795\n", + " 1.6572\n", + " 6.7529\n", + " 1.8553\n", + " 1.4979\n", + " 0.5757\n", + " 4.7291\n", + " 0.9452\n", + " 0.8243\n", + " 0.7778\n", + " 1.3144\n", + " 0.3643\n", + " 0.7754\n", + " 4.2364\n", + " 3.2026\n", + " 18.7853\n", + " 1.7417\n", + " 0.1808\n", + " 2.4082\n", + " 2.0200\n", + " 0.6738\n", + " 2.0175\n", + " 1.1166\n", + " 3.8472\n", + " 0.6636\n", + " 2.0998\n", + " 4.3731\n", + " 9.3946\n", + " 0.4795\n", + " 0.2454\n", + " 0.5545\n", + " 1.1134\n", + " 2.0495\n", + " 1.7427\n", + " 0.7735\n", + " 3.7053\n", + " 0.3383\n", + " 0.1242\n", + " 3.1761\n", + " 0.4819\n", + " 1.1880\n", + " 0.0979\n", + " 2.6670\n", + " 2.3404\n", + " 1.3646\n", + " 1.2772\n", + " 1.5946\n", + " 7.1215\n", + " 0.9997\n", + " 2.6096\n", + " 3.1457\n", + " 0.7870\n", + " 1.3130\n", + " 1.3897\n", + " 7.1944\n", + " 1.5634\n", + " 0.5821\n", + " 1.0111\n", + " 0.8214\n", + " 2.0198\n", + " 0.2335\n", + " 1.0773\n", + " 1.2245\n", + " 0.1167\n", + " 0.3181\n", + " 1.7782\n", + " 0.1862\n", + " 0.8499\n", + " 1.5571\n", + " 1.3499\n", + " 7.5830\n", + " 5.2754\n", + " 0.0000\n", + " 0.2575\n", + " 0.3283\n", + " 0.0546\n", + " 2.8495\n", + " 1.7159\n", + " 1.3518\n", + " 0.4363\n", + " 1.7090\n", + " 2.2579\n", + " 1.9332\n", + " 0.6331\n", + " 0.5330\n", + " 8.2135\n", + " 0.7789\n", + " 0.8577\n", + " 0.9780\n", + " 0.3793\n", + " 1.0137\n", + " 3.6428\n", + " 1.2983\n", + " 1.0218\n", + " 0.4764\n", + " 1.1906\n", + " 0.9962\n", + " 4.0012\n", + " 0.7476\n", + " 1.5306\n", + " 0.6303\n", + " 1.0833\n", + " 1.0098\n", + " 0.7644\n", + " 0.3430\n", + " 1.3532\n", + " 13.6173\n", + " 1.5928\n", + " 1.0167\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.11.bn.running_var', \n", + " 15.9795\n", + " 17.4517\n", + " 94.5124\n", + " 26.5261\n", + " 1.7434\n", + " 13.4592\n", + " 29.4983\n", + " 10.8412\n", + " 70.0869\n", + " 19.7031\n", + " 13.3471\n", + " 6.9818\n", + " 23.0768\n", + " 3.9078\n", + " 29.2266\n", + " 27.8719\n", + " 112.1345\n", + " 5.1913\n", + " 29.6777\n", + " 46.6807\n", + " 27.0041\n", + " 89.0012\n", + " 33.1502\n", + " 22.0520\n", + " 8.1558\n", + " 79.3337\n", + " 18.6742\n", + " 14.1399\n", + " 11.9580\n", + " 20.0961\n", + " 5.2169\n", + " 12.5176\n", + " 70.1408\n", + " 57.7935\n", + " 184.6222\n", + " 21.1908\n", + " 2.6207\n", + " 39.1001\n", + " 33.0373\n", + " 9.4337\n", + " 30.4736\n", + " 16.5897\n", + " 63.7404\n", + " 8.9600\n", + " 30.5162\n", + " 75.9287\n", + " 151.3965\n", + " 7.5285\n", + " 4.1469\n", + " 9.7788\n", + " 16.7911\n", + " 35.3818\n", + " 33.8144\n", + " 12.2592\n", + " 70.2199\n", + " 6.0559\n", + " 1.6863\n", + " 39.9687\n", + " 7.8825\n", + " 15.8410\n", + " 1.6622\n", + " 49.5056\n", + " 45.0633\n", + " 20.5786\n", + " 20.9901\n", + " 27.1553\n", + " 117.9534\n", + " 15.9916\n", + " 50.4664\n", + " 55.2017\n", + " 15.1110\n", + " 21.9056\n", + " 22.0118\n", + " 85.8351\n", + " 25.7032\n", + " 9.7736\n", + " 16.3477\n", + " 12.8946\n", + " 33.3585\n", + " 3.1145\n", + " 17.9771\n", + " 16.4898\n", + " 1.7553\n", + " 5.7009\n", + " 26.2157\n", + " 2.5881\n", + " 13.6531\n", + " 29.6845\n", + " 16.6336\n", + " 118.7652\n", + " 68.9620\n", + " 0.0000\n", + " 3.7575\n", + " 5.1797\n", + " 0.4994\n", + " 55.4025\n", + " 25.7519\n", + " 18.1042\n", + " 6.0330\n", + " 25.7486\n", + " 36.9491\n", + " 38.7223\n", + " 8.7716\n", + " 10.5446\n", + " 108.5823\n", + " 13.5954\n", + " 15.2862\n", + " 12.7029\n", + " 4.9249\n", + " 14.5424\n", + " 53.4624\n", + " 24.4559\n", + " 15.0345\n", + " 6.6778\n", + " 20.6577\n", + " 19.7080\n", + " 63.5889\n", + " 13.8471\n", + " 27.6995\n", + " 9.9054\n", + " 18.7738\n", + " 17.2054\n", + " 12.9331\n", + " 5.1603\n", + " 25.3986\n", + " 81.0888\n", + " 24.8573\n", + " 14.9030\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.12.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 2.5124e-03 -2.2784e-02 1.0984e-02 ... 4.9846e-04 2.8635e-02 1.0756e-03\n", + " -1.3106e-01 1.4341e-01 7.9323e-02 ... 6.3507e-02 -4.5839e-02 2.1501e-01\n", + " 9.0208e-02 -1.7771e-01 -4.5272e-01 ... -6.9815e-02 -1.9479e-01 -1.8784e-03\n", + " ... ⋱ ... \n", + " -1.3932e-01 -3.7012e-01 -4.7639e-01 ... -1.0966e+00 1.5456e-01 -9.4229e-01\n", + " 5.7549e-02 -3.5620e-02 -2.3836e-01 ... 2.2370e-01 -3.1791e-01 -4.1511e-01\n", + " 7.0249e-02 1.9633e-01 1.1341e-01 ... -3.2817e-01 2.5300e-01 -1.3422e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -1.7731e-02 4.5285e-02 -1.2814e-02 ... -2.7173e-03 -1.4069e-02 -3.6759e-03\n", + " -7.2258e-02 -4.0775e-01 -1.8876e-01 ... 4.4626e-02 -1.0953e-01 -4.6202e-01\n", + " -1.1532e-02 2.4754e-01 -1.5029e-01 ... 3.5624e-01 -4.6946e-02 -1.4037e-01\n", + " ... ⋱ ... \n", + " -3.6031e-01 1.9696e-01 1.2519e-01 ... -1.9825e-01 -4.8447e-02 -1.3655e+00\n", + " 3.2029e-01 -6.1391e-02 1.5598e-01 ... -1.5652e-01 1.6171e-01 1.2432e-01\n", + " 6.3132e-02 -1.3603e-01 1.7496e-01 ... 5.9061e-02 9.7532e-02 -1.7508e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " -6.3073e-03 -7.1700e-03 -9.2430e-03 ... 1.5414e-02 -1.2460e-02 -1.5091e-03\n", + " -1.9551e-01 1.3026e-01 1.2604e-01 ... 9.2214e-02 -1.9176e-01 2.9766e-01\n", + " 1.9804e-01 -3.1485e-01 2.3391e-01 ... -1.3164e-01 4.3471e-01 -1.9872e-02\n", + " ... ⋱ ... \n", + " 2.8241e-01 1.6263e-01 -1.1973e-01 ... -1.9607e-01 2.0565e-01 -4.4889e-01\n", + " 1.6790e-01 -3.0801e-01 3.3417e-01 ... 4.0863e-02 -6.6297e-02 1.1063e-01\n", + " 7.7762e-02 1.0632e-01 6.3908e-02 ... 1.2705e-01 -4.4205e-02 9.7256e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -2.7683e-02 1.0624e-02 -5.0701e-03 ... -2.5705e-02 -3.8035e-02 -1.6509e-02\n", + " -3.8700e-01 -1.5979e-02 -2.6519e-01 ... 3.7613e-02 -3.7213e-02 1.0377e-01\n", + " -6.5393e-02 -1.7880e-01 -4.2023e-02 ... 1.0308e-02 -6.8235e-02 1.3338e-02\n", + " ... ⋱ ... \n", + " -6.8673e-01 1.2962e-01 -1.2936e-01 ... -1.4112e+00 3.2245e-01 3.7807e-02\n", + " 1.8645e-02 -7.1574e-02 -3.7431e-01 ... 5.2542e-02 -5.8785e-02 3.6606e-02\n", + " -2.0383e-01 8.8988e-02 4.6355e-02 ... -2.3510e-01 -2.2312e-01 -3.7548e-01\n", + " \n", + " (126,.,.) = \n", + " 1.6585e-02 1.8607e-02 -3.3634e-02 ... 6.2257e-03 1.5424e-03 -2.4602e-02\n", + " -3.4146e-01 2.2077e-02 -4.2619e-01 ... 1.9176e-01 -1.5382e-02 1.8814e-01\n", + " 2.1378e-01 -2.0700e-01 1.5258e-01 ... -2.4342e-01 -1.1730e-01 1.1733e-01\n", + " ... ⋱ ... \n", + " 9.8764e-02 3.2841e-01 3.0355e-01 ... 5.4214e-02 -9.0069e-02 -3.2505e-01\n", + " -3.9483e-01 2.0615e-01 2.1718e-01 ... -4.8824e-01 -8.4747e-01 1.1944e-01\n", + " -3.3625e-02 -4.8884e-03 4.1738e-02 ... -1.3514e-01 -2.0050e-01 -1.4370e-01\n", + " \n", + " (127,.,.) = \n", + " 2.5590e-02 1.8387e-02 2.0806e-02 ... 8.1549e-03 -1.6850e-03 7.8334e-03\n", + " -2.8174e-01 -3.6004e-01 -2.3312e-01 ... 4.5390e-02 4.9092e-02 -4.5602e-02\n", + " 6.9535e-01 1.4977e-01 -2.8423e-02 ... -1.3624e-01 1.0768e-01 -2.6318e-01\n", + " ... ⋱ ... \n", + " 5.7602e-02 1.3463e-01 5.8125e-03 ... -2.4428e-02 -5.6623e-01 -2.7310e-01\n", + " 5.5486e-02 2.0697e-01 -2.1729e-01 ... 2.6449e-01 -7.7781e-02 -2.6877e-01\n", + " 8.7469e-02 -4.8216e-02 4.2947e-02 ... 2.2505e-01 -2.1960e-01 -1.7593e-01\n", + " [torch.FloatTensor of size 128x128x13]),\n", + " ('module.encoder.cbhg.conv1d_banks.12.bn.weight', \n", + " 0.5730\n", + " 0.4872\n", + " -0.8539\n", + " 0.4749\n", + " 0.5131\n", + " -1.1585\n", + " -1.4734\n", + " 0.7568\n", + " 0.5510\n", + " 0.5189\n", + " 0.5052\n", + " 0.6131\n", + " 0.5743\n", + " 0.5302\n", + " 0.4877\n", + " 0.5639\n", + " 0.5930\n", + " -1.1419\n", + " 0.4849\n", + " 0.5213\n", + " -1.2542\n", + " 0.5455\n", + " 0.4479\n", + " -0.9798\n", + " 0.4703\n", + " 0.5385\n", + " -0.5705\n", + " -1.1007\n", + " 0.5222\n", + " -1.0825\n", + " 0.6221\n", + " 0.4761\n", + " 0.4963\n", + " 0.5569\n", + " 0.5680\n", + " 0.5440\n", + " -1.0525\n", + " 0.5683\n", + " 0.5189\n", + " 0.6212\n", + " 0.4043\n", + " -0.9544\n", + " -1.3453\n", + " 0.5191\n", + " 0.6303\n", + " 0.5956\n", + " 0.5559\n", + " 0.5394\n", + " 1.3447\n", + " 0.7187\n", + " 0.5206\n", + " 0.5399\n", + " 0.4557\n", + " -1.2270\n", + " 0.5964\n", + " 0.4943\n", + " 0.5270\n", + " 0.7588\n", + " 0.5271\n", + " 0.6135\n", + " 0.5529\n", + " 0.4835\n", + " 0.5829\n", + " 0.0193\n", + " 0.4772\n", + " 0.4560\n", + " 0.5157\n", + " 0.4611\n", + " 0.5422\n", + " 0.5020\n", + " 0.4983\n", + " 0.5436\n", + " 0.5950\n", + " 0.4876\n", + " 0.4689\n", + " -0.3098\n", + " 0.5467\n", + " 0.0583\n", + " 0.4947\n", + " 0.4951\n", + " 0.4450\n", + " 0.5582\n", + " 0.5557\n", + " -0.9568\n", + " 0.4925\n", + " 0.5055\n", + " 0.5056\n", + " 0.5599\n", + " -1.2361\n", + " 0.4219\n", + " 0.4890\n", + " 0.4836\n", + " 0.6297\n", + " 0.5976\n", + " 0.6654\n", + " 0.4469\n", + " -1.2179\n", + " 0.6102\n", + " 0.2783\n", + " 0.4592\n", + " 0.4686\n", + " 0.4252\n", + " -1.3238\n", + " 0.4724\n", + " 0.3981\n", + " 0.5550\n", + " 0.6266\n", + " 0.4612\n", + " 0.5325\n", + " 0.5209\n", + " 0.6053\n", + " 0.5557\n", + " 0.4515\n", + " 0.4776\n", + " 0.4911\n", + " 0.4925\n", + " 0.5737\n", + " 0.6716\n", + " 0.4675\n", + " -1.0168\n", + " 0.5330\n", + " 0.5361\n", + " 0.5203\n", + " 0.5810\n", + " 0.5359\n", + " 0.4884\n", + " 0.7344\n", + " 0.4919\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.12.bn.bias', \n", + " 0.0372\n", + " -0.0224\n", + " -0.2256\n", + " 0.1013\n", + " 0.0967\n", + " -0.1798\n", + " -0.1600\n", + " 0.1434\n", + " 0.0034\n", + " 0.0257\n", + " 0.0465\n", + " -0.1792\n", + " -0.0230\n", + " -0.0695\n", + " -0.0222\n", + " -0.0355\n", + " 0.0586\n", + " -0.0271\n", + " 0.0935\n", + " 0.1585\n", + " -0.1269\n", + " -0.0820\n", + " 0.1005\n", + " -0.2136\n", + " -0.0031\n", + " 0.0654\n", + " -0.0345\n", + " -0.1961\n", + " -0.0700\n", + " -0.2523\n", + " 0.1570\n", + " 0.0983\n", + " 0.0166\n", + " -0.0398\n", + " -0.1316\n", + " -0.0009\n", + " -0.2186\n", + " 0.0827\n", + " -0.0064\n", + " 0.1099\n", + " -0.1261\n", + " -0.0138\n", + " -0.1116\n", + " 0.0792\n", + " -0.1398\n", + " 0.1277\n", + " 0.0497\n", + " -0.1172\n", + " 0.1723\n", + " 0.1022\n", + " 0.0088\n", + " 0.0905\n", + " 0.0054\n", + " -0.1959\n", + " 0.0717\n", + " -0.0222\n", + " -0.2334\n", + " 0.1637\n", + " -0.0481\n", + " 0.1706\n", + " -0.0529\n", + " -0.0409\n", + " 0.0606\n", + " 0.0078\n", + " -0.0984\n", + " 0.1355\n", + " 0.0632\n", + " -0.0456\n", + " 0.1148\n", + " -0.0248\n", + " 0.0301\n", + " 0.0840\n", + " 0.0625\n", + " -0.0165\n", + " -0.0693\n", + " -0.0636\n", + " -0.1416\n", + " -0.0125\n", + " 0.0959\n", + " 0.0557\n", + " 0.0163\n", + " 0.1104\n", + " -0.1205\n", + " -0.2128\n", + " -0.0318\n", + " 0.0453\n", + " -0.0566\n", + " 0.0477\n", + " -0.1948\n", + " 0.0128\n", + " 0.0273\n", + " 0.0031\n", + " -0.0068\n", + " 0.0112\n", + " 0.1647\n", + " 0.0586\n", + " -0.2183\n", + " -0.1291\n", + " -0.0029\n", + " 0.1077\n", + " -0.0951\n", + " 0.1773\n", + " -0.1475\n", + " 0.0573\n", + " 0.0275\n", + " -0.1403\n", + " 0.2314\n", + " -0.1141\n", + " 0.2082\n", + " 0.1744\n", + " -0.1538\n", + " 0.0801\n", + " 0.0501\n", + " 0.0025\n", + " -0.0200\n", + " 0.0973\n", + " 0.1787\n", + " 0.2107\n", + " 0.0047\n", + " -0.0693\n", + " 0.0694\n", + " 0.0482\n", + " 0.0716\n", + " -0.0190\n", + " -0.1061\n", + " 0.0990\n", + " 0.1247\n", + " 0.0677\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.12.bn.running_mean', \n", + " 1.6643\n", + " 0.7914\n", + " 18.2355\n", + " 0.6188\n", + " 0.6880\n", + " 3.9849\n", + " 0.0993\n", + " 2.8688\n", + " 5.5944\n", + " 0.4411\n", + " 2.5454\n", + " 0.9192\n", + " 1.0979\n", + " 0.9350\n", + " 0.4640\n", + " 6.2717\n", + " 2.3771\n", + " 7.7375\n", + " 0.3193\n", + " 0.4917\n", + " 2.0095\n", + " 1.0701\n", + " 1.5729\n", + " 14.6311\n", + " 0.3919\n", + " 0.6385\n", + " 0.0995\n", + " 7.7049\n", + " 0.2759\n", + " 4.8997\n", + " 0.6901\n", + " 0.4588\n", + " 0.4694\n", + " 1.7162\n", + " 1.2722\n", + " 0.4624\n", + " 7.4349\n", + " 0.2309\n", + " 1.6574\n", + " 6.2443\n", + " 0.7438\n", + " 9.8981\n", + " 0.1851\n", + " 1.1118\n", + " 4.9262\n", + " 2.5397\n", + " 0.3932\n", + " 1.3472\n", + " 0.1245\n", + " 4.5497\n", + " 1.3292\n", + " 1.7824\n", + " 0.0314\n", + " 3.1071\n", + " 2.4115\n", + " 0.7718\n", + " 1.1463\n", + " 3.7740\n", + " 1.0823\n", + " 0.2714\n", + " 1.8357\n", + " 1.1610\n", + " 0.5519\n", + " 6.8656\n", + " 0.5687\n", + " 0.3749\n", + " 0.1267\n", + " 2.3691\n", + " 0.4179\n", + " 1.6421\n", + " 0.5482\n", + " 0.3998\n", + " 0.2772\n", + " 0.9582\n", + " 2.1013\n", + " 7.3207\n", + " 0.8778\n", + " 6.0328\n", + " 1.1068\n", + " 0.3546\n", + " 0.7101\n", + " 2.3588\n", + " 1.4954\n", + " 16.8315\n", + " 1.0917\n", + " 0.7447\n", + " 1.3966\n", + " 1.6128\n", + " 3.0740\n", + " 0.8368\n", + " 1.9746\n", + " 0.7762\n", + " 2.1567\n", + " 0.5987\n", + " 4.5678\n", + " 0.4576\n", + " 3.7072\n", + " 4.7982\n", + " 0.3503\n", + " 1.0569\n", + " 6.0528\n", + " 1.2477\n", + " 0.3078\n", + " 0.0929\n", + " 0.4153\n", + " 0.6627\n", + " 0.3931\n", + " 0.6685\n", + " 0.7672\n", + " 0.5199\n", + " 4.8562\n", + " 0.0687\n", + " 1.2443\n", + " 3.8482\n", + " 0.0919\n", + " 0.3363\n", + " 2.0254\n", + " 2.4370\n", + " 0.4994\n", + " 2.8464\n", + " 0.3332\n", + " 0.7634\n", + " 0.2546\n", + " 3.4189\n", + " 2.1983\n", + " 0.4134\n", + " 0.7395\n", + " 1.0887\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.12.bn.running_var', \n", + " 24.7021\n", + " 12.1259\n", + " 200.8881\n", + " 9.5477\n", + " 11.7550\n", + " 64.6297\n", + " 1.1414\n", + " 52.8568\n", + " 57.6167\n", + " 6.9328\n", + " 49.5094\n", + " 15.8128\n", + " 19.0611\n", + " 15.9187\n", + " 7.2106\n", + " 59.7456\n", + " 38.3615\n", + " 116.4506\n", + " 5.2705\n", + " 8.0799\n", + " 38.5880\n", + " 16.4950\n", + " 31.4097\n", + " 191.6912\n", + " 6.2062\n", + " 10.4048\n", + " 0.9764\n", + " 117.2513\n", + " 5.2514\n", + " 73.4023\n", + " 14.5581\n", + " 7.2274\n", + " 8.0633\n", + " 33.8416\n", + " 20.4415\n", + " 7.9939\n", + " 133.4245\n", + " 2.7753\n", + " 28.9187\n", + " 87.0000\n", + " 13.3420\n", + " 139.6145\n", + " 2.5720\n", + " 20.2775\n", + " 92.7000\n", + " 48.3540\n", + " 6.4112\n", + " 22.0264\n", + " 1.3546\n", + " 68.5772\n", + " 24.9688\n", + " 34.0636\n", + " 0.4005\n", + " 51.7549\n", + " 42.1333\n", + " 12.8884\n", + " 21.4131\n", + " 65.8662\n", + " 14.6326\n", + " 5.1442\n", + " 35.9827\n", + " 19.4669\n", + " 9.0503\n", + " 72.6889\n", + " 8.8729\n", + " 5.6320\n", + " 1.7500\n", + " 43.4587\n", + " 7.7485\n", + " 26.1731\n", + " 7.0052\n", + " 5.8300\n", + " 4.1561\n", + " 17.6958\n", + " 39.7497\n", + " 50.7230\n", + " 13.5891\n", + " 33.3082\n", + " 19.6486\n", + " 6.0075\n", + " 12.3842\n", + " 41.6913\n", + " 27.7635\n", + " 232.8391\n", + " 17.8972\n", + " 13.6521\n", + " 22.5059\n", + " 26.8656\n", + " 52.6071\n", + " 15.8357\n", + " 32.6477\n", + " 12.5625\n", + " 36.2878\n", + " 9.6681\n", + " 69.5989\n", + " 6.4244\n", + " 69.6563\n", + " 53.4896\n", + " 2.5188\n", + " 17.5069\n", + " 55.6254\n", + " 23.0790\n", + " 4.2944\n", + " 1.2833\n", + " 7.3206\n", + " 11.1468\n", + " 7.2908\n", + " 10.5342\n", + " 14.3333\n", + " 6.6158\n", + " 59.1373\n", + " 0.8878\n", + " 22.2354\n", + " 72.2668\n", + " 1.1781\n", + " 5.2295\n", + " 32.1831\n", + " 35.1829\n", + " 7.5751\n", + " 34.5029\n", + " 5.4838\n", + " 12.5656\n", + " 3.7906\n", + " 41.8978\n", + " 45.2942\n", + " 7.5254\n", + " 13.7072\n", + " 20.0205\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.13.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 1.7745e-02 -4.4126e-03 -4.8155e-03 ... -1.1811e-02 -1.2982e-02 4.8544e-03\n", + " 1.3211e-01 6.4812e-03 3.9755e-02 ... 1.3613e-01 -1.4129e-01 2.5989e-01\n", + " 1.3647e-01 -2.4757e-02 8.7259e-02 ... -3.0748e-01 -1.5349e-01 4.7045e-02\n", + " ... ⋱ ... \n", + " 2.7293e-01 -6.1637e-02 2.6514e-01 ... -9.1236e-02 1.3647e-01 -4.1393e-01\n", + " 1.8076e-01 1.4856e-01 -9.5415e-02 ... 2.6375e-02 9.1741e-02 -6.9988e-02\n", + " 1.8714e-02 2.2266e-01 -8.0913e-03 ... -1.3792e-01 2.0871e-03 6.6364e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " 1.4681e-02 -2.8576e-02 -3.3572e-03 ... -3.5963e-02 -2.6190e-03 -1.6106e-02\n", + " -3.0001e-01 -1.0300e-01 -2.9653e-01 ... -2.3369e-01 1.2638e-01 -8.7112e-02\n", + " -1.7102e-02 5.5029e-02 -2.2974e-01 ... -2.6807e-01 2.8310e-01 -2.0486e-01\n", + " ... ⋱ ... \n", + " -7.0041e-01 -9.4564e-01 1.6966e-02 ... 2.6940e-01 -2.8557e-01 1.2184e-01\n", + " -3.2194e-01 1.2850e-01 1.9510e-01 ... 2.4279e-01 2.1059e-01 -5.5531e-01\n", + " 6.1039e-02 -7.2539e-02 7.3692e-02 ... 1.1038e-01 1.2474e-02 -1.0941e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " -2.4671e-02 3.1477e-02 -1.8527e-02 ... 7.6964e-03 1.1642e-02 -3.8481e-03\n", + " -2.4675e-01 -1.0154e-01 -1.0051e-01 ... 2.4323e-01 1.1612e-01 -3.4125e-01\n", + " 1.4512e-03 3.5649e-01 -2.7982e-01 ... -9.7022e-01 -1.5814e-01 -4.0816e-01\n", + " ... ⋱ ... \n", + " -3.7522e-02 2.2590e-02 1.0087e-01 ... 2.1287e-01 -3.6022e-01 -5.4785e-01\n", + " -5.4449e-01 -5.5681e-02 -2.9264e-01 ... 1.3152e-01 4.3553e-02 5.6911e-02\n", + " 1.3604e-01 2.1225e-01 -1.1628e-01 ... 1.2776e-01 -5.8087e-02 9.8960e-02\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -2.4497e-02 -3.7381e-03 -1.4529e-02 ... -8.6942e-03 -2.6910e-02 3.1877e-02\n", + " -6.6612e-02 1.3753e-01 -9.7248e-02 ... -1.5097e-01 1.2860e-01 -7.2238e-01\n", + " 1.7896e-01 2.9136e-01 1.9650e-01 ... -2.0288e-01 -2.9753e-01 -1.3484e-01\n", + " ... ⋱ ... \n", + " 9.3054e-02 1.7660e-01 1.1617e-01 ... -1.8692e-01 -2.5153e-01 -1.1928e+00\n", + " 2.1528e-01 2.8482e-01 7.7727e-03 ... -3.3763e-02 -7.1726e-01 -2.4033e-01\n", + " -5.5266e-02 2.0036e-01 5.1280e-02 ... 6.3100e-03 -1.4751e-01 -8.7516e-02\n", + " \n", + " (126,.,.) = \n", + " -1.8795e-02 -1.4157e-02 1.8972e-02 ... 5.5805e-02 4.5948e-02 -5.0825e-03\n", + " 1.0776e-01 -7.5393e-01 -4.2556e-02 ... 5.1656e-02 1.6126e-01 -4.3502e-02\n", + " -3.9349e-01 2.7921e-01 -2.4415e-01 ... 7.9829e-02 8.0948e-02 -2.1672e-01\n", + " ... ⋱ ... \n", + " -4.9517e-02 -2.4103e-01 2.3441e-01 ... 6.0706e-02 -2.1137e-01 4.1497e-01\n", + " 1.5899e-01 -2.3921e-01 1.2935e-01 ... 1.4634e-01 1.8446e-01 -1.5869e-01\n", + " 1.4117e-01 9.5894e-03 1.1945e-02 ... -2.3359e-02 1.0747e-01 2.3452e-01\n", + " \n", + " (127,.,.) = \n", + " -2.3473e-02 -9.4031e-03 -1.5690e-02 ... -2.3350e-02 1.3103e-02 2.7526e-03\n", + " -3.6479e-01 -4.8598e-01 9.1681e-02 ... 1.8447e-01 -1.1075e-01 -5.3281e-02\n", + " 1.7906e-02 2.0140e-01 2.0678e-02 ... 7.1253e-02 3.2277e-01 -5.8525e-01\n", + " ... ⋱ ... \n", + " 2.8675e-01 -4.1663e-01 -1.8265e-01 ... 1.1046e-01 2.5976e-01 5.3310e-01\n", + " -1.2504e+00 -7.7143e-01 -8.7459e-01 ... -1.3034e+00 4.1625e-01 -4.3742e-01\n", + " -4.1942e-02 2.4496e-02 -2.3016e-01 ... -2.1655e-01 -2.3814e-01 2.8768e-01\n", + " [torch.FloatTensor of size 128x128x14]),\n", + " ('module.encoder.cbhg.conv1d_banks.13.bn.weight', \n", + " -0.6298\n", + " 0.5734\n", + " 0.6999\n", + " 0.5770\n", + " 0.5808\n", + " -1.0896\n", + " 0.6252\n", + " 0.4294\n", + " 0.5675\n", + " 0.4857\n", + " -0.9622\n", + " 0.5191\n", + " -1.2440\n", + " 0.5543\n", + " 0.6442\n", + " 0.4937\n", + " 0.4889\n", + " 0.5038\n", + " 0.4638\n", + " 0.6041\n", + " -1.0582\n", + " 0.5609\n", + " 0.5107\n", + " 0.5738\n", + " 1.2248\n", + " 0.5928\n", + " 0.6933\n", + " 0.4571\n", + " 0.4580\n", + " 0.5306\n", + " -1.3751\n", + " 0.5884\n", + " 0.5455\n", + " 0.5871\n", + " 0.3757\n", + " 0.4592\n", + " 0.6180\n", + " 0.5713\n", + " 0.4721\n", + " 0.4965\n", + " -1.3051\n", + " 0.6142\n", + " 0.5013\n", + " 0.5209\n", + " -1.0818\n", + " 0.5345\n", + " 0.5207\n", + " 0.5435\n", + " 0.6100\n", + " 0.4462\n", + " -1.2715\n", + " -1.1698\n", + " 0.4006\n", + " 0.5464\n", + " 0.4761\n", + " 0.4700\n", + " 0.5575\n", + " 0.5582\n", + " 0.5443\n", + " 0.6845\n", + " 0.5603\n", + " 0.4991\n", + " 0.5492\n", + " 0.5362\n", + " -0.9964\n", + " -1.1201\n", + " 0.5724\n", + " 0.5301\n", + " 0.6036\n", + " -1.1646\n", + " 0.4824\n", + " -1.1610\n", + " -1.1281\n", + " 0.8662\n", + " 0.5791\n", + " 0.4489\n", + " 0.4560\n", + " 0.5783\n", + " 0.5846\n", + " 0.6263\n", + " 0.4736\n", + " 0.4545\n", + " 0.5589\n", + " 0.5207\n", + " 0.5753\n", + " 0.5958\n", + " 0.4252\n", + " -1.1730\n", + " 0.4535\n", + " -1.0682\n", + " 0.5419\n", + " 0.5654\n", + " 0.4253\n", + " 0.4681\n", + " 0.4466\n", + " 0.6438\n", + " -0.9214\n", + " 0.6425\n", + " -0.8597\n", + " 0.5556\n", + " 0.7262\n", + " 0.5962\n", + " 0.5239\n", + " -1.0640\n", + " -1.1503\n", + " 0.5666\n", + " 0.4708\n", + " 0.5036\n", + " 0.7284\n", + " -1.0950\n", + " 0.4702\n", + " 0.5276\n", + " 0.4963\n", + " 0.5367\n", + " -1.0664\n", + " -1.8053\n", + " 0.5561\n", + " 0.7688\n", + " 0.6790\n", + " 0.4250\n", + " -0.9473\n", + " 0.5733\n", + " 0.5620\n", + " 0.5780\n", + " -1.2931\n", + " 0.5389\n", + " -1.0939\n", + " 0.5530\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.13.bn.bias', \n", + " -0.0561\n", + " 0.1463\n", + " -0.0223\n", + " -0.1471\n", + " 0.0307\n", + " -0.2083\n", + " 0.3170\n", + " -0.0127\n", + " -0.0884\n", + " 0.0868\n", + " -0.0308\n", + " 0.0781\n", + " -0.2038\n", + " 0.0971\n", + " 0.2286\n", + " -0.0160\n", + " -0.0069\n", + " 0.0550\n", + " -0.0146\n", + " -0.1066\n", + " -0.3287\n", + " 0.0944\n", + " 0.1207\n", + " -0.1343\n", + " 0.1753\n", + " 0.1776\n", + " -0.0046\n", + " 0.1129\n", + " 0.0106\n", + " -0.0064\n", + " -0.1826\n", + " -0.0928\n", + " 0.1313\n", + " 0.0583\n", + " 0.0808\n", + " -0.0809\n", + " -0.0025\n", + " 0.1123\n", + " 0.0335\n", + " 0.1228\n", + " -0.1225\n", + " 0.0506\n", + " -0.2536\n", + " 0.0916\n", + " -0.2610\n", + " -0.1203\n", + " -0.0946\n", + " 0.1251\n", + " 0.0648\n", + " -0.0789\n", + " -0.1172\n", + " -0.2161\n", + " -0.0128\n", + " 0.0003\n", + " -0.0881\n", + " 0.0959\n", + " -0.0816\n", + " 0.1423\n", + " -0.0136\n", + " 0.0030\n", + " 0.1279\n", + " 0.0361\n", + " 0.0590\n", + " -0.1067\n", + " 0.0429\n", + " -0.1987\n", + " 0.0586\n", + " -0.2063\n", + " 0.1145\n", + " -0.1234\n", + " 0.0314\n", + " -0.0583\n", + " -0.0012\n", + " 0.4081\n", + " 0.0521\n", + " -0.0389\n", + " -0.0896\n", + " 0.2290\n", + " 0.0357\n", + " -0.2267\n", + " -0.0293\n", + " -0.0579\n", + " -0.0582\n", + " 0.0758\n", + " -0.0022\n", + " 0.1472\n", + " 0.0484\n", + " -0.2202\n", + " 0.0362\n", + " -0.1892\n", + " -0.0270\n", + " -0.0069\n", + " -0.1290\n", + " 0.1452\n", + " 0.2094\n", + " 0.0482\n", + " -0.0642\n", + " 0.0597\n", + " -0.1137\n", + " -0.1909\n", + " 0.0971\n", + " -0.0526\n", + " 0.0954\n", + " -0.0354\n", + " -0.2829\n", + " -0.0599\n", + " -0.1084\n", + " 0.0489\n", + " 0.1386\n", + " -0.2417\n", + " 0.0975\n", + " 0.1261\n", + " 0.0397\n", + " 0.1821\n", + " -0.2596\n", + " -0.1610\n", + " -0.1578\n", + " 0.1419\n", + " 0.1052\n", + " -0.1480\n", + " -0.0142\n", + " 0.0103\n", + " -0.1412\n", + " -0.0728\n", + " -0.1254\n", + " -0.0122\n", + " -0.1145\n", + " -0.0517\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.13.bn.running_mean', \n", + " 17.4920\n", + " 1.0646\n", + " 3.4161\n", + " 2.5212\n", + " 0.2399\n", + " 3.9630\n", + " 3.9160\n", + " 1.2984\n", + " 0.7471\n", + " 0.1815\n", + " 4.5067\n", + " 1.1112\n", + " 6.2854\n", + " 1.6546\n", + " 5.1655\n", + " 0.5798\n", + " 0.4880\n", + " 2.4264\n", + " 0.4774\n", + " 2.8909\n", + " 8.2921\n", + " 0.5392\n", + " 0.2935\n", + " 1.0429\n", + " 0.0977\n", + " 1.4176\n", + " 13.4034\n", + " 1.8930\n", + " 2.9164\n", + " 1.0526\n", + " 6.6331\n", + " 1.1044\n", + " 0.5818\n", + " 3.0707\n", + " 1.0960\n", + " 0.6549\n", + " 2.7949\n", + " 0.4472\n", + " 0.2479\n", + " 0.8273\n", + " 4.1181\n", + " 1.4051\n", + " 0.6379\n", + " 4.2596\n", + " 4.9504\n", + " 2.7049\n", + " 1.4155\n", + " 0.6877\n", + " 1.9380\n", + " 1.3744\n", + " 4.1370\n", + " 8.1351\n", + " 0.5726\n", + " 0.7805\n", + " 0.9762\n", + " 0.7450\n", + " 4.0150\n", + " 2.4144\n", + " 0.6979\n", + " 7.2928\n", + " 2.1864\n", + " 0.4118\n", + " 1.7665\n", + " 1.2200\n", + " 15.8744\n", + " 1.8149\n", + " 6.4295\n", + " 0.7391\n", + " 4.1496\n", + " 6.8999\n", + " 0.1356\n", + " 6.1834\n", + " 6.0212\n", + " 3.2767\n", + " 2.8325\n", + " 0.4972\n", + " 0.6639\n", + " 4.4855\n", + " 0.5347\n", + " 4.7216\n", + " 0.7470\n", + " 0.7470\n", + " 0.3932\n", + " 0.7181\n", + " 1.0118\n", + " 0.3567\n", + " 0.8297\n", + " 3.6417\n", + " 0.4934\n", + " 8.8014\n", + " 1.3052\n", + " 0.7521\n", + " 0.3537\n", + " 1.0392\n", + " 0.6150\n", + " 1.0066\n", + " 7.1790\n", + " 3.1220\n", + " 9.6088\n", + " 1.3720\n", + " 0.1756\n", + " 3.4566\n", + " 0.8404\n", + " 4.0510\n", + " 2.2497\n", + " 0.9266\n", + " 0.1584\n", + " 0.6906\n", + " 2.6445\n", + " 1.3801\n", + " 0.8279\n", + " 1.8389\n", + " 0.6896\n", + " 0.6774\n", + " 2.4618\n", + " 0.1562\n", + " 1.0760\n", + " 3.2444\n", + " 3.0993\n", + " 0.6256\n", + " 9.9324\n", + " 2.0248\n", + " 0.8545\n", + " 2.7719\n", + " 0.7054\n", + " 0.5972\n", + " 2.9989\n", + " 1.9024\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.13.bn.running_var', \n", + " 130.6758\n", + " 16.3050\n", + " 50.5998\n", + " 34.0163\n", + " 3.6374\n", + " 64.6052\n", + " 66.3693\n", + " 23.5074\n", + " 12.8490\n", + " 2.1329\n", + " 65.6858\n", + " 21.4228\n", + " 108.2539\n", + " 30.2416\n", + " 75.6314\n", + " 10.1012\n", + " 8.1167\n", + " 46.0568\n", + " 7.9003\n", + " 53.8135\n", + " 162.3741\n", + " 9.2731\n", + " 4.8722\n", + " 15.9702\n", + " 1.3483\n", + " 24.6443\n", + " 188.5522\n", + " 37.6928\n", + " 33.8167\n", + " 18.8139\n", + " 117.1080\n", + " 15.8111\n", + " 9.6284\n", + " 57.6474\n", + " 20.5505\n", + " 9.7821\n", + " 38.9682\n", + " 7.1397\n", + " 3.9510\n", + " 14.9775\n", + " 75.2078\n", + " 25.4755\n", + " 11.5768\n", + " 74.0677\n", + " 93.5028\n", + " 47.9340\n", + " 17.0871\n", + " 11.7656\n", + " 31.3784\n", + " 27.1431\n", + " 75.9914\n", + " 132.0832\n", + " 10.5657\n", + " 14.9817\n", + " 15.1234\n", + " 13.5866\n", + " 68.0268\n", + " 39.2316\n", + " 9.1437\n", + " 110.1679\n", + " 39.0589\n", + " 5.5239\n", + " 30.1566\n", + " 22.4781\n", + " 210.9006\n", + " 28.0044\n", + " 101.8984\n", + " 12.3503\n", + " 70.4904\n", + " 124.0370\n", + " 2.0574\n", + " 117.9289\n", + " 103.3480\n", + " 53.4346\n", + " 46.7365\n", + " 7.8339\n", + " 12.1007\n", + " 79.9240\n", + " 8.7048\n", + " 64.1523\n", + " 15.3030\n", + " 14.1568\n", + " 6.2242\n", + " 12.8202\n", + " 17.7651\n", + " 6.3197\n", + " 15.5565\n", + " 70.9639\n", + " 7.4195\n", + " 156.1693\n", + " 26.9980\n", + " 11.9868\n", + " 5.0034\n", + " 19.4145\n", + " 9.7820\n", + " 18.3046\n", + " 142.1911\n", + " 47.1392\n", + " 147.3607\n", + " 21.9535\n", + " 2.4825\n", + " 64.3683\n", + " 14.1823\n", + " 64.5069\n", + " 40.4032\n", + " 16.1720\n", + " 2.4418\n", + " 15.4943\n", + " 47.0530\n", + " 25.9800\n", + " 14.1696\n", + " 33.9273\n", + " 7.4451\n", + " 12.6679\n", + " 43.7350\n", + " 2.3258\n", + " 18.4054\n", + " 65.9993\n", + " 41.0610\n", + " 10.8307\n", + " 178.3945\n", + " 29.6639\n", + " 14.5938\n", + " 47.5990\n", + " 11.8685\n", + " 9.8107\n", + " 48.8423\n", + " 35.8358\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.14.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -9.6386e-03 3.0975e-03 -2.5502e-03 ... 1.5233e-02 2.2425e-02 -3.1626e-02\n", + " 9.2219e-03 -9.3129e-02 -1.1708e-03 ... -6.1531e-01 4.4129e-02 -6.2089e-01\n", + " -3.7936e-01 -5.3634e-02 4.1889e-01 ... -2.1778e-01 5.3546e-01 -1.3575e-01\n", + " ... ⋱ ... \n", + " 1.9159e-01 -3.5651e-01 -1.5055e-01 ... -2.5301e-01 -1.4246e-01 -7.7590e-02\n", + " -5.7804e-02 2.4481e-01 -5.1024e-01 ... 3.3023e-01 -1.1456e-01 -4.6667e-01\n", + " 8.0287e-02 -6.9695e-02 -1.5106e-01 ... -2.3315e-01 -3.4729e-02 5.8015e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " -1.7977e-02 -1.1838e-02 -2.9291e-02 ... 1.1945e-02 6.4109e-03 -2.0085e-02\n", + " 2.2693e-01 1.1070e-01 -1.2156e-01 ... 3.9183e-02 1.7745e-01 -9.5893e-02\n", + " -4.8388e-02 -2.2365e-01 1.0250e-01 ... 1.1775e-01 5.5102e-02 -2.7197e-01\n", + " ... ⋱ ... \n", + " 3.2907e-01 -3.3454e-01 1.9553e-01 ... -6.8944e-02 2.0750e-01 -5.4171e-01\n", + " 1.0093e-01 -2.0825e-01 -2.1511e-01 ... -1.2759e-01 -5.0020e-01 -2.9427e-01\n", + " 8.3563e-02 8.9445e-02 -1.6162e-01 ... -1.0580e-01 -3.8315e-02 1.1123e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 7.2138e-04 -3.1993e-02 9.4911e-03 ... -8.7489e-03 1.7652e-02 4.0780e-03\n", + " -1.3638e-02 -1.3663e-01 3.2960e-02 ... 4.7582e-02 -2.4319e-01 2.2738e-01\n", + " -7.7567e-01 -9.2321e-02 -1.1529e-01 ... -6.4581e-01 3.7072e-01 2.2190e-01\n", + " ... ⋱ ... \n", + " 1.3387e-01 -1.0459e-02 -2.2410e-01 ... -7.1280e-01 9.4690e-02 -1.0131e+00\n", + " 2.6751e-02 -2.9849e-01 -7.0005e-01 ... 1.3902e-01 -3.7694e-01 -1.2595e-01\n", + " -2.6215e-01 1.2256e-01 -2.8348e-01 ... 1.1236e-01 -2.6863e-01 -2.8805e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " 1.3993e-02 -7.3525e-03 -2.6726e-02 ... 2.4495e-02 -4.0242e-03 3.1814e-02\n", + " 1.4469e-01 1.2966e-01 2.0149e-01 ... -2.7853e-02 -6.0647e-01 -1.7823e-01\n", + " -1.1353e-01 -8.8484e-02 -5.0216e-01 ... -1.3258e-01 1.6498e-02 -3.3027e-01\n", + " ... ⋱ ... \n", + " -9.3859e-02 -3.1071e-01 -1.3097e-01 ... -9.2499e-03 8.2636e-02 7.8388e-02\n", + " -4.2766e-01 -1.2047e+00 -1.3363e-01 ... -2.5266e-02 1.3353e-01 -1.5399e-03\n", + " -6.4824e-02 -9.3140e-02 -7.5200e-02 ... -4.9299e-02 -2.9521e-01 2.1217e-01\n", + " \n", + " (126,.,.) = \n", + " 1.1726e-02 -9.5735e-03 2.0397e-02 ... 1.7887e-02 1.1456e-02 -1.8427e-02\n", + " -4.9714e-02 1.2782e-02 7.9058e-02 ... 8.2599e-03 -1.2522e-01 -3.1907e-01\n", + " 1.7756e-01 -1.2267e+00 2.0300e-01 ... 1.5960e-01 1.7278e-01 1.4348e-01\n", + " ... ⋱ ... \n", + " 2.3941e-01 -1.3360e-01 -2.8874e-01 ... -1.0559e+00 2.5745e-01 8.1122e-03\n", + " -3.4058e-01 3.1620e-01 -1.1758e+00 ... 2.4224e-02 -5.0012e-02 5.8442e-02\n", + " 3.5690e-02 8.2707e-02 3.0048e-02 ... -1.3737e-01 -4.6989e-02 3.6012e-02\n", + " \n", + " (127,.,.) = \n", + " -1.9347e-02 -1.3504e-02 8.1035e-03 ... 1.6393e-02 -2.4877e-02 -2.7250e-02\n", + " 2.1160e-01 2.5268e-01 4.1301e-01 ... 4.0031e-02 8.8184e-03 -2.1723e-01\n", + " 4.2787e-01 -3.9118e-01 -3.0853e-01 ... 1.4695e-01 -2.9853e-03 1.2570e-01\n", + " ... ⋱ ... \n", + " -7.8121e-01 -1.0999e-01 7.8042e-02 ... 2.2160e-01 1.1807e-01 -7.1094e-01\n", + " -3.6032e-02 8.9521e-02 1.7480e-02 ... -3.0489e-01 -1.5970e-01 -6.4072e-01\n", + " 1.6602e-01 1.1174e-02 -5.0506e-02 ... 2.8903e-01 1.0849e-01 -2.9205e-01\n", + " [torch.FloatTensor of size 128x128x15]),\n", + " ('module.encoder.cbhg.conv1d_banks.14.bn.weight', \n", + " 0.5219\n", + " 0.5235\n", + " 0.5185\n", + " 0.4848\n", + " 0.6538\n", + " 0.6652\n", + " 0.5997\n", + " 0.4674\n", + " 0.5417\n", + " 0.5630\n", + " 0.4184\n", + " 0.5542\n", + " 0.5512\n", + " 0.8797\n", + " 0.5544\n", + " 0.4707\n", + " 0.7109\n", + " -1.5327\n", + " 0.4725\n", + " 0.4867\n", + " 0.4607\n", + " 0.5565\n", + " 0.4141\n", + " 0.5092\n", + " 0.6183\n", + " 0.6033\n", + " 0.6924\n", + " 0.4890\n", + " -1.0302\n", + " 0.4388\n", + " 0.5975\n", + " 0.5200\n", + " -1.1502\n", + " 0.4562\n", + " 0.5402\n", + " 0.7230\n", + " 0.4460\n", + " 0.5195\n", + " 0.4628\n", + " 0.5026\n", + " 0.5357\n", + " 0.5895\n", + " 0.5508\n", + " -1.0624\n", + " 0.5107\n", + " 0.7285\n", + " 0.6568\n", + " 0.4984\n", + " -1.0707\n", + " -1.3855\n", + " 0.7256\n", + " 0.4902\n", + " 0.5819\n", + " 0.1455\n", + " 0.5163\n", + " -1.0136\n", + " 0.4848\n", + " 0.5624\n", + " -0.9739\n", + " 0.5099\n", + " 0.6078\n", + " 0.5977\n", + " 0.5011\n", + " 0.6138\n", + " 0.4872\n", + " 0.4663\n", + " 0.6338\n", + " -1.1063\n", + " 0.4789\n", + " 0.5408\n", + " 0.5189\n", + " 0.5583\n", + " 0.0727\n", + " 0.4613\n", + " 0.7490\n", + " 0.4590\n", + " -1.2506\n", + " 0.5050\n", + " 0.4902\n", + " 0.4852\n", + " 0.4187\n", + " 0.5186\n", + " 0.5131\n", + " 0.5070\n", + " 0.5693\n", + " -1.4681\n", + " 0.6262\n", + " 0.5092\n", + " 0.5781\n", + " 0.5648\n", + " 0.5477\n", + " 0.5868\n", + " 0.5475\n", + " -1.1519\n", + " 0.6011\n", + " 0.5648\n", + " 0.5236\n", + " 0.4696\n", + " 0.5879\n", + " 0.5043\n", + " 0.5454\n", + " -1.2099\n", + " 0.4637\n", + " 0.4895\n", + " 0.5363\n", + " 0.5922\n", + " 0.5929\n", + " -1.2131\n", + " 0.5626\n", + " -1.0432\n", + " 0.5450\n", + " 0.5449\n", + " 0.5089\n", + " 0.4572\n", + " 0.6318\n", + " -1.2045\n", + " 0.7876\n", + " 0.5422\n", + " 0.5030\n", + " 0.6382\n", + " 0.4502\n", + " 0.6880\n", + " 0.4789\n", + " -1.1577\n", + " -1.0733\n", + " 0.7786\n", + " 0.5372\n", + " 0.5880\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.14.bn.bias', \n", + " -0.0542\n", + " 0.1266\n", + " 0.1778\n", + " -0.0647\n", + " 0.1476\n", + " 0.0771\n", + " -0.1118\n", + " 0.0865\n", + " 0.0586\n", + " 0.0690\n", + " -0.0246\n", + " -0.0222\n", + " -0.0052\n", + " 0.0949\n", + " -0.0511\n", + " -0.0623\n", + " 0.0722\n", + " -0.2330\n", + " 0.0828\n", + " -0.0208\n", + " -0.0656\n", + " -0.1528\n", + " 0.0490\n", + " 0.0603\n", + " 0.1099\n", + " 0.0511\n", + " 0.0996\n", + " -0.1498\n", + " -0.3277\n", + " -0.0455\n", + " 0.0740\n", + " 0.1005\n", + " 0.0992\n", + " 0.0310\n", + " -0.0707\n", + " -0.0016\n", + " 0.0342\n", + " -0.0672\n", + " -0.1504\n", + " -0.0168\n", + " 0.0355\n", + " -0.0045\n", + " -0.0201\n", + " -0.0226\n", + " 0.0032\n", + " -0.1744\n", + " -0.0375\n", + " -0.0445\n", + " -0.1340\n", + " -0.2778\n", + " 0.2175\n", + " 0.0942\n", + " 0.1344\n", + " -0.0153\n", + " 0.1511\n", + " -0.1204\n", + " -0.0295\n", + " 0.1024\n", + " -0.1679\n", + " 0.0331\n", + " 0.0851\n", + " 0.0104\n", + " 0.0666\n", + " -0.0171\n", + " 0.1244\n", + " -0.0577\n", + " -0.1414\n", + " -0.0597\n", + " -0.0504\n", + " 0.0238\n", + " 0.0037\n", + " 0.0110\n", + " 0.0093\n", + " 0.0258\n", + " 0.0402\n", + " 0.0357\n", + " -0.2347\n", + " -0.0108\n", + " 0.0670\n", + " -0.2170\n", + " -0.0681\n", + " 0.0122\n", + " -0.0017\n", + " -0.0375\n", + " -0.0331\n", + " -0.1268\n", + " 0.0359\n", + " 0.0069\n", + " 0.0363\n", + " 0.0017\n", + " 0.0716\n", + " 0.0311\n", + " 0.0447\n", + " -0.2538\n", + " -0.0221\n", + " 0.0460\n", + " -0.0071\n", + " -0.0262\n", + " 0.1562\n", + " -0.0758\n", + " 0.1113\n", + " -0.0886\n", + " 0.0382\n", + " -0.0714\n", + " -0.0329\n", + " 0.1428\n", + " -0.0073\n", + " -0.1931\n", + " 0.1464\n", + " -0.1238\n", + " -0.0247\n", + " -0.0744\n", + " -0.0178\n", + " 0.0669\n", + " 0.1170\n", + " -0.1239\n", + " 0.1023\n", + " -0.0063\n", + " -0.1049\n", + " 0.1635\n", + " -0.1547\n", + " 0.1345\n", + " -0.1381\n", + " -0.0946\n", + " 0.0067\n", + " 0.0341\n", + " -0.0042\n", + " 0.0046\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.14.bn.running_mean', \n", + " 1.6630\n", + " 0.6570\n", + " 1.0669\n", + " 1.2803\n", + " 2.3932\n", + " 0.7346\n", + " 2.2573\n", + " 0.3021\n", + " 0.6393\n", + " 0.7293\n", + " 0.2556\n", + " 3.0511\n", + " 1.7600\n", + " 0.1173\n", + " 1.2432\n", + " 0.3600\n", + " 1.1406\n", + " 0.8445\n", + " 0.6656\n", + " 0.8301\n", + " 1.0421\n", + " 2.6189\n", + " 0.3224\n", + " 1.0295\n", + " 0.8101\n", + " 1.3762\n", + " 0.0762\n", + " 0.6325\n", + " 5.1418\n", + " 0.8932\n", + " 0.9764\n", + " 0.2143\n", + " 7.0799\n", + " 0.4281\n", + " 0.5141\n", + " 2.6536\n", + " 1.4388\n", + " 1.8036\n", + " 1.0811\n", + " 2.5022\n", + " 0.9273\n", + " 1.4977\n", + " 1.5585\n", + " 15.1198\n", + " 0.6438\n", + " 12.4013\n", + " 2.5994\n", + " 1.4340\n", + " 0.5407\n", + " 3.4046\n", + " 4.0653\n", + " 0.5159\n", + " 2.6401\n", + " 7.2569\n", + " 0.2240\n", + " 8.0407\n", + " 0.7292\n", + " 0.8736\n", + " 10.5882\n", + " 0.9707\n", + " 2.2749\n", + " 8.4105\n", + " 1.3705\n", + " 0.7365\n", + " 0.4197\n", + " 2.5428\n", + " 2.4664\n", + " 0.0913\n", + " 0.7941\n", + " 2.3891\n", + " 0.6959\n", + " 3.5539\n", + " 15.5003\n", + " 0.9059\n", + " 2.1630\n", + " 0.6838\n", + " 0.6097\n", + " 0.3797\n", + " 0.5167\n", + " 2.0228\n", + " 1.0823\n", + " 0.1929\n", + " 0.4074\n", + " 0.7406\n", + " 0.5121\n", + " 0.4157\n", + " 8.3492\n", + " 0.8532\n", + " 0.5392\n", + " 1.6911\n", + " 0.3076\n", + " 0.5448\n", + " 0.4696\n", + " 3.3314\n", + " 0.4010\n", + " 0.5486\n", + " 2.4953\n", + " 1.9634\n", + " 0.4421\n", + " 0.6672\n", + " 7.0037\n", + " 5.8962\n", + " 0.4794\n", + " 1.3660\n", + " 0.8045\n", + " 1.1081\n", + " 0.6598\n", + " 1.7219\n", + " 4.9092\n", + " 7.6263\n", + " 2.3817\n", + " 1.0561\n", + " 0.1707\n", + " 0.0651\n", + " 9.3424\n", + " 7.5609\n", + " 0.5790\n", + " 1.7707\n", + " 1.0401\n", + " 1.9168\n", + " 1.4665\n", + " 8.6957\n", + " 0.7398\n", + " 5.2830\n", + " 6.6171\n", + " 0.4233\n", + " 1.1271\n", + " 2.6168\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.14.bn.running_var', \n", + " 32.5494\n", + " 10.8456\n", + " 22.1475\n", + " 21.1634\n", + " 45.5213\n", + " 16.8906\n", + " 33.3678\n", + " 4.3462\n", + " 12.7202\n", + " 12.3183\n", + " 4.3537\n", + " 56.0020\n", + " 34.1852\n", + " 1.7884\n", + " 18.7564\n", + " 5.2967\n", + " 18.5741\n", + " 13.8993\n", + " 12.8565\n", + " 14.8653\n", + " 19.3688\n", + " 53.3120\n", + " 5.2661\n", + " 18.4368\n", + " 15.0291\n", + " 25.6777\n", + " 1.2540\n", + " 11.3215\n", + " 92.9001\n", + " 17.1117\n", + " 19.6549\n", + " 3.8317\n", + " 118.1074\n", + " 7.4878\n", + " 9.8521\n", + " 50.2246\n", + " 27.7167\n", + " 33.7030\n", + " 19.7347\n", + " 48.3847\n", + " 15.2201\n", + " 27.6255\n", + " 28.1951\n", + " 228.9194\n", + " 12.7087\n", + " 193.8901\n", + " 49.8693\n", + " 28.7549\n", + " 8.2892\n", + " 60.6948\n", + " 58.8147\n", + " 9.6232\n", + " 51.1853\n", + " 35.7705\n", + " 4.3653\n", + " 144.7705\n", + " 11.7567\n", + " 16.4082\n", + " 171.8419\n", + " 17.9198\n", + " 42.9024\n", + " 142.2819\n", + " 16.0703\n", + " 12.2012\n", + " 7.6679\n", + " 47.4451\n", + " 50.2608\n", + " 1.2489\n", + " 15.4597\n", + " 45.2365\n", + " 12.3541\n", + " 55.4427\n", + " 74.4852\n", + " 19.1685\n", + " 39.5750\n", + " 11.1432\n", + " 10.0188\n", + " 7.5313\n", + " 10.2896\n", + " 38.4401\n", + " 19.4796\n", + " 3.1335\n", + " 6.7418\n", + " 14.2166\n", + " 8.8405\n", + " 6.7862\n", + " 106.6172\n", + " 16.2704\n", + " 7.6732\n", + " 34.2658\n", + " 5.4813\n", + " 11.2076\n", + " 8.8754\n", + " 56.3180\n", + " 5.0904\n", + " 8.6993\n", + " 48.9169\n", + " 35.8389\n", + " 7.9664\n", + " 10.8085\n", + " 121.9062\n", + " 108.6408\n", + " 9.0403\n", + " 27.3738\n", + " 11.2957\n", + " 20.1465\n", + " 13.1769\n", + " 30.6585\n", + " 90.7982\n", + " 147.7374\n", + " 43.3435\n", + " 20.0636\n", + " 3.1555\n", + " 0.8837\n", + " 141.9837\n", + " 114.1726\n", + " 10.1553\n", + " 29.6741\n", + " 20.3391\n", + " 26.6045\n", + " 31.1960\n", + " 130.3760\n", + " 13.1262\n", + " 90.5731\n", + " 98.7055\n", + " 6.0907\n", + " 16.6492\n", + " 49.3750\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.15.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 2.5623e-02 8.7796e-03 1.2732e-02 ... -2.4308e-02 -3.4531e-02 2.3106e-02\n", + " 3.2059e-01 3.7947e-02 -1.5134e-01 ... 4.1423e-02 1.4764e-02 -7.1850e-01\n", + " -3.0223e-01 -2.4837e-02 -3.8476e-01 ... 2.5859e-01 -2.4867e-01 -2.0122e-01\n", + " ... ⋱ ... \n", + " -3.2559e-01 -2.0264e-01 -2.0674e-01 ... -4.4623e-01 6.1603e-02 -1.4264e-01\n", + " 2.1641e-02 3.0297e-01 -1.5960e-02 ... -6.5608e-01 1.6242e-01 1.1450e-01\n", + " 7.3044e-02 1.4630e-01 8.5614e-02 ... -9.3979e-02 -3.5798e-02 -1.3267e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " 1.8823e-02 -3.0998e-02 -8.2396e-03 ... -2.8736e-02 9.6009e-04 2.1219e-02\n", + " -2.3189e+00 -7.2369e-02 2.4549e-01 ... -9.9233e-03 -5.9065e-01 6.0773e-02\n", + " 1.1587e-01 1.7568e-01 1.6188e-01 ... -7.3982e-01 -1.7959e-01 -9.6831e-01\n", + " ... ⋱ ... \n", + " 1.1053e-01 -3.7228e-01 5.2072e-02 ... -6.5126e-01 -2.0501e-01 -6.8167e-02\n", + " -2.3758e-01 -5.0526e-01 -2.4295e-01 ... 3.8033e-02 -5.6007e-03 1.5756e-02\n", + " 1.6876e-01 -1.5944e-01 -3.1784e-02 ... -4.3685e-01 -1.4064e-01 8.8937e-02\n", + " \n", + " ( 2 ,.,.) = \n", + " -3.0412e-02 -9.0673e-03 1.5075e-02 ... -1.4950e-02 3.6065e-03 -1.4769e-03\n", + " -3.9896e-01 1.4230e-01 -6.3218e-02 ... 4.4698e-01 -7.1939e-02 -3.8281e-02\n", + " -5.2769e-01 -3.1808e-01 3.9282e-03 ... -2.3788e-01 9.1319e-02 -6.3756e-01\n", + " ... ⋱ ... \n", + " 2.7757e-01 3.0037e-01 1.9336e-01 ... 8.2704e-02 3.3772e-01 1.7109e-01\n", + " -5.2782e-01 -5.2583e-02 -4.1151e-01 ... 2.9238e-01 -1.5851e-02 1.7705e-01\n", + " -3.1717e-02 -8.4575e-02 7.6925e-02 ... -4.8261e-02 -1.1192e-02 -1.3210e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -2.4106e-02 6.6282e-03 -1.8465e-02 ... -2.3786e-02 2.1597e-03 -1.3986e-02\n", + " -1.4231e-01 3.4451e-02 1.0366e-01 ... -4.9271e-01 -1.2217e-01 -1.0208e-01\n", + " -2.5530e-01 1.1695e-01 3.4305e-02 ... 5.0204e-03 -3.1896e-01 -9.6129e-02\n", + " ... ⋱ ... \n", + " 1.1271e-01 1.5310e-01 1.8242e-01 ... -1.4086e-01 4.2609e-02 -6.2007e-01\n", + " -1.0876e-01 -6.2901e-01 -3.5915e-01 ... 1.3079e-01 -6.1319e-01 5.1483e-02\n", + " -3.8345e-02 -5.3109e-02 -5.6655e-02 ... 1.9094e-02 -7.8271e-03 5.1170e-03\n", + " \n", + " (126,.,.) = \n", + " -5.0714e-03 -1.3371e-02 -5.9716e-03 ... -4.7321e-04 -1.5764e-02 2.2393e-03\n", + " -2.1972e-01 -1.0131e-02 -7.3959e-01 ... -1.0185e-01 -8.5600e-01 2.1385e-02\n", + " 2.9147e-01 1.6190e-01 1.7895e-01 ... -1.2549e+00 1.2088e-01 -3.7305e-01\n", + " ... ⋱ ... \n", + " 3.9247e-01 -5.5293e-01 1.1685e-01 ... 2.6583e-01 -2.7808e-01 1.0660e-02\n", + " 1.9686e-01 -2.6261e-01 -3.2170e-01 ... -2.5084e-01 -3.7867e-01 -8.2786e-01\n", + " 1.1004e-01 -1.3190e-01 -3.9576e-02 ... 9.9157e-03 -1.3757e-01 -4.7838e-02\n", + " \n", + " (127,.,.) = \n", + " -2.9438e-03 -6.5579e-03 1.0269e-02 ... -2.6457e-02 -1.8135e-02 8.6984e-03\n", + " -1.8795e-01 -2.1250e-02 -1.5791e-01 ... 1.1983e-01 1.2248e-01 -1.7003e-01\n", + " -4.6693e-03 -2.2383e-01 2.8204e-02 ... 2.2932e-02 -1.6864e-01 -4.6507e-01\n", + " ... ⋱ ... \n", + " -1.7754e-02 1.6717e-01 -2.0567e-01 ... 1.1366e-01 -1.0704e-01 5.5078e-02\n", + " 3.0380e-01 -1.5191e-01 2.2612e-01 ... 6.7546e-01 6.6147e-02 -1.0390e-01\n", + " 1.0645e-01 7.5489e-02 1.0369e-01 ... 5.6466e-02 1.0624e-01 3.4812e-02\n", + " [torch.FloatTensor of size 128x128x16]),\n", + " ('module.encoder.cbhg.conv1d_banks.15.bn.weight', \n", + " 0.5354\n", + " 0.4807\n", + " 0.4978\n", + " 0.5211\n", + " 1.1324\n", + " 0.4205\n", + " 0.4623\n", + " 0.4773\n", + " 0.5666\n", + " 0.5067\n", + " -1.3785\n", + " 0.4616\n", + " 0.4947\n", + " 0.5664\n", + " 0.5703\n", + " 0.6450\n", + " 0.5456\n", + " 0.5743\n", + " 0.6894\n", + " 0.5498\n", + " 0.5564\n", + " 0.4933\n", + " 0.6864\n", + " -1.2691\n", + " 0.5701\n", + " 0.4165\n", + " 0.6027\n", + " 0.5206\n", + " 0.7312\n", + " 0.4842\n", + " 0.6203\n", + " 0.5053\n", + " 0.5330\n", + " 0.5511\n", + " 0.4457\n", + " 0.5000\n", + " 0.5081\n", + " 0.6040\n", + " 0.5334\n", + " 0.4590\n", + " 0.5156\n", + " 0.4433\n", + " 0.5143\n", + " 0.6415\n", + " 0.5571\n", + " 0.5321\n", + " 0.6534\n", + " 0.8133\n", + " 0.4513\n", + " 0.7035\n", + " 0.7359\n", + " 0.4414\n", + " 0.0663\n", + " 0.5566\n", + " 0.6337\n", + " 0.4520\n", + " 0.4172\n", + " -1.3365\n", + " -1.2600\n", + " 0.4947\n", + " 0.5563\n", + " 0.5269\n", + " -1.1807\n", + " 0.5702\n", + " 0.5892\n", + " -0.7873\n", + " 0.7370\n", + " 0.4751\n", + " 0.4577\n", + " 0.6010\n", + " 0.5396\n", + " -1.1463\n", + " 0.5493\n", + " 0.5495\n", + " 0.6661\n", + " 0.4422\n", + " 0.5413\n", + " 0.5884\n", + " -1.1723\n", + " 0.5093\n", + " 0.5242\n", + " -1.0168\n", + " 0.5333\n", + " 0.5542\n", + " 0.7148\n", + " 0.6392\n", + " 0.9323\n", + " 0.4502\n", + " 0.5671\n", + " 0.5374\n", + " 0.5238\n", + " 0.5455\n", + " 0.5135\n", + " 0.5911\n", + " 0.4962\n", + " 0.4329\n", + " 0.6753\n", + " 0.4411\n", + " 1.1292\n", + " 0.5388\n", + " 0.5069\n", + " 0.7309\n", + " 0.7884\n", + " -1.3002\n", + " 0.8160\n", + " 0.4713\n", + " -1.1157\n", + " 0.5198\n", + " 0.4954\n", + " 0.6287\n", + " 0.5222\n", + " 0.5438\n", + " 0.4195\n", + " 0.5281\n", + " 0.5035\n", + " -1.0355\n", + " -1.0846\n", + " 0.4906\n", + " 0.5894\n", + " 0.6320\n", + " 0.5293\n", + " 0.5036\n", + " 0.6611\n", + " 0.4767\n", + " 0.5030\n", + " -1.1010\n", + " 0.4676\n", + " -1.1475\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.15.bn.bias', \n", + " 0.0524\n", + " -0.0104\n", + " -0.0355\n", + " -0.0305\n", + " 0.1230\n", + " 0.0507\n", + " 0.0776\n", + " -0.1148\n", + " -0.0288\n", + " -0.0372\n", + " -0.1988\n", + " 0.1076\n", + " 0.0862\n", + " -0.0735\n", + " -0.0246\n", + " 0.1221\n", + " -0.1754\n", + " 0.0359\n", + " 0.1625\n", + " 0.0628\n", + " 0.1405\n", + " -0.0864\n", + " 0.1173\n", + " -0.1877\n", + " 0.0042\n", + " 0.1162\n", + " -0.0527\n", + " 0.0511\n", + " 0.0336\n", + " 0.0657\n", + " 0.0162\n", + " -0.0186\n", + " 0.1740\n", + " -0.0569\n", + " -0.0111\n", + " 0.0413\n", + " -0.1015\n", + " 0.0365\n", + " 0.0929\n", + " -0.0713\n", + " 0.1852\n", + " -0.0286\n", + " 0.0135\n", + " 0.1054\n", + " 0.0419\n", + " 0.2542\n", + " 0.0080\n", + " 0.0018\n", + " -0.1296\n", + " 0.0003\n", + " -0.0428\n", + " 0.2202\n", + " 0.0091\n", + " -0.0100\n", + " 0.2106\n", + " 0.2011\n", + " -0.0366\n", + " -0.2762\n", + " -0.2564\n", + " 0.0600\n", + " 0.1685\n", + " -0.0183\n", + " -0.2047\n", + " 0.0162\n", + " 0.0286\n", + " 0.0164\n", + " 0.2825\n", + " 0.0731\n", + " 0.1029\n", + " 0.0540\n", + " 0.0565\n", + " -0.2636\n", + " 0.1703\n", + " 0.0017\n", + " -0.0392\n", + " -0.0126\n", + " -0.0149\n", + " 0.0537\n", + " -0.1298\n", + " 0.0554\n", + " 0.0028\n", + " -0.0728\n", + " 0.0218\n", + " -0.1667\n", + " 0.0594\n", + " 0.1006\n", + " -0.0431\n", + " -0.0145\n", + " -0.0626\n", + " -0.0886\n", + " -0.0074\n", + " 0.0046\n", + " 0.0371\n", + " 0.0730\n", + " 0.0990\n", + " 0.0714\n", + " 0.0552\n", + " 0.0027\n", + " 0.0155\n", + " 0.0420\n", + " -0.0998\n", + " -0.0555\n", + " 0.0023\n", + " -0.2370\n", + " 0.1692\n", + " 0.1662\n", + " -0.2809\n", + " 0.1173\n", + " 0.0028\n", + " 0.0015\n", + " 0.0263\n", + " 0.0441\n", + " 0.0612\n", + " 0.0263\n", + " 0.1237\n", + " -0.0759\n", + " -0.2447\n", + " 0.0603\n", + " 0.0570\n", + " 0.0240\n", + " -0.0808\n", + " 0.0285\n", + " -0.1290\n", + " -0.1056\n", + " 0.0802\n", + " -0.0803\n", + " 0.0163\n", + " -0.0485\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.15.bn.running_mean', \n", + " 0.9682\n", + " 0.4254\n", + " 2.4118\n", + " 0.5825\n", + " 0.0772\n", + " 1.0123\n", + " 0.1869\n", + " 0.3811\n", + " 2.3747\n", + " 0.4519\n", + " 3.6932\n", + " 0.4964\n", + " 0.1543\n", + " 0.5014\n", + " 3.8483\n", + " 8.6164\n", + " 0.7243\n", + " 2.0867\n", + " 5.3134\n", + " 0.4526\n", + " 0.7189\n", + " 0.3508\n", + " 9.6724\n", + " 13.2361\n", + " 0.7571\n", + " 0.3200\n", + " 1.0713\n", + " 0.3110\n", + " 5.7738\n", + " 1.0436\n", + " 2.2685\n", + " 0.6763\n", + " 0.9107\n", + " 1.6475\n", + " 0.7067\n", + " 0.1283\n", + " 1.1515\n", + " 0.4261\n", + " 3.3797\n", + " 0.8306\n", + " 0.3278\n", + " 0.4212\n", + " 1.1886\n", + " 0.3921\n", + " 1.7379\n", + " 7.5866\n", + " 1.2422\n", + " 5.0648\n", + " 0.9494\n", + " 4.7285\n", + " 3.9109\n", + " 1.1449\n", + " 0.0000\n", + " 0.3054\n", + " 7.2068\n", + " 0.8918\n", + " 1.2764\n", + " 6.3968\n", + " 3.8331\n", + " 0.4384\n", + " 1.5619\n", + " 1.4865\n", + " 1.6991\n", + " 2.0914\n", + " 1.7627\n", + " 0.0007\n", + " 3.1607\n", + " 0.6808\n", + " 0.3569\n", + " 1.5402\n", + " 0.3563\n", + " 11.9602\n", + " 1.8894\n", + " 1.0778\n", + " 3.6062\n", + " 0.5507\n", + " 2.2300\n", + " 3.4993\n", + " 3.8718\n", + " 0.4806\n", + " 0.9608\n", + " 0.1307\n", + " 1.4573\n", + " 1.5545\n", + " 0.1142\n", + " 0.8029\n", + " 0.5071\n", + " 0.8431\n", + " 0.9313\n", + " 1.3237\n", + " 1.2521\n", + " 1.7532\n", + " 0.3991\n", + " 1.4072\n", + " 1.0194\n", + " 0.3311\n", + " 2.3480\n", + " 0.5486\n", + " 0.0001\n", + " 0.5424\n", + " 1.0699\n", + " 0.4954\n", + " 8.2006\n", + " 2.5720\n", + " 3.0251\n", + " 0.6186\n", + " 11.2387\n", + " 1.3537\n", + " 1.1902\n", + " 1.2435\n", + " 1.0801\n", + " 1.3664\n", + " 0.3012\n", + " 0.1557\n", + " 1.1768\n", + " 0.0840\n", + " 0.5783\n", + " 1.1622\n", + " 0.5601\n", + " 4.6154\n", + " 0.5846\n", + " 0.7167\n", + " 5.6987\n", + " 0.9826\n", + " 1.2777\n", + " 6.8550\n", + " 0.3461\n", + " 7.7890\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_banks.15.bn.running_var', \n", + " 19.3441\n", + " 7.2210\n", + " 52.1670\n", + " 10.0785\n", + " 0.8694\n", + " 19.9234\n", + " 3.0400\n", + " 7.1023\n", + " 48.8550\n", + " 6.8233\n", + " 79.8547\n", + " 9.1791\n", + " 2.2923\n", + " 8.2448\n", + " 73.9919\n", + " 141.0537\n", + " 14.1035\n", + " 40.1774\n", + " 91.0158\n", + " 9.2547\n", + " 12.4517\n", + " 5.1783\n", + " 157.9901\n", + " 231.3361\n", + " 13.6326\n", + " 5.5508\n", + " 26.2938\n", + " 6.0275\n", + " 89.2656\n", + " 19.1362\n", + " 46.1800\n", + " 10.6488\n", + " 18.0966\n", + " 33.1807\n", + " 12.2791\n", + " 1.9163\n", + " 23.7852\n", + " 8.4300\n", + " 72.0607\n", + " 14.9116\n", + " 5.9400\n", + " 6.2749\n", + " 21.8647\n", + " 6.2331\n", + " 34.8539\n", + " 116.9517\n", + " 23.9962\n", + " 107.2270\n", + " 19.6034\n", + " 88.5838\n", + " 85.4811\n", + " 23.7413\n", + " 0.0000\n", + " 5.1239\n", + " 124.2238\n", + " 15.7109\n", + " 24.0241\n", + " 124.8482\n", + " 79.0445\n", + " 7.0774\n", + " 30.6366\n", + " 26.3645\n", + " 31.4898\n", + " 44.0007\n", + " 36.0663\n", + " 0.0021\n", + " 48.7602\n", + " 11.8073\n", + " 6.2930\n", + " 23.4775\n", + " 7.3132\n", + " 242.1393\n", + " 39.2080\n", + " 16.3218\n", + " 48.5017\n", + " 9.5221\n", + " 43.5962\n", + " 52.8122\n", + " 74.0767\n", + " 7.5589\n", + " 18.0335\n", + " 1.5151\n", + " 29.8387\n", + " 33.0634\n", + " 1.5266\n", + " 11.5707\n", + " 10.7495\n", + " 16.7786\n", + " 20.2605\n", + " 22.8422\n", + " 25.2861\n", + " 35.6485\n", + " 8.2998\n", + " 25.4361\n", + " 20.3728\n", + " 6.9308\n", + " 45.0786\n", + " 10.2328\n", + " 0.0008\n", + " 8.8821\n", + " 20.8823\n", + " 10.3538\n", + " 142.8971\n", + " 43.0934\n", + " 52.4043\n", + " 10.1972\n", + " 201.6355\n", + " 27.1906\n", + " 23.0948\n", + " 23.9127\n", + " 19.4774\n", + " 23.5042\n", + " 5.9305\n", + " 2.9476\n", + " 22.1587\n", + " 1.1825\n", + " 9.4386\n", + " 23.9990\n", + " 10.7355\n", + " 100.3000\n", + " 9.3527\n", + " 13.9741\n", + " 128.4238\n", + " 18.1951\n", + " 23.8309\n", + " 136.7777\n", + " 6.1809\n", + " 149.2479\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.0.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 3.0814e-01 4.3928e-02 5.9386e-02\n", + " 1.1993e-01 5.8452e-02 4.1407e-01\n", + " -3.3929e-01 -2.6133e-01 -3.4512e-01\n", + " ⋮ \n", + " 2.6667e-01 6.0643e-01 -3.8510e-01\n", + " -3.8135e-01 -1.7756e-01 1.8003e-01\n", + " -3.7152e-02 -2.8518e-03 -5.0003e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " 6.7310e-03 -1.9074e-01 -4.0766e-01\n", + " -3.7384e-01 3.8173e-02 -8.6705e-02\n", + " -1.4769e-01 -4.1923e-02 -1.0642e-01\n", + " ⋮ \n", + " -6.6837e-02 6.2199e-01 2.5974e-02\n", + " -1.1596e-01 -2.3071e-01 7.0891e-02\n", + " -6.6795e-01 2.1777e-01 1.5540e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " -2.3889e-02 1.2623e-02 -1.6646e+00\n", + " 3.5820e-01 -2.0916e-01 1.3814e+00\n", + " -1.3201e-01 -1.2885e-01 2.0583e-01\n", + " ⋮ \n", + " -1.4197e-01 1.5728e-01 -4.6813e-02\n", + " 4.1027e-02 1.1533e-01 -2.0033e-01\n", + " 1.0978e-01 -1.6570e-01 -8.2350e-02\n", + " ... \n", + " \n", + " (125 ,.,.) = \n", + " -9.2253e-03 -4.7290e-01 -6.3990e-01\n", + " 1.8074e-01 5.8933e-01 3.6671e-01\n", + " -2.7379e-01 -1.4911e-01 -1.0068e-02\n", + " ⋮ \n", + " 4.6931e-01 3.3843e-02 -9.3615e-02\n", + " 1.8630e-01 2.2686e-01 -5.0762e-02\n", + " 4.6377e-01 5.5982e-01 2.5739e-01\n", + " \n", + " (126 ,.,.) = \n", + " -3.0432e-01 2.8374e-01 -2.8736e-02\n", + " -6.6618e-02 -3.0130e-01 1.1153e-01\n", + " 1.0508e-01 -2.2993e-02 6.0722e-02\n", + " ⋮ \n", + " -1.5460e-01 3.0680e-01 -2.1939e-01\n", + " 1.0348e-02 1.1076e-01 -2.4765e-01\n", + " -1.2953e-01 2.0722e-01 -2.8834e-01\n", + " \n", + " (127 ,.,.) = \n", + " -3.5357e-01 5.5979e-03 -1.1791e-01\n", + " -1.3253e-01 -1.0162e-01 -4.8239e-01\n", + " -5.9012e-02 1.8944e-01 -2.2635e-01\n", + " ⋮ \n", + " 1.0666e-01 3.3147e-01 -3.4622e-02\n", + " -2.3130e-02 3.4870e-01 2.0421e-01\n", + " -3.4532e-01 4.7640e-01 -1.8542e-01\n", + " [torch.FloatTensor of size 128x2048x3]),\n", + " ('module.encoder.cbhg.conv1d_projections.0.bn.weight', \n", + " 0.6646\n", + " 0.8037\n", + " 0.5687\n", + " -0.3298\n", + " 0.3331\n", + " 0.5846\n", + " 0.7305\n", + " 0.5224\n", + " 0.5024\n", + " 0.3957\n", + " 0.4767\n", + " 0.6206\n", + " 0.7052\n", + " -0.4729\n", + " 0.4754\n", + " 0.4523\n", + " 0.3607\n", + " 0.5262\n", + " 0.5655\n", + " 0.2685\n", + " 0.5239\n", + " 0.4226\n", + " 0.7581\n", + " 0.4334\n", + " 0.9309\n", + " 0.3395\n", + " 0.3421\n", + " 0.4946\n", + " 0.6343\n", + " 0.3663\n", + " 0.5080\n", + " 0.5530\n", + " 0.3504\n", + " 0.3564\n", + " 0.5745\n", + " 0.6107\n", + " 0.4151\n", + " 0.6471\n", + " 0.5921\n", + " 0.4796\n", + " 0.7057\n", + " 0.4181\n", + " 0.4424\n", + " 0.8080\n", + " 0.5520\n", + " 0.5493\n", + " 0.7327\n", + " 0.4723\n", + " 0.5089\n", + " 0.4511\n", + " 1.0728\n", + " 0.7614\n", + " 0.4652\n", + " 0.5035\n", + " 0.5966\n", + " 0.5513\n", + " 0.6273\n", + " 0.4190\n", + " 0.6361\n", + " 0.6292\n", + " 0.4825\n", + " 0.5430\n", + " 0.4997\n", + " 0.6707\n", + " 0.3601\n", + " 0.4622\n", + " 0.6502\n", + " -0.3914\n", + " 0.6328\n", + " 0.7951\n", + " 0.5793\n", + " 0.5665\n", + " 0.8058\n", + " 0.4266\n", + " 0.6564\n", + " 0.6774\n", + " 1.7108\n", + " 0.5781\n", + " 0.4265\n", + " 0.4686\n", + " 1.0867\n", + " 0.4749\n", + " -0.0049\n", + " 0.6564\n", + " -0.5044\n", + " 0.5283\n", + " 1.3802\n", + " 0.4614\n", + " 0.5294\n", + " 0.5872\n", + " 0.4923\n", + " 0.5253\n", + " 0.6028\n", + " 0.5324\n", + " 0.5360\n", + " -0.4594\n", + " 0.6569\n", + " 0.5223\n", + " 0.5158\n", + " 0.6301\n", + " 0.2296\n", + " 0.4971\n", + " 0.5606\n", + " 0.3990\n", + " 0.1675\n", + " 0.6395\n", + " 0.8900\n", + " 0.7790\n", + " 0.6523\n", + " 0.4834\n", + " 0.4640\n", + " 0.7101\n", + " 0.4878\n", + " 1.0137\n", + " 0.2852\n", + " 0.3972\n", + " 0.5455\n", + " 0.4692\n", + " 0.2003\n", + " 0.5367\n", + " 0.4520\n", + " 0.5018\n", + " 0.5938\n", + " 0.4570\n", + " 0.5801\n", + " 0.5462\n", + " 0.4063\n", + " 0.5967\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.0.bn.bias', \n", + " 0.4170\n", + " -0.0814\n", + " 0.5861\n", + " -0.9265\n", + " 0.1705\n", + " 0.4536\n", + " -0.2573\n", + " -0.1538\n", + " 1.0144\n", + " 0.1783\n", + " -0.6816\n", + " 0.4903\n", + " 0.0312\n", + " 1.1306\n", + " 0.2297\n", + " -0.2553\n", + " -0.0439\n", + " 0.6143\n", + " -0.0467\n", + " -0.5743\n", + " -1.1164\n", + " 0.5284\n", + " 0.6900\n", + " -0.6266\n", + " -0.3952\n", + " 0.1032\n", + " 0.4301\n", + " 0.5007\n", + " -0.7266\n", + " 0.0655\n", + " -0.5523\n", + " -0.0068\n", + " 0.4664\n", + " -0.9305\n", + " 0.7540\n", + " 0.0923\n", + " 0.0029\n", + " 0.1134\n", + " -0.3432\n", + " 0.3094\n", + " 0.8301\n", + " 0.0221\n", + " 0.7642\n", + " -0.2436\n", + " 0.4244\n", + " 0.2470\n", + " 0.2969\n", + " -1.0682\n", + " 1.0367\n", + " 0.3307\n", + " 0.8700\n", + " -0.4417\n", + " 0.4280\n", + " 0.7529\n", + " 0.9893\n", + " -0.3281\n", + " 0.2944\n", + " 0.2873\n", + " 0.6717\n", + " 0.1098\n", + " -0.8139\n", + " 0.2548\n", + " -1.1177\n", + " 0.4356\n", + " 0.1965\n", + " 0.2115\n", + " 0.1635\n", + " 0.5615\n", + " 0.7445\n", + " 0.3350\n", + " 0.3104\n", + " 0.1556\n", + " 0.2709\n", + " 0.1253\n", + " 0.6787\n", + " -0.4149\n", + " -0.0092\n", + " -0.0661\n", + " 0.5637\n", + " 0.7340\n", + " 0.5761\n", + " 0.8845\n", + " -1.7518\n", + " 0.9397\n", + " -0.5018\n", + " 0.5829\n", + " -0.4377\n", + " 0.7131\n", + " 0.1205\n", + " 0.4713\n", + " 0.5456\n", + " 0.7895\n", + " -0.1775\n", + " 0.7853\n", + " 0.5514\n", + " 0.2082\n", + " -0.0249\n", + " -0.0716\n", + " 0.6822\n", + " 0.2103\n", + " 0.7948\n", + " 0.3662\n", + " 0.0700\n", + " 0.0494\n", + " 0.3584\n", + " 0.3580\n", + " 0.9084\n", + " 0.8465\n", + " 0.0509\n", + " 0.0737\n", + " 0.6599\n", + " 0.3823\n", + " 0.1007\n", + " -0.0749\n", + " -0.0053\n", + " -0.0542\n", + " 0.0226\n", + " 1.2841\n", + " -0.1019\n", + " -0.1142\n", + " -0.7577\n", + " -0.0020\n", + " -0.1057\n", + " 0.4090\n", + " -0.8755\n", + " 0.6086\n", + " -0.6107\n", + " 0.3299\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.0.bn.running_mean', \n", + " 0.2210\n", + " 0.0529\n", + " 1.3052\n", + " 0.0680\n", + " 0.2829\n", + " 4.6885\n", + " 0.0422\n", + " 0.3684\n", + " 0.4773\n", + " 0.2964\n", + " 0.0397\n", + " 0.1658\n", + " 5.2520\n", + " 1.7325\n", + " 10.4315\n", + " 0.4226\n", + " 0.0934\n", + " 4.8479\n", + " 0.8025\n", + " 0.1040\n", + " 0.2436\n", + " 0.0433\n", + " 0.0000\n", + " 20.9054\n", + " 0.0000\n", + " 0.0833\n", + " 0.0000\n", + " 4.5476\n", + " 3.2742\n", + " 1.0132\n", + " 0.2117\n", + " 9.1506\n", + " 0.0000\n", + " 0.0000\n", + " 1.2540\n", + " 18.8371\n", + " 0.0970\n", + " 0.5599\n", + " 0.0559\n", + " 6.6174\n", + " 6.5105\n", + " 0.1380\n", + " 0.0998\n", + " 1.5197\n", + " 21.1912\n", + " 4.4543\n", + " 5.1361\n", + " 0.0000\n", + " 0.0000\n", + " 10.7140\n", + " 0.3029\n", + " 12.9685\n", + " 6.7112\n", + " 0.1514\n", + " 5.7137\n", + " 0.2961\n", + " 0.1161\n", + " 5.8437\n", + " 20.4616\n", + " 0.4551\n", + " 0.0253\n", + " 0.3599\n", + " 23.7951\n", + " 0.0565\n", + " 1.5301\n", + " 1.6234\n", + " 0.0763\n", + " 14.0220\n", + " 19.9584\n", + " 28.1291\n", + " 4.8282\n", + " 0.0908\n", + " 2.7046\n", + " 1.5839\n", + " 0.0581\n", + " 15.3864\n", + " 0.0195\n", + " 0.1280\n", + " 22.8007\n", + " 0.0701\n", + " 0.0049\n", + " 0.0750\n", + " 0.0000\n", + " 11.3023\n", + " 0.7947\n", + " 5.9371\n", + " 0.0394\n", + " 0.0097\n", + " 2.5397\n", + " 4.2118\n", + " 44.7946\n", + " 5.3529\n", + " 6.1608\n", + " 33.0016\n", + " 0.1493\n", + " 1.0825\n", + " 23.0581\n", + " 0.0943\n", + " 6.2559\n", + " 0.2262\n", + " 0.0000\n", + " 5.2692\n", + " 0.6173\n", + " 0.0426\n", + " 0.0000\n", + " 15.9105\n", + " 0.0000\n", + " 2.2465\n", + " 0.0751\n", + " 7.9508\n", + " 0.0000\n", + " 0.0000\n", + " 0.1523\n", + " 0.0193\n", + " 0.0817\n", + " 0.1041\n", + " 1.2988\n", + " 1.0068\n", + " 0.0189\n", + " 22.4981\n", + " 5.0923\n", + " 0.2965\n", + " 5.1567\n", + " 5.4683\n", + " 0.0821\n", + " 2.8410\n", + " 0.2114\n", + " 0.1182\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.0.bn.running_var', \n", + " 10.1925\n", + " 2.7325\n", + " 40.7506\n", + " 2.2552\n", + " 5.7887\n", + " 125.8415\n", + " 1.2202\n", + " 11.9626\n", + " 13.4820\n", + " 8.2248\n", + " 1.1643\n", + " 1.7009\n", + " 137.7545\n", + " 42.2349\n", + " 215.7925\n", + " 10.8992\n", + " 4.0058\n", + " 130.2910\n", + " 21.7233\n", + " 1.8677\n", + " 6.0895\n", + " 1.6989\n", + " 0.0000\n", + " 275.7753\n", + " 0.0000\n", + " 2.8889\n", + " 0.0000\n", + " 106.1226\n", + " 101.9748\n", + " 22.6417\n", + " 6.4413\n", + " 208.0539\n", + " 0.0000\n", + " 0.0000\n", + " 33.9741\n", + " 362.8148\n", + " 3.0024\n", + " 18.1610\n", + " 2.1819\n", + " 145.9947\n", + " 149.0669\n", + " 3.7496\n", + " 4.9660\n", + " 36.9479\n", + " 307.1859\n", + " 99.5560\n", + " 129.2765\n", + " 0.0005\n", + " 0.0000\n", + " 262.8981\n", + " 16.3489\n", + " 288.6512\n", + " 158.7979\n", + " 7.0622\n", + " 123.5744\n", + " 5.8243\n", + " 6.8162\n", + " 113.7955\n", + " 358.1396\n", + " 17.4511\n", + " 0.7085\n", + " 12.1286\n", + " 283.4341\n", + " 2.8528\n", + " 38.1696\n", + " 37.2666\n", + " 3.2165\n", + " 239.5753\n", + " 336.7714\n", + " 544.2413\n", + " 116.3443\n", + " 4.9104\n", + " 81.7024\n", + " 37.3843\n", + " 3.3905\n", + " 341.0682\n", + " 0.5235\n", + " 6.1596\n", + " 301.3521\n", + " 2.4722\n", + " 0.0616\n", + " 2.5850\n", + " 0.0000\n", + " 276.1491\n", + " 18.7097\n", + " 161.9815\n", + " 1.8596\n", + " 0.1399\n", + " 57.3707\n", + " 119.9483\n", + " 365.9788\n", + " 149.1642\n", + " 156.6599\n", + " 396.5631\n", + " 4.4044\n", + " 23.1890\n", + " 556.5134\n", + " 3.8096\n", + " 158.6554\n", + " 10.4037\n", + " 0.0000\n", + " 128.4091\n", + " 16.4895\n", + " 1.0318\n", + " 0.0000\n", + " 304.3759\n", + " 0.0005\n", + " 69.4994\n", + " 3.5712\n", + " 144.1262\n", + " 0.0000\n", + " 0.0000\n", + " 5.1930\n", + " 0.7164\n", + " 1.2742\n", + " 3.1561\n", + " 40.9657\n", + " 25.8127\n", + " 0.4160\n", + " 376.6815\n", + " 91.2860\n", + " 8.4013\n", + " 129.7561\n", + " 116.1720\n", + " 3.4888\n", + " 56.6032\n", + " 7.4175\n", + " 6.8700\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.1.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -7.9624e-02 9.5472e-02 -6.5400e-02\n", + " -9.0511e-02 -1.2361e-01 -2.9827e-01\n", + " -1.0070e-01 -4.9918e-01 1.5549e-01\n", + " ⋮ \n", + " -2.0914e-01 8.3182e-01 3.5420e-01\n", + " -9.0347e-02 -1.9814e-01 1.5357e-01\n", + " 2.0842e-01 -1.6191e-01 -1.3249e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -2.6338e-01 2.0028e-01 -5.5048e-01\n", + " -6.3165e-02 2.0704e-01 4.7220e-01\n", + " 1.5427e-01 -2.4553e-01 -2.8350e-01\n", + " ⋮ \n", + " 2.4556e-02 -2.8573e-01 6.1484e-02\n", + " 2.4085e-01 5.7162e-03 3.0859e-01\n", + " 3.4030e-01 1.2176e-01 1.1497e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 1.2434e-02 4.0604e-01 2.5618e-01\n", + " 8.7541e-02 -5.6916e-02 -5.7893e-01\n", + " -1.9563e-01 -7.3344e-02 -6.0057e-02\n", + " ⋮ \n", + " 1.0950e-01 3.1177e-02 -1.4969e-03\n", + " -8.3942e-02 -1.2569e-01 -2.7982e-01\n", + " 1.3968e-01 -2.1056e-01 -3.8614e-01\n", + " ... \n", + " \n", + " (125,.,.) = \n", + " -2.0339e-01 -9.2574e-02 1.9148e-01\n", + " 1.9614e-01 1.8801e-01 5.5208e-01\n", + " -5.3128e-02 4.0566e-01 -3.9731e-01\n", + " ⋮ \n", + " 2.4068e-01 3.5523e-02 -1.7478e-01\n", + " 1.3921e-01 -3.7821e-01 -7.7398e-02\n", + " 3.1290e-01 1.0250e-01 1.6110e-01\n", + " \n", + " (126,.,.) = \n", + " 1.8149e-01 1.4161e-01 -2.1990e-01\n", + " 9.2477e-02 1.8051e-01 3.1933e-01\n", + " 4.1670e-02 6.6928e-02 2.5147e-01\n", + " ⋮ \n", + " -2.6391e-01 -7.2917e-02 -5.0047e-02\n", + " 1.1001e-01 3.4186e-01 2.3474e-01\n", + " 1.2854e-01 1.6606e-01 -1.7315e-02\n", + " \n", + " (127,.,.) = \n", + " -2.3090e-01 1.5042e-01 6.3597e-01\n", + " -3.4157e-02 3.5767e-03 3.4091e-01\n", + " 4.9821e-02 -5.0298e-02 5.0703e-02\n", + " ⋮ \n", + " 2.7414e-02 1.3014e-01 2.9182e-01\n", + " 1.6557e-01 4.1488e-01 1.0505e-01\n", + " 8.3979e-02 -3.8755e-01 -1.7537e-02\n", + " [torch.FloatTensor of size 128x128x3]),\n", + " ('module.encoder.cbhg.conv1d_projections.1.bn.weight', \n", + " 0.4536\n", + " 0.3744\n", + " 0.3930\n", + " 0.4028\n", + " 0.1871\n", + " 0.3296\n", + " 0.5046\n", + " 0.3456\n", + " 0.5806\n", + " 0.6941\n", + " 0.1379\n", + " 0.4948\n", + " 0.3155\n", + " 0.2385\n", + " 0.2987\n", + " 0.4990\n", + " 0.3377\n", + " 0.4929\n", + " 0.3430\n", + " 0.6483\n", + " 0.4081\n", + " 0.5141\n", + " 0.8667\n", + " 0.7486\n", + " 0.3455\n", + " 0.8252\n", + " 0.4224\n", + " 0.3750\n", + " 0.6520\n", + " 0.3503\n", + " 0.7377\n", + " 0.6230\n", + " 0.4638\n", + " 0.7627\n", + " 0.4598\n", + " 0.4961\n", + " 0.6081\n", + " 0.4609\n", + " -0.2415\n", + " 0.3845\n", + " 0.6408\n", + " 0.6914\n", + " 0.7386\n", + " 0.5714\n", + " 0.2910\n", + " 0.6573\n", + " 0.5436\n", + " 0.2170\n", + " 0.4840\n", + " 0.7204\n", + " 0.2262\n", + " 0.1596\n", + " 0.5102\n", + " 0.3687\n", + " 0.4028\n", + " -0.2457\n", + " 0.4936\n", + " 0.4966\n", + " 0.7913\n", + " 0.4287\n", + " 0.5383\n", + " 0.5517\n", + " 0.6433\n", + " 0.6154\n", + " 0.1992\n", + " -0.2114\n", + " 0.3606\n", + " 0.1503\n", + " 0.6788\n", + " 0.5619\n", + " 0.5162\n", + " 0.5477\n", + " 0.5638\n", + " 0.2326\n", + " 0.5656\n", + " 0.6506\n", + " 0.4850\n", + " 0.3377\n", + " 0.3538\n", + " 0.3885\n", + " 0.2085\n", + " 0.3807\n", + " 0.1975\n", + " 0.5298\n", + " 0.8238\n", + " 0.8133\n", + " 0.3542\n", + " 0.2515\n", + " 0.8385\n", + " 0.6650\n", + " 0.6492\n", + " 0.4470\n", + " 0.2840\n", + " 0.1060\n", + " 0.4425\n", + " 0.8025\n", + " 0.4587\n", + " 0.5400\n", + " 0.7236\n", + " 0.6267\n", + " 0.6552\n", + " 0.8278\n", + " 0.2184\n", + " 0.2870\n", + " 0.2500\n", + " -0.2185\n", + " 0.5200\n", + " 0.5064\n", + " 0.2679\n", + " 0.6613\n", + " 0.5352\n", + " 0.4196\n", + " 0.5948\n", + " 0.4679\n", + " 0.4783\n", + " 0.4823\n", + " 0.6754\n", + " 0.2985\n", + " 0.1426\n", + " 0.1292\n", + " 0.4998\n", + " -0.1704\n", + " 0.5583\n", + " 0.1927\n", + " 0.4749\n", + " 0.2017\n", + " 0.5920\n", + " 0.3369\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.1.bn.bias', \n", + " 0.0224\n", + " -0.2522\n", + " 0.2020\n", + " 0.2377\n", + " 0.0741\n", + " -0.0521\n", + " -0.1118\n", + " -0.1838\n", + " 0.1101\n", + " -0.0721\n", + " 0.0287\n", + " 0.2076\n", + " -0.0525\n", + " 0.0451\n", + " -0.0014\n", + " 0.0122\n", + " 0.1394\n", + " -0.0573\n", + " -0.1542\n", + " 0.0116\n", + " -0.0492\n", + " 0.0087\n", + " -0.0062\n", + " -0.1424\n", + " 0.1519\n", + " -0.0766\n", + " -0.1431\n", + " 0.1400\n", + " -0.2043\n", + " -0.0008\n", + " -0.0737\n", + " -0.0599\n", + " -0.0529\n", + " -0.0173\n", + " -0.1263\n", + " -0.0410\n", + " 0.0255\n", + " -0.1789\n", + " -0.1656\n", + " -0.0316\n", + " -0.0390\n", + " 0.0087\n", + " -0.1299\n", + " -0.0694\n", + " -0.1189\n", + " -0.0169\n", + " -0.0213\n", + " -0.0727\n", + " -0.0509\n", + " 0.0268\n", + " 0.0202\n", + " 0.1228\n", + " -0.0614\n", + " 0.0028\n", + " -0.2373\n", + " 0.1186\n", + " -0.0383\n", + " -0.2088\n", + " 0.0736\n", + " 0.1062\n", + " -0.0432\n", + " 0.0197\n", + " -0.0035\n", + " -0.1340\n", + " -0.0258\n", + " -0.5595\n", + " 0.0046\n", + " -0.0175\n", + " -0.0872\n", + " -0.1930\n", + " 0.2642\n", + " -0.0697\n", + " 0.0933\n", + " 0.0899\n", + " -0.0901\n", + " 0.0514\n", + " -0.1184\n", + " -0.0806\n", + " -0.0036\n", + " 0.0551\n", + " -0.1512\n", + " -0.3144\n", + " 0.0791\n", + " 0.0281\n", + " -0.0380\n", + " -0.1759\n", + " -0.0889\n", + " -0.0217\n", + " -0.1630\n", + " 0.1199\n", + " 0.1335\n", + " 0.0501\n", + " -0.0056\n", + " -0.0496\n", + " -0.2410\n", + " -0.1760\n", + " -0.1461\n", + " 0.1274\n", + " -0.0090\n", + " -0.0659\n", + " 0.0040\n", + " -0.0251\n", + " -0.1979\n", + " -0.0803\n", + " -0.0057\n", + " -0.0306\n", + " 0.0850\n", + " 0.1497\n", + " -0.0224\n", + " -0.0528\n", + " -0.1483\n", + " -0.0866\n", + " -0.0954\n", + " -0.3011\n", + " 0.0900\n", + " 0.0274\n", + " -0.1553\n", + " -0.0255\n", + " 0.0925\n", + " 0.0752\n", + " -0.0417\n", + " -0.0615\n", + " -0.1534\n", + " -0.1725\n", + " 0.0274\n", + " -0.0475\n", + " 0.0416\n", + " 0.1518\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.1.bn.running_mean', \n", + " -3.5261\n", + " 1.9191\n", + " -0.1514\n", + " 5.6740\n", + " 2.1472\n", + " 2.9415\n", + " 3.8381\n", + " 0.5452\n", + " -2.8366\n", + " -0.8421\n", + " -4.5869\n", + " -9.6256\n", + " 8.2001\n", + " 6.1331\n", + " 6.1160\n", + " 4.5427\n", + " 6.6272\n", + " 5.4206\n", + " -5.9134\n", + " 9.2229\n", + " -0.2210\n", + " -8.7986\n", + " 4.6308\n", + " 10.5411\n", + " -0.4133\n", + " 1.3050\n", + " 1.7876\n", + " -0.1916\n", + " -13.8851\n", + " 6.0357\n", + " -3.5755\n", + " -4.1219\n", + " -5.5356\n", + " 1.2398\n", + " -11.9075\n", + " -5.1448\n", + " 2.4730\n", + " 6.0906\n", + " -0.5620\n", + " 5.0333\n", + " 17.5819\n", + " 7.1774\n", + " -8.2541\n", + " 2.5919\n", + " 11.7343\n", + " 3.0234\n", + " -8.7040\n", + " 9.8797\n", + " 0.1937\n", + " -7.9667\n", + " 0.2270\n", + " 1.2282\n", + " -1.4745\n", + " -1.1372\n", + " 1.0151\n", + " -15.1402\n", + " 11.5094\n", + " 2.8092\n", + " 10.8497\n", + " 6.5561\n", + " -2.9229\n", + " 5.3241\n", + " 1.9052\n", + " 6.8665\n", + " -2.0176\n", + " -1.5431\n", + " -2.9267\n", + " 6.5498\n", + " -8.8167\n", + " -0.1278\n", + " 18.3676\n", + " -3.3496\n", + " 4.1914\n", + " 7.4549\n", + " -2.3751\n", + " 2.1590\n", + " 6.0434\n", + " -3.1926\n", + " 11.5383\n", + " -2.7574\n", + " 7.1369\n", + " -6.9124\n", + " -4.5749\n", + " 2.3652\n", + " 4.7353\n", + " 3.2585\n", + " 9.8200\n", + " -0.7865\n", + " -9.5018\n", + " 7.3156\n", + " 1.1741\n", + " -2.2538\n", + " 5.6080\n", + " -1.7893\n", + " -12.8355\n", + " -6.6571\n", + " 3.1501\n", + " 2.1819\n", + " 8.3854\n", + " -9.3287\n", + " -0.4803\n", + " -12.0142\n", + " -0.7332\n", + " 0.8964\n", + " 7.8064\n", + " 0.6350\n", + " -5.6905\n", + " 5.0025\n", + " 0.1746\n", + " -0.8536\n", + " 5.9803\n", + " 12.3864\n", + " 4.7458\n", + " 1.7846\n", + " 3.8921\n", + " 4.2181\n", + " -9.9728\n", + " 0.8573\n", + " 1.1001\n", + " 6.4840\n", + " 2.7009\n", + " -10.3976\n", + " -2.7385\n", + " -2.1108\n", + " 12.0861\n", + " 3.0430\n", + " 0.1592\n", + " 6.1069\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.conv1d_projections.1.bn.running_var', \n", + " 15.6029\n", + " 16.0301\n", + " 18.0898\n", + " 9.2120\n", + " 35.9527\n", + " 16.2714\n", + " 38.2591\n", + " 22.0204\n", + " 21.8823\n", + " 18.5069\n", + " 18.2544\n", + " 12.6123\n", + " 11.2886\n", + " 13.9873\n", + " 15.9373\n", + " 11.0099\n", + " 10.1090\n", + " 40.7009\n", + " 22.7567\n", + " 11.3390\n", + " 19.0217\n", + " 27.5536\n", + " 27.9724\n", + " 29.1658\n", + " 9.1891\n", + " 34.6404\n", + " 13.5092\n", + " 11.2521\n", + " 57.5699\n", + " 9.4996\n", + " 21.5500\n", + " 36.2159\n", + " 17.4185\n", + " 32.5253\n", + " 16.5135\n", + " 12.8911\n", + " 19.9967\n", + " 21.7646\n", + " 19.1525\n", + " 22.9861\n", + " 16.1516\n", + " 30.4740\n", + " 44.5169\n", + " 17.5279\n", + " 15.5373\n", + " 14.6567\n", + " 31.9899\n", + " 13.7391\n", + " 12.5149\n", + " 20.9873\n", + " 9.4325\n", + " 25.0610\n", + " 11.6550\n", + " 13.4542\n", + " 13.1076\n", + " 17.1637\n", + " 56.5875\n", + " 27.5515\n", + " 19.5355\n", + " 10.7034\n", + " 34.9299\n", + " 33.0139\n", + " 20.3878\n", + " 31.6955\n", + " 14.9919\n", + " 16.4654\n", + " 14.5991\n", + " 24.7710\n", + " 14.9264\n", + " 24.2895\n", + " 18.3864\n", + " 18.8397\n", + " 23.3574\n", + " 18.7483\n", + " 13.5217\n", + " 41.0459\n", + " 24.1666\n", + " 24.7859\n", + " 23.9255\n", + " 25.7402\n", + " 14.9454\n", + " 10.2282\n", + " 30.3052\n", + " 16.6936\n", + " 32.2529\n", + " 38.8537\n", + " 20.7137\n", + " 29.7605\n", + " 19.3282\n", + " 17.5068\n", + " 18.4878\n", + " 46.9227\n", + " 14.5460\n", + " 49.6237\n", + " 9.6516\n", + " 36.9525\n", + " 16.7046\n", + " 12.6520\n", + " 20.6808\n", + " 39.4360\n", + " 23.3886\n", + " 29.7674\n", + " 16.2744\n", + " 13.4464\n", + " 11.3885\n", + " 8.5819\n", + " 19.9894\n", + " 10.8315\n", + " 13.5345\n", + " 22.2764\n", + " 16.8990\n", + " 25.8441\n", + " 21.5513\n", + " 9.1293\n", + " 24.4879\n", + " 19.5241\n", + " 32.1755\n", + " 13.3793\n", + " 18.0319\n", + " 35.8084\n", + " 18.4339\n", + " 13.5934\n", + " 22.9312\n", + " 23.8098\n", + " 21.8152\n", + " 9.1292\n", + " 21.1067\n", + " 13.2162\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.pre_highway.weight', \n", + " 7.6424e-03 2.5910e-02 5.8759e-02 ... 2.5778e-02 5.1379e-02 -4.2433e-03\n", + " -2.4070e-02 7.6139e-02 4.9189e-02 ... 6.4792e-02 4.8108e-02 -7.3651e-02\n", + " -3.4366e-02 -7.9627e-02 -4.4232e-02 ... 3.5146e-02 -8.0961e-02 -5.9398e-02\n", + " ... ⋱ ... \n", + " 7.6387e-02 1.1982e-02 -7.0450e-04 ... 5.7644e-02 5.5235e-02 -7.8248e-02\n", + " 6.9834e-02 -7.8794e-02 6.8049e-02 ... 4.9438e-02 2.3717e-02 5.5143e-03\n", + " -2.9588e-02 -8.4442e-02 2.6452e-02 ... -4.1797e-02 4.1798e-02 2.6897e-02\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.0.H.weight', \n", + " -3.7753e-01 -1.1873e-01 -7.2885e-02 ... -1.3706e-01 -5.0812e-01 -3.1839e-01\n", + " -3.1247e-01 -1.9993e-01 -8.0211e-01 ... -3.2072e-01 2.9533e-01 -2.5461e-02\n", + " 6.9581e-02 -6.6954e-02 -1.6043e-01 ... -1.3403e-01 -3.1564e-01 -3.1844e-01\n", + " ... ⋱ ... \n", + " -3.6133e-01 1.4214e-02 1.2277e-01 ... -3.4546e-01 1.7992e-01 -1.3199e-01\n", + " -9.9197e-02 -3.4521e-02 -1.2004e-01 ... -3.2145e-01 -1.7860e-01 -1.6176e-01\n", + " 1.3408e-01 3.0038e-03 -1.0454e-01 ... -1.3727e-04 3.0389e-02 -8.2818e-02\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.0.H.bias', \n", + " -0.5865\n", + " -0.3727\n", + " -0.0313\n", + " 0.0137\n", + " -0.1726\n", + " -0.1130\n", + " 0.0186\n", + " -0.2501\n", + " 0.0633\n", + " -0.1866\n", + " 0.3170\n", + " 0.0386\n", + " -0.3819\n", + " -0.1964\n", + " -0.3243\n", + " -0.3649\n", + " -0.1672\n", + " 0.0802\n", + " -0.4135\n", + " -0.5153\n", + " -0.3261\n", + " -1.1598\n", + " -0.0941\n", + " -0.1548\n", + " -0.3674\n", + " -0.3337\n", + " -0.1484\n", + " -0.3088\n", + " 0.2971\n", + " -0.0667\n", + " -0.2780\n", + " 0.0620\n", + " -0.7120\n", + " -0.4120\n", + " 0.1090\n", + " 0.1015\n", + " -0.3369\n", + " 0.2702\n", + " -0.2184\n", + " -0.2087\n", + " -0.7956\n", + " -0.1349\n", + " -0.2185\n", + " -0.4237\n", + " -0.2828\n", + " -0.3616\n", + " 0.0301\n", + " 0.2710\n", + " -0.3773\n", + " -0.4989\n", + " 0.5445\n", + " 0.0151\n", + " -0.3162\n", + " -0.1979\n", + " -0.4540\n", + " -0.3024\n", + " -0.2572\n", + " -0.6145\n", + " -0.2004\n", + " -0.2538\n", + " 0.0036\n", + " -0.1976\n", + " -0.1802\n", + " -0.4072\n", + " -0.3396\n", + " 0.2006\n", + " 0.0554\n", + " 0.3043\n", + " -0.2079\n", + " 0.0379\n", + " 0.0255\n", + " -0.1156\n", + " -0.4118\n", + " 0.0619\n", + " -0.2979\n", + " -0.0777\n", + " -0.4252\n", + " 0.2074\n", + " 0.1137\n", + " 0.2852\n", + " -0.1483\n", + " -0.0824\n", + " -0.1568\n", + " -0.2427\n", + " -0.2911\n", + " -0.3581\n", + " -0.0607\n", + " 0.0008\n", + " -0.1334\n", + " -0.1024\n", + " 0.4847\n", + " -0.5820\n", + " 0.4444\n", + " -0.1540\n", + " -0.3775\n", + " 0.0230\n", + " -0.2560\n", + " -0.0936\n", + " -0.3532\n", + " 0.0069\n", + " 0.1352\n", + " -0.0705\n", + " 0.0704\n", + " -0.1387\n", + " 0.2529\n", + " -0.2255\n", + " -0.0730\n", + " -0.1451\n", + " -0.3517\n", + " 0.0273\n", + " -0.3147\n", + " -0.3470\n", + " -0.5478\n", + " -0.5797\n", + " -0.1703\n", + " -0.3998\n", + " -0.3479\n", + " -0.4414\n", + " -0.1925\n", + " -0.1970\n", + " -0.2915\n", + " 0.5914\n", + " -0.0482\n", + " 0.4137\n", + " -0.1621\n", + " 0.1581\n", + " -0.6951\n", + " 0.1022\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.0.T.weight', \n", + " 4.2534e-01 -1.5347e-01 -2.6262e-01 ... 5.3239e-01 5.2091e-02 -9.6632e-02\n", + " 2.0936e-01 3.7558e-01 2.5726e-01 ... 4.1763e-02 3.9232e-02 -1.2335e-01\n", + " -1.4236e-02 1.9510e-01 6.7196e-01 ... -1.5553e-01 -9.3686e-02 -1.0255e+00\n", + " ... ⋱ ... \n", + " -4.6444e-02 1.9064e-01 -1.6661e-01 ... 1.2270e+00 -1.3526e-01 -1.0569e-01\n", + " -4.0731e-01 -2.1208e-02 -3.2148e-01 ... -7.6064e-02 5.6086e-01 2.5529e-01\n", + " 5.8205e-03 5.0058e-01 1.7055e-02 ... -4.7348e-01 1.8220e-01 -5.3471e-02\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.0.T.bias', \n", + " -1.6184\n", + " -1.0429\n", + " -1.3170\n", + " -1.3835\n", + " -0.4131\n", + " -0.7471\n", + " -1.3204\n", + " -1.1247\n", + " -1.5811\n", + " -1.2261\n", + " -1.1172\n", + " -0.8929\n", + " -1.2016\n", + " -1.7639\n", + " -1.4354\n", + " -1.2490\n", + " -0.9711\n", + " -1.1048\n", + " -1.1083\n", + " -1.2327\n", + " -1.0377\n", + " -1.7015\n", + " -0.7842\n", + " -1.0672\n", + " -0.6804\n", + " -1.0488\n", + " -1.0506\n", + " -1.0861\n", + " -0.8274\n", + " -1.4053\n", + " -0.8013\n", + " -0.8329\n", + " -1.5080\n", + " -1.0560\n", + " -1.0205\n", + " -0.9094\n", + " -1.3420\n", + " -1.3321\n", + " -0.9121\n", + " -1.4326\n", + " -1.2343\n", + " -0.8188\n", + " -1.0797\n", + " -1.0230\n", + " -0.8973\n", + " -0.5101\n", + " -0.9391\n", + " -1.6211\n", + " -1.0409\n", + " -1.3219\n", + " -1.6896\n", + " -0.4855\n", + " -1.0583\n", + " -0.9602\n", + " -1.4328\n", + " -0.9121\n", + " -1.3012\n", + " -1.2760\n", + " -1.0642\n", + " -1.4541\n", + " -0.5764\n", + " -1.4959\n", + " -1.1411\n", + " -0.8906\n", + " -0.9969\n", + " -0.8866\n", + " -1.4349\n", + " -0.9254\n", + " -0.8737\n", + " -1.0402\n", + " -0.8703\n", + " -1.2408\n", + " -0.9886\n", + " -1.3280\n", + " -1.1675\n", + " -1.4920\n", + " -1.1507\n", + " -1.2237\n", + " -1.3544\n", + " -0.9596\n", + " -1.1802\n", + " -0.9479\n", + " -0.1265\n", + " -0.5966\n", + " -1.0964\n", + " -0.8681\n", + " -1.1972\n", + " -0.7485\n", + " -1.0767\n", + " -0.9577\n", + " -1.4237\n", + " -1.4708\n", + " -1.5494\n", + " -0.9201\n", + " -1.5097\n", + " -0.9607\n", + " -0.8944\n", + " -1.1210\n", + " -1.0278\n", + " -0.7736\n", + " -0.8854\n", + " -1.1615\n", + " -1.6448\n", + " -0.9676\n", + " -1.5240\n", + " -0.7192\n", + " -1.2818\n", + " -0.3621\n", + " -1.5124\n", + " -1.5226\n", + " -1.3278\n", + " -1.3497\n", + " -1.2536\n", + " -1.1199\n", + " -1.0604\n", + " -1.5927\n", + " -0.8126\n", + " -1.0362\n", + " -0.4343\n", + " -0.8960\n", + " -1.2733\n", + " -1.5969\n", + " -1.3012\n", + " -1.1393\n", + " -0.6058\n", + " -1.0270\n", + " -1.4415\n", + " -1.2745\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.1.H.weight', \n", + " -1.2903e-01 -3.1060e-01 1.0214e-01 ... -3.9553e-01 -1.0350e-01 -9.7856e-02\n", + " 1.8118e-01 1.3375e-02 1.9977e-01 ... -1.5329e-02 -9.9447e-02 -3.4168e-01\n", + " 3.8714e-02 1.3862e-01 -6.2023e-02 ... -6.8721e-01 5.3937e-02 1.0958e-01\n", + " ... ⋱ ... \n", + " 9.2582e-02 7.8591e-02 -1.9832e-02 ... -1.0931e-01 2.1502e-01 -2.8412e-01\n", + " 2.1670e-01 -2.8787e-01 1.7272e-02 ... -5.8934e-01 -4.1751e-01 1.1831e-01\n", + " -8.7897e-02 -7.7806e-02 -3.2964e-01 ... -4.8497e-01 8.8042e-01 5.9294e-02\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.1.H.bias', \n", + " 0.0852\n", + " 0.1422\n", + " -0.2038\n", + " -0.4496\n", + " -0.1156\n", + " -0.3202\n", + " -0.0841\n", + " 0.3041\n", + " -0.4135\n", + " -0.3150\n", + " -0.2499\n", + " -0.1967\n", + " -0.1445\n", + " 0.1640\n", + " -0.0770\n", + " -0.3320\n", + " -0.1990\n", + " -0.2207\n", + " -0.1029\n", + " -0.0388\n", + " -0.1529\n", + " -0.3993\n", + " -0.2705\n", + " -0.4385\n", + " -0.4369\n", + " 0.4232\n", + " -0.0673\n", + " -0.1282\n", + " -0.0281\n", + " -0.3006\n", + " -0.3058\n", + " -0.1669\n", + " -0.3118\n", + " -0.2587\n", + " -0.4164\n", + " 0.3357\n", + " 0.0765\n", + " -0.2905\n", + " -0.0282\n", + " -0.3647\n", + " -0.1817\n", + " 0.0875\n", + " -0.3000\n", + " -0.3787\n", + " -0.2694\n", + " -0.0468\n", + " -0.1556\n", + " -0.1751\n", + " -0.1883\n", + " -0.2814\n", + " 0.3436\n", + " -0.2187\n", + " -0.1210\n", + " -0.3293\n", + " -0.1639\n", + " 0.3319\n", + " 0.5747\n", + " 0.0551\n", + " -0.2188\n", + " 0.1805\n", + " -0.0447\n", + " 0.0290\n", + " -0.3679\n", + " -0.2118\n", + " 0.0838\n", + " -0.5260\n", + " -0.3697\n", + " -0.1344\n", + " -0.2490\n", + " -0.3448\n", + " -0.0436\n", + " -0.2243\n", + " -0.1787\n", + " 0.0374\n", + " -0.1492\n", + " -0.3518\n", + " -0.2739\n", + " -0.2630\n", + " -0.0347\n", + " -0.4719\n", + " 0.0626\n", + " -0.5353\n", + " 0.0813\n", + " -0.5074\n", + " -0.2277\n", + " -0.0963\n", + " -0.2280\n", + " -0.2200\n", + " -0.2598\n", + " -0.3971\n", + " 0.0129\n", + " 0.0856\n", + " -0.3171\n", + " 0.0893\n", + " -0.3148\n", + " -0.1448\n", + " -0.3684\n", + " -0.1098\n", + " 0.1464\n", + " -0.1974\n", + " -0.2048\n", + " -0.2799\n", + " -0.3617\n", + " -0.3129\n", + " 0.1010\n", + " -0.2835\n", + " -0.1181\n", + " -0.2271\n", + " 0.3809\n", + " -0.2949\n", + " -0.3094\n", + " 0.1898\n", + " -0.0179\n", + " -0.3059\n", + " -0.2801\n", + " -0.2374\n", + " -0.3814\n", + " -0.1881\n", + " -0.3585\n", + " -0.2194\n", + " -0.0044\n", + " 0.1414\n", + " -0.2586\n", + " -0.1702\n", + " 0.1336\n", + " -0.0514\n", + " -0.2933\n", + " -0.1440\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.1.T.weight', \n", + " -2.7291e-01 -8.4563e-02 -5.1859e-01 ... 6.6748e-01 -3.1786e-01 1.7333e-01\n", + " -4.4926e-03 1.5435e-01 -2.6212e-01 ... 2.8715e-01 -4.1305e-01 2.7199e-01\n", + " -1.1743e-01 1.0964e-01 2.5068e-01 ... -3.6285e-02 -4.6603e-01 -3.1373e-01\n", + " ... ⋱ ... \n", + " 1.6104e-01 3.8883e-01 2.7417e-01 ... 5.4226e-01 -1.6939e-01 -5.0346e-02\n", + " -3.9585e-01 1.5602e-01 -2.7457e-01 ... -3.7775e-02 2.2263e-01 4.5654e-01\n", + " 3.1321e-01 -8.3668e-02 3.3402e-01 ... -1.5699e-01 -7.2676e-02 -1.5020e-02\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.1.T.bias', \n", + " -0.8735\n", + " -0.9374\n", + " -0.5376\n", + " -0.7254\n", + " -0.6993\n", + " -1.1141\n", + " -0.6093\n", + " -0.5540\n", + " -1.1648\n", + " -1.1545\n", + " -0.5369\n", + " -0.9158\n", + " -0.7628\n", + " -1.0001\n", + " -1.0033\n", + " -0.6922\n", + " -0.6518\n", + " -0.4973\n", + " -0.9699\n", + " -0.7759\n", + " -0.8246\n", + " -0.8996\n", + " -0.9112\n", + " -0.9865\n", + " -0.8448\n", + " -0.7220\n", + " -1.1545\n", + " -1.0397\n", + " -0.7810\n", + " -1.0055\n", + " -0.6162\n", + " -0.8090\n", + " -0.9596\n", + " -0.9937\n", + " -0.6643\n", + " -0.7168\n", + " -0.8435\n", + " -0.8227\n", + " -1.2901\n", + " -0.9706\n", + " -0.6679\n", + " -0.9203\n", + " -0.9916\n", + " -0.9663\n", + " -0.4326\n", + " -0.8739\n", + " -0.8837\n", + " -1.0407\n", + " -0.6802\n", + " -1.2371\n", + " -1.1714\n", + " -0.8032\n", + " -0.9634\n", + " -1.2142\n", + " -0.7706\n", + " -0.6415\n", + " -0.8907\n", + " -1.0116\n", + " -0.7812\n", + " -0.5034\n", + " -0.8496\n", + " -1.4659\n", + " -0.7487\n", + " -1.1192\n", + " -0.5994\n", + " -0.9254\n", + " -1.5166\n", + " -1.0100\n", + " -0.8003\n", + " -0.8005\n", + " -0.3146\n", + " -0.9065\n", + " -1.0724\n", + " -0.5451\n", + " -0.8384\n", + " -0.7926\n", + " -0.9792\n", + " -1.1625\n", + " -0.8456\n", + " -0.8491\n", + " -0.8859\n", + " -0.9054\n", + " -0.3732\n", + " -0.8253\n", + " -0.9892\n", + " -1.1470\n", + " -0.7574\n", + " -0.8059\n", + " -0.8198\n", + " -0.7491\n", + " -1.0176\n", + " -0.4271\n", + " -0.7732\n", + " -0.5335\n", + " -1.0020\n", + " -0.7807\n", + " -0.7100\n", + " -0.8340\n", + " -0.7395\n", + " -1.0114\n", + " -0.7979\n", + " -1.0000\n", + " -1.0414\n", + " -0.9079\n", + " -1.1180\n", + " -0.6561\n", + " -0.9785\n", + " -0.7766\n", + " -0.7542\n", + " -0.8809\n", + " -1.0164\n", + " -0.8534\n", + " -0.8284\n", + " -1.0077\n", + " -0.9135\n", + " -1.2533\n", + " -0.7508\n", + " -0.6234\n", + " -0.4095\n", + " -0.8056\n", + " -0.8089\n", + " -0.9309\n", + " -1.1503\n", + " -1.0148\n", + " -0.9564\n", + " -0.9559\n", + " -1.1823\n", + " -0.9343\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.2.H.weight', \n", + " -4.1199e-01 -2.5735e-01 -1.1230e-01 ... -3.3251e-01 2.1625e-01 -1.0272e-01\n", + " -5.3729e-01 -1.6226e-01 -1.8906e-01 ... -2.6635e-01 -1.7354e-01 -1.5279e-01\n", + " -6.4851e-02 -3.5364e-01 -3.8214e-01 ... -2.6754e-01 -2.2258e-01 2.1006e-01\n", + " ... ⋱ ... \n", + " -1.7147e-01 -5.9854e-03 -9.5970e-02 ... -6.7819e-02 6.9713e-02 -8.3691e-02\n", + " -3.1862e-01 -7.5826e-02 -1.8070e-01 ... -3.9192e-01 -2.1869e-01 -1.9810e-01\n", + " 4.5282e-02 -3.1387e-02 -1.6171e-01 ... -1.7033e-01 -2.2421e-01 -1.2614e-01\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.2.H.bias', \n", + " -0.2122\n", + " -0.2343\n", + " -0.1348\n", + " -0.1589\n", + " -0.1955\n", + " -0.2032\n", + " 0.2329\n", + " -0.2732\n", + " -0.0481\n", + " -0.2075\n", + " 0.2106\n", + " 0.0758\n", + " -0.0937\n", + " 0.1371\n", + " -0.3273\n", + " -0.3655\n", + " -0.2403\n", + " -0.2024\n", + " -0.2262\n", + " -0.0624\n", + " -0.2996\n", + " -0.0521\n", + " 0.0110\n", + " -0.2283\n", + " -0.3445\n", + " -0.1740\n", + " -0.2238\n", + " -0.2046\n", + " -0.3556\n", + " -0.1143\n", + " 0.2028\n", + " -0.2763\n", + " -0.3627\n", + " 0.2728\n", + " -0.0679\n", + " 0.0887\n", + " -0.3453\n", + " -0.3231\n", + " -0.0891\n", + " -0.1272\n", + " -0.0018\n", + " -0.1163\n", + " -0.2272\n", + " -0.2614\n", + " -0.2545\n", + " -0.1889\n", + " -0.1265\n", + " -0.0453\n", + " -0.3391\n", + " -0.0437\n", + " -0.2636\n", + " -0.3149\n", + " -0.2720\n", + " -0.3746\n", + " -0.2083\n", + " 0.0788\n", + " -0.1900\n", + " 0.0926\n", + " -0.2319\n", + " -0.2448\n", + " -0.2503\n", + " -0.2315\n", + " -0.1846\n", + " -0.0152\n", + " -0.1811\n", + " -0.2365\n", + " -0.0769\n", + " -0.0788\n", + " -0.2445\n", + " -0.2496\n", + " 0.3307\n", + " -0.1891\n", + " -0.2120\n", + " -0.4236\n", + " -0.3208\n", + " -0.0614\n", + " -0.3653\n", + " -0.2695\n", + " 0.0829\n", + " 0.0220\n", + " -0.2381\n", + " -0.1541\n", + " -0.0260\n", + " -0.1162\n", + " -0.3177\n", + " -0.3546\n", + " -0.2281\n", + " -0.2564\n", + " -0.2692\n", + " -0.0759\n", + " -0.1668\n", + " -0.3211\n", + " -0.2489\n", + " -0.2288\n", + " -0.3650\n", + " -0.1224\n", + " -0.1687\n", + " -0.0150\n", + " 0.0104\n", + " -0.3318\n", + " -0.2807\n", + " -0.0672\n", + " -0.2096\n", + " -0.3078\n", + " -0.1677\n", + " 0.0028\n", + " -0.1035\n", + " -0.1555\n", + " -0.3375\n", + " -0.3359\n", + " -0.2737\n", + " -0.3322\n", + " -0.2961\n", + " -0.3377\n", + " -0.0618\n", + " -0.4349\n", + " 0.2850\n", + " -0.1604\n", + " -0.2247\n", + " -0.2893\n", + " -0.1868\n", + " 0.3563\n", + " -0.1133\n", + " -0.2874\n", + " -0.0059\n", + " 0.0826\n", + " -0.2108\n", + " -0.2225\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.2.T.weight', \n", + " 7.8885e-02 3.3253e-01 1.8680e-01 ... 4.2248e-01 2.0193e-01 2.0562e-01\n", + " 1.3543e-01 4.2545e-01 3.1608e-01 ... -1.3264e-01 -4.2416e-02 2.7504e-01\n", + " -8.7588e-01 1.8678e-01 1.1842e-01 ... -5.6120e-02 1.2951e-01 7.0980e-02\n", + " ... ⋱ ... \n", + " 1.6965e-01 -1.4437e-01 -3.9676e-01 ... 5.1236e-01 5.9884e-04 -1.4009e-01\n", + " -4.0851e-01 -1.3036e-01 -3.5849e-01 ... 1.6514e-01 4.4848e-01 1.5563e-02\n", + " -3.3969e-01 8.3092e-02 1.9582e-02 ... 2.3415e-01 -4.9319e-01 4.0139e-01\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.2.T.bias', \n", + " -0.8153\n", + " -0.7770\n", + " -0.7813\n", + " -1.1026\n", + " -0.8793\n", + " -0.9383\n", + " -0.5527\n", + " -0.7065\n", + " -0.8250\n", + " -0.9231\n", + " -0.5422\n", + " -0.5655\n", + " -0.6027\n", + " -0.5251\n", + " -1.0486\n", + " -1.0117\n", + " -0.6038\n", + " -0.4492\n", + " -0.9319\n", + " -0.7762\n", + " -0.8418\n", + " -0.8602\n", + " -0.5735\n", + " -1.0869\n", + " -0.7593\n", + " -0.9178\n", + " -0.9908\n", + " -1.0369\n", + " -0.7088\n", + " -0.8628\n", + " -0.6217\n", + " -0.8813\n", + " -0.8341\n", + " -0.6698\n", + " -0.4780\n", + " -0.2960\n", + " -1.1446\n", + " -1.1255\n", + " -0.8254\n", + " -0.9693\n", + " -0.6734\n", + " -0.7371\n", + " -0.9512\n", + " -0.6976\n", + " -0.5678\n", + " -0.5780\n", + " -0.7421\n", + " -0.9606\n", + " -0.7212\n", + " -0.9026\n", + " -0.9789\n", + " -0.7526\n", + " -1.0406\n", + " -0.8483\n", + " -0.8528\n", + " -0.7178\n", + " -1.1469\n", + " -0.9338\n", + " -0.8029\n", + " -0.9971\n", + " -0.8680\n", + " -1.0543\n", + " -0.7668\n", + " -0.5666\n", + " -1.1054\n", + " -0.8139\n", + " -0.8125\n", + " -1.1192\n", + " -0.7838\n", + " -0.6822\n", + " -0.9070\n", + " -0.9213\n", + " -1.0835\n", + " -1.0484\n", + " -0.8505\n", + " -0.8808\n", + " -0.7637\n", + " -1.0705\n", + " -0.4922\n", + " -1.0723\n", + " -0.7494\n", + " -0.7859\n", + " -0.8495\n", + " -0.6520\n", + " -0.8290\n", + " -1.0147\n", + " -0.9081\n", + " -0.9225\n", + " -0.8036\n", + " -0.3723\n", + " -0.9247\n", + " -0.7306\n", + " -0.9188\n", + " -0.7129\n", + " -0.8161\n", + " -0.8964\n", + " -0.9712\n", + " -0.6160\n", + " -0.6626\n", + " -1.1156\n", + " -0.8525\n", + " -0.8618\n", + " -0.7801\n", + " -1.0254\n", + " -1.0769\n", + " -0.7159\n", + " -0.9362\n", + " -0.4980\n", + " -0.8991\n", + " -0.8185\n", + " -0.8928\n", + " -0.9891\n", + " -1.0699\n", + " -0.8665\n", + " -0.6343\n", + " -0.9490\n", + " -0.4492\n", + " -1.1470\n", + " -0.4669\n", + " -0.6436\n", + " -0.8893\n", + " -1.0752\n", + " -0.8446\n", + " -0.9765\n", + " -0.6132\n", + " -0.7831\n", + " -1.0923\n", + " -1.0290\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.3.H.weight', \n", + " -2.0468e-01 -3.7653e-01 -2.5355e-01 ... -2.8372e-01 3.3695e-01 -2.2480e-01\n", + " -4.6384e-01 -2.0348e-01 1.8848e-02 ... -7.7341e-02 1.1872e-01 -3.9130e-01\n", + " -7.8048e-01 1.7562e-02 2.8630e-02 ... -2.9237e-01 5.8745e-02 -4.5702e-01\n", + " ... ⋱ ... \n", + " 3.7976e-02 -9.6244e-02 -1.5971e-01 ... -2.0324e-01 2.6845e-01 -8.0729e-02\n", + " -1.0789e-01 3.6107e-02 1.4457e-01 ... -5.0796e-02 -5.0617e-01 -2.9675e-01\n", + " 3.7937e-03 -3.9479e-01 1.3545e-01 ... -3.1718e-01 9.4908e-02 -2.5654e-01\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.3.H.bias', \n", + " -0.2521\n", + " -0.1256\n", + " -0.1813\n", + " -0.1982\n", + " -0.2478\n", + " -0.1292\n", + " -0.2231\n", + " -0.2275\n", + " -0.2880\n", + " -0.2083\n", + " -0.1963\n", + " -0.2633\n", + " -0.0872\n", + " -0.2966\n", + " -0.1935\n", + " -0.2297\n", + " 0.0641\n", + " -0.1298\n", + " -0.2047\n", + " -0.1377\n", + " -0.0130\n", + " -0.2552\n", + " -0.1561\n", + " -0.3377\n", + " -0.2934\n", + " -0.1902\n", + " -0.2115\n", + " -0.2594\n", + " 0.0602\n", + " -0.2319\n", + " -0.0750\n", + " 0.0117\n", + " -0.0910\n", + " -0.1090\n", + " -0.2593\n", + " -0.2097\n", + " -0.3011\n", + " -0.1155\n", + " -0.0650\n", + " -0.2091\n", + " -0.0570\n", + " -0.2633\n", + " -0.1900\n", + " -0.1681\n", + " -0.2742\n", + " -0.1280\n", + " -0.1124\n", + " -0.0569\n", + " -0.2899\n", + " 0.0240\n", + " -0.3327\n", + " -0.1901\n", + " -0.1869\n", + " -0.1819\n", + " -0.2468\n", + " -0.2594\n", + " -0.1714\n", + " -0.1905\n", + " -0.2057\n", + " -0.2568\n", + " -0.2461\n", + " -0.2513\n", + " -0.1808\n", + " -0.1319\n", + " -0.3379\n", + " -0.1989\n", + " -0.1165\n", + " -0.2927\n", + " -0.1664\n", + " -0.2408\n", + " -0.1338\n", + " -0.0668\n", + " -0.1319\n", + " -0.1546\n", + " -0.1039\n", + " -0.2541\n", + " -0.1639\n", + " -0.2998\n", + " -0.0444\n", + " -0.1570\n", + " -0.2315\n", + " -0.2158\n", + " -0.1707\n", + " -0.2178\n", + " -0.1815\n", + " -0.1527\n", + " -0.2077\n", + " 0.0212\n", + " -0.2341\n", + " -0.2250\n", + " -0.3521\n", + " -0.2077\n", + " 0.0823\n", + " -0.1912\n", + " -0.2247\n", + " -0.2378\n", + " -0.1769\n", + " -0.1661\n", + " -0.2944\n", + " -0.0687\n", + " -0.2118\n", + " 0.0014\n", + " -0.1662\n", + " -0.2974\n", + " -0.2595\n", + " -0.2134\n", + " -0.2725\n", + " -0.2799\n", + " -0.2954\n", + " -0.2916\n", + " -0.1599\n", + " -0.1841\n", + " -0.1736\n", + " -0.1969\n", + " -0.0531\n", + " -0.3190\n", + " -0.1531\n", + " -0.1976\n", + " 0.0470\n", + " 0.1481\n", + " -0.2712\n", + " -0.2474\n", + " -0.2162\n", + " -0.1807\n", + " -0.1803\n", + " -0.2616\n", + " -0.1937\n", + " -0.1448\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.highways.3.T.weight', \n", + " 2.5584e-01 6.0501e-01 -1.2028e-02 ... 1.4831e-01 -6.3848e-01 5.3987e-01\n", + " -2.5646e-01 9.3154e-01 5.8705e-02 ... -9.9718e-02 6.1999e-01 -6.4101e-02\n", + " 3.0758e-01 4.8709e-01 5.0105e-01 ... 2.6345e-01 -8.4133e-04 -2.3307e-02\n", + " ... ⋱ ... \n", + " 2.2438e-01 6.7495e-02 1.4857e-01 ... 5.7131e-01 3.8120e-01 1.6802e-01\n", + " -1.2598e-01 1.9640e-01 8.7319e-02 ... 4.7567e-02 -1.6886e-01 2.6160e-01\n", + " 1.5070e-01 -5.0804e-01 -6.2564e-02 ... 1.5024e-01 -3.4810e-01 6.8077e-01\n", + " [torch.FloatTensor of size 128x128]),\n", + " ('module.encoder.cbhg.highways.3.T.bias', \n", + " -0.8211\n", + " -0.9055\n", + " -0.8022\n", + " -0.8859\n", + " -0.8126\n", + " -0.8288\n", + " -0.2889\n", + " -0.6799\n", + " -1.0391\n", + " -0.8127\n", + " -0.3466\n", + " -0.7359\n", + " -0.6630\n", + " -0.8266\n", + " -1.1506\n", + " -0.8722\n", + " -0.7322\n", + " -0.6060\n", + " -0.4909\n", + " -0.5537\n", + " -1.0603\n", + " -0.7157\n", + " -0.6458\n", + " -0.5851\n", + " -1.0656\n", + " -0.7572\n", + " -1.0238\n", + " -0.9974\n", + " -0.8249\n", + " -0.7353\n", + " -0.5338\n", + " -0.8046\n", + " -0.8106\n", + " -0.5974\n", + " -0.5874\n", + " -0.5483\n", + " -0.8189\n", + " -0.8038\n", + " -1.0415\n", + " -0.8823\n", + " -0.6835\n", + " -0.7159\n", + " -0.9431\n", + " -0.7083\n", + " -0.5089\n", + " -0.6600\n", + " -0.8509\n", + " -0.9963\n", + " -0.8149\n", + " -0.8327\n", + " -0.9570\n", + " -0.8497\n", + " -1.0057\n", + " -0.8482\n", + " -0.9211\n", + " -0.7666\n", + " -0.7587\n", + " -0.7446\n", + " -0.7783\n", + " -0.7760\n", + " -0.6613\n", + " -0.9420\n", + " -0.8696\n", + " -0.6928\n", + " -0.7344\n", + " -0.6867\n", + " -0.9212\n", + " -0.9734\n", + " -0.9513\n", + " -0.7135\n", + " -0.7699\n", + " -0.6956\n", + " -0.6958\n", + " -1.1282\n", + " -0.7229\n", + " -0.7191\n", + " -0.6430\n", + " -0.6834\n", + " -0.6007\n", + " -0.9842\n", + " -0.6797\n", + " -0.8361\n", + " -0.7900\n", + " -0.7384\n", + " -0.8635\n", + " -1.0334\n", + " -0.8858\n", + " -0.9168\n", + " -0.6682\n", + " -0.7500\n", + " -0.7028\n", + " -0.8536\n", + " -0.6623\n", + " -0.8275\n", + " -0.7837\n", + " -0.6650\n", + " -0.8374\n", + " -0.8792\n", + " -0.6498\n", + " -1.0726\n", + " -0.6899\n", + " -0.6971\n", + " -0.7316\n", + " -0.9693\n", + " -1.1316\n", + " -0.7718\n", + " -0.9469\n", + " -0.6285\n", + " -0.3868\n", + " -0.7878\n", + " -0.7114\n", + " -0.7186\n", + " -0.8038\n", + " -0.7342\n", + " -0.6545\n", + " -0.9427\n", + " -0.5628\n", + " -0.8622\n", + " -0.6102\n", + " -0.4838\n", + " -0.6442\n", + " -0.6065\n", + " -0.8593\n", + " -0.9375\n", + " -0.5052\n", + " -0.6902\n", + " -0.7971\n", + " -0.9253\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.encoder.cbhg.gru.weight_ih_l0', \n", + " 3.2007e-02 5.4455e-01 -7.1443e-01 ... -9.4162e-02 -4.3151e-01 -6.8749e-01\n", + " 2.8130e-01 -5.0280e-01 -2.2537e-01 ... 1.4932e-01 7.0647e-01 -4.4751e-01\n", + " 4.5330e-01 -1.2628e+00 2.0161e-01 ... 1.6025e-01 6.3556e-01 9.8590e-01\n", + " ... ⋱ ... \n", + " 2.9572e-02 -1.3180e-01 4.3215e-01 ... 1.5172e-01 1.8325e-01 1.8813e-01\n", + " -1.6686e-01 -5.6037e-01 1.7777e-01 ... 1.3757e-01 -5.7515e-02 -2.3497e-02\n", + " 1.6238e-01 1.8440e-01 3.2782e-01 ... -3.0081e-01 1.9484e-03 2.0204e-01\n", + " [torch.FloatTensor of size 384x128]),\n", + " ('module.encoder.cbhg.gru.weight_hh_l0', \n", + " 2.8526e-01 -3.1090e-01 3.6447e-01 ... -5.1902e-02 3.2500e-02 -1.9262e-01\n", + " 1.1010e-01 -2.3967e-01 4.5641e-02 ... 2.8706e-01 5.7539e-01 1.9892e-01\n", + " 2.4201e-01 4.6614e-01 -1.0062e+00 ... 2.0535e-01 -8.0792e-02 8.0792e-02\n", + " ... ⋱ ... \n", + " 4.1073e-01 -3.2760e-01 2.7843e-01 ... -1.4044e+00 -5.8386e-01 2.3167e-01\n", + " -2.3053e-02 -4.4727e-01 1.9749e-01 ... 2.8223e-02 -1.8616e+00 4.7450e-02\n", + " 5.1008e-01 1.4143e-02 1.1105e-01 ... -2.9560e-01 4.1204e-01 -1.6465e+00\n", + " [torch.FloatTensor of size 384x128]),\n", + " ('module.encoder.cbhg.gru.bias_ih_l0', \n", + " -0.4155\n", + " -0.3321\n", + " -0.3048\n", + " -0.6956\n", + " -0.3557\n", + " -0.3485\n", + " -0.3999\n", + " -0.6418\n", + " -0.3979\n", + " 0.0681\n", + " -0.5136\n", + " -0.3784\n", + " -0.2780\n", + " -0.5601\n", + " 0.2084\n", + " -0.2112\n", + " -0.2885\n", + " -0.1304\n", + " -0.2071\n", + " -0.2958\n", + " -0.3458\n", + " -0.3430\n", + " -0.3756\n", + " -0.2285\n", + " -0.2183\n", + " -0.4922\n", + " -0.0754\n", + " -0.4418\n", + " -0.4054\n", + " -0.3207\n", + " -0.3050\n", + " -0.2280\n", + " -0.1868\n", + " -0.4659\n", + " -0.3845\n", + " -0.1640\n", + " -0.3571\n", + " -0.2205\n", + " -0.3029\n", + " -0.4748\n", + " -0.3206\n", + " -0.3986\n", + " -0.3350\n", + " -0.2090\n", + " -0.5457\n", + " -0.1707\n", + " -0.1325\n", + " -0.2547\n", + " -0.4407\n", + " -0.4723\n", + " -0.2774\n", + " -0.5082\n", + " -0.3236\n", + " -0.3112\n", + " -0.4210\n", + " -0.3686\n", + " -0.1771\n", + " -0.3533\n", + " -0.1693\n", + " -0.3630\n", + " -0.5839\n", + " 0.0258\n", + " -0.3645\n", + " -0.4769\n", + " -0.4490\n", + " -0.2534\n", + " -0.2482\n", + " -0.4709\n", + " -0.4346\n", + " -0.4537\n", + " -0.3565\n", + " -0.2979\n", + " -0.2655\n", + " -0.3364\n", + " -0.1936\n", + " -0.2150\n", + " -0.3746\n", + " 0.0178\n", + " -0.3488\n", + " -0.3854\n", + " -0.4342\n", + " -0.3697\n", + " -0.1661\n", + " -0.2310\n", + " -0.2932\n", + " -0.4776\n", + " -0.4042\n", + " -0.3637\n", + " -0.5312\n", + " -0.2954\n", + " -0.2021\n", + " -0.4496\n", + " -0.1322\n", + " -0.4744\n", + " -0.1750\n", + " -0.1595\n", + " -0.1616\n", + " -0.4852\n", + " -0.3841\n", + " -0.0904\n", + " -0.2831\n", + " -0.3742\n", + " -0.2667\n", + " -0.2912\n", + " -0.2815\n", + " -0.4033\n", + " -0.2178\n", + " -0.3491\n", + " -0.3175\n", + " -0.4574\n", + " -0.4432\n", + " -0.3113\n", + " -0.3502\n", + " -0.3915\n", + " -0.2927\n", + " -0.5635\n", + " -0.0827\n", + " -0.3517\n", + " -0.2997\n", + " -0.2913\n", + " -0.3453\n", + " -0.1541\n", + " -0.2960\n", + " -0.3400\n", + " -0.3662\n", + " -0.3617\n", + " -0.3401\n", + " -0.2206\n", + " 0.0005\n", + " 0.2320\n", + " 0.0617\n", + " -0.2193\n", + " 0.1220\n", + " 0.1716\n", + " 0.0387\n", + " 0.1160\n", + " 0.4116\n", + " 0.8825\n", + " 0.2311\n", + " 0.1303\n", + " 0.6885\n", + " 0.1943\n", + " 1.0475\n", + " -0.2056\n", + " 0.7786\n", + " 0.2430\n", + " 0.8656\n", + " -0.0933\n", + " 0.5916\n", + " -0.1442\n", + " 0.2344\n", + " 0.2769\n", + " 0.1473\n", + " 0.3291\n", + " 0.1934\n", + " 0.4735\n", + " -0.0404\n", + " -0.0812\n", + " -0.4299\n", + " -0.0574\n", + " 0.1115\n", + " 0.2498\n", + " 0.2578\n", + " 0.0039\n", + " 0.5349\n", + " 0.2167\n", + " -0.1984\n", + " 0.3020\n", + " 0.4183\n", + " 0.0827\n", + " 0.5940\n", + " 0.4513\n", + " -0.0776\n", + " 0.0700\n", + " -0.3964\n", + " 0.0625\n", + " 0.0910\n", + " 0.6217\n", + " 0.4383\n", + " 0.2796\n", + " 0.1113\n", + " 0.0774\n", + " 0.2578\n", + " 0.1069\n", + " -0.0121\n", + " -0.0714\n", + " -0.0098\n", + " 0.1720\n", + " 0.2910\n", + " 0.6613\n", + " 0.3495\n", + " 0.2671\n", + " 0.0405\n", + " -0.2306\n", + " 0.0031\n", + " 0.2956\n", + " 0.0708\n", + " 0.0342\n", + " 0.1232\n", + " -0.1602\n", + " -0.0502\n", + " 0.1984\n", + " 0.1321\n", + " 0.4394\n", + " -0.0117\n", + " 0.9800\n", + " 0.3483\n", + " 0.0724\n", + " -0.0905\n", + " 0.3448\n", + " 0.1114\n", + " 0.3323\n", + " -0.2112\n", + " 0.6743\n", + " 0.2827\n", + " 0.1825\n", + " 0.1283\n", + " 0.0693\n", + " -0.0141\n", + " 0.1136\n", + " 0.0255\n", + " 0.2815\n", + " 0.0372\n", + " -0.1901\n", + " 1.0761\n", + " 0.4441\n", + " 0.5777\n", + " 0.6788\n", + " 0.1622\n", + " -0.3291\n", + " -0.1040\n", + " 0.2530\n", + " 0.2226\n", + " 0.0436\n", + " -0.0288\n", + " -0.0954\n", + " 0.3503\n", + " 0.1399\n", + " 0.2990\n", + " 0.2709\n", + " 0.1577\n", + " 0.5494\n", + " 0.0870\n", + " -0.3541\n", + " 0.5600\n", + " -0.0591\n", + " 0.0816\n", + " 0.6198\n", + " 0.3193\n", + " -0.2191\n", + " 0.1602\n", + " -0.0296\n", + " -0.1147\n", + " -0.0194\n", + " -0.0492\n", + " -0.2893\n", + " 0.0315\n", + " -0.0166\n", + " -0.0184\n", + " 0.0121\n", + " -0.0088\n", + " -0.0027\n", + " 0.0265\n", + " 0.0132\n", + " 0.0018\n", + " -0.0272\n", + " -0.0002\n", + " -0.0125\n", + " 0.0045\n", + " -0.0020\n", + " -0.0041\n", + " 0.0166\n", + " -0.0004\n", + " -0.0344\n", + " 0.0080\n", + " -0.0104\n", + " -0.0004\n", + " 0.0003\n", + " -0.0094\n", + " -0.0328\n", + " 0.0091\n", + " 0.0158\n", + " 0.0027\n", + " 0.0115\n", + " 0.0098\n", + " 0.0391\n", + " -0.0165\n", + " 0.0250\n", + " 0.0223\n", + " -0.0112\n", + " -0.0005\n", + " -0.0163\n", + " 0.0075\n", + " -0.0054\n", + " -0.0146\n", + " 0.0169\n", + " -0.0056\n", + " -0.0101\n", + " -0.0117\n", + " 0.0372\n", + " 0.0263\n", + " -0.0326\n", + " 0.0485\n", + " -0.0069\n", + " -0.0269\n", + " -0.0044\n", + " -0.0074\n", + " -0.0025\n", + " -0.0048\n", + " 0.0194\n", + " 0.0300\n", + " -0.0119\n", + " 0.0037\n", + " -0.0352\n", + " -0.0390\n", + " 0.0608\n", + " -0.0027\n", + " 0.0059\n", + " -0.0266\n", + " -0.0211\n", + " -0.0342\n", + " 0.0032\n", + " -0.0065\n", + " -0.0209\n", + " -0.0110\n", + " 0.0007\n", + " -0.0052\n", + " 0.0088\n", + " 0.0066\n", + " -0.0215\n", + " -0.0257\n", + " -0.0106\n", + " 0.0212\n", + " -0.0171\n", + " -0.0154\n", + " -0.0073\n", + " -0.0020\n", + " -0.0270\n", + " 0.0151\n", + " -0.0326\n", + " 0.0075\n", + " 0.0117\n", + " 0.0249\n", + " 0.0320\n", + " 0.0157\n", + " 0.0160\n", + " 0.0388\n", + " 0.0345\n", + " 0.0266\n", + " -0.0044\n", + " 0.0264\n", + " -0.0309\n", + " -0.0014\n", + " -0.0206\n", + " 0.0185\n", + " -0.0013\n", + " 0.0004\n", + " 0.0215\n", + " -0.0258\n", + " 0.0112\n", + " -0.0389\n", + " -0.0145\n", + " 0.0122\n", + " 0.0118\n", + " 0.0131\n", + " -0.0098\n", + " 0.0018\n", + " -0.0337\n", + " 0.0028\n", + " 0.0133\n", + " 0.0160\n", + " -0.0130\n", + " 0.0274\n", + " 0.0097\n", + " 0.0143\n", + " -0.0441\n", + " -0.0135\n", + " -0.0019\n", + " 0.0555\n", + " -0.0274\n", + " -0.0183\n", + " 0.0123\n", + " -0.0122\n", + " -0.0438\n", + " [torch.FloatTensor of size 384]),\n", + " ('module.encoder.cbhg.gru.bias_hh_l0', \n", + " -0.3324\n", + " -0.2636\n", + " -0.3443\n", + " -0.7007\n", + " -0.3168\n", + " -0.2623\n", + " -0.4678\n", + " -0.5638\n", + " -0.4448\n", + " 0.2232\n", + " -0.3805\n", + " -0.2953\n", + " -0.3160\n", + " -0.5969\n", + " 0.2410\n", + " -0.2382\n", + " -0.3254\n", + " -0.1246\n", + " -0.1753\n", + " -0.3835\n", + " -0.4032\n", + " -0.4362\n", + " -0.4141\n", + " -0.2424\n", + " -0.3258\n", + " -0.3726\n", + " -0.1523\n", + " -0.3338\n", + " -0.4174\n", + " -0.2525\n", + " -0.3905\n", + " -0.2104\n", + " -0.2400\n", + " -0.3530\n", + " -0.3890\n", + " -0.2062\n", + " -0.3817\n", + " -0.2957\n", + " -0.4194\n", + " -0.5868\n", + " -0.3884\n", + " -0.3095\n", + " -0.4296\n", + " -0.1893\n", + " -0.5139\n", + " -0.2669\n", + " -0.1194\n", + " -0.3773\n", + " -0.4873\n", + " -0.4685\n", + " -0.1368\n", + " -0.4118\n", + " -0.3678\n", + " -0.2931\n", + " -0.4648\n", + " -0.3296\n", + " -0.2718\n", + " -0.3486\n", + " -0.0516\n", + " -0.2209\n", + " -0.6266\n", + " 0.1345\n", + " -0.3854\n", + " -0.4379\n", + " -0.4165\n", + " -0.2786\n", + " -0.2046\n", + " -0.4067\n", + " -0.3728\n", + " -0.4412\n", + " -0.4051\n", + " -0.2663\n", + " -0.3059\n", + " -0.4357\n", + " -0.2192\n", + " -0.1052\n", + " -0.2918\n", + " -0.0670\n", + " -0.4026\n", + " -0.4681\n", + " -0.3601\n", + " -0.2093\n", + " -0.2464\n", + " -0.2066\n", + " -0.3683\n", + " -0.4958\n", + " -0.4797\n", + " -0.3821\n", + " -0.5263\n", + " -0.2097\n", + " -0.1749\n", + " -0.3779\n", + " -0.2407\n", + " -0.4482\n", + " -0.1921\n", + " -0.2409\n", + " -0.2942\n", + " -0.5252\n", + " -0.4661\n", + " -0.1872\n", + " -0.2110\n", + " -0.3630\n", + " -0.3668\n", + " -0.2823\n", + " -0.2967\n", + " -0.3671\n", + " -0.2426\n", + " -0.2324\n", + " -0.2456\n", + " -0.3978\n", + " -0.3852\n", + " -0.3906\n", + " -0.3389\n", + " -0.4650\n", + " -0.3562\n", + " -0.6517\n", + " -0.0692\n", + " -0.3172\n", + " -0.3680\n", + " -0.3382\n", + " -0.2662\n", + " -0.2351\n", + " -0.3653\n", + " -0.2909\n", + " -0.2948\n", + " -0.2182\n", + " -0.3879\n", + " -0.2211\n", + " -0.0638\n", + " 0.2472\n", + " 0.0489\n", + " -0.0662\n", + " 0.0359\n", + " 0.1067\n", + " 0.0882\n", + " 0.0249\n", + " 0.4015\n", + " 0.8504\n", + " 0.2799\n", + " 0.0461\n", + " 0.6607\n", + " 0.2023\n", + " 1.0062\n", + " -0.2213\n", + " 0.8321\n", + " 0.3461\n", + " 0.9642\n", + " -0.1767\n", + " 0.4647\n", + " -0.1128\n", + " 0.2089\n", + " 0.3121\n", + " 0.0332\n", + " 0.2687\n", + " 0.2742\n", + " 0.4417\n", + " 0.0058\n", + " -0.1918\n", + " -0.3485\n", + " -0.0085\n", + " 0.0888\n", + " 0.1906\n", + " 0.2361\n", + " -0.1330\n", + " 0.6340\n", + " 0.1948\n", + " -0.2205\n", + " 0.3279\n", + " 0.3521\n", + " 0.1421\n", + " 0.5140\n", + " 0.4459\n", + " -0.0698\n", + " 0.0853\n", + " -0.3250\n", + " 0.1003\n", + " 0.0428\n", + " 0.4710\n", + " 0.3304\n", + " 0.2012\n", + " 0.0356\n", + " 0.0750\n", + " 0.2146\n", + " 0.0363\n", + " 0.0198\n", + " -0.0927\n", + " -0.0490\n", + " 0.2173\n", + " 0.4293\n", + " 0.7105\n", + " 0.4576\n", + " 0.2871\n", + " 0.0533\n", + " -0.2388\n", + " 0.0702\n", + " 0.3513\n", + " 0.0898\n", + " -0.0335\n", + " 0.0856\n", + " -0.1336\n", + " -0.0065\n", + " 0.1672\n", + " 0.1079\n", + " 0.3741\n", + " 0.0139\n", + " 1.0074\n", + " 0.3532\n", + " 0.0353\n", + " -0.0585\n", + " 0.3025\n", + " 0.1956\n", + " 0.1709\n", + " -0.2493\n", + " 0.6448\n", + " 0.2334\n", + " 0.1509\n", + " 0.1396\n", + " 0.1179\n", + " 0.0650\n", + " 0.1516\n", + " 0.0633\n", + " 0.3230\n", + " -0.0687\n", + " -0.2229\n", + " 0.9816\n", + " 0.3944\n", + " 0.4913\n", + " 0.7222\n", + " 0.2434\n", + " -0.3003\n", + " -0.0925\n", + " 0.2632\n", + " 0.3519\n", + " 0.1211\n", + " -0.0183\n", + " -0.0195\n", + " 0.4433\n", + " 0.1283\n", + " 0.3443\n", + " 0.3609\n", + " 0.0334\n", + " 0.5134\n", + " -0.0298\n", + " -0.2188\n", + " 0.5276\n", + " 0.0114\n", + " 0.0276\n", + " 0.5599\n", + " 0.3557\n", + " -0.2125\n", + " 0.1562\n", + " -0.0786\n", + " -0.0632\n", + " -0.0968\n", + " -0.0286\n", + " -0.4307\n", + " -0.0858\n", + " 0.0490\n", + " 0.0511\n", + " -0.0643\n", + " 0.0182\n", + " 0.0145\n", + " -0.0713\n", + " -0.0547\n", + " 0.0017\n", + " 0.0403\n", + " 0.0069\n", + " 0.0232\n", + " -0.0281\n", + " 0.0315\n", + " 0.0454\n", + " -0.0308\n", + " 0.0274\n", + " 0.0587\n", + " -0.0261\n", + " 0.0316\n", + " 0.0094\n", + " -0.0150\n", + " 0.0226\n", + " 0.0829\n", + " -0.0262\n", + " -0.0449\n", + " -0.0152\n", + " -0.0277\n", + " -0.0229\n", + " -0.1034\n", + " 0.0613\n", + " -0.0601\n", + " -0.0383\n", + " 0.0514\n", + " -0.0016\n", + " 0.0361\n", + " -0.0196\n", + " 0.0211\n", + " 0.0380\n", + " -0.0685\n", + " 0.0311\n", + " 0.0322\n", + " 0.0471\n", + " -0.0937\n", + " -0.0973\n", + " 0.0930\n", + " -0.1017\n", + " 0.0296\n", + " 0.0931\n", + " 0.0100\n", + " 0.0059\n", + " 0.0206\n", + " 0.0215\n", + " -0.0494\n", + " -0.0895\n", + " 0.0149\n", + " -0.0236\n", + " 0.0978\n", + " 0.0867\n", + " -0.1546\n", + " 0.0023\n", + " -0.0112\n", + " 0.0661\n", + " 0.0772\n", + " 0.0852\n", + " -0.0093\n", + " 0.0098\n", + " 0.0716\n", + " 0.0540\n", + " -0.0106\n", + " 0.0131\n", + " -0.0172\n", + " -0.0238\n", + " 0.0653\n", + " 0.0811\n", + " 0.0017\n", + " -0.0489\n", + " 0.0220\n", + " 0.0361\n", + " 0.0340\n", + " 0.0156\n", + " 0.0678\n", + " -0.0318\n", + " 0.0601\n", + " -0.0316\n", + " -0.0399\n", + " -0.0763\n", + " -0.1014\n", + " -0.0504\n", + " -0.0512\n", + " -0.1088\n", + " -0.0949\n", + " -0.0490\n", + " 0.0054\n", + " -0.0582\n", + " 0.0834\n", + " -0.0200\n", + " 0.0834\n", + " -0.0350\n", + " 0.0003\n", + " -0.0014\n", + " -0.0655\n", + " 0.0722\n", + " -0.0105\n", + " 0.1002\n", + " 0.0321\n", + " -0.0231\n", + " -0.0414\n", + " -0.0302\n", + " 0.0381\n", + " -0.0080\n", + " 0.0859\n", + " 0.0093\n", + " -0.0398\n", + " -0.0581\n", + " 0.0648\n", + " -0.0445\n", + " -0.0229\n", + " -0.0461\n", + " 0.1085\n", + " 0.0413\n", + " -0.0018\n", + " -0.1469\n", + " 0.0784\n", + " 0.0475\n", + " -0.0404\n", + " 0.0248\n", + " 0.0912\n", + " [torch.FloatTensor of size 384]),\n", + " ('module.encoder.cbhg.gru.weight_ih_l0_reverse', \n", + " 3.9114e-01 2.9058e-01 2.1761e-01 ... 6.4113e-02 2.4866e-02 2.0332e-01\n", + " -1.0174e-01 -3.9031e-01 -3.4186e-01 ... -1.7112e-01 -3.6747e-01 1.9842e-01\n", + " -6.4938e-01 7.2838e-01 1.8530e-01 ... -3.3848e-01 -5.1010e-01 2.4907e-02\n", + " ... ⋱ ... \n", + " -2.7396e-02 -5.2042e-02 1.7369e-01 ... -1.7471e-01 1.4356e-01 -1.5332e-01\n", + " -1.5901e-01 -1.2751e-01 -1.3193e-01 ... -1.4338e-01 1.6812e-01 1.0909e-02\n", + " -1.3883e-01 -9.4185e-02 -7.3227e-02 ... -1.6537e-02 -8.9718e-02 1.9451e-01\n", + " [torch.FloatTensor of size 384x128]),\n", + " ('module.encoder.cbhg.gru.weight_hh_l0_reverse', \n", + " -9.0639e-02 -1.0697e-01 5.7864e-01 ... 7.3469e-02 -1.2463e-02 -2.9977e-01\n", + " 7.5671e-02 -3.0402e-01 -3.2234e-02 ... -4.2422e-01 -4.2969e-01 4.5207e-01\n", + " 8.1829e-03 -3.2530e-01 -1.0873e-01 ... -3.3056e-01 -2.7219e-01 4.2230e-01\n", + " ... ⋱ ... \n", + " -1.5967e-01 -2.3172e-01 -3.3635e-01 ... -9.2274e-01 -2.5547e-01 -2.0461e-01\n", + " -4.4421e-02 4.6869e-02 -1.8232e-01 ... -1.9337e-01 -1.5851e+00 2.4948e-01\n", + " 4.0944e-02 -3.1717e-01 1.9521e-01 ... 2.7803e-01 1.8609e-01 -1.1735e+00\n", + " [torch.FloatTensor of size 384x128]),\n", + " ('module.encoder.cbhg.gru.bias_ih_l0_reverse', \n", + " -3.9950e-01\n", + " -3.2197e-01\n", + " -1.3405e-01\n", + " -3.2604e-01\n", + " -5.6099e-01\n", + " -2.8250e-01\n", + " -1.9845e-01\n", + " -3.1501e-01\n", + " -1.3463e-01\n", + " -5.6306e-02\n", + " -3.3890e-01\n", + " -4.3012e-01\n", + " -2.8359e-01\n", + " -2.2534e-01\n", + " -2.9135e-01\n", + " -4.1709e-01\n", + " -4.8963e-01\n", + " -2.6772e-01\n", + " -3.2265e-01\n", + " -5.5409e-01\n", + " -3.2530e-01\n", + " -2.0639e-01\n", + " -4.3631e-01\n", + " -4.2849e-01\n", + " -2.5627e-01\n", + " -2.3475e-01\n", + " -1.8201e-01\n", + " -2.5451e-01\n", + " -5.4825e-01\n", + " -2.9104e-01\n", + " -5.2274e-01\n", + " -4.0654e-01\n", + " -3.4696e-01\n", + " -2.7961e-01\n", + " -2.9184e-01\n", + " -4.3392e-01\n", + " -1.2083e-01\n", + " -2.7390e-01\n", + " -2.5458e-01\n", + " -3.6923e-01\n", + " -3.2601e-01\n", + " -4.3903e-01\n", + " -4.0077e-01\n", + " -4.9911e-01\n", + " -7.1123e-01\n", + " -2.9732e-01\n", + " -2.0078e-01\n", + " -4.2338e-01\n", + " -1.3699e-01\n", + " -1.6686e-01\n", + " -2.2572e-01\n", + " -1.8250e-01\n", + " -2.4997e-01\n", + " -2.6874e-01\n", + " -1.9583e-01\n", + " -2.4155e-01\n", + " -2.2515e-01\n", + " -2.9014e-01\n", + " -2.9633e-01\n", + " -5.5905e-01\n", + " -3.7270e-01\n", + " -2.5255e-01\n", + " -2.9211e-01\n", + " -2.9391e-01\n", + " -2.3087e-01\n", + " -4.1957e-01\n", + " -4.2438e-01\n", + " -3.2394e-01\n", + " -3.4436e-01\n", + " -3.5398e-01\n", + " -3.5293e-01\n", + " -2.9384e-01\n", + " -3.7704e-01\n", + " -5.6181e-01\n", + " -3.2076e-01\n", + " -3.3572e-01\n", + " -4.2303e-01\n", + " -3.5085e-01\n", + " -1.1059e-01\n", + " -3.9819e-01\n", + " -2.7747e-01\n", + " -2.2572e-01\n", + " -3.1374e-01\n", + " -6.2688e-01\n", + " -3.4165e-01\n", + " -2.8978e-01\n", + " -1.8716e-01\n", + " -7.6714e-01\n", + " -4.0007e-02\n", + " -4.8165e-01\n", + " -1.8806e-01\n", + " -4.2463e-01\n", + " -3.6502e-01\n", + " -3.3924e-01\n", + " -2.8496e-01\n", + " -3.3000e-01\n", + " -3.8442e-01\n", + " -3.8950e-01\n", + " -3.5248e-01\n", + " -4.5389e-01\n", + " -1.9361e-01\n", + " -3.3409e-01\n", + " -6.1777e-01\n", + " -1.5660e-01\n", + " -4.0810e-01\n", + " -2.7564e-01\n", + " -3.7781e-01\n", + " -3.9068e-01\n", + " -3.2880e-01\n", + " -3.6881e-01\n", + " -5.4130e-01\n", + " -3.6642e-01\n", + " -1.5730e-01\n", + " -2.2717e-01\n", + " -3.7211e-01\n", + " -1.1571e-01\n", + " -4.5240e-02\n", + " -2.6568e-01\n", + " -2.9602e-01\n", + " -4.1572e-01\n", + " -2.0671e-01\n", + " -5.1318e-01\n", + " -3.3514e-01\n", + " -5.7200e-01\n", + " -3.1647e-01\n", + " -3.4052e-01\n", + " -4.6007e-01\n", + " -4.2392e-01\n", + " -9.5999e-02\n", + " 1.9549e-01\n", + " 6.2338e-02\n", + " 3.6352e-01\n", + " 6.6420e-02\n", + " 2.2219e-03\n", + " 2.7094e-01\n", + " 2.1709e-02\n", + " -1.6166e-01\n", + " 1.3865e+00\n", + " 3.2875e-02\n", + " 3.7118e-01\n", + " 5.3729e-01\n", + " -1.1936e-01\n", + " 3.8217e-03\n", + " 1.2877e-01\n", + " 1.6440e-01\n", + " -9.4198e-02\n", + " 1.4893e-01\n", + " 4.6403e-02\n", + " 5.4027e-01\n", + " 4.7590e-01\n", + " 6.0755e-02\n", + " -2.3104e-01\n", + " 4.8152e-01\n", + " 2.9563e-01\n", + " -6.8155e-02\n", + " -1.4239e-01\n", + " 1.0185e-01\n", + " 7.0267e-02\n", + " -1.1993e-01\n", + " 6.3600e-01\n", + " 1.6313e-01\n", + " -9.9922e-02\n", + " 1.7793e-01\n", + " 1.9935e-01\n", + " 1.2773e-01\n", + " 2.9412e-01\n", + " 1.2534e-01\n", + " 4.4731e-01\n", + " 7.1293e-02\n", + " 1.1292e-01\n", + " -8.9293e-02\n", + " 3.4067e-01\n", + " 1.7642e-01\n", + " -1.6595e-01\n", + " 5.9712e-01\n", + " -1.0002e-01\n", + " 1.9485e-01\n", + " 1.9248e-01\n", + " 1.0541e+00\n", + " 7.2503e-01\n", + " 9.6133e-01\n", + " 1.9803e-01\n", + " 6.9215e-03\n", + " 5.8363e-03\n", + " 1.5684e-01\n", + " 6.0974e-01\n", + " 3.1397e-01\n", + " -7.1457e-02\n", + " 1.7027e-01\n", + " 7.2058e-01\n", + " 1.8164e-01\n", + " 3.4612e-01\n", + " 4.1798e-01\n", + " 1.1724e-01\n", + " 6.3091e-02\n", + " 4.3745e-02\n", + " 1.1416e-01\n", + " -6.2468e-02\n", + " -1.9612e-01\n", + " 8.5380e-01\n", + " 1.2593e-01\n", + " 3.4382e-01\n", + " 5.9211e-01\n", + " -2.1804e-01\n", + " 1.3949e-01\n", + " 4.4558e-02\n", + " 2.8600e-01\n", + " 5.1862e-02\n", + " 2.0543e-01\n", + " -2.3415e-01\n", + " -1.3609e-01\n", + " 2.2412e-01\n", + " -1.0314e-01\n", + " -2.8997e-01\n", + " 4.8292e-02\n", + " -4.4030e-03\n", + " 1.4104e+00\n", + " 3.2007e-01\n", + " 1.2052e-01\n", + " 9.1789e-02\n", + " 2.0554e-01\n", + " 7.6838e-02\n", + " 3.4112e-01\n", + " 1.3785e-01\n", + " -2.2267e-02\n", + " -1.2027e-01\n", + " 4.9677e-01\n", + " 1.8642e-02\n", + " 4.0587e-01\n", + " -1.0680e-01\n", + " 3.3480e-02\n", + " 1.0233e+00\n", + " 1.4441e-01\n", + " -1.1909e-01\n", + " -3.0416e-01\n", + " -2.4717e-01\n", + " -5.9753e-02\n", + " -7.1970e-02\n", + " -2.8127e-02\n", + " -6.7975e-02\n", + " 1.8998e-01\n", + " -5.9482e-02\n", + " -2.2827e-01\n", + " 1.3982e+00\n", + " 1.0563e+00\n", + " -9.7214e-03\n", + " -6.2421e-02\n", + " 4.8036e-02\n", + " -3.0814e-02\n", + " -2.7699e-01\n", + " 3.1028e-01\n", + " 5.1062e-01\n", + " -1.1891e-01\n", + " -9.7181e-02\n", + " 6.2741e-02\n", + " -1.1922e-01\n", + " -1.6630e-02\n", + " -1.6036e-02\n", + " 2.1753e-02\n", + " -1.7682e-02\n", + " 5.4466e-03\n", + " -1.1839e-02\n", + " 2.4157e-02\n", + " -2.7820e-03\n", + " -1.2229e-02\n", + " -2.3654e-02\n", + " -4.3722e-03\n", + " -1.3692e-02\n", + " 1.3510e-02\n", + " -1.5224e-03\n", + " 3.9796e-02\n", + " -1.5609e-02\n", + " -7.2699e-03\n", + " 1.8364e-02\n", + " 5.2180e-02\n", + " -7.0756e-03\n", + " -2.6243e-02\n", + " -1.8955e-02\n", + " -7.5550e-03\n", + " -3.2503e-02\n", + " -3.0747e-02\n", + " 3.7648e-03\n", + " -6.3179e-03\n", + " -9.0970e-03\n", + " 5.7825e-03\n", + " -1.6808e-02\n", + " 1.1765e-02\n", + " -1.9976e-02\n", + " -8.9799e-03\n", + " 1.6962e-03\n", + " 3.2469e-02\n", + " 4.8755e-02\n", + " -2.5837e-02\n", + " 2.7148e-02\n", + " -9.4387e-03\n", + " 4.4295e-03\n", + " -4.7579e-02\n", + " 1.4396e-02\n", + " -1.5253e-02\n", + " 1.3900e-02\n", + " 9.5453e-05\n", + " -3.3910e-02\n", + " -2.8879e-03\n", + " -1.6263e-02\n", + " -4.2506e-03\n", + " -8.4950e-03\n", + " 9.2556e-03\n", + " 2.9998e-02\n", + " 4.6513e-03\n", + " -5.2122e-02\n", + " -4.4481e-02\n", + " 1.5333e-02\n", + " 2.2972e-02\n", + " -1.2462e-02\n", + " -3.4175e-03\n", + " 4.6433e-03\n", + " -1.8690e-03\n", + " 1.7714e-02\n", + " -1.9650e-03\n", + " -2.6035e-02\n", + " 1.6315e-02\n", + " -1.1207e-02\n", + " 1.3503e-02\n", + " -1.1432e-02\n", + " 7.8864e-03\n", + " -1.4371e-02\n", + " 5.3492e-02\n", + " -2.3405e-02\n", + " -4.6617e-03\n", + " 1.4812e-02\n", + " 9.7913e-03\n", + " 2.2707e-02\n", + " -3.8388e-02\n", + " -1.3629e-03\n", + " 4.2772e-02\n", + " 2.2527e-02\n", + " 3.8240e-02\n", + " 9.8582e-03\n", + " 1.6111e-02\n", + " -2.1650e-03\n", + " -1.9264e-02\n", + " 2.3081e-02\n", + " -3.5951e-02\n", + " 1.0299e-02\n", + " -1.5311e-02\n", + " 2.5592e-03\n", + " -3.0966e-02\n", + " -1.5051e-02\n", + " -1.7087e-02\n", + " 1.3155e-02\n", + " -1.0265e-02\n", + " 1.2869e-02\n", + " -8.2125e-03\n", + " -2.9881e-02\n", + " -1.3611e-02\n", + " -1.8783e-03\n", + " -1.5054e-02\n", + " -2.1433e-02\n", + " -6.1975e-03\n", + " 3.2115e-02\n", + " -6.9664e-03\n", + " 4.0004e-03\n", + " -8.5284e-03\n", + " -1.5563e-02\n", + " -1.0801e-02\n", + " 8.9668e-03\n", + " 1.5517e-03\n", + " 1.4980e-03\n", + " -1.9663e-02\n", + " 9.3043e-03\n", + " -1.8283e-02\n", + " -1.7655e-02\n", + " -1.7385e-02\n", + " -1.5408e-02\n", + " -3.1511e-02\n", + " -1.6622e-02\n", + " 4.2455e-02\n", + " 6.7878e-02\n", + " 3.2178e-02\n", + " 8.9143e-03\n", + " 9.9809e-03\n", + " -2.0120e-02\n", + " -3.9052e-03\n", + " -6.8284e-03\n", + " [torch.FloatTensor of size 384]),\n", + " ('module.encoder.cbhg.gru.bias_hh_l0_reverse', \n", + " -0.4021\n", + " -0.3769\n", + " -0.2140\n", + " -0.4048\n", + " -0.4409\n", + " -0.2962\n", + " -0.3530\n", + " -0.3547\n", + " -0.2006\n", + " -0.0939\n", + " -0.2148\n", + " -0.3912\n", + " -0.2509\n", + " -0.3723\n", + " -0.2090\n", + " -0.3679\n", + " -0.6192\n", + " -0.2744\n", + " -0.2821\n", + " -0.6300\n", + " -0.2462\n", + " -0.3459\n", + " -0.4790\n", + " -0.3206\n", + " -0.3240\n", + " -0.2225\n", + " -0.2448\n", + " -0.3012\n", + " -0.5411\n", + " -0.1877\n", + " -0.6550\n", + " -0.3096\n", + " -0.3862\n", + " -0.3820\n", + " -0.2281\n", + " -0.4488\n", + " -0.2567\n", + " -0.2342\n", + " -0.3323\n", + " -0.3611\n", + " -0.1804\n", + " -0.5137\n", + " -0.3178\n", + " -0.4012\n", + " -0.6883\n", + " -0.3295\n", + " -0.2554\n", + " -0.4798\n", + " -0.2267\n", + " -0.2884\n", + " -0.1101\n", + " -0.3275\n", + " -0.2861\n", + " -0.3019\n", + " -0.2099\n", + " -0.2571\n", + " -0.3100\n", + " -0.3889\n", + " -0.2770\n", + " -0.5019\n", + " -0.3791\n", + " -0.2051\n", + " -0.3247\n", + " -0.3686\n", + " -0.2871\n", + " -0.3502\n", + " -0.4598\n", + " -0.2021\n", + " -0.3041\n", + " -0.4478\n", + " -0.3348\n", + " -0.3264\n", + " -0.3935\n", + " -0.5275\n", + " -0.3446\n", + " -0.3875\n", + " -0.3014\n", + " -0.3336\n", + " -0.1255\n", + " -0.3976\n", + " -0.2708\n", + " -0.1827\n", + " -0.2783\n", + " -0.6199\n", + " -0.4063\n", + " -0.3431\n", + " -0.2897\n", + " -0.6350\n", + " -0.1377\n", + " -0.3942\n", + " -0.0478\n", + " -0.3938\n", + " -0.4251\n", + " -0.2682\n", + " -0.2178\n", + " -0.2168\n", + " -0.3732\n", + " -0.4737\n", + " -0.3745\n", + " -0.3642\n", + " -0.1977\n", + " -0.2043\n", + " -0.5977\n", + " -0.1634\n", + " -0.5290\n", + " -0.3496\n", + " -0.3478\n", + " -0.4321\n", + " -0.2788\n", + " -0.2496\n", + " -0.4516\n", + " -0.3969\n", + " -0.1678\n", + " -0.2187\n", + " -0.3149\n", + " -0.0863\n", + " -0.0248\n", + " -0.2742\n", + " -0.2219\n", + " -0.4662\n", + " -0.1856\n", + " -0.3597\n", + " -0.3117\n", + " -0.4578\n", + " -0.2414\n", + " -0.3564\n", + " -0.4715\n", + " -0.4142\n", + " -0.1192\n", + " 0.2282\n", + " 0.0998\n", + " 0.3681\n", + " -0.0937\n", + " -0.0333\n", + " 0.2070\n", + " 0.0235\n", + " -0.1256\n", + " 1.3631\n", + " 0.0545\n", + " 0.3700\n", + " 0.6947\n", + " -0.1998\n", + " 0.0415\n", + " 0.1162\n", + " 0.1360\n", + " -0.0844\n", + " 0.2483\n", + " 0.0018\n", + " 0.5331\n", + " 0.5480\n", + " 0.0129\n", + " -0.0840\n", + " 0.5069\n", + " 0.3349\n", + " -0.0571\n", + " -0.0355\n", + " 0.0312\n", + " 0.1560\n", + " -0.1759\n", + " 0.5901\n", + " 0.1501\n", + " 0.0128\n", + " 0.2224\n", + " 0.0474\n", + " 0.0988\n", + " 0.2010\n", + " 0.1655\n", + " 0.4528\n", + " 0.0771\n", + " 0.1318\n", + " -0.0493\n", + " 0.2723\n", + " 0.0769\n", + " -0.2386\n", + " 0.6518\n", + " -0.0598\n", + " 0.3625\n", + " 0.1767\n", + " 0.9518\n", + " 0.6138\n", + " 1.0032\n", + " 0.1404\n", + " 0.0313\n", + " 0.0960\n", + " 0.2134\n", + " 0.4506\n", + " 0.2143\n", + " -0.0808\n", + " 0.2908\n", + " 0.6168\n", + " 0.1607\n", + " 0.3082\n", + " 0.2554\n", + " 0.1755\n", + " 0.0763\n", + " 0.1613\n", + " 0.2722\n", + " -0.1114\n", + " -0.2297\n", + " 0.8030\n", + " 0.0292\n", + " 0.3153\n", + " 0.5183\n", + " -0.1982\n", + " 0.1279\n", + " 0.0764\n", + " 0.1635\n", + " -0.0785\n", + " 0.1573\n", + " -0.2740\n", + " -0.2416\n", + " 0.2376\n", + " -0.1834\n", + " -0.3681\n", + " 0.0012\n", + " 0.0962\n", + " 1.2691\n", + " 0.2833\n", + " 0.2742\n", + " 0.0638\n", + " 0.2562\n", + " 0.1418\n", + " 0.3912\n", + " 0.1948\n", + " -0.0925\n", + " -0.0010\n", + " 0.6521\n", + " 0.0980\n", + " 0.3893\n", + " -0.1378\n", + " -0.0100\n", + " 1.0812\n", + " 0.1997\n", + " -0.1443\n", + " -0.3224\n", + " -0.3206\n", + " -0.0624\n", + " -0.1788\n", + " 0.1056\n", + " 0.0937\n", + " 0.2355\n", + " -0.0579\n", + " -0.2225\n", + " 1.5624\n", + " 0.9694\n", + " -0.1254\n", + " -0.0760\n", + " 0.1729\n", + " 0.0904\n", + " -0.2842\n", + " 0.1807\n", + " 0.4844\n", + " -0.1173\n", + " -0.1267\n", + " 0.1129\n", + " -0.2652\n", + " 0.0412\n", + " 0.0245\n", + " -0.0584\n", + " 0.0137\n", + " -0.0256\n", + " 0.0435\n", + " -0.0638\n", + " -0.0002\n", + " 0.0219\n", + " 0.0493\n", + " -0.0016\n", + " 0.0335\n", + " -0.0372\n", + " -0.0163\n", + " -0.1106\n", + " 0.0539\n", + " 0.0132\n", + " -0.0349\n", + " -0.1317\n", + " 0.0202\n", + " 0.0458\n", + " 0.0272\n", + " -0.0015\n", + " 0.1109\n", + " 0.0943\n", + " -0.0222\n", + " 0.0050\n", + " 0.0363\n", + " -0.0365\n", + " 0.0504\n", + " -0.0554\n", + " 0.0515\n", + " 0.0207\n", + " 0.0082\n", + " -0.0852\n", + " -0.1534\n", + " 0.0594\n", + " -0.0727\n", + " 0.0335\n", + " -0.0088\n", + " 0.1092\n", + " -0.0471\n", + " 0.0300\n", + " -0.0515\n", + " -0.0115\n", + " 0.0812\n", + " 0.0010\n", + " 0.0595\n", + " 0.0341\n", + " 0.0243\n", + " -0.0234\n", + " -0.0822\n", + " -0.0227\n", + " 0.1416\n", + " 0.1211\n", + " -0.0128\n", + " -0.0706\n", + " 0.0334\n", + " 0.0051\n", + " -0.0237\n", + " -0.0058\n", + " -0.0463\n", + " 0.0036\n", + " 0.0705\n", + " -0.0559\n", + " 0.0278\n", + " -0.0305\n", + " 0.0348\n", + " -0.0263\n", + " 0.0674\n", + " -0.1551\n", + " 0.0591\n", + " 0.0149\n", + " -0.0758\n", + " -0.0294\n", + " -0.0772\n", + " 0.1146\n", + " 0.0091\n", + " -0.1018\n", + " -0.0859\n", + " -0.1003\n", + " -0.0120\n", + " -0.0486\n", + " 0.0101\n", + " 0.0587\n", + " -0.0660\n", + " 0.0979\n", + " -0.0533\n", + " 0.0480\n", + " -0.0106\n", + " 0.0422\n", + " 0.0438\n", + " 0.0387\n", + " -0.0297\n", + " 0.0189\n", + " -0.0110\n", + " 0.0288\n", + " 0.0946\n", + " 0.0560\n", + " 0.0084\n", + " 0.0286\n", + " 0.0514\n", + " 0.0132\n", + " -0.0559\n", + " 0.0266\n", + " -0.0069\n", + " 0.0305\n", + " 0.0457\n", + " 0.0135\n", + " -0.0472\n", + " 0.0024\n", + " -0.0213\n", + " 0.0408\n", + " -0.0099\n", + " 0.0599\n", + " 0.0540\n", + " 0.0526\n", + " 0.0459\n", + " 0.0755\n", + " 0.0624\n", + " -0.1091\n", + " -0.2088\n", + " -0.0742\n", + " -0.0100\n", + " -0.0230\n", + " 0.0552\n", + " 0.0098\n", + " 0.0287\n", + " [torch.FloatTensor of size 384]),\n", + " ('module.decoder.input_layer.weight', \n", + " 5.8912e-02 -1.6154e-01 3.1346e-01 ... -8.0450e-02 -1.7943e-01 -4.4032e-01\n", + " 2.2493e-02 -5.4650e-01 4.6403e-01 ... 1.4908e-02 -2.3215e-01 2.7284e-02\n", + " 9.7050e-02 4.0065e-01 -2.3527e-02 ... -3.0692e-01 7.2489e-02 2.4635e-01\n", + " ... ⋱ ... \n", + " -3.5142e-03 6.1435e-02 -6.3044e-03 ... 4.7249e-02 1.6870e-02 -2.7558e-01\n", + " -9.6333e-01 2.4835e-01 -1.5142e-01 ... 4.1154e-01 -8.1726e-02 -4.9164e-02\n", + " 3.7292e-01 2.6657e-01 -3.5470e-01 ... 6.5989e-02 7.4646e-02 2.0836e-01\n", + " [torch.FloatTensor of size 256x256]),\n", + " ('module.decoder.prenet.layers.0.weight', \n", + " 1.7273e-02 3.9850e-02 3.8051e-02 ... 2.3819e-01 2.4384e-01 3.2467e-01\n", + " 2.7207e-02 -2.0696e-02 4.7891e-02 ... -5.0082e-02 2.9328e-02 -4.2173e-02\n", + " -4.6377e-02 -5.8427e-02 5.9433e-02 ... 9.2617e-03 2.8656e-02 2.6222e-01\n", + " ... ⋱ ... \n", + " -6.4205e-02 -1.9410e-02 2.5475e-02 ... 9.8911e-02 5.9283e-02 1.9599e-01\n", + " -1.0034e-02 -1.4641e-02 -5.9885e-02 ... 3.0947e-01 1.8075e-01 3.6630e-01\n", + " -4.7642e-02 4.9048e-01 -8.2729e-02 ... -7.3440e-01 -2.3007e-01 1.2729e-01\n", + " [torch.FloatTensor of size 256x400]),\n", + " ('module.decoder.prenet.layers.0.bias', \n", + " 1.2574\n", + " -0.0297\n", + " 0.8272\n", + " 0.1237\n", + " -0.6448\n", + " -0.3559\n", + " -0.6406\n", + " -1.0272\n", + " -0.9062\n", + " -0.3825\n", + " -1.1827\n", + " -0.4707\n", + " -0.3198\n", + " -0.5765\n", + " -0.2746\n", + " 0.2238\n", + " -0.5342\n", + " -0.2980\n", + " -0.3369\n", + " -0.3599\n", + " -0.6481\n", + " -0.2758\n", + " -0.5455\n", + " -0.1720\n", + " -0.9845\n", + " -0.0390\n", + " -0.5530\n", + " -0.1325\n", + " -1.4598\n", + " 1.6848\n", + " -0.2840\n", + " -0.4153\n", + " -0.9280\n", + " 0.3325\n", + " -0.0751\n", + " -1.5679\n", + " -0.6500\n", + " -0.4325\n", + " -0.8774\n", + " -0.0603\n", + " -0.0973\n", + " 0.9125\n", + " -0.6883\n", + " -0.1912\n", + " -0.4294\n", + " -1.2876\n", + " 1.7439\n", + " -0.0499\n", + " -0.7083\n", + " -1.3910\n", + " 1.2655\n", + " -1.7360\n", + " -0.0509\n", + " -0.4689\n", + " -0.4943\n", + " -0.9908\n", + " -0.2800\n", + " -0.4613\n", + " -0.0472\n", + " -0.7536\n", + " 0.2111\n", + " -0.5066\n", + " -0.8105\n", + " -0.6232\n", + " -0.2159\n", + " -0.4624\n", + " 1.1024\n", + " 0.3514\n", + " 0.8865\n", + " -0.0117\n", + " -0.3849\n", + " -0.5286\n", + " -0.7260\n", + " 0.2438\n", + " -0.2764\n", + " -1.1041\n", + " -0.7391\n", + " -0.4548\n", + " 0.9607\n", + " 0.2563\n", + " 1.0791\n", + " -1.1938\n", + " -1.4059\n", + " -0.0218\n", + " -0.5807\n", + " -0.0211\n", + " -1.1994\n", + " -0.3751\n", + " -0.4187\n", + " -0.6417\n", + " -0.5826\n", + " -1.8560\n", + " -0.3148\n", + " -0.2558\n", + " 0.1604\n", + " -0.1702\n", + " -0.0172\n", + " 0.3932\n", + " -0.7518\n", + " 0.4139\n", + " -0.0991\n", + " 0.2794\n", + " -0.3773\n", + " -0.0568\n", + " -0.4718\n", + " 1.8045\n", + " -0.3920\n", + " 0.2627\n", + " 0.2605\n", + " 0.4709\n", + " -0.2575\n", + " 0.1251\n", + " -0.0557\n", + " 1.7317\n", + " -0.4669\n", + " -0.3428\n", + " -0.0377\n", + " 0.1490\n", + " -0.3555\n", + " -1.0507\n", + " -0.4364\n", + " -0.7193\n", + " 0.3214\n", + " -0.3130\n", + " -1.2584\n", + " 0.2316\n", + " -0.2101\n", + " 1.6875\n", + " -0.5976\n", + " -0.1807\n", + " -1.1705\n", + " 0.9523\n", + " -0.4907\n", + " -0.6100\n", + " 0.7783\n", + " -1.3257\n", + " 0.2497\n", + " -0.5033\n", + " -0.3916\n", + " -1.2852\n", + " 1.0912\n", + " -1.1056\n", + " -0.0825\n", + " 0.3236\n", + " -0.6353\n", + " -0.6368\n", + " -0.6667\n", + " -0.1264\n", + " -0.8609\n", + " 0.4090\n", + " -0.2521\n", + " -0.1683\n", + " -0.0963\n", + " 0.2585\n", + " -1.3112\n", + " -0.2364\n", + " -0.4060\n", + " -0.3156\n", + " -0.2951\n", + " -0.0159\n", + " -0.5303\n", + " -0.5743\n", + " -0.3195\n", + " -1.0213\n", + " 1.1266\n", + " -0.3234\n", + " 1.2449\n", + " -0.7429\n", + " -0.6232\n", + " -0.5871\n", + " -0.9705\n", + " -0.6896\n", + " 2.2192\n", + " -1.2712\n", + " 0.9313\n", + " -0.3202\n", + " 1.3223\n", + " -0.2517\n", + " -0.0472\n", + " -0.5210\n", + " -0.2545\n", + " 1.4358\n", + " -0.2809\n", + " -0.6639\n", + " -0.7321\n", + " 1.2307\n", + " -1.3464\n", + " -0.2210\n", + " 1.6999\n", + " -0.4472\n", + " -1.1767\n", + " 2.2247\n", + " -0.5072\n", + " 1.6496\n", + " -0.4081\n", + " -0.0079\n", + " 1.4584\n", + " -1.0027\n", + " 1.2522\n", + " 1.2128\n", + " -0.9032\n", + " 1.2793\n", + " -0.6196\n", + " -0.3898\n", + " -0.9331\n", + " 0.3800\n", + " 1.7871\n", + " 0.1263\n", + " 0.9310\n", + " -0.4832\n", + " 1.0980\n", + " 0.4972\n", + " -0.0218\n", + " 0.1663\n", + " -0.1926\n", + " -0.4412\n", + " -0.4890\n", + " 0.3012\n", + " -0.4918\n", + " -0.5552\n", + " -0.7084\n", + " 1.7566\n", + " 1.2132\n", + " -0.6182\n", + " -0.6995\n", + " -0.5213\n", + " 0.2395\n", + " -0.4751\n", + " 1.3885\n", + " 0.0127\n", + " -0.7025\n", + " -1.3511\n", + " -0.0942\n", + " -0.0687\n", + " 0.1353\n", + " -0.5863\n", + " -0.8277\n", + " -0.2539\n", + " -0.4305\n", + " -1.5516\n", + " -0.3325\n", + " -0.3001\n", + " -0.0283\n", + " 0.9374\n", + " -0.8915\n", + " 0.3668\n", + " -0.2711\n", + " -1.1822\n", + " -0.4988\n", + " -1.7255\n", + " 0.2521\n", + " 0.3801\n", + " -0.9418\n", + " -1.5530\n", + " -0.3145\n", + " 0.2827\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.decoder.prenet.layers.1.weight', \n", + " -1.3509e-03 -4.9811e-02 -3.0601e+00 ... 1.2224e-02 6.3256e-04 -5.1213e-01\n", + " -7.1447e-04 -2.4918e-02 -2.3079e-04 ... -4.0298e-01 8.0245e-02 5.5424e-02\n", + " 1.8214e-03 -3.6424e-02 -2.4487e-03 ... 9.2734e-03 3.9090e-05 -1.6429e-01\n", + " ... ⋱ ... \n", + " 4.1529e-03 4.6767e-02 3.3784e-03 ... -4.9681e-04 -4.5640e-03 -1.7410e+00\n", + " 2.1006e-03 6.3024e-04 1.9130e-03 ... -2.2718e-02 -8.2343e-03 -9.1887e-02\n", + " 7.8437e-04 -2.0041e-02 -3.0045e-01 ... 4.5585e-03 -2.2033e-03 -2.6096e-01\n", + " [torch.FloatTensor of size 128x256]),\n", + " ('module.decoder.prenet.layers.1.bias', \n", + " 0.0052\n", + " -0.0042\n", + " -0.0056\n", + " -0.1226\n", + " -0.3664\n", + " -0.0042\n", + " -0.9969\n", + " 0.3418\n", + " 0.2695\n", + " 0.3532\n", + " -0.0236\n", + " -0.7367\n", + " -0.0029\n", + " 0.2559\n", + " 0.0523\n", + " -1.1205\n", + " -0.0039\n", + " -0.1988\n", + " 0.2844\n", + " 0.0206\n", + " -0.8661\n", + " 0.5405\n", + " -0.1517\n", + " -0.0011\n", + " -0.1248\n", + " 0.0041\n", + " -0.0378\n", + " -0.0906\n", + " 0.0570\n", + " 0.4385\n", + " 0.5438\n", + " 0.0329\n", + " 0.0029\n", + " -0.9980\n", + " 0.3965\n", + " -0.0089\n", + " -1.1389\n", + " -0.1909\n", + " 0.2859\n", + " -0.0189\n", + " -0.0014\n", + " 0.1089\n", + " 0.0194\n", + " -0.0660\n", + " -0.6653\n", + " -0.1948\n", + " -0.0060\n", + " 0.3791\n", + " -0.0064\n", + " 0.3199\n", + " 0.0274\n", + " 0.0885\n", + " -0.0027\n", + " 0.2967\n", + " 0.4002\n", + " 0.0870\n", + " -0.0071\n", + " 0.0584\n", + " -0.0073\n", + " -0.8491\n", + " 0.1680\n", + " -0.0017\n", + " 0.3167\n", + " -0.0034\n", + " 0.0167\n", + " 0.1565\n", + " 0.0116\n", + " 0.3706\n", + " -0.0044\n", + " -0.0025\n", + " 0.2208\n", + " -0.0007\n", + " 0.1015\n", + " 0.1852\n", + " -0.0199\n", + " -0.0067\n", + " 0.2664\n", + " 0.0052\n", + " 0.0027\n", + " 0.0724\n", + " -0.6335\n", + " 0.3221\n", + " -0.0028\n", + " -0.0143\n", + " -0.0027\n", + " -0.1618\n", + " 0.3082\n", + " -0.5741\n", + " 0.1174\n", + " 0.0087\n", + " 0.0087\n", + " -0.0076\n", + " 0.0071\n", + " -1.0007\n", + " -0.4847\n", + " -0.0075\n", + " -0.0015\n", + " 0.0655\n", + " 0.5898\n", + " 0.1552\n", + " 0.0606\n", + " -0.0090\n", + " -0.0814\n", + " -0.0840\n", + " 0.0140\n", + " -0.0111\n", + " -0.2604\n", + " -0.0040\n", + " 0.0634\n", + " 0.0555\n", + " 0.4157\n", + " -0.0055\n", + " 0.2500\n", + " 0.3200\n", + " -0.1563\n", + " -0.0049\n", + " -0.7962\n", + " 0.0093\n", + " -0.6326\n", + " -0.0270\n", + " 0.1141\n", + " -0.3724\n", + " -0.0036\n", + " 0.4631\n", + " -0.0074\n", + " 0.0300\n", + " -0.5286\n", + " 0.2050\n", + " [torch.FloatTensor of size 128]),\n", + " ('module.decoder.attention_rnn.rnn_cell.weight_ih', \n", + " 4.7004e-03 -3.1616e-03 5.6298e-03 ... 4.1007e-01 -1.1769e-01 1.5694e-02\n", + " -2.1963e-02 -4.6315e-02 -3.6587e-02 ... 2.2953e-02 4.3843e-01 -2.3121e-02\n", + " 1.5446e-02 -1.2748e-02 1.3458e-02 ... 3.1746e-01 -1.2326e-01 -3.6464e-01\n", + " ... ⋱ ... \n", + " 1.1824e-02 1.0912e-01 3.9496e-02 ... -3.3261e-01 -8.9657e-02 -2.0552e-01\n", + " -4.6938e-02 4.5614e-02 -6.5803e-02 ... -1.6535e-01 1.5010e-01 1.0953e-01\n", + " 9.1592e-04 1.6509e-03 1.6584e-03 ... 6.4068e-04 -2.5964e-02 -5.1105e-02\n", + " [torch.FloatTensor of size 768x384]),\n", + " ('module.decoder.attention_rnn.rnn_cell.weight_hh', \n", + " 2.3133e-01 -1.3324e-01 6.8962e-02 ... -1.3204e-01 -1.4500e-01 -8.0639e-02\n", + " 3.8879e-01 -4.8046e-01 5.5766e-01 ... 8.2341e-01 -7.1176e-02 -1.7622e-01\n", + " -1.3903e-01 -2.3238e-01 1.5178e+00 ... 5.0531e-01 -2.3371e-01 1.5687e-01\n", + " ... ⋱ ... \n", + " 4.3659e-02 -1.8181e-02 1.4424e-01 ... -2.3447e+00 1.1663e-01 2.8783e-02\n", + " 1.3827e-01 -1.5128e-01 -2.8599e-02 ... 1.6510e-01 -7.6042e-01 6.6707e-02\n", + " 1.8982e-01 6.8345e-04 1.3821e-01 ... -2.7056e-01 4.6980e-03 -1.2982e+00\n", + " [torch.FloatTensor of size 768x256]),\n", + " ('module.decoder.attention_rnn.rnn_cell.bias_ih', \n", + " -0.1681\n", + " -0.4455\n", + " -0.0855\n", + " -0.2734\n", + " -0.2902\n", + " -0.3903\n", + " -0.0983\n", + " -0.3286\n", + " 0.0890\n", + " 0.1034\n", + " -0.3072\n", + " -0.1984\n", + " -0.3123\n", + " -0.3316\n", + " -0.1818\n", + " -0.2477\n", + " -0.3372\n", + " -0.2289\n", + " -0.2351\n", + " -0.1868\n", + " -0.0510\n", + " -0.1700\n", + " -0.6182\n", + " -0.4167\n", + " -0.3103\n", + " -0.3025\n", + " -0.1819\n", + " -0.1224\n", + " -0.1600\n", + " -0.1490\n", + " -0.3483\n", + " -0.3005\n", + " 0.0135\n", + " 0.2279\n", + " -0.3633\n", + " -0.5285\n", + " -0.0272\n", + " -0.0846\n", + " -0.3191\n", + " -0.2163\n", + " -0.3472\n", + " 0.4668\n", + " -0.2450\n", + " -0.1129\n", + " -0.2643\n", + " -0.1567\n", + " -0.2560\n", + " -0.4324\n", + " -0.0101\n", + " -0.0095\n", + " -0.4006\n", + " -0.2120\n", + " -0.2007\n", + " 0.0248\n", + " -0.3071\n", + " -0.2836\n", + " -0.1074\n", + " -0.2105\n", + " -0.2390\n", + " 0.0074\n", + " -0.1894\n", + " -0.2280\n", + " -0.0391\n", + " -0.3245\n", + " -0.1079\n", + " -0.2870\n", + " -0.2642\n", + " -0.1295\n", + " -0.1607\n", + " -0.6550\n", + " 0.2058\n", + " -0.1507\n", + " -0.3115\n", + " -0.3720\n", + " -0.5016\n", + " -0.0754\n", + " -0.1310\n", + " -0.0842\n", + " -0.4348\n", + " -0.1354\n", + " 0.0201\n", + " -0.4004\n", + " -0.3730\n", + " -0.0806\n", + " -0.1812\n", + " -0.3134\n", + " -0.4739\n", + " -0.1196\n", + " -0.1110\n", + " 0.0135\n", + " -0.2281\n", + " -0.2914\n", + " -0.1191\n", + " -0.1852\n", + " -0.1134\n", + " -0.1330\n", + " -0.0775\n", + " -0.1139\n", + " -0.0373\n", + " -0.1966\n", + " -0.1528\n", + " -0.3453\n", + " -0.3157\n", + " -0.2631\n", + " -0.2700\n", + " -0.1754\n", + " 0.0399\n", + " -0.3159\n", + " 0.3600\n", + " -0.1543\n", + " -0.0227\n", + " -0.4256\n", + " -0.0859\n", + " -0.4042\n", + " -0.2984\n", + " -0.1030\n", + " -0.5381\n", + " -0.3036\n", + " 0.0867\n", + " -0.1804\n", + " -0.0901\n", + " -0.0799\n", + " 0.2442\n", + " -0.2991\n", + " -0.0975\n", + " -0.2165\n", + " -0.1760\n", + " -0.2790\n", + " -0.2457\n", + " -0.2866\n", + " -0.1029\n", + " -0.2726\n", + " -0.1853\n", + " -0.3342\n", + " -0.4926\n", + " -0.3865\n", + " -0.0976\n", + " -0.1514\n", + " -0.3091\n", + " -0.3345\n", + " -0.2481\n", + " -0.2871\n", + " -0.1821\n", + " -0.0286\n", + " 0.0421\n", + " -0.3300\n", + " -0.5272\n", + " 0.0578\n", + " -0.4468\n", + " -0.2035\n", + " -0.2977\n", + " -0.3573\n", + " -0.2553\n", + " -0.0288\n", + " -0.2515\n", + " -0.3434\n", + " -0.1521\n", + " -0.0886\n", + " -0.0664\n", + " -0.3043\n", + " -0.3734\n", + " -0.3612\n", + " -0.3121\n", + " -0.2435\n", + " -0.3681\n", + " 0.3880\n", + " -0.1687\n", + " -0.1656\n", + " -0.2758\n", + " -0.1889\n", + " -0.3179\n", + " -0.6930\n", + " -0.2761\n", + " -0.1971\n", + " -0.2255\n", + " 0.0814\n", + " -0.0797\n", + " -0.1322\n", + " -0.2608\n", + " -0.0973\n", + " 0.1345\n", + " -0.2937\n", + " -0.2879\n", + " -0.2330\n", + " -0.3231\n", + " -0.3696\n", + " -0.2892\n", + " 0.1844\n", + " -0.3503\n", + " -0.4406\n", + " -0.0191\n", + " 0.1077\n", + " -0.0890\n", + " -0.4048\n", + " -0.2865\n", + " -0.3503\n", + " 0.0461\n", + " -0.1139\n", + " -0.2748\n", + " -0.0668\n", + " -0.5985\n", + " -0.4329\n", + " -0.3664\n", + " -0.0504\n", + " -0.0366\n", + " -0.2466\n", + " -0.4081\n", + " -0.3905\n", + " -0.4826\n", + " -0.1981\n", + " -0.1180\n", + " -0.0637\n", + " -0.3156\n", + " -0.2758\n", + " -0.1164\n", + " -0.4320\n", + " -0.1839\n", + " -0.3343\n", + " -0.1842\n", + " -0.2677\n", + " -0.1974\n", + " -0.3704\n", + " 0.1662\n", + " -0.0225\n", + " -0.0275\n", + " -0.2811\n", + " -0.0940\n", + " -0.0287\n", + " -0.2577\n", + " -0.4922\n", + " -0.3372\n", + " -0.2350\n", + " -0.2281\n", + " 0.0020\n", + " -0.1796\n", + " -0.1772\n", + " -0.2580\n", + " -0.2861\n", + " -0.2207\n", + " -0.2044\n", + " -0.0210\n", + " -0.4599\n", + " -0.1910\n", + " -0.3374\n", + " -0.4828\n", + " -0.3753\n", + " -0.2594\n", + " -0.1496\n", + " 0.1280\n", + " -0.2443\n", + " -0.1205\n", + " -0.1102\n", + " -0.2538\n", + " -0.2303\n", + " -0.2475\n", + " -0.0475\n", + " -0.3693\n", + " 0.5033\n", + " -0.2319\n", + " 0.4061\n", + " -0.2932\n", + " 0.2920\n", + " 0.3194\n", + " 0.2956\n", + " 0.4079\n", + " -0.1020\n", + " -0.3090\n", + " 0.3526\n", + " -0.1023\n", + " 0.6887\n", + " 0.4414\n", + " 0.0618\n", + " 0.5093\n", + " -0.0824\n", + " 0.2660\n", + " -0.1215\n", + " 0.5445\n", + " 0.5103\n", + " -0.5923\n", + " 0.5078\n", + " 0.8807\n", + " 0.3953\n", + " -0.3786\n", + " -0.0840\n", + " 0.2337\n", + " -0.3545\n", + " -0.2247\n", + " 0.7402\n", + " 0.0166\n", + " -0.5177\n", + " 0.5897\n", + " 1.0498\n", + " -0.3881\n", + " -0.0463\n", + " 0.0124\n", + " 0.2867\n", + " 0.6141\n", + " -0.3570\n", + " -0.8429\n", + " 0.1788\n", + " -0.3630\n", + " -0.8819\n", + " 0.4702\n", + " 0.4737\n", + " -1.2320\n", + " -0.9242\n", + " 0.3525\n", + " 0.5829\n", + " -0.5321\n", + " 0.6006\n", + " 0.8337\n", + " 0.3379\n", + " -0.1771\n", + " -0.8779\n", + " 0.6235\n", + " -0.1372\n", + " -0.4700\n", + " 0.6897\n", + " 0.4867\n", + " 0.3006\n", + " -0.2144\n", + " 0.2536\n", + " -0.1740\n", + " -0.4235\n", + " -0.5595\n", + " 0.9610\n", + " 0.0160\n", + " 0.6872\n", + " -0.4486\n", + " -0.3360\n", + " 0.3887\n", + " -0.1723\n", + " 0.3747\n", + " -0.2266\n", + " 0.3598\n", + " -0.5144\n", + " -0.0569\n", + " 0.7886\n", + " 0.6107\n", + " -0.3781\n", + " 0.0526\n", + " -0.1562\n", + " 0.2887\n", + " -0.4112\n", + " 0.0853\n", + " 0.1482\n", + " 0.6354\n", + " -0.4740\n", + " 0.0292\n", + " 1.0279\n", + " 0.4255\n", + " 0.1468\n", + " -0.7064\n", + " -0.0603\n", + " -0.0846\n", + " -0.2341\n", + " 0.2208\n", + " 0.8614\n", + " 0.1438\n", + " -0.0266\n", + " 0.5498\n", + " 0.5653\n", + " -0.1237\n", + " 0.4341\n", + " -0.6534\n", + " 0.0016\n", + " 0.1957\n", + " 0.4631\n", + " 0.0945\n", + " 0.5586\n", + " 0.2923\n", + " 0.2120\n", + " 0.6231\n", + " 0.3097\n", + " -0.0693\n", + " 0.1286\n", + " -0.3333\n", + " 0.3914\n", + " -0.2655\n", + " -0.7806\n", + " 0.0748\n", + " 0.4576\n", + " 0.4348\n", + " 0.9007\n", + " -0.3443\n", + " 0.8456\n", + " 0.4984\n", + " 0.3020\n", + " -0.0093\n", + " 0.4828\n", + " 0.4315\n", + " -0.1974\n", + " 0.2839\n", + " 0.2093\n", + " 0.4478\n", + " -0.2094\n", + " 0.5609\n", + " 0.6765\n", + " -0.2177\n", + " 0.6834\n", + " 0.0592\n", + " 0.4823\n", + " 0.7880\n", + " -0.0486\n", + " 0.0854\n", + " -0.1783\n", + " 0.3725\n", + " -0.0166\n", + " 0.7774\n", + " 0.2578\n", + " 0.2012\n", + " -0.6923\n", + " 0.4831\n", + " 0.2770\n", + " 0.2333\n", + " 0.9920\n", + " 0.9016\n", + " 1.0211\n", + " 0.6877\n", + " 0.8542\n", + " 0.4827\n", + " -0.3787\n", + " 0.7731\n", + " -0.7951\n", + " 0.2204\n", + " 0.3461\n", + " 0.4762\n", + " 0.8330\n", + " 0.6178\n", + " 0.1453\n", + " 0.2667\n", + " -0.1538\n", + " -0.5029\n", + " 0.2894\n", + " 0.7792\n", + " -0.2938\n", + " 0.0511\n", + " -0.2496\n", + " -0.2892\n", + " -0.3114\n", + " 0.5537\n", + " -0.3806\n", + " -0.3456\n", + " -0.0560\n", + " 0.2599\n", + " 0.6866\n", + " 0.2795\n", + " -0.3941\n", + " -0.2718\n", + " 0.5049\n", + " 0.6830\n", + " 0.6329\n", + " 0.5453\n", + " -0.3399\n", + " 0.3233\n", + " 0.3098\n", + " 0.9976\n", + " 0.4178\n", + " 0.1519\n", + " 0.1064\n", + " -0.5418\n", + " -0.2228\n", + " 0.6781\n", + " 0.3510\n", + " 0.9180\n", + " 0.0556\n", + " -0.1268\n", + " 0.1080\n", + " -0.0807\n", + " 0.1642\n", + " 0.2019\n", + " -0.2052\n", + " 0.0701\n", + " 0.5781\n", + " 0.3520\n", + " 0.2864\n", + " -0.0198\n", + " 0.4802\n", + " 0.0686\n", + " -0.1297\n", + " 0.3799\n", + " -0.5801\n", + " 0.2267\n", + " -0.3331\n", + " 0.1789\n", + " 0.6574\n", + " -0.2033\n", + " 0.4127\n", + " 0.3014\n", + " -0.4878\n", + " -0.1851\n", + " 0.2485\n", + " 0.0927\n", + " 0.2120\n", + " 0.9425\n", + " 0.1457\n", + " 0.2978\n", + " 0.4554\n", + " 0.4970\n", + " -0.5606\n", + " -0.2625\n", + " 0.5333\n", + " -0.3710\n", + " 0.2715\n", + " -0.2672\n", + " 0.5287\n", + " 0.1724\n", + " -0.1804\n", + " 0.4135\n", + " 0.2100\n", + " 0.5956\n", + " 0.1735\n", + " -0.1697\n", + " 0.0212\n", + " 0.0500\n", + " 0.0162\n", + " 0.0217\n", + " -0.0038\n", + " -0.0292\n", + " -0.0375\n", + " -0.0807\n", + " 0.0075\n", + " -0.0146\n", + " 0.0072\n", + " -0.0216\n", + " -0.0081\n", + " -0.0122\n", + " -0.0221\n", + " 0.0021\n", + " -0.1028\n", + " 0.0248\n", + " 0.0013\n", + " -0.0282\n", + " 0.0260\n", + " -0.0007\n", + " 0.0086\n", + " -0.0044\n", + " -0.0003\n", + " -0.0160\n", + " -0.0177\n", + " 0.0968\n", + " 0.0884\n", + " -0.0166\n", + " 0.0074\n", + " -0.0274\n", + " 0.0712\n", + " 0.0031\n", + " 0.0033\n", + " -0.0614\n", + " -0.0058\n", + " -0.0979\n", + " -0.0347\n", + " 0.0047\n", + " -0.5094\n", + " -0.0331\n", + " 0.0248\n", + " 0.0739\n", + " -0.1455\n", + " -0.0031\n", + " -0.0054\n", + " -0.0301\n", + " 0.0418\n", + " -0.0298\n", + " -0.0051\n", + " -0.0114\n", + " 0.0393\n", + " 0.0115\n", + " -0.0170\n", + " 0.0274\n", + " -0.0185\n", + " 0.0036\n", + " 0.0992\n", + " -0.0060\n", + " -0.0107\n", + " -0.0020\n", + " -0.0102\n", + " -0.0238\n", + " 0.0093\n", + " -0.0593\n", + " 0.0540\n", + " 0.0948\n", + " 0.0009\n", + " 0.0047\n", + " -0.0669\n", + " -0.0652\n", + " -0.0174\n", + " -0.0050\n", + " -0.0460\n", + " -0.0368\n", + " 0.0073\n", + " -0.0226\n", + " 0.0407\n", + " -0.1166\n", + " -0.0127\n", + " 0.0295\n", + " -0.0485\n", + " -0.0491\n", + " 0.0840\n", + " -0.0081\n", + " -0.0437\n", + " 0.0251\n", + " -0.0226\n", + " 0.0027\n", + " -0.0135\n", + " 0.0099\n", + " 0.0272\n", + " 0.0331\n", + " -0.0159\n", + " 0.0967\n", + " 0.0151\n", + " -0.2298\n", + " 0.0420\n", + " 0.0340\n", + " 0.0214\n", + " -0.0144\n", + " -0.0021\n", + " 0.0025\n", + " -0.0134\n", + " 0.0341\n", + " -0.0051\n", + " 0.5071\n", + " 0.0183\n", + " 0.0527\n", + " -0.0089\n", + " 0.0089\n", + " 0.0229\n", + " -0.0395\n", + " -0.0221\n", + " -0.0034\n", + " 0.0094\n", + " 0.3358\n", + " 0.0210\n", + " 0.0231\n", + " -0.0355\n", + " 0.0187\n", + " 0.1024\n", + " 0.1728\n", + " -0.0074\n", + " -0.0199\n", + " 0.0116\n", + " 0.0285\n", + " 0.0012\n", + " -0.0164\n", + " 0.0300\n", + " 0.0188\n", + " 0.0261\n", + " 0.0009\n", + " 0.0303\n", + " 0.0122\n", + " -0.0124\n", + " -0.0008\n", + " -0.0001\n", + " -0.0164\n", + " -0.0088\n", + " -0.1008\n", + " -0.0192\n", + " 0.0444\n", + " 0.0021\n", + " -0.0120\n", + " 0.1039\n", + " 0.0013\n", + " 0.0005\n", + " -0.0113\n", + " -0.0187\n", + " 0.0402\n", + " 0.0104\n", + " 0.0056\n", + " -0.0675\n", + " 0.0169\n", + " -0.0246\n", + " -0.0080\n", + " -0.0207\n", + " -0.0091\n", + " -0.0100\n", + " 0.0288\n", + " -0.0229\n", + " 0.0028\n", + " -0.5419\n", + " 0.0176\n", + " -0.0364\n", + " -0.0238\n", + " -0.0585\n", + " 0.0434\n", + " -0.0093\n", + " 0.0032\n", + " -0.0320\n", + " 0.0736\n", + " 0.0288\n", + " 0.0025\n", + " 0.0717\n", + " 0.0175\n", + " 0.1066\n", + " -0.3397\n", + " -0.0192\n", + " -0.0216\n", + " -0.0105\n", + " 0.0057\n", + " -0.1191\n", + " 0.0371\n", + " 0.1501\n", + " 0.0231\n", + " -0.0081\n", + " 0.0215\n", + " 0.2007\n", + " 0.0494\n", + " 0.0154\n", + " -0.0065\n", + " 0.0078\n", + " -0.0508\n", + " -0.0921\n", + " -0.0307\n", + " 0.0148\n", + " 0.0052\n", + " -0.0226\n", + " -0.0015\n", + " -0.0533\n", + " 0.0225\n", + " 0.0718\n", + " -0.0091\n", + " -0.0112\n", + " 0.0106\n", + " 0.0108\n", + " -0.0658\n", + " -0.0417\n", + " 0.0511\n", + " 0.0098\n", + " -0.0226\n", + " 0.0397\n", + " -0.0010\n", + " 0.0005\n", + " -0.0055\n", + " 0.0009\n", + " -0.0248\n", + " 0.0215\n", + " 0.0667\n", + " -0.0166\n", + " 0.0769\n", + " -0.0188\n", + " -0.0282\n", + " -0.2376\n", + " 0.0055\n", + " 0.0075\n", + " -0.0412\n", + " 0.0070\n", + " 0.0015\n", + " 0.0111\n", + " 0.0065\n", + " -0.0147\n", + " 0.0011\n", + " -0.0076\n", + " 0.0141\n", + " -0.0171\n", + " -0.0178\n", + " -0.0050\n", + " -0.0329\n", + " 0.0181\n", + " 0.0225\n", + " -0.0003\n", + " -0.0145\n", + " 0.0534\n", + " -0.1561\n", + " 0.0157\n", + " 0.0602\n", + " -0.0238\n", + " 0.0468\n", + " 0.0414\n", + " 0.0061\n", + " 0.2552\n", + " [torch.FloatTensor of size 768]),\n", + " ('module.decoder.attention_rnn.rnn_cell.bias_hh', \n", + " -0.1619\n", + " -0.3476\n", + " -0.1480\n", + " -0.3070\n", + " -0.3330\n", + " -0.4126\n", + " -0.1426\n", + " -0.3965\n", + " 0.0937\n", + " 0.0854\n", + " -0.2954\n", + " -0.2285\n", + " -0.3341\n", + " -0.3151\n", + " -0.1267\n", + " -0.2881\n", + " -0.3631\n", + " -0.1389\n", + " -0.2565\n", + " -0.1751\n", + " -0.0839\n", + " -0.1953\n", + " -0.5660\n", + " -0.3454\n", + " -0.2550\n", + " -0.2794\n", + " -0.2598\n", + " -0.1146\n", + " -0.2088\n", + " -0.1589\n", + " -0.2954\n", + " -0.2815\n", + " 0.0091\n", + " 0.2411\n", + " -0.2810\n", + " -0.5252\n", + " -0.0954\n", + " -0.1224\n", + " -0.2838\n", + " -0.1160\n", + " -0.2590\n", + " 0.4528\n", + " -0.2510\n", + " -0.1378\n", + " -0.2298\n", + " -0.1317\n", + " -0.2359\n", + " -0.3929\n", + " -0.0677\n", + " 0.0196\n", + " -0.3766\n", + " -0.2093\n", + " -0.1193\n", + " 0.0242\n", + " -0.3060\n", + " -0.3011\n", + " -0.1356\n", + " -0.3085\n", + " -0.2883\n", + " 0.0095\n", + " -0.0880\n", + " -0.2309\n", + " -0.0859\n", + " -0.3217\n", + " -0.0338\n", + " -0.3068\n", + " -0.2076\n", + " -0.0829\n", + " -0.1129\n", + " -0.6464\n", + " 0.1541\n", + " -0.1448\n", + " -0.3018\n", + " -0.3953\n", + " -0.4760\n", + " -0.1088\n", + " -0.0596\n", + " -0.0990\n", + " -0.3875\n", + " -0.0677\n", + " 0.0721\n", + " -0.3655\n", + " -0.3776\n", + " -0.0781\n", + " -0.1582\n", + " -0.3194\n", + " -0.4237\n", + " -0.1050\n", + " -0.0755\n", + " 0.0387\n", + " -0.2771\n", + " -0.3062\n", + " -0.1700\n", + " -0.1959\n", + " -0.1171\n", + " -0.1218\n", + " -0.0978\n", + " -0.0586\n", + " -0.1273\n", + " -0.2727\n", + " -0.2560\n", + " -0.3704\n", + " -0.3867\n", + " -0.3156\n", + " -0.3319\n", + " -0.1371\n", + " 0.0549\n", + " -0.3129\n", + " 0.4112\n", + " -0.1779\n", + " -0.0990\n", + " -0.4332\n", + " -0.0537\n", + " -0.3977\n", + " -0.2975\n", + " -0.1883\n", + " -0.5482\n", + " -0.1984\n", + " -0.0025\n", + " -0.1368\n", + " -0.1487\n", + " -0.0403\n", + " 0.3522\n", + " -0.2982\n", + " -0.0614\n", + " -0.1865\n", + " -0.2529\n", + " -0.2171\n", + " -0.1985\n", + " -0.2645\n", + " -0.0844\n", + " -0.3852\n", + " -0.3014\n", + " -0.2764\n", + " -0.4070\n", + " -0.3464\n", + " -0.1338\n", + " -0.2450\n", + " -0.3135\n", + " -0.3405\n", + " -0.3546\n", + " -0.2439\n", + " -0.2328\n", + " -0.0099\n", + " -0.0225\n", + " -0.3018\n", + " -0.4255\n", + " 0.0968\n", + " -0.3711\n", + " -0.2472\n", + " -0.2916\n", + " -0.3173\n", + " -0.3281\n", + " -0.0802\n", + " -0.2683\n", + " -0.3201\n", + " -0.1384\n", + " -0.1097\n", + " -0.0033\n", + " -0.2716\n", + " -0.4538\n", + " -0.3782\n", + " -0.3252\n", + " -0.1798\n", + " -0.2970\n", + " 0.3557\n", + " -0.0889\n", + " -0.1667\n", + " -0.3569\n", + " -0.1980\n", + " -0.2802\n", + " -0.6866\n", + " -0.2729\n", + " -0.1824\n", + " -0.2946\n", + " 0.0190\n", + " -0.1397\n", + " -0.1238\n", + " -0.2137\n", + " -0.0725\n", + " 0.1644\n", + " -0.2956\n", + " -0.2130\n", + " -0.2431\n", + " -0.4066\n", + " -0.3374\n", + " -0.2426\n", + " 0.0936\n", + " -0.2441\n", + " -0.4642\n", + " -0.0439\n", + " 0.1466\n", + " -0.1685\n", + " -0.3575\n", + " -0.3338\n", + " -0.2467\n", + " -0.0382\n", + " -0.1084\n", + " -0.2676\n", + " -0.0279\n", + " -0.5669\n", + " -0.3248\n", + " -0.2988\n", + " -0.1384\n", + " -0.0428\n", + " -0.1908\n", + " -0.4249\n", + " -0.3513\n", + " -0.4417\n", + " -0.2214\n", + " -0.1841\n", + " -0.1598\n", + " -0.2495\n", + " -0.3004\n", + " -0.0978\n", + " -0.4285\n", + " -0.2434\n", + " -0.3418\n", + " -0.2656\n", + " -0.3367\n", + " -0.2058\n", + " -0.3585\n", + " 0.2135\n", + " -0.0383\n", + " -0.0590\n", + " -0.3584\n", + " -0.1003\n", + " -0.0823\n", + " -0.2290\n", + " -0.4151\n", + " -0.3287\n", + " -0.2609\n", + " -0.2074\n", + " -0.0302\n", + " -0.2000\n", + " -0.1967\n", + " -0.2884\n", + " -0.2419\n", + " -0.2180\n", + " -0.1499\n", + " 0.0607\n", + " -0.4445\n", + " -0.2275\n", + " -0.3392\n", + " -0.5443\n", + " -0.4030\n", + " -0.1525\n", + " -0.1266\n", + " 0.1708\n", + " -0.2400\n", + " -0.1670\n", + " -0.2054\n", + " -0.2090\n", + " -0.2149\n", + " -0.2566\n", + " -0.1421\n", + " -0.3399\n", + " 0.5824\n", + " -0.2527\n", + " 0.3676\n", + " -0.3132\n", + " 0.3163\n", + " 0.2471\n", + " 0.2204\n", + " 0.4109\n", + " -0.1702\n", + " -0.3129\n", + " 0.3991\n", + " -0.1923\n", + " 0.6788\n", + " 0.3854\n", + " 0.0071\n", + " 0.5050\n", + " -0.1384\n", + " 0.2599\n", + " -0.1039\n", + " 0.5401\n", + " 0.4116\n", + " -0.5869\n", + " 0.5164\n", + " 0.8553\n", + " 0.3429\n", + " -0.3181\n", + " -0.1754\n", + " 0.3036\n", + " -0.3375\n", + " -0.1901\n", + " 0.7914\n", + " -0.0785\n", + " -0.6208\n", + " 0.5135\n", + " 1.0519\n", + " -0.3579\n", + " 0.0026\n", + " -0.0774\n", + " 0.3235\n", + " 0.6447\n", + " -0.2960\n", + " -0.7971\n", + " 0.2223\n", + " -0.4455\n", + " -0.7894\n", + " 0.4417\n", + " 0.4320\n", + " -1.2065\n", + " -0.8539\n", + " 0.2963\n", + " 0.5805\n", + " -0.6462\n", + " 0.6600\n", + " 0.8335\n", + " 0.3425\n", + " -0.1960\n", + " -0.8870\n", + " 0.6678\n", + " -0.1122\n", + " -0.4294\n", + " 0.6735\n", + " 0.4285\n", + " 0.3091\n", + " -0.1661\n", + " 0.2526\n", + " -0.1500\n", + " -0.3594\n", + " -0.5651\n", + " 0.9179\n", + " 0.0467\n", + " 0.6760\n", + " -0.3944\n", + " -0.3406\n", + " 0.4742\n", + " -0.1682\n", + " 0.4339\n", + " -0.3198\n", + " 0.3731\n", + " -0.5405\n", + " -0.0980\n", + " 0.8088\n", + " 0.6149\n", + " -0.4575\n", + " 0.0069\n", + " -0.0509\n", + " 0.2913\n", + " -0.4123\n", + " 0.1005\n", + " 0.1729\n", + " 0.6298\n", + " -0.4936\n", + " 0.0730\n", + " 1.0227\n", + " 0.4433\n", + " 0.0877\n", + " -0.6209\n", + " -0.0473\n", + " -0.0910\n", + " -0.2771\n", + " 0.2363\n", + " 0.7982\n", + " 0.2361\n", + " -0.0301\n", + " 0.5295\n", + " 0.5625\n", + " -0.0675\n", + " 0.4057\n", + " -0.6459\n", + " -0.0210\n", + " 0.1949\n", + " 0.3733\n", + " 0.1092\n", + " 0.5491\n", + " 0.3457\n", + " 0.1826\n", + " 0.6330\n", + " 0.2792\n", + " -0.1493\n", + " 0.1782\n", + " -0.3537\n", + " 0.3738\n", + " -0.3377\n", + " -0.7687\n", + " 0.0234\n", + " 0.4615\n", + " 0.3424\n", + " 0.8100\n", + " -0.2883\n", + " 0.7503\n", + " 0.4715\n", + " 0.2516\n", + " 0.0903\n", + " 0.3937\n", + " 0.4879\n", + " -0.1865\n", + " 0.1914\n", + " 0.1662\n", + " 0.5099\n", + " -0.2456\n", + " 0.5576\n", + " 0.6465\n", + " -0.1639\n", + " 0.7299\n", + " -0.0028\n", + " 0.5129\n", + " 0.8677\n", + " -0.0218\n", + " -0.0252\n", + " -0.0817\n", + " 0.3497\n", + " -0.0177\n", + " 0.8177\n", + " 0.2856\n", + " 0.1286\n", + " -0.6258\n", + " 0.4768\n", + " 0.2549\n", + " 0.2557\n", + " 0.9397\n", + " 0.9453\n", + " 0.9781\n", + " 0.6264\n", + " 0.7413\n", + " 0.4938\n", + " -0.3236\n", + " 0.7286\n", + " -0.7392\n", + " 0.2140\n", + " 0.2990\n", + " 0.5049\n", + " 0.8075\n", + " 0.6013\n", + " 0.1991\n", + " 0.3121\n", + " -0.2264\n", + " -0.5586\n", + " 0.1848\n", + " 0.7634\n", + " -0.2268\n", + " 0.0361\n", + " -0.2531\n", + " -0.3944\n", + " -0.2888\n", + " 0.5843\n", + " -0.3288\n", + " -0.2433\n", + " -0.0277\n", + " 0.2993\n", + " 0.6837\n", + " 0.3319\n", + " -0.3886\n", + " -0.3487\n", + " 0.4654\n", + " 0.6222\n", + " 0.6338\n", + " 0.4947\n", + " -0.3158\n", + " 0.4046\n", + " 0.2970\n", + " 1.0081\n", + " 0.4049\n", + " 0.1201\n", + " 0.0893\n", + " -0.5924\n", + " -0.2084\n", + " 0.6545\n", + " 0.3832\n", + " 0.9156\n", + " 0.1390\n", + " -0.1476\n", + " 0.0552\n", + " -0.0764\n", + " 0.1637\n", + " 0.1733\n", + " -0.2394\n", + " 0.1264\n", + " 0.5378\n", + " 0.3810\n", + " 0.2349\n", + " 0.0309\n", + " 0.4756\n", + " 0.0135\n", + " -0.1033\n", + " 0.3523\n", + " -0.6723\n", + " 0.2053\n", + " -0.3769\n", + " 0.0946\n", + " 0.6838\n", + " -0.2735\n", + " 0.3993\n", + " 0.2562\n", + " -0.4144\n", + " -0.2369\n", + " 0.2371\n", + " 0.0963\n", + " 0.2089\n", + " 0.9221\n", + " 0.2022\n", + " 0.2522\n", + " 0.4877\n", + " 0.4430\n", + " -0.4568\n", + " -0.2242\n", + " 0.5223\n", + " -0.3433\n", + " 0.2435\n", + " -0.3096\n", + " 0.4233\n", + " 0.1803\n", + " -0.2181\n", + " 0.3297\n", + " 0.1887\n", + " 0.4948\n", + " 0.0645\n", + " 0.1853\n", + " 0.0461\n", + " -0.5405\n", + " 0.0505\n", + " -0.2320\n", + " 0.0252\n", + " -0.0698\n", + " -0.1343\n", + " -0.1055\n", + " -0.1967\n", + " 0.0221\n", + " -0.0856\n", + " 0.4344\n", + " 0.0555\n", + " 0.0140\n", + " -0.0541\n", + " -0.0627\n", + " 0.3555\n", + " -0.0124\n", + " 0.0921\n", + " -0.0967\n", + " 0.4111\n", + " 0.0825\n", + " 0.1014\n", + " 0.0064\n", + " 0.0683\n", + " -0.3561\n", + " 0.0492\n", + " 0.0461\n", + " -0.2335\n", + " -0.1464\n", + " -0.2263\n", + " -0.1506\n", + " 0.3772\n", + " 0.1911\n", + " 0.0898\n", + " -0.1831\n", + " 0.2928\n", + " 0.0019\n", + " -0.0671\n", + " 0.0978\n", + " -0.4679\n", + " 0.2038\n", + " 0.1759\n", + " -0.1874\n", + " -0.4478\n", + " -0.2019\n", + " 0.0195\n", + " -0.6356\n", + " 0.5889\n", + " 0.0839\n", + " 0.0249\n", + " -0.0093\n", + " 0.1125\n", + " -0.1698\n", + " -0.1128\n", + " 0.0459\n", + " -0.4563\n", + " 0.0387\n", + " 0.0413\n", + " 0.1062\n", + " -0.0449\n", + " 0.3089\n", + " 0.1521\n", + " -0.1559\n", + " -0.1409\n", + " -0.0080\n", + " -0.1416\n", + " -0.0880\n", + " 0.0510\n", + " 0.4468\n", + " -0.0293\n", + " -0.1358\n", + " -0.0869\n", + " -0.0722\n", + " -0.1814\n", + " -0.0355\n", + " -0.1569\n", + " -0.0244\n", + " -0.1034\n", + " -0.1868\n", + " -0.1137\n", + " 0.0116\n", + " 0.2406\n", + " -0.1332\n", + " 0.1920\n", + " 0.1413\n", + " 0.0873\n", + " -0.1358\n", + " -0.3472\n", + " -0.1419\n", + " 0.2209\n", + " -0.1519\n", + " -0.0581\n", + " -0.1016\n", + " -0.2099\n", + " 0.2941\n", + " 0.0614\n", + " -0.3624\n", + " -0.1279\n", + " 0.0294\n", + " -0.0761\n", + " 0.0743\n", + " -0.2552\n", + " 0.0505\n", + " 0.0670\n", + " 0.2179\n", + " -0.0527\n", + " 1.1843\n", + " -0.1803\n", + " 0.0802\n", + " 0.0763\n", + " 0.0695\n", + " 0.2161\n", + " -0.0324\n", + " 0.1221\n", + " -0.1342\n", + " -0.0348\n", + " 0.2924\n", + " -0.0477\n", + " -0.5574\n", + " -0.2621\n", + " 0.5131\n", + " 0.0358\n", + " 0.2213\n", + " 0.1481\n", + " 0.0540\n", + " -0.1209\n", + " 0.3502\n", + " -0.0047\n", + " 0.3568\n", + " 0.2608\n", + " 0.3326\n", + " -0.0042\n", + " 0.0541\n", + " -0.1348\n", + " 0.1228\n", + " -0.1018\n", + " 0.1038\n", + " -0.0196\n", + " 0.0890\n", + " 0.2493\n", + " 0.3795\n", + " 0.0309\n", + " 0.0020\n", + " 0.0691\n", + " 0.0798\n", + " 0.3880\n", + " -0.1273\n", + " 0.1769\n", + " 0.2971\n", + " 0.1089\n", + " 0.0605\n", + " 0.0870\n", + " -0.1426\n", + " -0.1277\n", + " -0.2745\n", + " -0.3569\n", + " -0.3517\n", + " -0.0392\n", + " 0.0041\n", + " -0.0905\n", + " 0.1713\n", + " 0.0787\n", + " -0.0161\n", + " -0.8084\n", + " 0.0701\n", + " -0.1106\n", + " -0.1163\n", + " -0.1231\n", + " 0.2874\n", + " -0.1083\n", + " -0.0241\n", + " 0.1892\n", + " -0.0507\n", + " -0.1197\n", + " -0.0090\n", + " 0.2675\n", + " 0.1027\n", + " 0.0621\n", + " -0.2644\n", + " 0.1653\n", + " 0.3257\n", + " -0.1145\n", + " 0.2373\n", + " -0.1805\n", + " 0.2422\n", + " 0.2630\n", + " 0.0240\n", + " 0.0365\n", + " -0.0354\n", + " 0.5086\n", + " -0.2078\n", + " 0.1933\n", + " -0.0428\n", + " -0.0236\n", + " 0.0174\n", + " 0.0381\n", + " -0.1284\n", + " 0.3418\n", + " -0.0086\n", + " 0.0068\n", + " -0.0063\n", + " -0.1209\n", + " -0.2977\n", + " 0.0815\n", + " 0.0506\n", + " -0.2095\n", + " 0.0531\n", + " -0.0646\n", + " -0.0838\n", + " -0.2099\n", + " 0.0826\n", + " -0.0646\n", + " 0.2612\n", + " -0.0063\n", + " -0.0467\n", + " -0.0608\n", + " -0.0934\n", + " -0.1225\n", + " -0.0386\n", + " 0.0333\n", + " 0.5756\n", + " -0.1831\n", + " 0.2527\n", + " -0.0004\n", + " -0.1814\n", + " -0.1829\n", + " 0.0491\n", + " -0.0370\n", + " -0.0921\n", + " 0.0687\n", + " -0.0148\n", + " 0.3860\n", + " 0.0291\n", + " 0.1489\n", + " 0.0311\n", + " -0.1610\n", + " -0.0939\n", + " 0.0767\n", + " 0.0855\n", + " 0.0008\n", + " -0.2122\n", + " 0.2774\n", + " -0.1368\n", + " 0.0284\n", + " -0.1148\n", + " -0.1983\n", + " -0.0610\n", + " -0.0545\n", + " 0.1757\n", + " -0.0837\n", + " 0.0626\n", + " -0.0300\n", + " 0.0745\n", + " -0.4166\n", + " [torch.FloatTensor of size 768]),\n", + " ('module.decoder.attention_rnn.alignment_model.query_layer.weight',\n", + " \n", + " 5.8217e-01 -3.4247e-02 -4.2030e-01 ... -4.0968e-01 8.5390e-02 4.6055e-01\n", + " -6.2852e-02 7.3241e-01 1.9948e-01 ... 7.4486e-01 9.9272e-02 1.8832e-01\n", + " 2.8498e-03 6.8163e-02 -1.8771e-01 ... -2.8722e-02 1.2512e-01 -2.2392e-02\n", + " ... ⋱ ... \n", + " 4.7293e-02 2.6991e-01 -3.1210e-01 ... 6.0747e-01 -1.4412e-02 -2.3233e-01\n", + " 4.3386e-03 3.1905e-01 -2.3568e-01 ... 6.9467e-01 7.6569e-02 5.6162e-01\n", + " -7.3181e-02 -2.0433e-01 -2.2061e-01 ... 2.2420e-01 1.8482e-01 -1.5150e-01\n", + " [torch.FloatTensor of size 256x256]),\n", + " ('module.decoder.attention_rnn.alignment_model.v.weight', \n", + " \n", + " Columns 0 to 9 \n", + " 0.5073 -0.8066 -0.5430 -0.0781 0.5228 -0.6178 -0.7605 0.5892 0.3176 0.4537\n", + " \n", + " Columns 10 to 19 \n", + " -0.4171 0.6084 0.1839 -0.7084 -0.4441 -1.6197 -0.4959 -0.9911 -0.6512 -0.2274\n", + " \n", + " Columns 20 to 29 \n", + " -0.5381 0.6234 -0.4004 -0.8469 0.4973 -0.8723 -0.4026 0.2807 0.5562 -0.2542\n", + " \n", + " Columns 30 to 39 \n", + " -0.5353 -0.1086 -0.3278 0.7822 0.8560 1.0251 0.3340 0.2907 0.8487 -0.9684\n", + " \n", + " Columns 40 to 49 \n", + " 0.2930 -0.5106 0.7091 0.6632 -0.7062 -0.5953 0.6418 -0.7575 0.2727 -0.9261\n", + " \n", + " Columns 50 to 59 \n", + " 0.6242 -0.7467 1.1074 -1.0174 -0.2931 0.8765 -1.4872 -0.5117 1.3068 -0.8304\n", + " \n", + " Columns 60 to 69 \n", + " 0.2666 -0.8220 -0.6618 0.2560 -0.3534 -0.1411 -1.1381 -0.4390 0.9555 -0.3471\n", + " \n", + " Columns 70 to 79 \n", + " -0.8656 -0.4469 -0.8662 -0.3345 0.7019 0.6659 0.5447 -1.0600 0.8054 0.5610\n", + " \n", + " Columns 80 to 89 \n", + " 0.6442 -0.7685 -0.8629 -0.7881 0.7093 0.9787 0.3471 -0.5890 -0.5512 -0.4742\n", + " \n", + " Columns 90 to 99 \n", + " -0.4012 -0.4171 -0.4594 -0.5549 -0.5748 -0.7700 -0.7150 0.6140 0.5824 -0.1414\n", + " \n", + " Columns 100 to 109 \n", + " 0.3770 0.5924 -0.4207 -0.7606 0.4449 -0.1035 0.6338 0.8180 1.0246 -0.5367\n", + " \n", + " Columns 110 to 119 \n", + " 0.4984 0.5632 0.5072 0.4643 -0.4524 -0.7255 0.5640 0.6078 1.0864 0.2769\n", + " \n", + " Columns 120 to 129 \n", + " -0.6761 -0.3424 -0.7378 0.4411 -0.3803 0.4045 -0.7586 0.7523 0.2877 -0.5737\n", + " \n", + " Columns 130 to 139 \n", + " -0.6083 -0.6420 0.8977 0.9262 0.5735 -0.8141 0.6196 0.7017 -0.6651 0.9567\n", + " \n", + " Columns 140 to 149 \n", + " 0.7958 -0.6955 0.2351 -0.7377 -0.4900 -0.0508 0.5433 -0.7096 -1.1429 -0.3475\n", + " \n", + " Columns 150 to 159 \n", + " -0.7877 0.9206 -0.5850 -1.1290 0.7658 0.5059 0.9300 0.9337 0.7968 0.5796\n", + " \n", + " Columns 160 to 169 \n", + " 0.7807 0.4674 -0.8088 -0.9657 -0.5101 0.7808 -0.3687 0.4910 -0.4080 1.1659\n", + " \n", + " Columns 170 to 179 \n", + " 0.7607 0.1435 0.9547 0.3607 -0.5578 -0.7379 1.2265 -0.4966 -0.2176 -0.6519\n", + " \n", + " Columns 180 to 189 \n", + " -0.6896 -0.3904 -0.8627 0.3932 0.7155 0.4569 0.5685 0.6334 0.8212 -0.7214\n", + " \n", + " Columns 190 to 199 \n", + " -0.7570 0.6596 0.4377 0.7303 -0.5479 0.5378 1.0405 -0.5907 -0.2744 -0.7873\n", + " \n", + " Columns 200 to 209 \n", + " 0.3606 -0.3971 0.0997 -0.6636 -0.4120 -0.5314 0.2740 0.6491 0.8219 -0.6500\n", + " \n", + " Columns 210 to 219 \n", + " 0.3358 1.0261 -0.5197 -1.4257 0.7639 0.5901 1.0980 0.3868 0.3822 0.4242\n", + " \n", + " Columns 220 to 229 \n", + " 0.9219 -0.8746 -0.8677 -0.9909 0.4973 -0.8149 -0.5387 0.6924 -1.3391 0.4169\n", + " \n", + " Columns 230 to 239 \n", + " 0.5728 0.6056 -1.0567 -0.5872 0.7191 -0.3696 0.2235 -0.4116 -0.5580 0.5378\n", + " \n", + " Columns 240 to 249 \n", + " -0.4537 0.4198 -0.6692 -0.8861 -0.2353 -0.9916 0.5921 -0.6078 -0.9091 -0.6674\n", + " \n", + " Columns 250 to 255 \n", + " -0.5588 0.5099 0.8359 -0.4494 -0.7441 0.5094\n", + " [torch.FloatTensor of size 1x256]),\n", + " ('module.decoder.project_to_decoder_in.weight', \n", + " 1.7090e-02 -1.5314e-01 2.3427e-02 ... -4.0826e-02 7.2217e-02 -7.9281e-02\n", + " 6.5305e-02 -1.3720e-01 6.3315e-02 ... -3.4179e-02 6.6730e-03 -1.4187e-01\n", + " 1.3014e-01 1.4892e-02 -6.4547e-02 ... 9.2366e-02 1.0338e-01 1.1845e-01\n", + " ... ⋱ ... \n", + " 6.2698e-02 -4.4816e-02 -2.8500e-02 ... -2.0856e-01 5.4064e-02 -7.1827e-02\n", + " 5.5420e-03 -5.5788e-04 4.9956e-02 ... -8.5185e-02 -3.2172e-02 -1.4255e-01\n", + " 4.1809e-02 -1.2650e-01 5.5656e-02 ... -4.2012e-02 -1.4137e-02 -1.6233e-01\n", + " [torch.FloatTensor of size 256x512]),\n", + " ('module.decoder.project_to_decoder_in.bias', \n", + " -0.0729\n", + " -0.2827\n", + " 0.1118\n", + " -0.0552\n", + " 0.0032\n", + " 0.0943\n", + " -0.1231\n", + " 0.1936\n", + " 0.0312\n", + " 0.0930\n", + " -0.1576\n", + " -0.0244\n", + " -0.2076\n", + " -0.0441\n", + " -0.0181\n", + " 0.1134\n", + " 0.1269\n", + " -0.0643\n", + " 0.0213\n", + " -0.2247\n", + " -0.0852\n", + " -0.0004\n", + " -0.0464\n", + " 0.1204\n", + " -0.0111\n", + " -0.0043\n", + " -0.0793\n", + " -0.1642\n", + " 0.0791\n", + " -0.1492\n", + " 0.0745\n", + " -0.0026\n", + " 0.0297\n", + " -0.0307\n", + " -0.0568\n", + " 0.0283\n", + " 0.1270\n", + " -0.1008\n", + " -0.0651\n", + " 0.0315\n", + " 0.1378\n", + " 0.0780\n", + " 0.1301\n", + " 0.0409\n", + " -0.1453\n", + " 0.0380\n", + " -0.2262\n", + " -0.0416\n", + " 0.0032\n", + " -0.0030\n", + " -0.0308\n", + " -0.0902\n", + " -0.1086\n", + " -0.0271\n", + " 0.0075\n", + " 0.1064\n", + " -0.1719\n", + " -0.1063\n", + " -0.1929\n", + " -0.0272\n", + " 0.0355\n", + " 0.1189\n", + " 0.0705\n", + " -0.1847\n", + " -0.1368\n", + " -0.1176\n", + " -0.1104\n", + " 0.1135\n", + " 0.1158\n", + " -0.0149\n", + " -0.0117\n", + " 0.1930\n", + " -0.0138\n", + " -0.0000\n", + " -0.0603\n", + " -0.0073\n", + " 0.0229\n", + " -0.0834\n", + " -0.1326\n", + " -0.0476\n", + " 0.1620\n", + " 0.1176\n", + " 0.1045\n", + " -0.1281\n", + " -0.1108\n", + " 0.1548\n", + " 0.0974\n", + " 0.0707\n", + " 0.1988\n", + " -0.0117\n", + " 0.2109\n", + " -0.0471\n", + " -0.0105\n", + " -0.0242\n", + " 0.0535\n", + " 0.2667\n", + " -0.2243\n", + " -0.2015\n", + " 0.2367\n", + " 0.1542\n", + " 0.0132\n", + " 0.0792\n", + " -0.0275\n", + " -0.0020\n", + " 0.1622\n", + " -0.0105\n", + " 0.0358\n", + " 0.0155\n", + " 0.0508\n", + " -0.2329\n", + " -0.1213\n", + " -0.0849\n", + " 0.1247\n", + " -0.0858\n", + " 0.0492\n", + " 0.0653\n", + " -0.1860\n", + " -0.1709\n", + " -0.0788\n", + " 0.0936\n", + " 0.1256\n", + " -0.1903\n", + " 0.1031\n", + " 0.1291\n", + " 0.0779\n", + " -0.1129\n", + " -0.1542\n", + " -0.2169\n", + " -0.0414\n", + " -0.0035\n", + " 0.1739\n", + " -0.2442\n", + " 0.0305\n", + " 0.0882\n", + " -0.0153\n", + " -0.1542\n", + " -0.0818\n", + " -0.0500\n", + " 0.0210\n", + " -0.0720\n", + " 0.0030\n", + " 0.0696\n", + " 0.0871\n", + " -0.0157\n", + " -0.0520\n", + " 0.0367\n", + " -0.1358\n", + " -0.0309\n", + " 0.1577\n", + " -0.1377\n", + " 0.0137\n", + " -0.0637\n", + " 0.0874\n", + " -0.1855\n", + " 0.0585\n", + " 0.1164\n", + " 0.0031\n", + " -0.0132\n", + " 0.0757\n", + " -0.1253\n", + " 0.2182\n", + " -0.0690\n", + " 0.1712\n", + " -0.1668\n", + " 0.1482\n", + " -0.0694\n", + " 0.0394\n", + " 0.1385\n", + " -0.0414\n", + " 0.0532\n", + " -0.0451\n", + " 0.0992\n", + " 0.0341\n", + " -0.1527\n", + " 0.0802\n", + " 0.2008\n", + " -0.0263\n", + " 0.0494\n", + " -0.0201\n", + " 0.0747\n", + " 0.1764\n", + " -0.2041\n", + " 0.1243\n", + " -0.0636\n", + " 0.0933\n", + " 0.1667\n", + " 0.1320\n", + " -0.1841\n", + " 0.0046\n", + " 0.0358\n", + " 0.0354\n", + " 0.0346\n", + " 0.1220\n", + " 0.1459\n", + " -0.0471\n", + " -0.0443\n", + " 0.1796\n", + " 0.0054\n", + " 0.1263\n", + " -0.1085\n", + " 0.2157\n", + " 0.1334\n", + " 0.0768\n", + " 0.0626\n", + " -0.1337\n", + " 0.2519\n", + " -0.0244\n", + " 0.2387\n", + " -0.0890\n", + " 0.1807\n", + " -0.0319\n", + " -0.1225\n", + " 0.0283\n", + " -0.0626\n", + " -0.0355\n", + " 0.1421\n", + " -0.0180\n", + " 0.0384\n", + " 0.0579\n", + " -0.1816\n", + " -0.0709\n", + " 0.0547\n", + " -0.0697\n", + " -0.1428\n", + " 0.0438\n", + " -0.1040\n", + " 0.0245\n", + " -0.0847\n", + " 0.0092\n", + " -0.1438\n", + " 0.1096\n", + " 0.1755\n", + " 0.1201\n", + " -0.0789\n", + " 0.0149\n", + " -0.1176\n", + " 0.1574\n", + " 0.0123\n", + " -0.0054\n", + " 0.0103\n", + " -0.0059\n", + " -0.1272\n", + " 0.0023\n", + " -0.0200\n", + " 0.0168\n", + " 0.0094\n", + " 0.0279\n", + " -0.0089\n", + " -0.0046\n", + " 0.1179\n", + " 0.0226\n", + " -0.0539\n", + " 0.0648\n", + " 0.0334\n", + " 0.0096\n", + " -0.0831\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.decoder.decoder_rnns.0.weight_ih', \n", + " 3.6559e-01 1.3628e-01 -2.1633e-01 ... 2.7516e-01 -7.1986e-02 4.4005e-02\n", + " 3.6500e-02 -1.9909e-01 1.4216e-01 ... -4.3430e-01 -8.3087e-02 2.8016e-02\n", + " 2.8174e-01 -5.7776e-02 6.6599e-02 ... -2.8246e-01 3.5993e-02 -2.9273e-01\n", + " ... ⋱ ... \n", + " 3.3959e-02 -1.1470e-01 -1.0531e-01 ... -8.3257e-01 -1.3246e-01 -4.4173e-02\n", + " -1.0553e-01 1.2328e-01 1.7012e-01 ... 7.6643e-02 -1.1219e+00 -1.8551e-01\n", + " 3.1992e-02 3.2217e-02 -4.4496e-02 ... 8.5311e-02 5.9092e-02 -3.5393e-01\n", + " [torch.FloatTensor of size 768x256]),\n", + " ('module.decoder.decoder_rnns.0.weight_hh', \n", + " -1.2001e-01 1.3434e-01 2.1710e-01 ... 2.0419e-01 1.1873e-01 -4.3647e-02\n", + " -1.8234e-01 1.6046e-01 4.4518e-02 ... -4.1734e-01 -1.2173e-01 5.9824e-02\n", + " 2.9158e-01 -2.7247e-02 1.5671e-02 ... -2.5096e-01 1.0294e-01 -3.6500e-01\n", + " ... ⋱ ... \n", + " -1.2932e-01 1.9027e-01 8.0898e-02 ... -4.4098e-01 -6.3198e-02 1.6503e-01\n", + " 7.6857e-02 1.4576e-01 -5.6706e-02 ... -5.8169e-02 -1.4532e+00 -8.6998e-02\n", + " 1.1599e-02 -5.3002e-02 1.2298e-01 ... -2.4869e-01 -1.9728e-01 -7.1696e-01\n", + " [torch.FloatTensor of size 768x256]),\n", + " ('module.decoder.decoder_rnns.0.bias_ih', \n", + " 0.0116\n", + " 0.1026\n", + " -0.3138\n", + " -0.0812\n", + " -0.1848\n", + " -0.0472\n", + " -0.0573\n", + " -0.1596\n", + " 0.1095\n", + " -0.1096\n", + " 0.0399\n", + " -0.0648\n", + " -0.0006\n", + " -0.0839\n", + " -0.1251\n", + " 0.0715\n", + " -0.1008\n", + " -0.0078\n", + " -0.3360\n", + " -0.0493\n", + " -0.1719\n", + " -0.0271\n", + " 0.0416\n", + " -0.0603\n", + " 0.0246\n", + " 0.0474\n", + " -0.0994\n", + " -0.1429\n", + " -0.0604\n", + " 0.0297\n", + " 0.0072\n", + " -0.0515\n", + " -0.0197\n", + " 0.1027\n", + " 0.0355\n", + " -0.1087\n", + " -0.2336\n", + " -0.1757\n", + " -0.0605\n", + " 0.0160\n", + " 0.0194\n", + " -0.0887\n", + " -0.0401\n", + " -0.0388\n", + " -0.0008\n", + " -0.2236\n", + " -0.0077\n", + " -0.0266\n", + " -0.1645\n", + " -0.2540\n", + " -0.0875\n", + " -0.1967\n", + " -0.0359\n", + " -0.2148\n", + " -0.2301\n", + " -0.2453\n", + " 0.0215\n", + " 0.0686\n", + " -0.0301\n", + " -0.0570\n", + " -0.0487\n", + " -0.2362\n", + " 0.1002\n", + " -0.1362\n", + " 0.0661\n", + " 0.0404\n", + " -0.0586\n", + " 0.0189\n", + " -0.0559\n", + " -0.2214\n", + " -0.0091\n", + " -0.2396\n", + " -0.1825\n", + " -0.1755\n", + " -0.0987\n", + " -0.0925\n", + " 0.0073\n", + " -0.2031\n", + " 0.0795\n", + " -0.1654\n", + " -0.2210\n", + " -0.0647\n", + " 0.0640\n", + " -0.2269\n", + " -0.3008\n", + " 0.0154\n", + " -0.0520\n", + " -0.1203\n", + " -0.0603\n", + " -0.0096\n", + " -0.2002\n", + " -0.0891\n", + " -0.0554\n", + " 0.0654\n", + " 0.1383\n", + " -0.1248\n", + " -0.2894\n", + " 0.0546\n", + " -0.1538\n", + " 0.0979\n", + " 0.0249\n", + " -0.2352\n", + " -0.3390\n", + " -0.1669\n", + " -0.0283\n", + " -0.0669\n", + " 0.0010\n", + " -0.0169\n", + " -0.1507\n", + " 0.0345\n", + " -0.3200\n", + " -0.0612\n", + " -0.1117\n", + " -0.0534\n", + " -0.1404\n", + " 0.2807\n", + " -0.1804\n", + " -0.1148\n", + " -0.1073\n", + " 0.0365\n", + " 0.0027\n", + " 0.0137\n", + " -0.0650\n", + " -0.0113\n", + " -0.1049\n", + " -0.2029\n", + " -0.1193\n", + " -0.0268\n", + " -0.0879\n", + " -0.1249\n", + " -0.1956\n", + " 0.0903\n", + " -0.0405\n", + " 0.0081\n", + " -0.0355\n", + " -0.0648\n", + " 0.0218\n", + " 0.0174\n", + " -0.0131\n", + " -0.1615\n", + " 0.1092\n", + " -0.1362\n", + " -0.1437\n", + " 0.0170\n", + " -0.1591\n", + " -0.2226\n", + " 0.0392\n", + " 0.0823\n", + " 0.0571\n", + " -0.0379\n", + " -0.1287\n", + " -0.1448\n", + " -0.1040\n", + " -0.0879\n", + " -0.1232\n", + " -0.1087\n", + " -0.0433\n", + " -0.0447\n", + " -0.1160\n", + " 0.0422\n", + " -0.3190\n", + " 0.1619\n", + " -0.0090\n", + " -0.0351\n", + " -0.1185\n", + " -0.0622\n", + " -0.2895\n", + " -0.1695\n", + " -0.1118\n", + " -0.1018\n", + " 0.1545\n", + " -0.0051\n", + " -0.0879\n", + " -0.0131\n", + " -0.0221\n", + " -0.1833\n", + " -0.0629\n", + " -0.0490\n", + " -0.0730\n", + " -0.1051\n", + " 0.0227\n", + " 0.0742\n", + " -0.0764\n", + " 0.0373\n", + " -0.0566\n", + " 0.0861\n", + " -0.1826\n", + " -0.0210\n", + " 0.0308\n", + " -0.1552\n", + " -0.1281\n", + " -0.2854\n", + " -0.4552\n", + " -0.1615\n", + " -0.2446\n", + " -0.1199\n", + " -0.0503\n", + " -0.0199\n", + " -0.0964\n", + " -0.0792\n", + " -0.1881\n", + " 0.0043\n", + " -0.1212\n", + " 0.1179\n", + " 0.0685\n", + " -0.0345\n", + " -0.1844\n", + " -0.1544\n", + " 0.0468\n", + " -0.1170\n", + " -0.0268\n", + " -0.0597\n", + " -0.0840\n", + " -0.1276\n", + " -0.0280\n", + " -0.1454\n", + " -0.1130\n", + " -0.2788\n", + " -0.1131\n", + " -0.1978\n", + " -0.2831\n", + " -0.1843\n", + " 0.0336\n", + " 0.0062\n", + " -0.0806\n", + " -0.1110\n", + " -0.0737\n", + " -0.2455\n", + " -0.0519\n", + " -0.0734\n", + " -0.1923\n", + " 0.0887\n", + " -0.0954\n", + " 0.1921\n", + " -0.2211\n", + " -0.0959\n", + " -0.2155\n", + " -0.1280\n", + " -0.0314\n", + " -0.0361\n", + " -0.0616\n", + " -0.1519\n", + " -0.0341\n", + " -0.0482\n", + " -0.1468\n", + " 0.1076\n", + " 0.1481\n", + " -0.1121\n", + " -0.0883\n", + " -0.1053\n", + " -0.2161\n", + " -0.1013\n", + " 0.1392\n", + " -0.0382\n", + " -0.1268\n", + " 0.0306\n", + " 0.2110\n", + " -0.0911\n", + " -0.1882\n", + " -0.0585\n", + " -0.3644\n", + " -0.3121\n", + " -0.3706\n", + " -0.0836\n", + " -0.0487\n", + " -0.3909\n", + " 0.0021\n", + " -0.2100\n", + " 0.1115\n", + " -0.1886\n", + " 0.2046\n", + " -0.3390\n", + " -0.3742\n", + " -0.1119\n", + " -0.1970\n", + " -0.3390\n", + " -0.2637\n", + " 0.2894\n", + " 0.0295\n", + " 0.1343\n", + " -0.0575\n", + " -0.3028\n", + " -0.3809\n", + " 0.0002\n", + " -0.2692\n", + " -0.0959\n", + " -0.3593\n", + " 0.1367\n", + " -0.0041\n", + " 0.2088\n", + " 0.0392\n", + " -0.2355\n", + " -0.1882\n", + " -0.1888\n", + " 0.0519\n", + " 0.1439\n", + " -0.1117\n", + " 0.3682\n", + " -0.1050\n", + " -0.0296\n", + " -0.1464\n", + " -0.1588\n", + " -0.5404\n", + " 0.0030\n", + " -0.0316\n", + " -0.1582\n", + " -0.2943\n", + " -0.5640\n", + " -0.1246\n", + " -0.1133\n", + " 0.0050\n", + " 0.0116\n", + " -0.2623\n", + " -0.3293\n", + " 0.0076\n", + " -0.1639\n", + " -0.2843\n", + " -0.5337\n", + " 0.0355\n", + " -0.5059\n", + " 0.0644\n", + " -0.2754\n", + " -0.4274\n", + " 0.1347\n", + " -0.1783\n", + " 0.4087\n", + " -0.0890\n", + " -0.1513\n", + " -0.1492\n", + " -0.2107\n", + " -0.4024\n", + " -0.0959\n", + " -0.1784\n", + " 0.1751\n", + " -0.2568\n", + " -0.1581\n", + " -0.1029\n", + " 0.2524\n", + " -0.1973\n", + " -0.2729\n", + " -0.2149\n", + " -0.0277\n", + " -0.0726\n", + " -0.0636\n", + " -0.0894\n", + " -0.5654\n", + " -0.1124\n", + " -0.2568\n", + " -0.2910\n", + " -0.3897\n", + " -0.1918\n", + " -0.1756\n", + " -0.4428\n", + " -0.0418\n", + " 0.0086\n", + " -0.3306\n", + " -0.2856\n", + " -0.1898\n", + " -0.3579\n", + " -0.2198\n", + " 0.0391\n", + " -0.0010\n", + " -0.1312\n", + " 0.0009\n", + " 0.1106\n", + " -0.0939\n", + " -0.4470\n", + " -0.1426\n", + " -0.1748\n", + " 0.3235\n", + " 0.3637\n", + " -0.3854\n", + " -0.1076\n", + " -0.2241\n", + " 0.0947\n", + " 0.3205\n", + " -0.0960\n", + " 0.1857\n", + " -0.2068\n", + " -0.4152\n", + " -0.3777\n", + " -0.4928\n", + " 0.1879\n", + " -0.1609\n", + " -0.1060\n", + " 0.0344\n", + " -0.2410\n", + " -0.2384\n", + " 0.1273\n", + " -0.1050\n", + " -0.1658\n", + " 0.0253\n", + " -0.2137\n", + " -0.3622\n", + " 0.1716\n", + " 0.0826\n", + " -0.3177\n", + " 0.0944\n", + " -0.0560\n", + " -0.1088\n", + " -0.1462\n", + " -0.2455\n", + " -0.0555\n", + " 0.1439\n", + " -0.1452\n", + " -0.0877\n", + " -0.2945\n", + " -0.4925\n", + " 0.0943\n", + " -0.3228\n", + " 0.1097\n", + " -0.5276\n", + " -0.2068\n", + " -0.2778\n", + " 0.1640\n", + " -0.2064\n", + " -0.2133\n", + " -0.2543\n", + " 0.1313\n", + " -0.0169\n", + " -0.0107\n", + " 0.0558\n", + " -0.2382\n", + " -0.3065\n", + " -0.0992\n", + " -0.3163\n", + " 0.0072\n", + " -0.1490\n", + " 0.0076\n", + " 0.0391\n", + " -0.1969\n", + " 0.0529\n", + " 0.0410\n", + " -0.0718\n", + " -0.2115\n", + " 0.1903\n", + " -0.1566\n", + " -0.3415\n", + " 0.1298\n", + " -0.0619\n", + " -0.0652\n", + " -0.1414\n", + " -0.6575\n", + " -0.1621\n", + " 0.0498\n", + " -0.1954\n", + " -0.2742\n", + " -0.2291\n", + " -0.2887\n", + " -0.0133\n", + " 0.2165\n", + " -0.0861\n", + " -0.1793\n", + " 0.0527\n", + " -0.2240\n", + " 0.0093\n", + " -0.1294\n", + " -0.1094\n", + " -0.0843\n", + " -0.1329\n", + " 0.3152\n", + " 0.2734\n", + " -0.0271\n", + " -0.3386\n", + " -0.1904\n", + " -0.3857\n", + " 0.1276\n", + " 0.0057\n", + " -0.1233\n", + " -0.2079\n", + " -0.1157\n", + " -0.0624\n", + " -0.1648\n", + " 0.1341\n", + " -0.3484\n", + " -0.1133\n", + " -0.1405\n", + " 0.0717\n", + " -0.1241\n", + " -0.0331\n", + " -0.2593\n", + " -0.0928\n", + " -0.5085\n", + " -0.2845\n", + " -0.2354\n", + " 0.0968\n", + " -0.2742\n", + " -0.0812\n", + " -0.0152\n", + " -0.2941\n", + " -0.0230\n", + " -0.2153\n", + " -0.0577\n", + " -0.5114\n", + " -0.1473\n", + " 0.0519\n", + " -0.2951\n", + " -0.4320\n", + " 0.3635\n", + " -0.3880\n", + " 0.1546\n", + " 0.1765\n", + " -0.2611\n", + " 0.5834\n", + " -0.2497\n", + " 0.0361\n", + " -0.1838\n", + " -0.0717\n", + " 0.2678\n", + " -0.0296\n", + " 0.0205\n", + " 0.1644\n", + " 0.1198\n", + " -0.0023\n", + " 0.0031\n", + " -0.0260\n", + " -0.0159\n", + " 0.1111\n", + " 0.0499\n", + " -0.0536\n", + " -0.0138\n", + " 0.0354\n", + " -0.0211\n", + " 0.0925\n", + " 0.0875\n", + " 0.0469\n", + " -0.0875\n", + " 0.1935\n", + " 0.0199\n", + " -0.0382\n", + " 0.0812\n", + " 0.0034\n", + " -0.2168\n", + " -0.0978\n", + " 0.0372\n", + " -0.0333\n", + " 0.0374\n", + " 0.0015\n", + " 0.0494\n", + " 0.0922\n", + " -0.0918\n", + " -0.0536\n", + " 0.1023\n", + " -0.0560\n", + " -0.0291\n", + " -0.0145\n", + " -0.0448\n", + " -0.0223\n", + " 0.1015\n", + " -0.0350\n", + " 0.0976\n", + " -0.0192\n", + " -0.0650\n", + " -0.0362\n", + " 0.0225\n", + " 0.0827\n", + " -0.1371\n", + " 0.0351\n", + " -0.0181\n", + " 0.1006\n", + " 0.1167\n", + " 0.0896\n", + " 0.0491\n", + " -0.0217\n", + " -0.1128\n", + " -0.0359\n", + " -0.0438\n", + " -0.0624\n", + " -0.0189\n", + " -0.0766\n", + " 0.0596\n", + " -0.1193\n", + " 0.0042\n", + " 0.0136\n", + " -0.1350\n", + " -0.0131\n", + " 0.0784\n", + " -0.0061\n", + " 0.0569\n", + " -0.1080\n", + " 0.0013\n", + " 0.0588\n", + " -0.0402\n", + " -0.0803\n", + " -0.0275\n", + " 0.0468\n", + " -0.0059\n", + " -0.0754\n", + " -0.1380\n", + " 0.0538\n", + " 0.0695\n", + " -0.0841\n", + " -0.0465\n", + " 0.0494\n", + " -0.1125\n", + " -0.0412\n", + " 0.0260\n", + " 0.1146\n", + " 0.0210\n", + " -0.0319\n", + " 0.0130\n", + " -0.1552\n", + " 0.0356\n", + " -0.0929\n", + " -0.0504\n", + " -0.0012\n", + " -0.1067\n", + " -0.0106\n", + " 0.1740\n", + " 0.0110\n", + " 0.0401\n", + " -0.0967\n", + " -0.1308\n", + " 0.0004\n", + " 0.0047\n", + " -0.0413\n", + " -0.0357\n", + " -0.0455\n", + " -0.0414\n", + " -0.0731\n", + " 0.0042\n", + " -0.0046\n", + " 0.0821\n", + " 0.1060\n", + " -0.0106\n", + " -0.0450\n", + " 0.0643\n", + " -0.0281\n", + " -0.0262\n", + " 0.0426\n", + " -0.0245\n", + " -0.0389\n", + " -0.0209\n", + " -0.0336\n", + " 0.0942\n", + " 0.0998\n", + " -0.0571\n", + " -0.0123\n", + " 0.0568\n", + " 0.0984\n", + " 0.1121\n", + " -0.0788\n", + " 0.0284\n", + " -0.0105\n", + " -0.0030\n", + " -0.0153\n", + " -0.0423\n", + " 0.0468\n", + " -0.1107\n", + " 0.0714\n", + " -0.0133\n", + " 0.0367\n", + " -0.1167\n", + " -0.0888\n", + " 0.1007\n", + " 0.0662\n", + " -0.0684\n", + " -0.0047\n", + " 0.0017\n", + " -0.0323\n", + " -0.0148\n", + " 0.0574\n", + " 0.0354\n", + " -0.0143\n", + " 0.0548\n", + " 0.0104\n", + " 0.0476\n", + " -0.1408\n", + " 0.0038\n", + " -0.0288\n", + " -0.0104\n", + " 0.1055\n", + " 0.0429\n", + " 0.1401\n", + " -0.0483\n", + " -0.0150\n", + " 0.0790\n", + " -0.0687\n", + " -0.1195\n", + " -0.0189\n", + " -0.0479\n", + " 0.0160\n", + " 0.0425\n", + " -0.0302\n", + " -0.0481\n", + " -0.0722\n", + " 0.0308\n", + " 0.1236\n", + " 0.0740\n", + " -0.1174\n", + " -0.0542\n", + " -0.0076\n", + " 0.1416\n", + " 0.0775\n", + " 0.1884\n", + " -0.1214\n", + " -0.0534\n", + " -0.0561\n", + " 0.0081\n", + " -0.0081\n", + " 0.0216\n", + " 0.0133\n", + " -0.0611\n", + " 0.0391\n", + " 0.0067\n", + " 0.0640\n", + " -0.0384\n", + " -0.0196\n", + " 0.0738\n", + " -0.0014\n", + " -0.0181\n", + " -0.0618\n", + " 0.0182\n", + " 0.0695\n", + " -0.1315\n", + " -0.1069\n", + " 0.0079\n", + " 0.1305\n", + " 0.0698\n", + " -0.0203\n", + " 0.0490\n", + " -0.1055\n", + " 0.0355\n", + " 0.1844\n", + " 0.0102\n", + " -0.1427\n", + " -0.0112\n", + " 0.0253\n", + " 0.0110\n", + " -0.0273\n", + " -0.0241\n", + " 0.0149\n", + " -0.0387\n", + " -0.0220\n", + " -0.0458\n", + " 0.0472\n", + " -0.0510\n", + " 0.1099\n", + " 0.0484\n", + " 0.0937\n", + " 0.0841\n", + " 0.0037\n", + " -0.0002\n", + " 0.0521\n", + " 0.1503\n", + " -0.0738\n", + " 0.0980\n", + " 0.0208\n", + " 0.0268\n", + " 0.0838\n", + " 0.0424\n", + " 0.0680\n", + " -0.0440\n", + " -0.0758\n", + " -0.0018\n", + " -0.1226\n", + " 0.0783\n", + " 0.0248\n", + " -0.1410\n", + " -0.1026\n", + " -0.0708\n", + " 0.0066\n", + " -0.0500\n", + " 0.0091\n", + " 0.0687\n", + " 0.0846\n", + " -0.0361\n", + " -0.0387\n", + " [torch.FloatTensor of size 768]),\n", + " ('module.decoder.decoder_rnns.0.bias_hh', \n", + " 0.0042\n", + " 0.1111\n", + " -0.3103\n", + " -0.1271\n", + " -0.1130\n", + " -0.0656\n", + " -0.0049\n", + " -0.0918\n", + " 0.1188\n", + " -0.1934\n", + " -0.0494\n", + " -0.1164\n", + " 0.0008\n", + " 0.0061\n", + " -0.0870\n", + " 0.0299\n", + " -0.1979\n", + " -0.0144\n", + " -0.3335\n", + " -0.1234\n", + " -0.1466\n", + " -0.1000\n", + " -0.0188\n", + " -0.0645\n", + " 0.0232\n", + " 0.0021\n", + " -0.0752\n", + " -0.1038\n", + " -0.0668\n", + " 0.0727\n", + " 0.0252\n", + " -0.0399\n", + " 0.0318\n", + " 0.0879\n", + " 0.0672\n", + " -0.1222\n", + " -0.2979\n", + " -0.2387\n", + " -0.0111\n", + " 0.0526\n", + " -0.0813\n", + " -0.1491\n", + " -0.0286\n", + " -0.0322\n", + " 0.0231\n", + " -0.1679\n", + " -0.0139\n", + " -0.0160\n", + " -0.0515\n", + " -0.1932\n", + " -0.1135\n", + " -0.2193\n", + " -0.0541\n", + " -0.1310\n", + " -0.2596\n", + " -0.2688\n", + " 0.0214\n", + " 0.0701\n", + " 0.0096\n", + " -0.1421\n", + " -0.1155\n", + " -0.2064\n", + " 0.0991\n", + " -0.1400\n", + " -0.0249\n", + " 0.0176\n", + " 0.0394\n", + " -0.0096\n", + " -0.1243\n", + " -0.1579\n", + " -0.0926\n", + " -0.2307\n", + " -0.1207\n", + " -0.1375\n", + " -0.0572\n", + " -0.0335\n", + " 0.0136\n", + " -0.2447\n", + " -0.0035\n", + " -0.1106\n", + " -0.2063\n", + " -0.1745\n", + " 0.0050\n", + " -0.2409\n", + " -0.2786\n", + " -0.0014\n", + " 0.0102\n", + " -0.2031\n", + " -0.1204\n", + " -0.0191\n", + " -0.1959\n", + " -0.1792\n", + " -0.0660\n", + " 0.0503\n", + " 0.1396\n", + " -0.0541\n", + " -0.2321\n", + " 0.0733\n", + " -0.1332\n", + " 0.1345\n", + " 0.1285\n", + " -0.2291\n", + " -0.3353\n", + " -0.1185\n", + " -0.0281\n", + " -0.0944\n", + " 0.0002\n", + " -0.0867\n", + " -0.1763\n", + " 0.0847\n", + " -0.3148\n", + " -0.0184\n", + " -0.0744\n", + " 0.0178\n", + " -0.2249\n", + " 0.2073\n", + " -0.0990\n", + " -0.0539\n", + " -0.1523\n", + " -0.0237\n", + " 0.0022\n", + " -0.0947\n", + " -0.0867\n", + " 0.0824\n", + " -0.0821\n", + " -0.1758\n", + " -0.1056\n", + " -0.0506\n", + " -0.0606\n", + " -0.0911\n", + " -0.1624\n", + " 0.0703\n", + " -0.0820\n", + " 0.0506\n", + " -0.1328\n", + " -0.0933\n", + " 0.0788\n", + " 0.0181\n", + " -0.0469\n", + " -0.1765\n", + " 0.0647\n", + " -0.2340\n", + " -0.0692\n", + " -0.0387\n", + " -0.1666\n", + " -0.2138\n", + " 0.0242\n", + " 0.0346\n", + " 0.0815\n", + " -0.1328\n", + " -0.0997\n", + " -0.2159\n", + " -0.1835\n", + " -0.0537\n", + " -0.0824\n", + " -0.1758\n", + " -0.0042\n", + " -0.0286\n", + " -0.0872\n", + " 0.0690\n", + " -0.3654\n", + " 0.0983\n", + " -0.0576\n", + " -0.0149\n", + " -0.1035\n", + " -0.1025\n", + " -0.2634\n", + " -0.1861\n", + " -0.1264\n", + " -0.0306\n", + " 0.1751\n", + " 0.0535\n", + " -0.1058\n", + " -0.0394\n", + " 0.0141\n", + " -0.1536\n", + " -0.1000\n", + " -0.0354\n", + " -0.0880\n", + " -0.0140\n", + " 0.0217\n", + " 0.0326\n", + " -0.0266\n", + " 0.0421\n", + " -0.0979\n", + " 0.0594\n", + " -0.2280\n", + " -0.0128\n", + " -0.0354\n", + " -0.1245\n", + " -0.1304\n", + " -0.3170\n", + " -0.4053\n", + " -0.1311\n", + " -0.2920\n", + " -0.1561\n", + " -0.0170\n", + " -0.1150\n", + " -0.1055\n", + " -0.0096\n", + " -0.2044\n", + " -0.0082\n", + " -0.1748\n", + " 0.0607\n", + " 0.1315\n", + " -0.0368\n", + " -0.1580\n", + " -0.0707\n", + " 0.0110\n", + " -0.0662\n", + " -0.0059\n", + " -0.0127\n", + " -0.0637\n", + " -0.0410\n", + " -0.0695\n", + " -0.0809\n", + " -0.0061\n", + " -0.2834\n", + " -0.1259\n", + " -0.1546\n", + " -0.2083\n", + " -0.1456\n", + " 0.0344\n", + " 0.0436\n", + " -0.0591\n", + " -0.1168\n", + " -0.0742\n", + " -0.1912\n", + " 0.0213\n", + " -0.1858\n", + " -0.2408\n", + " 0.0388\n", + " -0.2000\n", + " 0.0976\n", + " -0.2520\n", + " -0.1265\n", + " -0.1548\n", + " -0.0887\n", + " -0.0697\n", + " -0.1213\n", + " -0.0624\n", + " -0.2007\n", + " -0.1163\n", + " 0.0224\n", + " -0.1230\n", + " 0.0376\n", + " 0.1997\n", + " -0.1378\n", + " -0.0530\n", + " -0.1542\n", + " -0.2331\n", + " -0.1263\n", + " 0.1647\n", + " -0.0709\n", + " -0.1749\n", + " 0.0214\n", + " 0.1705\n", + " -0.1382\n", + " -0.2513\n", + " -0.0267\n", + " -0.3754\n", + " -0.3117\n", + " -0.3513\n", + " -0.1398\n", + " -0.0325\n", + " -0.3871\n", + " -0.0803\n", + " -0.2171\n", + " 0.0714\n", + " -0.2038\n", + " 0.2390\n", + " -0.3954\n", + " -0.3988\n", + " -0.0583\n", + " -0.2001\n", + " -0.2779\n", + " -0.2794\n", + " 0.3728\n", + " 0.0373\n", + " 0.0427\n", + " -0.0305\n", + " -0.3127\n", + " -0.4093\n", + " -0.0199\n", + " -0.2454\n", + " -0.0989\n", + " -0.4193\n", + " 0.0441\n", + " -0.0247\n", + " 0.1405\n", + " -0.0003\n", + " -0.1877\n", + " -0.2137\n", + " -0.1100\n", + " -0.0063\n", + " 0.1514\n", + " -0.1429\n", + " 0.4215\n", + " -0.1083\n", + " -0.0198\n", + " -0.1503\n", + " -0.1437\n", + " -0.4363\n", + " 0.0391\n", + " -0.1130\n", + " -0.2549\n", + " -0.3494\n", + " -0.5362\n", + " -0.1038\n", + " -0.0823\n", + " -0.0448\n", + " 0.0560\n", + " -0.2175\n", + " -0.3661\n", + " -0.0451\n", + " -0.1249\n", + " -0.2658\n", + " -0.5777\n", + " 0.0566\n", + " -0.5527\n", + " 0.1006\n", + " -0.2796\n", + " -0.3901\n", + " 0.1461\n", + " -0.2739\n", + " 0.4560\n", + " -0.1693\n", + " -0.2087\n", + " -0.2006\n", + " -0.2097\n", + " -0.4541\n", + " 0.0022\n", + " -0.1919\n", + " 0.1777\n", + " -0.2549\n", + " -0.1393\n", + " -0.1658\n", + " 0.2293\n", + " -0.2756\n", + " -0.2081\n", + " -0.1765\n", + " 0.0023\n", + " -0.0410\n", + " 0.0412\n", + " -0.0355\n", + " -0.6104\n", + " -0.1107\n", + " -0.2472\n", + " -0.3081\n", + " -0.3861\n", + " -0.1937\n", + " -0.2567\n", + " -0.3899\n", + " 0.0115\n", + " 0.0708\n", + " -0.3805\n", + " -0.2083\n", + " -0.2268\n", + " -0.3510\n", + " -0.2104\n", + " -0.0575\n", + " 0.0838\n", + " -0.1000\n", + " -0.0301\n", + " 0.1804\n", + " -0.0747\n", + " -0.3950\n", + " -0.1388\n", + " -0.1143\n", + " 0.3405\n", + " 0.3727\n", + " -0.3108\n", + " -0.1403\n", + " -0.1836\n", + " 0.0327\n", + " 0.3649\n", + " -0.1736\n", + " 0.2483\n", + " -0.2233\n", + " -0.3806\n", + " -0.3548\n", + " -0.5686\n", + " 0.1409\n", + " -0.1579\n", + " -0.1564\n", + " 0.0969\n", + " -0.1982\n", + " -0.2221\n", + " 0.1137\n", + " -0.0958\n", + " -0.2466\n", + " 0.0216\n", + " -0.2015\n", + " -0.2721\n", + " 0.2536\n", + " 0.1372\n", + " -0.2389\n", + " -0.0116\n", + " -0.0861\n", + " -0.0796\n", + " -0.1176\n", + " -0.2535\n", + " -0.0471\n", + " 0.1410\n", + " -0.1576\n", + " -0.0605\n", + " -0.2079\n", + " -0.4816\n", + " 0.0724\n", + " -0.3252\n", + " 0.1362\n", + " -0.4509\n", + " -0.1791\n", + " -0.2064\n", + " 0.1147\n", + " -0.1740\n", + " -0.1169\n", + " -0.1542\n", + " 0.2077\n", + " 0.0161\n", + " 0.0644\n", + " 0.1317\n", + " -0.2694\n", + " -0.2627\n", + " -0.0779\n", + " -0.2949\n", + " 0.0189\n", + " -0.0914\n", + " -0.0288\n", + " -0.0287\n", + " -0.1364\n", + " -0.0282\n", + " 0.1261\n", + " -0.1099\n", + " -0.2123\n", + " 0.1912\n", + " -0.2073\n", + " -0.3168\n", + " 0.1360\n", + " -0.0579\n", + " -0.1098\n", + " -0.0925\n", + " -0.6834\n", + " -0.0782\n", + " 0.0324\n", + " -0.2223\n", + " -0.3597\n", + " -0.2253\n", + " -0.2625\n", + " -0.0561\n", + " 0.2256\n", + " -0.1943\n", + " -0.1527\n", + " -0.0046\n", + " -0.2793\n", + " -0.0383\n", + " -0.0812\n", + " -0.1225\n", + " -0.0634\n", + " -0.1258\n", + " 0.3138\n", + " 0.1624\n", + " 0.0012\n", + " -0.2708\n", + " -0.1231\n", + " -0.3206\n", + " 0.0504\n", + " -0.0592\n", + " -0.0843\n", + " -0.2638\n", + " -0.1014\n", + " -0.1095\n", + " -0.1662\n", + " 0.1683\n", + " -0.4395\n", + " -0.1191\n", + " -0.1543\n", + " 0.0179\n", + " -0.1179\n", + " -0.0284\n", + " -0.2038\n", + " -0.1136\n", + " -0.4138\n", + " -0.2548\n", + " -0.3018\n", + " 0.1471\n", + " -0.2990\n", + " -0.0374\n", + " 0.0073\n", + " -0.4089\n", + " 0.0363\n", + " -0.2930\n", + " -0.1435\n", + " -0.4855\n", + " -0.1557\n", + " 0.0815\n", + " -0.1920\n", + " -0.3947\n", + " 0.3894\n", + " -0.3425\n", + " 0.0469\n", + " 0.1552\n", + " -0.3287\n", + " 0.5439\n", + " -0.3570\n", + " -0.0456\n", + " -0.2012\n", + " -0.0602\n", + " 0.2460\n", + " -0.0841\n", + " 0.0327\n", + " 0.1146\n", + " 0.0026\n", + " 0.0211\n", + " -0.0018\n", + " -0.0020\n", + " -0.0151\n", + " 0.0170\n", + " 0.0712\n", + " -0.9146\n", + " 0.0990\n", + " -0.0730\n", + " -0.0422\n", + " 0.0213\n", + " 0.0218\n", + " 0.3115\n", + " -0.0326\n", + " 0.2234\n", + " -0.0092\n", + " 0.0164\n", + " 0.2102\n", + " 0.2056\n", + " -0.4255\n", + " -0.3124\n", + " 0.0089\n", + " 0.0482\n", + " -0.8111\n", + " 0.9576\n", + " 0.1418\n", + " 0.2175\n", + " -0.1597\n", + " -0.0254\n", + " 0.1397\n", + " -0.0067\n", + " -0.0704\n", + " -0.2137\n", + " -0.0762\n", + " 0.0501\n", + " 0.0640\n", + " -0.1101\n", + " 0.0945\n", + " -1.4477\n", + " -0.0689\n", + " 0.5754\n", + " 0.1268\n", + " 0.6138\n", + " -0.1677\n", + " 0.0381\n", + " 0.6246\n", + " -0.8393\n", + " 0.4178\n", + " 0.0601\n", + " 0.0632\n", + " -0.1121\n", + " -0.0552\n", + " 0.0443\n", + " 0.0054\n", + " -0.0325\n", + " 0.1100\n", + " 0.8461\n", + " -0.1402\n", + " -0.5887\n", + " 0.0491\n", + " 0.2759\n", + " -0.0163\n", + " 0.1433\n", + " 0.1522\n", + " 0.0863\n", + " -0.0041\n", + " -0.0554\n", + " -0.0603\n", + " 0.0465\n", + " -0.1433\n", + " 0.0240\n", + " 0.0014\n", + " -0.2563\n", + " -0.7774\n", + " -0.0132\n", + " -1.0181\n", + " 0.0069\n", + " 0.9774\n", + " -0.3694\n", + " 0.1139\n", + " -0.0422\n", + " -0.1354\n", + " -0.0217\n", + " 0.2823\n", + " 0.1224\n", + " 0.0714\n", + " 0.0818\n", + " 0.1184\n", + " -0.0363\n", + " -0.1562\n", + " 0.2061\n", + " -0.0570\n", + " 0.3028\n", + " -0.1641\n", + " -0.0463\n", + " 0.0938\n", + " 0.1599\n", + " -0.5191\n", + " -0.8698\n", + " -0.1021\n", + " 0.0880\n", + " 0.3685\n", + " 0.6563\n", + " -0.1343\n", + " -0.0177\n", + " 0.1332\n", + " -0.0198\n", + " 0.0474\n", + " -0.0175\n", + " -0.0540\n", + " 0.8769\n", + " -0.0693\n", + " -0.0076\n", + " 0.0311\n", + " -0.1253\n", + " -0.0898\n", + " 0.2434\n", + " -0.0222\n", + " -0.0348\n", + " -0.7679\n", + " 0.0044\n", + " 0.6514\n", + " -0.5531\n", + " -0.0947\n", + " -0.1544\n", + " 0.0394\n", + " 0.5309\n", + " -0.7383\n", + " 0.1689\n", + " 0.0608\n", + " -0.0255\n", + " 0.0057\n", + " -1.6258\n", + " 0.0028\n", + " -0.0664\n", + " 0.0916\n", + " -0.1107\n", + " -0.0384\n", + " -0.0042\n", + " -0.0933\n", + " -0.0590\n", + " -0.2738\n", + " -0.0114\n", + " -0.0263\n", + " 0.0572\n", + " 0.0355\n", + " -0.2665\n", + " 0.0462\n", + " 0.0197\n", + " 0.0074\n", + " 0.1245\n", + " 0.0309\n", + " 0.2234\n", + " 0.1179\n", + " -0.1558\n", + " 0.6181\n", + " -0.5217\n", + " -0.0059\n", + " 0.3696\n", + " -0.0557\n", + " 0.0426\n", + " 0.2030\n", + " -0.3931\n", + " 0.0701\n", + " -0.0442\n", + " -0.2549\n", + " 0.3216\n", + " -0.0748\n", + " 0.0191\n", + " 0.1211\n", + " -0.0072\n", + " 0.5377\n", + " -0.6181\n", + " -0.0973\n", + " 0.1911\n", + " 0.0109\n", + " -0.1307\n", + " -0.4863\n", + " 0.0556\n", + " 0.0896\n", + " 0.9876\n", + " -0.5548\n", + " -0.2935\n", + " -0.0198\n", + " -0.0405\n", + " -0.0869\n", + " -0.0429\n", + " -0.0023\n", + " 0.2128\n", + " -0.0045\n", + " 0.0467\n", + " -0.0113\n", + " -0.0384\n", + " 0.0080\n", + " -0.0161\n", + " 0.6916\n", + " -0.0166\n", + " 0.0240\n", + " -0.0277\n", + " 0.2721\n", + " 0.0821\n", + " -0.1025\n", + " -0.0044\n", + " -0.2611\n", + " 0.1824\n", + " 0.0853\n", + " -0.1366\n", + " 0.3852\n", + " -0.1902\n", + " 0.0962\n", + " 0.1037\n", + " 0.0067\n", + " -0.3831\n", + " 0.0098\n", + " -0.1219\n", + " 0.2122\n", + " -0.0188\n", + " -0.1904\n", + " 0.0031\n", + " -0.1028\n", + " -0.0183\n", + " -0.1007\n", + " -0.8012\n", + " -0.0116\n", + " -1.4384\n", + " 0.0189\n", + " 0.0253\n", + " -0.0159\n", + " -0.0389\n", + " -0.0802\n", + " 0.3610\n", + " 0.1274\n", + " 0.7281\n", + " -0.0443\n", + " 0.0524\n", + " -0.0328\n", + " 0.6525\n", + " 0.8515\n", + " 0.0932\n", + " -0.6413\n", + " 0.0486\n", + " 0.0461\n", + " -0.1145\n", + " 0.1472\n", + " 0.0492\n", + " -0.8275\n", + " -0.0682\n", + " -0.2112\n", + " -0.0395\n", + " -0.0588\n", + " 0.0417\n", + " 0.8943\n", + " -0.0396\n", + " -0.2103\n", + " -0.0018\n", + " [torch.FloatTensor of size 768]),\n", + " ('module.decoder.decoder_rnns.1.weight_ih', \n", + " -3.6364e-01 -2.6506e-01 7.8591e-01 ... -1.3263e-01 -5.3440e-03 -4.3392e-01\n", + " -2.1735e-01 -1.8720e-01 4.5403e-01 ... -9.5811e-01 4.1448e-01 -3.0742e-01\n", + " 2.8933e-02 -4.2304e-02 -1.1554e-01 ... -3.4010e-02 1.6157e-01 -9.3898e-02\n", + " ... ⋱ ... \n", + " 3.0325e-02 1.1506e-01 9.0589e-02 ... -8.4466e-01 2.5002e-01 -6.8798e-02\n", + " 1.7801e-02 -2.8568e-01 4.4764e-01 ... 7.1204e-02 -8.3421e-01 1.2687e-01\n", + " 1.2704e-01 4.8787e-02 -4.5239e-02 ... 2.0003e-02 5.0038e-03 -9.1381e-01\n", + " [torch.FloatTensor of size 768x256]),\n", + " ('module.decoder.decoder_rnns.1.weight_hh', \n", + " -3.1674e-01 1.5555e-01 1.0488e-01 ... 3.6669e-02 1.9682e-02 -4.6027e-03\n", + " -1.2635e-01 1.2078e-01 2.6343e-02 ... -1.6014e-01 5.4211e-02 -1.3663e-01\n", + " -3.4995e-01 4.0837e-01 1.4931e-01 ... 8.0041e-02 -2.0933e-01 4.1624e-02\n", + " ... ⋱ ... \n", + " -4.4772e-02 -6.1291e-02 -7.8127e-02 ... 6.5423e-02 -2.3841e-01 3.9626e-02\n", + " 7.4623e-02 -1.1501e-01 -5.4775e-02 ... 1.4159e-01 -7.3516e-01 3.5701e-02\n", + " -5.0545e-02 1.0573e-01 9.4021e-02 ... -5.1631e-02 -5.5289e-02 -2.7928e-01\n", + " [torch.FloatTensor of size 768x256]),\n", + " ('module.decoder.decoder_rnns.1.bias_ih', \n", + " 0.0161\n", + " -0.2106\n", + " -0.1567\n", + " -0.0901\n", + " -0.0065\n", + " -0.1537\n", + " 0.0150\n", + " -0.0654\n", + " 0.0950\n", + " 0.0379\n", + " -0.2259\n", + " 0.0302\n", + " 0.0128\n", + " -0.0933\n", + " -0.1179\n", + " -0.1413\n", + " -0.1486\n", + " 0.0902\n", + " -0.0666\n", + " -0.1984\n", + " -0.0714\n", + " -0.1478\n", + " -0.1638\n", + " -0.2794\n", + " -0.2149\n", + " -0.0315\n", + " -0.2278\n", + " -0.0413\n", + " -0.2394\n", + " -0.2310\n", + " -0.0373\n", + " -0.1389\n", + " -0.3094\n", + " -0.1109\n", + " -0.1711\n", + " 0.0158\n", + " -0.2210\n", + " -0.2303\n", + " -0.0105\n", + " -0.0883\n", + " -0.0134\n", + " -0.1149\n", + " -0.0812\n", + " 0.0202\n", + " -0.1412\n", + " -0.1242\n", + " -0.0948\n", + " 0.0356\n", + " -0.1055\n", + " -0.0592\n", + " 0.1496\n", + " 0.0591\n", + " -0.3036\n", + " -0.2505\n", + " -0.0464\n", + " 0.1181\n", + " -0.0155\n", + " -0.1671\n", + " 0.0203\n", + " -0.1516\n", + " 0.0739\n", + " -0.2100\n", + " 0.0965\n", + " -0.0370\n", + " -0.1614\n", + " -0.0380\n", + " 0.0549\n", + " -0.0357\n", + " -0.0849\n", + " -0.0465\n", + " -0.0845\n", + " 0.0470\n", + " 0.0219\n", + " -0.0216\n", + " -0.0565\n", + " -0.2434\n", + " -0.0487\n", + " -0.1201\n", + " -0.1402\n", + " -0.0420\n", + " -0.2527\n", + " -0.0892\n", + " -0.1734\n", + " -0.2498\n", + " -0.0974\n", + " 0.0880\n", + " -0.2854\n", + " 0.0772\n", + " -0.0818\n", + " -0.1870\n", + " -0.0949\n", + " -0.1218\n", + " -0.1674\n", + " -0.1651\n", + " 0.0324\n", + " -0.1301\n", + " -0.3811\n", + " 0.0123\n", + " -0.0809\n", + " -0.1178\n", + " 0.3110\n", + " -0.0853\n", + " -0.1555\n", + " 0.0774\n", + " -0.0949\n", + " -0.0849\n", + " -0.0677\n", + " -0.1184\n", + " -0.0709\n", + " -0.0861\n", + " -0.0828\n", + " -0.2025\n", + " -0.1450\n", + " -0.2319\n", + " -0.3776\n", + " -0.1650\n", + " -0.2081\n", + " -0.1478\n", + " -0.1336\n", + " -0.1770\n", + " -0.0088\n", + " -0.3239\n", + " 0.0586\n", + " -0.1410\n", + " -0.2162\n", + " -0.0972\n", + " 0.0047\n", + " -0.1156\n", + " -0.1884\n", + " -0.1813\n", + " -0.0480\n", + " 0.0568\n", + " -0.1547\n", + " 0.0292\n", + " -0.2348\n", + " -0.1502\n", + " -0.1792\n", + " -0.0679\n", + " 0.0075\n", + " -0.0511\n", + " -0.0995\n", + " -0.0050\n", + " -0.1246\n", + " 0.0481\n", + " 0.0052\n", + " -0.1969\n", + " 0.0770\n", + " 0.0025\n", + " -0.1349\n", + " -0.1334\n", + " -0.0663\n", + " -0.1144\n", + " -0.2174\n", + " -0.1507\n", + " 0.0506\n", + " -0.3121\n", + " -0.0684\n", + " -0.0428\n", + " 0.0144\n", + " 0.1166\n", + " -0.1358\n", + " -0.0253\n", + " -0.2588\n", + " -0.1596\n", + " -0.2702\n", + " -0.1665\n", + " -0.1578\n", + " 0.1028\n", + " -0.2309\n", + " -0.1845\n", + " -0.0786\n", + " 0.0341\n", + " -0.1347\n", + " -0.0432\n", + " -0.0907\n", + " -0.1125\n", + " 0.0401\n", + " -0.1313\n", + " -0.1104\n", + " 0.0108\n", + " -0.0418\n", + " -0.1488\n", + " -0.1767\n", + " 0.0035\n", + " -0.1041\n", + " -0.1411\n", + " -0.1741\n", + " -0.1440\n", + " -0.2116\n", + " -0.0333\n", + " 0.1046\n", + " -0.1199\n", + " 0.0020\n", + " 0.1167\n", + " -0.1293\n", + " -0.1000\n", + " -0.0590\n", + " -0.1810\n", + " -0.0605\n", + " -0.0159\n", + " -0.1939\n", + " 0.0644\n", + " 0.3138\n", + " -0.2611\n", + " -0.0374\n", + " -0.0624\n", + " 0.0077\n", + " -0.0710\n", + " -0.0554\n", + " -0.0316\n", + " -0.2957\n", + " -0.2357\n", + " -0.0607\n", + " -0.2450\n", + " 0.0108\n", + " 0.0031\n", + " -0.0522\n", + " -0.0200\n", + " -0.0565\n", + " -0.0321\n", + " -0.0489\n", + " -0.3216\n", + " 0.0163\n", + " -0.2290\n", + " -0.1914\n", + " -0.2923\n", + " -0.1887\n", + " -0.0709\n", + " -0.3365\n", + " 0.0693\n", + " -0.2024\n", + " 0.0565\n", + " 0.0519\n", + " -0.1501\n", + " 0.0095\n", + " -0.1000\n", + " 0.0121\n", + " 0.0034\n", + " -0.1042\n", + " 0.0343\n", + " -0.2012\n", + " -0.0273\n", + " -0.1544\n", + " -0.1012\n", + " 0.0563\n", + " -0.0843\n", + " -0.3579\n", + " -0.0363\n", + " -0.1358\n", + " -0.0825\n", + " -0.0118\n", + " 0.0642\n", + " -0.3474\n", + " -0.1091\n", + " -0.3064\n", + " -0.2555\n", + " -0.2866\n", + " 0.1826\n", + " -0.1787\n", + " -0.1699\n", + " -0.2186\n", + " -0.1440\n", + " -0.1974\n", + " -0.1488\n", + " 0.0242\n", + " -0.0983\n", + " -0.0321\n", + " 0.1103\n", + " -0.1252\n", + " -0.3090\n", + " -0.1676\n", + " -0.2535\n", + " 0.1397\n", + " -0.4286\n", + " -0.1312\n", + " -0.1856\n", + " -0.0058\n", + " 0.0640\n", + " 0.0455\n", + " -0.0702\n", + " -0.2094\n", + " -0.2680\n", + " -0.3292\n", + " -0.3329\n", + " -0.1218\n", + " -0.4625\n", + " -0.4592\n", + " -0.0138\n", + " -0.2065\n", + " -0.4887\n", + " -0.7757\n", + " -0.3677\n", + " -0.4162\n", + " -0.4135\n", + " -0.0597\n", + " -0.0408\n", + " -0.2657\n", + " -0.0848\n", + " -0.3341\n", + " 0.0131\n", + " -0.0718\n", + " -0.2522\n", + " -0.1699\n", + " 0.0643\n", + " -0.1576\n", + " -0.3075\n", + " -0.2884\n", + " 0.2457\n", + " -0.0677\n", + " 0.0426\n", + " -0.0335\n", + " 0.1525\n", + " 0.0226\n", + " 0.1067\n", + " -0.1645\n", + " -0.1681\n", + " -0.3755\n", + " -0.0258\n", + " -0.2320\n", + " 0.0103\n", + " 0.2279\n", + " -0.1818\n", + " -0.4434\n", + " -0.2847\n", + " -0.1631\n", + " -0.1206\n", + " -0.2189\n", + " -0.1171\n", + " -0.1472\n", + " -0.1508\n", + " -0.0977\n", + " -0.2185\n", + " -0.1634\n", + " -0.2713\n", + " 0.0024\n", + " -0.1060\n", + " -0.3060\n", + " -0.2532\n", + " 0.0156\n", + " -0.4579\n", + " -0.2077\n", + " -0.2801\n", + " -0.2113\n", + " -0.1879\n", + " -0.2466\n", + " -0.3033\n", + " -0.0793\n", + " 0.1780\n", + " 0.0601\n", + " -0.5718\n", + " -0.3377\n", + " -0.2801\n", + " -0.4055\n", + " 0.1178\n", + " 0.0063\n", + " -0.0825\n", + " -1.0610\n", + " -0.1387\n", + " -0.3935\n", + " -0.2567\n", + " -0.2262\n", + " -0.0690\n", + " -0.0822\n", + " -0.0991\n", + " 0.0844\n", + " -0.0199\n", + " 0.1050\n", + " -0.0393\n", + " -0.1375\n", + " -0.1090\n", + " 0.0774\n", + " -0.1014\n", + " -0.2368\n", + " -0.0461\n", + " 0.1315\n", + " -0.1751\n", + " -0.1407\n", + " -0.3758\n", + " 0.0634\n", + " -0.0199\n", + " -0.0257\n", + " -0.0853\n", + " 0.0903\n", + " -0.1848\n", + " 0.0822\n", + " -0.2187\n", + " -0.3271\n", + " -0.0986\n", + " -0.3356\n", + " 0.0497\n", + " -0.0158\n", + " -0.3689\n", + " -0.2620\n", + " -0.2978\n", + " -0.1648\n", + " -0.1171\n", + " -0.1028\n", + " -0.0078\n", + " 0.0092\n", + " 0.1768\n", + " -0.2913\n", + " -0.1046\n", + " 0.2401\n", + " -0.1752\n", + " -0.2658\n", + " -0.2075\n", + " -0.0342\n", + " -0.2617\n", + " -0.4422\n", + " -0.0732\n", + " -0.2689\n", + " -0.3803\n", + " -0.3199\n", + " -0.0777\n", + " -0.1500\n", + " 0.1703\n", + " 0.1294\n", + " -0.1190\n", + " 0.0926\n", + " -0.1979\n", + " -0.1918\n", + " -0.0786\n", + " -0.0187\n", + " 0.1721\n", + " -0.1686\n", + " -0.1133\n", + " -0.5045\n", + " -0.2371\n", + " -0.1655\n", + " -0.2561\n", + " -0.3836\n", + " -0.3589\n", + " -0.1271\n", + " -0.2759\n", + " -0.0886\n", + " -0.3338\n", + " 0.0147\n", + " -0.2431\n", + " -0.0960\n", + " -0.1151\n", + " -0.0702\n", + " 0.0363\n", + " -0.0362\n", + " -0.1142\n", + " -0.0480\n", + " -0.2897\n", + " -0.0726\n", + " -0.1873\n", + " -0.1961\n", + " 0.3917\n", + " 0.0731\n", + " -0.1447\n", + " 0.0337\n", + " 0.0892\n", + " 0.0501\n", + " -0.1371\n", + " -0.0466\n", + " -0.3429\n", + " 0.1212\n", + " -0.0822\n", + " -0.1891\n", + " -0.4294\n", + " -0.1515\n", + " -0.2784\n", + " 0.0438\n", + " -0.0686\n", + " -0.1327\n", + " -0.6258\n", + " -0.1193\n", + " -0.1879\n", + " -0.1034\n", + " -0.1172\n", + " -0.1994\n", + " 0.2450\n", + " -0.0538\n", + " -0.0365\n", + " 0.1052\n", + " -0.0631\n", + " -0.1641\n", + " -0.2942\n", + " -0.1621\n", + " -0.2282\n", + " -0.1330\n", + " -0.2956\n", + " -0.1734\n", + " -0.3522\n", + " 0.0242\n", + " 0.0362\n", + " -0.0066\n", + " -0.1580\n", + " -0.1177\n", + " 0.1182\n", + " -0.1358\n", + " -0.3128\n", + " -0.0754\n", + " -0.1553\n", + " 0.3873\n", + " -0.1631\n", + " -0.1126\n", + " -0.0638\n", + " 0.1006\n", + " -0.1420\n", + " -0.3438\n", + " 0.1019\n", + " -0.2894\n", + " -0.3294\n", + " -0.2455\n", + " -0.0723\n", + " -0.5689\n", + " -0.3298\n", + " 0.3349\n", + " -0.2919\n", + " -0.0271\n", + " 0.0006\n", + " 0.0410\n", + " 0.0224\n", + " -0.0159\n", + " -0.0622\n", + " -0.0453\n", + " 0.0096\n", + " 0.0816\n", + " 0.0147\n", + " 0.0579\n", + " -0.0014\n", + " 0.0989\n", + " 0.0776\n", + " -0.0299\n", + " -0.0200\n", + " 0.0143\n", + " -0.0280\n", + " 0.0763\n", + " 0.0570\n", + " -0.0043\n", + " 0.0898\n", + " 0.0591\n", + " -0.0897\n", + " 0.0078\n", + " -0.0049\n", + " -0.0673\n", + " 0.1265\n", + " 0.0189\n", + " -0.0323\n", + " -0.0259\n", + " 0.0235\n", + " -0.0521\n", + " -0.1112\n", + " -0.0040\n", + " 0.0540\n", + " -0.0421\n", + " 0.1141\n", + " 0.0293\n", + " -0.0700\n", + " -0.0463\n", + " -0.0511\n", + " 0.0708\n", + " 0.0453\n", + " 0.0397\n", + " -0.0245\n", + " 0.0004\n", + " 0.0540\n", + " -0.0515\n", + " 0.0936\n", + " 0.0049\n", + " 0.0658\n", + " 0.0072\n", + " -0.0174\n", + " 0.0268\n", + " 0.0221\n", + " -0.0423\n", + " -0.0472\n", + " 0.0065\n", + " 0.0357\n", + " -0.0367\n", + " 0.0257\n", + " -0.0182\n", + " 0.0242\n", + " 0.0223\n", + " -0.0066\n", + " -0.0580\n", + " -0.1144\n", + " -0.0070\n", + " -0.0524\n", + " -0.0113\n", + " 0.0243\n", + " 0.0029\n", + " -0.0222\n", + " -0.0513\n", + " -0.0407\n", + " 0.0707\n", + " 0.0641\n", + " 0.0241\n", + " 0.0237\n", + " -0.0146\n", + " 0.0505\n", + " -0.0242\n", + " 0.0908\n", + " 0.0525\n", + " -0.0110\n", + " -0.0093\n", + " 0.0529\n", + " -0.0539\n", + " -0.0636\n", + " -0.0440\n", + " -0.0540\n", + " 0.0253\n", + " -0.0503\n", + " -0.0127\n", + " -0.0450\n", + " 0.0331\n", + " -0.0559\n", + " 0.0619\n", + " -0.0694\n", + " 0.0036\n", + " -0.0033\n", + " 0.0851\n", + " 0.0391\n", + " 0.0945\n", + " -0.0290\n", + " 0.0497\n", + " 0.0378\n", + " 0.0257\n", + " 0.1128\n", + " -0.0048\n", + " -0.0476\n", + " 0.0217\n", + " 0.0472\n", + " -0.0109\n", + " -0.0200\n", + " 0.0862\n", + " -0.0244\n", + " 0.0131\n", + " 0.0291\n", + " 0.0182\n", + " 0.0783\n", + " 0.0798\n", + " -0.0112\n", + " -0.0029\n", + " 0.0435\n", + " 0.0223\n", + " -0.0374\n", + " 0.0301\n", + " -0.0166\n", + " 0.0427\n", + " 0.0372\n", + " 0.0344\n", + " -0.0577\n", + " -0.0557\n", + " -0.0718\n", + " -0.0424\n", + " -0.0053\n", + " 0.0446\n", + " 0.0384\n", + " 0.0382\n", + " 0.0618\n", + " 0.0631\n", + " -0.0040\n", + " -0.0489\n", + " -0.0479\n", + " 0.0454\n", + " 0.0713\n", + " -0.0754\n", + " 0.0602\n", + " -0.0309\n", + " 0.0088\n", + " 0.0690\n", + " 0.0244\n", + " 0.0634\n", + " -0.0526\n", + " -0.0353\n", + " -0.0173\n", + " -0.0457\n", + " -0.0557\n", + " 0.0128\n", + " 0.0224\n", + " 0.0060\n", + " -0.0155\n", + " -0.0410\n", + " -0.0239\n", + " -0.0538\n", + " -0.0239\n", + " -0.0003\n", + " -0.0371\n", + " 0.0510\n", + " -0.0597\n", + " -0.0236\n", + " -0.0809\n", + " 0.0212\n", + " 0.0308\n", + " 0.0259\n", + " 0.0005\n", + " 0.0601\n", + " 0.0140\n", + " 0.0893\n", + " 0.0021\n", + " 0.0550\n", + " 0.0050\n", + " 0.0266\n", + " 0.0980\n", + " -0.0430\n", + " 0.1279\n", + " 0.0411\n", + " 0.0152\n", + " -0.0121\n", + " 0.0384\n", + " -0.0195\n", + " 0.0058\n", + " 0.0138\n", + " 0.0329\n", + " 0.0565\n", + " 0.0095\n", + " -0.0037\n", + " -0.0056\n", + " -0.0489\n", + " 0.0723\n", + " 0.0207\n", + " -0.0042\n", + " -0.0027\n", + " 0.0249\n", + " 0.0578\n", + " -0.0596\n", + " -0.0084\n", + " -0.0575\n", + " 0.0052\n", + " 0.0358\n", + " 0.0892\n", + " -0.0271\n", + " -0.0473\n", + " -0.0053\n", + " 0.0653\n", + " -0.0098\n", + " 0.0424\n", + " -0.0312\n", + " -0.0554\n", + " -0.0118\n", + " 0.0423\n", + " -0.0367\n", + " 0.0336\n", + " 0.0107\n", + " 0.0195\n", + " 0.0705\n", + " -0.0218\n", + " 0.0099\n", + " -0.1557\n", + " 0.0597\n", + " 0.0458\n", + " -0.0155\n", + " -0.0662\n", + " 0.0109\n", + " 0.0228\n", + " -0.0491\n", + " 0.0640\n", + " -0.0082\n", + " 0.0067\n", + " 0.0677\n", + " 0.0180\n", + " -0.1119\n", + " -0.0287\n", + " -0.0505\n", + " -0.0164\n", + " -0.0862\n", + " 0.0353\n", + " 0.0347\n", + " -0.0385\n", + " -0.0876\n", + " -0.0662\n", + " 0.0427\n", + " -0.0347\n", + " -0.0592\n", + " [torch.FloatTensor of size 768]),\n", + " ('module.decoder.decoder_rnns.1.bias_hh', \n", + " 0.0343\n", + " -0.2205\n", + " -0.1759\n", + " -0.0543\n", + " -0.1046\n", + " -0.1600\n", + " -0.0251\n", + " -0.0729\n", + " 0.0555\n", + " 0.0757\n", + " -0.1488\n", + " 0.0289\n", + " 0.0294\n", + " -0.0351\n", + " -0.1385\n", + " -0.1604\n", + " -0.1146\n", + " 0.0331\n", + " -0.1539\n", + " -0.1825\n", + " -0.0130\n", + " -0.0408\n", + " -0.0533\n", + " -0.2980\n", + " -0.2090\n", + " 0.0510\n", + " -0.2458\n", + " -0.0469\n", + " -0.1718\n", + " -0.2487\n", + " 0.0683\n", + " -0.1317\n", + " -0.2785\n", + " -0.1509\n", + " -0.2421\n", + " 0.0064\n", + " -0.2040\n", + " -0.1809\n", + " 0.0043\n", + " -0.0727\n", + " -0.0423\n", + " -0.1522\n", + " -0.1706\n", + " -0.0559\n", + " -0.0913\n", + " -0.0576\n", + " -0.0368\n", + " 0.0890\n", + " -0.1199\n", + " -0.0260\n", + " 0.1055\n", + " -0.0416\n", + " -0.3200\n", + " -0.1624\n", + " -0.0024\n", + " 0.1192\n", + " -0.0467\n", + " -0.1662\n", + " -0.0506\n", + " -0.1071\n", + " 0.0309\n", + " -0.1860\n", + " 0.1392\n", + " 0.0104\n", + " -0.1818\n", + " -0.1027\n", + " 0.0228\n", + " -0.0738\n", + " -0.1512\n", + " -0.0057\n", + " -0.1338\n", + " 0.1350\n", + " -0.0071\n", + " -0.0731\n", + " 0.0125\n", + " -0.2226\n", + " 0.0066\n", + " -0.2240\n", + " -0.0826\n", + " 0.0208\n", + " -0.2509\n", + " -0.1016\n", + " -0.0789\n", + " -0.2964\n", + " -0.0714\n", + " -0.0189\n", + " -0.2788\n", + " 0.0617\n", + " -0.0546\n", + " -0.2184\n", + " -0.0392\n", + " -0.0767\n", + " -0.1837\n", + " -0.1876\n", + " 0.0068\n", + " -0.1204\n", + " -0.3699\n", + " 0.0203\n", + " -0.0665\n", + " -0.0626\n", + " 0.2156\n", + " -0.0202\n", + " -0.1446\n", + " 0.0053\n", + " -0.1995\n", + " 0.0019\n", + " -0.1375\n", + " -0.1398\n", + " -0.0581\n", + " -0.1123\n", + " -0.0599\n", + " -0.2106\n", + " -0.2039\n", + " -0.2349\n", + " -0.4244\n", + " -0.1016\n", + " -0.2071\n", + " -0.1010\n", + " -0.0527\n", + " -0.2783\n", + " -0.0990\n", + " -0.3034\n", + " 0.0274\n", + " -0.0464\n", + " -0.2196\n", + " -0.1248\n", + " 0.0454\n", + " -0.1037\n", + " -0.2293\n", + " -0.1677\n", + " -0.0734\n", + " 0.0381\n", + " -0.1746\n", + " -0.0282\n", + " -0.3104\n", + " -0.0508\n", + " -0.2080\n", + " -0.1150\n", + " 0.0742\n", + " -0.0503\n", + " -0.1552\n", + " -0.1185\n", + " -0.1432\n", + " 0.0289\n", + " 0.0230\n", + " -0.2688\n", + " 0.0384\n", + " 0.0051\n", + " -0.2207\n", + " -0.1441\n", + " -0.1035\n", + " -0.0416\n", + " -0.2482\n", + " -0.1536\n", + " 0.0599\n", + " -0.3514\n", + " -0.0670\n", + " -0.0691\n", + " 0.0697\n", + " 0.0022\n", + " -0.0792\n", + " -0.0655\n", + " -0.1497\n", + " -0.1727\n", + " -0.1993\n", + " -0.1741\n", + " -0.1507\n", + " 0.0256\n", + " -0.2359\n", + " -0.1115\n", + " -0.0119\n", + " -0.0390\n", + " -0.2418\n", + " -0.0209\n", + " -0.0632\n", + " -0.1474\n", + " -0.0096\n", + " -0.0870\n", + " -0.0659\n", + " -0.0452\n", + " -0.1415\n", + " -0.1103\n", + " -0.1115\n", + " -0.0588\n", + " -0.1483\n", + " -0.1410\n", + " -0.1995\n", + " -0.1629\n", + " -0.2313\n", + " -0.1055\n", + " 0.0205\n", + " -0.0544\n", + " -0.0922\n", + " 0.1010\n", + " -0.0542\n", + " -0.0307\n", + " -0.0544\n", + " -0.1246\n", + " -0.0428\n", + " 0.0680\n", + " -0.1804\n", + " 0.0182\n", + " 0.2025\n", + " -0.2346\n", + " -0.1066\n", + " -0.1023\n", + " 0.0508\n", + " -0.0058\n", + " -0.0669\n", + " -0.0128\n", + " -0.2045\n", + " -0.2560\n", + " -0.0448\n", + " -0.2328\n", + " -0.0610\n", + " -0.0236\n", + " -0.0091\n", + " -0.0614\n", + " -0.0297\n", + " -0.1093\n", + " -0.0025\n", + " -0.3452\n", + " 0.0339\n", + " -0.1429\n", + " -0.1356\n", + " -0.2519\n", + " -0.1821\n", + " -0.0945\n", + " -0.3060\n", + " -0.0134\n", + " -0.2135\n", + " 0.1063\n", + " 0.0048\n", + " -0.0873\n", + " 0.0461\n", + " -0.0530\n", + " 0.0275\n", + " 0.0654\n", + " -0.1037\n", + " 0.0794\n", + " -0.1844\n", + " -0.1053\n", + " -0.1306\n", + " -0.1436\n", + " 0.0886\n", + " -0.0442\n", + " -0.2772\n", + " -0.0387\n", + " -0.2094\n", + " -0.0317\n", + " -0.0487\n", + " 0.0835\n", + " -0.2631\n", + " -0.0988\n", + " -0.2111\n", + " -0.1708\n", + " -0.2594\n", + " 0.1489\n", + " -0.2586\n", + " -0.1723\n", + " -0.1183\n", + " -0.1991\n", + " -0.2226\n", + " -0.1170\n", + " 0.1049\n", + " -0.1086\n", + " -0.0038\n", + " 0.0941\n", + " -0.0149\n", + " -0.2777\n", + " -0.1084\n", + " -0.1581\n", + " 0.1168\n", + " -0.4400\n", + " -0.1210\n", + " -0.1577\n", + " 0.0378\n", + " 0.1086\n", + " 0.0963\n", + " -0.0075\n", + " -0.1803\n", + " -0.2887\n", + " -0.2981\n", + " -0.3096\n", + " -0.0898\n", + " -0.5208\n", + " -0.4997\n", + " -0.1008\n", + " -0.2818\n", + " -0.4848\n", + " -0.8144\n", + " -0.3606\n", + " -0.3231\n", + " -0.3712\n", + " -0.0826\n", + " 0.0635\n", + " -0.3109\n", + " -0.1405\n", + " -0.3643\n", + " -0.0223\n", + " -0.0984\n", + " -0.2161\n", + " -0.0859\n", + " 0.0105\n", + " -0.2006\n", + " -0.3644\n", + " -0.3318\n", + " 0.2235\n", + " -0.0831\n", + " 0.0963\n", + " -0.0246\n", + " 0.0886\n", + " 0.0322\n", + " 0.0677\n", + " -0.0947\n", + " -0.2206\n", + " -0.3130\n", + " -0.0638\n", + " -0.2915\n", + " 0.0181\n", + " 0.2332\n", + " -0.1881\n", + " -0.4241\n", + " -0.3320\n", + " -0.1552\n", + " -0.2024\n", + " -0.2510\n", + " -0.0858\n", + " -0.1571\n", + " -0.1714\n", + " -0.1187\n", + " -0.2142\n", + " -0.1673\n", + " -0.3569\n", + " 0.0169\n", + " -0.1147\n", + " -0.2604\n", + " -0.1895\n", + " 0.0421\n", + " -0.4577\n", + " -0.2308\n", + " -0.2758\n", + " -0.2051\n", + " -0.2527\n", + " -0.2452\n", + " -0.2647\n", + " -0.0610\n", + " 0.2031\n", + " 0.0937\n", + " -0.5974\n", + " -0.2579\n", + " -0.2465\n", + " -0.3053\n", + " 0.0942\n", + " 0.0322\n", + " -0.1968\n", + " -1.1592\n", + " -0.1901\n", + " -0.4790\n", + " -0.2278\n", + " -0.2477\n", + " -0.1650\n", + " -0.0122\n", + " -0.0584\n", + " 0.0147\n", + " 0.0447\n", + " 0.0728\n", + " -0.0359\n", + " -0.1528\n", + " -0.0141\n", + " 0.0775\n", + " -0.1813\n", + " -0.2707\n", + " -0.0423\n", + " 0.1164\n", + " -0.1781\n", + " -0.1497\n", + " -0.4498\n", + " -0.0401\n", + " -0.1371\n", + " 0.0586\n", + " -0.0882\n", + " 0.1225\n", + " -0.0984\n", + " 0.1207\n", + " -0.1802\n", + " -0.2274\n", + " -0.1551\n", + " -0.2592\n", + " -0.0032\n", + " -0.0738\n", + " -0.4396\n", + " -0.3603\n", + " -0.3281\n", + " -0.2016\n", + " -0.1089\n", + " -0.1903\n", + " 0.0015\n", + " 0.0555\n", + " 0.2191\n", + " -0.2732\n", + " -0.1100\n", + " 0.1814\n", + " -0.0939\n", + " -0.2828\n", + " -0.1997\n", + " -0.0086\n", + " -0.1791\n", + " -0.4105\n", + " -0.1703\n", + " -0.2484\n", + " -0.3473\n", + " -0.2770\n", + " -0.0827\n", + " -0.2055\n", + " 0.2116\n", + " 0.0806\n", + " -0.0951\n", + " 0.1163\n", + " -0.1722\n", + " -0.2641\n", + " 0.0257\n", + " -0.0635\n", + " 0.1146\n", + " -0.1596\n", + " -0.0988\n", + " -0.5993\n", + " -0.2583\n", + " -0.2489\n", + " -0.3199\n", + " -0.3233\n", + " -0.3933\n", + " -0.1140\n", + " -0.3902\n", + " -0.0218\n", + " -0.3324\n", + " 0.0244\n", + " -0.2429\n", + " -0.1285\n", + " -0.1399\n", + " -0.0639\n", + " 0.0139\n", + " 0.0145\n", + " -0.0901\n", + " -0.0889\n", + " -0.2751\n", + " -0.1627\n", + " -0.2586\n", + " -0.1496\n", + " 0.3225\n", + " 0.1047\n", + " -0.1462\n", + " 0.1028\n", + " 0.0736\n", + " 0.0093\n", + " -0.1218\n", + " -0.0591\n", + " -0.2482\n", + " 0.0617\n", + " -0.0374\n", + " -0.1418\n", + " -0.3741\n", + " -0.1243\n", + " -0.2819\n", + " 0.0454\n", + " -0.0003\n", + " -0.1040\n", + " -0.6222\n", + " -0.0681\n", + " -0.1977\n", + " -0.0129\n", + " -0.1055\n", + " -0.1850\n", + " 0.1884\n", + " -0.0491\n", + " -0.0594\n", + " 0.0235\n", + " -0.1445\n", + " -0.2277\n", + " -0.2087\n", + " -0.1417\n", + " -0.2355\n", + " -0.2547\n", + " -0.2894\n", + " -0.1692\n", + " -0.2899\n", + " -0.0690\n", + " -0.0026\n", + " -0.0061\n", + " -0.1618\n", + " -0.2000\n", + " 0.0268\n", + " -0.1220\n", + " -0.2953\n", + " -0.0996\n", + " -0.1603\n", + " 0.3013\n", + " -0.1819\n", + " 0.0007\n", + " -0.1308\n", + " 0.0423\n", + " -0.1589\n", + " -0.3795\n", + " 0.1657\n", + " -0.2544\n", + " -0.2691\n", + " -0.2338\n", + " -0.0087\n", + " -0.5695\n", + " -0.2870\n", + " 0.2887\n", + " -0.3195\n", + " 0.6581\n", + " -0.1343\n", + " 0.0633\n", + " -0.0689\n", + " 0.0666\n", + " -0.0068\n", + " -0.2195\n", + " -0.1215\n", + " 0.5227\n", + " 0.0606\n", + " 0.0053\n", + " -0.0376\n", + " 0.0531\n", + " -0.0131\n", + " -0.0115\n", + " 0.0475\n", + " -0.0162\n", + " 0.0722\n", + " -0.0447\n", + " 0.0016\n", + " -0.0067\n", + " 0.0684\n", + " 0.0160\n", + " -0.0604\n", + " 0.1673\n", + " -0.0504\n", + " -0.0696\n", + " 0.0741\n", + " 0.0518\n", + " 0.2055\n", + " 0.0799\n", + " 0.0108\n", + " -0.1300\n", + " -0.2944\n", + " -0.0724\n", + " 0.0093\n", + " 0.0684\n", + " 0.1222\n", + " 0.5372\n", + " -0.0267\n", + " -0.4729\n", + " -0.0197\n", + " -0.2383\n", + " -0.0014\n", + " 0.0198\n", + " 0.1358\n", + " 0.6865\n", + " 0.0791\n", + " 0.0291\n", + " -0.0594\n", + " 0.0305\n", + " 0.0072\n", + " 0.0318\n", + " 0.0038\n", + " 0.1854\n", + " -0.1952\n", + " 0.0003\n", + " -0.0036\n", + " 0.1036\n", + " 0.1039\n", + " 0.0105\n", + " 0.0012\n", + " -0.0858\n", + " -0.0073\n", + " 0.0589\n", + " 0.0402\n", + " -0.0344\n", + " -0.0479\n", + " 0.0019\n", + " 0.0362\n", + " 0.0719\n", + " -1.6178\n", + " 0.1029\n", + " -1.5088\n", + " 0.0293\n", + " -0.0899\n", + " 0.9377\n", + " 0.0752\n", + " 0.0553\n", + " 0.0616\n", + " 0.0100\n", + " -0.0749\n", + " -0.0305\n", + " -0.2133\n", + " -0.0395\n", + " 1.6026\n", + " -0.0588\n", + " -0.0054\n", + " 0.0482\n", + " -0.2315\n", + " -0.0295\n", + " -0.2107\n", + " 0.1377\n", + " -0.1784\n", + " 0.0777\n", + " -0.4296\n", + " -0.0197\n", + " 0.0128\n", + " 0.0665\n", + " -0.0302\n", + " 0.0309\n", + " 0.2284\n", + " 1.3962\n", + " 0.0285\n", + " 0.0996\n", + " -0.0420\n", + " 0.0581\n", + " -0.0585\n", + " -0.0662\n", + " -0.0241\n", + " -0.0395\n", + " -0.0429\n", + " 0.1045\n", + " 0.1187\n", + " 0.0248\n", + " -0.0720\n", + " 0.0664\n", + " -0.0156\n", + " 0.0216\n", + " -0.3421\n", + " 0.0187\n", + " 0.1154\n", + " -0.0078\n", + " 0.0833\n", + " 0.0151\n", + " -0.0610\n", + " -0.0475\n", + " -0.1498\n", + " -0.0867\n", + " 0.1174\n", + " -0.0104\n", + " 0.1037\n", + " -0.3127\n", + " -0.0403\n", + " -0.0522\n", + " 0.0026\n", + " -0.0765\n", + " 0.4049\n", + " -0.1799\n", + " 0.1748\n", + " -0.0341\n", + " 0.1855\n", + " 0.0352\n", + " 0.0172\n", + " 0.0335\n", + " -0.0136\n", + " 0.1373\n", + " 0.1667\n", + " -0.7157\n", + " 0.0535\n", + " 0.1069\n", + " -0.2175\n", + " -0.2596\n", + " 0.0062\n", + " -0.0110\n", + " -0.0409\n", + " -0.9490\n", + " -0.1014\n", + " -0.1753\n", + " 0.1308\n", + " -0.0018\n", + " 0.1232\n", + " 0.0663\n", + " -0.0458\n", + " -0.1241\n", + " -0.0379\n", + " 0.0233\n", + " -0.0178\n", + " -0.0743\n", + " -0.0754\n", + " 0.0997\n", + " -0.0881\n", + " -0.0222\n", + " 0.2767\n", + " 0.1961\n", + " -0.2217\n", + " -0.0473\n", + " -0.1927\n", + " 0.2394\n", + " 0.0497\n", + " 0.1041\n", + " 0.0031\n", + " -0.0140\n", + " -0.1149\n", + " -0.0349\n", + " -0.0570\n", + " -0.0878\n", + " 0.0808\n", + " 0.0906\n", + " -0.0186\n", + " -0.0714\n", + " -0.4216\n", + " 0.0257\n", + " 0.0696\n", + " -0.0053\n", + " -0.0602\n", + " 0.0716\n", + " 0.0157\n", + " 0.5212\n", + " 0.0040\n", + " 0.1328\n", + " 0.0821\n", + " -0.0231\n", + " -0.0143\n", + " -0.0797\n", + " -0.1586\n", + " -0.0039\n", + " -0.1710\n", + " -0.0004\n", + " -0.1199\n", + " 0.0152\n", + " 0.1131\n", + " -0.0531\n", + " 0.1532\n", + " -0.0085\n", + " -0.1425\n", + " -0.0158\n", + " -0.1678\n", + " 0.0270\n", + " -0.0502\n", + " -0.0820\n", + " 0.0701\n", + " 0.2335\n", + " -0.0213\n", + " 0.2500\n", + " 0.0314\n", + " -0.1142\n", + " 0.1697\n", + " 0.2488\n", + " 0.1649\n", + " 0.0025\n", + " -0.0153\n", + " -0.1582\n", + " -0.0162\n", + " -0.0760\n", + " 0.0152\n", + " -0.1606\n", + " 0.0137\n", + " -0.0789\n", + " 0.0946\n", + " 0.1557\n", + " -1.0529\n", + " 0.0398\n", + " 0.0007\n", + " -0.6346\n", + " -0.0021\n", + " -0.0241\n", + " -0.1064\n", + " -0.1453\n", + " 0.1590\n", + " 0.0571\n", + " -0.0148\n", + " 0.0049\n", + " 0.1183\n", + " 0.0900\n", + " 0.0004\n", + " [torch.FloatTensor of size 768]),\n", + " ('module.decoder.proj_to_mel.weight', \n", + " -1.3074e-03 -2.4511e-03 4.0127e-03 ... -1.8974e-04 -3.5570e-03 -1.0731e-02\n", + " 1.6458e-04 -3.4461e-03 -1.7653e-02 ... -1.2636e-03 -2.7327e-04 1.3112e-02\n", + " -4.7382e-03 2.9522e-03 -3.0874e-02 ... 2.8109e-04 -1.5848e-03 -6.4812e-03\n", + " ... ⋱ ... \n", + " -4.6943e-03 4.4080e-03 -1.1201e-02 ... 1.1059e-01 -9.0196e-04 1.6526e-02\n", + " -6.3213e-03 5.4862e-03 -4.3771e-03 ... 1.0128e-01 -4.8409e-03 1.2473e-02\n", + " -2.1717e-03 4.6354e-03 -1.0125e-02 ... 9.4980e-02 -1.4286e-03 2.9772e-02\n", + " [torch.FloatTensor of size 400x256]),\n", + " ('module.decoder.proj_to_mel.bias', \n", + " 1.00000e-02 *\n", + " 0.0876\n", + " 0.2869\n", + " 0.7675\n", + " 1.1309\n", + " 1.3614\n", + " 1.3701\n", + " 1.3839\n", + " 1.4532\n", + " 1.4647\n", + " 1.5598\n", + " 1.5797\n", + " 1.6161\n", + " 1.6791\n", + " 1.6373\n", + " 1.5957\n", + " 1.5270\n", + " 1.5398\n", + " 1.4873\n", + " 1.4737\n", + " 1.4344\n", + " 1.3897\n", + " 1.3177\n", + " 1.2835\n", + " 1.2909\n", + " 1.2791\n", + " 1.2945\n", + " 1.2757\n", + " 1.2166\n", + " 1.2300\n", + " 1.1754\n", + " 1.1505\n", + " 1.1620\n", + " 1.2075\n", + " 1.2446\n", + " 1.2896\n", + " 1.2816\n", + " 1.3150\n", + " 1.3853\n", + " 1.4304\n", + " 1.4351\n", + " 1.3969\n", + " 1.3827\n", + " 1.3353\n", + " 1.3309\n", + " 1.3441\n", + " 1.3446\n", + " 1.3858\n", + " 1.4163\n", + " 1.4484\n", + " 1.5118\n", + " 1.5367\n", + " 1.5440\n", + " 1.4973\n", + " 1.4682\n", + " 1.4973\n", + " 1.5031\n", + " 1.5215\n", + " 1.5343\n", + " 1.5256\n", + " 1.5085\n", + " 1.4796\n", + " 1.4687\n", + " 1.4534\n", + " 1.4743\n", + " 1.4257\n", + " 1.3159\n", + " 1.1628\n", + " 1.0977\n", + " 1.0931\n", + " 1.0937\n", + " 1.2023\n", + " 1.2768\n", + " 1.3716\n", + " 1.4418\n", + " 1.4656\n", + " 1.4682\n", + " 1.3487\n", + " 1.2776\n", + " 1.1769\n", + " 0.6768\n", + " -0.0025\n", + " 0.3184\n", + " 0.7693\n", + " 1.1664\n", + " 1.2635\n", + " 1.3745\n", + " 1.4168\n", + " 1.4754\n", + " 1.4790\n", + " 1.5083\n", + " 1.6034\n", + " 1.5930\n", + " 1.6553\n", + " 1.6128\n", + " 1.5650\n", + " 1.5256\n", + " 1.5177\n", + " 1.4417\n", + " 1.4139\n", + " 1.3828\n", + " 1.3538\n", + " 1.3233\n", + " 1.2828\n", + " 1.2898\n", + " 1.3020\n", + " 1.2633\n", + " 1.2407\n", + " 1.2393\n", + " 1.2278\n", + " 1.1765\n", + " 1.1779\n", + " 1.1244\n", + " 1.1394\n", + " 1.1836\n", + " 1.2727\n", + " 1.3140\n", + " 1.3260\n", + " 1.3680\n", + " 1.3976\n", + " 1.3810\n", + " 1.3369\n", + " 1.3492\n", + " 1.3322\n", + " 1.3065\n", + " 1.2844\n", + " 1.3270\n", + " 1.3645\n", + " 1.4034\n", + " 1.4259\n", + " 1.4383\n", + " 1.4636\n", + " 1.4869\n", + " 1.4434\n", + " 1.4048\n", + " 1.4612\n", + " 1.4850\n", + " 1.4780\n", + " 1.5197\n", + " 1.4922\n", + " 1.4267\n", + " 1.4171\n", + " 1.4324\n", + " 1.4412\n", + " 1.4399\n", + " 1.3997\n", + " 1.2464\n", + " 1.1530\n", + " 1.0524\n", + " 1.0748\n", + " 1.0952\n", + " 1.1387\n", + " 1.2539\n", + " 1.3213\n", + " 1.3723\n", + " 1.4633\n", + " 1.4234\n", + " 1.2991\n", + " 1.2339\n", + " 1.0897\n", + " 0.6178\n", + " -0.0179\n", + " 0.3282\n", + " 0.7514\n", + " 1.1336\n", + " 1.3210\n", + " 1.3531\n", + " 1.3454\n", + " 1.4746\n", + " 1.4648\n", + " 1.5131\n", + " 1.6053\n", + " 1.6047\n", + " 1.6204\n", + " 1.6006\n", + " 1.5564\n", + " 1.5380\n", + " 1.5117\n", + " 1.4441\n", + " 1.4121\n", + " 1.3964\n", + " 1.3132\n", + " 1.2740\n", + " 1.2346\n", + " 1.2087\n", + " 1.2822\n", + " 1.2630\n", + " 1.2516\n", + " 1.2121\n", + " 1.1918\n", + " 1.1358\n", + " 1.1214\n", + " 1.1183\n", + " 1.1306\n", + " 1.1800\n", + " 1.2391\n", + " 1.2644\n", + " 1.3117\n", + " 1.3605\n", + " 1.4171\n", + " 1.3564\n", + " 1.3415\n", + " 1.3094\n", + " 1.2988\n", + " 1.2651\n", + " 1.2902\n", + " 1.3181\n", + " 1.3491\n", + " 1.3242\n", + " 1.4091\n", + " 1.4292\n", + " 1.4441\n", + " 1.4335\n", + " 1.4005\n", + " 1.3585\n", + " 1.3968\n", + " 1.4410\n", + " 1.4538\n", + " 1.4958\n", + " 1.4630\n", + " 1.4457\n", + " 1.3883\n", + " 1.3910\n", + " 1.3679\n", + " 1.3587\n", + " 1.3276\n", + " 1.2073\n", + " 1.0925\n", + " 1.0449\n", + " 1.0399\n", + " 1.0732\n", + " 1.1572\n", + " 1.2606\n", + " 1.3236\n", + " 1.3726\n", + " 1.4031\n", + " 1.3764\n", + " 1.3142\n", + " 1.2088\n", + " 1.0817\n", + " 0.5831\n", + " 0.0094\n", + " 0.2855\n", + " 0.7391\n", + " 1.1503\n", + " 1.2671\n", + " 1.3340\n", + " 1.3187\n", + " 1.3782\n", + " 1.4229\n", + " 1.4405\n", + " 1.5457\n", + " 1.5796\n", + " 1.5900\n", + " 1.5767\n", + " 1.5167\n", + " 1.4924\n", + " 1.4926\n", + " 1.4209\n", + " 1.3982\n", + " 1.3704\n", + " 1.3177\n", + " 1.2525\n", + " 1.2445\n", + " 1.2593\n", + " 1.2587\n", + " 1.2303\n", + " 1.2157\n", + " 1.1921\n", + " 1.1971\n", + " 1.1388\n", + " 1.1351\n", + " 1.1308\n", + " 1.1380\n", + " 1.1683\n", + " 1.2366\n", + " 1.2392\n", + " 1.2875\n", + " 1.3089\n", + " 1.3943\n", + " 1.3405\n", + " 1.3329\n", + " 1.3344\n", + " 1.3163\n", + " 1.2668\n", + " 1.3138\n", + " 1.3248\n", + " 1.3536\n", + " 1.3607\n", + " 1.4112\n", + " 1.4539\n", + " 1.4694\n", + " 1.4653\n", + " 1.4381\n", + " 1.4191\n", + " 1.4100\n", + " 1.4421\n", + " 1.4614\n", + " 1.4395\n", + " 1.4460\n", + " 1.3918\n", + " 1.3694\n", + " 1.3848\n", + " 1.4002\n", + " 1.3500\n", + " 1.3336\n", + " 1.1924\n", + " 1.0975\n", + " 1.0437\n", + " 1.0253\n", + " 1.1050\n", + " 1.1091\n", + " 1.2645\n", + " 1.3191\n", + " 1.3368\n", + " 1.4045\n", + " 1.3772\n", + " 1.2685\n", + " 1.1781\n", + " 1.0324\n", + " 0.6481\n", + " -0.0258\n", + " 0.3058\n", + " 0.7237\n", + " 1.1226\n", + " 1.2792\n", + " 1.2757\n", + " 1.3443\n", + " 1.3900\n", + " 1.4495\n", + " 1.4699\n", + " 1.5437\n", + " 1.5629\n", + " 1.5834\n", + " 1.5482\n", + " 1.4947\n", + " 1.4375\n", + " 1.4624\n", + " 1.4047\n", + " 1.3745\n", + " 1.3185\n", + " 1.2726\n", + " 1.2390\n", + " 1.2192\n", + " 1.1896\n", + " 1.2406\n", + " 1.2000\n", + " 1.1671\n", + " 1.1556\n", + " 1.1712\n", + " 1.1227\n", + " 1.1275\n", + " 1.1069\n", + " 1.1242\n", + " 1.1525\n", + " 1.2164\n", + " 1.2421\n", + " 1.2874\n", + " 1.3315\n", + " 1.3654\n", + " 1.3286\n", + " 1.3372\n", + " 1.3077\n", + " 1.3018\n", + " 1.2429\n", + " 1.2884\n", + " 1.3012\n", + " 1.3073\n", + " 1.3178\n", + " 1.4200\n", + " 1.3940\n", + " 1.4591\n", + " 1.4395\n", + " 1.3646\n", + " 1.3977\n", + " 1.3908\n", + " 1.3935\n", + " 1.4500\n", + " 1.4397\n", + " 1.4495\n", + " 1.3929\n", + " 1.3619\n", + " 1.3456\n", + " 1.3574\n", + " 1.3470\n", + " 1.3032\n", + " 1.1834\n", + " 1.0622\n", + " 1.0472\n", + " 1.0244\n", + " 1.0552\n", + " 1.1053\n", + " 1.2159\n", + " 1.3469\n", + " 1.3601\n", + " 1.3859\n", + " 1.3516\n", + " 1.2573\n", + " 1.1643\n", + " 1.0473\n", + " 0.6013\n", + " [torch.FloatTensor of size 400]),\n", + " ('module.postnet.conv1d_banks.0.conv1d.weight', \n", + " (0 ,.,.) = \n", + " 5.1769e-01\n", + " -1.9350e-01\n", + " -5.1565e-02\n", + " ⋮ \n", + " -1.4517e-02\n", + " 7.1059e-02\n", + " 6.6071e-02\n", + " \n", + " (1 ,.,.) = \n", + " -1.0924e-02\n", + " -8.0526e-02\n", + " 3.5597e-02\n", + " ⋮ \n", + " -2.0654e-01\n", + " -1.3508e-01\n", + " 3.8456e-01\n", + " \n", + " (2 ,.,.) = \n", + " 2.9784e+00\n", + " -6.2878e-01\n", + " -1.7459e-01\n", + " ⋮ \n", + " 7.2299e-02\n", + " 2.2709e-01\n", + " 6.0340e-01\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " -9.9861e-01\n", + " 9.4519e-02\n", + " 1.9491e-01\n", + " ⋮ \n", + " 1.0430e-01\n", + " -1.9140e-02\n", + " 2.6940e-01\n", + " \n", + " (78,.,.) = \n", + " 2.1744e-01\n", + " -8.0680e-02\n", + " 2.1582e-01\n", + " ⋮ \n", + " -4.2295e-02\n", + " 1.6425e-02\n", + " -2.3594e-03\n", + " \n", + " (79,.,.) = \n", + " 1.7220e+00\n", + " -1.5493e+00\n", + " 2.8362e-01\n", + " ⋮ \n", + " 1.4140e-01\n", + " 1.6998e-02\n", + " 4.2408e-01\n", + " [torch.FloatTensor of size 80x80x1]),\n", + " ('module.postnet.conv1d_banks.0.bn.weight', \n", + " -11.9678\n", + " -12.2330\n", + " 0.5874\n", + " -12.7266\n", + " -14.8812\n", + " -2.5761\n", + " -11.9427\n", + " -4.2313\n", + " 0.6492\n", + " -14.3888\n", + " 0.5280\n", + " 0.5165\n", + " -3.7921\n", + " 0.6091\n", + " -1.2100\n", + " -5.2468\n", + " 0.4883\n", + " -9.6767\n", + " 0.2881\n", + " 0.4058\n", + " -11.3032\n", + " -13.2620\n", + " -14.9764\n", + " 0.3754\n", + " 0.3768\n", + " -11.5367\n", + " -1.2537\n", + " -4.8199\n", + " 0.4803\n", + " 0.3263\n", + " -5.1572\n", + " -11.5061\n", + " -12.7830\n", + " -11.6226\n", + " -4.4590\n", + " 0.3148\n", + " 0.6764\n", + " -11.8550\n", + " -12.6242\n", + " 0.0109\n", + " -14.1101\n", + " 0.6742\n", + " -13.7539\n", + " -11.9381\n", + " 0.4237\n", + " -12.1203\n", + " 0.2748\n", + " 0.2623\n", + " -13.3269\n", + " 0.2197\n", + " -14.4030\n", + " -13.9489\n", + " 1.0069\n", + " -13.2212\n", + " -13.3118\n", + " -11.0843\n", + " 0.6281\n", + " 0.3118\n", + " 0.5690\n", + " -15.3363\n", + " -9.2287\n", + " 0.3996\n", + " -12.4018\n", + " 0.2682\n", + " 0.4161\n", + " 0.3363\n", + " -2.4713\n", + " -11.9829\n", + " 0.2552\n", + " -12.6530\n", + " -4.9388\n", + " 0.6500\n", + " -2.2789\n", + " -12.4364\n", + " 0.4697\n", + " 0.3311\n", + " -12.2295\n", + " -3.9541\n", + " -11.6577\n", + " 0.3231\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.0.bn.bias', \n", + " -0.1770\n", + " -0.5260\n", + " -0.3186\n", + " -0.4653\n", + " -0.3628\n", + " 0.0852\n", + " -0.3752\n", + " 0.1456\n", + " -0.6313\n", + " -0.3645\n", + " -0.1815\n", + " -0.1057\n", + " 0.0914\n", + " -0.3637\n", + " 0.3904\n", + " -0.0688\n", + " 0.0782\n", + " -0.0764\n", + " -0.2970\n", + " -0.2733\n", + " -0.7308\n", + " -0.3784\n", + " -0.7094\n", + " 0.0536\n", + " -0.2227\n", + " -0.0357\n", + " 0.2188\n", + " -4.1813\n", + " -0.4352\n", + " -0.3667\n", + " -0.5476\n", + " 0.1492\n", + " -0.1594\n", + " -0.5768\n", + " -0.3024\n", + " -0.1974\n", + " -0.2981\n", + " -0.3037\n", + " 2.2149\n", + " -0.5135\n", + " -0.6731\n", + " -0.3076\n", + " -1.0072\n", + " -0.2102\n", + " -0.0984\n", + " -0.4764\n", + " -0.3976\n", + " -0.0539\n", + " -0.0830\n", + " -0.1599\n", + " -0.2148\n", + " -0.4588\n", + " -0.6995\n", + " -0.2935\n", + " -0.4384\n", + " -0.3426\n", + " -0.2200\n", + " -0.1131\n", + " -0.4610\n", + " -0.0497\n", + " -0.7868\n", + " -0.2811\n", + " -0.3139\n", + " -0.1979\n", + " -0.2312\n", + " -0.2283\n", + " -0.3468\n", + " -0.4847\n", + " -0.3325\n", + " -0.4417\n", + " -4.7423\n", + " -0.1914\n", + " -0.1727\n", + " -0.1415\n", + " -0.6530\n", + " -0.3162\n", + " -0.5499\n", + " -0.6805\n", + " -0.5549\n", + " -0.2024\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.0.bn.running_mean', \n", + " 2.1287e-05\n", + " 1.3011e-05\n", + " 3.0102e-01\n", + " 7.9208e-06\n", + " 2.9520e-04\n", + " 3.8135e-02\n", + " 1.0149e-05\n", + " 4.4172e-05\n", + " 9.3081e-01\n", + " 1.1545e-04\n", + " 1.1260e+00\n", + " 1.9549e+00\n", + " 1.2658e-04\n", + " 2.7999e-01\n", + " 6.6247e-02\n", + " 3.7660e-05\n", + " 1.8550e-01\n", + " 1.7950e-05\n", + " 2.6923e+00\n", + " 1.3024e-01\n", + " 6.4194e-06\n", + " 1.9988e-05\n", + " 3.6879e-04\n", + " 1.2148e-01\n", + " 3.0188e-02\n", + " 1.2351e-05\n", + " 1.2680e-02\n", + " 1.2651e-06\n", + " 1.6360e-01\n", + " 8.9487e-02\n", + " 4.3512e-05\n", + " 2.1093e-05\n", + " 2.2089e-05\n", + " 1.8914e-05\n", + " 1.8063e-04\n", + " 3.8698e+00\n", + " 1.5270e-01\n", + " 1.3995e-05\n", + " 5.7557e-06\n", + " 2.8174e+00\n", + " 1.2101e-05\n", + " 2.5533e+00\n", + " 2.9588e-06\n", + " 3.3828e-06\n", + " 1.7701e-01\n", + " 6.5255e-05\n", + " 1.2166e-01\n", + " 1.9112e+00\n", + " 1.5575e-05\n", + " 3.8261e+00\n", + " 2.3136e-05\n", + " 2.2370e-05\n", + " 2.5962e-01\n", + " 2.6652e-05\n", + " 4.7766e-05\n", + " 1.0692e-05\n", + " 4.4529e-01\n", + " 1.2559e-01\n", + " 2.7961e-01\n", + " 1.3356e-05\n", + " 1.8169e-04\n", + " 1.9655e-01\n", + " 8.2612e-06\n", + " 2.1740e+00\n", + " 6.1940e-02\n", + " 3.7653e-01\n", + " 1.4797e-04\n", + " 2.1150e-05\n", + " 5.7097e-02\n", + " 4.5371e-05\n", + " 6.2037e-06\n", + " 1.6608e-01\n", + " 1.8344e-04\n", + " 5.5461e-05\n", + " 1.8992e-01\n", + " 3.4101e-02\n", + " 4.6944e-05\n", + " 5.0050e-05\n", + " 2.6779e-05\n", + " 5.0445e-02\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.0.bn.running_var', \n", + " 3.4790e-07\n", + " 1.3100e-07\n", + " 9.3850e-02\n", + " 9.8571e-08\n", + " 4.2421e-06\n", + " 7.1133e-04\n", + " 9.6986e-08\n", + " 2.3501e-07\n", + " 1.9607e-01\n", + " 1.1185e-06\n", + " 7.5229e-01\n", + " 8.2943e-01\n", + " 1.5405e-06\n", + " 3.7033e-02\n", + " 3.0053e-03\n", + " 3.7897e-07\n", + " 4.2127e-02\n", + " 1.3493e-07\n", + " 1.8891e+00\n", + " 9.1971e-02\n", + " 5.4875e-08\n", + " 1.6678e-07\n", + " 1.0535e-05\n", + " 5.2598e-02\n", + " 1.0646e-02\n", + " 1.3590e-07\n", + " 4.9546e-04\n", + " 3.7495e-09\n", + " 3.6607e-02\n", + " 3.8562e-02\n", + " 4.6355e-07\n", + " 1.0277e-07\n", + " 3.1599e-07\n", + " 1.6569e-07\n", + " 1.9677e-06\n", + " 3.2907e+00\n", + " 2.8827e-02\n", + " 2.4286e-07\n", + " 7.4433e-08\n", + " 1.6466e+00\n", + " 7.0617e-08\n", + " 1.3520e+00\n", + " 1.6808e-08\n", + " 2.3399e-08\n", + " 4.7179e-02\n", + " 8.3522e-07\n", + " 2.4160e-02\n", + " 1.0465e+00\n", + " 2.0186e-07\n", + " 3.3099e+00\n", + " 3.4907e-07\n", + " 1.5072e-07\n", + " 1.6966e-02\n", + " 4.8098e-07\n", + " 3.1123e-07\n", + " 1.3480e-07\n", + " 1.4162e-01\n", + " 2.3337e-02\n", + " 7.2239e-02\n", + " 1.5036e-07\n", + " 2.4603e-06\n", + " 4.7200e-02\n", + " 7.7703e-08\n", + " 1.1384e+00\n", + " 9.7417e-03\n", + " 1.0520e-01\n", + " 1.4845e-06\n", + " 2.0648e-07\n", + " 1.6840e-02\n", + " 9.0840e-07\n", + " 2.7039e-08\n", + " 3.1538e-02\n", + " 4.6559e-06\n", + " 5.6221e-07\n", + " 2.9305e-02\n", + " 4.8931e-03\n", + " 7.6341e-07\n", + " 5.7731e-07\n", + " 2.6599e-07\n", + " 4.4374e-02\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.1.conv1d.weight', \n", + " (0 ,.,.) = \n", + " 2.2803e-01 3.5122e-02\n", + " 9.0641e-04 5.3618e-02\n", + " -7.8795e-02 1.4725e-02\n", + " ⋮ \n", + " -6.7398e-02 3.0243e-02\n", + " -1.4825e-01 -3.2397e-02\n", + " 4.5505e-02 6.4718e-02\n", + " \n", + " (1 ,.,.) = \n", + " 4.4825e-01 2.4676e-01\n", + " -1.0999e-01 -1.5665e-01\n", + " 2.9031e-02 -4.8570e-03\n", + " ⋮ \n", + " -8.9446e-02 1.8276e-01\n", + " 2.4644e-02 6.5687e-02\n", + " -1.9755e-02 -2.3221e-02\n", + " \n", + " (2 ,.,.) = \n", + " -4.8638e-01 1.2996e+00\n", + " -3.9909e-01 -1.7756e-01\n", + " -5.2663e-02 5.4679e-01\n", + " ⋮ \n", + " 1.1216e-01 8.3459e-02\n", + " -1.1575e-01 -8.2108e-02\n", + " -3.9344e-01 2.8520e-02\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " 1.3718e-01 4.9113e-01\n", + " -3.1217e-03 1.6377e-02\n", + " 1.8865e-01 -6.7507e-02\n", + " ⋮ \n", + " 7.4536e-02 -4.8456e-02\n", + " 4.2454e-03 -1.0714e-01\n", + " 2.5783e-01 6.0486e-02\n", + " \n", + " (78,.,.) = \n", + " 1.4156e-01 8.3407e-02\n", + " -1.1070e-01 2.2991e-01\n", + " 1.2974e-01 8.5432e-02\n", + " ⋮ \n", + " 1.3325e-02 -7.5131e-02\n", + " 1.7926e-01 -8.9462e-03\n", + " -4.1264e-04 2.6007e-02\n", + " \n", + " (79,.,.) = \n", + " 3.1951e-01 -8.2399e-01\n", + " -2.8575e-01 3.6496e-02\n", + " -1.9432e-01 -3.7100e-01\n", + " ⋮ \n", + " 8.6748e-02 -1.2156e-01\n", + " -2.9631e-02 -1.3142e-01\n", + " 1.2614e-02 -1.6323e-01\n", + " [torch.FloatTensor of size 80x80x2]),\n", + " ('module.postnet.conv1d_banks.1.bn.weight', \n", + " -4.6559\n", + " -4.0374\n", + " 0.5697\n", + " 0.2481\n", + " -2.0727\n", + " 0.1974\n", + " -4.4233\n", + " -12.7494\n", + " -11.2140\n", + " -10.3780\n", + " -12.1605\n", + " -13.5825\n", + " 0.2552\n", + " -7.1670\n", + " -4.3186\n", + " -13.1333\n", + " 0.4902\n", + " -14.6622\n", + " -4.2768\n", + " -13.1279\n", + " -4.3025\n", + " 0.5430\n", + " 0.2588\n", + " -2.9486\n", + " -13.0833\n", + " -4.4657\n", + " 0.2853\n", + " -4.3336\n", + " -11.0073\n", + " 0.4570\n", + " -10.7826\n", + " 0.4264\n", + " 0.3180\n", + " 0.7737\n", + " -15.5740\n", + " -0.0243\n", + " -12.4222\n", + " -15.6479\n", + " 0.4490\n", + " 0.2373\n", + " -11.2645\n", + " 0.2832\n", + " -13.6475\n", + " 0.2258\n", + " -13.5477\n", + " -11.1852\n", + " -12.1963\n", + " -24.0367\n", + " -4.1066\n", + " -4.9623\n", + " 0.4799\n", + " 0.7183\n", + " -11.3978\n", + " 0.0855\n", + " -13.4413\n", + " 0.2855\n", + " 0.0430\n", + " 0.3015\n", + " -15.7421\n", + " -14.6467\n", + " 0.3438\n", + " 0.7918\n", + " -13.1479\n", + " -3.8025\n", + " 0.6624\n", + " -4.3095\n", + " -10.4288\n", + " 0.0540\n", + " -14.9388\n", + " -2.1997\n", + " -10.7721\n", + " -0.8526\n", + " -11.0237\n", + " -13.7308\n", + " -13.1054\n", + " -12.2283\n", + " 0.2761\n", + " -11.2452\n", + " -10.0655\n", + " 0.1193\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.1.bn.bias', \n", + " -3.5955\n", + " -2.4005\n", + " -0.4212\n", + " -0.3180\n", + " -0.1121\n", + " -0.2129\n", + " -0.1396\n", + " -0.2378\n", + " 0.1549\n", + " -0.2506\n", + " 0.6684\n", + " -0.4975\n", + " -0.2724\n", + " -0.3186\n", + " -1.2307\n", + " -0.4911\n", + " -0.3951\n", + " 0.0476\n", + " -2.0947\n", + " -0.3600\n", + " -0.1530\n", + " -0.2154\n", + " -0.1930\n", + " -0.1384\n", + " -0.5023\n", + " -2.6071\n", + " -0.4027\n", + " -3.1746\n", + " -0.1386\n", + " -0.4783\n", + " -0.4405\n", + " -0.5392\n", + " -0.1531\n", + " -0.5572\n", + " -0.2009\n", + " -0.2193\n", + " -0.4634\n", + " -0.5115\n", + " 0.2173\n", + " -0.4267\n", + " -0.5161\n", + " -0.1203\n", + " -0.3652\n", + " -0.4581\n", + " -0.5642\n", + " -0.1202\n", + " -0.2451\n", + " -0.5672\n", + " -4.2068\n", + " -4.4568\n", + " -0.0325\n", + " -0.4939\n", + " 0.4986\n", + " 0.2563\n", + " -0.4145\n", + " -0.2797\n", + " -0.3181\n", + " -0.2340\n", + " -0.3363\n", + " -0.4155\n", + " -0.2964\n", + " 0.0162\n", + " -0.5236\n", + " -0.4651\n", + " -0.6325\n", + " -3.2684\n", + " -0.3006\n", + " 0.3432\n", + " -0.5174\n", + " -0.2651\n", + " 0.3860\n", + " 0.5317\n", + " -0.3071\n", + " -0.5193\n", + " -0.5852\n", + " -2.6626\n", + " -0.3978\n", + " -0.6819\n", + " -0.3028\n", + " -0.1223\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.1.bn.running_mean', \n", + " 2.2363e-04\n", + " 2.9094e-04\n", + " 2.3534e-01\n", + " 2.4942e-02\n", + " 1.3132e-04\n", + " 1.7823e-02\n", + " 1.7010e-05\n", + " 2.1813e-05\n", + " 1.3471e-05\n", + " 1.5838e-05\n", + " 4.8694e-06\n", + " 3.0307e-05\n", + " 1.1366e-01\n", + " 4.4294e-05\n", + " 4.5411e-05\n", + " 1.9422e-05\n", + " 2.8304e-01\n", + " 4.2274e-05\n", + " 3.1824e-05\n", + " 4.1937e-05\n", + " 2.1202e-05\n", + " 1.4217e+00\n", + " 5.6688e+00\n", + " 6.3756e-05\n", + " 2.3630e-05\n", + " 2.1025e-06\n", + " 9.9421e-02\n", + " 6.7157e-06\n", + " 1.1267e-05\n", + " 1.7153e-01\n", + " 4.9026e-06\n", + " 1.7071e-01\n", + " 2.8186e-02\n", + " 5.9749e-01\n", + " 2.0170e-05\n", + " 3.7440e+00\n", + " 1.7805e-05\n", + " 3.5869e-06\n", + " 2.8605e-01\n", + " 8.7782e-02\n", + " 1.0984e-05\n", + " 4.1899e+00\n", + " 2.3876e-05\n", + " 1.3776e-01\n", + " 7.9306e-05\n", + " 1.1640e-05\n", + " 3.5394e-05\n", + " 2.7546e-04\n", + " 1.5698e-06\n", + " 1.9729e-06\n", + " 2.5174e-01\n", + " 6.5254e-01\n", + " 6.0419e-06\n", + " 6.2503e+00\n", + " 3.1011e-05\n", + " 5.1328e-02\n", + " 6.1270e+00\n", + " 2.8697e+00\n", + " 1.7399e-05\n", + " 4.1985e-05\n", + " 2.5586e-02\n", + " 3.5167e-01\n", + " 4.7537e-06\n", + " 6.9266e-06\n", + " 3.3323e-01\n", + " 2.5710e-04\n", + " 3.6380e-05\n", + " 6.8674e+00\n", + " 9.0483e-06\n", + " 1.6014e-05\n", + " 1.0817e-05\n", + " 3.3237e-05\n", + " 2.1958e-06\n", + " 1.7984e-05\n", + " 1.2633e-05\n", + " 1.6877e-07\n", + " 1.6081e-01\n", + " 4.6447e-06\n", + " 7.3561e-06\n", + " 5.9757e+00\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.1.bn.running_var', \n", + " 3.6303e-05\n", + " 6.7024e-05\n", + " 5.4235e-02\n", + " 5.1356e-03\n", + " 3.3565e-06\n", + " 4.4920e-03\n", + " 3.1855e-07\n", + " 2.6009e-07\n", + " 6.1145e-07\n", + " 3.7904e-07\n", + " 7.6811e-08\n", + " 8.5661e-07\n", + " 6.2907e-02\n", + " 9.7532e-07\n", + " 6.8136e-07\n", + " 2.7929e-07\n", + " 1.1577e-01\n", + " 3.2672e-06\n", + " 9.4797e-08\n", + " 2.8717e-06\n", + " 2.0015e-07\n", + " 9.1117e-01\n", + " 8.3589e+00\n", + " 1.0567e-06\n", + " 1.7558e-06\n", + " 1.3394e-08\n", + " 2.9529e-02\n", + " 5.6320e-08\n", + " 1.6233e-07\n", + " 7.0599e-02\n", + " 2.8805e-08\n", + " 7.6354e-02\n", + " 4.6784e-03\n", + " 1.2298e-01\n", + " 2.5616e-07\n", + " 2.8811e+00\n", + " 3.1228e-07\n", + " 2.9966e-08\n", + " 5.1873e-02\n", + " 2.1567e-02\n", + " 6.6883e-07\n", + " 3.7025e+00\n", + " 4.6636e-07\n", + " 2.7070e-02\n", + " 6.0551e-06\n", + " 2.2597e-07\n", + " 1.8449e-07\n", + " 5.8589e-05\n", + " 9.0792e-09\n", + " 1.6147e-08\n", + " 2.2007e-01\n", + " 8.9547e-02\n", + " 7.5446e-08\n", + " 7.9119e+00\n", + " 5.5627e-07\n", + " 4.0713e-02\n", + " 7.4552e+00\n", + " 2.0425e+00\n", + " 1.5050e-07\n", + " 2.4783e-06\n", + " 4.8531e-03\n", + " 1.8566e-01\n", + " 3.7803e-08\n", + " 4.1020e-08\n", + " 4.3489e-02\n", + " 4.7513e-05\n", + " 1.8622e-07\n", + " 1.0191e+01\n", + " 1.8340e-07\n", + " 3.2625e-07\n", + " 1.0982e-07\n", + " 5.2538e-07\n", + " 9.5139e-09\n", + " 1.8233e-06\n", + " 6.4853e-07\n", + " 3.3042e-10\n", + " 5.1054e-02\n", + " 2.2896e-07\n", + " 1.1318e-07\n", + " 7.8123e+00\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.2.conv1d.weight', \n", + " (0 ,.,.) = \n", + " -1.4133e+00 1.9358e+00 -2.2761e+00\n", + " -2.6115e-01 -6.4256e-01 -9.4213e-01\n", + " -5.8635e-02 2.6985e-01 -3.4424e-01\n", + " ⋮ \n", + " -3.3533e-01 -2.6463e-01 -6.2940e-01\n", + " -4.1993e-01 -4.0857e-01 -5.8928e-01\n", + " 2.4180e-01 8.2423e-01 3.4042e-01\n", + " \n", + " (1 ,.,.) = \n", + " -6.3384e-01 5.0494e-01 6.8654e-01\n", + " -6.1688e-02 2.3843e-01 8.5413e-02\n", + " 1.7572e-01 7.3334e-02 -3.5420e-01\n", + " ⋮ \n", + " 1.0617e-02 3.4396e-02 1.1085e-01\n", + " 1.0521e-01 1.0961e-01 1.7268e-01\n", + " -9.4826e-02 2.1547e-01 3.2199e-01\n", + " \n", + " (2 ,.,.) = \n", + " 5.9874e-01 1.4641e+00 -2.4349e-01\n", + " -1.1605e-01 7.6056e-02 -4.8551e-01\n", + " -4.4155e-02 9.2776e-02 -2.0977e-01\n", + " ⋮ \n", + " -5.5105e-02 1.1099e-01 3.2921e-01\n", + " -3.0498e-03 1.0972e-01 3.7460e-01\n", + " 2.8244e-01 5.9271e-01 1.1813e+00\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " -3.3863e-01 3.4396e-02 -9.0110e-01\n", + " 2.6420e-01 -1.7286e-01 -2.4213e-02\n", + " 4.7889e-02 3.2799e-01 -6.6698e-02\n", + " ⋮ \n", + " -1.3399e-01 -9.5224e-02 -7.3040e-02\n", + " -1.1115e-02 2.4881e-02 -3.5365e-02\n", + " 2.4877e-01 1.2823e-01 1.5913e-01\n", + " \n", + " (78,.,.) = \n", + " 2.5783e-01 3.3355e-01 8.9789e-02\n", + " -7.6974e-03 -5.6598e-02 -2.3089e-02\n", + " 2.2232e-02 5.1629e-03 -3.7251e-02\n", + " ⋮ \n", + " -9.2541e-02 1.7696e-02 3.5425e-02\n", + " -6.2737e-02 -5.6951e-02 -3.3937e-02\n", + " 1.1730e-01 3.1792e-01 3.2876e-01\n", + " \n", + " (79,.,.) = \n", + " 7.1183e-01 -4.5185e-02 4.4113e-01\n", + " -3.0985e-01 1.8060e-01 -7.5757e-02\n", + " -9.0891e-02 8.3236e-02 -4.6741e-02\n", + " ⋮ \n", + " -2.8031e-02 3.6725e-02 -1.4995e-01\n", + " -2.8456e-01 -4.5680e-02 -8.1578e-02\n", + " 3.2646e-01 4.2007e-01 4.3912e-01\n", + " [torch.FloatTensor of size 80x80x3]),\n", + " ('module.postnet.conv1d_banks.2.bn.weight', \n", + " 1.1050\n", + " -12.6208\n", + " -0.6726\n", + " -4.5285\n", + " 0.1909\n", + " 0.4239\n", + " -0.0046\n", + " -4.7432\n", + " -7.8804\n", + " -4.4433\n", + " -14.6568\n", + " 0.5739\n", + " 1.0171\n", + " -5.0379\n", + " -11.2187\n", + " -4.2271\n", + " -7.7085\n", + " -8.0594\n", + " -1.3077\n", + " 0.9681\n", + " -3.9361\n", + " -17.2516\n", + " -5.4521\n", + " 0.0564\n", + " 0.2879\n", + " 0.4618\n", + " -13.9111\n", + " -3.3999\n", + " 0.1262\n", + " -14.1449\n", + " -15.6368\n", + " -3.6486\n", + " 0.4093\n", + " 0.1321\n", + " 0.0248\n", + " -4.5585\n", + " -20.8631\n", + " -3.5994\n", + " -11.6284\n", + " -14.0767\n", + " -4.4640\n", + " -13.8108\n", + " -12.9264\n", + " 0.2905\n", + " -15.1739\n", + " -1.8180\n", + " -11.9922\n", + " -8.4710\n", + " -0.0151\n", + " -0.5992\n", + " 0.2398\n", + " -12.1313\n", + " -3.7233\n", + " 0.7356\n", + " -14.2762\n", + " -18.0932\n", + " -2.5095\n", + " 0.6036\n", + " -12.8876\n", + " 1.1553\n", + " -11.8942\n", + " 0.9971\n", + " -4.0731\n", + " 0.5014\n", + " -4.7933\n", + " 0.9338\n", + " 0.3654\n", + " -12.9173\n", + " 0.1026\n", + " -14.0002\n", + " -8.5936\n", + " 0.5326\n", + " -2.1148\n", + " -3.5482\n", + " -13.0111\n", + " -18.3692\n", + " 0.5072\n", + " -0.8550\n", + " -4.5312\n", + " -8.0246\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.2.bn.bias', \n", + " -0.5262\n", + " -0.2552\n", + " -0.3539\n", + " -2.0449\n", + " -0.1213\n", + " -0.2403\n", + " -4.1364\n", + " -3.9105\n", + " -0.7265\n", + " -4.1398\n", + " -0.4853\n", + " -0.2733\n", + " -0.7255\n", + " -4.6119\n", + " -0.0156\n", + " -3.2841\n", + " 0.1398\n", + " -0.5341\n", + " -0.3197\n", + " -0.6035\n", + " -3.9686\n", + " -0.2954\n", + " -0.1068\n", + " -0.2325\n", + " -0.3792\n", + " -0.0235\n", + " -0.2452\n", + " -0.1333\n", + " 1.4335\n", + " -0.5091\n", + " -0.3646\n", + " -3.0977\n", + " -0.4734\n", + " 0.4052\n", + " -1.2922\n", + " -3.6614\n", + " -0.4880\n", + " -0.1273\n", + " -0.5268\n", + " -0.4922\n", + " -0.1440\n", + " -0.4297\n", + " -0.4102\n", + " -0.3040\n", + " -0.3347\n", + " -0.2140\n", + " -0.3307\n", + " -0.1347\n", + " 0.5467\n", + " 0.2248\n", + " -0.1635\n", + " -0.4661\n", + " -1.5422\n", + " -0.0478\n", + " -0.3919\n", + " -0.2397\n", + " 0.9143\n", + " -0.2806\n", + " -0.3381\n", + " -0.7008\n", + " -0.1280\n", + " -0.6332\n", + " -1.0078\n", + " -0.1564\n", + " -4.5764\n", + " -0.5432\n", + " -0.1128\n", + " -0.3690\n", + " 1.3157\n", + " -0.4662\n", + " -0.4705\n", + " -0.2594\n", + " -0.1613\n", + " -0.0501\n", + " -0.3376\n", + " -0.3958\n", + " -0.0910\n", + " 0.0476\n", + " -3.5011\n", + " -0.9231\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.2.bn.running_mean', \n", + " 5.6327e-01\n", + " 1.1281e-05\n", + " 3.5915e-01\n", + " 1.2443e-06\n", + " 3.6771e-02\n", + " 1.0874e+00\n", + " 4.7118e+00\n", + " 1.7777e-06\n", + " 4.6231e-06\n", + " 5.6352e-07\n", + " 3.9949e-05\n", + " 1.0184e-01\n", + " 2.5457e-01\n", + " 1.4301e-06\n", + " 5.0850e-06\n", + " 5.9391e-06\n", + " 5.5783e-06\n", + " 1.1063e-06\n", + " 2.1314e-04\n", + " 5.6636e-01\n", + " 1.9147e-07\n", + " 3.6496e-05\n", + " 3.3147e-05\n", + " 5.0854e+00\n", + " 2.1090e-02\n", + " 1.9207e-01\n", + " 3.2702e-05\n", + " 3.6508e-05\n", + " 8.4609e+00\n", + " 2.1203e-05\n", + " 1.6400e-05\n", + " 1.8826e-06\n", + " 1.6477e-01\n", + " 7.0851e+00\n", + " 8.7817e+00\n", + " 1.2372e-07\n", + " 5.8524e-05\n", + " 2.7282e-05\n", + " 7.8823e-06\n", + " 1.8508e-05\n", + " 2.0674e-05\n", + " 1.2403e-06\n", + " 7.4226e-06\n", + " 8.3879e-02\n", + " 5.3513e-05\n", + " 1.0964e-04\n", + " 2.9298e-06\n", + " 2.0372e-05\n", + " 5.7011e+00\n", + " 3.3937e-01\n", + " 4.5090e-02\n", + " 2.0355e-05\n", + " 7.5500e-06\n", + " 7.9768e-02\n", + " 1.0328e-05\n", + " 3.2163e-05\n", + " 3.6317e-05\n", + " 2.8576e-01\n", + " 7.1058e-06\n", + " 8.7182e-01\n", + " 6.5551e-06\n", + " 5.9124e-01\n", + " 3.8902e-07\n", + " 1.0481e+00\n", + " 3.0005e-06\n", + " 3.4302e-01\n", + " 1.0958e-01\n", + " 1.8918e-05\n", + " 7.7344e+00\n", + " 4.7039e-05\n", + " 1.6219e-05\n", + " 6.2909e-01\n", + " 2.4814e-05\n", + " 6.8329e-06\n", + " 4.5856e-05\n", + " 8.4643e-05\n", + " 5.9838e-01\n", + " 8.4416e-01\n", + " 1.6249e-07\n", + " 4.5940e-07\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.2.bn.running_var', \n", + " 8.5514e-02\n", + " 1.8193e-07\n", + " 3.7855e-01\n", + " 1.5033e-08\n", + " 6.3139e-03\n", + " 8.5694e-01\n", + " 4.1488e+00\n", + " 3.2303e-08\n", + " 3.3413e-08\n", + " 4.2499e-10\n", + " 9.4977e-07\n", + " 3.7310e-02\n", + " 2.6780e-02\n", + " 4.3901e-09\n", + " 5.3359e-08\n", + " 1.7452e-08\n", + " 7.7886e-08\n", + " 8.0926e-09\n", + " 4.5635e-06\n", + " 8.2369e-02\n", + " 3.3076e-10\n", + " 1.0183e-06\n", + " 8.9923e-07\n", + " 5.0726e+00\n", + " 5.1358e-03\n", + " 1.1375e-01\n", + " 8.6792e-07\n", + " 5.6404e-07\n", + " 1.4767e+01\n", + " 2.7675e-07\n", + " 2.7659e-07\n", + " 1.7719e-08\n", + " 5.3666e-02\n", + " 1.0820e+01\n", + " 1.5185e+01\n", + " 1.0127e-10\n", + " 1.6437e-06\n", + " 2.5839e-07\n", + " 1.6270e-07\n", + " 6.3398e-07\n", + " 5.0490e-07\n", + " 3.4103e-09\n", + " 6.3605e-08\n", + " 4.0738e-02\n", + " 1.3719e-06\n", + " 3.3032e-06\n", + " 1.4438e-08\n", + " 1.9050e-07\n", + " 6.0625e+00\n", + " 4.8638e-02\n", + " 1.6690e-02\n", + " 2.1606e-07\n", + " 4.0492e-08\n", + " 1.8964e-02\n", + " 1.5395e-07\n", + " 1.0584e-06\n", + " 1.5166e-06\n", + " 1.5925e-01\n", + " 1.2890e-07\n", + " 1.4933e-01\n", + " 5.4070e-08\n", + " 1.1468e-01\n", + " 2.1891e-09\n", + " 9.0264e-01\n", + " 1.4358e-07\n", + " 4.5188e-02\n", + " 1.1012e-01\n", + " 4.2025e-07\n", + " 1.2277e+01\n", + " 1.3405e-06\n", + " 4.2785e-07\n", + " 1.9064e-01\n", + " 4.0780e-07\n", + " 1.0703e-07\n", + " 1.2103e-07\n", + " 2.4075e-06\n", + " 4.2777e-01\n", + " 2.8713e-01\n", + " 8.7225e-10\n", + " 4.4934e-09\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.3.conv1d.weight', \n", + " (0 ,.,.) = \n", + " -1.3261e+00 -2.0517e-01 -4.4074e-01 7.2879e-02\n", + " 2.4019e-01 -1.9528e-01 -1.5823e-02 -2.8905e-01\n", + " 2.7706e-01 -4.2438e-01 -6.4276e-02 6.8291e-02\n", + " ⋮ \n", + " -5.1208e-02 -1.0592e-01 1.4846e-02 -3.9983e-03\n", + " 8.5784e-02 1.0458e-01 1.7470e-01 8.6012e-02\n", + " -2.6250e-02 -1.8079e-02 1.5872e-02 1.1640e-01\n", + " \n", + " (1 ,.,.) = \n", + " -3.0618e-01 1.9623e-01 -4.7689e-01 3.7074e-02\n", + " -5.9695e-01 -5.6618e-01 2.5753e-02 -5.4921e-02\n", + " 5.4218e-02 2.6022e-02 1.5518e-02 1.4428e-01\n", + " ⋮ \n", + " 1.2883e-01 9.6835e-02 6.7881e-02 -1.6458e-01\n", + " 1.4528e-01 4.6192e-02 1.0268e-01 -1.5206e-01\n", + " -1.3590e-02 -5.6363e-02 3.4911e-03 -3.2345e-01\n", + " \n", + " (2 ,.,.) = \n", + " -4.5412e-02 2.2586e-01 3.5024e-01 5.4553e-01\n", + " 2.3056e-02 1.1484e-02 6.0658e-02 -6.6450e-02\n", + " -9.8695e-02 7.8628e-02 6.5969e-03 3.2407e-02\n", + " ⋮ \n", + " 4.2043e-02 -1.1394e-02 -1.5054e-01 -2.1846e-02\n", + " -5.7694e-02 7.4430e-02 4.4309e-02 -1.0059e-01\n", + " 3.6066e-02 2.2695e-01 1.2893e-01 1.8071e-01\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " 9.2358e-01 -3.5119e-02 -5.9368e-01 -1.1777e-01\n", + " -4.0169e-01 2.6219e-01 3.1201e-01 -3.7066e-01\n", + " -7.5183e-02 4.6646e-02 -3.9222e-02 2.0479e-02\n", + " ⋮ \n", + " 2.2368e-02 3.6631e-02 -1.6998e-01 4.6614e-02\n", + " 2.6064e-02 5.3832e-02 9.7212e-03 1.9178e-01\n", + " 6.9384e-02 3.0382e-03 6.0725e-02 4.4700e-01\n", + " \n", + " (78,.,.) = \n", + " -1.0538e-01 -1.1898e-01 -1.0235e-01 -1.4249e-01\n", + " -8.1546e-02 -1.5799e-02 -8.2799e-02 -8.0971e-02\n", + " 5.4072e-03 3.2377e-02 5.7772e-03 4.8725e-02\n", + " ⋮ \n", + " -1.5251e-02 -5.8531e-02 2.1212e-02 -6.8767e-02\n", + " 7.3147e-03 3.5619e-03 1.1491e-01 1.1213e-01\n", + " -1.4844e-01 -1.1175e-01 -5.2830e-02 -1.0134e-01\n", + " \n", + " (79,.,.) = \n", + " 1.3038e-01 2.6935e-01 1.2239e-01 -1.0109e-01\n", + " -1.2836e-02 -2.7897e-02 6.5750e-02 1.0875e-01\n", + " -8.8257e-04 2.9252e-02 -3.2304e-02 2.3341e-02\n", + " ⋮ \n", + " -5.9310e-02 -1.7101e-02 -9.5936e-02 -2.6483e-02\n", + " 3.8124e-02 -5.4581e-02 -2.2384e-02 1.0250e-01\n", + " 1.1930e-01 1.7073e-01 5.8444e-02 2.3007e-01\n", + " [torch.FloatTensor of size 80x80x4]),\n", + " ('module.postnet.conv1d_banks.3.bn.weight', \n", + " -2.5268\n", + " 0.4578\n", + " -12.8922\n", + " 0.0399\n", + " 0.0035\n", + " 0.5769\n", + " -4.0805\n", + " -4.1822\n", + " 0.0547\n", + " -3.5851\n", + " -9.6606\n", + " -3.9226\n", + " -4.4454\n", + " -13.0319\n", + " 0.4712\n", + " -4.4964\n", + " -11.3242\n", + " 0.3891\n", + " -3.9971\n", + " -14.5917\n", + " -3.2207\n", + " -1.1421\n", + " -4.2382\n", + " -12.9617\n", + " -4.2000\n", + " 0.3799\n", + " -4.8247\n", + " -2.3899\n", + " -3.1779\n", + " -4.3621\n", + " 0.1742\n", + " -4.8606\n", + " -3.2211\n", + " 0.4293\n", + " 0.4671\n", + " 0.6593\n", + " -0.0235\n", + " 0.0619\n", + " 0.2185\n", + " -4.0747\n", + " -4.9047\n", + " 0.1288\n", + " -4.2326\n", + " 0.4182\n", + " 0.6918\n", + " 0.5098\n", + " -8.0619\n", + " 0.4858\n", + " -11.1034\n", + " -4.1302\n", + " -3.1056\n", + " 0.0811\n", + " 0.3427\n", + " -2.8402\n", + " -11.3985\n", + " -11.4768\n", + " 0.0237\n", + " -2.0880\n", + " -0.0084\n", + " -4.7499\n", + " 0.4351\n", + " -0.3997\n", + " 0.4541\n", + " -4.9137\n", + " -11.7080\n", + " 0.9272\n", + " 0.0016\n", + " -4.0587\n", + " -14.6625\n", + " -0.1130\n", + " -4.9753\n", + " 0.2320\n", + " -11.6048\n", + " -1.7832\n", + " -2.4467\n", + " -12.0570\n", + " -4.6870\n", + " -15.0827\n", + " -1.8075\n", + " -4.0728\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.3.bn.bias', \n", + " -0.1262\n", + " -0.3013\n", + " -0.8146\n", + " 0.6035\n", + " -0.3680\n", + " -0.2605\n", + " -0.3404\n", + " -3.5481\n", + " 0.0310\n", + " -0.1748\n", + " -0.4248\n", + " -0.3888\n", + " -1.1308\n", + " -0.5568\n", + " -0.5755\n", + " -3.9179\n", + " -0.4536\n", + " -0.4253\n", + " -1.2827\n", + " -0.4353\n", + " -0.3216\n", + " -3.5588\n", + " -3.9900\n", + " -0.1729\n", + " -0.7320\n", + " -0.1958\n", + " -3.7417\n", + " 0.1820\n", + " -0.3782\n", + " -3.8825\n", + " -0.0597\n", + " -4.7667\n", + " -0.2451\n", + " -0.2762\n", + " 0.2594\n", + " -0.5799\n", + " 0.0799\n", + " 0.0899\n", + " -0.0234\n", + " -0.8848\n", + " -3.8244\n", + " -0.1071\n", + " -3.9127\n", + " -0.4297\n", + " -0.1180\n", + " -0.2737\n", + " -0.5355\n", + " -0.0077\n", + " -0.1744\n", + " -4.1097\n", + " -0.0084\n", + " -0.2154\n", + " -0.4333\n", + " -0.5057\n", + " -1.2638\n", + " -0.5293\n", + " -0.3836\n", + " 0.0018\n", + " -2.3551\n", + " -4.5227\n", + " -0.0428\n", + " 0.4557\n", + " -0.3260\n", + " -3.9979\n", + " -0.1996\n", + " -0.0859\n", + " -1.3325\n", + " -4.4337\n", + " -0.5358\n", + " 1.0591\n", + " -4.1141\n", + " -0.3156\n", + " -0.1987\n", + " -0.3252\n", + " -0.3384\n", + " -0.6654\n", + " -4.1062\n", + " -0.3360\n", + " -2.9950\n", + " -3.3073\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.3.bn.running_mean', \n", + " 9.0527e-05\n", + " 6.7213e-01\n", + " 2.2939e-06\n", + " 9.4556e+00\n", + " 7.7267e+00\n", + " 2.5540e-01\n", + " 7.7247e-06\n", + " 1.1427e-08\n", + " 1.0398e+01\n", + " 9.6055e-05\n", + " 3.0045e-06\n", + " 2.4925e-06\n", + " 8.6642e-06\n", + " 3.0603e-06\n", + " 3.1670e-01\n", + " 4.4633e-06\n", + " 1.0813e-06\n", + " 3.3733e-01\n", + " 5.9336e-06\n", + " 1.1803e-05\n", + " 5.7429e-06\n", + " 1.4443e-05\n", + " 1.2036e-06\n", + " 7.2304e-06\n", + " 5.8735e-06\n", + " 3.4058e-01\n", + " 7.3811e-06\n", + " 1.1589e-04\n", + " 2.6694e-05\n", + " 1.2107e-10\n", + " 1.3585e+01\n", + " 2.1797e-06\n", + " 1.2628e-05\n", + " 2.9931e+00\n", + " 2.0679e-01\n", + " 9.1944e-01\n", + " 4.9761e+00\n", + " 1.2069e+01\n", + " 3.6748e+00\n", + " 5.5600e-06\n", + " 1.0438e-08\n", + " 7.5946e+00\n", + " 6.3475e-06\n", + " 2.8479e-01\n", + " 3.9223e-01\n", + " 1.1487e+00\n", + " 3.7495e-06\n", + " 4.1301e-01\n", + " 4.5427e-07\n", + " 5.0823e-07\n", + " 1.7342e-05\n", + " 9.3364e+00\n", + " 2.5754e-01\n", + " 1.1765e-05\n", + " 1.9680e-06\n", + " 1.3843e-06\n", + " 8.1019e+00\n", + " 1.7430e-05\n", + " 1.4960e+00\n", + " 1.1329e-06\n", + " 3.1432e-02\n", + " 8.6991e-01\n", + " 6.7299e-02\n", + " 3.7045e-06\n", + " 2.1253e-06\n", + " 8.8729e-01\n", + " 9.0992e+00\n", + " 3.5421e-07\n", + " 2.4848e-05\n", + " 2.8979e-05\n", + " 4.1043e-07\n", + " 2.8082e+00\n", + " 2.6206e-06\n", + " 1.7932e-04\n", + " 7.1267e-05\n", + " 4.8661e-07\n", + " 1.7040e-07\n", + " 4.4248e-06\n", + " 1.5325e-05\n", + " 2.1064e-06\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.3.bn.running_var', \n", + " 1.2437e-06\n", + " 3.6682e-01\n", + " 1.5979e-08\n", + " 1.6722e+01\n", + " 1.1510e+01\n", + " 3.1597e-01\n", + " 7.3698e-08\n", + " 2.7022e-12\n", + " 2.3216e+01\n", + " 2.7142e-05\n", + " 5.0977e-08\n", + " 3.0948e-08\n", + " 6.7951e-08\n", + " 3.4256e-08\n", + " 9.0787e-02\n", + " 1.9166e-07\n", + " 9.8555e-09\n", + " 1.4556e-01\n", + " 3.7993e-08\n", + " 2.0463e-07\n", + " 9.7002e-08\n", + " 6.5270e-08\n", + " 1.2219e-08\n", + " 1.5361e-07\n", + " 7.6163e-08\n", + " 1.8414e-01\n", + " 4.5620e-08\n", + " 2.9798e-06\n", + " 7.6708e-07\n", + " 3.0188e-13\n", + " 3.2307e+01\n", + " 7.0671e-08\n", + " 4.0008e-07\n", + " 1.7935e+00\n", + " 3.5820e-01\n", + " 2.9136e-01\n", + " 5.2004e+00\n", + " 3.2772e+01\n", + " 2.9079e+00\n", + " 7.3876e-08\n", + " 8.5879e-12\n", + " 1.1208e+01\n", + " 6.4916e-08\n", + " 6.4894e-02\n", + " 2.0577e-01\n", + " 5.4269e-01\n", + " 4.1126e-08\n", + " 1.7521e-01\n", + " 9.4886e-10\n", + " 2.7684e-09\n", + " 9.6865e-07\n", + " 1.6125e+01\n", + " 1.5095e-01\n", + " 1.8722e-07\n", + " 3.4655e-08\n", + " 2.8854e-08\n", + " 1.2195e+01\n", + " 2.7359e-07\n", + " 9.6612e-01\n", + " 6.5774e-09\n", + " 9.0307e-03\n", + " 3.8151e-01\n", + " 2.9937e-02\n", + " 1.8729e-07\n", + " 2.4018e-08\n", + " 1.7031e-01\n", + " 1.5647e+01\n", + " 2.8821e-09\n", + " 1.3710e-06\n", + " 6.7044e-07\n", + " 3.3338e-09\n", + " 4.7245e+00\n", + " 1.7651e-08\n", + " 4.5999e-06\n", + " 3.1728e-06\n", + " 2.7243e-09\n", + " 4.4030e-10\n", + " 4.1070e-08\n", + " 1.1915e-07\n", + " 5.6752e-08\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.4.conv1d.weight', \n", + " (0 ,.,.) = \n", + " 1.5686e+00 -6.4739e-01 1.4181e-01 4.0395e-01 -7.0657e-01\n", + " -4.1751e-01 -2.0063e-02 1.7128e-01 -4.3060e-01 9.8187e-02\n", + " -4.4967e-02 1.4617e-01 1.0732e-01 1.3728e-01 1.6912e-01\n", + " ⋮ \n", + " 1.5863e-01 1.4459e-02 -3.8073e-03 -1.2433e-01 -3.4891e-02\n", + " 1.5925e-01 6.6438e-02 -9.0607e-03 -6.1685e-02 3.7638e-03\n", + " 1.9384e-01 1.6836e-01 -5.1740e-02 -1.5689e-01 1.0534e-03\n", + " \n", + " (1 ,.,.) = \n", + " -1.7182e-01 -1.8121e-01 -1.7164e-01 -1.9797e-01 -3.2164e-01\n", + " -2.1415e-02 3.4693e-02 -2.7767e-02 1.8646e-01 9.8169e-02\n", + " -6.0786e-02 -4.2094e-02 -4.6286e-02 6.9078e-02 9.2483e-02\n", + " ⋮ \n", + " 5.5376e-02 6.4676e-02 -3.8600e-02 5.1214e-02 -8.2247e-02\n", + " 7.9675e-02 6.6527e-02 -3.0137e-02 4.3228e-02 -6.6019e-02\n", + " 2.2593e-01 1.6549e-01 1.3740e-01 1.9141e-01 7.4694e-02\n", + " \n", + " (2 ,.,.) = \n", + " 5.8797e-01 1.1582e-01 2.7823e-01 1.8149e-01 4.8132e-02\n", + " 1.1961e-01 2.0705e-01 -5.0408e-02 3.7282e-02 -1.9043e-01\n", + " -1.5806e-01 4.0247e-02 8.6887e-02 1.2589e-01 -1.8701e-01\n", + " ⋮ \n", + " -8.8763e-02 1.3013e-02 -1.0821e-02 1.5986e-02 3.8196e-02\n", + " 1.5440e-04 -5.4442e-02 8.4634e-03 -1.2476e-01 5.0944e-02\n", + " 3.9365e-01 1.0105e-01 1.2978e-01 2.1548e-02 6.2940e-02\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " -1.5847e-01 2.6119e-01 -5.9377e-02 -1.8277e+00 -1.5449e+00\n", + " 2.7968e-01 2.7494e-01 -2.2583e-01 1.4109e-01 -7.7504e-01\n", + " -6.5495e-02 -6.3089e-02 1.9451e-01 2.7907e-01 -4.3442e-02\n", + " ⋮ \n", + " 4.2854e-02 5.0023e-02 -6.5699e-02 -7.9344e-02 -1.7509e-01\n", + " 6.1825e-02 1.6443e-01 -1.5240e-02 1.2528e-01 1.4501e-01\n", + " -1.0310e-01 3.6294e-01 -8.2844e-04 1.3113e-01 1.6783e-01\n", + " \n", + " (78,.,.) = \n", + " -9.2892e-02 -2.0476e-01 -1.9328e-01 -1.6904e-01 -3.7297e-01\n", + " 6.4856e-02 -2.9276e-02 6.3521e-02 -1.6848e-02 -3.5620e-02\n", + " 1.7215e-02 6.9829e-02 -1.4160e-01 3.9499e-02 4.0538e-02\n", + " ⋮ \n", + " 3.3965e-02 6.5948e-02 2.1840e-02 5.3068e-02 -3.8973e-02\n", + " 6.9934e-02 -3.0774e-02 3.1385e-03 3.4650e-02 -5.8947e-02\n", + " 7.1828e-02 4.0206e-02 1.0805e-01 2.2138e-01 1.2469e-01\n", + " \n", + " (79,.,.) = \n", + " -1.5203e-01 -3.8435e-02 1.3500e-02 1.6194e-02 -1.2227e-01\n", + " 6.4620e-02 2.8093e-02 1.2704e-02 4.0136e-02 -2.4529e-01\n", + " -3.5442e-02 2.9202e-02 2.3826e-02 4.1322e-03 -1.2359e-01\n", + " ⋮ \n", + " -5.1499e-02 3.8150e-02 4.7023e-03 4.8181e-02 -3.8601e-02\n", + " -4.0502e-02 2.0468e-03 -5.0560e-02 5.2808e-02 8.2607e-03\n", + " 3.4581e-02 -1.8643e-03 7.2634e-02 1.5115e-01 5.9412e-02\n", + " [torch.FloatTensor of size 80x80x5]),\n", + " ('module.postnet.conv1d_banks.4.bn.weight', \n", + " -3.1114\n", + " -3.6436\n", + " -11.5585\n", + " -10.4227\n", + " -0.4435\n", + " -4.2407\n", + " -2.6719\n", + " 0.5268\n", + " -21.6844\n", + " 1.4152\n", + " 0.8414\n", + " -7.4078\n", + " 0.0875\n", + " -0.8201\n", + " -2.0815\n", + " -4.2865\n", + " 0.9424\n", + " 1.1091\n", + " -4.4419\n", + " -11.9075\n", + " -8.4086\n", + " -2.7601\n", + " 0.4206\n", + " 0.4259\n", + " 0.3753\n", + " -4.8195\n", + " 0.7709\n", + " -11.3462\n", + " 0.5276\n", + " 0.9512\n", + " -11.5833\n", + " -1.1161\n", + " 0.4165\n", + " 0.9368\n", + " 0.7865\n", + " -4.8721\n", + " -2.7109\n", + " -3.8780\n", + " -4.2648\n", + " -12.0094\n", + " 0.0308\n", + " 0.6082\n", + " -10.4139\n", + " 0.0122\n", + " 0.6591\n", + " 0.6041\n", + " -1.3099\n", + " -0.8088\n", + " 0.0389\n", + " 0.8472\n", + " -13.2373\n", + " -3.2597\n", + " -12.4455\n", + " 0.1006\n", + " -2.6336\n", + " -11.6239\n", + " -4.3382\n", + " -0.7267\n", + " 0.3470\n", + " -10.8323\n", + " 0.5100\n", + " -0.0568\n", + " 0.6117\n", + " -3.5144\n", + " 0.3754\n", + " 0.0783\n", + " -1.6908\n", + " 0.7457\n", + " -13.5645\n", + " -3.8569\n", + " -0.6424\n", + " -4.6047\n", + " -1.3007\n", + " 0.6398\n", + " 0.5641\n", + " -13.1959\n", + " -1.5564\n", + " -15.4920\n", + " -1.1279\n", + " -0.0059\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.4.bn.bias', \n", + " -0.0907\n", + " 0.1247\n", + " -0.6848\n", + " -0.6421\n", + " -0.1463\n", + " -1.9022\n", + " -0.4610\n", + " -0.3081\n", + " -0.4921\n", + " -0.6449\n", + " -0.4662\n", + " -0.1597\n", + " -0.0268\n", + " -0.0688\n", + " -0.1862\n", + " -3.4868\n", + " -0.3786\n", + " -0.2628\n", + " -1.9394\n", + " -0.4781\n", + " -0.5795\n", + " -3.9740\n", + " -0.2431\n", + " -0.3317\n", + " -0.3059\n", + " -4.1944\n", + " -0.4192\n", + " -0.4415\n", + " -0.2498\n", + " -0.1404\n", + " -0.5222\n", + " -0.0211\n", + " -0.2708\n", + " -0.6674\n", + " -0.6530\n", + " -0.5205\n", + " -0.1410\n", + " -0.2570\n", + " -0.2570\n", + " -0.4062\n", + " 0.8527\n", + " -0.5576\n", + " -0.1164\n", + " -0.2757\n", + " -0.1256\n", + " -0.6343\n", + " -0.2397\n", + " 0.1046\n", + " 1.1796\n", + " -0.1107\n", + " -0.2626\n", + " -0.7130\n", + " -0.5751\n", + " -0.1367\n", + " -0.2514\n", + " -0.5131\n", + " -2.3786\n", + " 0.1182\n", + " 0.0462\n", + " -0.6482\n", + " -0.3057\n", + " -1.7059\n", + " 0.0097\n", + " -0.2467\n", + " -0.1131\n", + " -0.2379\n", + " -0.2998\n", + " -0.0255\n", + " -0.4650\n", + " -2.1786\n", + " -0.1979\n", + " -4.2684\n", + " -0.0443\n", + " -0.1549\n", + " -0.4398\n", + " -0.5989\n", + " -0.1807\n", + " -0.5320\n", + " 0.3008\n", + " -4.1098\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.4.bn.running_mean', \n", + " 1.4791e-05\n", + " 7.1580e-06\n", + " 5.4625e-07\n", + " 1.5165e-06\n", + " 2.9518e-01\n", + " 1.1891e-05\n", + " 4.3821e-02\n", + " 1.6258e-01\n", + " 9.1277e-05\n", + " 4.3748e-01\n", + " 4.9826e-01\n", + " 4.8062e-06\n", + " 1.0348e+01\n", + " 1.1714e-01\n", + " 1.5927e-05\n", + " 1.1033e-06\n", + " 6.1062e-01\n", + " 3.8079e-01\n", + " 5.2303e-06\n", + " 8.5180e-06\n", + " 1.2921e-08\n", + " 8.4226e-07\n", + " 8.1688e-02\n", + " 1.3962e+00\n", + " 6.3438e-02\n", + " 2.4138e-06\n", + " 1.9679e+00\n", + " 1.0141e-06\n", + " 2.7648e-01\n", + " 3.3054e-01\n", + " 1.9053e-06\n", + " 2.1194e-01\n", + " 7.0494e-02\n", + " 8.1467e-01\n", + " 2.8048e-01\n", + " 7.4746e-06\n", + " 3.4446e-05\n", + " 4.9036e-05\n", + " 4.3190e-04\n", + " 3.0069e-06\n", + " 8.9921e+00\n", + " 3.8910e-01\n", + " 7.9356e-06\n", + " 1.2102e+01\n", + " 1.1947e+00\n", + " 9.2566e-01\n", + " 1.3713e-05\n", + " 4.0264e-01\n", + " 1.3412e+01\n", + " 8.5061e-01\n", + " 1.3104e-06\n", + " 3.8468e-06\n", + " 2.3956e-06\n", + " 1.9958e+01\n", + " 1.2555e-04\n", + " 1.4633e-06\n", + " 2.1924e-07\n", + " 3.1256e-01\n", + " 3.9039e+00\n", + " 3.6868e-06\n", + " 4.6208e-01\n", + " 4.9890e-01\n", + " 8.7584e-02\n", + " 2.2797e-05\n", + " 6.0309e-02\n", + " 1.0651e+01\n", + " 2.3329e-01\n", + " 3.6643e-01\n", + " 6.9491e-06\n", + " 7.5810e-06\n", + " 4.1290e-01\n", + " 3.0629e-06\n", + " 2.8954e-01\n", + " 4.0581e-01\n", + " 7.8708e-02\n", + " 8.6479e-06\n", + " 1.9115e-05\n", + " 1.5491e-05\n", + " 1.8777e-05\n", + " 3.3491e+00\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.4.bn.running_var', \n", + " 1.5262e-06\n", + " 1.3771e-07\n", + " 5.3700e-09\n", + " 2.2306e-08\n", + " 8.0874e-02\n", + " 6.9410e-08\n", + " 3.0631e-03\n", + " 1.6535e-01\n", + " 2.8116e-06\n", + " 6.4422e-02\n", + " 1.4913e-01\n", + " 5.5257e-08\n", + " 2.0834e+01\n", + " 1.7277e-02\n", + " 2.9805e-07\n", + " 1.5038e-08\n", + " 1.0679e-01\n", + " 4.8342e-02\n", + " 8.1840e-09\n", + " 6.3791e-07\n", + " 2.6678e-11\n", + " 2.2232e-09\n", + " 5.4488e-02\n", + " 6.7553e-01\n", + " 1.8869e-02\n", + " 1.2107e-07\n", + " 2.3370e+00\n", + " 3.0896e-09\n", + " 7.6846e-02\n", + " 7.0930e-02\n", + " 2.5471e-08\n", + " 2.4525e-02\n", + " 2.3188e-02\n", + " 1.3394e-01\n", + " 7.9304e-02\n", + " 2.3824e-07\n", + " 2.9613e-06\n", + " 9.3945e-07\n", + " 4.6336e-05\n", + " 4.3658e-08\n", + " 1.5431e+01\n", + " 9.4522e-02\n", + " 1.2893e-07\n", + " 2.6148e+01\n", + " 4.4857e-01\n", + " 5.1562e-01\n", + " 6.7592e-07\n", + " 9.9170e-02\n", + " 3.2691e+01\n", + " 4.5267e-01\n", + " 3.0760e-09\n", + " 3.3099e-08\n", + " 2.6102e-08\n", + " 7.2174e+01\n", + " 5.0823e-06\n", + " 1.1059e-08\n", + " 9.1769e-10\n", + " 6.5382e-02\n", + " 5.2364e+00\n", + " 6.6680e-08\n", + " 1.0776e-01\n", + " 1.1825e-01\n", + " 3.3046e-02\n", + " 4.7272e-07\n", + " 3.1214e-02\n", + " 2.3556e+01\n", + " 1.5954e-02\n", + " 2.6601e-01\n", + " 1.4740e-07\n", + " 7.1719e-08\n", + " 9.2206e-02\n", + " 9.0131e-08\n", + " 4.1669e-02\n", + " 2.6487e-01\n", + " 3.4801e-02\n", + " 1.5547e-07\n", + " 7.8035e-07\n", + " 4.5604e-07\n", + " 3.1844e-07\n", + " 2.0638e+00\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.5.conv1d.weight', \n", + " (0 ,.,.) = \n", + " -5.4860e-01 2.0713e-01 1.6055e+00 -5.2223e-01 1.8030e+00 2.6348e-01\n", + " -2.0093e-01 4.5769e-02 6.3496e-01 2.9092e-01 1.0631e-01 1.8241e-01\n", + " -1.3228e-01 7.9001e-02 4.3514e-02 1.4466e-01 -8.5870e-02 -1.6509e-01\n", + " ⋮ \n", + " -1.5503e-02 4.7154e-02 5.2289e-02 1.6896e-02 2.2193e-02 1.3157e-01\n", + " -1.2542e-01 -3.9076e-02 -4.4819e-02 2.0163e-01 2.1832e-01 3.3319e-01\n", + " -2.2883e-01 -2.0393e-01 -7.0349e-02 -2.6324e-02 -5.9681e-02 3.6948e-01\n", + " \n", + " (1 ,.,.) = \n", + " -1.7623e-01 -1.3750e-01 -3.1823e-02 -1.9775e-01 5.8317e-02 1.9174e-01\n", + " -3.5452e-02 -2.3127e-02 -2.1820e-02 2.3226e-02 1.4172e-01 2.6835e-01\n", + " -1.3102e-01 -2.6183e-02 -6.7891e-02 -1.7501e-02 -8.8783e-02 -5.0563e-02\n", + " ⋮ \n", + " -4.0606e-02 2.6082e-02 6.4175e-02 4.1513e-02 9.5760e-02 5.5027e-02\n", + " -1.0897e-02 9.1545e-02 4.0820e-02 5.1575e-02 4.0873e-02 -2.8130e-02\n", + " 3.7406e-02 -4.9818e-03 1.2074e-02 -1.0079e-02 1.5794e-02 3.5829e-03\n", + " \n", + " (2 ,.,.) = \n", + " 8.6653e-01 7.1018e-01 1.1930e-01 6.7257e-01 3.2135e-01 2.2231e-01\n", + " -5.5292e-01 -1.8671e-01 1.7102e-01 1.4232e-01 2.1184e-01 -8.6735e-02\n", + " 6.7562e-02 1.0823e-02 1.7989e-01 1.9343e-01 2.2654e-01 -5.1714e-02\n", + " ⋮ \n", + " -9.9573e-02 -6.6490e-02 -2.6533e-02 6.5583e-02 2.2089e-02 3.8572e-02\n", + " 5.8930e-02 -1.1670e-02 1.4769e-02 7.4453e-02 5.9849e-03 7.0727e-02\n", + " 3.0224e-01 5.2385e-03 2.7315e-01 2.0238e-01 1.1285e-01 3.0515e-01\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " -1.4380e-01 -1.2970e-01 -7.8037e-02 -1.1121e-01 -9.8119e-02 4.0675e-01\n", + " -2.5799e-01 -3.3438e-01 -2.3150e-01 -2.2831e-01 -1.6482e-01 1.7353e-01\n", + " -4.2796e-02 -4.1783e-02 1.7217e-02 3.3401e-02 4.2506e-02 -6.9167e-02\n", + " ⋮ \n", + " 2.7723e-02 3.0782e-02 9.9269e-03 3.5218e-02 -4.7910e-02 -3.2218e-02\n", + " -5.2994e-03 2.0554e-02 2.8580e-02 3.0602e-02 -1.3117e-02 -5.0382e-02\n", + " -6.8279e-02 -1.0015e-02 -1.8131e-02 -7.6639e-02 -7.6285e-02 -2.6653e-01\n", + " \n", + " (78,.,.) = \n", + " 1.0527e-01 9.4512e-02 1.0673e-01 1.6742e-01 5.7785e-02 -2.8438e-02\n", + " 7.4955e-02 3.0069e-02 6.6862e-02 3.0888e-02 3.1180e-02 1.3977e-01\n", + " 9.2024e-03 2.2835e-02 -4.1930e-02 1.0184e-01 7.6296e-02 6.0169e-03\n", + " ⋮ \n", + " -9.7722e-02 -1.0904e-03 -6.9749e-02 -6.9405e-03 -1.2642e-01 -9.5243e-02\n", + " 5.8125e-03 -6.7751e-02 1.1047e-01 8.2299e-03 -4.2008e-02 5.1742e-02\n", + " 7.3912e-02 8.3876e-02 6.2410e-02 7.7047e-02 6.0862e-02 7.4805e-02\n", + " \n", + " (79,.,.) = \n", + " -1.0010e+00 -9.8334e-02 -1.6020e+00 7.5413e-01 -4.1561e-01 1.0840e+00\n", + " 2.4568e-01 3.1564e-01 -3.4452e-01 -4.6273e-02 1.0520e+00 -9.7148e-01\n", + " -7.6527e-02 -2.2401e-01 7.9422e-02 -2.6896e-01 3.6150e-01 6.4700e-02\n", + " ⋮ \n", + " 1.4473e-01 3.2172e-01 2.0931e-01 1.8520e-01 -2.2031e-01 -1.4759e-01\n", + " -6.1705e-02 -6.6544e-03 -1.3486e-01 -9.8805e-02 -1.5604e-01 -6.9360e-02\n", + " -3.2565e-01 -4.4507e-01 -4.6296e-01 2.4712e-01 3.9803e-01 7.2480e-01\n", + " [torch.FloatTensor of size 80x80x6]),\n", + " ('module.postnet.conv1d_banks.5.bn.weight', \n", + " -1.9655\n", + " -0.9887\n", + " -10.7031\n", + " 0.2270\n", + " -2.5000\n", + " -10.3362\n", + " -5.2901\n", + " -10.6125\n", + " -4.5590\n", + " -11.7356\n", + " 0.3789\n", + " -12.5152\n", + " -2.9383\n", + " -4.9282\n", + " -1.7910\n", + " -10.5731\n", + " 0.5355\n", + " -12.9075\n", + " 0.5282\n", + " 0.5553\n", + " 0.3319\n", + " 0.1124\n", + " -4.7897\n", + " 0.2692\n", + " 0.8829\n", + " 0.3214\n", + " -9.8628\n", + " -1.3829\n", + " -0.0948\n", + " 0.1667\n", + " 0.0405\n", + " -3.3630\n", + " -9.5162\n", + " 0.5304\n", + " -11.7365\n", + " -2.2216\n", + " 0.1461\n", + " 0.5525\n", + " 0.3589\n", + " -6.6794\n", + " -0.0055\n", + " -4.9119\n", + " -10.5283\n", + " 0.9588\n", + " 0.4601\n", + " 0.3697\n", + " 0.5197\n", + " -1.0671\n", + " 0.0264\n", + " 0.3258\n", + " -11.7318\n", + " -2.6943\n", + " -12.6896\n", + " -0.7154\n", + " -11.4747\n", + " -10.0193\n", + " 0.6377\n", + " 1.0143\n", + " 0.4361\n", + " -4.1749\n", + " 0.5932\n", + " 0.4845\n", + " -8.0335\n", + " -11.2354\n", + " -8.8210\n", + " -3.1390\n", + " -11.2160\n", + " 0.0663\n", + " 0.6004\n", + " -12.1574\n", + " -2.4649\n", + " -9.8693\n", + " -10.7270\n", + " 0.5790\n", + " -0.7557\n", + " 0.9959\n", + " -3.4245\n", + " -0.0401\n", + " -4.1284\n", + " -4.7673\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.5.bn.bias', \n", + " 0.0029\n", + " -4.3787\n", + " -0.2540\n", + " -0.2102\n", + " -0.3568\n", + " -0.0817\n", + " 0.2838\n", + " -0.2897\n", + " -1.2939\n", + " -0.1694\n", + " -0.0895\n", + " 0.3677\n", + " -0.2739\n", + " -4.3863\n", + " 0.1692\n", + " -0.5726\n", + " -0.4461\n", + " -0.2443\n", + " -0.2804\n", + " 0.1098\n", + " -0.1973\n", + " 1.5201\n", + " -4.3825\n", + " -1.7465\n", + " -0.3371\n", + " -0.3231\n", + " -0.3295\n", + " -0.1735\n", + " 0.5555\n", + " -0.2971\n", + " -1.6905\n", + " -4.2038\n", + " -0.4203\n", + " -0.2420\n", + " -0.5524\n", + " -0.0997\n", + " -0.2813\n", + " -0.4033\n", + " -0.4262\n", + " -0.2482\n", + " 0.7620\n", + " -4.1580\n", + " -0.7885\n", + " -0.6467\n", + " -0.1021\n", + " -0.0127\n", + " -0.3365\n", + " -0.4070\n", + " -1.0600\n", + " 0.1982\n", + " -0.3990\n", + " -0.2539\n", + " -0.3529\n", + " 0.3436\n", + " -0.3795\n", + " -0.3374\n", + " -0.3083\n", + " -0.6688\n", + " -0.2550\n", + " -0.1713\n", + " 0.0910\n", + " -0.3509\n", + " -0.3530\n", + " -0.6210\n", + " -0.4778\n", + " -4.2850\n", + " -0.3199\n", + " 1.1630\n", + " -0.3874\n", + " -0.4239\n", + " -0.2612\n", + " -0.4558\n", + " -0.3260\n", + " -0.5247\n", + " 0.0129\n", + " -0.1892\n", + " -4.2348\n", + " -4.2263\n", + " -4.3344\n", + " -0.0833\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.5.bn.running_mean', \n", + " 6.6881e-05\n", + " 1.9716e-05\n", + " 4.1062e-06\n", + " 1.0871e+01\n", + " 3.4829e-05\n", + " 5.4487e-06\n", + " 1.9180e-05\n", + " 7.2671e-06\n", + " 9.0508e-06\n", + " 3.4231e-06\n", + " 3.3783e-02\n", + " 3.4214e-06\n", + " 4.0916e-05\n", + " 1.5526e-06\n", + " 1.4476e-04\n", + " 2.3460e-06\n", + " 1.0616e+00\n", + " 1.0300e-06\n", + " 1.0699e+00\n", + " 9.0276e-01\n", + " 1.0792e-01\n", + " 1.4327e+01\n", + " 2.2017e-07\n", + " 4.1265e+00\n", + " 6.1647e-01\n", + " 4.5485e-02\n", + " 1.0817e-05\n", + " 3.3503e-01\n", + " 1.6846e-05\n", + " 1.7599e+01\n", + " 1.5968e+01\n", + " 2.5268e-07\n", + " 2.2920e-06\n", + " 2.3139e-01\n", + " 6.2033e-07\n", + " 4.5507e-05\n", + " 7.7429e+00\n", + " 1.5459e-01\n", + " 7.0055e+00\n", + " 9.1036e-06\n", + " 9.9461e+00\n", + " 4.3763e-06\n", + " 1.2773e-08\n", + " 7.7017e-01\n", + " 5.2742e+00\n", + " 7.2511e-02\n", + " 2.0556e-01\n", + " 3.8826e-01\n", + " 1.4060e+01\n", + " 6.8772e+00\n", + " 2.5492e-06\n", + " 1.2919e-05\n", + " 6.1022e-06\n", + " 9.8789e-01\n", + " 1.6830e-06\n", + " 3.6800e-06\n", + " 8.8781e-01\n", + " 4.8203e-01\n", + " 1.0681e-01\n", + " 4.1911e-07\n", + " 1.6110e-01\n", + " 9.8968e-01\n", + " 4.5397e-06\n", + " 2.4744e-06\n", + " 4.6496e-06\n", + " 6.7548e-08\n", + " 5.9375e-07\n", + " 1.5855e+01\n", + " 1.8195e-01\n", + " 1.4893e-06\n", + " 2.1666e-05\n", + " 3.2978e-06\n", + " 4.4232e-05\n", + " 4.8400e-01\n", + " 6.3990e-01\n", + " 4.5483e-01\n", + " 1.0750e-07\n", + " 3.2715e-01\n", + " 2.9006e-07\n", + " 4.9801e-05\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.5.bn.running_var', \n", + " 1.2244e-06\n", + " 5.9879e-08\n", + " 4.1235e-08\n", + " 2.1726e+01\n", + " 7.6592e-07\n", + " 7.7188e-08\n", + " 1.0208e-07\n", + " 1.2389e-07\n", + " 6.8075e-08\n", + " 2.7681e-08\n", + " 3.5808e-02\n", + " 2.7561e-08\n", + " 5.8326e-07\n", + " 4.8485e-08\n", + " 3.2186e-06\n", + " 2.3307e-08\n", + " 5.5778e-01\n", + " 9.4557e-09\n", + " 6.2819e-01\n", + " 7.9096e-01\n", + " 1.0496e-01\n", + " 3.8622e+01\n", + " 1.9758e-09\n", + " 3.9146e+00\n", + " 3.4936e-01\n", + " 2.1316e-02\n", + " 2.4903e-07\n", + " 5.6055e-02\n", + " 2.3548e-07\n", + " 5.9798e+01\n", + " 4.5718e+01\n", + " 1.8836e-09\n", + " 4.9038e-08\n", + " 6.8371e-02\n", + " 5.3013e-09\n", + " 6.8085e-07\n", + " 1.2107e+01\n", + " 7.2701e-02\n", + " 8.8856e+00\n", + " 2.6411e-07\n", + " 1.7349e+01\n", + " 2.9812e-07\n", + " 1.6223e-10\n", + " 2.3136e-01\n", + " 4.9386e+00\n", + " 2.3262e-02\n", + " 1.1678e-01\n", + " 1.1364e-01\n", + " 3.5626e+01\n", + " 2.2471e+01\n", + " 3.4680e-08\n", + " 3.9239e-07\n", + " 4.5764e-08\n", + " 4.5338e-01\n", + " 2.8175e-08\n", + " 6.0937e-08\n", + " 5.9102e-01\n", + " 1.1198e-01\n", + " 4.9348e-02\n", + " 9.3823e-10\n", + " 1.3880e-01\n", + " 1.2235e+00\n", + " 5.1027e-08\n", + " 5.1064e-08\n", + " 3.4925e-08\n", + " 2.1195e-11\n", + " 7.2309e-09\n", + " 4.6023e+01\n", + " 4.7265e-02\n", + " 1.1407e-08\n", + " 7.4242e-07\n", + " 1.9322e-07\n", + " 5.6772e-07\n", + " 1.6085e-01\n", + " 4.4126e-01\n", + " 7.5727e-02\n", + " 3.8255e-10\n", + " 3.3904e-02\n", + " 3.7415e-10\n", + " 1.2396e-06\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.6.conv1d.weight', \n", + " (0 ,.,.) = \n", + " -1.0649e+00 1.3727e+00 1.9003e-01 ... -1.9994e-01 3.3153e+00 -5.1286e+00\n", + " 6.0406e-02 -2.1307e-01 1.3011e-01 ... -7.6565e-01 1.6152e-01 5.9789e-01\n", + " 7.5477e-01 -1.1030e-01 3.3991e-01 ... -9.8794e-02 1.3341e-01 -1.6148e+00\n", + " ... ⋱ ... \n", + " -2.2227e-02 1.5231e-02 1.0512e-01 ... 2.2787e-01 2.4669e-01 4.8626e-01\n", + " -6.6963e-02 -2.3941e-02 -4.3805e-03 ... 4.8652e-02 5.6056e-04 3.2899e-01\n", + " -1.3463e-01 1.1059e-01 -2.1093e-01 ... -3.8216e-01 -2.2131e-01 -4.6672e-03\n", + " \n", + " (1 ,.,.) = \n", + " 1.9496e+00 -1.3853e+00 2.4915e+00 ... -2.8040e+00 2.5646e+00 -3.2165e+00\n", + " -4.1844e-01 -4.0175e-01 1.6977e-01 ... 2.6866e-01 6.1458e-01 1.1135e-01\n", + " -5.1263e-01 -3.4525e-01 -3.1196e-02 ... -2.3048e-02 3.7472e-01 4.6155e-01\n", + " ... ⋱ ... \n", + " 1.7881e-01 1.0789e-01 2.4740e-01 ... 2.3902e-02 8.6342e-02 1.2528e-02\n", + " 1.9066e-02 -2.1986e-03 7.4409e-02 ... 1.1230e-02 6.7261e-02 1.5289e-01\n", + " -2.4646e-01 -3.2945e-01 -6.5856e-02 ... 1.2225e-01 -8.9026e-02 -9.9658e-02\n", + " \n", + " (2 ,.,.) = \n", + " 3.6556e-01 1.9130e-01 4.4784e-01 ... -1.6449e-01 6.8066e-02 -1.1009e-02\n", + " 4.2291e-02 1.3204e-01 1.5855e-01 ... 3.1037e-01 1.4537e-01 2.1174e-01\n", + " 1.3034e-01 -7.7696e-02 4.2838e-02 ... -8.1076e-02 6.7180e-02 -8.8425e-02\n", + " ... ⋱ ... \n", + " 1.0065e-03 9.5219e-02 -1.1813e-02 ... 6.7723e-03 3.1524e-02 2.6009e-02\n", + " 1.0982e-01 -1.3729e-01 4.4807e-02 ... 7.5306e-02 5.6696e-02 -1.8068e-01\n", + " 1.8904e-01 1.3797e-01 2.5836e-01 ... 2.0835e-01 1.6837e-01 1.1935e-02\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " 1.0173e+00 7.1137e-01 -7.3726e-02 ... -5.4410e-02 -4.9887e-02 -3.7306e-01\n", + " -6.0327e-01 -3.2560e-01 1.6308e-02 ... -2.2698e-01 -2.2651e-01 -4.7624e-01\n", + " -1.3541e-02 -1.5023e-02 1.1122e-01 ... 2.3900e-01 2.5451e-02 -1.3337e-01\n", + " ... ⋱ ... \n", + " -1.1223e-01 -1.4351e-03 -5.6440e-03 ... 2.6192e-02 1.3253e-02 -8.7034e-02\n", + " 3.0891e-03 1.4962e-01 5.6578e-02 ... 6.6190e-02 9.9097e-02 1.1227e-01\n", + " 1.1993e-01 1.4432e-01 6.9030e-02 ... 5.5823e-02 3.9141e-02 3.2510e-02\n", + " \n", + " (78,.,.) = \n", + " 1.6438e+00 -1.2697e-01 -4.9258e-01 ... -7.0856e-01 -3.7720e+00 -6.7071e+00\n", + " -4.9945e-01 -1.7624e-01 2.3253e-01 ... -2.7442e-01 2.8344e-01 5.4155e-01\n", + " -7.6488e-03 9.0009e-02 -7.3368e-02 ... -1.9346e-02 -5.6370e-02 -1.0089e-01\n", + " ... ⋱ ... \n", + " 3.8947e-02 8.0353e-02 7.6696e-02 ... 6.1145e-02 -1.6484e-01 -2.6345e-01\n", + " 7.9000e-02 7.5109e-02 6.8631e-02 ... 3.8451e-02 -9.6734e-02 -2.5716e-01\n", + " 2.6664e-01 1.3880e-01 2.1747e-01 ... 1.8959e-01 -2.9664e-02 -4.0854e-01\n", + " \n", + " (79,.,.) = \n", + " 6.4669e-01 9.4086e-02 -5.0195e-01 ... -2.7949e-01 -3.9004e-01 -4.9352e-01\n", + " -2.8771e-01 -1.7709e-01 -3.3198e-01 ... -6.6746e-02 1.3041e-01 -1.3144e-01\n", + " 1.8937e-01 2.3438e-01 8.7372e-02 ... -7.0633e-02 -2.0086e-01 -3.7153e-02\n", + " ... ⋱ ... \n", + " 4.0741e-02 2.6941e-02 1.8963e-01 ... 1.4338e-01 1.1682e-01 2.5949e-01\n", + " 1.1112e-01 -7.1629e-03 9.1774e-02 ... 1.5254e-01 9.0325e-03 1.7725e-01\n", + " 1.6518e-01 3.6820e-02 1.0384e-01 ... -3.3557e-02 -4.4994e-02 2.1228e-02\n", + " [torch.FloatTensor of size 80x80x7]),\n", + " ('module.postnet.conv1d_banks.6.bn.weight', \n", + " 1.1234\n", + " -1.2926\n", + " -10.5510\n", + " 0.7360\n", + " 0.8886\n", + " -8.5146\n", + " -6.4528\n", + " -0.6868\n", + " 0.4879\n", + " 0.9858\n", + " 0.6172\n", + " 0.5446\n", + " -11.2630\n", + " -10.3431\n", + " -11.7081\n", + " 0.5923\n", + " 0.6918\n", + " -10.9081\n", + " -11.1192\n", + " 0.0431\n", + " -3.6628\n", + " 0.5876\n", + " -12.2840\n", + " -7.0464\n", + " 0.5582\n", + " -10.5683\n", + " -10.1524\n", + " 0.7902\n", + " 1.2558\n", + " 1.0967\n", + " -10.5113\n", + " 0.6058\n", + " 1.2726\n", + " 1.3562\n", + " -10.5654\n", + " 1.4586\n", + " -10.0198\n", + " 0.6231\n", + " -8.3551\n", + " 0.0070\n", + " 0.7449\n", + " 1.0341\n", + " 0.3115\n", + " -0.7384\n", + " 1.6992\n", + " -8.6107\n", + " 0.7889\n", + " -2.5240\n", + " -10.2320\n", + " 1.3290\n", + " 0.6859\n", + " -11.5253\n", + " 1.4087\n", + " -14.0153\n", + " -12.3844\n", + " -2.2739\n", + " 0.7766\n", + " 1.3140\n", + " -9.7110\n", + " -1.0587\n", + " -9.7685\n", + " -1.7783\n", + " 0.5942\n", + " -1.4126\n", + " 0.7143\n", + " -10.1922\n", + " -11.2625\n", + " 1.3250\n", + " 1.0208\n", + " -2.5101\n", + " -4.1294\n", + " -9.9524\n", + " -4.3481\n", + " -1.6137\n", + " 0.7320\n", + " -1.8037\n", + " 1.4938\n", + " -10.5113\n", + " 0.6225\n", + " -0.1926\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.6.bn.bias', \n", + " -0.4338\n", + " -0.0459\n", + " -0.2383\n", + " -0.2096\n", + " -0.2667\n", + " -0.5104\n", + " -0.0578\n", + " 0.0849\n", + " -0.1379\n", + " -0.4549\n", + " -0.1499\n", + " -0.4967\n", + " -0.7976\n", + " -0.6348\n", + " -0.2504\n", + " -0.2461\n", + " -0.3132\n", + " -0.3489\n", + " -0.4976\n", + " 0.8112\n", + " -0.2946\n", + " -0.4577\n", + " -0.3724\n", + " -0.2919\n", + " -0.5411\n", + " -0.5325\n", + " -0.5417\n", + " -0.5636\n", + " -0.3449\n", + " -0.6064\n", + " -0.0808\n", + " -0.1803\n", + " -0.2893\n", + " -0.2053\n", + " -0.2342\n", + " -0.1587\n", + " -0.6827\n", + " -0.6597\n", + " -0.3597\n", + " 0.4662\n", + " 0.0072\n", + " -0.5884\n", + " -0.1537\n", + " -0.3313\n", + " -0.7711\n", + " -0.1141\n", + " -0.0630\n", + " -0.4278\n", + " -0.2871\n", + " -0.5986\n", + " -0.5690\n", + " -0.6288\n", + " -0.6113\n", + " 0.3876\n", + " -0.3945\n", + " 0.0004\n", + " -0.0573\n", + " -0.7955\n", + " -0.2263\n", + " -0.1895\n", + " -0.4541\n", + " 0.0696\n", + " -0.3114\n", + " 0.1292\n", + " -0.0607\n", + " 1.0270\n", + " -0.3494\n", + " -0.4729\n", + " -0.2606\n", + " 0.0859\n", + " -4.3991\n", + " -0.4413\n", + " -3.2549\n", + " -0.3289\n", + " -0.3401\n", + " 0.3182\n", + " -0.5562\n", + " -0.3727\n", + " 0.0064\n", + " -0.7360\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.6.bn.running_mean', \n", + " 4.3804e-01\n", + " 3.4535e-01\n", + " 1.3789e-06\n", + " 7.8018e-01\n", + " 2.0125e+00\n", + " 6.3429e-07\n", + " 3.9701e-07\n", + " 4.5727e-01\n", + " 1.0556e+00\n", + " 3.9728e-01\n", + " 4.3544e-01\n", + " 3.6977e-01\n", + " 1.2993e-06\n", + " 5.0158e-07\n", + " 1.5312e-05\n", + " 2.9213e-01\n", + " 3.4550e-01\n", + " 6.0703e-06\n", + " 7.2830e-07\n", + " 1.1630e+01\n", + " 1.4107e-05\n", + " 5.9418e-01\n", + " 1.8864e-05\n", + " 4.7275e-06\n", + " 4.3268e-01\n", + " 1.0982e-06\n", + " 1.4959e-05\n", + " 4.6972e-01\n", + " 3.5489e-01\n", + " 3.9912e-01\n", + " 3.6602e-06\n", + " 7.9997e-01\n", + " 2.9541e-01\n", + " 4.3830e-01\n", + " 4.7996e-06\n", + " 4.9214e-01\n", + " 5.5694e-07\n", + " 3.3097e-01\n", + " 6.1603e-07\n", + " 1.5817e+01\n", + " 2.2433e-01\n", + " 4.0282e-01\n", + " 1.4865e+00\n", + " 2.0431e-01\n", + " 3.2347e-01\n", + " 8.5819e-08\n", + " 8.5859e-01\n", + " 1.9079e-05\n", + " 9.9729e-06\n", + " 3.3272e-01\n", + " 4.5262e-01\n", + " 4.7821e-07\n", + " 5.1499e-01\n", + " 1.6921e-06\n", + " 7.5501e-06\n", + " 6.7233e-05\n", + " 4.4490e-01\n", + " 4.1153e-01\n", + " 5.2981e-06\n", + " 2.7974e-01\n", + " 1.8517e-06\n", + " 3.5282e-01\n", + " 3.6116e-01\n", + " 3.1202e-01\n", + " 7.7057e+00\n", + " 6.4928e-06\n", + " 1.9840e-06\n", + " 3.5685e-01\n", + " 5.5001e-01\n", + " 3.1763e-05\n", + " 1.5337e-05\n", + " 1.3852e-06\n", + " 3.7034e-06\n", + " 4.6679e-01\n", + " 5.9364e-01\n", + " 2.2923e-05\n", + " 4.2884e-01\n", + " 2.9967e-06\n", + " 2.1568e+00\n", + " 8.6376e-01\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.6.bn.running_var', \n", + " 6.9108e-02\n", + " 4.8026e-02\n", + " 1.3288e-08\n", + " 6.0707e-01\n", + " 8.9584e-01\n", + " 1.2293e-08\n", + " 4.6750e-09\n", + " 1.4253e-01\n", + " 5.9941e-01\n", + " 7.3726e-02\n", + " 3.2148e-01\n", + " 1.9845e-01\n", + " 5.7209e-08\n", + " 3.4721e-09\n", + " 3.2750e-07\n", + " 4.5857e-01\n", + " 8.8278e-02\n", + " 6.7437e-08\n", + " 1.2995e-09\n", + " 2.4064e+01\n", + " 2.4312e-07\n", + " 1.4615e-01\n", + " 1.0230e-06\n", + " 9.2319e-08\n", + " 5.6174e-02\n", + " 3.6997e-08\n", + " 2.0017e-07\n", + " 8.7901e-02\n", + " 4.2786e-02\n", + " 5.6097e-02\n", + " 7.0912e-08\n", + " 3.2873e-01\n", + " 5.6683e-02\n", + " 9.3703e-02\n", + " 5.3004e-08\n", + " 1.1316e-01\n", + " 3.4978e-09\n", + " 8.3531e-02\n", + " 1.1983e-08\n", + " 4.4049e+01\n", + " 2.3214e-01\n", + " 9.6722e-02\n", + " 6.0587e-01\n", + " 1.5013e-01\n", + " 3.9874e-02\n", + " 6.7535e-11\n", + " 6.0061e-01\n", + " 2.5476e-07\n", + " 2.0624e-07\n", + " 5.3841e-02\n", + " 3.0385e-01\n", + " 2.6532e-09\n", + " 9.7681e-02\n", + " 3.1858e-08\n", + " 4.2094e-08\n", + " 1.6999e-06\n", + " 2.4220e-01\n", + " 6.5469e-02\n", + " 7.7248e-08\n", + " 1.0687e-01\n", + " 9.6119e-08\n", + " 4.3373e-02\n", + " 3.4932e-01\n", + " 5.6417e-02\n", + " 1.1625e+01\n", + " 9.4767e-08\n", + " 1.7245e-08\n", + " 1.0143e-01\n", + " 1.5751e-01\n", + " 1.5589e-07\n", + " 3.1991e-08\n", + " 1.5279e-09\n", + " 1.0600e-07\n", + " 1.0521e-01\n", + " 5.8041e-01\n", + " 5.7862e-07\n", + " 6.8317e-02\n", + " 2.4081e-08\n", + " 1.9565e+00\n", + " 7.4052e-01\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.7.conv1d.weight', \n", + " (0 ,.,.) = \n", + " 1.0529e+00 3.8757e+00 3.7754e+00 ... 4.4254e-01 -3.4523e-01 -1.0291e-01\n", + " 1.5095e+00 2.4575e+00 1.6089e+00 ... 1.7952e-01 -1.2080e+00 -6.9600e-01\n", + " 6.5311e-01 1.1343e+00 1.4454e+00 ... 8.3564e-01 7.0717e-01 -1.5440e-01\n", + " ... ⋱ ... \n", + " -5.8892e-01 -6.6297e-01 -3.7407e-01 ... -2.4059e-03 4.1757e-01 3.0214e-01\n", + " -2.3222e-01 -4.4655e-01 -4.5594e-01 ... 1.1238e-02 4.7837e-01 1.5670e-01\n", + " 1.1653e+00 3.5081e-01 -2.5347e-01 ... -2.3556e-01 2.3423e-01 -1.9039e-01\n", + " \n", + " (1 ,.,.) = \n", + " -1.6885e+00 1.9148e+00 -8.8712e-01 ... -5.7404e-01 9.3855e-01 -1.8792e+00\n", + " 6.1432e-02 -4.1108e-01 4.7087e-02 ... -8.2081e-01 -6.1591e-01 -9.2098e-02\n", + " 1.9864e-02 2.4329e-02 -9.4784e-03 ... 3.0884e-01 1.7533e-01 1.2645e-01\n", + " ... ⋱ ... \n", + " 8.2526e-02 8.2653e-02 -5.7011e-02 ... 3.6185e-01 3.3817e-01 4.4439e-01\n", + " 1.6853e-01 7.1762e-02 -3.8038e-02 ... 2.2377e-01 1.5718e-01 1.7180e-01\n", + " 1.4553e-01 -1.6342e-01 -1.1863e-01 ... 1.0773e-01 -2.1940e-01 -9.9362e-02\n", + " \n", + " (2 ,.,.) = \n", + " -5.3311e-02 2.3856e-01 3.6569e-01 ... 9.0417e-02 3.6500e-01 6.7456e-01\n", + " 1.5800e-01 1.5400e-01 -1.4746e-01 ... -1.0636e-02 9.1024e-02 -7.5079e-03\n", + " -1.4288e-01 4.5058e-02 7.4069e-02 ... 7.3295e-02 7.5404e-02 2.2525e-01\n", + " ... ⋱ ... \n", + " 8.2440e-02 6.3924e-02 -1.6160e-01 ... 5.9316e-02 2.6346e-02 -2.0503e-02\n", + " -1.0922e-03 1.1213e-01 -1.8133e-01 ... 4.4410e-02 1.0853e-01 -4.5268e-02\n", + " 3.2731e-01 3.3002e-01 -1.4442e-01 ... 7.0902e-02 1.3694e-01 2.7840e-01\n", + " ...\n", + " \n", + " (77,.,.) = \n", + " 4.3486e-01 3.6720e-01 1.1861e-01 ... -1.2157e-01 3.8807e-01 1.3101e+00\n", + " -4.6372e-02 5.2028e-02 2.9571e-01 ... 4.1118e-01 1.7782e-01 2.5223e-01\n", + " -1.6780e-01 -3.2026e-01 7.4724e-02 ... -2.3654e-01 -3.5995e-01 5.3968e-02\n", + " ... ⋱ ... \n", + " -1.0499e-01 -2.9694e-02 -3.1468e-02 ... -1.5553e-01 -1.7116e-01 -1.2240e-01\n", + " -2.0299e-01 -7.8974e-02 -2.1433e-02 ... -1.7333e-01 -1.5325e-01 -1.1611e-01\n", + " -1.4810e-01 -8.7836e-02 4.9869e-01 ... 2.8257e-01 2.5560e-01 3.3153e-01\n", + " \n", + " (78,.,.) = \n", + " 3.1916e-01 -5.1179e-01 -5.4707e-01 ... 5.5400e-01 -5.0809e-01 -2.0861e+00\n", + " -1.9279e+00 -7.0329e-01 -8.3487e-01 ... -4.5820e-02 1.2540e+00 1.3178e+00\n", + " 2.2729e-01 3.3453e-01 9.6079e-02 ... -3.1711e-01 2.8326e-01 2.2800e-01\n", + " ... ⋱ ... \n", + " 7.6057e-03 -1.9277e-01 5.0295e-02 ... 8.5391e-02 1.8244e-01 3.4017e-01\n", + " 3.2960e-02 -1.0860e-01 5.6157e-02 ... 1.4160e-01 3.2270e-01 3.4672e-01\n", + " 3.1290e-01 7.7094e-02 1.4394e-01 ... 2.8697e-01 1.1527e-01 1.4380e-01\n", + " \n", + " (79,.,.) = \n", + " 4.3437e-02 -1.3139e-01 -2.8921e-01 ... -3.6401e-01 -3.9041e-01 -3.4898e-01\n", + " -6.4615e-02 -1.1073e-01 -9.7782e-02 ... -1.9688e-02 -5.5769e-02 2.3761e-02\n", + " -1.0203e-01 -7.6795e-02 -6.0822e-02 ... -8.2102e-02 1.5033e-01 2.0831e-01\n", + " ... ⋱ ... \n", + " 2.2731e-01 1.8507e-01 1.3185e-01 ... 8.3878e-02 -2.1591e-02 -6.5322e-02\n", + " 1.1341e-01 4.7051e-02 5.4270e-02 ... 4.8335e-04 -4.4908e-02 -1.3254e-01\n", + " -1.3947e-03 6.5450e-02 6.8548e-02 ... -5.2640e-02 -6.0732e-02 -1.5454e-01\n", + " [torch.FloatTensor of size 80x80x8]),\n", + " ('module.postnet.conv1d_banks.7.bn.weight', \n", + " 0.2272\n", + " -1.2905\n", + " -11.5955\n", + " -10.1562\n", + " -0.6380\n", + " 0.9985\n", + " -1.8432\n", + " -3.3960\n", + " -9.9084\n", + " -6.8331\n", + " 0.9846\n", + " 1.0592\n", + " -9.2445\n", + " -1.8706\n", + " -0.0822\n", + " 1.0948\n", + " 0.7832\n", + " -12.2910\n", + " -9.9979\n", + " 0.6151\n", + " -7.9451\n", + " -1.4832\n", + " 0.9173\n", + " -9.6940\n", + " -0.0553\n", + " 0.4439\n", + " 0.2380\n", + " 0.1145\n", + " -0.0336\n", + " 0.6230\n", + " -9.9262\n", + " 0.7364\n", + " 0.8043\n", + " 0.6777\n", + " 1.0693\n", + " 1.0780\n", + " -6.0967\n", + " -10.6311\n", + " 0.2970\n", + " 0.8357\n", + " -25.8087\n", + " 1.6300\n", + " -10.5496\n", + " 1.4628\n", + " -2.3917\n", + " 0.3279\n", + " -9.6571\n", + " 0.4302\n", + " 1.1084\n", + " 1.2249\n", + " -0.7977\n", + " -9.5146\n", + " -0.8734\n", + " 0.4514\n", + " 1.0442\n", + " 0.7329\n", + " 0.8109\n", + " 0.8417\n", + " 1.6141\n", + " -10.7616\n", + " -11.1164\n", + " -2.1931\n", + " 0.6783\n", + " -11.2959\n", + " 1.7023\n", + " -10.7230\n", + " 0.5006\n", + " -29.0832\n", + " -1.0327\n", + " -10.6104\n", + " 0.4630\n", + " 0.8340\n", + " 0.6053\n", + " 0.5325\n", + " -9.7004\n", + " 0.5927\n", + " -0.0174\n", + " -14.3934\n", + " -2.5815\n", + " -0.0260\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.7.bn.bias', \n", + " -0.1861\n", + " -0.3294\n", + " -0.4716\n", + " -0.3899\n", + " 0.1369\n", + " -0.5080\n", + " -0.2138\n", + " -0.2117\n", + " -0.2370\n", + " -0.6222\n", + " -0.8410\n", + " -0.4249\n", + " -0.2393\n", + " 0.2996\n", + " -1.3290\n", + " -0.2597\n", + " -0.7508\n", + " -0.3970\n", + " -0.3295\n", + " -0.4606\n", + " -0.4718\n", + " -1.7030\n", + " -0.0700\n", + " -0.0053\n", + " -4.2104\n", + " -0.1452\n", + " -0.3915\n", + " -0.1965\n", + " -4.5503\n", + " 0.0065\n", + " -0.3280\n", + " -0.0803\n", + " -0.1242\n", + " -0.2823\n", + " -0.3452\n", + " -0.1443\n", + " 0.6449\n", + " -0.3834\n", + " -0.1812\n", + " -0.4946\n", + " -0.4245\n", + " -0.3413\n", + " -0.4955\n", + " -0.3791\n", + " -0.3720\n", + " -0.2363\n", + " -0.6808\n", + " -0.1327\n", + " -0.5609\n", + " -0.4934\n", + " 0.1324\n", + " -0.3644\n", + " 0.0195\n", + " -0.0893\n", + " -0.2136\n", + " -0.2123\n", + " -0.3184\n", + " 0.1364\n", + " -0.5017\n", + " -0.4111\n", + " -0.2907\n", + " -0.1674\n", + " -0.5139\n", + " -0.4316\n", + " -0.3985\n", + " -0.3544\n", + " -0.5609\n", + " -0.1713\n", + " -0.0734\n", + " -0.2134\n", + " -0.4465\n", + " -0.6532\n", + " 0.1022\n", + " -0.2596\n", + " -0.2295\n", + " -0.3866\n", + " -4.4528\n", + " -0.6484\n", + " -0.2331\n", + " 0.4115\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.7.bn.running_mean', \n", + " 1.6550e-02\n", + " 6.5145e-02\n", + " 1.9891e-06\n", + " 5.4034e-06\n", + " 7.5269e-01\n", + " 5.0953e-01\n", + " 4.9518e-05\n", + " 1.9469e-05\n", + " 7.6647e-06\n", + " 2.7089e-06\n", + " 5.3703e-01\n", + " 4.1142e-01\n", + " 4.1399e-06\n", + " 1.7659e-04\n", + " 6.9984e-01\n", + " 3.8809e-01\n", + " 5.6094e-01\n", + " 1.3415e-05\n", + " 3.6147e-06\n", + " 2.3200e-01\n", + " 1.3136e-06\n", + " 1.9973e-05\n", + " 9.6954e-01\n", + " 1.4150e-05\n", + " 2.4474e-01\n", + " 1.2881e-02\n", + " 2.8005e-03\n", + " 1.8118e-03\n", + " 4.0178e-01\n", + " 3.7376e+00\n", + " 2.5784e-07\n", + " 2.0043e+01\n", + " 3.2837e-01\n", + " 2.6965e-01\n", + " 4.4999e-01\n", + " 5.4624e-01\n", + " 1.0382e-05\n", + " 2.4678e-10\n", + " 9.0943e-02\n", + " 3.8726e-01\n", + " 1.4177e-05\n", + " 3.8693e-01\n", + " 2.6754e-06\n", + " 5.6915e-01\n", + " 7.8282e-05\n", + " 3.4047e-02\n", + " 2.5442e-07\n", + " 1.1157e-02\n", + " 4.1637e-01\n", + " 4.8645e-01\n", + " 6.3600e-01\n", + " 3.6457e-06\n", + " 6.9767e-01\n", + " 2.0002e+01\n", + " 7.8001e-01\n", + " 3.4457e-01\n", + " 1.1104e-01\n", + " 2.3491e+01\n", + " 3.6410e-01\n", + " 4.6522e-06\n", + " 1.3357e-08\n", + " 5.2513e-06\n", + " 2.6707e-01\n", + " 3.3389e-08\n", + " 4.1382e-01\n", + " 2.0373e-06\n", + " 7.9752e-05\n", + " 2.6121e-05\n", + " 7.2409e-02\n", + " 3.5990e-09\n", + " 2.0751e-01\n", + " 6.8377e-01\n", + " 2.1786e-01\n", + " 8.5901e-02\n", + " 1.4765e-05\n", + " 5.3136e-01\n", + " 1.0216e+01\n", + " 1.6747e-06\n", + " 2.0335e-05\n", + " 5.0371e+00\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_banks.7.bn.running_var', \n", + " 3.5441e-02\n", + " 2.7839e-02\n", + " 8.9386e-09\n", + " 9.2294e-08\n", + " 4.3831e-01\n", + " 1.0638e-01\n", + " 1.3888e-06\n", + " 4.8367e-07\n", + " 6.0299e-07\n", + " 6.9106e-08\n", + " 1.0926e-01\n", + " 8.5390e-02\n", + " 2.9100e-07\n", + " 1.8051e-06\n", + " 3.1060e-01\n", + " 1.2558e-01\n", + " 2.1669e-01\n", + " 1.2312e-07\n", + " 5.0283e-08\n", + " 1.1093e-01\n", + " 3.4354e-09\n", + " 2.2049e-07\n", + " 1.4796e+00\n", + " 4.3755e-07\n", + " 3.0358e-02\n", + " 2.0056e-02\n", + " 1.2561e-03\n", + " 7.3848e-04\n", + " 5.6786e-02\n", + " 4.6312e+00\n", + " 2.0893e-10\n", + " 7.2274e+01\n", + " 2.2853e-01\n", + " 3.6890e-01\n", + " 1.0857e-01\n", + " 1.6555e-01\n", + " 1.4318e-07\n", + " 7.3806e-13\n", + " 4.6212e-02\n", + " 1.4513e-01\n", + " 2.5276e-07\n", + " 6.5982e-02\n", + " 2.9542e-08\n", + " 8.2092e-02\n", + " 8.8085e-07\n", + " 2.4429e-02\n", + " 5.6086e-10\n", + " 1.5524e-02\n", + " 8.6545e-02\n", + " 7.6177e-02\n", + " 2.7218e-01\n", + " 1.9632e-07\n", + " 2.0211e-01\n", + " 6.7753e+01\n", + " 1.6525e-01\n", + " 1.1700e-01\n", + " 3.5328e-02\n", + " 9.9202e+01\n", + " 4.7470e-02\n", + " 6.9109e-08\n", + " 1.7118e-11\n", + " 9.1332e-08\n", + " 1.7900e-01\n", + " 5.3306e-11\n", + " 6.9717e-02\n", + " 1.6193e-08\n", + " 3.3868e-06\n", + " 5.5110e-07\n", + " 3.8218e-02\n", + " 1.4721e-11\n", + " 8.3060e-02\n", + " 2.7641e-01\n", + " 1.0380e-01\n", + " 2.5674e-02\n", + " 1.8893e-06\n", + " 3.2152e-01\n", + " 1.8757e+01\n", + " 9.2221e-09\n", + " 7.9450e-07\n", + " 4.9587e+00\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_projections.0.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " -1.3957e-01 -1.2377e-01 -7.3275e-02\n", + " -1.4006e-02 1.5525e-01 2.0347e-01\n", + " 3.1622e-02 -1.2623e-02 2.2276e-01\n", + " ⋮ \n", + " 5.6694e-03 6.4154e-02 1.2554e-01\n", + " -1.9284e-01 -2.1595e-01 -3.1800e-01\n", + " -5.1342e-02 -7.2566e-02 -8.4694e-02\n", + " \n", + " ( 1 ,.,.) = \n", + " 1.2366e-01 4.6452e-02 4.3532e-02\n", + " -3.3146e-02 1.1825e-01 4.0882e-02\n", + " 1.7882e-01 8.2681e-02 -2.3802e-01\n", + " ⋮ \n", + " -2.5566e-02 6.5342e-02 2.3106e-02\n", + " 6.9835e-02 1.1464e-01 9.0261e-02\n", + " -1.3521e-01 -1.4328e-01 -2.3939e-01\n", + " \n", + " ( 2 ,.,.) = \n", + " 4.3039e-02 1.7098e-01 2.8486e-01\n", + " -1.0624e-01 -4.0530e-02 -2.6259e-02\n", + " 3.6910e-01 2.5975e-01 3.2112e-01\n", + " ⋮ \n", + " 5.4088e-03 -2.3620e-02 -1.2758e-02\n", + " -2.0870e-02 -7.2901e-02 8.4686e-02\n", + " -4.1611e-02 -5.8244e-02 -1.3187e-01\n", + " ... \n", + " \n", + " (253,.,.) = \n", + " 6.7897e-02 3.1555e-01 -1.0163e-01\n", + " 8.5174e-02 9.9121e-03 -2.6476e-02\n", + " -1.3393e-01 -4.0839e-01 -1.3982e-01\n", + " ⋮ \n", + " 1.8264e-01 3.2260e-02 2.5612e-02\n", + " 2.6153e-02 -5.8576e-02 -7.5391e-02\n", + " -8.1473e-02 -6.3125e-02 -1.1814e-01\n", + " \n", + " (254,.,.) = \n", + " 3.1201e-02 1.7619e-01 5.9133e-02\n", + " 8.9054e-02 -8.6981e-03 -2.5639e-02\n", + " 1.9719e-02 4.4718e-01 1.6546e-01\n", + " ⋮ \n", + " -1.0220e-02 -8.4788e-02 1.4365e-01\n", + " -3.9882e-01 7.7564e-03 2.0031e-02\n", + " -1.8677e-01 -2.0325e-01 -2.1621e-01\n", + " \n", + " (255,.,.) = \n", + " 1.5317e-01 3.0041e-02 4.7304e-01\n", + " 1.6127e-02 -9.4994e-02 1.3071e-01\n", + " -8.1051e-02 -1.4608e-01 -1.1953e-01\n", + " ⋮ \n", + " -1.0212e-01 6.9462e-02 1.4669e-01\n", + " 1.3095e-01 2.4410e-01 1.6540e-01\n", + " -7.0448e-02 -2.9191e-03 -5.3479e-02\n", + " [torch.FloatTensor of size 256x640x3]),\n", + " ('module.postnet.conv1d_projections.0.bn.weight', \n", + " 1.0064\n", + " 1.1528\n", + " 0.5419\n", + " 0.6797\n", + " 0.1785\n", + " 1.0887\n", + " 0.8183\n", + " 0.8454\n", + " 0.6532\n", + " 1.1385\n", + " 1.0083\n", + " 0.5864\n", + " 0.7713\n", + " 0.7591\n", + " 0.8494\n", + " 1.1892\n", + " 0.9368\n", + " 0.6308\n", + " 0.5809\n", + " 0.4602\n", + " 1.4810\n", + " 0.7448\n", + " 0.6929\n", + " 0.7922\n", + " 0.7155\n", + " 1.1933\n", + " 0.6255\n", + " 0.8659\n", + " 1.0119\n", + " 0.5903\n", + " 0.4898\n", + " 0.4952\n", + " 1.3038\n", + " 0.5721\n", + " 0.5777\n", + " 1.1893\n", + " 1.2678\n", + " 0.2680\n", + " 1.0207\n", + " 0.5819\n", + " 1.0601\n", + " 0.6649\n", + " -0.5641\n", + " 0.7843\n", + " 1.0840\n", + " 0.7581\n", + " 0.5106\n", + " 1.0091\n", + " 1.5557\n", + " 0.9729\n", + " 1.1628\n", + " 1.0890\n", + " 0.6408\n", + " 1.2018\n", + " 0.5435\n", + " 1.1324\n", + " 0.8478\n", + " 0.8005\n", + " 0.3795\n", + " 0.6147\n", + " 0.5328\n", + " 0.8774\n", + " 0.8778\n", + " 0.4229\n", + " 1.0529\n", + " 0.9138\n", + " 0.6883\n", + " 0.5685\n", + " -0.5754\n", + " 0.6103\n", + " 0.6324\n", + " -0.5165\n", + " 0.8187\n", + " 0.8786\n", + " 0.7707\n", + " 0.7669\n", + " 1.0023\n", + " 0.4995\n", + " 0.7858\n", + " 0.7484\n", + " 0.6385\n", + " 0.7918\n", + " 0.4057\n", + " 0.8278\n", + " 1.0741\n", + " 0.9531\n", + " 0.8309\n", + " 0.7774\n", + " 0.6918\n", + " 0.4724\n", + " 0.4893\n", + " 0.8787\n", + " 0.3343\n", + " 0.6209\n", + " 1.0224\n", + " 1.1883\n", + " 1.1650\n", + " 0.8231\n", + " 0.7204\n", + " 0.6680\n", + " 1.1056\n", + " 0.4447\n", + " 0.8551\n", + " 1.0782\n", + " 1.0202\n", + " 1.0038\n", + " 0.8246\n", + " 0.5232\n", + " 0.5444\n", + " 0.9478\n", + " -0.7929\n", + " 1.2236\n", + " 0.4436\n", + " 0.5050\n", + " 0.6681\n", + " 0.4004\n", + " 0.8633\n", + " 1.0582\n", + " 0.5568\n", + " 1.6561\n", + " 1.1483\n", + " 0.6300\n", + " 1.5092\n", + " 0.9100\n", + " -0.0984\n", + " 1.0042\n", + " 0.5777\n", + " 0.7218\n", + " 0.7370\n", + " 1.0029\n", + " 0.7365\n", + " 1.0735\n", + " 1.0629\n", + " 0.9720\n", + " 0.6372\n", + " 1.0330\n", + " 0.5227\n", + " 0.8334\n", + " 0.7459\n", + " 0.5253\n", + " 1.0443\n", + " 0.4467\n", + " 1.4061\n", + " 1.5157\n", + " 1.1923\n", + " 0.7804\n", + " 1.1574\n", + " 0.7108\n", + " 0.8723\n", + " 0.9795\n", + " 0.9159\n", + " 1.4306\n", + " 0.6564\n", + " 0.6755\n", + " 0.8446\n", + " 0.8883\n", + " 0.7525\n", + " 0.8763\n", + " 1.0265\n", + " 0.3895\n", + " 1.4116\n", + " 0.4657\n", + " 1.5146\n", + " 0.6319\n", + " 0.3985\n", + " 0.3801\n", + " 1.3908\n", + " 0.7146\n", + " 1.2559\n", + " 1.3587\n", + " 0.7255\n", + " 0.7276\n", + " 0.8790\n", + " 1.3085\n", + " 0.9402\n", + " 0.9422\n", + " 1.1547\n", + " 1.0940\n", + " 0.8019\n", + " 0.5170\n", + " 0.9326\n", + " 0.8033\n", + " -0.6534\n", + " 1.1897\n", + " 0.7316\n", + " 0.8126\n", + " 0.7897\n", + " 0.7867\n", + " 1.2840\n", + " 1.3320\n", + " 1.1048\n", + " 0.7991\n", + " 0.4574\n", + " 0.4702\n", + " 1.0722\n", + " 1.2828\n", + " 0.6300\n", + " 0.6376\n", + " 0.9071\n", + " 0.8140\n", + " 0.8752\n", + " 1.0837\n", + " 0.4878\n", + " 0.9065\n", + " 1.1854\n", + " 0.8245\n", + " 1.1576\n", + " 0.5712\n", + " 1.0625\n", + " 0.5408\n", + " 0.5943\n", + " 0.6183\n", + " 1.1269\n", + " 0.8454\n", + " 1.0975\n", + " 0.7584\n", + " 0.5840\n", + " 1.1025\n", + " 0.6991\n", + " 0.9294\n", + " 0.5743\n", + " 0.3285\n", + " 1.2038\n", + " 0.4224\n", + " 1.5905\n", + " 0.8091\n", + " 0.7251\n", + " 1.1017\n", + " 0.6961\n", + " 0.9184\n", + " 0.5409\n", + " 0.6847\n", + " 0.4472\n", + " 0.6680\n", + " 0.4501\n", + " 1.2013\n", + " 0.4849\n", + " 1.2200\n", + " 0.4478\n", + " 0.5941\n", + " 0.8964\n", + " 0.8002\n", + " 0.6811\n", + " 0.6297\n", + " 1.0296\n", + " 0.6396\n", + " 0.5490\n", + " 0.9496\n", + " 0.2422\n", + " 0.6818\n", + " 0.7932\n", + " 0.5752\n", + " 0.8121\n", + " 0.8411\n", + " 0.2931\n", + " 0.8513\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.postnet.conv1d_projections.0.bn.bias', \n", + " 1.2812\n", + " 17.1439\n", + " 14.9504\n", + " 10.2376\n", + " 13.5551\n", + " 16.2688\n", + " 18.4524\n", + " 13.8033\n", + " 18.5095\n", + " 7.7307\n", + " 15.3203\n", + " 13.8901\n", + " 14.3580\n", + " 17.4806\n", + " 17.8106\n", + " 4.2802\n", + " 10.4670\n", + " 17.6544\n", + " 16.7808\n", + " 16.5132\n", + " 16.6126\n", + " 5.4833\n", + " 15.3519\n", + " 2.8125\n", + " 15.0179\n", + " 1.9103\n", + " 15.6746\n", + " 16.0496\n", + " 15.5229\n", + " 6.0329\n", + " 10.9956\n", + " 17.0978\n", + " 8.8174\n", + " 17.2174\n", + " 2.4152\n", + " 15.8846\n", + " 7.8960\n", + " 15.6841\n", + " 13.3945\n", + " 15.9559\n", + " 13.0596\n", + " 13.7260\n", + " 9.3993\n", + " 14.2777\n", + " 19.0674\n", + " 18.1998\n", + " 16.3006\n", + " 11.1128\n", + " 2.8543\n", + " 3.8619\n", + " 13.3833\n", + " 16.3539\n", + " 14.2264\n", + " 12.3962\n", + " 19.2930\n", + " 5.4506\n", + " 17.7114\n", + " 10.9192\n", + " 17.4551\n", + " 13.6520\n", + " 14.5601\n", + " 8.8583\n", + " 8.4442\n", + " 12.7413\n", + " 12.1143\n", + " 8.1509\n", + " 14.9320\n", + " 9.1842\n", + " 7.5563\n", + " 9.0867\n", + " 17.3073\n", + " 13.9380\n", + " 17.2866\n", + " 17.2508\n", + " 16.3253\n", + " 12.1834\n", + " 10.2829\n", + " 8.4941\n", + " 17.8155\n", + " 6.2684\n", + " 12.0686\n", + " 17.6839\n", + " 15.2739\n", + " 13.4139\n", + " 14.0117\n", + " 4.3912\n", + " 11.4854\n", + " 3.1571\n", + " 7.0127\n", + " 15.3345\n", + " 17.3543\n", + " 11.8236\n", + " 15.9150\n", + " 14.1339\n", + " 17.2696\n", + " 12.2230\n", + " 8.5823\n", + " 7.0506\n", + " 3.5910\n", + " 16.2675\n", + " 11.4610\n", + " 13.9098\n", + " 8.7838\n", + " 11.5545\n", + " 9.6257\n", + " 13.1291\n", + " 14.2880\n", + " 14.6919\n", + " 14.4129\n", + " 9.2726\n", + " 13.0777\n", + " 12.5134\n", + " 19.5631\n", + " 12.8410\n", + " 16.0184\n", + " 17.7974\n", + " 11.6444\n", + " 6.0009\n", + " 16.6255\n", + " 16.1276\n", + " 13.1532\n", + " 13.8993\n", + " 16.2597\n", + " 12.3058\n", + " 14.6869\n", + " 9.1101\n", + " 1.5676\n", + " 17.7581\n", + " 11.2021\n", + " 14.0878\n", + " 16.6297\n", + " 18.8601\n", + " 13.8957\n", + " 13.6028\n", + " 10.4222\n", + " 4.1116\n", + " 16.1921\n", + " 13.8891\n", + " 16.2134\n", + " 18.0202\n", + " 16.0847\n", + " 5.8780\n", + " 12.3433\n", + " 4.3988\n", + " 10.7676\n", + " 6.0629\n", + " 15.0563\n", + " 9.2647\n", + " 13.2574\n", + " 14.3415\n", + " 13.1033\n", + " 2.2080\n", + " 16.3508\n", + " 11.3074\n", + " 18.9634\n", + " -0.1173\n", + " 15.5784\n", + " 8.7789\n", + " 11.0170\n", + " 16.4970\n", + " 5.0056\n", + " 10.0968\n", + " 18.0503\n", + " 10.1258\n", + " 15.0371\n", + " 18.7282\n", + " 13.3921\n", + " 14.1134\n", + " 10.7251\n", + " 8.1674\n", + " 9.5328\n", + " 3.7456\n", + " 14.1296\n", + " 6.9803\n", + " 14.3006\n", + " 13.5137\n", + " 10.7654\n", + " 9.8910\n", + " 10.0740\n", + " 12.0639\n", + " 10.0878\n", + " 10.4553\n", + " 10.3515\n", + " 12.2953\n", + " 12.6187\n", + " 16.2756\n", + " 10.9309\n", + " 15.9904\n", + " 9.5199\n", + " 6.4851\n", + " 6.5385\n", + " 16.8993\n", + " 17.7989\n", + " 10.0278\n", + " 14.5653\n", + " 6.5099\n", + " 12.6526\n", + " 4.6957\n", + " 13.1451\n", + " 15.9175\n", + " 3.8352\n", + " 15.5789\n", + " 13.7593\n", + " 16.6251\n", + " 13.9896\n", + " 9.4880\n", + " 7.2424\n", + " 9.1136\n", + " 9.5095\n", + " 18.4899\n", + " 19.1777\n", + " 17.1391\n", + " 8.6616\n", + " 5.6155\n", + " 15.3622\n", + " 11.7768\n", + " 12.6844\n", + " 12.8171\n", + " 3.6978\n", + " 6.9844\n", + " 16.1621\n", + " 10.3522\n", + " 6.2863\n", + " 17.1446\n", + " 6.6472\n", + " 16.9068\n", + " 16.2942\n", + " 11.2442\n", + " 11.6082\n", + " 5.0071\n", + " 16.3506\n", + " 14.0592\n", + " 12.3528\n", + " 19.9916\n", + " 10.3705\n", + " 13.1318\n", + " 16.8948\n", + " 10.8688\n", + " 15.7174\n", + " 13.2476\n", + " 12.0157\n", + " 19.4167\n", + " 14.4521\n", + " 16.9671\n", + " 12.6741\n", + " 6.8380\n", + " 14.8143\n", + " 8.1581\n", + " 13.5745\n", + " 10.2358\n", + " 14.0739\n", + " 13.2618\n", + " 14.1687\n", + " 5.1842\n", + " 21.4828\n", + " 17.2211\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.postnet.conv1d_projections.0.bn.running_mean', \n", + " 2.7753\n", + " 0.3818\n", + " 0.6334\n", + " 173.1261\n", + " 0.1075\n", + " 0.5092\n", + " 1.5174\n", + " 1318.5923\n", + " 2.3557\n", + " 1.5238\n", + " 1486.0178\n", + " 0.3207\n", + " 5.9736\n", + " 0.6928\n", + " 1.2868\n", + " 1.5721\n", + " 0.5284\n", + " 2.3495\n", + " 0.6995\n", + " 0.1308\n", + " 0.8089\n", + " 14.1699\n", + " 0.8847\n", + " 0.7157\n", + " 994.1609\n", + " 4.1544\n", + " 90.2139\n", + " 3.0803\n", + " 0.7165\n", + " 4.6952\n", + " 1.1713\n", + " 0.4256\n", + " 2.0226\n", + " 0.7897\n", + " 2.3223\n", + " 0.6126\n", + " 1660.7887\n", + " 0.6905\n", + " 1649.1803\n", + " 0.7538\n", + " 0.3325\n", + " 1.1968\n", + " 7.3061\n", + " 6.8361\n", + " 0.1586\n", + " 1.1100\n", + " 1.7231\n", + " 1535.1931\n", + " 0.3486\n", + " 4.3748\n", + " 1712.8698\n", + " 1585.2599\n", + " 176.4229\n", + " 0.3289\n", + " 0.3252\n", + " 1.3155\n", + " 938.7871\n", + " 0.7834\n", + " 148.8547\n", + " 0.6936\n", + " 1.0115\n", + " 1.1828\n", + " 2.8153\n", + " 0.5586\n", + " 2.7201\n", + " 1.1228\n", + " 1.8763\n", + " 1.7236\n", + " 19.2655\n", + " 239.5662\n", + " 2.7836\n", + " 1.3761\n", + " 296.3056\n", + " 913.4092\n", + " 2.0334\n", + " 0.9690\n", + " 1702.1686\n", + " 4.1709\n", + " 0.9101\n", + " 1.6110\n", + " 1.4030\n", + " 0.9680\n", + " 0.9362\n", + " 2.2457\n", + " 1490.8156\n", + " 2.9453\n", + " 1298.7178\n", + " 0.2146\n", + " 4.1666\n", + " 1.1035\n", + " 1.5424\n", + " 3.6634\n", + " 0.7759\n", + " 0.5930\n", + " 2.0226\n", + " 4.2671\n", + " 0.5106\n", + " 1.2427\n", + " 11.0188\n", + " 1307.5266\n", + " 1.7876\n", + " 1.1753\n", + " 5.3495\n", + " 1.4040\n", + " 1.1873\n", + " 1492.0095\n", + " 4.7756\n", + " 0.4510\n", + " 2.1644\n", + " 0.5204\n", + " 0.9193\n", + " 1754.6244\n", + " 83.8922\n", + " 1.0006\n", + " 3.4189\n", + " 251.2662\n", + " 3.6058\n", + " 1024.0649\n", + " 1.6469\n", + " 0.2748\n", + " 1425.5830\n", + " 2.7002\n", + " 0.1112\n", + " 3.5934\n", + " 0.0000\n", + " 268.0367\n", + " 3.7619\n", + " 491.7171\n", + " 0.5491\n", + " 0.9947\n", + " 0.7634\n", + " 0.7405\n", + " 1.0291\n", + " 259.1695\n", + " 1.1268\n", + " 1.1428\n", + " 1.5604\n", + " 6.6672\n", + " 9.2801\n", + " 1.2068\n", + " 1544.9845\n", + " 6.3380\n", + " 0.0696\n", + " 1.5572\n", + " 1551.6989\n", + " 4.1661\n", + " 224.0713\n", + " 8.1500\n", + " 0.7414\n", + " 1424.6758\n", + " 1.0982\n", + " 0.5337\n", + " 7.0338\n", + " 2.8724\n", + " 0.1823\n", + " 1.1163\n", + " 0.6475\n", + " 21.1496\n", + " 2.8433\n", + " 0.6622\n", + " 0.7595\n", + " 0.6273\n", + " 0.0477\n", + " 292.5533\n", + " 0.2493\n", + " 2.5269\n", + " 1678.3840\n", + " 4.8717\n", + " 1770.2681\n", + " 1800.8817\n", + " 1180.3121\n", + " 1.7565\n", + " 0.1644\n", + " 3.3804\n", + " 4.1438\n", + " 136.4131\n", + " 1667.0657\n", + " 1652.9028\n", + " 8.4203\n", + " 0.8433\n", + " 3.1129\n", + " 4.2489\n", + " 15.3234\n", + " 0.3517\n", + " 1.0394\n", + " 1227.4275\n", + " 1261.4265\n", + " 1.9013\n", + " 2.3953\n", + " 1.4071\n", + " 2.4481\n", + " 4.8915\n", + " 1.4859\n", + " 0.7486\n", + " 1612.6017\n", + " 0.6507\n", + " 0.6986\n", + " 2.5622\n", + " 0.3399\n", + " 6.5700\n", + " 2.0957\n", + " 0.0565\n", + " 2.1218\n", + " 0.9189\n", + " 691.7375\n", + " 1432.2279\n", + " 2.2276\n", + " 2.7685\n", + " 0.9708\n", + " 3.7125\n", + " 1.5601\n", + " 2.5054\n", + " 0.0597\n", + " 5.2947\n", + " 0.3169\n", + " 210.7291\n", + " 4.7917\n", + " 4.0418\n", + " 7.4134\n", + " 2.0436\n", + " 0.2562\n", + " 1.0144\n", + " 2.8074\n", + " 1.9981\n", + " 0.6851\n", + " 162.5275\n", + " 0.6670\n", + " 6.1842\n", + " 3.5061\n", + " 0.9552\n", + " 1.5708\n", + " 1.4534\n", + " 0.4530\n", + " 0.5706\n", + " 0.7868\n", + " 284.6758\n", + " 0.2575\n", + " 2.8801\n", + " 0.3087\n", + " 1.1671\n", + " 232.4743\n", + " 85.9347\n", + " 10.7732\n", + " 1.2698\n", + " 0.9208\n", + " 0.6425\n", + " 0.5448\n", + " 3.0128\n", + " 0.3295\n", + " 1.6000\n", + " 1.0468\n", + " 8.7842\n", + " 1.4011\n", + " 0.9018\n", + " 1.6300\n", + " 0.8632\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.postnet.conv1d_projections.0.bn.running_var', \n", + " 87.6942\n", + " 7.1318\n", + " 3.9194\n", + " 20.9474\n", + " 0.3606\n", + " 20.5983\n", + " 13.0474\n", + " 344.4141\n", + " 9.4391\n", + " 6.7778\n", + " 323.8777\n", + " 2.4856\n", + " 14.0690\n", + " 23.9334\n", + " 8.4666\n", + " 8.3945\n", + " 3.4187\n", + " 9.3119\n", + " 3.6598\n", + " 0.6194\n", + " 25.1080\n", + " 54.8546\n", + " 4.9288\n", + " 3.8281\n", + " 183.1740\n", + " 152.2856\n", + " 27.4477\n", + " 16.0468\n", + " 4.5722\n", + " 21.0806\n", + " 5.6672\n", + " 14.7286\n", + " 12.1208\n", + " 2.9059\n", + " 59.0178\n", + " 4.9073\n", + " 411.7721\n", + " 2.8066\n", + " 444.3587\n", + " 2.9010\n", + " 7.0539\n", + " 7.6301\n", + " 42.0356\n", + " 26.9875\n", + " 20.4478\n", + " 10.1745\n", + " 9.6833\n", + " 427.8193\n", + " 3.5250\n", + " 41.9636\n", + " 516.1542\n", + " 393.0963\n", + " 21.4590\n", + " 4.3005\n", + " 6.8636\n", + " 12.1839\n", + " 111.5021\n", + " 5.9088\n", + " 71.1304\n", + " 4.0510\n", + " 4.5807\n", + " 6.5794\n", + " 13.2356\n", + " 2.5152\n", + " 16.9195\n", + " 4.1334\n", + " 9.8563\n", + " 8.3859\n", + " 97.8492\n", + " 23.7796\n", + " 16.0726\n", + " 7.0877\n", + " 26.4761\n", + " 126.4229\n", + " 19.0890\n", + " 5.9119\n", + " 444.1166\n", + " 47.8581\n", + " 8.0636\n", + " 7.6867\n", + " 9.7661\n", + " 9.9720\n", + " 3.9200\n", + " 9.8997\n", + " 443.1576\n", + " 23.4630\n", + " 249.8578\n", + " 1.3360\n", + " 23.5595\n", + " 7.3501\n", + " 6.8262\n", + " 17.0668\n", + " 3.8783\n", + " 4.9632\n", + " 29.8222\n", + " 28.6368\n", + " 4.3469\n", + " 7.3488\n", + " 47.0580\n", + " 283.7618\n", + " 12.8363\n", + " 6.3048\n", + " 32.6211\n", + " 12.6005\n", + " 5.2659\n", + " 418.9775\n", + " 20.6403\n", + " 5.1937\n", + " 13.2954\n", + " 4.2208\n", + " 4.4080\n", + " 502.2701\n", + " 47.2290\n", + " 7.4357\n", + " 13.4018\n", + " 295.2262\n", + " 13.6607\n", + " 334.0442\n", + " 4.8749\n", + " 6.5240\n", + " 366.2472\n", + " 16.7205\n", + " 5.6659\n", + " 12.5702\n", + " 0.0000\n", + " 27.1990\n", + " 104.4047\n", + " 71.3939\n", + " 4.5043\n", + " 8.3918\n", + " 6.6005\n", + " 9.5063\n", + " 7.0208\n", + " 35.3314\n", + " 4.8568\n", + " 5.2463\n", + " 6.5439\n", + " 37.8944\n", + " 24.7531\n", + " 7.8764\n", + " 429.4724\n", + " 52.3462\n", + " 3.5580\n", + " 28.2907\n", + " 499.4714\n", + " 14.6136\n", + " 19.3546\n", + " 68.2662\n", + " 10.0461\n", + " 454.9553\n", + " 8.8021\n", + " 4.4240\n", + " 33.5397\n", + " 14.6746\n", + " 5.6596\n", + " 4.7589\n", + " 4.2637\n", + " 558.6557\n", + " 19.8264\n", + " 2.9783\n", + " 7.4728\n", + " 2.8951\n", + " 1.7417\n", + " 23.0010\n", + " 1.3080\n", + " 14.2484\n", + " 512.3925\n", + " 31.2630\n", + " 631.1724\n", + " 514.1356\n", + " 293.9054\n", + " 15.0251\n", + " 4.8618\n", + " 26.9479\n", + " 19.3160\n", + " 50.9048\n", + " 424.8301\n", + " 453.1019\n", + " 41.4095\n", + " 4.3910\n", + " 12.6802\n", + " 15.6503\n", + " 83.9994\n", + " 2.0973\n", + " 4.7766\n", + " 251.0884\n", + " 397.8469\n", + " 24.1732\n", + " 24.4222\n", + " 9.3091\n", + " 69.4376\n", + " 17.9582\n", + " 10.6635\n", + " 3.7720\n", + " 435.2577\n", + " 7.4856\n", + " 5.7441\n", + " 13.6646\n", + " 6.8971\n", + " 18.4054\n", + " 16.5748\n", + " 1.4229\n", + " 15.4817\n", + " 5.4005\n", + " 95.4689\n", + " 368.6776\n", + " 12.5717\n", + " 9.3346\n", + " 3.1895\n", + " 12.7112\n", + " 5.1520\n", + " 19.3879\n", + " 2.3535\n", + " 20.2337\n", + " 2.8619\n", + " 31.6802\n", + " 17.9289\n", + " 32.6600\n", + " 37.4601\n", + " 10.6008\n", + " 2.5121\n", + " 3.9772\n", + " 15.4718\n", + " 9.1469\n", + " 4.6861\n", + " 31.5696\n", + " 10.4808\n", + " 26.3760\n", + " 20.5761\n", + " 6.5184\n", + " 8.2492\n", + " 6.2479\n", + " 1.9784\n", + " 5.1187\n", + " 5.4346\n", + " 22.5699\n", + " 2.8018\n", + " 15.6621\n", + " 2.4941\n", + " 8.5163\n", + " 48.1840\n", + " 31.3503\n", + " 21.0698\n", + " 11.0356\n", + " 7.7330\n", + " 2.9362\n", + " 5.3684\n", + " 28.6198\n", + " 0.8928\n", + " 7.6283\n", + " 6.7332\n", + " 37.0229\n", + " 9.1180\n", + " 5.0407\n", + " 9.2884\n", + " 7.9118\n", + " [torch.FloatTensor of size 256]),\n", + " ('module.postnet.conv1d_projections.1.conv1d.weight', \n", + " ( 0 ,.,.) = \n", + " 5.2195e-02 1.9907e-02 -7.0854e-02\n", + " 2.7770e-01 1.4073e+00 1.1054e+00\n", + " 5.4670e-01 4.2194e-01 -1.3198e-01\n", + " ⋮ \n", + " 1.9469e-01 1.1500e-01 -1.7242e-01\n", + " 6.7335e-01 1.2255e+00 3.9269e-01\n", + " 1.7183e-03 4.5895e-01 5.6313e-01\n", + " \n", + " ( 1 ,.,.) = \n", + " -1.0461e-01 -1.1721e-01 -2.7959e-01\n", + " 2.5528e-01 7.7451e-01 4.1646e-01\n", + " 9.0024e-02 4.9471e-01 6.7004e-01\n", + " ⋮ \n", + " -1.1452e-01 3.7357e-01 -5.2436e-01\n", + " 8.3869e-01 1.3527e+00 6.5560e-01\n", + " 3.7751e-01 6.1575e-01 5.9562e-02\n", + " \n", + " ( 2 ,.,.) = \n", + " 9.4125e-02 8.5159e-02 1.2492e-01\n", + " 8.1844e-01 1.6799e+00 1.2010e+00\n", + " 6.1985e-01 8.4654e-01 5.3842e-01\n", + " ⋮ \n", + " 1.4908e-02 1.7344e-01 -2.5035e-03\n", + " 1.3253e+00 1.9885e+00 1.3415e+00\n", + " 6.8385e-01 7.1794e-01 3.1948e-01\n", + " ... \n", + " \n", + " (77 ,.,.) = \n", + " -1.0669e-01 -8.0844e-02 -2.5232e-01\n", + " 1.1422e-02 1.0861e+00 5.3154e-01\n", + " 5.2617e-01 6.5394e-01 -6.2136e-02\n", + " ⋮ \n", + " 4.6888e-01 4.8954e-01 2.3976e-01\n", + " 9.7884e-01 1.8881e+00 5.1218e-01\n", + " 1.9927e-01 7.5671e-01 6.0120e-03\n", + " \n", + " (78 ,.,.) = \n", + " -1.1719e-01 4.8443e-02 9.3944e-02\n", + " 5.3119e-01 1.1578e+00 4.9808e-01\n", + " 8.0624e-01 1.2984e+00 4.4143e-01\n", + " ⋮ \n", + " 3.4782e-01 4.7327e-01 1.8600e-01\n", + " 8.2889e-01 1.0548e+00 4.3066e-01\n", + " 2.2504e-01 2.0290e-01 2.1498e-01\n", + " \n", + " (79 ,.,.) = \n", + " 1.1439e-01 -1.7348e-02 -3.0525e-01\n", + " 2.0294e-01 7.2653e-01 4.0443e-01\n", + " 4.9828e-01 4.0238e-01 1.2768e-01\n", + " ⋮ \n", + " 2.4098e-01 1.2117e-01 4.9355e-01\n", + " 4.3716e-01 8.7794e-01 4.6880e-01\n", + " 3.7854e-01 4.1184e-01 3.0943e-01\n", + " [torch.FloatTensor of size 80x256x3]),\n", + " ('module.postnet.conv1d_projections.1.bn.weight', \n", + " 1.1131\n", + " 0.9724\n", + " 1.0952\n", + " 2.0732\n", + " 0.5533\n", + " 1.1140\n", + " 0.6586\n", + " 0.9462\n", + " 0.5307\n", + " 0.8061\n", + " 1.5967\n", + " 0.8221\n", + " 0.8902\n", + " 0.9065\n", + " 0.4332\n", + " 1.3648\n", + " 1.5116\n", + " 0.8725\n", + " 0.8722\n", + " 1.0873\n", + " 1.2751\n", + " 0.9191\n", + " 0.9641\n", + " 0.8794\n", + " 0.4741\n", + " 0.7738\n", + " 0.7530\n", + " 0.6498\n", + " 0.9927\n", + " 1.0602\n", + " 1.1159\n", + " 1.1088\n", + " 0.7379\n", + " 0.8107\n", + " 1.4319\n", + " 0.9653\n", + " 0.6382\n", + " 0.4784\n", + " 0.4891\n", + " 1.1939\n", + " 0.7339\n", + " 0.6188\n", + " 0.8833\n", + " 2.4050\n", + " -0.3177\n", + " 0.9896\n", + " 1.1539\n", + " 0.9532\n", + " 1.2655\n", + " 2.0908\n", + " 0.8568\n", + " 0.6974\n", + " 1.0724\n", + " 1.1096\n", + " 0.8678\n", + " 0.8552\n", + " 1.0003\n", + " 0.7046\n", + " 1.0005\n", + " 1.0480\n", + " 0.5479\n", + " 1.1870\n", + " 0.2342\n", + " 1.0157\n", + " 1.1361\n", + " 1.0313\n", + " 0.9024\n", + " 1.1572\n", + " 0.1972\n", + " 0.7557\n", + " 1.2411\n", + " 1.2459\n", + " 1.3304\n", + " 0.9391\n", + " 0.6778\n", + " 0.8988\n", + " 1.1606\n", + " 1.3418\n", + " 1.2340\n", + " 0.6855\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_projections.1.bn.bias', \n", + " -0.3643\n", + " -0.1151\n", + " -0.4266\n", + " -0.2956\n", + " 0.0577\n", + " -0.4398\n", + " -0.3374\n", + " -0.4977\n", + " -0.3623\n", + " -0.4534\n", + " -0.2369\n", + " -0.1629\n", + " -0.4315\n", + " -0.2628\n", + " -0.1724\n", + " -0.5756\n", + " -0.1301\n", + " -0.4351\n", + " -0.3917\n", + " -0.2696\n", + " -0.1161\n", + " -0.4591\n", + " -0.4481\n", + " -0.4318\n", + " 0.0008\n", + " -0.2230\n", + " -0.2198\n", + " -0.4657\n", + " -0.4189\n", + " -0.2279\n", + " -0.5386\n", + " -0.5261\n", + " -0.4154\n", + " -0.3129\n", + " -0.5103\n", + " -0.2308\n", + " -0.1940\n", + " -0.2578\n", + " -0.3725\n", + " -0.5918\n", + " 0.2227\n", + " -0.5157\n", + " -0.2997\n", + " -0.6149\n", + " -0.2551\n", + " -0.6179\n", + " -0.1135\n", + " -0.2885\n", + " -0.2444\n", + " -0.5553\n", + " 0.0099\n", + " -0.3510\n", + " -0.4529\n", + " -0.2292\n", + " 0.0338\n", + " -0.4650\n", + " -0.5090\n", + " -0.1376\n", + " -0.2306\n", + " -0.4613\n", + " -0.1367\n", + " -0.1225\n", + " -0.1226\n", + " -0.3641\n", + " -0.1382\n", + " -0.4473\n", + " -0.4051\n", + " -0.2548\n", + " -0.0901\n", + " 0.0033\n", + " -0.5289\n", + " -0.6576\n", + " -0.3296\n", + " -0.3922\n", + " -0.2572\n", + " -0.3455\n", + " -0.3026\n", + " -0.3475\n", + " -0.1392\n", + " -0.1041\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_projections.1.bn.running_mean', \n", + " 4794.6543\n", + " 3585.3281\n", + " 4854.7217\n", + " 5939.0063\n", + " 2431.0156\n", + " 4948.5771\n", + " 3388.5972\n", + " 4649.7622\n", + " 2335.0654\n", + " 2515.7034\n", + " 5599.3979\n", + " 2067.6697\n", + " 3672.5522\n", + " 2640.3167\n", + " 1735.0277\n", + " 5550.9165\n", + " 6470.2280\n", + " 4514.9443\n", + " 3035.8079\n", + " 3553.8733\n", + " 6698.5781\n", + " 3057.2085\n", + " 3212.4167\n", + " 3854.0215\n", + " 832.7523\n", + " 3202.8611\n", + " 1762.6179\n", + " 2960.1370\n", + " 4398.3604\n", + " 3143.0359\n", + " 4999.7422\n", + " 5101.7256\n", + " 3999.0593\n", + " 3128.9534\n", + " 4951.9438\n", + " 5651.3735\n", + " 2015.0485\n", + " 1073.7839\n", + " 3401.7195\n", + " 3991.4004\n", + " 3251.1260\n", + " 2128.0889\n", + " 3225.2791\n", + " 8126.6465\n", + " -1240.8994\n", + " 4030.9817\n", + " 5127.5361\n", + " 4162.8989\n", + " 5225.8721\n", + " 7719.8164\n", + " 3666.3826\n", + " 3584.5942\n", + " 4275.7173\n", + " 3859.2456\n", + " 3013.1509\n", + " 3769.0432\n", + " 3723.0259\n", + " 2336.5325\n", + " 4272.7793\n", + " 4369.0854\n", + " 1019.1653\n", + " 4665.3867\n", + " 1117.1483\n", + " 4695.1147\n", + " 3874.8955\n", + " 3881.8813\n", + " 4239.8242\n", + " 4921.7319\n", + " 888.8702\n", + " 4234.1348\n", + " 3747.1763\n", + " 3375.3000\n", + " 3834.5476\n", + " 3834.1763\n", + " 3178.7554\n", + " 3425.8835\n", + " 4922.0522\n", + " 5076.1162\n", + " 3843.5701\n", + " 2470.2336\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.conv1d_projections.1.bn.running_var', \n", + " 2238.4553\n", + " 780.7103\n", + " 2429.7249\n", + " 2660.2173\n", + " 233.1463\n", + " 1949.3705\n", + " 633.8268\n", + " 1360.0896\n", + " 263.0512\n", + " 484.6798\n", + " 2081.5149\n", + " 235.7928\n", + " 674.4207\n", + " 409.4161\n", + " 297.9118\n", + " 2178.4915\n", + " 5070.1694\n", + " 1261.4553\n", + " 740.6363\n", + " 978.0815\n", + " 5075.9692\n", + " 579.2091\n", + " 738.3559\n", + " 1188.6294\n", + " 91.6367\n", + " 754.7532\n", + " 339.0374\n", + " 574.3027\n", + " 1214.8538\n", + " 713.2219\n", + " 2442.1743\n", + " 2224.1912\n", + " 1043.5409\n", + " 392.1762\n", + " 1358.2344\n", + " 3114.9062\n", + " 257.3273\n", + " 276.4440\n", + " 549.5962\n", + " 817.6767\n", + " 609.9324\n", + " 393.8593\n", + " 394.2612\n", + " 4004.6206\n", + " 97.1118\n", + " 744.3381\n", + " 2400.0366\n", + " 1287.6052\n", + " 1797.8269\n", + " 5475.1440\n", + " 891.5662\n", + " 755.5529\n", + " 1328.1738\n", + " 1087.8168\n", + " 711.0801\n", + " 859.1395\n", + " 937.4152\n", + " 276.7247\n", + " 1025.1550\n", + " 963.1095\n", + " 172.1337\n", + " 1515.5322\n", + " 94.4020\n", + " 2225.9226\n", + " 1343.9473\n", + " 659.2188\n", + " 1427.4015\n", + " 2310.4495\n", + " 50.0436\n", + " 1735.0659\n", + " 795.8002\n", + " 596.3701\n", + " 951.0836\n", + " 914.1016\n", + " 672.8875\n", + " 560.1312\n", + " 2155.1333\n", + " 2150.8623\n", + " 832.1367\n", + " 319.0779\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.pre_highway.weight', \n", + " 6.2643e-02 2.4435e-03 -1.2216e-02 ... -5.7193e-02 -9.9890e-02 1.6946e-02\n", + " -1.0881e-01 7.2113e-02 9.5153e-02 ... -1.0533e-01 -8.7101e-02 4.5390e-02\n", + " -3.6340e-04 -6.7453e-02 -8.3466e-02 ... -7.3356e-02 5.7696e-02 -4.9411e-02\n", + " ... ⋱ ... \n", + " 9.3740e-02 -3.9298e-02 6.4824e-02 ... 1.1028e-01 5.7303e-02 -4.1076e-02\n", + " 2.2935e-02 9.1074e-02 -8.9565e-02 ... 9.3405e-02 -5.5724e-02 -7.9542e-02\n", + " 6.1049e-02 2.0629e-02 2.0692e-02 ... -3.5433e-02 -8.5093e-02 -2.7144e-02\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.0.H.weight', \n", + " 2.4867e-01 4.1168e-02 -5.3582e-02 ... -9.9787e-02 3.2798e-01 -5.0461e-02\n", + " -6.6196e-03 -1.9700e-01 -1.6881e-01 ... 4.9598e-01 -7.2049e-02 2.4578e-01\n", + " 2.2826e-01 -2.1728e-01 2.0021e-01 ... 3.1759e-01 2.9525e-02 1.7780e-01\n", + " ... ⋱ ... \n", + " 6.7725e-02 6.6767e-01 -1.8588e-01 ... 9.5651e-01 3.6561e-02 5.3880e-02\n", + " 8.1281e-02 -1.3331e-01 2.2614e-01 ... 1.0429e-01 -1.0845e-01 1.0289e-01\n", + " -8.0866e-02 7.2808e-02 2.8952e-01 ... -3.7574e-02 -1.4812e-01 2.7187e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.0.H.bias', \n", + " -0.1444\n", + " -0.2888\n", + " -0.3170\n", + " 0.0658\n", + " -0.0633\n", + " -0.2048\n", + " -0.0974\n", + " 0.2035\n", + " 0.0461\n", + " 0.1384\n", + " -0.1181\n", + " 0.1240\n", + " -0.0482\n", + " 0.0639\n", + " -0.1455\n", + " -0.3379\n", + " -0.1332\n", + " -0.2531\n", + " 0.1723\n", + " 0.3509\n", + " 0.0866\n", + " 0.0905\n", + " 0.1788\n", + " 0.1534\n", + " -0.0045\n", + " -0.2354\n", + " -0.1100\n", + " 0.0690\n", + " 0.2795\n", + " -0.1951\n", + " -0.0301\n", + " 0.0274\n", + " 0.8453\n", + " 0.1355\n", + " -0.1199\n", + " 0.3028\n", + " 0.0114\n", + " -0.3806\n", + " -0.1682\n", + " 0.2034\n", + " 0.4429\n", + " -0.4412\n", + " 0.0460\n", + " 0.0364\n", + " -0.0529\n", + " -0.1125\n", + " -0.1021\n", + " 0.1971\n", + " 0.0005\n", + " -0.0324\n", + " 0.1708\n", + " 0.3175\n", + " -0.6596\n", + " 0.0186\n", + " 0.2776\n", + " -0.1286\n", + " 0.0511\n", + " -0.1114\n", + " 0.1317\n", + " -0.0814\n", + " 0.1630\n", + " -0.0739\n", + " -0.0087\n", + " -0.3484\n", + " -0.3247\n", + " 0.1713\n", + " 0.1003\n", + " 0.1114\n", + " 0.1164\n", + " 0.2701\n", + " 0.2484\n", + " 0.0330\n", + " -0.0751\n", + " -0.0210\n", + " 0.0601\n", + " -0.1773\n", + " 0.1507\n", + " 0.0427\n", + " -0.1083\n", + " -0.0843\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.0.T.weight', \n", + " 1.0957e-01 2.7731e-01 -1.2678e-01 ... -8.3220e-02 -6.2637e-02 -2.5856e-01\n", + " 1.7775e-02 2.9560e-01 6.6594e-02 ... -1.6999e-01 -1.0914e-01 9.8891e-02\n", + " 1.2318e-01 7.0119e-02 1.5634e-01 ... -1.2690e-01 8.3795e-02 -3.7894e-02\n", + " ... ⋱ ... \n", + " -6.3693e-02 -6.7203e-01 -2.5071e-01 ... 7.2427e-02 4.0980e-01 3.5086e-01\n", + " 1.4521e-01 -2.2465e-01 -1.8351e-01 ... -3.6090e-01 -1.9848e-01 7.7147e-02\n", + " 1.6308e-01 -6.5072e-01 -1.4871e-02 ... -1.8386e-01 -1.3974e-01 3.3131e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.0.T.bias', \n", + " -0.9706\n", + " -0.9539\n", + " -1.0019\n", + " -0.6401\n", + " -0.6802\n", + " -0.7004\n", + " -1.1880\n", + " -1.0708\n", + " -0.8670\n", + " -0.8222\n", + " -1.0117\n", + " -1.0952\n", + " -0.9540\n", + " -1.0298\n", + " -1.0624\n", + " -0.6120\n", + " -0.3936\n", + " -0.8775\n", + " -1.0260\n", + " -0.9652\n", + " -0.4894\n", + " -0.9425\n", + " -0.9753\n", + " -0.8730\n", + " -1.3253\n", + " -1.0251\n", + " -1.0140\n", + " -0.8511\n", + " -0.7494\n", + " -1.0202\n", + " -1.0308\n", + " -0.9396\n", + " -1.0584\n", + " -0.7414\n", + " -0.9854\n", + " -0.8145\n", + " -1.1791\n", + " -1.1111\n", + " -0.7695\n", + " -0.7219\n", + " -0.7493\n", + " -1.2727\n", + " -1.0238\n", + " -0.5376\n", + " -1.0984\n", + " -0.8949\n", + " -0.7888\n", + " -0.9382\n", + " -0.7201\n", + " -0.5765\n", + " -0.8168\n", + " -1.0600\n", + " -1.0613\n", + " -0.8644\n", + " -0.9836\n", + " -1.3913\n", + " -1.2095\n", + " -1.0889\n", + " -0.6595\n", + " -0.4375\n", + " -0.9259\n", + " -1.0337\n", + " -1.2776\n", + " -0.7168\n", + " -1.1136\n", + " -1.0901\n", + " -0.8697\n", + " -0.9424\n", + " -1.0496\n", + " -0.7632\n", + " -0.7484\n", + " -1.1693\n", + " -0.8174\n", + " -0.9601\n", + " -0.8869\n", + " -0.8564\n", + " -0.6329\n", + " -0.7576\n", + " -0.8810\n", + " -1.0124\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.1.H.weight', \n", + " 9.1230e-01 -1.3596e-01 -1.4093e-01 ... 1.5030e-01 7.6379e-01 -3.3012e-01\n", + " 6.1809e-01 1.2302e+00 -4.1767e-01 ... -2.9080e-01 -6.2494e-02 2.1230e-01\n", + " -1.0950e-01 2.2074e-01 6.3138e-01 ... 1.8428e-01 -7.8434e-02 -3.1081e-01\n", + " ... ⋱ ... \n", + " 1.4937e-01 4.2980e-01 2.6760e-02 ... 6.7943e-01 4.4142e-01 -2.7297e-01\n", + " -3.7320e-02 -1.9871e-01 1.0014e-01 ... -1.4039e-01 8.2422e-02 -4.0768e-01\n", + " -1.1515e-01 -2.6997e-01 1.8682e-01 ... -7.9322e-02 1.3985e-01 1.2204e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.1.H.bias', \n", + " -0.2227\n", + " 0.0567\n", + " 0.0236\n", + " 0.2375\n", + " -0.0518\n", + " 0.0564\n", + " 0.0382\n", + " -0.2974\n", + " -0.1225\n", + " -0.0670\n", + " -0.3467\n", + " 0.0550\n", + " -0.1570\n", + " -0.1601\n", + " -0.0278\n", + " -0.1593\n", + " -0.0291\n", + " -0.0163\n", + " -0.0050\n", + " 0.0043\n", + " 0.0402\n", + " 0.1176\n", + " 0.3112\n", + " 0.1470\n", + " -0.1887\n", + " -0.1433\n", + " 0.0668\n", + " -0.0419\n", + " -0.0184\n", + " -0.1379\n", + " -0.1999\n", + " 0.2844\n", + " -0.2743\n", + " -0.2320\n", + " 0.1254\n", + " -0.1168\n", + " 0.0154\n", + " -0.2265\n", + " -0.0329\n", + " 0.0959\n", + " -0.0949\n", + " -0.1417\n", + " 0.2770\n", + " -0.3467\n", + " -0.1311\n", + " 0.0278\n", + " 0.0717\n", + " 0.0237\n", + " -0.0419\n", + " 0.1390\n", + " -0.2300\n", + " -0.0031\n", + " -0.1261\n", + " -0.1790\n", + " 0.1752\n", + " -0.1531\n", + " -0.1270\n", + " 0.0876\n", + " 0.3785\n", + " 0.1306\n", + " -0.0067\n", + " -0.0225\n", + " -0.1686\n", + " -0.1789\n", + " 0.3102\n", + " 0.5037\n", + " 0.1552\n", + " -0.2649\n", + " 0.0821\n", + " 0.0415\n", + " -0.0635\n", + " 0.0556\n", + " -0.0018\n", + " 0.0486\n", + " -0.2480\n", + " 0.1004\n", + " -0.1115\n", + " 0.0045\n", + " -0.0126\n", + " -0.1510\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.1.T.weight', \n", + " -4.9927e-01 -2.6072e-01 -1.0327e+00 ... -3.0688e-01 9.2184e-01 -8.2108e-01\n", + " -2.4358e-01 -2.5978e-01 -1.2319e-01 ... -1.5505e-02 4.4448e-01 2.7695e-01\n", + " 2.6090e-01 -3.5126e-01 2.7459e-02 ... 5.0993e-02 -7.9095e-02 1.7979e-01\n", + " ... ⋱ ... \n", + " 2.3238e-03 -1.8175e-01 -2.5332e-01 ... -2.2763e-01 -4.7735e-02 1.1920e-01\n", + " -1.3132e-01 -3.8461e-01 -3.0022e-01 ... -2.1166e-02 -1.6448e-01 -2.1012e-01\n", + " -1.8645e-01 -3.8559e-01 2.9771e-02 ... 1.2365e-01 6.4848e-02 -2.0881e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.1.T.bias', \n", + " -0.9412\n", + " -0.7066\n", + " -0.6889\n", + " -0.9583\n", + " -0.9480\n", + " -0.7388\n", + " -0.5661\n", + " -0.9317\n", + " -1.0198\n", + " -0.9792\n", + " -0.1181\n", + " -0.8724\n", + " -1.0719\n", + " -0.8781\n", + " -0.9275\n", + " -0.5863\n", + " -0.5480\n", + " -0.6873\n", + " -0.7334\n", + " -0.9447\n", + " -0.5334\n", + " -0.8045\n", + " -0.7259\n", + " -0.4503\n", + " -1.1942\n", + " -0.7621\n", + " -0.8239\n", + " -0.7301\n", + " -0.7982\n", + " -0.9111\n", + " -0.9003\n", + " -0.7060\n", + " -0.2966\n", + " -1.0202\n", + " -0.8996\n", + " -1.1389\n", + " -1.0155\n", + " -1.0354\n", + " -0.5346\n", + " -0.5635\n", + " -0.5768\n", + " -0.9595\n", + " -0.6603\n", + " -0.6183\n", + " -1.1203\n", + " -0.8846\n", + " -0.4604\n", + " -0.8136\n", + " -0.5419\n", + " -0.5879\n", + " -0.8771\n", + " -0.9569\n", + " -0.8667\n", + " -0.8589\n", + " -0.8157\n", + " -0.9056\n", + " -1.0193\n", + " -0.8903\n", + " -0.1502\n", + " -1.0415\n", + " -1.0744\n", + " -0.6627\n", + " -1.0806\n", + " -0.6878\n", + " -0.6414\n", + " -0.6909\n", + " -0.9609\n", + " -0.6565\n", + " -0.8993\n", + " -0.8040\n", + " -1.0628\n", + " -0.7982\n", + " -0.5010\n", + " -0.6472\n", + " -0.8983\n", + " -0.9107\n", + " -0.4975\n", + " -0.5973\n", + " -0.9040\n", + " -0.9348\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.2.H.weight', \n", + " -2.4274e-01 -2.7250e-01 4.9373e-02 ... 1.1653e-01 4.0595e-01 -1.3510e-01\n", + " 3.1051e-02 -2.2746e-01 8.5297e-02 ... -9.7518e-02 7.8655e-02 -7.2070e-02\n", + " -1.0259e-01 -1.5005e-01 7.2323e-01 ... 2.5662e-02 2.6174e-01 3.0316e-02\n", + " ... ⋱ ... \n", + " -2.1651e-02 -2.5406e-01 1.0460e-01 ... -2.5282e-01 2.2565e-01 2.3399e-01\n", + " -1.0750e-01 1.9786e-01 3.0018e-01 ... -2.9912e-01 6.4900e-02 5.8003e-02\n", + " 1.6612e-02 2.2036e-03 3.4828e-01 ... -3.8414e-03 2.4652e-01 4.8551e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.2.H.bias', \n", + " -0.0003\n", + " -0.0291\n", + " 0.0044\n", + " 0.0063\n", + " 0.0281\n", + " 0.0094\n", + " 0.0038\n", + " -0.0918\n", + " -0.0292\n", + " -0.0110\n", + " 0.0265\n", + " -0.0524\n", + " -0.0170\n", + " -0.1395\n", + " -0.0965\n", + " -0.0057\n", + " -0.1812\n", + " -0.0947\n", + " -0.2224\n", + " 0.0169\n", + " 0.0092\n", + " 0.0035\n", + " -0.0374\n", + " -0.0112\n", + " -0.1434\n", + " -0.0074\n", + " -0.1889\n", + " -0.0438\n", + " -0.1702\n", + " -0.0233\n", + " 0.0092\n", + " -0.0700\n", + " -0.0268\n", + " 0.0029\n", + " 0.0047\n", + " -0.0607\n", + " -0.0209\n", + " 0.0061\n", + " 0.0031\n", + " -0.1285\n", + " 0.0135\n", + " -0.0079\n", + " -0.1550\n", + " -0.1114\n", + " -0.0640\n", + " -0.0217\n", + " -0.0174\n", + " -0.1433\n", + " -0.0250\n", + " -0.0081\n", + " -0.0363\n", + " -0.0123\n", + " 0.0056\n", + " -0.0015\n", + " 0.0048\n", + " -0.0157\n", + " 0.0011\n", + " -0.1992\n", + " -0.0086\n", + " -0.0597\n", + " -0.0104\n", + " -0.1039\n", + " -0.0304\n", + " -0.1452\n", + " 0.0157\n", + " -0.1376\n", + " 0.0116\n", + " -0.2570\n", + " 0.0149\n", + " 0.0108\n", + " -0.3532\n", + " -0.0075\n", + " -0.0160\n", + " -0.0134\n", + " -0.0906\n", + " -0.1336\n", + " 0.0165\n", + " -0.0841\n", + " -0.0459\n", + " -0.0090\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.2.T.weight', \n", + " 3.6572e-01 5.9279e-02 -1.4287e-01 ... -2.6212e-01 -1.1769e-01 2.0280e-01\n", + " 1.6128e-01 -5.0609e-02 1.7673e-01 ... -1.5705e-01 7.6402e-02 9.5267e-02\n", + " -1.4162e-01 1.2445e-01 2.3100e-01 ... -9.0434e-02 1.4724e-02 2.4342e-02\n", + " ... ⋱ ... \n", + " -1.0872e-01 2.2763e-01 3.7120e-01 ... 2.9659e-01 5.8435e-02 -3.6852e-01\n", + " 2.0416e-01 -6.6940e-03 4.8543e-02 ... -5.4834e-02 2.4496e-01 -3.3553e-02\n", + " 1.0520e-01 2.6947e-01 -3.5717e-01 ... -1.0301e+00 5.2067e-01 2.1574e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.2.T.bias', \n", + " -0.7631\n", + " -1.1226\n", + " -0.8584\n", + " -0.7720\n", + " -0.7048\n", + " -0.7164\n", + " -0.9709\n", + " -0.9457\n", + " -0.8494\n", + " -0.4088\n", + " -0.6414\n", + " -1.0601\n", + " -1.0043\n", + " -0.9389\n", + " -0.8011\n", + " -0.6059\n", + " -0.6583\n", + " -0.7376\n", + " -0.4929\n", + " -1.0052\n", + " -0.7678\n", + " -1.0918\n", + " -0.9072\n", + " -0.7922\n", + " -1.0403\n", + " -1.1020\n", + " -1.0353\n", + " -0.7563\n", + " -0.8397\n", + " -0.7072\n", + " -0.9279\n", + " -0.6711\n", + " -0.3463\n", + " -0.8225\n", + " -0.7371\n", + " -1.0051\n", + " -1.1878\n", + " -0.9544\n", + " -1.0134\n", + " -0.8527\n", + " -0.9266\n", + " -1.0247\n", + " -1.0826\n", + " -0.7876\n", + " -1.2755\n", + " -0.7468\n", + " -0.5426\n", + " -1.0819\n", + " -0.4936\n", + " -1.2068\n", + " -0.6783\n", + " -0.6852\n", + " -0.9803\n", + " -0.7238\n", + " -0.9590\n", + " -0.6381\n", + " -0.9939\n", + " -1.0709\n", + " -0.8101\n", + " -0.6400\n", + " -0.4283\n", + " -0.9627\n", + " -0.9541\n", + " -0.7106\n", + " -0.7013\n", + " -1.0249\n", + " -0.9598\n", + " -0.3898\n", + " -1.1135\n", + " -0.7361\n", + " -1.0572\n", + " -1.1059\n", + " -0.5316\n", + " -0.9943\n", + " -0.6925\n", + " -0.8180\n", + " -0.9290\n", + " -0.9704\n", + " -0.9643\n", + " -0.6030\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.3.H.weight', \n", + " -2.6135e-01 1.6507e-01 8.8397e-02 ... 5.1202e-04 -2.0750e-01 1.0729e-01\n", + " -1.2196e-01 -2.7860e-01 -5.0616e-02 ... 5.1362e-01 -1.6859e-01 -2.2015e-01\n", + " -1.5429e-01 1.3958e-01 2.1380e-01 ... -2.3058e-01 -3.3214e-03 6.4230e-02\n", + " ... ⋱ ... \n", + " 1.1218e-01 1.5627e-01 3.7896e-02 ... 1.4440e-01 4.5716e-02 5.7027e-02\n", + " -9.7311e-02 -4.6075e-02 9.4683e-02 ... -4.8174e-02 2.6431e-01 -4.8024e-02\n", + " -5.8064e-02 -2.0418e-01 -3.5700e-02 ... 3.8692e-01 1.0238e-01 -1.2282e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.3.H.bias', \n", + " -0.0055\n", + " -0.0279\n", + " 0.0057\n", + " 0.0040\n", + " -0.1291\n", + " 0.0077\n", + " 0.0094\n", + " -0.0461\n", + " -0.0703\n", + " 0.0151\n", + " -0.0295\n", + " -0.0323\n", + " -0.0245\n", + " 0.0045\n", + " 0.0158\n", + " 0.0180\n", + " 0.0138\n", + " 0.0105\n", + " -0.0382\n", + " -0.0117\n", + " -0.0201\n", + " 0.0082\n", + " 0.0087\n", + " -0.0220\n", + " -0.0206\n", + " -0.0449\n", + " -0.0226\n", + " 0.0170\n", + " -0.0161\n", + " -0.1995\n", + " -0.0356\n", + " -0.0145\n", + " -0.1746\n", + " -0.0214\n", + " 0.0035\n", + " 0.0142\n", + " -0.0630\n", + " 0.0146\n", + " 0.0069\n", + " -0.0204\n", + " -0.1873\n", + " -0.0125\n", + " -0.0455\n", + " -0.2047\n", + " 0.0027\n", + " 0.0093\n", + " 0.0152\n", + " 0.0221\n", + " -0.1992\n", + " 0.0091\n", + " -0.0254\n", + " 0.0187\n", + " -0.0254\n", + " 0.0112\n", + " -0.0168\n", + " 0.0057\n", + " 0.0044\n", + " -0.0189\n", + " -0.1177\n", + " -0.0120\n", + " -0.0111\n", + " -0.1336\n", + " -0.0134\n", + " -0.0094\n", + " -0.0523\n", + " -0.0551\n", + " -0.0800\n", + " 0.0031\n", + " -0.0382\n", + " 0.0032\n", + " 0.0198\n", + " -0.1366\n", + " -0.0048\n", + " -0.0050\n", + " -0.0746\n", + " -0.0078\n", + " 0.0085\n", + " -0.1046\n", + " -0.0479\n", + " -0.1155\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.highways.3.T.weight', \n", + " 3.7147e-01 -9.9447e-02 3.6920e-02 ... -7.1776e-02 -6.0466e-03 2.2426e-01\n", + " -1.7026e-02 9.7215e-02 2.8594e-02 ... -2.9590e-01 -6.8981e-01 2.1689e-01\n", + " -9.5328e-02 7.0704e-02 5.8119e-01 ... -1.4032e-01 4.2478e-02 -1.0148e-01\n", + " ... ⋱ ... \n", + " -4.4207e-03 2.0096e-01 3.9831e-01 ... -2.6489e-01 6.0947e-01 -1.2633e-01\n", + " -3.0431e-01 1.5210e-01 -6.5500e-02 ... 2.9948e-01 -4.6027e-01 4.6829e-02\n", + " 2.5476e-01 1.2621e-02 6.4398e-02 ... 6.0937e-02 -1.7206e-01 1.1278e-01\n", + " [torch.FloatTensor of size 80x80]),\n", + " ('module.postnet.highways.3.T.bias', \n", + " -0.7148\n", + " -0.7708\n", + " -0.9425\n", + " -0.6730\n", + " -0.1652\n", + " -0.4560\n", + " -0.7011\n", + " -0.7110\n", + " -1.1224\n", + " -0.9510\n", + " -0.8533\n", + " -1.1357\n", + " -0.8920\n", + " -1.2216\n", + " -1.0353\n", + " -0.8836\n", + " -0.6786\n", + " -0.4523\n", + " -0.9874\n", + " -0.8611\n", + " -0.5129\n", + " -1.0361\n", + " -0.8023\n", + " -0.9454\n", + " -0.9796\n", + " -0.9083\n", + " -0.9954\n", + " -0.9217\n", + " -0.9016\n", + " -0.8483\n", + " -0.7846\n", + " -0.7049\n", + " -0.7861\n", + " -0.6688\n", + " -0.7724\n", + " -0.8507\n", + " -0.9932\n", + " -1.0269\n", + " -1.1675\n", + " -0.7789\n", + " -0.5356\n", + " -0.7966\n", + " -0.9293\n", + " -0.8827\n", + " -0.9904\n", + " -0.6809\n", + " -0.3062\n", + " -1.1263\n", + " -0.7787\n", + " -0.8213\n", + " -0.9363\n", + " -0.9193\n", + " -1.0666\n", + " -0.9542\n", + " -0.8626\n", + " -1.1382\n", + " -1.1062\n", + " -0.9254\n", + " -0.7698\n", + " -0.9057\n", + " -0.8849\n", + " -0.7466\n", + " -0.6831\n", + " -0.6838\n", + " -0.8847\n", + " -0.5496\n", + " -0.4942\n", + " -0.5930\n", + " -0.8724\n", + " -0.8466\n", + " -0.7382\n", + " -0.7323\n", + " -0.8553\n", + " -0.7705\n", + " -0.5874\n", + " -0.8952\n", + " -0.8524\n", + " -0.9613\n", + " -0.6429\n", + " -0.8777\n", + " [torch.FloatTensor of size 80]),\n", + " ('module.postnet.gru.weight_ih_l0', \n", + " 6.4939e-01 -7.9124e-01 4.0934e-02 ... -3.9241e-01 -1.3943e+00 -4.7296e-01\n", + " 3.7583e-01 5.4636e-01 6.5514e-02 ... -1.0450e+00 2.3660e-01 7.3014e-01\n", + " 3.7677e-01 -3.4706e-01 -5.9777e-01 ... -1.3496e-02 -1.6330e-01 -5.6673e-02\n", + " ... ⋱ ... \n", + " 3.3034e-02 5.7420e-02 2.5007e-01 ... -5.5500e-02 -3.0111e-03 -2.8446e-02\n", + " 2.9808e-02 -7.2426e-02 -2.0248e-01 ... -8.7287e-02 7.4915e-02 5.7272e-02\n", + " -3.2471e-02 1.0483e-03 -7.3799e-02 ... 7.3655e-03 -5.5721e-03 5.8514e-02\n", + " [torch.FloatTensor of size 240x80]),\n", + " ('module.postnet.gru.weight_hh_l0', \n", + " 4.3076e-01 6.5784e-01 -6.0003e-02 ... -4.1792e-01 3.4497e-01 -1.4939e-01\n", + " 4.5665e-02 -2.8360e-01 -9.2253e-01 ... 1.7441e-01 3.9119e-01 1.5422e-01\n", + " -1.8379e-01 5.7175e-01 2.3410e-01 ... 4.4199e-01 -2.0712e-01 6.1023e-01\n", + " ... ⋱ ... \n", + " 5.0059e-02 1.3538e-01 -4.8315e-01 ... -6.3149e+00 -9.0348e-02 -1.4320e-01\n", + " -8.1590e-02 3.6711e-01 -9.3420e-02 ... 1.8250e-01 -4.6494e+00 2.9142e-01\n", + " 9.1866e-02 1.0972e-01 9.2470e-01 ... -1.2952e+00 -1.1462e-01 -2.7750e+00\n", + " [torch.FloatTensor of size 240x80]),\n", + " ('module.postnet.gru.bias_ih_l0', \n", + " -0.2505\n", + " -0.2566\n", + " -0.0974\n", + " 0.0358\n", + " -0.6026\n", + " -0.7274\n", + " -0.4809\n", + " -0.1709\n", + " -0.1794\n", + " 0.1124\n", + " -0.0431\n", + " -0.1600\n", + " -0.3489\n", + " -0.7068\n", + " -0.0657\n", + " -0.4445\n", + " -0.1368\n", + " -0.4630\n", + " -0.8422\n", + " -0.3410\n", + " -0.1546\n", + " -0.3175\n", + " -0.1967\n", + " -0.5859\n", + " -0.1293\n", + " -0.1607\n", + " -0.1061\n", + " -1.0092\n", + " -0.9594\n", + " -0.3489\n", + " -0.3379\n", + " -0.3372\n", + " -0.1905\n", + " -0.2381\n", + " -0.0517\n", + " -0.3846\n", + " -0.6198\n", + " -0.0969\n", + " -0.2238\n", + " -0.5174\n", + " -0.6875\n", + " 0.0439\n", + " -0.3773\n", + " -0.0792\n", + " -0.2570\n", + " -0.2687\n", + " -0.0525\n", + " -0.4541\n", + " 0.1255\n", + " -0.1408\n", + " -0.5055\n", + " -0.0363\n", + " -0.3748\n", + " 0.0178\n", + " -0.1843\n", + " -0.1789\n", + " -0.1925\n", + " -0.6474\n", + " -0.3790\n", + " -0.1726\n", + " -0.4518\n", + " -0.2185\n", + " -0.1005\n", + " -0.0675\n", + " -0.6689\n", + " -0.4840\n", + " -0.2047\n", + " 0.0146\n", + " -0.7786\n", + " 0.0093\n", + " -0.1294\n", + " -0.7795\n", + " -0.0116\n", + " -0.3725\n", + " -0.5102\n", + " -0.0309\n", + " -0.1630\n", + " -0.2327\n", + " -0.1237\n", + " -0.1725\n", + " -0.0096\n", + " 0.2268\n", + " 0.3844\n", + " 0.0508\n", + " -0.3199\n", + " -0.6231\n", + " 0.4347\n", + " -0.4611\n", + " 0.3184\n", + " 0.3416\n", + " -0.1471\n", + " -0.0379\n", + " 0.2543\n", + " 0.0177\n", + " 0.1520\n", + " 0.2060\n", + " -0.2037\n", + " -0.4328\n", + " -0.1686\n", + " -0.3331\n", + " 0.1283\n", + " -0.0728\n", + " -0.1500\n", + " -0.3873\n", + " -0.5087\n", + " 0.0413\n", + " -0.3006\n", + " -0.5866\n", + " -0.0884\n", + " 0.2979\n", + " -0.3157\n", + " -0.0681\n", + " 0.2709\n", + " 0.2048\n", + " 0.2323\n", + " -0.1317\n", + " -0.5729\n", + " 0.5457\n", + " -0.2612\n", + " -0.1786\n", + " -0.0329\n", + " 0.6196\n", + " -0.0559\n", + " 0.1978\n", + " -0.5102\n", + " 0.2469\n", + " 0.3289\n", + " 0.1784\n", + " 0.6776\n", + " -0.0149\n", + " -0.1520\n", + " 0.6013\n", + " -0.0514\n", + " 0.3295\n", + " -0.3994\n", + " -0.3703\n", + " -0.1482\n", + " -0.1113\n", + " 0.2019\n", + " -0.1002\n", + " -0.2029\n", + " -0.2571\n", + " -0.2910\n", + " 0.5520\n", + " -0.1560\n", + " -0.1629\n", + " -0.1631\n", + " -0.0962\n", + " -0.2216\n", + " 0.6470\n", + " -0.0803\n", + " -0.0350\n", + " 0.0309\n", + " -0.4257\n", + " -0.0802\n", + " 0.6969\n", + " 0.2613\n", + " 0.4401\n", + " 0.4948\n", + " 0.0739\n", + " -0.0251\n", + " 0.0023\n", + " 0.0191\n", + " 0.0396\n", + " 0.0194\n", + " 0.0033\n", + " -0.0041\n", + " 0.0449\n", + " 0.0369\n", + " -0.0515\n", + " 0.0297\n", + " -0.0687\n", + " 0.0342\n", + " -0.0017\n", + " 0.0375\n", + " 0.0114\n", + " -0.0395\n", + " -0.0169\n", + " -0.0059\n", + " 0.0648\n", + " 0.0229\n", + " 0.0080\n", + " 0.0081\n", + " 0.0039\n", + " -0.0746\n", + " -0.0197\n", + " 0.0403\n", + " 0.0102\n", + " -0.0143\n", + " 0.0011\n", + " 0.0460\n", + " -0.0270\n", + " -0.0287\n", + " 0.0037\n", + " -0.0048\n", + " 0.0057\n", + " -0.0010\n", + " -0.0220\n", + " -0.0365\n", + " 0.0062\n", + " -0.0006\n", + " -0.0752\n", + " -0.0103\n", + " 0.0092\n", + " 0.0432\n", + " -0.0323\n", + " -0.0246\n", + " -0.0276\n", + " -0.0161\n", + " 0.0710\n", + " -0.0051\n", + " -0.0090\n", + " -0.0139\n", + " 0.0007\n", + " 0.0440\n", + " 0.0234\n", + " -0.0163\n", + " 0.0096\n", + " 0.0006\n", + " -0.0080\n", + " -0.0034\n", + " 0.0223\n", + " 0.0298\n", + " -0.0372\n", + " -0.0089\n", + " -0.0040\n", + " 0.0252\n", + " 0.0349\n", + " 0.0002\n", + " -0.0280\n", + " 0.0382\n", + " 0.0054\n", + " 0.0439\n", + " 0.0573\n", + " -0.0127\n", + " -0.0217\n", + " 0.0431\n", + " -0.0227\n", + " 0.0479\n", + " -0.0526\n", + " [torch.FloatTensor of size 240]),\n", + " ('module.postnet.gru.bias_hh_l0', \n", + " -0.1257\n", + " -0.2917\n", + " -0.2099\n", + " -0.1458\n", + " -0.5051\n", + " -0.7141\n", + " -0.4886\n", + " -0.1806\n", + " -0.0801\n", + " -0.0011\n", + " -0.1355\n", + " -0.0332\n", + " -0.2401\n", + " -0.6729\n", + " 0.0369\n", + " -0.5681\n", + " -0.2924\n", + " -0.4986\n", + " -0.6292\n", + " -0.1636\n", + " 0.0330\n", + " -0.2659\n", + " -0.1499\n", + " -0.6166\n", + " -0.1754\n", + " -0.2659\n", + " -0.0580\n", + " -0.9808\n", + " -0.9100\n", + " -0.2288\n", + " -0.3440\n", + " -0.2564\n", + " -0.0311\n", + " -0.3258\n", + " -0.0530\n", + " -0.4248\n", + " -0.6790\n", + " -0.1839\n", + " -0.0955\n", + " -0.4905\n", + " -0.5771\n", + " 0.0053\n", + " -0.2151\n", + " -0.0441\n", + " -0.1503\n", + " -0.2841\n", + " -0.0549\n", + " -0.4694\n", + " 0.0984\n", + " 0.0305\n", + " -0.6117\n", + " -0.1276\n", + " -0.5375\n", + " -0.0053\n", + " -0.0537\n", + " -0.3159\n", + " -0.3062\n", + " -0.6065\n", + " -0.3066\n", + " -0.1555\n", + " -0.5569\n", + " -0.3278\n", + " -0.2265\n", + " -0.0701\n", + " -0.6201\n", + " -0.5877\n", + " -0.2278\n", + " -0.0455\n", + " -0.7931\n", + " -0.0257\n", + " -0.0752\n", + " -0.8125\n", + " -0.0217\n", + " -0.2383\n", + " -0.7227\n", + " -0.0374\n", + " -0.0956\n", + " -0.0429\n", + " -0.0079\n", + " -0.0540\n", + " -0.0398\n", + " 0.0893\n", + " 0.3214\n", + " -0.0547\n", + " -0.1813\n", + " -0.6316\n", + " 0.3147\n", + " -0.4584\n", + " 0.2949\n", + " 0.4137\n", + " -0.1904\n", + " -0.1737\n", + " 0.3177\n", + " 0.0534\n", + " 0.0006\n", + " 0.1048\n", + " -0.3409\n", + " -0.3505\n", + " -0.0794\n", + " -0.2770\n", + " 0.0726\n", + " -0.0269\n", + " -0.2318\n", + " -0.2172\n", + " -0.4086\n", + " 0.0503\n", + " -0.2107\n", + " -0.4169\n", + " -0.2070\n", + " 0.3670\n", + " -0.3112\n", + " -0.2121\n", + " 0.2480\n", + " 0.2252\n", + " 0.2346\n", + " 0.0665\n", + " -0.5720\n", + " 0.5851\n", + " -0.1444\n", + " -0.3231\n", + " -0.0742\n", + " 0.4876\n", + " -0.1952\n", + " 0.0997\n", + " -0.5438\n", + " 0.1961\n", + " 0.4218\n", + " 0.2565\n", + " 0.6775\n", + " -0.0210\n", + " -0.2373\n", + " 0.4852\n", + " 0.0347\n", + " 0.3227\n", + " -0.5669\n", + " -0.2215\n", + " -0.0340\n", + " 0.0668\n", + " 0.2541\n", + " -0.1506\n", + " -0.1952\n", + " -0.1168\n", + " -0.3041\n", + " 0.5843\n", + " -0.1984\n", + " -0.0784\n", + " -0.1815\n", + " 0.0982\n", + " -0.1089\n", + " 0.6586\n", + " -0.1627\n", + " 0.1438\n", + " -0.0038\n", + " -0.5779\n", + " -0.1350\n", + " 0.5497\n", + " 0.3276\n", + " 0.4120\n", + " 0.4888\n", + " 0.1240\n", + " 0.0674\n", + " -0.0034\n", + " -0.0403\n", + " -0.0864\n", + " -0.0746\n", + " -0.0197\n", + " 0.0273\n", + " -0.1097\n", + " -0.0878\n", + " 0.0931\n", + " -0.0665\n", + " 0.1534\n", + " -0.0978\n", + " 0.0156\n", + " -0.0760\n", + " -0.0529\n", + " 0.0921\n", + " 0.0650\n", + " 0.0317\n", + " -0.1756\n", + " -0.0500\n", + " -0.0205\n", + " -0.0125\n", + " -0.0099\n", + " 0.1807\n", + " 0.0561\n", + " -0.0880\n", + " -0.0888\n", + " 0.1137\n", + " -0.0067\n", + " -0.1369\n", + " 0.0769\n", + " 0.0662\n", + " -0.0109\n", + " 0.0135\n", + " -0.0188\n", + " 0.0013\n", + " 0.0450\n", + " 0.0826\n", + " -0.0246\n", + " 0.0009\n", + " 0.1502\n", + " 0.0246\n", + " -0.0208\n", + " -0.1099\n", + " 0.0851\n", + " 0.0495\n", + " 0.0956\n", + " 0.0220\n", + " -0.1547\n", + " 0.0215\n", + " 0.0153\n", + " 0.0452\n", + " 0.0081\n", + " -0.0984\n", + " -0.0656\n", + " 0.0387\n", + " -0.0298\n", + " 0.0016\n", + " 0.0163\n", + " 0.0176\n", + " -0.0551\n", + " -0.0687\n", + " 0.0780\n", + " 0.0383\n", + " 0.0157\n", + " -0.0634\n", + " -0.0696\n", + " -0.0070\n", + " 0.0538\n", + " -0.0851\n", + " -0.0383\n", + " -0.0924\n", + " -0.1641\n", + " 0.0580\n", + " 0.0465\n", + " -0.0984\n", + " 0.0515\n", + " -0.1018\n", + " 0.1188\n", + " [torch.FloatTensor of size 240]),\n", + " ('module.postnet.gru.weight_ih_l0_reverse', \n", + " -1.9571e-01 -7.1658e-02 -1.3314e-01 ... -8.6115e-02 9.6457e-02 3.1947e-01\n", + " 2.7792e-01 -6.2562e-01 -2.6053e-01 ... 1.8648e-01 -2.5338e-01 -4.5606e-01\n", + " 3.9198e-01 3.2769e-01 1.4105e-01 ... -2.6209e-01 6.2235e-01 -3.0175e-01\n", + " ... ⋱ ... \n", + " 3.2538e-02 -5.2638e-02 -2.9837e-02 ... -1.7957e-01 3.9589e-02 1.6884e-01\n", + " 1.6656e-01 2.3316e-01 7.8167e-02 ... 6.7045e-03 1.5034e-02 2.1484e-01\n", + " 6.0119e-02 4.4352e-02 2.4869e-02 ... -1.8634e-01 1.0526e-01 -5.2547e-01\n", + " [torch.FloatTensor of size 240x80]),\n", + " ('module.postnet.gru.weight_hh_l0_reverse', \n", + " 1.7044e+00 -4.6533e-01 5.0316e-02 ... 6.1649e-02 -8.8314e-02 -2.6902e-01\n", + " -5.2162e-01 -5.4064e-01 2.2873e-01 ... -7.5252e-01 -5.2345e-02 -2.6505e-02\n", + " 1.8254e-01 -2.3672e-01 2.1709e-01 ... 1.1011e+00 -2.7084e-01 -3.3749e-01\n", + " ... ⋱ ... \n", + " -9.3583e-02 -4.7568e-02 3.3401e-01 ... -1.2074e+00 4.2794e-02 1.9333e+00\n", + " -2.1337e-01 -3.5673e-01 -7.3989e-02 ... -2.4008e-01 -9.2097e-01 1.1843e-01\n", + " 7.3042e-03 3.4483e-01 6.1662e-02 ... -3.6307e-01 1.1115e-01 1.4985e+00\n", + " [torch.FloatTensor of size 240x80]),\n", + " ('module.postnet.gru.bias_ih_l0_reverse', \n", + " -0.2834\n", + " -0.1341\n", + " -0.1891\n", + " -0.1270\n", + " -0.0979\n", + " 0.0250\n", + " -0.3082\n", + " -0.1290\n", + " -0.2570\n", + " -0.2486\n", + " 0.0449\n", + " -0.0050\n", + " -0.2715\n", + " -0.1192\n", + " -0.1564\n", + " -0.1569\n", + " -0.2715\n", + " -0.1705\n", + " -0.0844\n", + " -0.4546\n", + " -0.2333\n", + " -0.1900\n", + " -0.4071\n", + " 0.1633\n", + " -0.4212\n", + " -0.0644\n", + " -0.0426\n", + " -0.0172\n", + " -0.0573\n", + " -0.1484\n", + " -0.0129\n", + " -0.0973\n", + " -0.0774\n", + " -0.0528\n", + " -0.0528\n", + " -0.2679\n", + " -0.0995\n", + " -0.2083\n", + " -0.3124\n", + " 0.0962\n", + " -0.2425\n", + " -0.0225\n", + " -0.2383\n", + " -0.0144\n", + " -0.0467\n", + " -0.0518\n", + " -0.0031\n", + " 0.1910\n", + " -0.0607\n", + " -0.1113\n", + " -0.3463\n", + " 0.1373\n", + " -0.2563\n", + " -0.2841\n", + " -0.2629\n", + " -0.1472\n", + " -0.1935\n", + " -0.1878\n", + " -0.0706\n", + " -0.5098\n", + " -0.1341\n", + " -0.0148\n", + " -0.2255\n", + " -0.0354\n", + " 0.0876\n", + " -0.0750\n", + " -0.1063\n", + " -0.1258\n", + " -0.3909\n", + " -0.0564\n", + " -0.2521\n", + " -0.1769\n", + " -0.2716\n", + " -0.1493\n", + " -0.0496\n", + " -0.1065\n", + " -0.3822\n", + " -0.1321\n", + " 0.0315\n", + " -0.1653\n", + " -0.0777\n", + " 0.3395\n", + " -0.2367\n", + " -0.2367\n", + " -0.2159\n", + " -0.2686\n", + " 0.7723\n", + " 0.0111\n", + " 0.1415\n", + " 0.0081\n", + " -0.2737\n", + " -0.0718\n", + " 0.2837\n", + " 0.1893\n", + " -0.3025\n", + " 0.0827\n", + " -0.1914\n", + " 0.2433\n", + " 0.1645\n", + " 0.1867\n", + " -0.1336\n", + " 0.0415\n", + " -0.0685\n", + " 0.1470\n", + " 0.0657\n", + " -0.3073\n", + " -0.1858\n", + " 0.1482\n", + " 0.1246\n", + " -0.2530\n", + " 0.1587\n", + " 0.0094\n", + " -0.1678\n", + " 0.0576\n", + " -0.1429\n", + " -0.0371\n", + " 0.3333\n", + " 0.1869\n", + " 0.2635\n", + " -0.1213\n", + " -0.0520\n", + " -0.3667\n", + " -0.0626\n", + " 0.3608\n", + " 0.5578\n", + " -0.0925\n", + " 0.1044\n", + " -0.0112\n", + " -0.3684\n", + " 0.0313\n", + " -0.0474\n", + " 0.2086\n", + " 0.0270\n", + " 0.1090\n", + " 0.8672\n", + " 0.1158\n", + " -0.2498\n", + " 0.1239\n", + " 0.0900\n", + " -0.4163\n", + " -0.2231\n", + " 0.1602\n", + " 0.1050\n", + " 0.0660\n", + " 0.4067\n", + " 0.1662\n", + " -0.3401\n", + " 0.8094\n", + " 0.1300\n", + " -0.0209\n", + " -0.0355\n", + " 1.0411\n", + " 0.1142\n", + " 0.2019\n", + " 0.0569\n", + " -0.1053\n", + " 1.9178\n", + " 0.3461\n", + " 0.0406\n", + " -0.0130\n", + " -0.0287\n", + " 0.0203\n", + " -0.0028\n", + " 0.0256\n", + " -0.0373\n", + " 0.0146\n", + " -0.0237\n", + " -0.0067\n", + " -0.0089\n", + " -0.0216\n", + " 0.0407\n", + " 0.0337\n", + " -0.0112\n", + " 0.0036\n", + " 0.0085\n", + " 0.0190\n", + " -0.0212\n", + " 0.0172\n", + " -0.0325\n", + " 0.0043\n", + " 0.0076\n", + " -0.0122\n", + " -0.0075\n", + " -0.0015\n", + " -0.0089\n", + " 0.0133\n", + " 0.0669\n", + " 0.0499\n", + " -0.0491\n", + " 0.0011\n", + " -0.0022\n", + " -0.0078\n", + " -0.0192\n", + " 0.0348\n", + " 0.0217\n", + " 0.0040\n", + " 0.0124\n", + " -0.0149\n", + " -0.0068\n", + " 0.0506\n", + " -0.0112\n", + " -0.0273\n", + " -0.0091\n", + " -0.0442\n", + " -0.0102\n", + " 0.0340\n", + " 0.0467\n", + " -0.0276\n", + " 0.0458\n", + " 0.0079\n", + " -0.0068\n", + " 0.0548\n", + " 0.0014\n", + " 0.0232\n", + " 0.0111\n", + " 0.0248\n", + " 0.0341\n", + " -0.0333\n", + " 0.0020\n", + " -0.0115\n", + " -0.0184\n", + " 0.0211\n", + " -0.0325\n", + " -0.0263\n", + " -0.0312\n", + " -0.0194\n", + " 0.0092\n", + " 0.0252\n", + " 0.0259\n", + " 0.0115\n", + " 0.0070\n", + " 0.0371\n", + " -0.0159\n", + " -0.0056\n", + " 0.0381\n", + " 0.0253\n", + " -0.0043\n", + " 0.0014\n", + " -0.0099\n", + " 0.0038\n", + " [torch.FloatTensor of size 240]),\n", + " ('module.postnet.gru.bias_hh_l0_reverse', \n", + " -0.2487\n", + " -0.1271\n", + " -0.1493\n", + " 0.0263\n", + " 0.0129\n", + " 0.0412\n", + " -0.1970\n", + " -0.3277\n", + " -0.3353\n", + " -0.2026\n", + " -0.0747\n", + " -0.1377\n", + " -0.2107\n", + " -0.1382\n", + " -0.2139\n", + " -0.1606\n", + " -0.4580\n", + " -0.2586\n", + " -0.0390\n", + " -0.4157\n", + " -0.1222\n", + " -0.2138\n", + " -0.3036\n", + " 0.0978\n", + " -0.3649\n", + " -0.0272\n", + " -0.0919\n", + " -0.0896\n", + " 0.0116\n", + " -0.0178\n", + " -0.1166\n", + " 0.0206\n", + " -0.0256\n", + " -0.0908\n", + " -0.0805\n", + " -0.2593\n", + " -0.1308\n", + " -0.3071\n", + " -0.2022\n", + " 0.0909\n", + " -0.1760\n", + " -0.1884\n", + " -0.1719\n", + " -0.1515\n", + " -0.0075\n", + " 0.0053\n", + " -0.0405\n", + " 0.2614\n", + " -0.1736\n", + " 0.0894\n", + " -0.3122\n", + " 0.0602\n", + " -0.3385\n", + " -0.3736\n", + " -0.2544\n", + " 0.0354\n", + " -0.1137\n", + " -0.3462\n", + " -0.1956\n", + " -0.4153\n", + " -0.1730\n", + " 0.0075\n", + " -0.1659\n", + " 0.0991\n", + " -0.0186\n", + " -0.1592\n", + " -0.0166\n", + " -0.2992\n", + " -0.2731\n", + " -0.0349\n", + " -0.2382\n", + " -0.0450\n", + " -0.1722\n", + " -0.2531\n", + " -0.1807\n", + " -0.1135\n", + " -0.2719\n", + " -0.2557\n", + " -0.0144\n", + " -0.2027\n", + " 0.0466\n", + " 0.1740\n", + " -0.3893\n", + " -0.1778\n", + " -0.2417\n", + " -0.1082\n", + " 0.6921\n", + " 0.0596\n", + " 0.1283\n", + " -0.0760\n", + " -0.2241\n", + " -0.0975\n", + " 0.3336\n", + " 0.2793\n", + " -0.2995\n", + " 0.0315\n", + " -0.1422\n", + " 0.2703\n", + " 0.1530\n", + " 0.2506\n", + " -0.1593\n", + " 0.0975\n", + " -0.2239\n", + " 0.2017\n", + " 0.1103\n", + " -0.2734\n", + " -0.0930\n", + " -0.0133\n", + " 0.0313\n", + " -0.2820\n", + " 0.0176\n", + " 0.1565\n", + " -0.2222\n", + " 0.0820\n", + " -0.1499\n", + " 0.1038\n", + " 0.2361\n", + " 0.1533\n", + " 0.2672\n", + " -0.1057\n", + " -0.0180\n", + " -0.2015\n", + " -0.0127\n", + " 0.4115\n", + " 0.5030\n", + " -0.0607\n", + " 0.2297\n", + " -0.0195\n", + " -0.1869\n", + " -0.1665\n", + " -0.0110\n", + " 0.1128\n", + " -0.0069\n", + " 0.1217\n", + " 0.8779\n", + " 0.2806\n", + " -0.2943\n", + " 0.1384\n", + " -0.0913\n", + " -0.3071\n", + " -0.2291\n", + " 0.0558\n", + " -0.0693\n", + " -0.0422\n", + " 0.3369\n", + " -0.0317\n", + " -0.1905\n", + " 0.7677\n", + " 0.2580\n", + " 0.0240\n", + " 0.0153\n", + " 0.9563\n", + " 0.1226\n", + " 0.2429\n", + " 0.1906\n", + " -0.0149\n", + " 1.8935\n", + " 0.3781\n", + " -0.0177\n", + " 0.0269\n", + " 0.0797\n", + " -0.0511\n", + " 0.0123\n", + " -0.0557\n", + " 0.0786\n", + " -0.0151\n", + " 0.0576\n", + " 0.0093\n", + " 0.0177\n", + " 0.0563\n", + " -0.0821\n", + " -0.0707\n", + " 0.0199\n", + " -0.0187\n", + " -0.0318\n", + " -0.0384\n", + " 0.0585\n", + " -0.0411\n", + " 0.0692\n", + " -0.0140\n", + " -0.0212\n", + " 0.0343\n", + " 0.0252\n", + " 0.0025\n", + " 0.0241\n", + " -0.0278\n", + " -0.1441\n", + " -0.1080\n", + " 0.1002\n", + " 0.0010\n", + " 0.0017\n", + " 0.0162\n", + " 0.0458\n", + " -0.0687\n", + " -0.0423\n", + " -0.0112\n", + " -0.0268\n", + " 0.0391\n", + " 0.0182\n", + " -0.0957\n", + " 0.0330\n", + " 0.0602\n", + " 0.0215\n", + " 0.1023\n", + " 0.0070\n", + " -0.0670\n", + " -0.1032\n", + " 0.0485\n", + " -0.1075\n", + " -0.0313\n", + " 0.0147\n", + " -0.0862\n", + " -0.0018\n", + " -0.0198\n", + " -0.0436\n", + " -0.0486\n", + " -0.0878\n", + " 0.0881\n", + " -0.0095\n", + " 0.0378\n", + " 0.0495\n", + " -0.0407\n", + " 0.0855\n", + " 0.0551\n", + " 0.0526\n", + " 0.0357\n", + " -0.0338\n", + " -0.0639\n", + " -0.0750\n", + " -0.0179\n", + " -0.0145\n", + " -0.0488\n", + " 0.0365\n", + " 0.0254\n", + " -0.0829\n", + " -0.0473\n", + " -0.0232\n", + " -0.0070\n", + " 0.0135\n", + " -0.0169\n", + " [torch.FloatTensor of size 240]),\n", + " ('module.last_linear.weight', \n", + " 9.0400e-03 -7.2088e-03 -1.4630e-02 ... 6.1971e-03 -1.5822e-03 -2.7374e-03\n", + " 1.1868e-02 -4.7611e-03 -1.6505e-02 ... 6.2229e-03 -1.4371e-03 -2.4970e-03\n", + " 1.3643e-02 -4.6501e-03 -2.1297e-02 ... 1.0202e-02 -2.7155e-03 -2.3471e-03\n", + " ... ⋱ ... \n", + " 1.9957e-03 -6.6300e-03 1.2878e-02 ... -4.6978e-03 -3.2197e-02 -1.5346e-03\n", + " 2.5341e-03 -6.8375e-03 1.1034e-02 ... -4.8485e-03 -3.2630e-02 -2.1417e-03\n", + " 2.9717e-03 -7.6311e-03 9.8761e-03 ... -4.5076e-03 -3.3754e-02 -2.9296e-03\n", + " [torch.FloatTensor of size 1025x160]),\n", + " ('module.last_linear.bias', \n", + " 1.00000e-04 *\n", + " -1.3252\n", + " -1.4030\n", + " -1.1655\n", + " ⋮ \n", + " -0.1640\n", + " 0.0590\n", + " 1.3231\n", + " [torch.FloatTensor of size 1025])])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cp['model']" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -428,7 +25844,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " > Run-time: 6.436546802520752\n" + " > Run-time: 8.474236488342285\n" ] }, { @@ -444,7 +25860,7 @@ "text/html": [ "\n", " \n", " " @@ -458,9 +25874,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XuYpGdZJ/7vPZ0ThARIQiCSKKDh\nZBB0Y4CFC5CzhwWuXWHBEyKaXX+worgKssrJVdD1ALiKZlck6u5ycoEsiyImorIgEI4KIRJigBBI\nSAgSCCSZ7vv3R9dAO8x0P5WZrrdr8vlcV11dVe/db91TQ+jpu77v81R3BwAAAGAru6ZuAAAAAFgO\nhggAAADAEEMEAAAAYIghAgAAADDEEAEAAAAYYogAAAAADDFEAAAAAIYYIgAAAABDDBEAAACAIYdN\n3cBOcEQd2Ufl6KnbAAAAOCCn3OMLw7VfWDtyuPbzu48aqrv209fkus99uYZPvCQe8R1H91WfXd32\n13n3B657U3c/cttf6AAYIiQ5Kkfn3vWQqdsAAAA4IC96w9uGa//q2lOHa8/77F2H6s79kT8ZPucy\nueqzq3nnm75+219n5aSPnLDtL3KADBEAAABgE51kLWtTt7EjWBMBAAAAGCKJAAAAAJvqrLYkQiKJ\nAAAAAAySRAAAAFigldueOFf9a9/zf4dr//Xp/3q4dvenPj1HF1cNVa329u9gMIX1NRF66jZ2BEkE\nAAAAYIghAgAAADDE5QwAAACwBVs8rpNEAAAAAIZIIgAAAMAmOp3VtrBiIokAAAAADJJEAAAA2Jcz\n7jFc+kN/9Mbh2vsc9da52njMNz50uHbty/Ns2zhu5Va3HKqrz69sy+vvBLZ4XCeJAAAAAAyRRAAA\nAIBNdJJVSYQkkggAAADAIEkEAAAA2II1EdZJIgAAAABDJBEAAABgE51ktSUREkMEAADgJuQTP/8v\nh2t/8vtfN1z7R49/5HDtH773g8O16748Z/3Bt/r5LwzV9erqNnfC1AwRAAAAYAtrUzewQ1gTAQAA\nABgiiQAAAACb6HRW7c6QRBIBAAAAGCSJAAAAAJvpZFUQIYkhAgAAsOTucv7hw7UXXfCl4do/uftt\nx5voeXdcgOVkiAAAAACb6NidYQ9rIgAAAABDJBEAAABgU5XV1NRN7AiSCAAAAMAQSQQAAADYRCdZ\nsztDEkkEAAAAYJAkAgAAsOPUYeO/qvz9s+45XPtNb373eBPto+evWFuduoPJWRNh3dImEarqLlX1\nvg23z1fVT1bVcVX15qr6yOzrrafuFQAAAA4FSztE6O4Lu/te3X2vJP8iybVJXpvkmUnO7e5Tk5w7\newwAAAA3Smc9ibDdt2WwtEOEvTwkyUe7+2NJHp3k7NnzZyd5zGRdAQAAwCHkUFkT4fFJ/tfs/m27\n+1NJ0t2fqqoTp2sLAACAQ8FaL0dSYLstfRKhqo5I8qgkr57z+86sqvOr6vwbct32NAcAAACHkEMh\nifCdSd7T3ZfPHl9eVSfNUggnJbliX9/U3WclOStJjq3jLLsKAADAPu1ZE4FDY4jwhHz1UoYkOSfJ\nE5O8cPb19VM0BQAA3Hgfe9YZw7Vf/4tvHz+xbRvhgCz1EKGqbp7kYUn+3YanX5jkVVX15CQfT/LY\nKXoDAADg0NCprC7/agAHxVIPEbr72iTH7/XcVVnfrQEAAAA4iJZ6iAAAAACLYHeGdfIYAAAAwBBJ\nBAAAANiE3Rm+ShIBAAAAGCKJAAAAfFXN+WnrHFsmHnbS7YZrrzt+bbi2Djt8uLZvuH64Fr6qsto+\ng08kEQAAAIBBkggAAACwiU6y5jP4JJIIAAAAwCBJBAAAANiC3RnWSSIAAAAAQyQRAAAAYBPddmfY\nwxABAAD4qjm2bJzXdXf5uuHauz7/H4ZrV23bCAtjiAAAAABbWLMmQhJrIgAAAACDJBEAAABgE51k\n1WfwSSQRAAAAgEGSCAAAALApuzPs4V0AAAAAhkgiAAAAN9phJ91uuPaiJ49vH/lNP3T1jWkHtkUn\nWfMZfBJJBAAAAGCQJAIAAABsYbVr6hZ2BEkEAAAAYIgkAgAAAGyiU1n1GXwSSQQAAABgkCQCAAAA\nbGGtfQafGCIAAAAb1XyLx93zjZcN1/bjbzFcu9rj20ECi2OIAAAAAJvoxJoIM94FAAAAYIgkAgAA\nAGyiU1nt+S71OVRJIgAAAABDDBEAAACAIS5nAAAAvuL4t95qrvr3/vDthmvXPvIP87bDNtp11FHD\ntWvXXTdWeAhvqrHmM/gkkggAAADAIEkEAAAA2ER3sto+g08kEQAAAIBBkggAAACwqcpabPGYSCIA\nAAAAgyQRAAAAYBMdayLsYYgAAMCYmiPK24fwPm/baY73uA47fLj2wpd+y3Dt179gvl+Ujnr/O8eL\n5/nfENtueNvGxH/TfIUhAgAAAGxh1WoASayJAAAAAAySRAAAAIBNdCpr7XKcRBIBAAAAGCSJAAAA\nAFuwJsI67wIAAAAwRBIBAOCmzLaNN0odNv7P6F4bf98OO/GE4doLfuEOw7XHXLAyXHuzN50/XJsk\nvU3bUvYN18/VBzdCzfOZ8tpY2SH6fxOdZK19Bp9IIgAAAACDJBEAAABgU5XV2J0hkUQAAAAABkki\nAAAAwCasifBV3gUAAABYAlX1yKq6sKouqqpn7uP411fVX1bVe6vqA1X1XQe7B0kEAAAA2MLUayJU\n1UqS307ysCSXJnlXVZ3T3R/aUPbzSV7V3S+tqrsneWOSOxzMPgwRAABuymzb+BW77nm34dpPP3/8\nfXvwyf8wXPuvb/2nw7VPeuVThmtP/sOPDNeubuPWirZt3FlWbnP8ePHgVqX1Wb9ibqMzklzU3Rcn\nSVW9Ismjk2wcInSSY2f3b5nksoPdhL9hAAAA2ER3LWpNhBOq6vwNj8/q7rNm92+f5BMbjl2a5N57\nff9zk/x5Vf2HJEcneejBbtAQAQAAAHaGK7v79P0c29f1FHtHRJ6Q5OXd/etVdd8kf1RVp3X32sFq\n0BABAAAAtrA6/e4MlyY5ZcPjk/O1lys8Ockjk6S7315VRyU5IckVB6uJyd8FAAAAYEvvSnJqVd2x\nqo5I8vgk5+xV8/EkD0mSqrpbkqOSfOZgNiGJAAAAAJvoJGsT787Q3bur6qlJ3pRkJcnLuvuDVfX8\nJOd39zlJfjrJf6uqn8p62z/cfXBX0DVEAAAAgCXQ3W/M+raNG5979ob7H0pyv+3swRABAIBD1sqt\nbz1ce9HjbzVce4s/G+/hPRd/23Dth/7mqOHaO37pb4dr11ZWhmu56egvfHG4to44YvCkh+q2sbUT\n1kTYEZb6XaiqW1XVa6rqw1V1QVXdt6qOq6o3V9VHZl/Hf3IAAAAA+7XUQ4QkL07yZ9191yT3THJB\nkmcmObe7T01y7uwxAAAA3CidZK1r22/LYGmHCFV1bJIHJPn9JOnu67v7c0keneTsWdnZSR4zTYcA\nAABwaFnmNRHulPWtKv6gqu6Z5N1Jnpbktt39qSTp7k9V1Yn7+uaqOjPJmUlyVG6+mI4BAABYSqvL\n+xn8QbXM78JhSb4tyUu7+1uTfDFzXLrQ3Wd19+ndffrhOXK7egQAAIBDxjIPES5Ncml3v2P2+DVZ\nHypcXlUnJcns6xUT9QcAAMAhoLP96yEsy5oIS3s5Q3d/uqo+UVV36e4LkzwkyYdmtycmeeHs6+sn\nbBMAgK3smm/7wY/+0bcM1/7tA/7rcO0Df+duw7W3+d23D9fOs+Xd2vhZ59K7d2/TmedUc/ySdMhu\nFbhzrH1xfIvHXHvtUFmvrd7IblgWSztEmPkPSf5HVR2R5OIkT8p6uuJVVfXkJB9P8tgJ+wMAAOAQ\nsLbUQf6DZ6mHCN39viSn7+PQQxbdCwAAABzqlnqIAAAAANutO1ldkjULtps8BgAAADBEEgEAAAC2\nsCy7J2w3SQQAAABgiCQCAAAHXR1+xHDthb83vmVjktzifePn/v7vv99w7cl521x9cCPYtnFp1crg\nVqyH6F9xp7LWPoNPJBEAAACAQZIIAAAAsIXVWBMhkUQAAAAABkkiAAAAwCY6dmfYQxIBAAAAGCKJ\nAADAmBr/FO7C37rXcO3NPjrfP0lv/5J3D9ceogvFw8Exx3/Tvbo6WHgje9nx7M6wh3cBAAAAGCKJ\nAAAAAFtYsztDEkkEAAAAYJAkAgAAAGyiO1m1O0MSSQQAAABgkCQCAAAAbMHuDOsMEQAAbsrm2OLt\nS4/+9uHaoz49/s/Mb/j19wzXJsnaDbvnqoeblDn+m64jjjj4r3+dyP+hzhABAAAANtGprFkTIYk1\nEQAAAIBBkggAAACwhbVIIiSSCAAAAMAgSQQAAADYRCfWRJiRRAAAAACGSCIAANyEXfddpw/X3u4/\nfnS49uYP+qfh2rXdtmyEg6Z7vPS66yZ9fZaTIQIAAABsYa0F+ROXMwAAAACDJBEAAABgM10WVpyR\nRAAAAACGSCIAAADAJjrJWiQREkkEAAAAYJAkAgDAIWblLt80XPux7xn/ZO1mD/3icG3bthH2r+b8\nRNu2iTuCNRHWSSIAAAAAQyQRAAAAYBMdSYQ9JBEAAACAIZIIAAAAsAVJhHWSCAAAAMAQSQQAAADY\nRKckEWYMEQAAlsDK8ccN1z7qtW8frv3iz373cO3al788XAs3OfNs22jLRpaYIQIAAABsYS2SCIk1\nEQAAAIBBkggAAACwmbY7wx6SCAAAAMAQSQQAAADYREcSYQ9JBAAAAGCIJAIAwER2HX30cO23n3f5\ncO05D7jrcO1RV75zuBbYxKG+beOulbG61e1tY0qSCOskEQAAAIAhkggAAACwiU5JIsxIIgAAAABD\nJBEAAABgCy2JkEQSAQAAABgkiQAAAABbWIskQmKIAABwcI1ug5bk1z74F8O1P/1vfnS4tq/84HAt\nwJBem7oDdghDBAAAANhEd+zOMGNNBAAAAGCIJAIAAABswe4M6yQRAAAAgCGSCAAAALCpsibCjCEC\nAMAmdh1zzFz1z/vAecO1P3OvRw7X9ufsuABMqHvqDtghlnqIUFWXJLkmyWqS3d19elUdl+SVSe6Q\n5JIkj+vuq6fqEQAAgOVnTYR1h8KaCN/R3ffq7tNnj5+Z5NzuPjXJubPHAAAAwAFa6iTCfjw6yYNm\n989O8pYkz5iqGQAAAJZbJ9ZEmFn2JEIn+fOqendVnTl77rbd/akkmX09cV/fWFVnVtX5VXX+Dblu\nQe0CAADA8lr2JML9uvuyqjoxyZur6sOj39jdZyU5K0mOreOsEgIAAMC+tbUl91jqJEJ3Xzb7ekWS\n1yY5I8nlVXVSksy+XjFdhwAAAHDoWNokQlUdnWRXd18zu//wJM9Pck6SJyZ54ezr66frEgDYkWr8\nutYrH3vaXKd+3v3Ht4Rc/dxlc50bgOmsxZoIyRIPEZLcNslra/0fAYcl+Z/d/WdV9a4kr6qqJyf5\neJLHTtgjAAAAHDKWdojQ3Rcnuec+nr8qyUMW3xEAAACHok7SdmdIsuRrIgAAAACLs7RJBAAAAFiM\nypokQhJJBAAAAGDQZEmEqvqmrG/JePskn0zyzu6+aKp+AAAAYH+6p+5gZ1j4EKGqjkryO0l+MMnK\nhkOrVXV2kqd093WL7gsAYF++dOJ88dXdn7RtIwCHrimSCL+W5PuTPCfJK5JcnvXtGp+Q5NlJrk3y\nExP0BQAAAPtkd4Z1UwwRHp/ked39yxueuzjJL1VVkvxUDBEAAABgx5liiHBkknfu59g7khyxwF4A\nAABgU92SCHtMsTvDXyR5+H6OPTzJeQvsBQAAABg0RRLhN5L8UVUdneTV+eqaCI9L8l1JfqCq7rSn\nuLsvnqBHAAAA+Io1SYQk0wwR/mr29ceT/PsNz9dex/dYCQAAADC5KYYIT5rgNQEAvuLTP3Hf4drj\n/373fCffNcfnH2ur850bgMl0T93BzrDwIUJ3n73o1wQAAAAO3BRJBAAAAFgqdmdYN8kQoaoemeSx\nSU5JctReh7u7H7j4rgAAAIDNLHyIUFU/m+SFST6T5KIk1y+6BwAAABjVKUmEmSmSCE9N8ntJntrd\nVhMCAACAJTHFEOHYJK82QAAAAGBZ2Jxh3RRDhDcluU+S8yZ4bQDgEFWHjf+z5phPjn+WcbM3vW+u\nPtq2jQAcwqa6nOG1VdVJ/jzJ1XsXdPfFC+8KAAAA9qV3xu4Ms00KXpxkJcl/7+4X7qPmcUmem/Xw\nxPu7+/sOZg9TDBE6yTVJfinJf95Pzcri2gEAAICdrapWkvx2kocluTTJu6rqnO7+0IaaU5P8XJL7\ndffVVXXiwe5jiiHCy5P8yyS/meTDsTsDAAAAbOWMJBftSe5X1SuSPDrJhzbU/FiS3+7uq5Oku684\n2E1MMUR4UNZ3Znj5BK8NAAAA81vMyoonVNX5Gx6f1d1nze7fPsknNhy7NMm99/r+OydJVf2/rCf8\nn9vdf3YwG5xiiHBlkssneF0AAADYya7s7tP3c2xfizLsPdo4LMmpWf/w/uQkf1NVp3X35w5Wg7sO\n1onm8JIk/19VTfHaAAAAMLfu2vbbFi5NcsqGxycnuWwfNa/v7hu6+x+TXJj1ocJBM0US4dZJTkvy\noap6c752d4bu7ucsvi0AmFPNsUpz2116u13y7G8frj3yqvG/u6NvsHwTADvCu5KcWlV3TPLJJI9P\nsvfOC69L8oQkL6+qE7J+ecNB3f1wiiHCf9pw/877ON5JDBEAAADYMab+PKC7d1fVU5O8KevrHbys\nuz9YVc9Pcn53nzM79vCq+lCS1SQ/091XHcw+Fj5E6G6XMQAAAMCcuvuNSd6413PP3nC/kzx9dtsW\nUyQRAAAAYGl0MrJmwU2CVAAAAAAwZJIhQlWdWVXvraprq2p179sUPQEAAMA+dZKu7b8tgYUPEarq\nh5L8VtZXljwqyR8k+eMkn0/y0STPX3RPAAAAwNamWBPhJ5O8IMkvJvnRJL/T3e+pqlsneUuSg7py\nJABsm6mXaV5Wc2yNef3D/8V47a3Xhmu/4TnvHK4FgMSP/T2muJzh1CR/nWRtdjsiSbr76iS/lORp\nE/QEAAAAbGGKIcKXkuyabT3x6SR32nDsC0m+boKeAAAAYP96AbclMMXlDH+X5JuS/EWSv0nyrKr6\nxyS7kzw3yYcn6AkAAADYwhRDhLPy1fTBL2R9mPDW2eNrkjxmgp4AAABgPyq9JLsnbLeFDxG6+5Ub\n7l9UVd+c5L5Jbp7kbd195aJ7AgAAALa28CFCVT0gyXu6+wtJ0t1fzHoaIVV1dFU9oLv/etF9AcC2\nmmNHgh2z/POulfHatdXh0sNud9vh2lv+wj8O197su24Yrl3dKe8xAMvDj44k0yys+JdJ7r6fY3ed\nHQcAAAB2mCnWRNjso5gjk4x/lAEAAADbrWNNhJmFDBGq6g7551s5nl5Vt9ir7GZJfiTJxxfREwAA\nADCfRSURnpjkOfnq7pe/lX+eSOjZ491JnrKgngAAAGCMNRGSLG6I8PIkb8n6oOC8rA8KPrRXzXVJ\n/qG7P7ugngAAAIA5LGSI0N0fS/KxJKmq70jy7j27MwAAAMDOZ02EZJqFFT+Y5LgkXxkiVNW/S3Ja\nkjd19xsm6AkAttcybinYa8Olu25+8+Hao189vhXjNQ/94nDt2pe/PFwLANw4U2zx+LIkz9zzoKp+\nIclLk3xfktdX1b+doCcAAADYv17AbQlMMUQ4Pcm5Gx7/+yS/3N3HJ/ntJE+foCcAAABgC1MMEY5L\ncnmSVNVpSW6X5OzZsdclucsEPQEAAMD+SSIkmWaIcFWSk2f3H5zksu7+yOzx4RP1BAAAAGxhioUV\n/yLJc6vqhCQ/nfX0wR53zWwXBwAAANgROknbnSGZ5lP/n03yiSQvSPLRJM/bcOz7k7x1gp4AAACA\nLSw8idDdlyd52H4OPzSJ/ZkAWA41xycSNcfcfo6tFdfrt+ciyjriiOHaD7/4m4drT/2Z64drd61e\nMFwLANtpGXdr3g5TXM6QJKmqXUnunuT4JOd39xe7+/NT9QMAAABsbpJFDKvqKUk+neQDSc7LbEeG\nqnpdVf3EFD0BAADAftmdIckEQ4Sq+rEkL876goqPS7IxC/o3Sf7NonsCAAAAtjbF5QxPT/Lr3f2M\nqlrZ69iHk/zMBD0BAADA/tmdIck0lzPcMcmb9nPsi0lutcBeAAAAgEFTJBGuTHKH/Ry7S5JPLq4V\nAAAA2FotyZoF222KIcL/SfLsqnpLko/NnuuqOiHJT2V9rQQAOHjm2YpxHvPs9dSr29PDvOZ4L+75\nt9cN1378fx8+XLvy/g8O1/Yu0VEA2EmmuJzh55Ncl+Tvk/xF1tegfEmSC5KsJnn+PCerqpWqem9V\nvWH2+I5V9Y6q+khVvbKqxje5BgAAgL0tYmeGJUk6LHyI0N1XJTk9yQuSHJ7ko1lPRPzXJPft7n+a\n85RPy/oAYo9fSfKb3X1qkquTPPmAmwYAAAAmSSKku6/p7l/s7vt39527+77d/bzu/vw856mqk5N8\nd5L/PntcSR6c5DWzkrOTPOZg9g4AAMBNTa3vzrDdtyUwyRDhIHpRkp9NsjZ7fHySz3X37tnjS5Pc\nfl/fWFVnVtX5VXX+DRm/5hMAAABuqha+sGJV7UpyZpLHJjklyVF7lXR3f8PAeb4nyRXd/e6qetCe\np/dRus8rS7r7rCRnJcmxddySXH0CAADAJPzWmGSa3Rl+NcnTk7w3ybuSXH8jz3O/JI+qqu/K+iDi\n2KwnE25VVYfN0ggnJ7nswFsGAAAAphgi/ECSX+zu5xzISbr755L8XJLMkgj/sbu/v6peneR7k7wi\nyROTvP7A2gVgJ6rDxzffufSVpw7XzrNr44ln3Wy49sp7jPf7kCe8c7yJJE874S3DtXc8/BbDtQ9/\n7A8P157ytrcP165tXfJV8/yFAMB28iMpyTRrIhyW5K+38fzPSPL0qroo62sk/P42vhYAAADcZEyR\nRHhNkkckOfdgnbC735LkLbP7Fyc542CdGwAAACQR1k0xRHh6kv9RVWcleVOSq/cu6O7zFt4VAAAA\nsKkphggnJblTkkcn+dENz3fWd1foJCsT9AUAAABfq5P0vjYDvOmZYojwB0lOSPK0JB/Ojd+dAQAA\nAFigKYYIpyf5oe5+zQSvDQAAAHMrayIkmWaI8PFIHwCwD7uOOWa49nUfHl8+54xfO328iTn+gXD7\n53xouPaSD9x5uPaDTzttvIkkT/nIccO1q5+5ari21t43Vx8AHMJqMMrvF+1D3hRbPP7nJM+oqvGN\nqgEAAGBKvYDbEpgiifCIJCcnuaSq3p6v3Z2hu/uJi28LAAAA2MwUQ4T7J1lLck2SfeU1l2T+AgAA\nADctCx8idPcdF/2aAAAAwIGbIokAAAAAS8XuDOsWMkSoqq9P8qnuvmF2f1Pd/fEFtAUAAADMYVFJ\nhH9Mct8k70xySbZe92BluxsCYDG+/D1nDNee87svHq591Cn3H6693drbhmvnceVLjxyuvethHxyu\nXbv22rn6WG0fjQCwzfysSXpwm8tD3KKGCD+S5KMb7vtfIAAAACyZhQwRuvvsDfdfvojXBAAAgIOi\n46PwmV2LfsGqOq+q7rqfY3euqvMW3RMAAACwtSl2Z3hQkmP3c+yYJA9cXCsAAAAwQBIhyQRJhJn9\nvf3fmOQLi2wEAAAAGLOoLR6flORJs4ed5KyqumavspslOS3JuYvoCYANany14U8/7b5znfqbH3vB\ncO3jTvmX4yfu1bn62A593XXbUgsAsFMt6nKGtSR7/rVXez3e46okL03yKwvqCQAAAIaUyxmSLHZ3\nhrOTpKr+MsmPd/eHF/HaAAAAwMGx8IUVu/s7Fv2aAAAAcEAkEZJMt7AiAAAAsGSm2OIRAAAAlosk\nQhJJBAAAAGCQJAIAWbn7nYdrP3/a9XOd++qHz1HfRvwAwM5TbXeGPRaaRKiqI6rqtVX1gEW+LgAA\nAHDgFjpE6O7rkzx00a8LAAAAB6Rr+29LYIpf5v9fkvtM8LoAAADAAZhiTYSfTvK6qvpCktcl+VT2\nWueyu9cm6AsAAAD2zZoISaZJIvxdkm9M8uIkH0tyfZIbNtzmW7ELAAAAWIgpkgjPjxkOAAAAS8Tu\nDOsWPkTo7ucu+jUBbop2HXXUcO0tfu/K4dq7P/4Lc/Wx+9pr56o/ZNUciyXZ6hIA2KGmSCJ8RVXd\nIsnxSS7r7hum7AUAAAD2y4w/yURbLVbV91TVe5L8U5KLk9xj9vx/r6rvm6InAAAAYHMLHyJU1WOS\nvD7JlUmekWRjvvMfkzxx0T0BAADAfvX6mgjbfVsGUyQRnpPkD7r74UletNexv09y2uJbAgAAALYy\nxRDhbkleObu/96zl6qyvkQAAAAA7Ry/gtgSmGCJ8PskJ+zl2hySfWVwrAAAAwKgpdmd4c5Kfq6o/\nTXLN7LmuqiOTPDXJn07QE8BSWDn+uOHazzzqLuMnfsrnhkvXLr1g/Lx8lW0bAWC5+VGeZJohwn9K\n8s4kFyZ5Y9b/Kp6Z5FuS3DLJYyboCQAAANjCwi9n6O5LknxbkjckeViS1SQPSPK3Se7d3ZctuicA\nAADYjN0Z1k2RREh3X5rkyVO8NgAAAHDjTLGwIgAAALCEFpJEqKqXzVHe3S2lAAAAADvMoi5neHD+\n+VqWt8r6Ioq7k1yV5PhZL/+U5OoF9QQAAABjlmTNgu22kCFCd99hz/2qun+S/5Xk3yX5k+5eraqV\nJN+b5NeS/MAiegLYKerwI4ZrL/i1Ow7X3va2nxmu7T/++HAtN1LV9p3b9pEAwIJMsbDibyR5QXe/\nas8T3b2a5JVVdUKSFyU5Y4K+AAAA4Gst0e4J222KhRXvkeSi/Rz7SJLTFtgLAAAAMGiKIcKnkzxu\nP8cen+TyBfYCAAAAW+sF3JbAFJczvCjJb1bVSUlenfWhwW2zPlh4RJKfnKAnAAAAYAsLHyJ094ur\n6gtJnpPkOzcc+kSSH+vuebaDBAAAgO23JEmB7TZFEiHd/ftV9bIkJyc5KcmnklzabXlpAAAA2Kkm\nGSIkyWxg8InZDWDn27UyXHr1D45vMvM3v/yS4drTX3T6cO0tn/yPw7W9tjpcy41kTg4AS6tid4Y9\nplhYMVV1j6p6TVV9pqp2V9WjTXR9AAAgAElEQVQVVfWqqrrHFP0AAAAAW1t4EqGqvj3JXyX5UpJz\nsr5bw+2S/Ksk311VD+judy+6LwAAANgvSYQk01zO8IIkf5/kId19zZ4nq+qYJH8xO/7wCfoCAAAA\nNjHF5Qz3SfKCjQOEJJk9/pUk952gJwAAANi3Xl8TYbtvW6mqR1bVhVV1UVU9c5O6762qrqrxBbUG\nTTFE2OqtERIBAACADapqJclvJ/nOJHdP8oSquvs+6o5J8hNJ3rEdfUwxRHhHkmfN/mBfUVVHJ3lG\nkr+doCcAAADYv17AbXNnJLmouy/u7uuTvCLJo/dR94tJfjXJl2/Un3MLU6yJ8Kwkb0nysap6Q5JP\nZX1hxe9OcrMkDxo5SVUdleSvkxyZ9T/Ha7r7OVV1x6y/mccleU+SH5y9wQBfY+X444Zrn/mu84Zr\nf/XjJw7XPvoO9xuu/bob3jZcCwDA0jmhqs7f8Pis7j5rdv/2ST6x4dilSe698Zur6luTnNLdb6iq\n/7gdDS58iNDd76yq+yR5dpJHZP2X/c8mOS/JL3b33w2e6rokD+7uL1TV4UneWlV/muTpSX6zu19R\nVb+b5MlJXnrQ/yAAAADcdCzmwvsru3t/6xjUPp77SldVtSvJbyb54W3o6yumSCKkuz+Q5HsP8Byd\n5Auzh4fPbp3kwUm+b/b82UmeG0MEAAAAltulSU7Z8PjkJJdteHxMktOSvKWqkvXE/zlV9aju3phu\nOCALXxOhqm5TVXfez7E7V9UJc5xrparel+SKJG9O8tEkn+vu3bOSS7Me+djX955ZVedX1fk35Lr5\n/hAAAADcpOyA3RneleTUqrpjVR2R5PFJztlzsLv/qbtP6O47dPcdsr7e4EEdICTTLKz4O0l+ej/H\nfmp2fEh3r3b3vbI+gTkjyd32Vbaf7z2ru0/v7tMPz5GjLwkAAAALN/uw/KlJ3pTkgiSv6u4PVtXz\nq+pRi+pjissZ7p/kKfs59udJ/uu8J+zuz1XVW5LcJ8mtquqw2Ru8d7wDAAAA5reYNRE2b6H7jUne\nuNdzz95P7YO2o4cphgi3TvJP+zn2+STHj5ykqm6T5IbZAOFmSR6a5FeS/GXW11t4RZInJnn9AXcM\nLJWVY48drv3Jd/zNcO2vPHh8wLv7ko8P1wIAwLKY4nKGr9mGYoN7Z33LxxEnJfnLqvpA1q8NeXN3\nvyHJM5I8vaouyvpA4vcPsF8AAABuynpBtyUwRRLhNUmeVVXv7+7/u+fJqvruJM/M4E4Ksx0evnUf\nz1+c9fURAAAAgINoiiHC85M8IOtbTXw6ySezvoPC7bK+euTzJugJAAAA9mtg94SbhIUPEbr72qp6\nYJIfTPKwrF9ycFHWF1X84w3bMwIAAAA7yBRJhHT3DUleNrsBAADAziaJkGSahRUBAACAJbTwJEJV\nHZHk55I8IcnXJzlyr5Lu7kkSEsCh4ZN/ePvh2hfd7zuGa1c/88kb0w4AAIcAayKsm+KX9f+S5ClJ\n/jTJ/05y3QQ9AAAAAHOaYojwvUme092/NMFrAwAAwPwkEZJMsybCLZK8fYLXBQAAAA7AFEOE/5Pk\nARO8LgAAAMyvF3RbAlNczvBbSf6wqtaSvDHJZ/cu6O6LF94VAAAAsKkphgh7LmV4bpLn7KdmZTGt\nAAAAwOZqdmOaIcKPZGmCGsBcds0x/1tbHS5dufWt52rjZq++5XDt6uUXzHVuAAC4KVv4EKG7X77o\n1wQAAIAD4qPwJNMsrLhfVbWrqo6bug8AAADgay1kiFBVn62qb9vwuKrqnKq6016l357kM4voCQAA\nAJjPopIIt8o/v3RiV5LvmT0PAAAAO1r19t+WwY66nAEAAADYuabYnQEAAACWy5IkBbabIQJw8Myx\nbeOuY44Zrr3XeVfN1cZ7H/DB4dq1uc4MAAA3bYscItx+w0KKKxue+9yGmpMX2A8AAACMkURIstgh\nwmv28dzr9npc8VcDAAAAO9KihghPWtDrAAAAwMG1RLsnbLeFDBG6++xFvA4AAACwfSysCAAAAFuR\nREiS7Jq6AQAAAGA5SCIAB00dfsRw7TWPuPtw7flP+fJ8fVzz/rnqAQBgK9ZEWCeJAAAAAAyRRAAA\nAICtSCIkkUQAAAAABkkiAAAAwBasibBOEgEAAAAYIokAAAAAm+lYE2HGEAE4aHp1dbj22tuMB6GO\nfo0tGwEAYCcwRAAAAICtSCIksSYCAAAAMEgSAQAAADZRsTvDHpIIAAAAwBBJBAAAANiKJEISQwRg\nCyvHHjtc+5HfvdNw7bF/dWO6AQAApmSIAAAAAFuoFkVIrIkAAAAADJJEAAAAgM10rIkwI4kAAAAA\nDJFEAAAAgC2UJEISSQQAAABgkCTCHrtWxurWVre3D1iAOvyI4dqffe9bh2uf9pLThmtP/OP3D9eu\nDVfCDlY1R+2cM34/mwDYbqM/xw7lT+sP5T/bHCQRAAAAgCGSCAAAALAFayKsk0QAAAAAhkgiAAAA\nwFYkEZJIIgAAAACDJBEAAABgM21NhD0MEfawPRZLro48crj21y98y3Dtz9z70cO1t7v8bcO1tm3k\nJqfn+JdH+5kEwA4zz88xDmmGCAAAALAVc5Qk1kQAAAAABkkiAAAAwCYq1kTYQxIBAAAAGCKJAAAA\nAFuxuGQSSQQAAABg0NImEarqlCR/mOR2Wd8t7qzufnFVHZfklUnukOSSJI/r7qun6hMOxMqtbjlc\ne9wba7j2Z779UcO1q1d+ZrgWAAAOVdZEWLfMSYTdSX66u++W5D5JnlJVd0/yzCTndvepSc6dPQYA\nAAAO0NIOEbr7U939ntn9a5JckOT2SR6d5OxZ2dlJHjNNhwAAABwSekG3JbC0Q4SNquoOSb41yTuS\n3La7P5WsDxqSnDhdZwAAAHDoWNo1Efaoqlsk+ZMkP9ndn68auy68qs5McmaSHJWbb1+DAAAALL1a\nm7qDnWGpkwhVdXjWBwj/o7v/9+zpy6vqpNnxk5Jcsa/v7e6zuvv07j798By5mIYBAABgiS3tEKHW\nIwe/n+SC7v6NDYfOSfLE2f0nJnn9onsDAADgEGNNhCTLfTnD/ZL8YJK/q6r3zZ57VpIXJnlVVT05\nyceTPHai/uCA1VFHDdde9txThmsPv/Ld4030kvy/GQAAsO2WdojQ3W9Nsr8FEB6yyF4AAAA4tJXP\n1pIs8eUMAAAAwGItbRIBAAAAFqLjMt8ZSQQAAABgiCQCAAAAbMGaCOskEQAAAIAhkgiwaLtWhksv\nedI3Dtee8hvj2za267kAAGA+/gmdRBIBAAAAGCSJAAAAAJuoWBNhD0kEAAAAYIgkAgAAAGyme/2G\nJAIAAAAwxhABAAAAGOJyBjhQVXOVH/Z1txuuvc37bxiu7euvn6sPAABgnIUV10kiAAAAAEMkEQAA\nAGArkghJJBEAAACAQZIIAAAAsAVrIqyTRAAAAACGSCLAPqyccPxw7SX//i5znfvHn/B/h2tf9Qsn\nz3VuAABgG3SSNVGERBIBAAAAGCSJAAAAAFsRREgiiQAAAAAMkkQAAACALdidYZ0kAgAAADBEEgEA\nAAC20qIIiSHC/HatjNeurW5fH4ewXUcfPVx72Zn3HK79bz/x4uHaU1auG669/1//h+HaJPmz7/qW\n4dqbf/yd4yf2f2oAAMA2czkDAAAAbKF6+29b9lD1yKq6sKouqqpn7uP406vqQ1X1gao6t6q+4WC/\nD4YIAAAAsMNV1UqS307ynUnunuQJVXX3vcrem+T07v6WJK9J8qsHuw9DBAAAANhML+i2uTOSXNTd\nF3f39UlekeTR/6zN7r/s7mtnD/82yck38k+8X4YIAAAAsDOcUFXnb7idueHY7ZN8YsPjS2fP7c+T\nk/zpwW7QwooAAACwiUpSi1nI/MruPn2TNva2z6aq6geSnJ7kgQersT0MEQAAAGDnuzTJKRsen5zk\nsr2LquqhSf5Tkgd29/i2c4MMEeZl28Ybp/Y1NNu3D//m3muD7N8xJ149XPu8hzx2uHb3xZcM135T\n3jtcmyS756oGAAB2hLWpG8i7kpxaVXdM8skkj0/yfRsLqupbk/xekkd29xXb0YQ1EQAAAGCH6+7d\nSZ6a5E1JLkjyqu7+YFU9v6oeNSv7L0lukeTVVfW+qjrnYPchiQAAAABbWNCaCJvq7jcmeeNezz17\nw/2HbncPkggAAADAEEkEAAAA2ExnP/sg3PRIIgAAAABDJBEAAABgU53sgDURdgJDBBZi5Zhjhmtv\n8Q+HD9eedOYFw7W2VgQAADgwhggAAACwhRJESGJNBAAAAGCQJAIAAABsxZoISSQRAAAAgEGSCAAA\nALCZTmpt6iZ2BkkEAAAAYIgkAgtxj7/6/HjxA/9+uHT1RvQCAAAwN2siJJFEAAAAAAZJIgAAAMBW\nBBGSSCIAAAAAgyQRAAAAYAtlTYQkkggAAADAIEkEAAAA2IokQhJDhK/atTJWt2ZTwT3q8COGa9/3\n43cdP/E1f3cjugEAAGC7GSIAAADAZjrJ2tRN7AzWRAAAAACGSCIAAADAJiptd4YZSQQAAABgiCQC\nAAAAbEUSIYkkAgAAADBoaZMIVfWyJN+T5IruPm323HFJXpnkDkkuSfK47r56qh6X0Zcec8Zw7f98\nyW8M1/7oncaXMm0TPgAAYKfxe0qS5U4ivDzJI/d67plJzu3uU5OcO3sMAAAAHARLO0To7r9O8tm9\nnn50krNn989O8piFNgUAAMChp5OsLeC2BJZ2iLAft+3uTyXJ7OuJ+yusqjOr6vyqOv+GXLewBgEA\nAGBZLe2aCAequ89KclaSHFvHubgFAACA/SprIiQ59JIIl1fVSUky+3rFxP0AAADAIeNQSyKck+SJ\nSV44+/r64e/sJbkAJUl2rcxVftg3nDxce9xPfWy49sfu9ojh2t79xeFaAACAHUcSIckSJxGq6n8l\neXuSu1TVpVX15KwPDx5WVR9J8rDZYwAAAOAgWNokQnc/YT+HHrLQRgAAADjEtSTCzNImEQAAAIDF\nWtokAgAAACxERxJhRhIBAAAAGCKJAAAAAFtZog39tpMhwh5TR1OqhktXjj9urlMf/vIvD9de/6++\nNFy79qXx8wIAALD8XM4AAAAADJFEAAAAgC3U1On1HUISAQAAABgiiQAAAABbkURIIokAAAAADJJE\nAAAAgM10kjVJhMQQIUlShx2WlRNOHKpdvfyKberh8OHaG15x1Fzn3v1z41tC1jUfGD+xOA8AAMBN\niiECAAAAbKp9iDpjTQQAAABgiCQCAAAAbEUSIYkkAgAAADBIEgEAAAC2IomQRBIBAAAAGCSJkKRX\nd2ftqs9O2sOFv/ctw7WnvGS+2c/N3/3+4do2XQMAAPjnOsma35USSQQAAABgkCQCAAAAbKqTXpu6\niR1BEgEAAAAYIokAAAAAW7F+XBJJBAAAAGCQJAIAAABsxu4MX2GIkKyvkbF790E/7cptbjNce/SF\nRwzX3uyct8/Vh20bAQAAOBgMEQAAAGArPpxNYk0EAAAAYJAkAgAAAGxFEiGJJAIAAAAwSBIBAAAA\nNtWSCDOSCAAAAMAQSYQkddhhWTnhxKHa1cuvGD7vsa9bHa495SHvGa5dMwEDAABYnE6ytjZ1FzuC\nJAIAAAAwRBIBAAAAtiIRnkQSAQAAABgkiQAAAABbkURIIokAAAAADJJEAAAAgE11siaJkBgiJEl6\n9+6sXvGZodr61m8ePu+VP3/kcO3Kl8e3eAQAAIApGCIAAADAZjrpXpu6ix3BmggAAADAEEkEAAAA\n2Io1EZJIIgAAAACDJBEA4P9n782jLu2q+sDffu59h6r6RCYHAijaQTpqAnGKtNE4dBTUFk2rrW0U\nbYelrVlxyLIxaYUoSbSzEqO2Jk2c0Cgq2CrLCRF1aUdFBhVnRUT4AvLJJyDwfVXve+89/cfZv3P2\n2ec8z3urqPrqrar9W6vqvve5z3CeM+7928MJBAKBQCAQOAspPBGAIBEq9uwQf/wV+++48Nin/ua1\nliYQCAQCgUAgEAgEAoFzhyARAoFAIBAIBAKBQCAQWEJKwC52ZwAiJ0IgEAgEAoFAIBAIBAKBPRGe\nCIFAIBAIBAKBQCAQCJyFyIkAIDwRAoFAIBAIBAKBQCAQCOyJ8EQIBAKBQCAQCAQCgUDgDKTIiQAg\nPBECgUAgEAgEAoFAIBAI7InwRADw4Pfb4BOf+6a9zn3ONxzufV9ZrfY+N202e58bCAQCgUAgEAgE\nAoEHEilyIijCEyEQCAQCgUAgEAgEAoHAXghPhEAgEAgEAoFAIBAIBJaQAOzCEwEIT4RAIBAIBAKB\nQCAQCAQCeyI8EQKBQCAQCAQCgUAgEDgLKXZnAMITIRAIBAKBQCAQCAQCgcCeCE+EQCAQCAQCgUAg\nEAgEFpAApMiJAOA2JRFE5EkAvgXACsB3ppS+cen8N//eGj/5fg/Z697vhF/fuxzRxQKBQCAQCAQC\ngUAgcDvhtiMRRGQF4NsB/EMAdwN4iYg8P6X0+ze3ZIFAIBAIBAKBQCAQuCWRUuREUNyOORE+BMAr\nU0qvSimdAPghAE+5yWUKBAKBQCAQCAQCgUDglsdt54kA4JEAXmu+3w3g792ksgQCgUAgEAgEAoFA\n4DZA5ETIuB09EWRwrGttEfkiEXmpiLz0FFcegGIFAoFAIBAIBAKBQCBw7RCRJ4nIH4nIK0XkaYPf\nj0Tkh/X3F4vIY653GW5HEuFuAI823x8F4HX+pJTSs1JKH5RS+qADHD1ghQsEAoFAIBAIBAKBwC2I\ntLvx/xZg8v89GcD7AvhMEXlfd9rnA3hTSulvAvhmAN90vavhdiQRXgLgsSLyXiJyCOAzADz/Jpcp\nEAgEAoFAIBAIBAKBdwT75P97CoBn69/PA/AxIjLy1r9m3HY5EVJKGxH5MgAvQN7i8btTSr+3dM1b\n8aY3/nx63p+7ww8H8MYbVMzAjUW03a2LaLtbF9F2tzai/W5dRNvduoi2u3URbbeM97zZBbgReCve\n9IKfT897+APwqGMRean5/qyU0rP0733y/5VzVDd+C4CH4Tr22duORACAlNJPA/jpqzj/XfwxEXlp\nSumDrmvBAg8Iou1uXUTb3bqItru1Ee136yLa7tZFtN2ti2i7OxMppSfd7DJgv/x/e+UIfEdwO4Yz\nBAKBQCAQCAQCgUAgcLthn/x/5RwRWQN4ZwB/dT0LESRCIBAIBAKBQCAQCAQC5x/75P97PoCn6t+f\nCuAXUkrX1RPhtgxnuE541tmnBM4pou1uXUTb3bqItru1Ee136yLa7tZFtN2ti2i7wE3BXP4/Efl6\nAC9NKT0fwHcB+H4ReSWyB8JnXO9yyHUmJQKBQCAQCAQCgUAgEAjcpohwhkAgEAgEAoFAIBAIBAJ7\nIUiEQCAQCAQCgUAgEAgEAnshSIQBRORJIvJHIvJKEXnazS5PYB4i8t0ico+I/K459lAReaGI/Il+\nPuRmljEwhog8WkR+UUT+QER+T0T+qR6P9jvnEJFjEfkNEfltbbt/qcffS0RerG33w5rwJ3AOISIr\nEflNEflJ/R5tdwtARF4tIr8jIr/FPcRjzrw1ICIPFpHnicgf6rr3xGi78w8ReZyON/77axH58mi7\nwJ2OIBEcRGQF4NsBPBnA+wL4TBF535tbqsACvheA37P1aQBelFJ6LIAX6ffA+cMGwFellP4WgA8F\n8KU61qL9zj+uAPjolNLjATwBwJNE5EMBfBOAb9a2exOAz7+JZQws458C+APzPdru1sFHpZSeYPao\njznz1sC3APjZlNJ/D+DxyOMv2u6cI6X0RzrengDgAwHcB+DHEG0XuMMRJEKPDwHwypTSq1JKJwB+\nCMBTbnKZAjNIKf0y+n1PnwLg2fr3swF88gNaqMBeSCm9PqX0cv37rcgC1SMR7XfukTLepl8P9F8C\n8NEAnqfHo+3OKUTkUQA+AcB36ndBtN2tjJgzzzlE5EEAPgI5YzpSSicppTcj2u5Ww8cA+NOU0p8j\n2i5whyNIhB6PBPBa8/1uPRa4dfBuKaXXA1lRBfCuN7k8gTMgIo8B8HcBvBjRfrcE1B3+twDcA+CF\nAP4UwJtTShs9JebO84v/AOCrAez0+8MQbXerIAH4ORF5mYh8kR6LOfP8470B/CWA79Ewou8UkUuI\ntrvV8BkAnqN/R9sF7mgEidBDBsdiH8xA4AZBRO4C8KMAvjyl9Nc3uzyB/ZBS2qp756OQPbj+1ui0\nB7ZUgbMgIp8I4J6U0svs4cGp0XbnEx+WUvoA5JDLLxWRj7jZBQrshTWADwDwH1NKfxfA2xHu77cU\nNE/MJwF47s0uSyBwHhAkQo+7ATzafH8UgNfdpLIErg1vEJFHAIB+3nOTyxOYgYgcIBMIP5BS+n/1\ncLTfLQR1yf0l5LwWDxaRtf4Uc+f5xIcB+CQReTVyuN5HI3smRNvdAkgpvU4/70GOy/4QxJx5K+Bu\nAHenlF6s35+HTCpE2906eDKAl6eU3qDfo+0CdzSCROjxEgCP1UzVh8iuS8+/yWUKXB2eD+Cp+vdT\nAfzETSxLYAYah/1dAP4gpfTvzU/RfuccIvIuIvJg/fsCgP8ROafFLwL4VD0t2u4cIqX0NSmlR6WU\nHoO8vv1CSumzEG137iEil0Tknfg3gI8F8LuIOfPcI6X0FwBeKyKP00MfA+D3EW13K+EzUUMZgGi7\nwB0OSSk8Fj1E5OORLTMrAN+dUvpXN7lIgRmIyHMAfCSAhwN4A4CnA/hxAD8C4D0AvAbAp6WUfPLF\nwE2GiPx9AL8C4HdQY7P/OXJehGi/cwwR+TvIiaRWyGT0j6SUvl5E3hvZuv1QAL8J4B+nlK7cvJIG\nliAiHwngn6WUPjHa7vxD2+jH9OsawA+mlP6ViDwMMWeee4jIE5CTmR4CeBWAz4POn4i2O9cQkYvI\n+dLeO6X0Fj0W4y5wRyNIhEAgEAgEAoFAIBAIBAJ7IcIZAoFAIBAIBAKBQCAQCOyFIBECgUAgEAgE\nAoFAIBAI7IUgEQKBQCAQCAQCgUAgEAjshSARAoFAIBAIBAKBQCAQCOyFIBECgUAgEAgEAoFAIBAI\n7IUgEQKBQCDwgEJEPldEkvn3dhF5tYj8mIh8uoic27VJy/uMB+A5Xy4i/2hw/Bkicu62VRKRJ2jZ\nHnqzyxIIBAKBQODG4twKaoFAIBC47fFpAJ4I4OMBfC2AKwCeA+DnROTCzSzYOcCXA+hIBOR95p/4\nAJdlHzwBwNMBBIkQCAQCgcBtjvXNLkAgEAgE7lj8Vkrpleb794vIcwE8F8D/BeCf3JxiPTAQkaOU\n0pWruSaldDeAu29QkQKBQCAQCATORHgiBAKBQODcIKX0owB+AsAXishFHheRiyLyTSLyZyJyop//\nwoc+iMi7iMh3iMhrReSKfn6/iByZc54kIr8mIveLyFtE5MdF5HHuPisReaaIvF5E7hORXxKR9xuV\nWUQeLyLPF5E36T3/q4h8uDvne0XkbhF5ooj8qojcj0yUjO73agDvCeCzTMjH9+pvXTiD/v5MEfkq\nEflzDQ/5KRF5V/33I/qerxWR/2PwvPcSkR8Qkb/UOvstEfkUd877aLjJPSJyWUReIyLPFZG1iHwu\ngO/RU//ElPkxeu2XaX3/lYi8WUR+XUQ+wd3/MXrNF4vIvxGRvxCRt4rIf9G2/5si8gIReZuIvFJE\nnuquf4Ze/7dF5Be1zV4vIl9/nsNjAoFAIBC4FRELayAQCATOG34awBGADwIAEVkDeAGALwDwLQCe\njOzW/7UA/i0vEpGHAPhVAP8LgH+PHCbx1QAOABzqOU8C8FMA3qbnfQmA9wfw/4nII00ZngHgnwP4\nAQCfDODnADzfF1REPkCf+VAAXwjgfwZwL4CfF5EPdKe/M4AfQg7ZeDKAH5x5/08B8Bf6zk/Uf98w\ncy7x2QA+GsD/juzB8eEAvg/AjwF4hZbrpwF8o4h8vCn/owG8GMDjAXwFgE8C8HIAPyoin2Tu/5MA\nHolcXx8H4GnI4ScTcn0+U89jiMoTAbxejz0Gub0+DbnOXwrgJ0XkyYP3+BoAfwPAUwF8nZ7/n/Q9\nfkrr5hUAvmeG1PlxAD+P3GY/iNxHvm6mzgKBQCAQCFwDIpwhEAgEAucNr9HPR+jnZwL4+wD+QUrp\nl/XYi0QEAJ4uIt+UUroHWQl+bwAflFL6TXO/55i/nwngVQCenFLaAICI/BqAPwbwVQC+UsmIrwDw\nrJTSP9Prfk5EtgC+0ZX132p5PzqldKL3ewGA30VWYD/ZnHsXgH+cUvqJpZdPKf2miFwB8MaU0q8v\nnWtwBcBTzDu9v77D16aUnqnHfglZCf80ZEIByGSJINftvXrsBUoufD2A54vIwwE8Vu9viRSSIH8p\nIn+qf/sQFZg6hHoFvAjA+wD4YgA/497jT1NK9DJ4gXp0fDaAz04p/Re9x0uRyY5PBfB77vr/nFJi\nG/2ciDwIwFeJyH9IKb15UG+BQCAQCASuEuGJEAgEAoHzBtFPuu0/CcCfA/hVdZ9fq3fCzyF7GXyo\nnvexAF7iCIR6U5FLAD4AwA9T2QaAlNKfAfivAP6BHvrbAC4B+BF3ix9y97ug1zwXwM6US5Ct4R/h\nrt8gW/RvBF5o3wnAH+rnC3hAf38lgEeb856ETCi8xdXtCwA8XpXwe5GJl28UkS8UkcdeTcFE5ANF\n5CdF5A3IdXAK4B8CeNzgdE8qjN7jTQDuce9BjNrsLmRvk0AgEAgEAtcBQSIEAoFA4LyByiHd4d8V\nOUfAqfv3G/r7w8znUtLBhyAr+K8f/PYXqDsL0APiDe4c//2hAFbIHge+bF8G4CEuHv+elNJ2oXzv\nCN7kvp8sHD82398VwOegLz/DRB6WUkrISv9LAfwbAH8sIq8SkS85q1Dq0fAi5Lr6JwD+BwAfDOBn\nXTne0fcg5trskf7EQCAQCAQC14YIZwgEAoHAecMnALgM4GX6/V4Afwbg02fOf7V+vhHLyuKbkL0b\n3n3w27vrc4BKMrwbWrFiv4MAACAASURBVHf5d3PXvBnADsC3I+cf6JBS2tmvC2W7WbgXwK8A+KaZ\n318HACmlVwH4HMkxJI9HJkm+Q0RenVLy3gMWT0LOBfHpurMEgJwo83oUfoB3Q/aasN8B4L/doOcF\nAoFAIHDHIUiEQCAQCJwbiMg/Qo53/5aU0n16+GeREwO+LaX0h7MX5/CG/1NEHp9S+m3/Y0rp7SLy\nMgCfJiLPoFeAiLwnsoX82/TUVwB4OzJp8QvmFp8xuN+vICvVL3eEwTuKKwAuXMf7zeFnkZMg/l5K\n6f6zTlavhN8Ska8E8PnIYQI/g1xeoC8zyYJTHhCR9wHwYbgxW1V+Otq8FZ+BnETzd2/AswKBQCAQ\nuCMRJEIgEAgEbhaeoEn7DgG8B4BPRE7690LkLP3EDwD4PORkiv8OwG/rNf8dMuHwyUo4fDOA/xV5\nZ4RnAvgdAA8H8BQAX5xSeity6MFPIe8O8B3I8fL/EsBbAPw7AEgpvVlEvhnAvxCRtyKTEx+MrDR7\nfCWAX0ZOAvhdyF4MD0fOvbBKKT3tGuvm9wF8uIh8InKoxRtTSq++xnst4euQw0J+WUT+b2Svjocg\nkwPvnVL630Tk7yDvivHDyDkVVgA+Fzm/AUmW39fPLxWRZyOTBq9Azg2xAfB92naPQK7v1+DGhFR+\noYaQvAR5F4kvAPCMSKoYCAQCgcD1Q5AIgUAgELhZeK5+XkZOlPdyZMvx89TiDQBIKZ2KCLcV/CIA\n74XsKfCnyITAiZ73ZhH5MOQdGJ6GnCPhDciKLs/5WRH5BABPR07CdwLglwB8dUrpdaZsz0DOn/AF\nyK77LwbwP8HtBpBSermIfLDe71uRXff/Ut/lP70DdfM1AP6zlvECgGcjK+7XFSml14jIByG/778G\n8C7IIQ6/q88EMonxGmTC5FHI7fU7AD4xpfQyvc9vi8gzkNvnC5EJgvdKKf2eiHwWdKcH5DZ7GnKY\nw0de7/dBJoy+DZksegtyXzhre8xAIBAIBAJXATFyWiAQCAQCgcAtByUwng7gwO1SEQgEAoFA4Doj\ndmcIBAKBQCAQCAQCgUAgsBeCRAgEAoFAIBAIBAKBQCCwFyKcIRAIBAKBQCAQCAQCgcBeCE+EQCAQ\nCAQCgUAgEAgEAnshSIRAIBAIBAKBQCAQCAQCeyFIhEAgEAgEAoFAIBAIBAJ7IUiEQCAQCAQCgUAg\nEAgEAnshSIRAIBAIBAKBQCAQCAQCeyFIhEAgEAgEAoFAIBAIBAJ7IUiEQCAQCAQCgUAgEAgEAnsh\nSIRAIBAIBAKBQCAQCAQCeyFIhEAgEAgEAoFAIBAIBAJ7IUiEQCAQCAQCgUAgEAgEAnvhASURROS7\nReQeEfldc+yhIvJCEfkT/XyIHhcR+VYReaWIvEJEPsBc81Q9/09E5Knm+AeKyO/oNd8qIvJAvl8g\nEAgEAoFAIBAIBAK3Mx5oT4TvBfAkd+xpAF6UUnosgBfpdwB4MoDH6r8vAvAfgUw6AHg6gL8H4EMA\nPJ3Eg57zReY6/6xAIBAIBAKBQCAQCAQC14gHlERIKf0ygL9yh58C4Nn697MBfLI5/n0p49cBPFhE\nHgHg4wC8MKX0VymlNwF4IYAn6W8PSin9WkopAfg+c69AIBAIBAKBQCAQCAQC7yDWN7sAAN4tpfR6\nAEgpvV5E3lWPPxLAa815d+uxpeN3D44PISJfhOy1AEA+EFiV3yZZ6WdbPQk7/Uz1XPIwop8pn7NL\nW3Nd/jtzG00Z8mfD5UjzjKT3A3bmnPY+y8d9RId0x3051tMFAMAx8ufaRIVM+idfZaN/XMFJOWeT\nLucSp03zLnym2DLJ4Fj3Vnp92rnjLMvWHOXf1xLJMlevNwvXKxpn7r1G99+nDnhdHic+aKjt5mwz\nf999+urVlGXp3KVzdKxPB/lTx7ztj+LGTO3PZ5ePc8Z2d1qPpdPZs8/GUp/Yp52vdx/v55P+OWc9\n80b389sV+/SFa+kv1wo+K68jwjVxMJb8nJ7M+iY6Bo+md8qfyGNzpRPNNHglvslO/zg1a8IJrgAA\nNil/Jq5LaTSO95mnbjT8C1r5YG7usd9z/R2v3hlAX38j8OqNtseJWc9P0/0AgF2Zw+bm9NsF+6wp\nDxTOXqNXlNfkLgDAgRHr2eTbIqdl2YxjAajy07LMOX72uJzXso4v4Ua1w6r51s1NwzIs/ZYxyREA\n4GjK7bHW8QfUkezlXfvMrf59qmOQbbVTuYHz13x5ridyOVfTcTlyJJdyefTZl7e0Cw/L8saU0rvc\nwALeFHzcx31Iuvfet9zw57zsZX/8gpTSufaoPw8kwhzmZs+rPT5ESulZAJ4FAKvpOK3XDym/HR8+\nDABw18G7Ndec7N4GoA5mADhaPQgAsNKJggP+8ubN5ZzLm9zZNtv7mvtxYB6u36kr32Z7f3PNdvd2\nU/ZT/qEvOT+RcLKS6TB/6gRnCZLVKpfjYJUnh3c/fn8AwOPSYwEA73p8WM69tM732+oj772SF6A/\nPf3Lcs4b5FUAgLeevA4AcGXzVn22khSrC+XcA10Ai/KmBI6tY/59ur3cvBsXvyunta432zejxdTU\nA1BJHXMjPZ66c/fCVaTeSGm0MM/dlmXPdVLb2dxjj7Iv9Q9/zdy5jVKt/Xa9eqemnHy37a62UyqC\n+2lzzvXC8sJ/9jkH64cCAB504T0AABfXeeyvcVTOWYkK4TrGt8jvsivCV30n9q1Jzz1Jec5485XX\nlHPuu/za5txrqZNraecbgTq/5D5R+sKuKiG7WdLk+pbhZrz/zcA+89M+c9n1ri+2/aRzOueH1VTX\nD87zG50jtjqnb3f3l3OOD7PM+bgLHwMAeOzq3QEA73yY58HDlSG19ZPr0ds3eSy97nKdg1495fXo\n3tNXAgDuO7m3efauUahIMOw/X13v/ufnfTH1V8pTCPp+DuGc9n53fQoA4D1XuT4fdJDrfj3wP72i\nFXjvlTxuXyOvK7+9bvMKAMDbLr8BALDZZnmGY/y8jrtrbZfzNJ9UIq7C98kHX3o/AMD7Tx8BAPgb\nh3eV3zhW/vok95M/SXntecP2j8o5p9ssW1JOO92qnKvHrdI6Kx+IJS4O2h8bpRfV4IYqw1HuI3a7\nK7hRYPtOq1burnJMv16xzutvu+434uLxewIAHnf0UQCAR8jD6m+r/J4k9Cg6Xt7We7x1m5/xF3IP\nAOANuz/Oxy//NwDAFSNr38h6AmpdsY8BwGNXHwoAuF/ynP2KN38/gLm5cvPnN7SANwn33vsWvPg3\n/p8b/pz16qMefsMf8g7iPJAIbxCRR6gXwiMA3KPH7wbwaHPeowC8To9/pDv+S3r8UYPzz4ZIMwmu\nddE+lAvNaTtR5cFMkgdyMV8DKudKJqzq4F7tyORXwTqfy0X9EB6cXLd6jS1fsbxLHrRCo87SoscB\nvoe+u075HQ6nPKlaoU3luCK0HetvF04qU3mg9baatE6m+/XR9HSo78tzVsUCrCSCsb5s9e80cSLn\nu+RrTmTQjYuVSYUsq+ifQb5ctfDgPUycEHLVpIS7b5Ix6WGfMfd9r8fsc42pPwoJ08Q20/YRtk9t\nj+0NViBHKIJXOvu9OK7YDw/U++YIF8s5Kx0PfM+tTpskD3bSL55ToodS/lhPlZSoXkuuXa8C50HA\nBVA9iYpgqBOEFX5vcFHPTV08QHhH55UbV1/0QNDxQlKhUTBaL7/dQEnidQdJ12Fdh7jWHBp9g14J\nlMFPd7oemWcep7v0PvnzZKqEPACk7bxCsA98fY487a7qvn7et0pY8dxYIE1Zf0pkHq+0/tQAsOqX\nwoJjVXKOt3X+Y72tV5k8KCSxtITGWeV6oHGtZTlP7zCOOG77EsfSseh4sfKaDpDSB05VXjXr0VZJ\ntLKeb7137dWV2BMfie9QxkD9Xby3w3U2MgzRGX24DrfGkAalj7PPz1cKvRoPU67jw1V93yP9e8kr\n6GSXx+BRUiNjkadpCLTy7o0lEQjbpgcqD228Me5OQgKwewD66i2A80AiPB/AUwF8o37+hDn+ZSLy\nQ8hJFN+iRMMLAPxrk0zxYwF8TUrpr0TkrSLyoQBeDOBzAHzbPgUQSGMtWU95oiVBQGwnWinq4Dmi\nC5lOGKckEaY6uDeqRO94vU5EtMgzfMCiWHWnTCLsUiUgRFgOHliY2DhZDYS1copT7kmIHBXhrZ57\nYdV6Ityv34+MyxYVMHoZ7FatIsn6BeoESfKF4SE7qYscvTtGXgpAa+k6rbapude94bhuQkhZaHzb\n3Yx3q2VgfZdFjYsvHMmDGtJSF+GzvWeuW1m9cj8YHytHGB4jj+cjGG8ZVWYmVQ64eBYSwQhC/Hud\n6FmjAr16+QDVUrvb9q7ctx5a8oACrSWPzpNl73bEeanXYuErxJyOm6muDSSL6xrqQx8qoXek447K\n77FKK0eDeIatHtpoVVxY10XrgipOVIYP12/Tk6Fl6UmEkcVxb1jCtbhM7z/vFZKonLpQhsGcNmm9\nH6sScnHdruMHZjlh+Mdq2yqblzZ1/iv1pnMYDRtlHtzVMohzjQ/cOHC8Hag8dTzlBr5gXE0O9c+t\nkto09tDVHqjGGcqnm6n10Eli5K0Zg0lLaDLM0ZMJavQyRri69rWk+43sPuLK14fpnD3elvo35egj\n6Dg0JAKJ0JWbw6ZtPedkq+24URJB2+pA9YUToy/s1EDJeetGrbWTNZyq2njqwkECdyYeUBJBRJ6D\n7EXwcBG5G3mXhW8E8CMi8vkAXgPg0/T0nwbw8QBeCeA+AJ8HAEoWfAOAl+h5X59SYlDOlyDvAHEB\nwM/ov7PLBWlc7ItCoRaMyU1wySgnPIes4akq4BupJMLpSkMSUktCcFG2E7rHRt2Vtjvj0ijOuptI\nFIzejQO9FdbsBE8GmsLbhZQXJS5GFwyzfXGd9F3y9/tV+LhoBMWLKbuJ3T89qCkLFSz7vrT80mWc\nXhAb846rEtOp7uSORLiyemt9X6Hr/9mM8Y3CNXsedGhDMW6qu7pxN5wKiaCeJo7kaIVyFUxKm9Ft\nxrk4XkfUsmpfoMvkQJCvJELuk+y7R6mSWFw01/qeG+Y5UCF6NxLkGUuo175V45PzM/NcUVwRb4K3\nxvUC67oSea01GgAS58KbMBYD1wdLMbw+ZM7PD+smnCH3iyWSnOfTssr1h5/Hq74fcT3iLxeM4H7X\nSV7PLqndgV6CNUysn68ShfPuSWdDrHBdrIb0Ktj/jsu5V+YVHY5FemOw3hiKOFqdVspYXFJl5uKJ\nCWFErrfL678GYOUYEi7WE+Hmrbu3I8ayBNfk3L6UV+kqf9F0v+o5qnKaGmcuoK5HOyURtmrsOXWe\nswnWg9atocVIZcJjnWdtcp6KNgfYDgxn4LzAtfD6Wtgb673+Xbyh/LMGnghpIDvMYcU61vtfNKTO\nBR2Da/HX1AOnOx2D23yfi9pW92notJV3N1t6VXmd4PrKV1bGW6nusErnwQZ9s5DCE0HxgPaClNJn\nzvz0MYNzE4AvnbnPdwP47sHxlwJ4/6sumEzFag5UhYLK9OQmcmt5vGuXlY5DrcoTVYJPjSfC6ZRJ\nhN2qjWPkM/m8BmSQ1yQR6kTORXtXhKA8gchofpNWqJci5Nemp2DH8lxQBYoTHokDoC5QxeJTBLs6\nyVxUy8/9dBbRn1hvh8bD4zDlZ9KTg5PVxkyCWyVmTjQGawtPIlQr7306gVdL17zV/nop52fex1qm\n9gg96dh9tiGFtkFoxg1DcVevSvValWD2F29xaCzz2o5S+i+FTJt49HrHZh+5I2pR4e/mF7L7XKgv\nJY5Jy7yrp46wb9KDQOO7B+Vfk0RI6h5sCLWDVe7/zHcimuzqVrHeNfkxKJB5r5RGseiVtcCtgToH\nyfg4AE7wTCjm54eVcZ3m/E7r52rqSXJ6qhUlWJeqS7oOHQ2c6rge0Sh+0UjpJLhJEF4RzU2ka5nN\nkbPbKekpKpzvQfB14WsNaXKk78e+3+YzstfNwoY9sR0W5v2yjq/a+rug5Is1grK+Jr1vPbfKBxe3\nNAo8OF+zZk6Y/NnmwGFZz/dY93l8zhv82j9Krsl+diS5fS6pi4nt+wdTa/S5qAaj41RlJobj7abc\nnpsV83ExX4lVE1TpL92vJ439WrBzpBONVgAgOy876PE98jRdDWz5mIiylNPkY5nH/v2ERrIy/owR\njt5APknsynjzbDQk6/hUZYed86Qy8u7plL2qakRW701xvfs49aGqF7ENz+dYCtxY3MlUUoFAmoFJ\nl2Yq00XxTi2jCgCXwLilPOAPlJ07TTVpy8nUKr8c1FQsLhpW2BQKQA2LOF2ZhZpuYTtacbgg9gtj\niV8viQtbN2vAhDHIsb4/3bDy7xeacIak75e/X1zzs550cZPr7X6tA9YXF6sDY+U9TswpoRZNrb+t\nVCXkVOtt0nN6EqEqaLTyFkvSVSQ9XMLVJPB7R+6fv7TsfhF4Bgr4jQatata6QMWbY6Za9PokXxRM\n6CrJxa7J8/AOsOaj9vBW8e3O15eJ71vlsc5+SOsnXUMB4IDMu674WxV8mJ14OwqT0DZc0aqQah89\nXOd6O9lky95uR23mxnlnXFcYrxTOLz60ZWdJQAqht7DHxXnEVbnGW+JnhhgYY+wN1c5X6qmj5Bj7\nN5XZtSH1fAK1ra5vJNgBI4TrmkKliB4IR5P1gtD7FHK2VYYBY6FVcvtEye1pauctoK6zp2oFTLs2\nma/FXP1P5n2ZtHjnxnbCvIv40nM8CT1yJ6dXZXlvV3/WCsqZeq0VeFmbpzEKbHK93SdZTqFMslWP\nDhpJ8qvQ6+h8hzUUb5HCyZwzBciFMrZEPUPHcj8jIUBl1Rp9GLpCTwR6l168UuXdYrDStfqKKqZr\n7buWJNptlRAQevfRPd/muWrXAnFyqT235LtiT9SPrZ0nrsO6uDJGQo5JluPUhTfYHnst/Zdh0Bx/\nzVxU8pLM51Hh+bz+0lZJwSmPv/tXb+rehajho/1ubtdrLM4HRt9hCE8EAEEiAMiT3ZHxBrigkzIV\nCg6aNZOlmbF4aZWFaOYPuKJKw2Zr2MKUGfytuuhzAqZL2cU08EToSITKlpaki2WSVs+EXU9y1KRW\nai0qoQt9ckPWwUW9hu6PF1f1fvz7VBely2XhspaffP0VUwe5vLmcjau4em7QZZzs5i5V5viU4Qx6\nDu/DRapYllAXvg1jzFIv9PpEhXOCWXvSKPZvX5hp1yXDrMeNYlbcFVsCaAefX+D6WHdHrH9VNFpL\nM1AVby6WPpzBevOm4vLvhGijUKbrrDxTmWG9nWy4a8RJcxyoCsulHQVvbo9mSTYu/KpIqTBOQmRE\nIvCaAx2Td51UUpE7utw/ZWFgQyvJHuTQzRTKfb8EgEla13XGvNv23pREe9ypIxbfm4oyl+0R0+qS\n1o5mv4lJSZU8YP/2SYeBun2y6HpJF2rrvcR1iCEJ9EC4tGI43CicQdcN/W7DGag43aXk9ka9ByeW\nwYTOna7zOsuM9SVDfTPuZuZwhRXsmQuFHg7FYni9hXyzfhwWEoZhDPm+d605t/sn17nt4o7ruSER\nTnK9XUokEWixzuP5ZF0TVVLhLErmOSUThEplsUJfhWfIAwhxnqQZua25zl3c5T52SU+5ZIYslVX2\nO7Yr2xRAGTQMazgp4be6NerWeproWKFnYcl/Uvt8MS6UnAP0nNV8QUaW2OwO9Bz1aqEnakMitOvi\ntbQP6wqo8xRRd0NxCSVhvD/3sLZzfbyAPP9VT9464jgWV24iPTCTCecyepZcOtWwBjXK3WdCIy+v\n2m0GhZ5UDWF/Y0JIvYd24M5EkAgAAGmSKB7uVChSIeOgZIvWRdiMnUtqLTmgoqE5Ak53ddK/opM8\nQxyo+HFSuJC8+3XFaSERDNuvihkn4K3GVu+YtMruuT2TC8G6mK4Lo61W2ZKIKb/vRRODeryiN0FL\nIlxoJspcJ6eaGKuwy7oY2H2MDxhTDcaKtS7j+Xx6KdATgdvoaRmkTqpcwK4UaxDDSuzCgAZJKFz1\n2YPLNddtwlTrVyEy2C7WuqsKmds2j4y+XSCkbPW1/8La7V7QJAJrLSBFQTCeOlS8KexPThlplBMa\n2Zn4p7iRGiJkd33d+dkH2Mf9DieWRDiWB+lnmwTpyCghtObQE4HVRp5ql/q+Ua5hzhBjnTzW/kqL\nIa2euz3asvTRPcJYrqpPLBBn3ho92blj1bquly38php+RcIy7SKs4Vxh6CrtTnE7LYzAeepIt0xj\n/2bYmo2dnVJrASZJbkknrkPFgq6kAb3gDqe+/1QSgS7dte/X3D7aN9WyNynBx4TJQLWqM+6Y7sJo\ntoHUP2YSt9q5siYjbOOutzbMrgzpsafOyEutrGEl3KzKG5zTLrj646e1gvINSCJcXg3yIDmjAHMi\nsO2urP66nMv6K1tklncwdeXmrqXdLW7UNqSck7bnLDlk9SyhdZyGhEN7EoC6ftAblkn7js34qOEM\nKqfR6GNCCrwH/MmUPXUoc56s7PbiSoa5RLrNtt1qZCCh7BOS250hVkos0yPpVJMKnmzqOXWXkqv3\nwCzJJ9f9mGQ4TlO3qHICACQarIo8Oi8HMrykyPVr1rmRn7U9Dtx0emBuy9Cst7GtdN66uLmk3+t2\n9Pev36Rlptcl51OzxfKubeCrIvG73ZdGuAPX84S9ZLA7AUEiIE8LR8mQCFot3FqKZAJhWcRL69bV\nmQv0qYkjO9EsqwxxqCQCEz71JAIVRl5zKsatssRVcQLOk5dnfIGBlZi3MBN5ye7rEipeLK6NJpHk\nihORFzrqc5hN+yLdtDU8Ykt3NrtdDBd1FyPGEA0AOGUsXfF4o9dCxv3Gk4OLGYUE3qdJ5lMEVi5O\nPo5sQCIsxFCeFV9pJ+CaRbcV4K1iRqGcCtpcbGF+Ax/i0L9DpyCW8uzcdwvNA0AXZUsiCEMA2sSj\n/FzZaYXuoitPIph32Km17zrteUwhnv265BVhfgbzvgwzYPjCkdsODagZrnlokxyZYNYS6t2cI/jd\nCm0X9Jms01MV0sr+FcN+5EJFBttK9gmhWLClRb4lCPIXElsscyswWkvr4ap1XWd+FeuevtlqOJcS\nC7Jz5UqDCiyv0C/U58lSeMtg6Omk4XoLAqL3ZCv3sHO4zhHHaiFjOCDz3awXEnBtdF1Lq6og0DPv\nuKw/qgSTwDZKsOjfXI9KTgTrjr/ip5LQ7FPa/U7N+nFZXYaZRJAeCRuTPb0mRG0teySCm7lSvTI8\niWDHJN9curArop/LC/FdEptWJY7hkXP1Z0kEhn/wCeUa02SUB66o0eJUjSKXS9Z4kyi5eCXQ+6vN\nHq8vqg8vbhnN27br1XiuuFaClMr55JP/2WTAPPcGkQlL4USFPCjzqYaamjmXY+9onWVD5vwoZJGR\n1zhWTrnVYwltGXgh6WWXVeakccZ6mpRQWvVO4PxwODAyFM9RaceJ9Uwi6cS8V3z/E+M5cFrINQoT\n+xtOZFA+eupw1y/W7ShR6K6EvfRkU3lGIdeZU4ykDppPoBIK69IFSOzVvnBaQk/0Gsrj2zZ8BWhz\nLQHAzukCQE25WL3v+7wsRO+NS/mgXz8CASBIBIWU3RWAmlSNVslDRyIYT7/CNhbLo04GW6MEn5TF\nN08yzO5O6+RwQld54rR4MZgMuVRmGJOYdCIebEFZdisoC6Iq5E3iOD/5tTGUx004g4ZSMNtv8Vqo\n73vEbR9Xbb1ttE7WZsL0ruJ+32+gej0Ud3I39x1tq0DABaK41xUrtPVEaBVZhn94a/kINa+VzTsx\ndnXr3OTyl3ymU2itux0JEJ+4cMMcGKs+nKG3YvV9ypdnZBH2nitMktbkDFGh+5IuZj5L70oGJMLE\nLMw9icAEg1WJ9pmGF5TMAtP/pjbcghaV1YBEuKCKzsUu/rreee3G9mHJhZCPD+SKMh+sdSheNGP8\nwmnr9k0XagpkIxKhbCdZhIPBOe66jiwbot+Oyydf5W9jq5OGfqkwM3GrV1N/JHFYnm3XB/ryVbKk\nvE0tX3Ex9RW/h0VkwXowF8402olg9Nt5RE18afMStNZNm+gMaOersnd8RyIY93n2AbWAX9pl5eOo\nJMutdbYrdawk+VTDfIiLuk4eFcsqLekazmDWIylj0YUzbGq7cB3iWn2auCbm3092NkePEhhTnwm9\nvIML2fHj7sjk6GGdbNbcpniesE2ezC5jYOQZp58DYq/kd3H1d7EQuaMcLvkZl3e0npocRzoBnmw1\n35MqM1c0vOHtRpHZrOmJ4MlskydnNrRtsGZ15Kl+NCF9y2RpowC57YmJySqOrH5ecxXu9IsK1oxn\nV+M+77ZHpYJr51yS9ZR1KHsdF7Js3hPhiIkVG3/6djwc6/i7oH3XuszTei/F+JHnkpGRgbtqMYfV\njp6oYgiRsuPRFVuUhjQp3g8MPSmvdzZJzvY+NDuCsXz06F22srv7Ddq39indUrXI9b1nCEkEEnmU\nd20JTjlei2ytY5K7PexqXb991eZTIzGyWZtE7Fo/RXIoySx7Msa/XSEpbTjN+V7yHiCkyImgCBIB\neWI4NCEFR2qVJHlw5NY2yxrWvZd5LI8wZljN5yiTn1qL/JEOUKuA+zijk82hXluVzJ2yoqdMagZu\ni8iY455EIDbpcnMNAByhTSpHBtQLb7msJCPUE2HLd4A5R5+1JjFAV6t83HILJQEdJ1Mq2eac0x0t\nZ9D3a14JF40QyAWC7mvTrheC7U4X+V1aBW2fRWVEInhhcrSdJjE5wmI92TjaNqt5WbCbuEg0v80J\ntKPnT4Owl7n7liRpJtyHhBv3cV954S/ZPzWHBt2WaaEyRMhaBfX6DmzPPlHjfNvYRIjan9UiSmvH\nScpCiCU5uJf6oXZAbol1aEkE7XgkE3bO6jlaU0kicDRbQu3iCff1zkLaySq7TFM4tJ5E1TqiuSVk\nvp19e07lWnt87G3TkAiONCifA4GR1mfmd+G8YvOykMTZzHiajD0vdrPnVOLsahbxvi/5Z82J/8Pj\nafma5tRrkrpG8X/zEQAAIABJREFUnibj+4zu72Oppya5IcmgY/2NZFFPKK2dsuX3WAcq2UkFvJDR\nJadQX0vr4mmneUpMf7yoZWZIAklsrj2LJEKS5pp8Hx5TEoG5g7Q+uS7nd1DPK+kzoRPbQd4PC5tf\nqc5BtMhrP1wNxm+xsM4Rw0Cd5zSkT/pws2oMGNffoifCRC9EEw6i9XZlzTbL7395m5/DhG8AcKLh\nHyS6R2ujX6uS1v/SuusJltH95sjSNodLLnsh6DsCx66p/M15nFxtTpeZsKFRqJD3PPChefYd2M+K\n99zA6FM8EVzSxQvWElaDWvI5GoN/WY0E95twUfbbyZX92JxDTzuOaeaw4naONrE2vRVOnWxjx521\nqgPAzm0Tu0SSr8oOaJWE4ZhkmAT7AtenxkulVKWO+UEX5TOKR9bErTZb8g4YewMBLTlBT4TqWULP\nBE3UeNKTnuxalO+Za2aEnfYxP9/kY06G4FrR5LXhXBtsQiBIBAB50TiCSRxXFLv8fSWtEmu3mOIA\nr5NC/n5i5jVO8keqcO848a7aTwvGdp6oEnxhZ5hZHfSFPNBPTsQ7M6kykRVZ4KIgmAXtUD0RSGoc\nTq0gdmxcTY/VtLpVxZ7xqcdN3gQVNtxauy31WY95EmFEFLB6pi0X9/a+x9uq8XFSLe7Vw9CEVun1\nCtp1JxGsO6rzDOH3A8O8r8pWaa2LH1nmg8GiudtrK7LWerCkhLHshy7/AVBzhtBjZ3KCqNVpdtyJ\nJHHhVsLGJDOrMYpeuNxfWLNtxlhsuv1d1u9FSbJeCyV0qfVAsJaatbQuiEWcXSARSn/W7zY8olgq\nVJi5bKwkgFeYW+WX3ihpEB/qSYQifA00XW99bn4jOdl5IrRbwQLVi4lCxlrr02bkZ1jJZtVupTUi\nA/bZem1OeVu6pv/tbE8OX84lLI6l8tf+Mb1D4se348Ad3Fs36YFgLdXs/1RMSBT4drZ/+3nUnkMB\n/YLb4YTryYhE2OmaRU+gyYzfmtwU+ulJBEuS50+uR/QAtMkXvYs+hXSee7yr68GFLQmQPCbvH5AI\ndBnezhC3HNdAjY/mDk30yBr1Kd6HJDeTuY1yHKUyl6ul1RJ7Jb+Lfnf1N9risVxbzjVrKrPFax1v\ntL4u73r36vt1LqMSU2K1reeAI0aLi/xCbo7ee2GelPBolfTWm6rb+QjVU0p29Azz5M7Z6+bwty4/\nVb9Tlg8PYDntnEu5j/3Me5xcMErrWtfbopgOXOx9KFAxbqlHwrFZ+7mDQ8kt4coCVCMDd9zaoG1n\nG+7Icc9cKZQPbIhMCUPc0hjljEAL7UEyhttgAjXM6lRIGmg7DDwVu/ZMbWhfvl7HoBpcOHZoiDhq\nciKMSQQ7v55oOx66eau0s3m2T8pOHWBjtpj3c03Jm7C7ChLBhlx7gedOJRPCEwFAkAgAsuB10Lhn\nUoFqJ14KLDYpymGXKEXZQ1OzR1vep1WCK4M8smfRhTA/3FpLyAByMr7CCT0NSASd9HjstAiFRnDi\nYrGiV4GzYKwtiUDXMrVY6JY/x4a95fWVRKDQlr/Z16VuRaKg9efQ3/Q+ZecGtDja1AY51uRPJd58\noMivvECyaKUcY59zR54IfjtEfrdCAidsfpZtFgcCvb/fUvm8knBVJILxhLkA7uYxryQQO+23pypY\nFK8Ps0PGWhNzHXCXkWvYCtC2L4VaulNTCLpC5alJQsY+T1KMn7UH1lCl9pn7hDMUC5/11FFLxYUd\nLT2tNWH0/vROmOhtZNrbtyO/7wYJ6IgJfd8kfD9h3ZLUarxS1IuJCiSTn25Msjp6SDH8aq7cSxh5\nZ+wDT7YsKQI3ikS4mnP2ITd8eZbGesmvMtmY6jZ2n2RCyW1i91R3fYCwcxAF9AuqVF6Y2pxC02h6\noGu8kuNiwv+OdfB4pYjr0OFqQKBx+9WiLBlvI73PUdkRos2jcGJIhOOdeuPpHHIfx6YNz9F5asXk\nga7+L5rtnekVcFmFfc57dmwWyzfHuCqvhUxY8MQahZvR7bmrv0IimMSKJVQwH7u/5Diyngj52BWt\nA1qxSd5TfgCA+3S92BVlk0mR+zmtkAlu7bLhB35tLnObDY/Ytff246MNz2mJ0EVPBOf1dTUkwqjN\nujE00dPLjjf1lHB5fawlnSFj7Gc1/HTbfALAWvsZQ0m9dRuofYC4siVJ1CYKBGq/JXnAdzpG7X+X\nUlu3TF5JMuHQkggqO6ycKnLZvO92ateNfTwpCbYziQOgEpenGkKxni4219j1tye2SN6Z5ODaVmVX\nlFXrzTPy5O1IBPO9eiKQEG31hItmbrugCSh3jqCxOdS8HEBPqjT1Y8kTfMXIZbxHYleGgEWQCMiD\n4oJh9zx5wNjMaUAiUGH22VZPTTjDUbkPFxhe27pQ57IQKuDoNZeNoEP3vynRAqwWAvRWDh//TvKg\nVbro/sjJSo8XLwOzh/eaC6uGM2xUkGg8EXwdtDHkS54IJSeC9URg/Jh+Z7grz7Wu4kebVtGRiYpu\nPWcLJ3TQApRawWcJS5bganHonz1nabUxe1ygaVGf6PpLgX6av99uYWGdUxyXhNRi1d8ZxZGKN+vW\nrSk25x/J2lNdhFhHdls1vvtuRaGc7nbX5olASwj79f1GIAEq2QbYRIr5eyXQ6vkHJfmRvpMer/nZ\n+kX1oPTZPscChYJDjS0+VCGmbIdpWH8vKG2Y8Xpgjd9HYZ4TaG2f98rkqoRNqYBrSISyR7m2L0Nb\ntqYshURQYdCHbYzGkn+H9j3HyscSlpQQf05/fJ+tN68XidCfexZpsKhkcvcMG1MtbVjKWtoErjbU\nbZ5EsN5f7ZbIPpfQKI1JIdLVNX4yikxN/saxqMqRrj2HjSeCri3caWHXxyEzMSrvx/XjtHjTmbWa\nBIsSIkeDnA2M397KWHyyoZGlTpRkI4lgw30qebjRr+0YHa3nBNu1CaHo3NtZf6rAmLopJAIJgS3X\nfKv4tHMYQzWL0WFbCSqSzRzzhK0rn99gac2q5Ryv2QCQpna9WMptVLypnHzQ1LHznpjznLBY8qKo\n923lCu8BBFQvRJIHbNdDM+cyBxH7WV27enmtkAg73yfqM6tbuuZNYP9Rou/YkESbmT5qz6GH4rrI\npVwTaIU38gtlG7RW8UPr/eC8WkhQ7eOxSE8Om/OMYZhHKhfQWEPvSBs6UsrpZCfriXDoSATK+4cl\nt4ExwpFEcNvUTkbgPe3aSknQMg6t0Sy/C3czo/fHidjwZ62viSSiGhsHJKgn7bzHicUOqTt2xyAh\nPBEUQSIgeyLY5IlcNGuCwHycyqzdjuXYZVstyr8xTzL8gffjTyUO26w/k1NUyjk2O3QiEaACgNv6\n0A5uTzDUUlpLki4WLqkcY08PzSR4eKDPUOHjUOM27LZbZFCvlEcwFjV/azwRipW3VdQsieDJiLWb\nu47MDblAHDp2eWS9JxLayXVuRwuL3SA7vvcumBPAASdEwgkJJBFSG5JRrHWm/krcoXh3z17xKVYh\nxvfNuUmb+7IMR0YwPizuei2JVZ9Tv1M+OaWXDJU48/5U8ikcbL3AuCBEj1CFBI0dTYz9psdOnfaO\nnNcRF/7GE4HeMswEr8c5BkYx6WtnabDzS8m1AioYGs4h80KqD0daj/qfa3NPlgG1by718UIeOGsT\n+7P1SmG/8ILj1vSXU6FXkCoWU1ve0VjyWPK88BgTBGe7kY+edWa5rsKjYVQ+3w67AfFT7zsu1xKB\nQUvc2rpDO0WKoShTmR9M0t3U5mUZlbuQdm6HE87LI7tVKjkR9JkN6d6Gyh2q8EsCm2uQxXbLXER8\ntlWCd3pMBWx91qkTzvOz9Hq1wnL+s55TtATvmDDO1b/dspmkxJGSEpynGxdivfdmGucMWeovbNfG\nO4j1X+ay1oNjRCIQpa7N/FdJmFa2KXKSUajYF07d+rs2Y8qP990CeV/nCJLQvdfgWWTkiCAtBD2J\nmsmGgOr855Ssa/FYbMtBxbt1ibflo0JLzwOW01rSGTJGj0CuXUdMPGrktQM9drJlUsN+fdtM7TpW\nxx/HQp0P6FHIQc36s+HAF8p75e8rFQJO9aKDEblTQir0HUx/3rh1Y5voSXl2SB/rs5FfOP+pnOBJ\nhK0lwKb2Pbc6X9lcMcXbQctcE8JSNq7lPJrxRLA4UuWUY7AaIbX8Vt4VEjT0+FQCQkxOCTfeSIL6\nMZXvMw4VXA9UxfBICABBIgBQEsEKEvo3vQsOp1bBtV4HB+WYVxoGQpGOVQ7pI7c4W5AdPhywj1TM\nvCcCYzxHJEJJfqc/rY0izUSS3CmhLjS9++gBSQRacda90MH6OSqPVKts8Tqo5/LVvSeCcWwoybN8\nWARrzZIwB7SWJrp5kSAwGZpdhuGyO4MjAUbHlhSM4o6KVlhoMtvyXLcAWncxCvVF+S2WYWpf9brC\njJd9ueeJgZqgsc2TYTE5Qe6IJIJNxElLunNX5qeRt7GlIMKwmpJc1Ao6rfWqhFss1PVcWEh+liq7\nRYBvk8ORdMvPbsc6+7ElCg/KsfzpPRE2A3mA1/AnK7QdOuGbwgxDA2w4UpcssQgNA/dgaeuLys6I\nhBlZFoiVIxHoCUMPjuNkPRGYXE2ziusY3xgSle93gHZM+nFnsWSd9ATcPp4CO1lQBK7CIto9czDO\nzvJK2Geb2FGdzCkvVvDrlMwSU21ISnoiqNBbiILU943D1I6dcg9YxVH7b0lE3Fr4R54I7B2FRDAn\ncV2kd1sJY9C152BAIkwkHLacm8z8UtYzfScdi6eFOKz3Ke/A2HR6RcFsOcetlQe7CeRrTWikU8RI\nrm0M6UsC4FDve+J0rMn0BU+AF4u1JfZK/bfr96GSMJNZXNOubZxDGg4M0VDJCLhPzmPmfZkvh0ov\njQIDQpPrTxqsj6V8DP/w3jhmDvBk5GhNIDg+ynpbylfbQwo5NDX39c+7WnjPxJHRoii9GiJUSXyT\neNmtb5X41raz8hrbfkOCr21LwIT3oB0PHAs21PcgtW1F+dISSZQjmZD4dNd65dmxTjl3Krua9Yn8\nyt+UL7iTg35fkhPoZXVgtlw/KH2g9bRj3W/sTjapleUmbi9udzebWqKnKv2U4Y1XFBMr+lBDo7uf\nFPmKY7HNVWY9lzm/bDiP6rtdsSQ+dFcvGcuydmytBuMUaA0vV7GZxW2MFJ4IiiARkOciO7FxjHjr\n+Gg7lnpO0nu17vn2unKMSrC7b76e92sVbsv68Te6URdrQmG6exKBh7ZlMuzv5xV6ulxZ1yu6j9Kw\nOrnjtsz+vkBy3+dJBAt6eWxd8spaJnu/VhBeDXJAeMGf+s7Iyt25fQ9cTMuzndAy8kQo5SgLYqug\nAZX1LcJG8TiholbPLcJPaeZ5K7a3NC7uD08CpDzTulyqkNA7Ruhz6t8rKhKaF2Rd3tdYXxIzyOt7\nFQV5vnw1QeWgzUq/a0k2PtMSaLX/6fh13+3fbgMW7JhwcaBJ1j7bfm+eCdZJ6yEy9FxhLokFkgi0\nkNJrAb1CukRs1XNaj43Jla8ReouXQlvntk68sLaSltzYjdpwiURwws8+iVBLXZBoHXg/yIwwOlTe\n3TN3DVGzHA61SI6VRG/zfWAJ/U4sbZ0DtR3LHOk8TqzVqba5m3NNm63QEgH9OlKv41zrz0lmEuf5\ndUxyzVGS1hH2FhTO7Zrlvd3WM+Vs3sHFalvSZLdAIOV7WKWwnYOkbHNslC43/1GQL8lnzetOLoTC\nhxq179Wu3yQPrAKzLQot60breDBflfxFrKOp/Q7UuYx9iErhkNQeJDX02BUlzs9lxjNT3DluPhl5\nOBT39EKqmnALPqOs3454vEYtyo/NsXzQErclUa2ZU6Yy5/KT9+M6ZeU1/a0YwrznbL1e3Hc/FnI5\n1CLfySTmnJKIvB1nOyfb5nNpGNFxO/CUWzn3+7J+pL4veNQ5zY5JPUbSlMkIi4dInSu70JgSSrsw\nn5b6bMcUYOYnZ5AYy8/+s9ctKF+ty44z6umQ7Hzg1vFSn6wTQxzMyAXTYI2+o8MZAgVBIiAr/o1L\nI5nEqf0s4QyN5YLHlM1VZtVaEwpzr/elJX2UxI2X8cjRltca9lYn8GnXKpnbxIlpFM7QkglW0Oly\nIdD9c6Llx1hNtEC0YBzpbzYjcO8STkaazy6nGsGkVeK2xs1y6wSQjcsGa3fLKNZnw9znEtSTtmgn\n1WIZXcgSPXfuCMXiX8JOrJDARbh1G2ssDaDb+GFzPcNVpsH9iktnUTYH1jpXnn3egW6A1gWRfZEW\nh0ok9ffhtp70dkmqRRwZCyd3B6GFb6mOu7YZkCdHYLiF9mv1RCgCPPp3qdaX1HwCdWzXcAaSd9DP\nfjGtnklqVbDWA3oiTH1MMdCOX9+utS/Y5FTjvjlSlL1XQfHUsXupO2WyXEM32sY1VN9h1ZIJWyPE\nXNm2Hgz1HQbeFK7NR+8w6ttL9wCs1XN/74clr57umft4Q1zN/fbwRCieT2l+GadbNHfRAOo+7Qyj\noadIUU4MwXc4IyKMwuF8GAMtcqPXZU6d4s1k+vxRWRfz+zEXwsGBxv0eDtpOF4kDTbJ7ZDwReB9a\nVk9YvuLtV+/jx+aFbR8fzXGxKVvXte3SzJW0Kuo42QzyvbCPn7o8AjXsxxBUziWe7XrBuLuX+i9Z\n3nUdZ04Em73f5+Y5ZV0N1nPed8fj+mlzEulYP3WW/s0oh8vCWuXhw/VG3lp+jC+Fvh1pvXFNtJ10\n1lK7QNTvA18eb+gAqocEExWW5MBGPuD6xfChGn6qXqGHta7Y1vREGO2mVY1R+dj9zm3e7tSx3bZr\nafFEmHrvG3aLU8p4xevI1gLnnMI0AGj7M2Wl4oVXPEXOlsWq11VfvsPEsIaj5r42X9NU8rpQSc/P\nsp5dNbGseiTo/EWZuPVEaEOKfDgRYEKynCxyWL7Xc/ksenySi+A4BGoIStleG21iSrvG+jWZY8p6\noNTduPZYyAK3PYJEQFZ+1oZ6J0mwLp8te2vjnQ8cicCYrkMzqXLQl4ztqf1+OFjr1k7AaUiEwgqS\nJdWJZNeTCAQncCpx7W4UFNpUEKP755okgmFSD1Jzn7WeY9lWXk+X8FQsSWSo0Z1bvTXy9zYngr4t\nr3evZ7c8ZjseMmutlssys0zyNDmrpA9HWMLI9dlfv07zluXJWSUOm3AGCoitF8Bpahf70bO5MGyk\nF9qqkjC/iHjGuYSHmJj+A+cG7L1HklkYT6f2mh0VXlN9VGJIJniB8WpxqPV1IOzPLDstBrV8nig8\ndOPZ/l2sB1r/tJ6Od2cg4dCGQuRnabnoDsxs7EWxn29fKvKehAL6frwbWNCrd8t8H1+l1vpVyZe2\nX+Z3aUOhSCIcmE5xtCOx1ypkSeNobf8rZef4GtRtRzQsKCG+jy8JnqPwnrlzu3PkbEWoPGdwvzky\nsAHnU1fOpZwSxT3auOOvtR0oqNf2bq2zQLtOtOU17csM3hxLJbGY2GI3oAs1FdJJ7PpLYVlJA7oA\nr/XzoO8UtOSt1+01+R3a9Yhj/KT01XqfAzdfHWhyuY0ZSyyruLmyJIUzC5InJbhGJ0OiMl/RPuE+\nk7MUsl2tkF/fQRUeVVxYN5OpG87VBzs9h+7vhkTw4VyH5f76adqOytqBm8taS3/bX7lWjeakMu8x\nDn5APCyRpnNY0b29GC2sNdbddyZh7dWiIxHoRt94ISppzxAwKro2bwLaOda3d0MSrds+cOCs2/kY\nr2/lwGpMq+Xe7Nr5gL9YIqnkSnIDn13KeibV0Nz8yZDcA5OH4QgtyV7mSun7ggfr1sovxXqvxCPl\njg1zIhhFmiEtJcRSn2nDLUhC1HxcrQyxtrtlrPo28jiZOJ9q22k91pwI9VwShkx2ih1lHxveqess\nSQRpSVBLUq5mCIb1HjLxHYWECGdQBImAvGbYGOiiTLv46OqJkMy5u+YYFXx7ztpNztUTofdsoEWG\n1s6TkkG63q8aivKFjD/mPGmzxfPW1Uuhj0EtyoyL5WJmXwpvALA6pMugXss4VRtDqdfX5JLqiZBG\nrnRtiEOxahvtQZwf+bZLBmWVQmWZORm6eN/8jJZFHynlHnV7SdZjP4F4a7FXwuyzfTyttfhRSaNA\nNhWX2PKger80LpffMsm+A5WGoqwPXp9lLlbGJjFgK7yUXAj9bUpfJ7vOLrG1SrXG0Z7KiZavj+Uv\n5XKL2eicAyZLZG6TTXtN61WRP9edoNwL0etCIrR1ngbWhEI4SE8qUsc4LDGn9ProSQRPKJwyO/bA\n7cP345FCOueebuFJA59XxVp16txBEiEfZ3vn91QSYdsm16RAtg8p1vw2oywsEXt1V4azk3Hto4zs\nQ1zMXpusUrga/rZ0D09YNFt0dVZxTZ5ok/2pZaooKK5PWC+1URI0ey5gLHsz26SOQtS2xRMhf7fd\nuZLuOibV222tjAPXoKY8+uztps/jc+Ti/A92JL5Yfvsu7Tvx/XfJWvZIjozrprlf2YFJ530mQbbJ\nXRPnPyZxbPtsGiR1ZL9hu9qcNbX+9X11jaYHR5sTgZ8s52A9dzkRDly9WQMHlTWSL7vUr5c+p0m1\nas+TCD0Z2BOPnCr3UfJLnTuFFKjrT2eVXVBaJ7eeL53jvcHsWl3y45Q8OW3+A6DKboedx4kqfFZe\nW7d94KDE2dc+wLF45IxblHutgY1/75wX7EEjT+ZPGrf4C2vTGn1KKCllYsodNpljSWTaylejMDNf\n7/T2aL2DOD50DCmhRBKvIRGYc8rlF1qbHZSOdJvaanDR9xTqBkaW0LlspWOQucXWRoY43LZEXhnH\nJamybQ+9hklsSQiZ9fcgkQhtc3AUg4Qx2ngSv4RzBIkQmEGQCMiTnGX3DpwbkbdEjlydqXwkWjnM\nOX4RpmJVlHabc0A/Oe0UFyZTvqpEU0hryQlrGS1bJroESpZE4KS6lvZdyF6vjCcCk9Jy/uYidWST\n+TiyhVfzNW1JfDjDKLHiaREOaAFqlQ5LwpTkkGiFGAtvbfe2NisgU4nzJILFXEI2r4QBNtShbQ9r\n3eViQYGsJqsbSONs80I+qSfCIIbNK4O+DKNzy8I1DRYuhjM4EsHuVrDVH7lTx2GpR7PIcREvSczm\nLUu+7UbneJKjWEm0i1or+bp4K7R9tvFEoJWzEIUtmZC8awxszGNPKrJdayJTVTCosHR3M/2uWG4G\nJILrm0UQaATks0kE30+oVFYLmBXIVIF0XkZWUCz9WVoFajcIv/JlJ+w7zJF+S8Re56WxcO7K3X6k\nEHiS7mqsk0ueP/tY1/yzRkk2CVrJbILEkpjNCdjM57M2AvdK2nZl1TfeZCU7fP7u3W6HYU466Z7o\nq9hhXLzvJmdB13VoGuR6TJrddOUsr/l9WqK/frbGgvy3XlPGJkOF7MPyx9wYsvNLsfIyyRwVGBMy\nsknt/Ecvo9FuLWX9IKFHi7Ulfpxleu08OEYkwm7bnmtdsH29+fn1YDDWi9JL0tjuzuDG74jwLucW\n6yljvdvj+RFX74lQ1tvB/Xy+Ij8v7BN+MSbx23BChsVYL0lP7BXPjqZ9pfmk3EaLtw33YZuvTyin\n6WdDIuS/mSDYh982/XmiAp+/1/m+JxoKoWwkA38/gt6mxThl39eR694TwcLP6yWR5iDROY0Lhy7Z\nqVWqaexZFSJDQ0ZMItMDR/Qc+fE38AzhGJxUprND4sB7ItCIMTA6cn7ZuDpt6s+tu5QN+Z52DZoj\n7awnwmg+v/OQINe4S8vthiARkAeFjdPqPA+cC9hIweCA5y+t+3f7OfnJeiEnwmWX6RaoC0BJ1lSI\ngvZaoCp2Na9ArxTWXAgsT8ter47qYJmY+86RCOsmhpIMKp+Rn8mtGkX6+vMZ/hsXcQo6ZXF3E6ad\nVCmkOSHG4qyEMPvEeo0Vn7ZdVoXF7u+3dcpDa91VQcyRCPRSkVHduDKshq7sbbmWdvMoZREqiQv9\nubQLiQxDwji3ZfYFu2jS24FxtFzchgSQK984H4GOmaIIcECzPu25Y8LQhh8cuGRINYyhf1/Cb8HY\nbpnWCgPeSjnsW0Vqyx/7kAjVHbceJzFAocD3WaBakEgaeOXSCiglE3exvuTPjWHmrjBend4oYKZ6\nKsz9+3beAeYd5sbvkBhw3g7Xy8PhWs4pZbIx7t6zZsFjopzjnmVjqn2Oi0oiGMuZhpEUBWVqy9B6\nqfnype6cam3nNfnT9wkLKi6ViJxfU1eFREDz2ZSLQ5xKk7HGemH8yBH9jTt+8cbT7/r+u52dIzM2\nZS5r+2O701N7jHPu1lxDzwgqS1tR9+PR7jlOEWW7Hpq49Tq/+PqjAlPvx67I3Ajr+3tPBJ9T4rLL\nDdWGgnKst+SLna/8+CXBMM7VQ0+Qdm4ceTbs41FIVKWIhObZBGQt/7UpD2uXu6Qk5DOEEsfmkRub\nNlyA/bWSOa3F24b7sM29nGZl2KNCiut371Fk+kvdbnsy/7dGrnnysF0rAGBX1pgWB2YBOXCk8+TW\n33Z3gRbTQN5dOxKGXqCnjsTL92vzZ5UymS0t6TVyUEL72vFnc4qtHImQBiQCSYe5eeto6ucX753b\nED9lzmF4rZbBeVTmv1vDw67M97XRIhdCwCJIBGQhubFOujAG74kwUjAqiUCB27CPxbKsAlNhW9vJ\nwYJXc8JoPRHGJzPnQL8EA5OznlrF2wt/R84tzgptKt8UyxEXrIPGcsE6oVDgLA8Lme+LIjpy1y7v\n0h63bVczSevEWWIy6znboji19yVGjltUpFIRYnp0JAIT0AzexT+7IZ2c9d9bA7E1JSzeLWzfdqEd\nPbOSG20ZRuf6uEv7N8dFEStorTT38UlEWT676BVLNa3kg8VtDhwWVpDwJEeRv3TBXg3exY/txgXR\nkwgusaInhIA6h2xTO3fkv3nf1mLD9h6FR3AniDLWh+NDy1ckkp4k8sTWKOJ95UiDumNFK3zlv9tP\n/y727+JxoQJ73a5yvgfWmOr+PT3GeQ44Xh2JMLJizYSDjLMCnP3sOSx52IzctbvrFzwRvAW05hux\nnk60mLUKLm3TAAAgAElEQVShbZNrZ/93Ll9/vFpE2T/adW1kuTqkCzUr12TPnVeC8+8y2nWShKau\nR6vReuSMAcWCO/Xv68foaIwXDdy9oA2N9NtCnxYl28z3LvyNbTbqCz7ZKdt1yROhI2EsiZD42a75\nzfw346VVcs6YqvFrFhPm2RxA3XrbzXf2XK4xXFt3/TkzY3wJ3vtmm2yl6McMOXHNJILfvcnlIsnl\nWjWfR87TC7DhDNBztB+vWrIo/63XuHa1MuxWr6cnwoHrs+12x63SO/ZE0GfP6JqWVGTTU3ZlqRpi\nqmwPrX1gJoTTgm3HOh7KiM5rlSEudi6ndwIJII7Joya5sCZvLCFQetzlIgHMWKQjTMmRUsvOPGO+\nrWp4ST23zis8QqLG1N+Ongdtnx/JWd7wwHwtc215RyNyIgAIEgGA5kSwC6EjDzyJMFKC/ee6mXhb\nBaVahNt7AHWwckL3SR3z/filXdx4GzshcZIXl5Rv7NJNZckJH2btE85kVGZo+TFCh1fIGP++G7yv\nry96KTREibYNlTYvzq0GdeNj9xrwPmULoxbX7InghA2vhPmn2GePhPIDJ5Cxzm1fZUxd2aGjCFt9\n+fw+zUshGpNbjFbD/qJ93lVxY/ku24Fpn0gU2ur5hTRxLTsNhIP5nAj1+MoJt368tEoSz3GKy2iM\nux1YymI8UAo5Hthnxy7TbfmoqHjLZr4PpS39GJ5DyY5v2xNenkgakU6+n9Q2HAgoLt/L5OrTnlPf\nk5nqSSb0Y5RlriSRaQ937iJp4q4feWfAnVO/ny0kVDLibKqhegnNnzNy1y7P8t4Z3I5vIV7Vu0cD\n1srZtq8ni/zfuQz98WrZy7/62Hk7ltiPyYOWPCONkN8qRSSqubuhHLRlAlB23ZsO9dqhJ0JLbtd1\nHuZcvlP7nm09tESc7zctSenXep5j6o/J0Iq7sSofaBUXACYcSa/BvJLkt3bkOt7sEsl1XH8rFmsb\nnujmRK/MjDwBa3lIFJo+4Oprvvf2HnZp4D23RDDMoVhW3daCzbPLrjQsw/y5+6Dbstl5hQGGUHJz\nbSsf8B34yT7PnBfmmWxXkmuDOH3m+Khbn/Lc9nnNM+lt4GRZW9bqiNoqyq0nQvtHNQKZ/kxZZFY+\n6EknJg7zsrZ9nzq2tV0S28UMkITmGOdnm8i0kqftPOjHH2DmsrIQ62OMQuqTw3qPhFZXaZ9ZwkHM\nfFASyBbv3HbLbzuWtiXfi9dVjCdCEAoBgyARAEDGSoMUpWOeRPCuS7RS2kl6LbT48MiYnADqAOXk\nUHeEqMXlJFJisimw85ELg7wqAvZ+3tKgwiktScbyIywIjTBrKiF9nXT1VRYec65bCO19PIry4tLh\ntwsY76vCqlOYgapoz8V2jUiELiZ44TovjI/uNxUFj3U+UoL9AtjfhzH3RbEtRJKYc/yC0N5n6V1K\nWcxJRcB2wkz5fbhgjz/bZ7RMud/ve4yRFwDL0QpFu8Vs7G1fteN3VYg8Wgbb+3pXQnvu1pUh/81z\n+L09ZxQeUXikUV4MRRfqUcJf7HibmmfSw6ENZ+C57M9eERooLE6xWBbaeF/23b7MRXCnJ4cpn/ds\n2rn+PPJaKJ5YxX12RJx5t+WzpaXdXn20Ldc+5MTI04R3qO1KEmH+frR+WiGQ9e8VlOoNZgkCf0cx\n//N+/pPjhXO6PTcfY54b9rHUkE4UwvN7lTXmUJ89iI9gn6CcbHcgWM2sR6P1txubnB/sGHfVvXL9\nZImUKOPD3MMrM2smX1TxzMbelvZM7c49IyVzXXIateu4JRGkaukAqsJzNYaS4fpbPM/QYbQazoFz\nV3Um68fvtEAizqHWF+u8LwPHqyeq97n/CEU+KJ4nbLv6bM7PazdXjokaftc64ufIc9QR4cvti/bT\nkgicM1J7zqjPl3HP5IHl2Xb9YNnzd66lLVGt6wQ7UxF3+57kSWPW8dgTgddofaIl8fI78H2V0BsQ\nSQdFvm/Xce8JBJi5rJAH+hwzp01u/lvSP1jXzC3j11r77lVOcSQ+KjyxwGvs/SgP3NFhDQnjye0O\nRJAIyIvaeCHMnxxk1f3RTsA60DnwUzvwgV5JL4znIMeCv6ZaQc0k6L0JmGtgcJ/yjkW55P3ts/TT\nCYFMqNgIHTQz7drJsEkew4QypU7actlJixMt347XjMKTKxnhhLamrttFaJPmJzyvTJfyDQ5z4qxW\nT6Okc1Hznia0zo4eQua9JDC0gnv7DuX6qX92Ks/WX2jpMxNcDavQ71wEeO1CgsVCZDTst/Y/PlM/\nSYxsh301f6cHghXKfRwtmXKvHOZntPCWKvus3rW+F2L6fCfteG6OlazpKiAXt8B67s6N7eKBMVj4\ni4LiBKjR2lTlZLWamJOqlb1FERkGluU+5MZc50iD2p/b8tq/y9w2ECp9fz4o76l9FX1f3Q3aivBO\nBJ0HQervR28ocSRFvt9YCRl5QXj0isbZaHfPEfebkh0L5IQnI7aD7SUnJxi3ibZawbonESrq1qz+\n/vac/OkTBZc+MXiHg0JklJcxv7VjsYQx6IQjoz2R+azBDgReGO/GvHnh3srO+dQ+q3lkAYdkK0u0\nCrePxwZqUjS6HZ+WsIY2K31+dKuAjhLfemVDtC6KJ4ctIIn9oty0Cky+97jeqlJoCCpPGA7qyu9u\ns6SMcE0t61wZH/WGTGw75xM03PK6C0Gp71BJbN63PXdMQI7Hsf1tLt9QQyL4uXLQX+ZIcobwNPKa\n/k2P0ZGnXfEYnUk8OsoXxunJrxX2+nKolL0/l6WgXLAuY6hfs1bOY2004/q5e8kTodQ126EQSrUH\n7VI73lDGXT2na7OiE9CT1/QFzmXFoJZh8+RMzgOhIz8HusrKkbEjI02/lg68ehxpR1JhatasQKAi\nSATFiESYYwBbgsCFADj3Int+HfzjRRmoA3TrrrETB8NHucDuihDYKyGcv6noLJEIXpHi5GeFDlqB\nmBBGVGhr9iaWdvJbm/fz37tdGZzXQn4W33sszDdtV4gfLhBaTjuBUoGf8csaTZLFE6EoOf3zy+4T\nM0qYhY+yaJT0Ges9mYKdrT8uRoUs0WcOXAaLB123mJhFxFt1fRnQe49UEiHD9tVTt8hxXFihvHOn\n1jv5XTiA3kLrFz1b1gO3oKaBwDM31m1OE08UFm8U5ndoQila8mA9IBXrMyhE+rJ0r13H9MBjtyjK\njn0Y9W5v4Ro5AHeeNF0b9gLtnHdF/rslBHx7twpG+07jpIst/HvaZ5d9yItlpRc9PVnllYSR83If\nclJr8KwdXZacoUfExRxBUUks++w2xIGC9yi7+8jKaY/nv8dltlU2523kk+ZaHDgi3NZQ9XRy4XTa\nuUaeCKVc+ptNLteR2kueCC4sR8px85AZbyDvwWPv7T0QRu7GxQrNRGg120x9lxIG11o/291Q9FM9\nETx5YOuP1t2ibK7a+Ss/w5EwLsRylC3ee7BZmqvO8+N5y6IoWe77aAel0XqRz+2x7sb8QEkaeD0A\nLWns10tiNMa9HDDyIvGu8UvrbyUTWgKoIRFKm7fk0FV5Itj+XAxD7Rx+MCCxWI8lrG7olde28Gj9\n6D0oW/kgDQib8v6OALf34ZpQxhDzhRm1iEk/D5yqtEbfZp230YhEqOxGAxuCQs+F1bRMJthncwym\n0fzi2qx4EVMuMgYdEvp+TI3I/JoIdX783r5IiJwIGUEiAN3uDGeHM/Tx/ytndbfn9GRBO+kcDJRj\nf81I0KleaxSQeyXJvKU+k5N1PcknTuK7cOERK6FwYeU5VNoHORE8sdKWpD23KioDtaY4P7jF3N3D\nPqtYRNxiZx82rqex0l+uLxNv/a1agp0y7GMDDfz8s+giXpTgtvz5mXo//WPrXRNQBZqitPGnBdf4\n8g6DxIo+jKETuEft4QWT4f1UoaDiNxdv0hS0+6OLTWT9bUfPLnXsxnEz3loBjItuIW6MYsp2oCtx\n+W6E8rWrN183S0tyFcArqiG9ra+RY1KnyA+sgT7edZbUMvdZ9ERwQm/ZqpSWvkHfL0r6yEumyELa\nLmj7jUXxDuJ9XC6IfL0+qlP+F+D6ZpuHwSkL7vso50Xv6dTeYfSsURiDzyK+7gTwnjzw8/OIlC3P\nLmOzP78mAHOKsxlLJUeIOzc15RsrReJjDAykMMP6vQkRbNejQibs2vnBvsu6W0fqObsiH7QoXMeQ\noG/HyWYYzsBPVS4Tt5er8DHKfn7Nf7f1V3MhuAUFxuNvy3O0blb9ej4XpmiV7EKkOM+zZs3Xz7l5\ny4Jz2KaEJenYtO1bxvbcXfoffJ+325pSE/PzATHykFsC7+x3lfJhfEAfYjRKbOzJAx/OYEki/u09\nTGy4Hrf8q7KrV+htmfW+7rdGvOK5lNv0UbtS3npuzY3E8dbOHflY/m2rC7i7pHl6JyMOiNI5kqSM\nKfR9y3tBLHki9POXGR/UuNwUZp3JikzN8eu9mUxlV3KylevHMpibvF27AHWtKqLm0FMRgUBBkAjI\nA8YOzMkN1qlTdOcVjNVuNIh7xcR+twqGOEJglEyFE6/bbcfswDD3lnUBbCZpT1jMWIAA1JTAxYKR\ns9eujJQl/n7iJ/b+b2/taEX4qfnNi862eOKE5iFR4MIO/KQ4DGegojJIVleUGJ7rFqchibDwzMKM\nO5nZJyHK57J8taT5hgNFxS8Ik+9I5tyZhRboSadyOyqAVqGn0jCxb7b9Ov/N99V6dEqiRW9p0Gem\n/lgR3rp3qefOeSA0lrhudwbeV8eqcSvpPBsWY1B5f/1kjpOBItnlxTB9oJTH1dcot0Lv9dH3UT92\nvCfCiITxhIgtiyed/G4Z9tzKgc2P35Ta8burFdCh9A/3fWTJ9DeYs2w2ZRkoGp4G7VT9BSls59oF\n6PtDJTl4Th/OIGXO1M/Ge8QLve21I4KgPrt/BS+kLnnu8X6nOzcGRuOj5ETQZ3o2aoCiNJkM9XOx\nxWMSWt+Tn2i/2/clfDcZ3W/Just5xHt0+W1Y83V0r27nzCY7/kz9FU8OGw7C7PAbDQNhNv+FnBJe\nuRx7qfXvSXQRgQvjrHhZlnlBy2LHx/63K+iJM/u9rffeeGHltf01qrVTRH3CWnus8+4ZWNLXvj+v\nWiJNT8rldJ4m02C8rbv2bcdovq4t12hI+vmec9rW9W/7jEIiDNdofnLeawkli8mdU8ny/pmlnCXP\ng9arzSfFNpohgOzf/drv5Gj0c1nxBKq7QNYkmHvkRPDjLZV3qvfz63eqVpr8Ybr3HFk353FzxyIh\nPBEUQSIo7BipgpIfvL2C0Z3jrPn2N060NFyOmHxPVIziVL1SVOMF2+MtdEEcMpWuPPz0whsA8e6n\nA8tPyUrr3oFntM9uJ0peYxWgmkFe69G9WWt1aj9Hc19hl2dk0ca1sbu+X5SIZMoxKsvoN2Iftt+T\nRgB6T4uBRlWt4f4XFnCBcOjuVp/FY967uF2w22NeCLG/1WR//X3mMLJCzSV+TINn9wJTu4DbY+x/\nXezt1C8mk7vGeibN1UX1ROjfvCimLjQgv5eOVydUVTrOzld8VnvuSHHsyINR/c14KSwJgeW3EYlV\nmtMRIvar92xy1dUo3U4YGlky5zwZvEA6hp4z8GyY+z5y//TjrelRM14PddjOB0iMyNS5EJTR4/xa\nMjL6dp5TzsNOpH9f76UwTrbGdaidEGVAIpQnaKe1+ppXnLyHYUNqs25dvdn39euZH67NufrpwxlG\n3jzViphP3nTtbIhvR5aPFLO5dbwxuvN+5be27vP92pBN3re8m30XrjGFQO/Xo5LDQH/yClqTT4B/\nOutpc37nbdSf4+HXMNvn6/TEd/DzwD4rU4U3VvhQS9t2VW5pZZRR/6vrmyqrbGfTocWTCANFlONB\n/PeFudzLV0MizpfXlRuo7Vtr1skzsNbwlkAarW+lDGU+5bXmfr587jltaAuJlTEBZP/2cnSdv+p1\ndS7TDxduko+1188lhgVqPRVvy4XwTr+ejzwBWdQyzMg3mPvd0QkVAx2CREAezw277BZJrwxOjdLv\nFebUnePdAHduEmtyIpT7SPPbaJJm5vcykejvS/xYcekeLAw1xlGFBe8GmV8mHyueCDpJLySy4iLH\nJDUj0qQIeCyfeYsdt+ChHOHWjJE7au9q3wsxnWXe3cPCn2PLUBaz1N6vkgHm2YOJO59rFqVOMesV\nH1/WcvWgkvr4Xl2EdxTm+hf2gsrIc8Vvy1n7s7mPftbdMtq6t8/owi0WEj4SozrxQpEXeFrXPEfW\nDRSfyR3zKkwalNPfZyTElFACNx/sBvXnq8SeU/tdWxeV7DBCkauDkXu6FzZkqf6KQsbysm8YQbYI\nhu377lJ73KKzMtn37WKU21NH4RHedbO19LfP6O+/h9B0FXLVyFPM57MZbdHqH1bWkcGpPoP2eFtT\nPnt0d57b/lh2QbDj9wwPhNGOO34O2ZrHFAsrNW7+NtqAnqSBW4+s4O4Vp9ndgzAi1PW7DSFbmDft\nO7XPaItuq3XtFW8qmaWdrVLDZ7hwhpHlcZWai0bhIGXssd64u0XjidWOW28BHyngy/ldpPlt6/r6\nyMsAznq6RBQuYW6Homn0TDcfLIVN7WOo7cI6pS/LbPjfYPz26xvbsu8MJVfIqjeEUd5jWEMNl2g/\n8zNZvrZft3OGPrp4bbbz1Uj29EmPGyNDeT8dH1r0xbncXdt4/nQkSbvOWcJgLsFv69nF6/jZzl9i\nOV6+i2Nuxex5zbmrtJULw2rzn+RjJ8WbguUz93beGEU20e9NTqIyB7WL4tAYd6eTCYP8SncigkRQ\nLFknq1LSMoP2nBrOMM2f40iEA5fwqXmGF3wG5SuWb8aMcQIZvB8T2TF7a5tY0T2TJMLId7UGNjfP\nnoZ1op8UupwQl8+ldYPvpgvaKFlded/23caeHO1iZOVOL8T4a0euW15xtKeU7RVnytCcWxbUpN/7\n+81ZbqswaQU8vd4LNlbodclxChFdCowOvTBo6hjtMa8UN/k2vFcA++jC+1a3xwFB4F3yBoK8J8Uq\nWdQrQHWs75p3adn+tj8XIqh4tNicCNKcuypu26OcIW15Z9sSdaGvgmff5zcuLKV6NtjxJs01I88Q\n3++8tWPcdi3BMurPnhCpXdQK8Kk5NFK4vTDvlYelfBF1RxJz0lnKwoKs5K/ZB0vC18j7wbtT+9xc\nmwUBb5SZ24cxFDfXIUEA/Y1oBVJ7zpxXj53v6w4GXIfy58a8oldOKzEwYDTrS+VPKk2mgMzXUy16\nHOtLJEL7TsbbeNB/W4z6fp1PRe/ra7RvD27fa8NqJteeo212O0uoH8gjxvC0DX1ot8j0yaO9jGKf\n3c5Pq8oYdo+sh9qKtPNVR4Qu5FEZjm0HP+/x1CbJMgnHmfmgycewx7j3HghLlnlP8Pnv+e/kzmHb\naXtbz1HXASc3BvLzlTxQ9+yaGLsPhZoz0jThwI5YLmk33DpgzyH8jmj5HGnuW5b8PfLlTIP5qgu5\n4bSi66e9bdk9yw32g0H/q2PRz1+meJ6ZIflpvUem9volT4S58JKhkdB5QrNW2qWQcmmp5PwcU4MR\n2RCwCBIBeSiNrGv7eBn4eEa/4Db30++VnEB3Ltw5S9aSjWNmFwVvxtUP3SnbZ3ST3yirCj0SqPgs\nbC9JjCxSnjwoC26zhZOe6yzMxMhK7uUle00f8tDecRwO0qJ53QFZ0JTBHNu5Z4+e6ReGXtGzC1jb\nt4ZwbpOVRGgXivYSr2j0ZfUkQpFHbfZqtPcZxVDOuT2O3Pr9O40WtF6ZyQdIso3Hul4ztQqG/Vuq\nCUTLrQKtefbKnes9bGz5PMmx1JbsNyUMz7wEs5t73WokpPs65jl2DHjPA2/AbEmYtswjUqJzv2Xu\nh6G0L025RmPREw1dGMeAICi5Zlx/zOe3gtJSjoVxaV35Sp0OynPGfUfxvj7BaOdWPbCI1Kzk+XM9\nUFQ8WVRc2819eJ1vKjuG/HiriRX7tauueZzL9VxrbWebcbz5zjU0i2nZi3tw/an2Z7dWD4Vyp3wM\nHjlSjC1Gfd95MbckR1kn3JxW5itTN75cA2+62frjmm06Q/IeHM4rzF7u19RRuF7vtanPMecsjW2+\nlf9r69b+EVG4lEfFw3tDWZluVkkdyRJ7TBJezqhyoDSfQO1bfoy2axaf3fbfmvm/b5DiMeq8Sux9\nPEZv1pPP7I+9fFrOdUaMUdK/Mmc6L4HRs3zY7iiHUB0ng/nPOTT50KDGy6+Up62Nlihs583y3itn\njMsFa44VGafJKdZe78OwmnxDTsYZrdGTHzt+grGv5nYAW/k5yb7fHe2JkCIngiJIBMVIcPJWSR9r\nCBjSQAf8lgqGFbJ8OAPdFafBhEmhqmSWHwliej0nUf6W+mcTtPQM45op6LCctEL4gE5UxrTIrRRM\nTHpZT6RMOmOmMlnXwTe5RaMsaI3m3ZYvuYRsTXboct/+PcvtnOLklbaREuflVrtsFb3OKQ9Dqyyv\ndwuibTPPHFcPDFf35lzWPgf0yOWybn/JMrD8fSV1oTz2Po488N/bLR7Hi9zKxpB3C9/ZhNRceYFe\n8F+yutdjbbxvE87gMluXtkuu8m15nFdPm4zLKzNtWUZLk9cHbA2VdlxQ9AgfYrNEErlQ9M5iOn6H\nXin05MjS2NwPrP/2mcRwaR9MK+V8N7i9UD3aMreGHXAc90Lg3PelxG/lfgPCNc08c5TcbXJzW7O+\nuTbzREE7F42J2+Ycvb7zaCufllDn2tUSX1s7H3hLumMehzkRnLu7bejJEXo178HofbWcfu6wz+Kn\n7wvD+7VKiM+NkM9pFTHvRWL7i8+fMPYkauewUn+DApYZ1y1a1iggrt7mwrDs/fzaN1JqPJZm/VLn\nA+tzzYmwcANXnpUr6Ilpj5qfZDwPLHsSzT97juhvFfr22Mgzzo/fMv85BbW9EX9r16V8CsMYOHf7\nZ9fb1fmAMlh/ji/zzsk6Q4KAsklq39GeUw1McPfrK70Sw3rOQEas26Pm39gH2vZo10livJsWz3Vy\nvQ0t8HMZO5VxJyseJeW92/mrDS/hI9p2Gdn9vPcN5Zc0WLt87qClfh24sxEkgmJkJZ8/9+z7WCWk\n82xwC+Eox8I+z+epXsgfoSiXg2d6ZbwIH2SxR8y2u7/MrZC2fCPG2AsoA4Fg657W7du8sOCMQxPc\nAnOG0G/vO4xn1k+/ycHIe7RT9Nwn0CsFUj5bhRxoY4mBqs8O38H95hflUdl9PDswFpbnsNc5/r4L\nilR3rRsD7X1ajJWt9vpalv3H5KiufZz/dBX1NzreCWDm9qWPu/E1OHUvdHUyr4OYY2NlsymPu+/I\nEOLvu49rsheGRuPN9ylbVWX8lnJSeZsXoLpj++RN4HMW+pMnCnK5WqFyjkxoyucsSEtCZV2fpPne\n3G+P9qjnjpVNLb3+1j571AuqJX1xwdWT25ey61Gfn8SVb+G2+8Cfu3S/cZ0sP1MGbVcTF/K+Rgnx\n1ly/ji88vKz5gz46Nw+O5l4/n9or50i7ffrWaKpbGtv7wo634vVwBrm4L0pMuu8nA7nNh7/4T3uf\nWcecUYOUn/p3GK1fwDzpcRZ8mUsRWq6j+bvMvQv3K98X5Bai62OjPuruX0i7QSGWEhHPzad1G/T+\n4Z0nwtBboZ2fanv3skRfhr6sXk7w62c+pmORB66ty9/+SNhvwroDECQCAIibpAcWbmBMEPhjhelu\nmF4qf2Rm2+92ca5MeRt/2Lhj6SRABXINN0sPUNx4eQ/zwt7zorzfgntcKe+A/fa7MniMhSI3sTVx\n//8/e28Pq80X7QXtOeePRGL8jhEuFCZAAaWGGBsToVCjocFATAxBDDEhIbEiNxRYeAuiwYZEcxMK\nNZIrEhNILPiIliBBLQxUKAavWKgIjQj3PWcsntkf67d+a83ae/Y8z5z3nV9x5jwze/beM7M/1vfa\n3u2nLIOLdkp6wcXzKdUNBgmd2n/dZ6xXBrbbrgFDi1HP2/urFcADPCWPfN78lO1XRtO0fI21jZGe\nV+gLg6eNQJPkXLZNN5angTK78zbhQiTsU/JFUk5MYC2aWRAAhZHg87gFEmD5mT4IuYX1UEIbfqOL\ngWzrcfxg9W3lrdfV1mdZ37BgmNgvz7RWP0u7Rsr7qjAr90U/MNOK74EHCJVEEcvOkKHy14MGzUMX\ng+GNa7b+bSetAJA/NV8TA4FRk2n4RmVsEaEJjkmP8cH1qljaCfNbeY2760mroPQGGxQZFMVCjl3b\nGUNiP8/n8EjHPDAWpKwZBC+132MV57JJ+wdKiFNd59Cap33sokku5tRQyJNg5APZz3VRuXY+rsm5\nXuiZtgKYKuiGwMzTUSTKrbXk3PYsBnDfpNaCRj8ZPIa70hmS7mApHvEaiyWq5y+kEmzry0zrT7Jt\nOeblPFUC8PZ/YyhJywG5DhRyEtabtj+exxK2tTpreLkHaDG2XlnP4imRsI6UbMuQEmy8HfzQSBYU\nrOKb5SJAk1BhsXFk+3mu33imlBr3nvJut3666oEbPzJuIUJ6TBOuXctHudEwpr9q77V2Q/uO46Ld\ntI3m/bBhP8rkiZ3E0feLz1J6uWG3dWOQQ6q5QJUUWXGVxB0C4giiAxhQNOl89HnrH9qxQZfattXC\n2fZpda4l/h5VmXY9L0S97g+7V/Qzv0ZdHTUVfKA2/g1MXwuRRT6ZtXl4RDa7B00EFXNIYoYg8csI\nkyNon8EKjMo0rTgnVfyDlEpgttoGFy6y/mCEZdkf7Cdu4Brs/dWUmPJFMk26OebJHKrjUK43zLQ2\nkiZwgWs1xISe632ab/saEkUoTBBlTY2/U/929PJoI1Pk99e+ZlkifLC9AZZuFvzul5G9CvunhKdw\nvv3fcmNoXw36PntbjBJQM7MKuGnBxYj0E/dx6QrFv9UbeQb8VJUBbAUim6BHMRrmI6j6WBm0SJCM\nWV7DjIfwGidKAUxjjd9OClhyGVltE3xeP1eH/A27m5ImRXBue/uv17a1DrTkR4+23rTsausz6D5W\nRqkMK1IAACAASURBVO3NlIOEd0HmPFrovMF5LkCDvpD1Hq363hSDWsusSB8cpAlQcCPXNEkPqJgG\npJ4eS4R3mH8yaCJU8Annmw7kc0ib/ETWF3SlaOOooCID91ZPmHCbIlhY75gIG24hwgZpTi4nTl2Q\nCLMAcQ1cawXlt6Ql+czczOwzbNAR4pRrfoCgswJascYz8UYZKbn4fUaYJDSnetTklqUbLNncShmz\nbeceOCcICSm0JcRqcx88Oitj0XwlgFRzPybLwCB97Bm0D67uXw+hg0SHDAQmy7LvYhEm+TlbHkwL\nc/THQibYE6KgIA/HrGhr+9CfOYqzM1Vz2Q8aL8G4p2zu9kTOgjQxPwxbUBaY0rK+Yf0wNTWkPq29\nsscAjgWWYspzJShl4f0zwQO+U7a+mLEGnLY9AQOSFihg4JpW2V9mrWAJObx+sgwxVoT1QtCStajs\nH9jPxBhlaUXXzqVPWJ9w70mpmZOwkFYBAZMQwJ4tCHccmyjA0EzNESYmIoRmcwjXU6ZJxzSQnuax\nnjAmXlN4cR7YdGNw3F7wWYRQG27DWmRKy1WUYX7cAb2G7t/2u1pX1fo+oEMRoaLbpkG/sLOWQI98\nsuZaj6RV06fmLeXYvuv8vra2He14EUKseE8FZnDIkPNjEeeqy6v90nGtpN/McIt9Z8sLNNUKFax3\nUd9xu7gRgg9+VzdiWY9Hl1a+I78rPT96UGhOUsdtxX+jxS1EGAD1FywMhiactAQaJfl6wltBjFJq\nzKiRMHYWVUxVRTU/1gYjCjN5PGgu3vQ7EM8k1tSVHqmkHCwa8PrjGWSXKZGPTAwSb+Q14imxqOZz\nqBEhm6alDBKBp6A/dfOU51NKJc5E3tzzm2DrPErcq/mo6Ihow9M2KeEBXBf359+gBWhRyyLBo8so\n7ZMgsvoFcbVfeg4oAcP2oFmY4BFk6KYj2oY+4NhtEdFQH1EaSCFqPsrxEiFG/DkkO5rLtnKWynTY\nje1ZK/iCB800IAHb40ZT+9Tcv3vvfv3tGLaCOHrfHRkXT0iJ60sL/PZsHOL8QOEBs7RTWk+xZuzs\nQ94HJouutcewbD967V1Ev1NqLX+gaahDnAM3E0dZ7BtcQJkqMCXvz+BIW4EBJvZgMRH2BKzu2sEE\n1bltg+lnQsXF8eMu9xU6KImyLWq/eH+xry1CMXo8wa3a3+T19n/LDUbUV67B9/YsEcg3tFIIRgQY\nqH0XbUDZhXyXUk9Ok03mB5b9gHHDZLL4Hdg7xt/e2EJrUKYEqake4XuwKJGOECGV945rpfw+j6J5\nDcvrlFmdEpwVq9Xm/WFK389Vfw+W0emHxG2JkFK6hQgFNFiJ4S8tXBWKqTMnVNr7s4bmY3mX9ROC\nBwUNzMdYS3rtTa6mMkri2NatiD66i8CSRFZ7K05EdSMgQhN4t4KxgDKYTcAz9SupLVsiHzYztUGo\nJ9KPSbWdcA8jACpDYNeP2nGUCreobrP56sZoiGA5dn8Q2C/u97pdI+Z1j+u1AT22FtEXrz8e46KE\nCU2NlhCHCnXKPfKdi/mrsqhIYQIjYrz1QFk/GM/UQm3u5J1ZqQSZ+a1FSLX90MymXq8wSCl7x5aw\nzmLGUkoqArfsK85/SQy1V0fkKh5xWtvc5hkRdI0EdvOA4wLbZowLrm08pkmuL942M8evtLKc6yyb\nUc3Qw/e5R/nt2GOO/9M7lNH1YVtoJpySvfYugUGF85ndzx6hEvf59yJ+t3MAzau9b6fcGoh0omzN\nxfk+yXvIs0Q+B15jgmoUvmd8Bt61pxkNCeihX2z84TxmgUx70txh5Hym6LDX3rYfxt7CrEqgItRu\nPy7hXJRCNneMOdeqgADaIfdHBGdYL7M8Ud8sMN/UGkkeWO85ug3dcSLMA0FeodocdwZr/Wr/L0pC\nZ0+1hM49c+nGDcQtRNjAfDwZkZESSumR+UjqHtRGYrYGHqgRyrb9g82nLCAe0QumVUIoUfq5Hdni\nh40ru/d9ypn7jvMNcaFlclPItOpn8QS9zK+X3dOeywTASqgavC2y8LpSdIvpYvXAPSv8ZmUUgdLR\nX9Yv1Y7XT3ptEW3k7xlx08E+iXOBsmpuknG8Z/rJiJiYSW1uWxKXrGwhmIjAsOZJl/cy89uANaVp\ngcCEblpgo9+VIuqBmPGshSJp27LAkQlh8BlK/SQidb0m+9kjTGjvQ/TEWKBt4dK7tf1B2kaNXvv8\nyp2hBKvTHUdBA1s7UWuKwgO59iKjku9t1/D8gLjHBBasg1Rvz1oTERYpqy04n5Ij0AuMFzafSxuW\nxLCFuRA0/duZhILBxWdhXYDPiu4Db7poDQK8/fZcljzg3kW8zQrwtbHMKXv3iDbVd5b7XkqEloA6\n2vKoEPLoNRYAew9sLjDLl7YPoj8oLF/z8xKJEvySSgG5jijXtHa9V+NPP4Q15Mv3YFnE4Hfr8mC5\nJ9Nph0Kd7fQaIcKc6mpf9suUstl6dbbU+0fAmtJyWyKklG4hQkrpMfFGGRWzTsJ09dSDZp9efzyN\nVAbmVJfSTFz85C6/0B3M20iPL0qCkDDq896Nles5JWK+3PF9WPA7y3wSBRDtfWiS195qNY+Cgvac\n8uN07rdic6Rkx0TwMLL9jdL6KMzxhAeeK8FuO4yAqpEAtzNSMMfuY0LFPfT21/L7ZDElzDpI+3q8\naDBz9Me9DRMCQglsB8eu6BdpFJ8nkorN07B4KSJT8hn7Ut+ACwSvJ5e161OWF+4c0O++RO8HYteK\nSt+WYSlVS5uGdYG0ypOM014mn/2LvAzz8cd9ydd+4hpZr+HajV3w0rlSzSgwMcyNq/ZL9odqqsv+\nbezjTPWoNi9H4O9oqFFYwqDWKXe/zUfJ4I3vH9sxj/mtM61glCTFePSzox0mlMVrvuuXzaRjPa77\naakQ+zBnP/IE39oSYTuSfkTWz54+qNhT5H/1HbZj2xUWuLQt215D5SProFqX2DpVOpazq4Awhimy\nlJWVrlfJYMs61tCnsLfw9UVVfeMHxi1EIOhhglF7/xbYfPFeZrXg9UlFQC6MldfRx6Ga/K54KaEV\nRISTrD6UdtN5YfooBKQt6a1MNlkErZgI7f9IXGXGm2gutNQ6H+0FOINpMgtxqe7WiAgukOBJpH7U\nEGImgrZuKyL6Qt4N9kGaIHIBF7esMY7iPn3u0Y5k7rxrjCi3QLUmnkBqYNP01gNlAROoz/tmR9Ch\nmFJ9eRX2LARaosjKjBDRZHqCqoyISW1ph1gtzIaKhZCPgjB+HJEw/oDrj/s3ohKZ/+YZLB9q5n9t\nCXAZY1H31lzoTR5F5z9lhQ1Qk66ECZ1ByDzLsEd9TVkgwkNMdhnferxYrkE965+/n7Pi/eMV16u2\nBhRu6r21qWc7ehYD0b6wfjEBprfv9LRlXYt8e4tGSakdQ8iskk5ABV4A7COQQhO+5qIw4VGW13N0\nj/Hoq6o0k2taZdJbplpeS8ZvWo8nJcKNSHRQF7dQBXrbs5AqMBYRNkPTpTrz40ZKKa3z/Ra/KG4h\nwgbPDNcjisr9aI7fpogzfc0004X1uUwXTHRvMyiS3u3wU1OhJtryM7DFz3EE3wHT/FhBtFiwxCqM\nAUJZaLpWuEu2nZLezMrC66z1EWBRpsWKpM6x2iyfjNAIRYpOalcpuYz+WuewT/q92WPVMueNtFmv\n73+Ehfw/xiDvCwPRqZ+VNe/1yjhjgmVa2EOhUzrKPvohz/laT30/lrHasjS6KSU3JkJpA4jTDOlD\nvn0jQ8PCzrE4GxnIWDChxL47Qy2AAgX2TFa2h7LWeRlKisCgIYyVex3vS4v3LMAl3+yttLFux0/R\nDs0UUwThev1XRDg2xM4prsF8FNWHWeBBzWDvJ65Le7EpRKYTXMMZM4OWDBHO7NWSwR2glridb/lf\njy/LQM3yp/NqLEE1E0Ba97Zl8HMwCzIVfBbKsjZrYMVj39eK2+Gt92xfxzKfqxyPUmin58NMWAqK\ntj91/SL3b8dsvcXSeJdwIqUtSSewmAiulEP1T/ILnlAsInxCwVzbPcyOxD7LxZeKG0/GLURIKfWG\n32JB1+q17bwTNyGSB95t3/Kldh4jm9Jmk1WmfTGFGoHNieWVDj2LJTyI+Dc6mkLcsFsoH8z99dyU\nmKfEI75b9UTqU/HEMgOUvzchYjD9o5shwXneEXeGWr8WstVNDYkiu2JGrFngViP8Rk6Q2YLBr4Y9\nDWlKryUARtqm8RI67hnxWvTG3xEt5Sgi31XfkwUND7SvvsZEgGeg1l/9bWfwoKJbvT2uRpEFujbq\nVOOvC4/+4V4d6F8A5bkd10PUhDJ3rEhwvlJWbST56MyQvJ93PLekdeSN1ZWJCWW3+/FSU0VEE4rk\njyfQrPNB3rUQIdtIKruIwFvdE6A3GHBvpXW/5fUq/9Zt9gjbe56ufnO5FjFaZzF+0zJlfd5fi9me\nj/WwYLF4f3Z7ya9axAUCy2AV0JRV6JtK2PcnOZdq2/a6Ygq6gHaU1+TFto5fukMBPHDHREgp3UKE\nAr6woQTQ1k5qc6dWO56PyGTGtZOyLG7UUqjAUIhBIqU3UzsOBntB1Ly+dhnLND6latZZGWZn00SJ\nbK6DlMGnYwRAz2ZuBXZaSFlNN2lNHAZAy2U+mhrza7IsElg/1e8OQq3tx1mM9wjx5iopO+qhjE8k\nut9OPSNWEb3ALS0khAHGJSUtFEICj1kt4L1MWzILRxjbK6DXneHIc1Lrr3wNyno0b+4y819X+yXM\nO7aWl+CLjn/9bIwE3usB0yxHNIRWHyoLVm/KWk9M1+tpqkOYtNfj1pwZvNk7BRN8R2Bp2917DIuE\no3DnW2k7l2WCOKtiZzPMdVA3OzknPdoTx10kDgj7TJZyoecdRwQ3NLsU3P/u7NW5bKXFtNDJHFOT\n5hZDh2HDIYzQZDd+DNxChA09k84N6OcwHJb2JbKZsGs1yNDjxGfAxaCkh3T8QF0z0sIx407R3F82\nBN4f1+3CiYlg1SMje0O3CoO/W12tl/ZL1tOWsaoeXcf3xqIURgXek7o/3vZR4t4y0Zeb+twdrxIH\nESHddnyiJYKd0cW763HPN9BE1ivaGsVDZAz0MEBHrAx4GsfH8Xt0O/TcGXj5XDZQtzGmWquD/P9P\n8M1yQDm2uqAwQQiScn053/wWEAzTH7f/61TG7RqeGzEejpqK9Q9AdC/kZbbqnWseLCGJ1Ixucxpd\nWyLMEXklC7w/FVBRdHx8hedumLIJZonQZWlmMHw9EeWZAK3Ub5zvhfet9Dq60Ot75+o1Q+HCpAtq\nQ9fzTc9Ju+0eoHKLZVuKxAg51gcN00BnO7bWL9bezATp3hynNxroyaCh7u2gY77HvfVpWNNtibDh\nFiIQWEICb9PEyO2McCq/0WcxALbts0WvPc/wScyTTCKKmT9Sk8hxWIHtPMJzRJvQgwiLzt7YWiT4\niyjD6hhxGzgK64u1BBA+Q6LaCLz/a+1Go++6zlcg0k98fODdGgHivhjLI9bz9veuL+2CBcEbwTO2\n4Bq+4tpSibOCLnqx1nDNZRZV1bRbC6+wDbRoYzGEMNMOlwd0bGilzKMXLAOBJ7AYAQa61dcdoUQ+\nPmG9D6GYTtsb0d77E7TJC54L17nI12X8NtaXcVUtrI59QQrBd+1zU+npi+4X/ubC/ecMGO+5FzwS\nGUyPG5uKncSEOmC21MazWEEx562n1nqykP+t4JAi6Ph2ZLEfMu5gizda3EIEB3bQP/sey71h7z68\nH/vgoc+KYjs617okoR2NP1Pb62Gvy95lxphVYcFVKMPjiPgZnm1C95VxogWjbmvgnrOyMvQIlI66\nJcyI3H4VnJmxAYEBtobiHbT19TAbHdpOtQ8VwnskUgbrCzl30neoe59udNfybFToaUZqbCo0OOQj\n2tCjOBrT5EYfzkw/fEWgi2HEyqD+Xuj57j5sjawet57L9nwf59qI/NwLUvpjY72udPHJuIUIk+AT\nCT0mRvL+iB/nFfBKoqNFlRzfE/xV8EwIT2uTBMay4K39swRdsxTeZ43iHkuEnm/Xk0XCYxC893c2\nY4Hj42gQRXwWT2DAnhuft8eUO8Nj+nXgsmPPi7EQBLNuae/dCiOWCA4RDsHkjs7xvdfPYiJYv+n9\nEa2pU8bMUz/JetDDK+jqLgsEFICz+bbKYwTagi8OainmPNMuTXiiBLvnnaClbA8j+opxxBREPQoT\n87VP4sD9dcGze+WI7DXl/E1O3zBwCxHSY9rJiKcd91rZGZrzVfI5x5xyDyEtjwiEw81Q6QpacnXb\nO8Mb+N3h4sz88ervrUzzPdAEVj2LQz7UaNa1DG5qLBVjRkz72neetZ3I+FPZJ7YiEc0rYxpwk/M3\nJYfK6oBnZncW9kyGpXWh1EpkCJ/lgfmqckYPzvmRr+BpmHs0Cz3farbGwvM+wG/16ZRV9zqEYk+q\nxwwWbA0JLjXvHCYgZ9HxTEyzwMwTJozEsfDcX9CtoUVef99zamCM+dGmO87v1IlHYPa97D37DxUR\narP9OOJeZrkzeK4eKKhpi0YEA2ZfnJgDZopHFpo/8N6UOyEpg0L87A/fvio1z+wma6BgYKo/W6Fx\nymPT6ncrYMZ+bs9NxgD2l9ZtrA3uEC390mXxk1GBPAYjdFNyL+JaFajZ8w7BaAnrKM7B79wii89S\nMo0FgoSP4I38b8XvEPQpWB6woVCfN6+DWywYz5fsDeolL5Bl0tDVwftzvoeiSdizZAEaaSvjliek\nOyZCg1uIkFJKS1BDkIuzHPIB21q9CQPTztokflClnkLk5rKaoDDr3S3Rh6Nr/ohJHY1RAWVQGt5T\n/965jD0GKmA9ellHCLbhWNHYPbh0LJzzmBm8p7z7/S5cHt5rtMZ1So07DTDT5Z14zA0lZPmLZ8wO\n9qsHXv8KA98hIGBr0BGLkMg4vAIkUbnQa22ZTLi/F8HAViaRyb6BCYD3sJAgbmshdlHQbAuWhxaY\nDsw21fX2jzcg+lkZb04hg/a9wyKrhMtDxyKh965FnH9cg3vKOpAFIvvCuxZ13RwfaGzNVdkTiH/9\nK7AXE4ExuGfBWxbeVL8e/8mYMPx+8Qxm4/pU5NtYwgMq+MF7J7H435Or4I1zcQsRDkJp0kEbk1If\n4XU2uhZtnxravd1MeRjIbrF+6HutzA2j7zcTxu+L/M0k78hIsJgIWIbd+6yRwNrJNNYz/fVHEGHa\nZrkkKEuJJ74bnQ5tH8zUNgvIMDuD+x4zw0LKrIbeJf9aA2O//W2ZB0f62ePW0CMw6HnX/H55MTJm\nufno/o17+g5hVWGYtfZkZPHb0to6bHvafteTnUHdW8tUTe1Kqz0T2uLC7juasLMx1bU8mTERmgtZ\nm3aAm2OadA/4fLgvtfPENK/u6B+D97j42nuEiEyhUNfN/Q14On2A1jvO4D8iLKVpEfM68EKXXG5V\nxX8zIQeeG3lHnoWI+bu3DVhfjq5x3vy6ulD9abgtEVJKtxChQJoDgsUAaL6l1mQ7PlF0Z5mJsRSP\n2pxcPwNqSRaUaFNbNUNcKtpe4fd+mdJPoV3jZQ777nas45bJc3tuFiKmyIjCQLrM9X49I+aZ9V4y\ntoyyzyDkI+aZ5Zwn2CpzPL9kyWQzDZOX6hUxK36CtaW19cfGwLlUwgjDfZhp2I55eW5fg9Udj3D0\ncsfbZtVbe4Lplx+ECRWOBqBU/cj1TrK0mKFNlFuM3If0RkxWj4irA8Cd8+Wov++eVZuXcniB817b\nPbwHsyRS5tRUCAPvjfgq7AllXyEkHw2+qFNGyvPtuR63htKvg5YII1PJdz+N11jHqBR8hbTupB78\nnV8fixmCU30WcN49/n/05B2u/bR14lszoPCdeNa+OHWoO0PEtAEqekOXacKroDsDq7pnnb4tEW5E\ncQsR0mMRofP8Bd4/GFhxBDGG7/tEzf2dF/skfj/+v54odZQQn/0kkQBRGGE98j5HAv+MQqeck797\n33VRIPXc8/m8GYaMCRLVV7c8OYqIEEZZLQTqnS0cnGWJEAmsqNY/sr8pwjigOfQEtxhbx8puJPo5\nMjbX5o10RPS15iRj+iOw5luEkGffo0/o6fRrT7juRfIrv+u/ezTJi63nDyHipnjUEuGlOEltjDE+\nvDJVcKvXA33unBfnr1vbP+Tb4dxkKdIR07KQbXPwc1u31uJOc/7gcuOUXGVsvxTrZdNFPxu3EGGD\nqxkYyC8tNelbGyCcoD79pta9/X/rz7aofAIxKOoDIpVLyqFN1KI6FEu1VmiLg+QULRJYPR0Lk5Xf\nPCVfixPFV1wk86LPTGGRyRzJFc0CE42AfvvJopCe79fT9lo28+33Kn+H6ynzFrTQgwToiCa9B0p7\nd7H50RM34WoYsUTAwIpSiSXro8pJuFYI42JdoaEEU6RMbdPZ34i736O+1rovT4R8D7RGLREczR60\nfRS56g/ZTTcIXvndUT+1gAGNI67tboUskp+16HQs8rP5VCFgAeOvwu+RNj1rQSzz03b85gpj5O9R\nS4S9sqPLKVrI9mi+BSM/gekV7rvYz+34aVx/BtqnV4Y52/n3ooDy71fXCI3ET6TOAYLt7H+nHitW\nz8LttkS4EcUtRCBgZtniuqtZuSYliwsme7auvjuL4RFrihL3gCzbqCnzInzX+rZbmnNHgizOYsys\n+lPa32SR+fyKOCqowe8gzVHHLA72MOLOQIOwQraWs7Qvs4neDKpRh3Or8X8UI4IBVzu71TPLncGD\ndd8zhR3aja3th1w3j0ZC3yNcp+2JLEVh4eidMlZ1hZmYy1AxoMa1tXLE4H5FUBCYOYd7O2GRZEL8\nHpwtlBwxwf9eweRvM6xfGTCGlWuhk+TxTKDwpgjJA8KnaTv2G7DwzDSpp7qj/dmBoHG+orR+NtZ0\nx0TYcAsR0mNB8FL89GlWHK39SQQKakZONdfH4A9b4+3mdNZzRjY7LSx5HFvBwVkEw2wBQwRoclmD\nc0XYpGOwxpnUjEqGns0T65vNYoIjSjbPymgGkRuxYhrRYqWUaHDEtszoeDTNqwffx9nTYnbg0NH3\nZt3nB4m0L+65M7TtvcOzs7RlZpySPF6avqzAAEQEsBFT+8o0DEzyJ3B8b4H93L63/r+Qcwh0uyrs\nBUnlqaOxk/r2zBOYJQK7dgD+88oyPfOsvpvmZI+gMR8LI0ksfzrG+hGw557SZMQHv8EevSYyVwwM\nD1T+yBSKXOA/e4rLOSmVhBhPgKX/VdYUgTWONn4huMETn9aLG18dtxBhg0zxIzf1PfN8ca2YYDYL\nJWgjMc+vZxXANjuV2zhr5p0NsWo59KKNhJ3OLz0m54wIE6opHrzj9vcnf95R9JiNj5T9HsGyjZiM\ncYTRmNGpBixYUyjVaaAjIzEREG2mEnRnwCwFvWPNesqrj8cR5iElbRZbzfyP9+nZiMREGKrXqdby\n82XQe4xTL6Z2gz2M94XsR/l+Lw9pKcwDKnpCbf1bt137Z3TcAQt8hvULxV52IzG+Q6sFNE2nRRt5\nT8WbnLsG9/g9PGNKoum1z+AZxzM6dhI0TQcXHIy4Mnr1sPdXLZ3kNSaWO1t4wKx6lCVCPp/gRNLv\n2PNQ0O4lbL3CB94feV5gRWyhCEjEWsxfak/AXrY2oSveD4erE1hPwi1E2OClrPLKKH+0JzoR4eLs\nSUkXFBSMaIDac6u9i+BGhe+t11JhJAuDT7j2tN1fNrK2YODCSLRuD2s5nr+w77XgRSfnMRHG8cx1\nfCQmwkiARaYJuSqe1T1G6BzRllx1+8c0nfKabYGAZULWN7merh7uw4s9UAULDmEMMREUXGbYHpE9\n+5AmzgdV3+V+ry0ubPG+mc4c5bTtMi6Q4pG8vyk+8wffn2cdgOM3Iow9a916aWBFpvQxBgY7bcX+\n6qbXjPP+fHv+iozxMdasAHT23y5Lfk+4A8RiO0dXYt272xRYVchu8E4fXffPEoDf+Fq4hQjpMdel\ndFQSOrhx+xu2Poea26MaM/Q1q+dJWbMv9RxaXKhnEGqi7SLslt5z60CItqZmxNrAM9Wt6Yrm7urs\nXVvmj571KOtVRNuUYW1qQlN94NGVlJ5ghGCS373nW++3bfUnQnAfBdbtMVSRtJyHcnc7Qq2IWXQE\nX5WMiLA0r3BP8mAFVBRBVI3AiqIeI9hu1WLpmzxBtUWkVgV4vf4JQjU2F2uKR0NtTDtvpCpMem/C\n/fjNsRyg6zP0Pc/jHtcqZjlV6g8wLlqTTp4hYlYRsOQoRcsR35/fREo1608vyrvwLGu2Y8QSQdU/\n0CcP7lDNbTpl8BQdL6We7f1HAoY6UnxLScOFWJJZ5bEc5fgotW+EyE9Nf9/X/flW602ivp51mWWE\nUHQ9mccoB2A6gUWVhfnH6GePkIFvhcIdRj+/AZFHhURQvSewVpk12vUUAvH+mFjvmAgbbiHCBjkx\n5THivlAjdy3mPRhUydLKtP2pi3a9tkKZQtgRbjHX/ROYmHVZInjE20lmkB6O+pdbAgUmOLbeE9P4\n4/09S+xRxnYkHRXtR/GhlucZkfBufIf2/DuUrbmZa4UWc3+UiXuFNmh2zCF8hhIRvh2j0GZEw5yv\nvQ/0pWVYRl7xHZepIhNin6CNFt5cE9qhKR4DAttPOJbzg9/Q0nZ2WZv1SA5J26NNjMDbQs2y22/m\npqMypTj56s1OeFLtSQ+OtUQsEVjT0zM/kBghKeE73mg4y73kYsyTn52hcKLh+maP/UhsiTFFxOM4\nGvgW6fGflrwWN2WNe3m9ASUhEjuTyWfPpTl0PwgYbtzYwy1E2BCZaFmrGJL8tvdZkt4OokYuDkvz\nN95euM0XOAh6RKWVjYD5l1rpH9vva21qTMJdcqinLFW3BwreP7oZh4KN5bas8xffBASdA9eO0jC4\nkXr1Ka3swTRwSovY4c6wJjnWUrK/oxcTAWMstATBiLBqZBy3MSB6BFwWYRiJifAVgSahnnZoBD2f\nDjV97Q/PEqG0tRcrhbVJmeDtXJHKlkBDpIK4H6EVmHfEXa6FJfwU53LZJ9ruUJ9sxAv9pXCOO92m\n5gAAIABJREFUH09F+3gWK7ZEC8ZvR7EKIeq1BAoz4K29Fnx3na2eoshqFHblWry+ETBLDmWJkM+T\nptFa4SrkVaVvc4+OjcdbeBDEmm5LhA23EIFApWNyiKMFBL1eMCk0QyvnW4ZZuSiQNiFEjUdGhdIb\n7aS0hA5tHQ1U/EIcWUoZYXEk1sBshp4t9Ll/rK3CxIGWs2ZyYB0E8zgSmKj+3ixiCJGOhEMkndys\n12W6VJ9IAkQ24b2p0461UAaMkzf+PE4w8j/D0ZgcptAkeG4meuatVxbHxKgvaSQmQoaOiaDnL8bU\niaArRozKXJSStTJ3MXOe9ZtjKx4K9NvRjQxvzluuIyH+np0b6aBnVsZy5E4AvpJ2j1HXJnUhz4+j\nQvxcz8gsZXPyHUgmz/oLFRHlGGmcjf3AS9A0Z65u38rFM5uP4KgAL96Ofa6ug9v4CQzEyDMu9UV2\ndTAk/Nuv5hAuTt7fuBBuIUJ6zHEWUdny6e8NNNNnRsnbbBfbD0iVo7RErL7yW9fndGY7ehogG4yp\nPBsztNpXCWwXaVunduyvv9WmoEAhYr6Hv2mQUrSoba6pIGHGvezcbBo4+2wftUiIWCDk+Xp14f8r\n58Ar0WMu61mIK9/5ZoSfHZyK0bFHtHxHGTQtbO/oi7sY7e9HkRTBkaZHUv91BXGE8eJlj2A4S0ja\nw1ioZyKC0bP0Ef6etfWB7EMZywGbbrftwP2aTrPv7TEYzYxpT7C+I/MlJfKdIV0sLztHo+72Syk2\ntv5t19+a7450xUd2eXBoRC8OUs/CaX2rCF19VAD5gjjxXw9XN/d9Em4hwgah2TM0raOwFuMZUY+j\nYKZkYTCznQuZ8pypWZ6Nnp5aGuD2zVuaC9lm3vhwU8/XO4ViHeVfYVFraVJeyQtHCDLGoDEXh7bs\no8xxeHX0WCLQupUmnp9PabpC1ETbdMRlZA/PsESIIGLKnWEF6I3gTPrJDUz2JHhNqwBvcN2z2qpl\n9hHJMNSj7BzF3tol0v+e140wIoKuSjPYjO3stkfi0Axh0mB4RgyRZ81sz4VigfOt/F/FRKgVjqFj\nM10HSOxZ8+861P2Nq+MWImzgAYqOWSBY9ynJZcs0GFosZqGGDGRIS0Hrk1ohnZ3hTf//Brtlm1Uo\nx44g0Zvbdh7/Bzo9AC+WlKVhRC3A4xz/5qNm232mfkNNnAL2/qxvx94f+gTTYKIH+xUt8yxG9UxE\n3Bk8TV/9HvK411ZK897fM4I4WRqV9hHMOAxf0BIBszNk+NkAXi+ElSkedwr3WiRQtwruemgpDGYt\nGV7X2f6DeM/uk6W03mN1TIm8CZLYEm+f4hozpcYsVdhfD7OC65VYIflRmvowgrynVCjrXUD4MvLN\nj1oiROpFN9vFGziG/0xrabenJGPxi/z9QiorajBgrcjCsqzenv0msmZjm2j94KbbJuOvBECF+kt2\nBUY8lSxnkGK1bcvoCHdxdvqM929HZmWAz3dbIlhYx6Q83yFuIQLBGzI+oNn0Avl5UMIEWsa+NgJr\nfwlpk71cRLA5Rfy4jhKrOu0MYUShGyyglZWBoAcs0KUFj8Fge/wRJo1ZFRTzt8nMMxJrOQCmJ5DD\n1FAndEsJLjL4MIY5edCN4WwwIkmZ6GaC27n/CCJMv1fEiz7fxbhDPR5q8Kx+yYU3f73yZ1s7xghm\nfa6mvbXqa4n8x0lkAr0tIbLO24R8008lCXZ2RbXw2wNd78PacsBinFPSDHwEVqrlx/9yP9JC97Zt\n6Ge4B8kYDPyd+lYQNh1jkQzSuuoBS2vf/jxrClna6PbaCAN11N1nCgYzZqn4Rdt5ZllTx6qcx/h/\n+7u+GzLfOtwovVdrrYXeOliNAtatjloY4z3l523jJpgkg0fclXM056bsZ8e6alQRhrUttr18gZfy\njQvjFiJsYLlXq2benrzV1G9/gqNZ4Gw5FouJgIikhAqlqAl03tZUj5EGPe/rmWaVepN8HCOvMVb/\no2JmdoyxEFyz6lwm3nQIVvaMV8ESJFm/W4zERGjndWSjV0GzVn49pTFiQGlLAnV4vY5YYB4NqLgH\nlp2hB5k46jH3L+113nIFV8mlHG0i38ox7sEbjy957mWc5Tu6R+CrYMJpnSlm3wLLy/agTLDdTca5\npso6CoMD6LFEYC2XcQwClk9SxlrEmJDyFTjLnaHQp5HYVR1j4nDWEsNlxJsfrvDAMF2jriPSGAD6\nJe/DMdU+9wLnah/sfg6Bfrv+aq5gVfZDYE3X2OgvgFuIkB4LRURLSSPRgguAF7gGg0kVSW/DsGBA\ntreiNWoXNtQkSe2ul9HBD37XMSmc/MMjbiD4biRjtjW5/f5RTKzma+j7wXyD1caPaeoYwwL3eu4R\nlrsO3if68ATiEPnPnvSNsxAJoKl88DuFEhhDYzQWgq530+IEyqKssof39yy8nmGJcBasFHbsm450\nE4l+2XYeePuD4XBAtsIUmQX0ueJmx/qej0csB+r/EasMVV8oM4RUSHDtqRZU4G91n2Ik5wzoZ0XW\nH4Xl2pNSpzCmA7PdGXyFUEcnTtog67qq6VP87QmaPWuUvT2fDeEOw6RQGRRKtBafHzAn3XXGm4vG\nOVRisiC55RZn7cX1hbpm9G+PN35w3EKElNJjeWsWQVgMlDDhCSbPIxkdRgJkuX0Y3HiOEJHs3r3c\n6R4x43lknIVZJo2VibYrwtSO7E1Y1yL0o8fw4Xtn/dTCq0Wcd9smRax3ywmJc+apN76ta+w9ruUo\nvyGDlxqzJy1iD86eM15qtzJmnblvPV97vhB9T7REQMwiyCIpHi2Bz9FPmcd15F14exda+HgpkZtC\n281nMUIOA+TQ+CNZGiLwGCpV9kjF1jnAiBAmI2QZB2v6rK9cUzU+b/OfHVixaw3vmB/uHN2J4cUQ\necfUCgeZ/f2mCrxg0qUMOZef7x2OhcVmezgsQe3ct9YuNxNGh88bKit695O97ycCdd/CgzguFFz+\nlbiFCBvahfN9eQyO9xwgcAs+9P7+OAqio6hqZX2toKHSQJKhet/qFYv2+1bm40201Zb5aas7Ly75\nCqZzbMvmhQQXzvZ5a4Ae+SyhXaSVjoIbiMvk52fZFu6j5lgLSlkJYYLrN7YYYXClMkcyyKjPY68P\nCVDxzeBbVfmxzaSPkF5Veu2UUe20pn2ybO7vZ7PpqRSj2HbqIxzMfjqPH4kzguOu3UxHxmZlWsO3\ndIGN50KU5/NkaGCcF1afmdue3Gv5tIr6SpnAgIN61bOkPsLaKtv2YCQ7A8YeoVlRTOFO36CICA8s\nsJgDOAc9pqGHUVbML1knUHBUg+/q9aVLfTjZPK3HbeOTzLNaD6x/ZD9Se5ViqmvpLCR6h3cr68v7\n7wDzTO6pa9n4HsPGkfdOzsJsCwRcB5ZJT4Fk5UKulTZdzTdqtXURK+YXexKLROzJ2OS59Mw2x2f0\nC9LA72UN2gSlzOW3HJftnnoNrRTUMzxRgxUJfJkxSpvcVvw3WtxChA2UMH6DRfV5a4HuS9t2JsSA\ngXSVOaAR9rAwTk9d3Ki2wSA+qtpJmwcG/GGbuiUEnmUF+MxhkgULxVS8g/7uAfWpNggHFqgM44y4\nsYbg3l5z/L2NlJp/PzFa0IhmrM7fjdBpNSFl/sO7zcfJAvM38n+HYoWm0jrSD9daZjvOzs6wwLxj\nFuJnZZ+IvGt8tYzJ7MEChDbrj1W/EKiv+pzVlgnXZtxYTJx2PFcAb0+wBCxHd0QUHtC1N/6Y5KGa\nHjrR4WdCCil9YeIz3IfeYDxLOuE6XBIK2x7/63O7OPB9R2/N/cP9jins0MX3TPqlnINrqAxKqaGx\nc2BFYvU7JcU4c8PazkUsn4fo1LhM/3Bb3x3WdEtTNtxCBALU/mcTTBQqPC4i5UmkrJBiKhIzwIsg\njczCUqhUudDJsrLvPBq2MSmoDyoSJm3fjWoCpqsjMRF4rAqnu8Boj6wFjAkpmmClSWoJgIWW2Wuj\n/S0zGxxfyJigpfCh5BkwTSMy4Hz8bdfg/OOcFPhgACXuGyzBUpyhlpP5yH6VDVETYvX/Hm0xCmyu\n9vw9ggHrN8ORmAiz0Zvi0YqFEAH7vCrdKjCrR830ewRylsugQIl30JGd4SC8gG8fsHZ7r0sJUb2Y\nMKXthZ7nZWX94n+lLu6JqtfctvNqpVWZLWyy4JXEd7zn2kjrbwXWKp6UXz7cxoglYD6ysVD2y8j6\nsB3Zon5IeCDHrDgHWZY8QVeeLx6t4q3paJWxBuZdhueOpDPEPI6fZJ2VFDYIukpbQN963+PN2ekm\nfDMPKDwQQYtfvz3e+GK4hQgbmDnlgkIEkq2hLuCyPp5+UEpbLaFCW7a6PLypaysQG7goymvyOZnl\nhUl8HMQRzZd3jZvCbkf4Le7fcQEQWvJQb/n9PXuB1+Ys4r7UR9q0y7IxJc8hIyTMb7e58r5JTd7J\nGFWMbanngVn7mWc2e1ZU4x6CdFYPlPDJFVTJNaT9H78Dsxhh2tzHby04s8abpyVKZYxV3ATOA9RS\nB65xOhaJZ2RwGyHH6q+VvdBuDPL84/+8zwYqzMT4xxx/Bs8txzuX0jw5hmdyz9ZP7NNXidCO43d0\nv8xDdGQEHLUu7REeHCGrxPd1Am9GOyHm25uci57gItLkXkYSj/ak9NqEeeUFJi9umGv+bdfzk5Hy\n9plg708He22VNP7+e2ME6x0TYcMtREiPxeRdCAa40GC2O0MkIKB7rUcDiQHukv28TQd1RWXVcsqU\nS+MrbavNQu1DDfK1HZ2tLW+M7cbwYUiyPc2Ph2K+TIhwrANN5niwIa69r+9zv1OjllYRAYgKPKr6\nUxfXHLlYWcQIS4RxsMdUOcAD3zCiPcUyZVw6dvlHGd6z845XN5iWcdz+mdxmKPbAwq957zGS2nY2\nIjERLDDrA+/5emIifBpl3LSm27dnAT7RAsYLdvo0685JLnQZXIhvl8+l91K19gKZ6p8ywyf8ueXx\np8gcdd0/9qPFX1Fo177rPVKe9R+VKl7gWrfus2IidOxdZ+EZ1mqWwGH0ua05yISoP4GCIyQgYYq6\n7OqQf5fsMoNSsR2w8ewpxnBPUNmbdupW9V1wPbjxOtxChA1vhKl5f7eECX3Mv+W+EIm1QF0AgGm1\nmNf2GvZvEZpCKPNMajwAy52BCkTQ1YN9DyibgNGdhZ762CvXwYtsRKJgj4AFJXwDgQASca1QAYOJ\nehZ+PYH3Sv+gn21bZSxAWerKEzIDfJSpgRZ1GYw+3wP29Mwl5nG+Nl4FZCDkYMwqlPQsERDV7aQ9\nJ/tXhWMVTKMq6m3bxouZsWpOIaHjB8zMNzmFSD9S2om07rjw4P0YG4G5M3jxE9CdweUJS3/kb5mB\nIB+5YM+zRKDWDwPMhk533Aq1jYpdyeacTSuWilF2Z4XfLNuDtgi068N738n8mM7YOYKZI4wsY25Q\ne6rXf7seth/tWSK0/X9X8wJ7VxGxAMQ+RzwKdNv63WBZvl9aHLOTAtVBXwpUoLMCCyyj11Z4/xHl\nhdeUsm5J8tiWQfqgWlY2ZaHJnsCFbgdPAh3H0HSPO8NXdgE9Hbc0JaV0CxEK2gU0uxCE0k9NAGM8\nPBOz/P+HsZS52m1iCrdriUBtzN7g59L8//rJVTYlQhgrP0u412VqnMaqhgql633A8pijfTTtmKqX\nvBtFv2MfUsN0gElyxgeLZ2Fs3LRfcI+XB/pex20woYzFn9H7A2Usf1LuRgT1Om2W+reufzplIkBi\nsJUBWFlaesZfywhgsEUv0CJa8XzmOdWUqT63UpjgIZelQkBDsFfuJTFccn8CBmh+v2BvwLUkpYAg\njjJEMtCv3I/g9iwMdJgmHNdyTx0nCPh6KttAawPhzlCsE3I9ukx5XO1jpM8fWEDZu7EUI22THzBn\nmLBzqD/b8TOwQNT3T5gk/A1FvJTLR2HFbGBMcLnH03znwb9dY8H6dHYWKVSU68HeEzRN77iNsjYj\nQpiytjnroLuvKUWTrIel4FzgFfv9QzraiynmXNsRPjGwDG122ceRZk4JCGxu3EjpFiIUMKb6Ladb\nzKkd8wbeBh0iPmZYptab29qIBZIysvZHEleMicPjQgh4DKhI64P+ddkFO6u1FTTLEzIws/I9mpkR\nZBgASLgzbMdCnBvB/x73+22npBkdi3ZLyRZcsPI9EYvRVE0Gk5I4woS191eiDQQDb407wybaxnf8\nTsdzf78YLEaZ7c091iKWO0MLz7VhBpBZf5zLxPgDuP+zJ7Q0aO396h6YW4+yktAsTKdRN0PI9X0O\n33NZ9KR99IQJFvPGiF5rnfIEkZHAl9rSrtE8QrrUnvR0Z4FFvn8FrO/xTuYmpgEObdkHJ86zYi2M\nzvXq7gg3MW0qHgPf/bxMEfY5i9G17jvWDzlvz5oL7XzLrqhakLmPns/B6OecGeKngBXTWujIPN8a\nIWWpt6NDA5jtge9arzrXvsf9txtrSmm9YyKkdAsRCjxN62zz/og7hMrOwITMxqLVTvJqvoeS3lZ7\nYPSnx/d00jvysjN01bMdXW0nSJd7mhGEDrRVNS12v7Aeal0AZYrCYZJWzIM2w22FTnJ+vAFzvZCx\nxWIh1LbkMYJIek7lAtBRP4OVjWIU6EvNZmE1qV+2387aYZ6vVyytn/CDNyo6yze63YqZFmgPXr9e\n6VN8FjxLBOXvepAYLGM0yaOHPD96xkuIAJ+0EUc0ycxiKor2nhxraXEkM5aJNFokpFSFB541j92Q\nw63Cb/aqz0qDy1yqzkKPh4yFdg2dFQPBAqchji/EbI+2wKxcItpw67dwPVwlXUADL0PbPQE0WT9z\nGx+L/J3Rrg+579+gX/Kd8ZfRtVx1bFRejI9XBny88WPiFiIQmCkKLxIr4CxTo5rK8pqUd4SAtVJz\nnbSen4LT/F4NzGoG3S5S0kIStJ6JoFdkooiWcEt9OGucMCHgCOF4lVk8Yzz/KNqP2YKaiCtKRhVm\n7X8o73t8lewAGSyGwdltefuRx+haqf8Ov/OL7vmzmSOM4RLRIj9z7bH6MY30vJClzeNc3ArRtDRh\nZVHJQMrYaVyJ1cfO7zOBa8ar6dMbN1rcQoT0mJTvjQl2iUfwLo8UYBfnuTGUerOmerHrz9cwPsOj\nqVUeDTPI9v+Ie0Q5p9Tlb+T/T/m79UFVbanHU21HgObzNFIumgGWd13LZMYs87rftjI/MaLN7Heg\nTL7OtOQrEDEsWwZ832+FIddMumfRYJX1tDFondEWydq18u2cb/ixXftpMx38tk2Qtj7VH6iDPVKE\nObLGlnvvwUws6M89P6PL48gC21loe2RpYSNEHAtCht8uW0r0Benab1MEfwILIk+4qMqU9aB5CpiL\nUJS+G9WH5nHR1xvLkKaLeWxe22TcBPkMLNhVaTsgNLUY5fKcB5km7fYT0Px7mtHI4OxQMed14cPp\nlxZ+kmvZNUMxpIQJcR4B20ALhNYSAd0XMFBgSg3NgBtQ2aub0h1pyiJz2oon8CHmh7ym2mn+xzmY\nf7fzI3uQFbdCzI7U1q2Gidxr2zJ5nuH3ZGto1/qJezYpixmZ6PgDi0A69gPzwQpySuMXgTk/+5b4\nbnGetbRO/lbKLY70sw7n7R7ivmsFw30j9G5JP41WBqTtvC7Xsi0NJvteLtHFQ9PL4ry4j3QEYAVc\nZoLHHniKyovKG5+M9cfRbOzgFiIQ7LkzzHKFYZuyxXi76SANYUJ7TWmCvTaVHX3fqoFxIrLwZJ3k\nLx4hSkvuX0KIfRhBxxZSFsEEA3trffv6VmOTY/VZzHWvD/kMeBkN8HuwDbu+209dxmizMEsH1bMY\nH8N7fzmmAYtmj/BiIqBJd/uOQqkOsa3MZAbeBWNs8dozoQn3x9H1vZ/8DPjaXJeA/uq/C/S4N7Bz\nIzQVX1e2ozVRDzqwf656jnv9ORtVKSAZgCpEqH0q7gz53ogm13NLxGsOx3GWO8NRjGwPPRY6EcxK\nxYv8Z/ktXChAiI8IdIIHZ5Z0708kG5kWEsX3IxrwG56FKUOUQG+rpsetoUWu56dNLFsFA1kYoF/O\nqtJBtt9Dztsa8+ua8yWCK6Z1vXFN3EKEDZSpLlxbEXHL8wRMwNATGFD1y2HeRggezxKhAJ/hRIlb\nJujeDYb0cY53i8GkO9m5AI/6Sg8Wz8LEQs+7ohoQQ3glJdty/EWCrO21wzBitugBTYB7UQQDIAxr\nu3nE8sBjnLFMC4sZZ/Vh0Vwdc6GI9EFZjxAlSn3vc4mqUabXQqQo1sfqx7gTWKaXQLPmF50fOXYG\nnr6YaMSbJ0XwZj345P3IM3WuWtljYzfSZWQc35gmeKhxZ4XGawPcQ0eohUeTJw9FnBdetoarsnmH\n9iqxmKuKXw4WaDVjdveYdUF+t3lcFGGJo4z7gE3Wo19WzJMYQYdFUC9mCwRuBfyG+0WklG4hQgEN\nBvcOGvrt9/pRVxAUKESyMqygCadlway6xzzYlfjm3+J5c9+zOL0UksdHx6BiLVgpWYXA7P2zWHLZ\nz8KtM2S3PqEM/Xbb76y5+dY8QmaS0LyYmYZa9IfY5HN9xYxZnJYEVH7XoLlg0ezxO7L6qqZCatcY\no4f3eHAVW2Bd4BE81ew2S/23fhL3DdQ4MEsEizhtT6sUTqUd2V77LD0oljUf9jzuQUQzb6X+SqkK\n4HB8YFDG9pzVB7efXr8gyCYzp1Rm33Dd64dwZzDKetrAmoklH5tChjtDudz2Q71b+butu8edwQO+\n94hbAwbr88yh1XmS+QOD0LL7TPN0pvGH/U1YJuV9t+xDYAJMO8H3pcf/eGnbj4jAWpmaBxhkPM8Y\nFmVN5tSLwROZO4NuU6+ntVHv/cE1x5R6Vspra70brRZNr3FesL0VTdivYqJt7W9dHgqMXoN30mbI\nQjeLd2CqfxL7pTziWt7eV+otbgeESQc3AXSpeNT3Ju7HvrTjyBLEs0Dixa04B3XM+3qz/n3CfsYC\nP6p3Uv2Vk1kY0axfezHJPHqLBq7GbwXdulM8fp9YluXfTyn9qymlv5dS+p9TSr9rXde/tV372ZTS\n704Pg57ft67rnx5t5xYibOBMtTwWzcheHusdYIpDkY6PmJClZDCZQIBR4YHBJLmuFJ6/1kmYHYyr\nuDPk+hsSpRJ2kumnpnQqgFU+X5HbsCLLs2/nEZXaR+/xu7hhkPqs31Y/WF/atpBIeCeb8KIsdLZN\nuNHUo4CA+ngabUeeicEzn7wizk4d1huUDF+3F1QKx/GnuxZBO853RYIn8gyjjEDEAmTvHqZp3RMm\npFTfwSxt0dswK8Yx4nrz1cDiDSHE2IJvfvRV4Dwo5tbAuLTn3P4d6UtHRWy97hFYv4JPWcpRKhuI\nWEXdU657eywRJKEbnWLASX1IZ4Q+y+AgwDg+tTpCIxrC7Aj9xpVmIGAgZc19o6yzFUjLsfdX/ofY\nCGihkFKde+8b8f+2UXnt/qbGSxHiOXRz0bTl2GL65eS56CkS8Rtlt0e2R5tdad9NJunyb1LmRnoM\ntBOtRybhz6aUfnZd12/LsvyhlNLPppR+/7IsvyGl9DtSSr8xpfSrUkp/blmWX7+u65CH0C1E2NBO\n0Pf3PLG3BTO/pW/bkYwdzyJBCQaydLNkQyAM2mLc2/zfY/Lm5eVeQCvkrhxvUIhwossig0GyqP0I\nzB8+CovhkUKi7f3Dglnv0QIl1Q7ZuTKz8EEW8hHY0YOPQRN6WtOAv9mmiRYmpb5mPGNgUNRKt22o\ntrfjqO+jqh/qvRqOMmZInCJBFW2rpxtWGk1HEXwaRv2SR9575B4rnWYEvdYKe+BuFwstw7Iz5PW5\nJyZCjQuihYqf4BJE131z8WUjalslHDVtDyHcM2Y9racl4PdS3b4Boyateiaz3FV9ahc5oDTx7pz1\nJM/23+4Jaivu245eGluLIWX771DGHqfDC1iOlvPdrXCErK5IzK69eli1Pdljfir06tYH0tEcENpz\n7/wqSguECFIK15jedC3Xvubz/ihY1/XPND//Qkrpt23//9aU0i+s6/p3U0p/bVmWv5pS+k0ppT8/\n0s4tRNjALBHe3uXvFcNkJ0KYBKgPlQ0h2C8LPUEYWYq9ZwWTmt2O/5yPYy7BNA0o0e4JmsisASxD\nFWFpMqDtLChMUlsJZwSOChw8hltHcw7UB4IvMd9GiKFsRUIiNO8Gnro4JPPJPyTTfOO1qhHX9Xnj\nw9OQpRTTiHDzefn7g4xVq1tijTM+62yT5J7RMxqf4WwGKFI9Cg9kDA3+Ul3mMBCAjwnQ7cJ5Q54r\njirR48m5nrVtXn/S1vbjWLSgxBLBj5tiLAgZrcDACDxxlXTWiCKwGrxfmZ4zE/tgHd1tn1RWfav2\nhNFZqpQ6eb/03Al7BHwRU3tfUSLn+LI8CP3sctmuedlF1XMn7EJk8HQMMCya99Qu92fHEuGGg69l\njvdvppT+i+3/n0kPoULGL27nhnALETYwl4IhCmKbfe3ePCsrgQUkRK00bnswCbrOhQ+zM4ygJUT3\nggUygUhlpPLvpSmzHeEac1WwzDPbNovf3PYb/VZlXwMENunHo+3XLVoRodPsaOfeRuYFXdQxG/L5\n4a7Itp3AiiPwgvXlabAq+4J99PiMtiiahjzvnPdmWT+02HvtkaCO3ju2hChH0f/GffS4MxweU961\nVR7demDtZbdYgoZsbeBpXs/eG0Vb5vamFQjPBApsMdUw8zfHfSRm7v48ycACR69MD97IfPk0JmrZ\nI9q93zj24KglQpciIdDOrGxhiJ54IEfhWt9A2cjaiPFnmLsotl2VQQ2tA4obz3V4CAeldZbSqCeT\nimeJcOPl+MeXZflLze+fX9f15/OPZVn+XErpnyT3/YF1Xf/kVuYPpIcd/X+ebyPlhwf0LURIjzdK\nXQpgpylW+b3172hbhFS4xGEAjYiz8/RJcbXk9w1Mzl3NTzn3KTssykgtE6YC9OIxsN8qsKJusZbd\nju/wLO/NSpkZlW+LJHKr5qd5FMO0j25KQBCjX1lKjfY11wdM2ON/+d5qXxZV1ouBmeCBVMqhAAAg\nAElEQVSaYqp1UTMIITXfc75ZPfc4qsBJnqYajsydAS0RPNR+aS28suJB1x5W38mBFUdjQGTk8cvS\nidYUkXYjeMUjc5RrS57jRPNTx+8izkfg+m1Oev9HFAuRmAiherI1AHk3K6wd3jrYZ46/tTlZRhkx\ngy8m1O25ZWeMUu4GAhiJNuRtOgYBEX7mo8PI43pCY8zg+hLYx3EPE5YIW0fyPHa/WWRiFN9sZwPZ\nqV6mu+vH/opU0TNGF1AOyGtyH2LBlHH/mWbdp8YEaRuOPBAx0Klu47KQcLeFvR7dZdmY9VKLotXh\nWt6nrg/TK7rWpdDfHkuEFvj+ckyE4npJFFg5tSMNrKjq3zvRVOCZjgIvwK2ItzJFCMNpMw+3JcIA\n1vVZlgj/17qu/4zdjfW3eDcvy/I7U0r/SkrpN6+VWP7FlNKvaYr96pTS3xjt4C1ESCTtGRAbJbDi\nh/w9isN+/xhMZaC6kBnpZEz35/TayhF3t2/4U7NS/lLK5x7HYhK/nZem9hKWlUB73wdYJvRizxIh\nRBsOtNeL+kodwhjGGSOKRoDCA5aCTQXFDNSbtaeLMwbORk+6xTOw92VcoQITOgXus+A9foSZnoG2\nD/ndHBE8UIEDCH5mwYtzkIFNts+ks/069cC1iCXCaQgsauxde4zTDESsBNEv/Kdm4ryDgOWqFrUr\nHMWYWuU1vKeFZTXTjkttxaMouvof7K2YSeArwFxHBzdypbByqj3LEkEpG4z2h+snQu0sNChHohxZ\nS3YG+VY4/Xe8n0crYjElmOIrXJ9zLaLAufE6LMvyL6aUfn9K6Z9f1/X/bS79qZTSH1uW5Q+nR2DF\nX5dS+ouj7dxChA0yxVQOrJjEEbJdyTLwOyJoGN24LEIkE4qjDBpmo6gc3/7D8NSWcoPuWXOYO0ME\nljuD3ETkh1RpvUR9UH/K9+hOLSS9nSpjaMM8ab/qN6mv/GZtGsKHkEQf6rD6yvoir9kScuzXJxzF\nNUNwv4r+Qf3lvKPlyOMmYImAaMfnyJyuRLXu3xEmoabY0tc8JrjnESyf4lnmnl4tP6q2JPLcmvmv\n/xch5xbkJ+8nH3BMSQdU9Bi9+jvXv93TWmh1OYbjRHZu7qCQlZW7mL+SiZmtHefr/HZcpeCbWSKg\ncDxHkpeaaqsBYm1g+QIJTfX3xyz4mvQnd2YWIgMxQJ+eHSPBCxJeh+ixtiOBFU0LjGb9+4Syh8cG\nvviDFb7SxdVLMfxD4PrZGf5ISumXp5T+7Pat/sK6rv/2uq5/eVmWP55S+ivp4ebwe0czM6R0CxEK\neNYCeVxBqPBqfBokjggMAwKHEjG7TcN3gVEQyc7wCWUjYHQTxi6oJth2WR3Rt+kXMLb4CL3L/F4Q\nH1c6XOpw6g+8vlAYjI1LyBpHZr5smSn2EAleRPgIZjO4nh/3s4Tz7RhAtxnPXDZ3z0uZOPIIXiYR\nzHt/FB6DjNC+ovlYb0IGOSBbc+NYlLaMGkTMC6VhXel5BqYJykMzXytCAKeeCCkUGRPWfkTL9sRC\niAgTPj54WQfV3WdfuBghmEcFftZ9zGorz6VvJNbPEE4KWhnBXkDYlOocio0/DjaXLDkL6xeeZ9ex\n77MtyM4UbDAX1/a3dFfhtMnR0aNcI9u6jTX8KF2QLTDQpaIdR2/FqlQro3bhfbQ83zIjSl2He+jc\nPE/2FVkezOwMpOxtiXBtrOv6a51rP5dS+rkZ7VyAfbweMBaCmkGDAii1UJbYAbrtiL95T4pHrIe5\nM5jSaeq0B76UzQ40Qtf0+XDZ74Zpb/B3/v8bWA6wey3TvnYzKVqh7fcHatYdoYe7z6gAQDZ6NGc9\nYJoBFS/BGLPtOeXH2Q4p1EJM6bl+f967KX7hL3BnKGPA0faqsu257Yg+1bO3eK9tLOO7PGz/DHbw\nLDeGV+hVLCutSIpHxti+wVNwa55sXQCChlXf86nuYfXJ30XItvkxCEsd0p8wnqAinqUJHWmzpAAE\nLXkrsK6a2zxwRhpsZueFtGmhtKkHPwvSTEctETyB7RHU/Xz/gd3Aikin5XpZzCkjxaOHo3u13qP3\n2x6hL1lg6OzGgL/bnNUlGKaiX9r69hr3LKgCVr7PXIu2Y2RV+OEtEW4hSkrpFiIUsOCGJqhD1IG2\niekgS4dTmpq8qCgN8kCQJYaz1xivfs+vLxNpOU7C6jCxlha79VMtlghrLpO2enMdTCixL1jQ7gcD\nG1hTxirKpP5IxLDsJRgTwQ9gpft+BPq7NEIs6A8GQuP1ZYHI/rPkj7iitOgLAbVq3jiqjKRdxhqr\nXttXw/4oeQ2OxEsoVhati8J2zG4L31b5u3VnQCsNRlyaaSCz1VvbNlRwODtDYZJsM2FkknBuz6IF\nmYB5RNCfwYKk5adcoUysQidQMmw6C1kQMGBePR/vQkr7co/WgseMidD8HhGDHKGhZsuypKug0aZo\nH5VRcLOvmdj+sZ/fcjGINmE3neslbYHwzqu/z71VHh9tyraR5i7ChJSKQGF6vAMvsGKZg/JWGhQd\n+QXycjSt1NHdjrI3fkzcQoQNlGl4wQyqhNd4HSzPNyPoECEGL2CGpdy+wOz9GcCNVlgXlKjN2wIM\ngRBlUDi+qbEYC6g5YsyX5VsnGHnShuhf0hjZ3Ec3RkXE4LOITCdGHQHCyUNXnvQD7bTocaN5JSJB\n/2YFBoykvNKE4nbhCcKEkec7q1vU5eEJ2teUJKP1Ddy38h7B1qsVzpGseaqfQ8KOnsIHNXsecKy+\nYsZ7mSEweK+HylyeQ8j0CDB63H1kme2YhQmDbWXo+Ed5/drvA6t/BnMphXDPl7BiYMVyPrC2T+tD\nQHgwrS0QJtYsF49jqxzQGbLO798MsG9mxYq6ji3SF8KarqsNeTJuIQKBdjt4ItUbQDEtLRGa8/Gk\nBiNECAkkgC4TTEgxmzGzmHNmXYDEGnVnMIQHbZn837dcJte/zqFE3UCNI/UN6FyZRq1sutkFgMVE\nwA27o5+zMHvjz8/bM3YjUdl74GWNKu+YvPPh6DlBMG3TFbQZs4SykWvIHA0JMg6u5WhB0MbAyOP2\nA8pmxrRt+gNiKuQ9543ElEB0xa6hJ/P6ee4IogqEAW07EzhjnAi2DlixAWp9jVC29Ll/Da8NnOfO\nUIWKC5yv/+exOJICNdYH+fsrW10f3ruMCrwp9VxXHjnGy5if3A5NOWwIE9ZmwJRYCB2upV2g/jSy\ndqWUYwKC7dzH5ezobnzvuIUIHg6sFMxPLRI80LqnhyCTgRW3IywuXWakF/KbjKIID4gZfcS8Xde3\n/81eIWtCTWGEYekJgBZBRFjUA2+0HSCdv3tE3smM98YDiyHTRYROE9pOaT+AWi/TMDJav4oSoq4L\nzZ6wHfOZD4yJwNwZ4PjpvGRklFsLtLw2qPp2nmMXVlS4g+hh4rw0mpE2Zo8p11d+Ino11fiWRoQJ\nTMiWA72pGB2D7/WI1cNoYMVIwNZD+MyCf33pWcKW2T7+R98RWmK09IzlsijixnTQXiYCC80zhTsZ\nXmDFHxvr1yECTsYtRCBQUtqBxfWZrhDFZSHQ0SGN6KA5pPbhn7NLuS4ZoL3x4hyU48rPt/VZ96ZU\nA5QVt4bt/FGtb0z7FS9b6j3IiuN39YRjuDGz9FF7RCi7ik/ACFCVNiqff4EEwkvt9kxYb7rdDzMB\n7EXBtnA0UFkPkMHN8FJuevEdIvEhrgQ3O8M2M6p1gbYcyMH5PKsFtEAoRCUrg8KD7ff7/qNwHPW1\nKecehwjz8gpCHYEWDe0TlX3N2QO7mGaMKcHcEyfMB+YiE7HYwWCfoy5BV4KXLnUEI8KiV7jqRuAr\nfeKIpXgEKwhCm6zFVdW2lJgUQkyjxEawH8ZKFU4Mg0P4eurCG6/GLUSIILKGQXL7dmHf0/q3ZUs6\nSZdIyNYJRldaAg/KsnvPilVgWVGwZ0NGVGrDrHpIm+Di4RGFsYB7/J43eTI3HobSlsRvPYzplgg7\nMRJGEUkhdAUtcsRKKGLGTOs2xihjlHseSwXMW/U1HCZnERiej7ElKIjiSDDCrnbI27fN/PvrTyn2\n/lHwkwUC35o2qz/9Kn6j60J7TgmUmu9U00jKdbq6/eiyNSOEXtvPij0ykhr4KCKBFfVewIU74h74\nPWoFUawM8dgB1jauK+0z7Glu29NnCQisWEezcHW5xjOsVMwU5IPzG0hsPi86XrwXvNwCxo9p2zy6\nV10Bd5yEDnxBC+0zcBkhwrIs/05K6d9Kj7Xhf0op/a6U0q9MKf1CSukfTSn9Dymlf2Nd17+3LMsv\nTyn9pymlfzql9H+nlH77uq7/61bPz6aUfnd6KIJ/37qufzrSPstxvzBVgFlBpJV9WIs7MzHFWAjM\nHBWZatdU/OTAcZH6j/YBLRGeERSoB1fYYI5aIlgYFR70EMARbfEIceCleEwgZCsMlSN8OxJ1nlkF\nKMK71TQc+Jwsr3kllNbt93Z+0tj1mIhQtgiDWPNML49s9x5helR48An3xwItxhlTjHeA/7e/MUtD\n2598jQqdoKwluE6p0l1dbno9HA8dVPHbe9DjOoZr3CjTj8LIYeFBB/C7ItgeO9IrNraSce4ruryV\nFJ54vnNdnR1fJ2Pe+r5ZIIFCyOv3WWkMq6VmY9lA3BYe58faOJuVfJZbUkp6Lb9xYw+XECIsy/Iz\nKaXfl1L6Deu6/p1lWf54Sul3pJT+5ZTSf7iu6y8sy/Ifp4dw4D/ajv/Puq6/dlmW35FS+kMppd++\nLMtv2O77jSmlX5VS+nPLsvz6dV3PjidWERAmoKYmUvYoIgGeunBSxOez4FokgMBhVPAwEmvh6GLt\nEV5H4JnoYaqhq204R9KqzcZVMzqc7c7X89Se+8EVIF2X5DXmz235uLP58gYCG29OFS1RTk1LClnZ\nX4TlWRHUSMEyy66AWj8m5NkbS3IODAy8xTa11yHHyQDqcGc4AjdDyclr0vB87nBniMQ9GYFXi7K4\ncApfyUWZLWM9FFMR3BLNdxZCmDRcZJ446KEN0TqgxSy6oArKThI0TBvHHZsXZjkT12Q9VqpHeYu0\nKmMIxfXajpk1cTwpyt71Q2JN11pwXohLCBE2/JRS+vuXZfmllNKvSCn9HymlfyGl9K9v1/+TlNK/\nmx5ChN+6/Z9SSn8ipfRHlmVZtvO/sK7r300p/bVlWf5qSuk3pZT+fFdPStT5x89ikeCtmJMRETDo\n7Ay2ybR2Z9DaphBUisdnaELmCkCOBFYsxiltBoed/sz24zw6/Oq42frSeb/lTjMa2O5ssHzrV8Bp\nsQLycZW/23Mz6vdwtJke09DvwagQhQlHUef24x/mzpD3t+zygBYJj/uhPjKmahnuqtCu15koxWt0\nTbcmiBfRfDsuzuTyfYzj7z838RG4pYfBiBD79R3razZz2bHguJZenrCEN/mMLeGsAJVntflV4jvQ\nQN0Bi7EInhfMcW593P3K+HgiQIHKf/44siAVKEyg8lFuTSHiegXkrD3It8/aq258bVxCiLCu6/++\nLMt/kFL66ymlv5NS+jMppf8+pfS31nXNmfN+MaX0M9v/P5NS+t+2e78ty/K3U0r/2Hb+LzRVt/cI\nLMvye1JKvyellP6Jv+8flBc/5aKw5oi2R7XGRgA6z1wp4jNaAyuSNkHQ8PH5WKw+32qjKxCVs4AB\nbEaZuD7Crp8ITM6GOKJBihCXs7X4IxvDKIFnWSI8U3gwOwgepn26KljvSrT97eJoZHALVoaXxzW5\nvpwVmO4qggLTyqB5NysIHC2LhJTmMw1FWKziHdQyv7Sd+2VQhvkaW8IDb5pUywZtcbe+yXMhtwZv\nkhei3DY2HAkih7Fv2h7srTnenuG7E25HcIEQQhiYX24AOeu5J0U/ZdZqpwWZO4B2vvUE1+0ZNmc/\nt3AfOtLGQAopmR4RjkkeQ/W5VqF++3s48v55xo/HUbkOjzfzgCd9UsKD/edf4LOKb1b2Iy6UECmg\njaa4AONCk/wVuC0RUkoXESIsy/KPpIcVwT+VUvpbKaX/MqX0L5Gingp5dc7rk+v68ymln08ppV//\nD/zKy40G12yvBLAyrgfMR69qZh3BGzCxftlAmYF7jmIo4Nv8biiMOKmMCA88a5Kjaa72GFkZuZiX\nPSoQKdkonrCyjGSdqOay9pLK4iWYfZhlEjpBINXOk2c5XfXERngmmEVHiZMAFknFIoEsNCo6fvN9\nrLnszXEvtePs9MNHhOOzrZdmjccq8NkUEx6jFVkYXjBYsUVvrM4WtsXiWbwOQ2kDKQcOI45UeCR+\nT6n2cA3noAo76nOPxEzy4GUOsW/yCPwO+gVdjAIClyrw1mWLYKHsETdu+LiEECGl9FtSSn9tXdf/\nM6WUlmX5r1JK/1xK6R9eluWnzRrhV6eU/sZW/hdTSr8mpfSLy7L8lFL6h1JKf7M5n9HeE8cEbWRE\n+8ECT6kyn1JLxMACKuI1jPgs+wGWCJHVUJll1bYxw8RRgQWax6qusHOOoBffhTL/bu7J0ttZPq0q\nVVppuzEZxHugaRGozCA2Ir19YgyyEEaEB14ZSzskg8LxMTXqpx+JdxJx496DeO5MFBlMv0yvZjxv\nR9uR+byI//3aGdPvMpkd2iDtU/24mWnbLeuWZwZW9DAyN133g+2IwgPm/mIxfO21okFf5YBk2RkQ\n9J117UP7lgjWPPYEYLOF7T3fkLsjwd5Vut5Yewzt589TKuyldhRj1ZjrLG6H2d44vxbGLMs461lW\n8X31uV0Udx+bgUR6rRwddwbWBZ1dRBbqnVM9MRGmuOs5mcFw/rX/V4HXwUFQUjvK054bVg/YnlWu\ndeytPzTW9RpaggvgKkKEv55S+meXZfkV6eHO8JtTSn8ppfTfppR+W3pkaPidKaU/uZX/U9vvP79d\n/2/WdV2XZflTKaU/tizLH06PwIq/LqX0F7t788kXrVnm/hGhgZ/i8XE0NUDt/7Dofaxv2/FTlTmE\nZkI9K5osW/DweWeZdteNcd2tF4m/dhRZEeW9euq98YeZTRJ+EiJ1No64ZITKkntGgjBGUpZGruGV\nrCHw05KmrUw9t2eJIPwjV4f6exE8eStLOYXaklnLzTzXmMexJ7BihidU6Em/hWtQa6aKKR510N39\neiPrKhP+ovtLlxuDJ81DJsn5mHl+9USN565uu00NAZkvmhLZEEan1Eafn9OfYlVlrEtvxv9mfTtM\nYVuHFeCtldHuaU2f4WZ3ZAx4wvyhtS2Q2mY4JtYEtOMo0vbZ7gyxFM1bWSPbSouQhcMMTUJ7e3ZN\n8/pVjnGhzI0be7iEEGFd1/9uWZY/kR5pHL+llP7H9HA1+K9TSr+wLMu/t537o9stfzSl9J9tgRP/\nZnpkZEjruv7lLbPDX9nq+b1PzcxgYIYE8SjjdlZaoAjqojq3Dz3EgW9aC5oz0c+vudAyTav1JLOe\ncCkBSce+8y3Y3UfRIk+2RDiKT2BMheDsQJs9lgiviM3BsjPs3tP07ywCPtebrQvaqN3fQJCUBQyY\nxrGFJqJXdQ0t4t47zIW79rfezECTfVqsnlb5xb4giAGt1Op5fb/SenrvukvSul+2xtIZG7zWXKFW\nM3DumTmhekJKjNTTA7re54DBJTbfQRpxgltDBLOUED21RLJzjaLr7oFvFMnO4DVjBVbMR2HVgwL6\n6+gaLof1JlhTShcRIqSU0rqufzCl9Afh9P+SHtkVsOz/l1L614x6fi6l9HPTOxhEj/Q/Yvocyhvu\nLKd4O7NiUEGuJlsSvCL+QoSQtXN39y0OM14XY/rrNUlcRnJku20FCg35ZA7iSBuRe0eIXY8R7RGK\nVU3m8zacSNYN/L6t4AFNVTH1n7D8OdBPVoe1fB4dhz1jvi+2xIglS/ctYZQgm8XKYDtPLBGy9grH\nS8QFrH1FWpgj16vV2WueItx+kmWc51Z4rL7m3HbEPUGIvY+0P2nBZwEpZ+B4ZiIOKjg72BbW8w7n\nV7JOW9m0WH1FoDd5fBcLHccF9pmw6LKebrE5abnbikCwyp0hiePV4AowD0xGYW10CxZuNLiMEOFK\nWC1u7ROue/eKc2guui80yFJhZnJZTEEN336xKIJ2PWRGWhvaL/NCXCUd0gxNw9F1eeRV9Lw/5teM\nmt+IBcIKBEovZvieHo2JYKW45PWcs+MywrPEE1jkeU9Axc5ngQIW9YVXktCT6xWvj8cI6IeVajSl\nPquEkTF1BUsE9u2wfunO8Di+we8PIJS9ttpI3znOBO5rTFCAQmy2HlxlXT8DofSo5b3JvVvUA8xM\nKFI6pMF8VAA9GtGUDgpIrcwfTGgyGxGzdAsyZtJ++SP0AQoM8q+jGBU8HLMqex33OS3wLxk3SI83\njU5p8yieab3zQ+F73qg6cAsRJqGalG3HZtFCn8IipS++i9qeKKeaewtoMo+uVV1zAR1+VcAejYjm\ndiTlIUtRg+/JI8AisJhWEdzQaetRhy6L9R5djhY4nrm8YYrHcj7gzlDnwFgPI2N9L/oyi4mgniVg\nibA4hbzsDCV93CJ/s/mxGGPKew0jy4Hn813KdNW3Nv8PdOgAZrsztP2/olzVdYHOx3aLyUIDcGeY\npWUr1i2D96vv57kvWIEVSdAQy61QjFU4N5bmz9mrt2PEOgrj8LRtTBuHVp5658HRuorGY/DWT4j9\notKGEiGbCkRsV18we92Z7BVScLSbrvVroCN9sZYuuABOAlMO9FgVme+Gbq4435rflYDZrtm8gKJ1\nchr5pNcMtA4qR71UuunJb9xocQsRHJwdIJDm0Q5YImREiD6d39bWNq1GQEkKT2jQQXk90385CqbZ\n6wko1hMU24/8Dt/uIqZ0V0oPWhnx5/Xpmc+PKRiZUCv/i4E8V2e8jJjhs3GN74JbTnU3dejeUUuE\nWdkZroBqDv34h1oiwNrGLEasHYFZ86AQlVm96Wjnsr8CKviYJ0zIC0G/3s3LjFOqJ02VJteOfdOB\npZFv3+sHnMst0n4v0NEnYEa65FFLhCzUHRVQvwrTelsGJpkDIWHCrI5s9Z3sDpGfyBPyRugCnXlh\nUdfQSsvLTvNKXJGe/i6xptcT4hfBLUToABMqzIqAvNu2IHT4ShFhbpivXZcPZ2Di4Hu6AtPZE9G8\nFRRgHu7qi7qq+8zUbqSNWUC/ytnLmhtvY2vsme4MCO99Vsn9lKYOYSGa+VlLh8fgIXS8jRsZkewW\nFpHKhAlHtMZnBl9E4ZK3dvQ0/dW0lMxiYPZ2PoOhpdH7yzd8DBQa+8eTIp6M+tzZ6qBeu4KWs+eV\nzLLuizB4VSikrVAyzv6cnrtehFE+4nL4TAvx0QDQKV2ffzxK8yzOoPcsMG/8eLiFCB4GLBHY/EKz\nau072v4vF/ARBrztdjYpxZgIsn3YNHzObLf9PcGKbyq+W30I3qNYsSTyu2I+jz1BF2t+5TGYGr10\nrN4jGA0WFgkeegRsOFqEe8wVQt+LbhronnM0urPWbDZtw1gIuR1k5pXcg2nCZ30V9JV/Zp5pdIXi\na/D2T8enYkIAy0qh/U4oUPAsG7Dvb0RIqaJr53Vryet2I6CCZ6BxMZI+Z/VvhgBORtuX42NIwByx\nSGg6ji6G+Rhpe8QsPeQnT+bkAuPtk4y/DPyG89wbtjWtfX+GS2U1dNAC0vJ7vAspJZupZGkge6zJ\nQ/3Yjl56L5WFdKypXbDsDCEEMpnspRWPCA7OVBTNSPHo0ZWfQKN8fNZ39gHWCR9Aiz2uyeNhgIuw\n556ZaZ383ExAl3uKhknePbV+eW9KqcyzHz7WwtUlSU/CLUQgWCeYJ3qM9DMjtVt4ZpCbnmj256U8\nG3telKr3uDW4/dmOI9VEzG9ZWr+s1Tgrbc9oiscR4cgVrAsynmlpw/Yti0kdVUSaGvm+anYxwtgz\nRAIrjqwrs2kEKtCc3QbWT9q23KOqwKG1suKDQdCU5T7JjPQ8Gwu+aBdunhKZpAsQdpHArZGxUN4j\nqQLdQaZLA2dVd7ALeH9PTARWHwb2vIqLoAU2f7vcBDBw5mSMvDeR3ccSXLTrwVMiPfnrDs7jU4N/\n5m/2mYWdsxuYg2cqCm5cF7cQIYBQbIQDFLaUkqK0P76CFI2BEz9hOojmx0LEymDEEuGoJvgo9iT1\no+8e7+up5xlMdpGQGwHLHmXW/TI5uOG8rgl4frpvgf5lFCHJh+xpKG8z+b+8vySPVxKQzICZVu2i\nxNFVcUQQIqzdtqP2r1/FPSkR7fPALHVjIoSyCqB6O2CJcBBKw9yuGVBGda/zkbB4YRzz0bFEcK1K\nRjZT0nmdZz6wVuZ3098D2Vbg/FdlZkatLlVgXneDg8DXaIpG0PM+z9qrRGDyk4QHRfgJSg++Xsnf\np8KwRMjopTeOwEpP+sNjXa8reXwybiECwaGAimT2HjHR79FyoqloSoxA0VqirrSPT4KMQNs/WfMz\n5SeS0m95DqOVSx9oNE1e1Hml0YM+CHNe6KevKZQaek9jf0Sj4qWI60ExEyaMgWedMGKJcMTv8hmI\nZHD4HmALCI49t4rdcKbmx8DsSPjTI+sHgGtSe27BMoF+YaDPM2BOGSY8KNyqJ1g40JeDDAy6VvVY\nIeK+xK6FBEueRMQq04FF/M87RN03jL4/M34Ce4+z56c1nr1v516z5t7FNkNFx7jP+7y+o6twSYO7\nuTG0a+UHBjjfzksXrY7GrXVqlvCTxubJQifeBnMfwmwoN25YuIUIDnSAwMdRzMWSIQkkvESz2eOL\nOQLPEiEDF/ZQf9qFDxfBTQwufShlf/yqZZlPh9lUWjHyjiNptj5xE9ntpY8j6z/TPuMzfAS+5xEc\nD8Kz/10imn4LLLCd12f0fR7Bkf7u1q3SXM5ZDyKuNkesWTzmnaWjK9fQ9PqL4BnuDM9C23ZeT+r6\n8jjvCSczZqWkzahEa8cc8ARzRYunyd+efUlVS3NWxIHMNbOGSmUOPY45WCKbd9VaoWNuBfzjPRMC\nZZHgBBOlvtQT4LknFVeHQKOvXIowBkYEUnCgLYZkxYRee1YE8EF4c3LPnUG/GZ2uYK8AACAASURB\nVI1IgFNPmaZdtRprBSsNs0ekRK6V+CRbfSxeE9A6kTVOZ7T6YhvzVfDVCJqTcAsRNrTM68rEjSml\n4kz+rtVi64EBxQIrjtWjNd81WOBAvUXi0NSY/weCpOf5UXAwEygkKbmoO5qU5rySOdKBFu26vSat\nWAvt/156zyshj7sIce6VwadkgX9GBB5lg734ZsksTY9EuK6mzp4ViA1LYLOSMuper4MbRmMijPhF\nXwHPtETIwRaz5UAriCwpHgN+4ZXglGVaQRVadGWietn6sBCBtbem7Wr2RnN4BhBZK6obUi6b9xp5\n/iiKoIBUF9HuPgs0y4Xkg+CdPHc/u5iCvgt1ntjveJY7p5Wu99VQArjtuAbWU+/bYxp1tjahANxi\nDaxzZ4Cnm93WeTK3FjiG2iC0140bDLcQ4SjAEmFEC8tiInRp86GsZ4lwdWQBw4cXEvkgappGiYj/\nl6ft7ckTjMT5V0Qe1zXuweP82vntXsncP8vbIKIZKGXJqHCJoYAFgtkvek4KzFA52d5zFoGODLeX\n8vBI8MTvHV9RWVJjrRiDq3PSuhrBBEHcYO88rjWGvoTufwAF4bSMV1HP5HSsFJB+Ocq0jiwZ2i+8\n/p+7F9l2quXGxjh2rrVHMFLv2xME4Getm/V5HSuDDlo1YksRkUvvKT0iVgayvOyfWisiFkCBMj1r\nkFdbHUtfmfp8PY4ojr8n3EIEgpHo0gg3zdgLUX272oXygeK3rkIiO+4MGxih9iw/Ny/FVOmLs2B6\n5qMjRoCuPzdo/TzCAoffaNyDI2tdjdjeWl5s8yOnPHw/tpj2CF968AbHq8AiNiLpG89CTzueJcLI\nt2RB0npiIswmgr2UjFZZkbYRAhV6eJYAxFuDcj9pH4rllfjZ2fb+2us+v0Ngr9u1BSvo4Nh6meIZ\nTGaEKURhQgs977zGvHgRc320zcwu5Dy6xpR57RiajFjzzN4vY6mC56zcXNgBQp2y0UEQRfw/+UOh\n1D6JbmOus2e32QOMjcD2np5sHtMtEQbmoDfPjqxbX9ma58a5uIUIBCVv7gvtZU9LdUgCK+4u4J3u\nDGcTxN6mpDMaHFv9KrMvZdws5dJeX6LA+rS5cFs2H2Vj7Btgyj+2aUYk+UdwFrHgaupPaXEevODa\nqiwhoq+wwbvuOXv3drZ1tjtDT9BOmqqvY/a8wnqiZmHgprotFngXnom9aifP9YZJ/4RrXbEQQmkP\nXi8y7NUa41NZcShEGaNsSo5QpHATgXckKpYdsKw1RB+2Y7aOotZLk8e+5R4VeX9X2SNeGzdlfCOZ\nnSHrKJ0QsvgB94UcWJFmZ0h4rDDHjsfRl99kLj5pQ98LcJoSV3y+foW9ANb0Nc38TsAtRBhAK81d\nmI0vlsfAcxgMpTEXzOnjvLQuOUhMz1pz9nD3TEZrAO05vfCCJhYmJv+e0mKFZzpeNXvPw1KOkoLq\nMn0b1IAXdwaI3bQ0i2v59k6wwxmmmq62OB8LQcvmkv3ezgqIevXNONI/JfD6gvsqCj4iKfs8oQm6\no3hChRFLhB6GB+NjpNT0dWA451uuILjqRSiN6yLXAwwUeBRYr19Wn8NsAtOnG9Nmb0D3NbYPLwmv\nzbFMiryvyByaIbSLCHDXwbgdPfNqtouDt0frslObVnhG2m4WJNFCZF8rrMDsmF+TCYUuvuGICdqN\nHwK3ECE58wM40ZBlghMMNzPRXgaCI1ZwuckTwwmYGPUPws2iJ0jfKCyTtMIYtCPC8psLBFaMgH3u\nI8SBZ+5ZGfrtuJ1vx4u1wTyTOax+yNtYCFB+VBBy0hhCoZg3nzOky83cfh2JicAwQiCi/7bn1qCY\ndFYIxnFPTITIGsqMg3VsCnm9hSd4wLmC7g2sbESYUMbdgPa0ZWpQm4bWBT0uVhFI8+DrUKMR4SBb\ni1GQ4gkaLIZbCDLLeifv9Uymuyw4XoDyjtwy2/o+iRmOzI86z/oZ+x4Lpdad4XS3urdAx4ZM4/cF\n/s8QhKt1uSgDtj2n6ZNee+Ng1lE4z64gJG/pGp2dQa83PeNPzSGytjkJXH4sXGEwXAC3EIFAEXLb\nbjSaJQfvw3QsDJlBiTAcuLAvZAE5m+ToSfE4m7k7VeCQ/xlg1CIE3+yeX31dK5o4J9r08TZ4m7MR\nER5Mb9N5lMIMBsr2oOe7HHYfKvWM1xFRAkaqnzVqetwb3HomD2Mzs0arac3n8m9HSDmj7WloB63B\nhNA0gcZaEXJtCXYtCpra0RB8n4m9/ZUJRHpgkFvyXETAZQgPmI+715bVNgrb9vqzh9OCK09y6XlF\ndobZDOrR6VEtflCYcPDd4Deilj/jbVDlVMd4s4KOp2TPsxs/Jm4hAkExcwLhQf79ylgJDLjACZ+u\nwrRtv4sWvtWkZ7OuSf0pJpd8uWrPRyLkInABd8uWe/Q51MQhE5ZSqmnQcj+zxrV5WbnuD/Cxq++h\n7avZ1VoGI0ijX15bXzmiRQepFywwIjERQqn6Ju34swjiswnrK2QB4Jr+zTLCYTQiXUdzd/1bW+Eo\nRqA58QHzQPUv0KfRwIpdbgIdmkbvHffem1JLmOmLFuOTrQsk0y/PfZbf5JtB+lv2rkpWY/Icqp8q\nlkteK517yH70Slj9eE5azq0tR8iR3+nenDqKWWv61YAp+jCF3yy0lj+fOU00lCkkxdymQ2hpWIwN\n4NFTVrwmFkcABXKsfk3LyXppH8rYH3tzuf2Pj8cgz3Tbx6c8tv3DANNty1eLq5GSP6Z63prnzsD2\nqh8G63p9jd2TcAsRAkChAd1g0Y2BxE2oDLOckYKR7ti8a57q/cFsBYh5BSKWA35KPHktUl/7vDof\n8lYPM68s5l1ZjKsJ97PeJRI8PF/4eP0YK6D9P2SOasX6aK1SwI/W7c9kS4SzLBBmZVlBM2bMO9+W\ncfuDJqaOtjjSdZXa0bHssFwA2DnrvTEfaLd/UNbTLPfEHOjKiAfv2HNn8NpRQfRK+tl6Ye8ZeudN\nD+3dw0tqU2fdUJewwAgrvjJNqzVYRRH+4MJyz7ASjMSNqeupt3fp+vBpKiOlG+3SpI+keOzKakHO\nGfGanIQBTwUqU87CM90ZSlM0kN8bHDcaZ9Bv33JnGLUGNS1/vD6U/TILJey2vaGm59Iijilphc7Q\nuOkd8LC+LeUT6sbfQEmYBcNti4pOg2PbvSycLPPE6frbC3mIG9fBLUQgKNkZYM5W5nOf6WeChmrm\nn8s4ix8QMxGf6nyeERY9DFWJb/DpkCheAKbJa8ve8zLEguX0dzS/EU8zV7X4EYk+I7T3+qDrdbWJ\nRn3TLBGc7xDy2UOCM9BmDyJfuUewlb9dKMYJmeOzt14cSxGXB8QoYW+lmhNCu3ycRLifneLxbHjf\nJ2KJ4NVnp7ht25D3ofaPBrZzNFJmv4jPcunPLMuDvA/hXtVuQgcWlKMM7wyG+SOwpg9rQSP56dHy\nGqtwnnG2wPUoLDPt9nU+az25ujvDcPMdtKZp+ePcc/T7fILlRc3KoOu3XFlC1n092WRoEDV+P41V\nAcIDVqauwzfzPwVfjfA4CbcQwUOJKhJgMN6yht+e4NZ5sX58ck2IDKaydcuI9Hx0CymaZJp+Zrz2\nSCyIvCTTKP5GICxvUfX6UdOWLWY9KGkPBacp9z7u+SCLtmc9gt8zFBl4YF8YtUSwiIRiceNohF0t\nnfHb4zeqFUnbFh9DTAuopPTEcmJPE8zHqrznzLgdsy0RsMyeJcGjLfvibFP1s1M8zkYksGIGs0Qw\n6100k87OvQqjfTCF6y9kjtoRHMnegcDMMDJQmb8vRix12jJljVWRH0ErzTpIf2vBrwUryCTfRx5H\nrLbXMinDSvHI8EpLzFk4z9JOfm8W8yJCF2lrrXh/eZBSeWTf2dr7npHtwbTKEASHMwdZ+dQ+dx+d\ni/0yqg/hO/VuujEBtxBhA/NbLzERejYcZ7Zl4gjNkjz/w1BaqmIGPRlZu9NqefL/ziJoMVvUksOs\ng5ly7j8hMlRePWiilr/zO8lrnsCdoTXlQp84tEQQ6dVKmX1LBOV2UfrfPEsxt+vfJL0AVpHaMLUj\nLWN8svb87FRVFiJZDLIV0vJe+7T3amdHnBdaY+AH6veuZd4WOQa8WTb7TVs+sl5k+ej5lCy/cH6N\nadKvoCxAwbIf6G2l52m9TkwED0q7Bn1pDWuQH8V4Cti+aMexRKj3kvXZsuxhlnGetVztyKk4yzTe\nS8+pNKOiDHwstCxs35m1jzcPlemgsl+Ger9VT7SfCzk3A5E5o16Jc48XoBHPIWM2muLxWVgFSSf7\n58ejgnqcMaHjxsTfQySoKL0P++eU1W6tJ30nseDDHAwIRvdijB3pTvieKS1/P1iTdnP/UXELEQhU\n/tht1l01sOJR4POOpmvcQ0RjexQ1+CBuEM3/cA+6KLhMHAgTGKYFCCz9mbR5TL5HzYMs8Po41t9X\n0lyzcjwfGc+e1rP6HJ//krqyMuBvIeja6rPacerpiXfgaa+uIExgmNG/bpfbgGBvt6yI2/Gkl+tZ\nxrmudwNNdcQbGtHssQxKGUfTyg1ZItSb5TE1yg9D6yw01flcsa7YhLId1hqt+8YV4ifkFMizMpPM\nxlJfOrlIzO/ae5JWanmY/T1QoeOhZwyhhWJLD2YhJSqRitKHBH7EmGJUaLLfvZglAt7iWCJklNTK\nJailXd8r59SN7w+3EIEgS2aLJUIkNDVAaFoHUjx6zEwhcF6xGATiJfT062zi3tOM4qmernhCiVJf\nR4WxCPXEssHQKor79tpuCvSksLQsEIQrAFjf1BROdq+899ZDwFnMzTQhz0kpHpkQK6NaHej7er7d\nWcBMIi2OWCJ4minvfswZHwlO6hFZkbSIVkrH3qwM6v5yj23ZYDE6IlvGVtE7lMWgWuK+PG/LeqMt\nESxhpwhURnKxe/fKigYtEQzMEjA9k6lECwS36QtwuyPZUdj+lvFGvpmOkbLC72b8leMifrP9XFkW\nEusFL8Cq1T8P+fbTaLsODpIx9pEhhdkZMJh3W+/7gmuZ3SbGLGCWWBkrHBmU8oysY5F1aWiadVgi\neOgKfGsZeLE9MVDfj52dIV1ifb0CbiHCBpZ2sFge5HgHjvgxor23sjN4sKT/kXtOQWAT2nNneIZ/\nmofdwIXOJnek3qvA3Vi3o2vmiRs9CAjOdKA7WxtUTKnb7CoHxqtpmn0QjJCtxJokrgSBTM71t933\nTNimxWR/BUTGH8ZA6LmX4YjhW8QdJJQi84BguCVeFUMw2wnvCXETZrQQqYMF/esaO9+hyrHH/cC7\nX5u9L+JXb39CaWG341Fabtc6ZtJ3pzGivqMhVYVF+5Y/nhB6F17WDFbGyEoTAaNV9qph2RlUme6e\n3PhRcAsRNojctZ/yXBYQoMSSotw7p1/MD9GL+t/ew691dIwloS67ZryaHvRkVehhZqhmFAja4tbQ\nFFVM9XatxzjFZ8jtc+pI7on4eJr1UUKea3Hcd12SyUvh2yhGtDBtr2fHKFBtIQEaaM/NvX0WQzUZ\nXuYPtJKJWOr0tmXhqwVavAosDe5nMwHzOofMUig6eam3+XH2ED9gmZCSLTCUDNX4Q0T4AhUn4+vK\n3IbWcpodBOphzA66H3ioe+D5Qt4eFA266t/alNnpszAtHOvHDJwWY+AgrL3Ft4IAy6kXzkk3wGJW\n1B0U1OOeeu+tBF95YZ6IW4jgoKR67NFE5mBznqtC9nEikeBLHt/t3PvbY/q2GvH35XEuR/2vWRqy\n+VjFoYU8kHu7r7q5k66mtNzvn1xUZfnJj9mFs1KIUeH3wo/L0R3RCRSKmRLe3z/Fb9EP6DPmg06p\nMjqW7+OZOEs4UZ9zQO37RLjZGfJxQEYp6jlpX8ZMHxG/a02+63uYJhIDtUYsL7ysDDOEJKMaXIwX\n45a9Ak01yRLBynwky6TdMrG25G+MPu9l85gGjJcgYiIYtziZqErmn3wkilYLX4lh6dp/4Te7NZ/z\nshmVQNqW5d/BAWllNYqUlfc9rn0oBryvf9b8yOtrOw6RHvBastwYRmlmNU160rYEKuYhL+ILgjkn\nA1XQ7BsXpVNuPBe3EGGDWDhwcSkWCScxEdQJFdpu/fouKuE9C2Yu4YPvIWaaDPccaGcUnuYh4qO9\nV/YZ6AmK5BMteT70P0x+/mfEDvCslvDUMy0RWPAyq0wEllVLywjYqTFzAd02mtz3pH3rScMKzatr\n7Hd7zxH3hpTG/PKPzIG2LStugmAOB1TJ3rpsWTZdQgAxCaO+5JdAhyVHRHjvofDAeQ5sv714B0eB\na+0rPgtOKS5weP2AoUxrEWDs9y9Cn9V1/py9r1iSimxai3HM9zS09oUY5asFB/6hYyKk4xa33wtu\nIQJBsUAowoPt/MXmDEaT7THzDxE1FrUZrAiFLl5MBG0uxgixuDABNaNyY4Brq7yHuTPkU5/w2+or\n60MUGIio1Fee5Rh63BlYhogVAo9+D1Djrx27BlfKNelxoiMyLrBIRDjk9eAIM7OS8WcRWTS1qlFf\nC5yTI2iH5St8OU+P29Hxcur8bbR1JYNNEke/ze2fyTR16B1BoaVhdNesOS+L+DmL0qzHDs15Q7hz\nKgbem8fozrbqi8Qe6Anc6gUerWtQhFHm/fK+WWQuVaaX0EpfxJ0hI+JymeG5naqyTmBFD6iYiwjD\nPLN+M8Cv62PaHyEjpoixLVdu3DgDtxBhQ8s0lEXBSlXXlt0WiHLGETi8IpuCTr1mL9Il2rxrs5rz\n3DraJri/x4c8EvHeswwxNaNsHbfqF/VtJnOL3LBaUy4VxdmtTx4LqeAwVCg8YP7IyBCMjrUhJg5i\nIpwJi7ALycQC2qeR9xfJde/GKVH11f8ts/n2Gayavef16Nj9wKP6/2yyyiwRPmEOegS82Wbzv2Ky\n9m935yTCezcjQh3PnSGU+3y/iGo7a4neyfqHsQ+sKPSifzAOWbdNIa9YKyXhTucO6wj7/USEZB3s\nXOT7jghzBu7102D2p54rt7om7fv3R5hLLDtaBpnBniFVx369aTHoC2btZrGNs557FBbNxa3oJAPu\nWSREtPjryt9fJIYQbzOOj6Is3H6vb6ovigbrEDzwDqKDmIOT/Wt7XNy+I33RHKzppfvRlXALEQg+\nQVLZpXFl/kvKZ3wTPLwgS0Glz65jpvUMyLRRwOBtG0KR2FImTgoTaBtgwj66xkQEIHtoN9oZ0fAp\nY3EyWKAsNOUu8RTI/SrGwgsk8iNmmr20w95T0XczsX2GnvHS6/ONLgCRmAE4lmzbG//d4DVmdaDj\ndWQBixyzKfluJUfg+asi4xnSuG5HRvqaLlWDhHb19Yb7Q/7DmhlecpyhcmkTonxmRsipLtfB+meU\njTBPb05MmNPW1xdmroisN/mxI/FKIu5YZ9H4C3maI/Ex/JSytkXCSIUsvsWbk058BDj+j8Ya6MFI\nC9ivtv+fIBwvZVpBQ09j+AHYt4IyVkwSWc2jQx+FTmVljN/k8+OeemdnuGHhFiJsEEzXNhE/wBIB\nUz9SvND1wdKEp9QwMwFXAl1gf5lkKS4PmSSTGBCW1PoV8HJZq7KT+nvU17bLuADqpxsrZC+ZvdPw\ncSyfwtOMKgsYN1Sec6/hluNZxIxkcGAaOctM1rdWkPNk1BIBY0gwk050d/mW1z+nTL7KtIFD2tj9\nW1w8W5zaa3mxV0/rm4rCgxVNCZK9TzDTbEt44GuxbIIbtX95TLQCvkOWCAGz/Ii12wj8oJNxy6RI\nG1pgMefdzIInsD17vkW8L71sMnvuJKOWCAhrmO9h1/rkBe4MoQxFYMWQkqYljtJK1u2C6c/0PQgI\nPkgfsL7DMwgtEZ5IzHZZ3ZzXje8H90tKKd1ChIJ2U//43MyaPqU87n2b92LBrJScU/m526an+Zge\nsObT00n5fcjEG5N8jxB2GPgyJS05ZgtnPjUi5Mj1vzNhTH91tV7iHsFjFvB+I4Pn8fPo2y4Z0vze\nVrMMMs/FtDEzkJ+kbGFMGSHBj7UOMl4ChGK532gH+9H+9qyEvLGqCNBPSaw+2ucELDOXrRYw0I5T\nxvc5jY/SWDo6HC9a62R9Dw8jLgqj6LFEsO45iiwIcE11u2IhPMq+JTn/aFkYf+13X+G7esI6vKbT\n1NV1c5ZWcrEY4zZuwmcW/u+voxHs3eeuLx0+3ww6wn/PzXOlvEcDKz4L0irvAQzcyt5i5Lvk9RSt\nE9pb0TLRW1fPZil7rGqPut/awmitIFL3Nv9XF7k5bweDu2r6Q9OT03j9iCXCBMyWTdz88g0LtxDh\nGZhsLoZ4SeCUSasUMmRnWXBEfOwKgdEWhY0/X/Kl1TbBrdp2NElmTARxP2+lx1LiKArDnce5w2S/\nQcpHXgbrb4mOVZQ508oDcbZ1UU25eYyw8N7NQjS/1v2vxIy0hlGMPC7O2h6XDObOUFI85hR5reYs\nt2m48oxrMl+wbxhwXQBGNOjEnQEx6j4wwlx5z6esjfqrH4dh4xwyof7CAdsicyaSyYa5NuzVV+9l\n9cVhjsNOdwYLz1wevBgph+olgoG9NldRJp+bLExAgR4T8B3YiCPuDO792/EWHhhYV2p9/SPiFiJs\naJnMbNb07dtjKv1U3tJjSnnSXHrtJEsEKzWc0PJiV3oC1oRE8eSBJ688KgVPx0YzO0XPCsfR+90y\njuvJEZQNFZgP+plLGaZZltpNtES4GizNvwc5xvgNbhpH5xpqwWo/9/tF+wHOCRFLBK8pTzOdEpiG\nGve0hDdagkRwhaF0VFAVSv84yMhGwVwedEqzfNRWApZZtpeZRFkdJb23IlF+BcGVhzP7N5sWnR3A\n+UjsplldmScsht+B2CEeLEuEWfBiMJ2NoykeEcwNQ1upnb8QaCuUR5sfhNbZq+OZWIgyEsfHWXHW\n7pgINyzcQoQN3IRJHkP5x1mhHEgxoKmNYIYZofBxx/o8YUIkldbOi2Lm4MqHPPCO3Ij3iljQ1/C5\n8++3pjOlGw6xa5m8eb6LSDx7kZAjzO/ZQlFpnrnIY7+HS0gQxAIr9mBEq+G53PS0qS1sAs8b0Hwx\nHCFg2Z0YJOyZ/F0mXPH1zyLalgGuvTfw47PhBVFkqIKkydq1Ddr/v/5fTJqBgP+MfI+857Rl8/fE\n/YjsTz1a2Agi1WFmElpPx+ebEhNBvJueFHO8jbb/mampa0j+vajy2vLqeZPLI3F61poZwoPpAqoX\nxESwmo/imWlNbXcGSW/JsttvUl+XcmuFOfgWydIAP5t5mAUfizOFtGXnfpM3AriCpuMCuIUIG9oF\nwAqctr4B09T+vyZ1reBT1tMDtrCpa47JVi0ruvIUYCwElj5vKACdFwMCBQOOJngE6N93BvaEBq6m\nmbzjEXgWF2XIf8r5UI7tXIK4CTSl25PY1DKfW6Yw8bnZCgHQ0hA1rb51DxOYgYAht3nQEqHG6+i5\nV2PPEoGVVQIvpz63PycJDxCeYMB7Xp154YHIp8MsDWegRtxe5O8n4u1g3AMM2OrWMsGEYzZRLYMC\n4zVWPl53JCbChbxUusZALim+h7EGzcpqcqV31YsjfadZGiZrsTE+Dma6Sslm6GdDxJwCayjcu5gl\nb0+/uuKQXVEqHUSv8PrG94lbiJAe+1RLrOYI0iWK6/b7nQSFs6hc3+UBhRR1ITEFGIQwsRZBRsDX\nyLjyvOgXLn6F+m9qzP+/Q3TZDlF+7+aH7wQRYUz5827Xtt9ZJtxuOO8QSb74ivW4hTjoMa1/huDT\nsqbg2TKM3yKwoqxvLYEGn7cBXUFg/MkIE+MdRKJ/y2CYU7q4iyqIbMZCEWBsv6nQhNdzYz6U+4Ln\nVhMQUuqgaJE+eMLsfcGb26ET8AxGUu1Hk/oRskSY9P7s/XdK9U/FLN/7HncGSyjrWxjm/bKhEXv2\nTmNQUS9UFWSY3Pcsgf8T2lAxpwidpS2mBoQdkydI79j9ivPzxtfBLUQgyMR9ybk6Qvh0QGpu8xGZ\nfi1JDdWNTAi5VTGDkVUnEOwKn8GLfK+EJx3MtegW3Fd9cNv7trLGPa2Q/iO7OGRmadFl0A8cfe74\npgT9ZvUpCbm+13KZYBGp0XSYRVzPb/QT35Fo0xB0lSjobT+2NtVYsJ8B2+7FXsRn5p2Dx1YbZrkm\nMAGfrjdOXDKc7XM7ApYu6xOEbV9Zw9eDqz1mJA4DWlHgeWbJMuCxRDN1FPctFRNh8vgezEQwI5sR\nS4dr/Y71qbl/O+LTUYHkk7gH33Ln0QemtTxL+OnNgbrnzXk3s9flsler/ZyYZxyA59qDcyCicGLZ\nFOpvWY/MRCWVCh8Bmm7EOkD0JysH1y0LmxMzCdepSku1ZWS/akcHO1j8fPjYYu4MkepuTMbVNv8X\n4RYibKCafhAeeO4Ia4DzUQwLMF+P/2UZmhIPFjYlSfUIyNyOQ+jom5hqyi7ek0aoh2grpufuBruV\nRYbUeX8eQ1/DWGSB0qrK2P2VfXi0xTdoWYbfz/xrrb67KR6dtpHIzxHc280qW+Z8fDyOP+V6PvQ8\nKZYHYN0jLBtAWKL625nisd4n544nSNP31v97+Bs2X/G3KfiJNxMCI6Yr0ZuFE/uYHfzOi/2AIQuO\nRolW3460OfJc+G5X59rsTCIeNMGd1yu9v11ILjUfIxkd2tudfalmJdiE4oGZG9mTI2Wn4+B7GgHu\nTT2xYEL6jYAArfzejme6GKk+lDb3wcqY7qsdktuWRhtJrx2B9R2EgkMpEGyFnVlfoC9MaVGVP1KA\nQYUIO30QbXnvE617mbDTIhCegNG4TDd+XNxChA3tovVtk1B+fD6OqDnvjW1gMdXc/Bs18mRhMxZc\nLiCQ57IW2l0My4oZkIhELBIchso6x8y/EZ4bAz6fkBwbzx7yAXcIx0gQrQiqb/ujoqfSlCh8YYIL\nY4yycW4JfD7JGLXu6em3B6Yx0Cac2/ed5B/qmnYH7s9Mv8eIWhpkxuBaxPKogKBqzkCwmfbn743X\nYhbjhNZKWnvXznW5/1ThZO2LydSwwICZCC/XXk/9jnbh9HnC3BMHLTZS4rPvEQAAIABJREFUGt/v\nXio0gTY9N8dpbZ1dh3qh7YnxyIo9jDzTMyF9ymY1lin7SaDNCFjGmUKvROJnoYKOlJ0yfsWcvJ50\n997DAWuKWWz/ALiFCBuYJULWuC7Lm/jNJKkKg9p4S3MrNZlyEfQ0y4qgI2rV3Ry9LCYCbk5kQlkM\nZMugecIDqz5lIkq6safdfpThEI+yNZUtEp4Z2RY341eaiLNsHlnIli0QGD4+pECOPYtH0I0Ax3Pd\n+O33aAkTtl/0GhuPVvwOzxrFAyOCsEeLUTYSEJEKJ8AaAMc8z3Qi+0XdVeD3UWiTbn6e3SPiOhgT\nayGT3SzblnHaH0GPNYYlbGr7nbOdLGrMb8d2fTbGak9sBGYJE5oDjOlVZeaSt9Pz1MNahEI3/L8t\ncz1WQiJbZPTmpLcsEfJzt1pQHPsRTWnIpQd/X4wf8Ea16uukrCMR5Zj1XSN8b13/a+FieTYpwxC+\nGuZukufkt2xRCfQ0FYgM9y6IA8K8KK6+ntz4mriFCBvahSP7Sn1sqtXF8X2uFTwOXBtraG6JBrcq\n+GWZ1pwcFzsr2qwsg0ctNNHPxLgt0AZ1CA+s321/eCBJZAr5e2TI1761G0NpU5bl6Ru3f0CYwF4Z\nxixgmmD8DkhApVQJJLzGLU1Wcc0D+kLX/umnKUFFCYNfhGnFrSFb7Dx6Qc0VYcNm7gzqOR3NQL13\nH4qJba91jKVanyPgwzIfpAy8Uz2fdZte5GzFnAMR3as1wfdUXHpk9eIcapbb+abmAz4/+87Yp0AZ\ndv4FGc6mY4SA9bJcoMtIRDCahRAjxH57jxZ4b4LlUEVEqBAgvlecGAFUX+3t96qvqXtgPqfE9oR9\n4XYPnsH8zogTEQElN4xrwgcfr3nCg4H9wwPGrPGsGS03Io8+cC0mykIf6ChU0JPulNKTTvWWkken\nJa3rSr7/G3UpyGXlPXid912vWzgn8171jbzHD6CDisBB9E/3WWBU0DlZYzUy1i9oFHEd3OYZKaVb\niFDAiXzJAFj+zr0ouehLlL5G84Ntlj7p/kX8tbBsWZBFGckUFlAVg0paq8vkNgwrg5Yh6tH8WKnD\nmOm5J0E+QnhVRur81dWKBOz1f+3hDDrALRHkhsqCCVqBMhlhMoLIU3qb/JUCADKBUkYkPWBES5Tv\nnp0iTQkyGnjCKgtHYiEc1ekwC4QRWBpRuXbsvxN8F9i/N1IHCgo8PHMOKFPn7fyZwp4FJsbbtt/2\n+IK3VWBMBFZmt754Ub8er81Ih/J+/vEh72nGWN5fIy5e2GL+zabUAu+RrX/IeBcmvSlTPiMw8P4+\naV/rAdIBkVfeY3nH4icMae0PcINezI9I7KUIFK3t9adncXOQBRYqy5kQGMr+4fkQeq0MtvJ53coC\nnzoP96tg3wxvK1M9sB+dbydx46viFiJsaLUL2RLhl7bVJDOvGJX98b88MosEK+MCWh2kVDWXNb3k\nm9k/yxyrlahaWk7XbUBF9GtX1WyBsC0r3zbi46N1eVjEc6GQ4rNZkVBw4WWjQHP03OJHU+GHsQnR\ndEWGdsOzSPDjJciyHmNl1S/64ZSx0MMAseqq24v8zSwRytjcjpkOXUXZN3r81o55aNvqU/QZijuS\n8tO36/MCOuF3QGsZqRWDsU5iQOy5IXmWCF6ZQkvDIzBLBC9DCVqsQCxGWXeJqi3r40RvnOi7qpA/\nzy/LreFM9AhWvO4V7V+WYRdh9EakEoG1FW+j/b9YfcG+1M71ao4uy7RzbLUmBgNaxOXfzQuoWWPk\nvtQj9Iwgsq7kb9djGSeWdKNftL/lw3S4gxDzoB4rra8CtCbp+dxnKhCstVLSQx29hfmh6NWuPpHq\nA2W8eAJ55qNCjLnDHUFbR455puL4EMVTjZ+g+xVulLoDe/dtFp3Gg4cEwwfH6MKH4Y0GPXPoe8Yt\nREiPScl9eDciKKeC6axzv0xmOPQ5NIP+aJkug0ll5pQWAyUWyhmb4hOCBVhmpO495XlbJo6DpWS0\ncjozyWzEYkBrZZ0NmvRnDxFLhK6AQttvkZ0BGIDqzqArQqEYC2qE5zwXDWyhR8vNU2Q+nzC2hAbV\n9NK+xyNmUPBDTWqNPnlMv3K9aYVE+AxZgNPSTQaRxuab6pdTJo91FJxd3Z1hNKBhfW/IYLCy8qR4\nQyiMLUJyVli2MbLM0/HcX40WGKQU0rCiRs8tOyGg6iwXg17hs4ke23XHEuGroEfo7LlQ2GulvoLu\nDKJ8Edo9yuCaxF0V8r2lgSkoWu0XqJaZVt9z07NQXauctiLyx+2osjOQerLQ77TAigex1DRij9+T\nuf+bX75h4RYibPgkTFLWoLC82SNQqSO3mdlu0qi9LybjRJOJsRB8872t7CJ/t/eFpKxMugo3Y5rK\nSMAeL46CpQFhGhLNrD4gTX7jH1QxUPl8uAaJQqMZQc3E/4Rps+rLmGWKnUEtEVa0Ltg2rk9NmXyi\nwOFTj9U9S4QW+HTcasQWWOwhj9WlcTFCNxxvrKK1DNNs4nzr2e6Pfl3r/kX830+AVEOs/h5SgVzu\nS9aWM2I/p13tqJt4kIkgi/F+5baJ4Ay+qxZEaiK6xp/Y5gchrjHdbO0nK5sJ4vi3PLp0KOsvErC3\niKfQVevowHY0fD0xEXq07WVsOt9Xa1h1/ZbwmdEdVlDCacu+Y4kwC9jXpRw1A6TmfxaUNvdjnKJI\nd909Ffrlfd9klGl/L4F1ag9C8F36MVDPgCVCdxvbMeKylJ9BWw3aHzG/z8URJrzB3GQxwDwLBAvc\nSjBwo1nhnA/h0dj1XazbcaHXU0oJtx02Zp8ZXPyyWNMtWdlwCxE2yJRzyJxrZrUHuGBXxuIxY7Mm\nN6UqRCgMGjEJRXNRFSOBMWj5SBbMQ9rYgZ1MuIMoAmq/LyNp80aYm1fBSiPpvek8gkrk9cmCLyad\nR7eGN+Jor9wZQKjw+H+8f5HHRMKkHbLFtQCZ/WaMZoGC8ov0xiGaMU8ixF+p9GC8mBKIOOPlWaD+\n14V71ddUBHin7h6XAqvJlmjrGfuWQIUJQf5/9t4u5Lrvawuaa+/7+f3FA7Mv600FDSSCQgjRM7Ms\nyYjswDpVCzxRCSLKTAgqQuggPAjhRQyFyKKD9EAKSzxLKaUoBEFC9E37MMUTD/7Pfe/VwZpjzjmu\neY2xxpxr7X3v5/fsATfr3mvNrzXX/BhzjGuMIYLpy0njrjCigbQutDlfEQbdCjvqPluk0HZlgcGF\nPhGO0sjaajWP9ZE1TtgYGVrfpf+IqQcNm9nVdZ8JfC+nbWhyNLsXWv3vRp44KojrDrayfwSEOlTB\ncyX3PoeYUN9D0UZpNAcqNvqQtF5alkaXP6SMcxZUXLdkHB/l7arQzhauRqKgvOhFKb2ECIU0RHeh\nVxoizlbIkzrgQCGHr0stpBMerPq3fsZ/M2/xxeN/0u+UUl1Ei2+BzrifOHgYcEqFfcIWQf9AxsuJ\nCBPckIJW5iatdWhgNUu2D9gQqf1wgYprab0qzzj8svIiPiCQ2KYp9AEmBdycQY/NC0EiVG/Geuy3\n5WEkiNJ/AdgivsvWZjzAS3kpXN4IsRCPHlkOUR9x2LaqWNX/wjDx1BqVku8FnLxadY+yt51ncPit\nDtn5c3jzYa+8UJuc942YOdW685gfaC/zz1DXju2fq3KMKnN7yc/OJWROmcAaNZB03lgd50VnGDgs\nzfpnm/GX4EYQMu57UPsLrBnP5CA2SiPrnbe/7c0Hb+/3or5Y7Rtdp9Gc4QLfrF1ncS+sJkesfRMH\n7oNmDMjTMCeWfWhlO63la0VHP8DvOc4XMCRvNVfe7qOgoM2PZnucp9tphNtQZ93yBA3ibPFCBopB\nVRDS86elOTBPqM+a75jWdF80z7dELyFCphs5eNcFw2F0MFP53R8sikMndDDYHL5WRCIA6qCtqpOg\nOjZdmHfIposlFs5zvbUXRWZ0BrJpdmlpM/Tiz/xFdDDZkwhdDZBzyml1VsaBCK2AUENY2PemO2cE\n15YviJT6MEcFiUDKscaxhvxC3fmKsMUodaYEzgG3h1P2Y3TNfh2kT731AOciC9E6IjSQXMiAjWgj\nZm3wRwghorp+Tq6pglPXHh+sxj70E+O1WP17NGLW4DpjBVOZVBhcVud29wJj4IPMcA+JIIJkqx9V\nJAKj7d47WftSS4iim6aAJt0yZ/APkPYLWmYMpdy2PENIHHlvpg20zBl02TuLQ9tX130R0hnmDMyc\nECHn9XBTqSo/NkIzp5T6OV0i2RAkQihghbQD1txZBAKaM8xolKcc+uH/aezgw5B7XlX75fVkmuY6\n5czwBVTx0vEJJG3CtLrdHsm6o1KiYs459Jd1iwCIShppu1MOIlol5TXvEddmIEZ69GXO8KKWXkIE\nQl1IxztB4Vm0gho2DxZVou0cgYDVeNwixR14J3eH3BdtnwXlFkb7Y6C8GR71qM+halOZGflm1S2H\nQGSknPKQaVU2bJCmHDrb9hhMb/XP4FROSL6noGTeMlOKtnYp9cIDRC9s5ek83eHSDSO67iVxyRqb\nR50/Rca8xUS3/WF9M9YiFDhUZqEtRLRiPO0oRZwjLnD1DgRCPWR/vy1sDnXCMFL+AKiqUJGhgsBP\nt0e/hHcYQWEC688iEID8TEhUIi6IMCG14zkXs+i0dQ2paev6skCepq57M5UHJQ1WiMcPcF7s0cX4\nPyXbdp7lL+OPrOFm3iaBNc8oY99h4z3rdJtmzBnq3te37wrDuBOQNj0iBx0x06N29VIOaIQjPlNq\ne5v/YR7IPPbmr/cN9wQ/XrQH9sXM6TAwT44iEs6a86jFZ69QfGUUwWjOc3DPR0eK76RuRCdEZDDd\nenJUUlpCPA5kIXPW4g+0TwS9D3nf5bsO+7im2GD4DuglREjbeGgPNbKYyIR6A423cvqH5gzEcQ2G\ndvwArrVlaEVz+xWvTZ1fYRGU9r7DgpxSu2DKnZynad9XsFuPhXiUl/no0qAW1kMZdCYecL/9Xw6g\nlt1gSraJR7tBIGwe6aP5H9ftoqVwtFhS7ldyOql160W6bZ/8XxjPUl7fbnyX8mzp07zDWJU2tOXJ\ne10vus53Mv7eZdxkSPGFLKolHCmEJeXfY1XtZO2zqE2DTknfof++NH0T8XtSIX25PSXsalL1tPkR\ngcCQTnWc2Bu29epfSV8Lc35xvPf3JiP5d/vacNJBwSNzvHiFOdl+j3f4ju9Qd4wx65vXpWE3b/xn\npLwIFagy0xJJ+SgQUd9X50czBF0Xb4NeT6Wv9fVK1gMhPNS1VAQXcIJSIQpxPTbW4JTqGPoKwsX3\nNuyv1NnZrzmoA8tbWuqRCDdP+2fYSSt0n1xhv62Q51p+Z2oI7789k/VKly9zSkU6gfa+kz1hiIx+\nYxGjrDao4spV9x+L6ILzo/bj2qXF92N9gutJmQup/R58LaJ7qrEue0JeRnU9lvEnD6QN7ctpfg3N\nUNt7BZHpfRAW0WQnTxdKO4CiU34O5F43l9YuLdb50fGr/Tf7gDXXG/o4Htt7uFchwrJ9lw+YZzqM\nun6H02lig2Jtsd6b7Ud1DozX/aLvi15ChEzMo/JaFoz7LA7M/KCDijtwaLQnZYtZuZevFfZupynw\nKYFjUQ55fnVx7UPpoet4/7dvsAcnbxkDvf03eZo0eNj36sYwfmwj9J6dSYzBK9phYFTeFWMnQgR9\nWL+Q7/QBadCZUXtvxHZ8JM2zxje3tDCM4Ub7bcbI4rN7aYj12sEPwZpR5B9pRHgQScvsN+9FzA/B\n/erSvyM+EUaiMtybmCO1LmqBSmNo8phjwJOxtRGte++bZ7sWjbpXPkGnWW8wLxew+o8tHuPlz8yv\nkT181vGo0CPnZsxkabta9v9ennIl5d/LZNPbLy2eRB1EDRMelhbnDBui1mt6rx/iHfKVCS5SebZd\nI34TuuzU2QAIda5OWqFIaNoBnwhIo8Po5RNho1c/bPQSIhCS+fyef3+R+44mwztT4+L8gQ7oWs0F\nIBAwEkP7P2rZGcwfBQ6yZGjNNwgjuh2iFfsbDInS/MitXiCQkoZazUhvR/JEJjpz+NOVk6+s5hF7\nVwxj5cHJvY0aCX0i6DqPU8TxKLO/xjTFiSfRzM+syS7zZthA38ihJkIeWsaqk9GeUIPC+4HZesRB\nuTLIXMiTUhOBAA77IZtvVieWnytQ5gc75TzEJ4ITZrHCsvMz94CR544R6nGrSzcwEp0BzRmO0kh0\nBiF0ophSK5TMvx3fCBURF9hci4DhmOos4lPHMy+bqvNYdptCJ6nHqBrb+SHrCc4PZs5ghdVl8xd9\nIgidbcMdQh8s/H9Gan4UGLnwYmuXBg+7NaIQmwNgAHK25CFAuI+wZ3uCB0aao9Xk9XnvMB3a0qYF\nBMKeAiqlVP0TdGZEJCMVNOxIjb06M0XMGTzeU+55zmdfIIUXpfQSImRaQLumpY00KoOkPbAms4XT\n8mKvNxE49Jd29nUg1O+DHOK66BMM83tnwoNVJJ42E3rUQ2rOQ5wDIRywg0q2iq4BFm8tV0+yvdJn\nTLJdnsHmpqX++V7SV8/qdYUrTYObpqdNBB8JzHFmSXPrv0dvnqLbN4pI6JBEWC5NywVe2/tstBSG\nNiJMkHZp4YnKhzBPaGdbdwfZdaRF2G9t0i5/ydMIAaGtvnBNvr0wv30eNJ2IoAs87TtqGrsDfVu3\n3INyGPqmOmKzOdCubrYnGM9Y2o/u2/NDU9vOvTaxcpgwofjJQUENef1ywCPPsGQcP+3vCr/X64Da\nfy1tGmPKMTrDycQ8mLtz0MjvzSlc96z1kNU5skZ+JvH9g/9uzRlYH6RkzV+56s7g8Hldp9oTjLVs\nto/xQIa+GxjyTOaJ6Js+2Pueoh7Yp9HX3hMksz22M4Eg8wPnXWTseyYovTmDrielXkFXeUcyRrEd\nTJIxI3EUnwh54CzNBico4SNIBEZsbJY6JwTKP0Z6RWfY6CVEyNQuALKAL2UBtyemxW+ygwXaS+PC\nmVIP+0bIVdtWPKiU56pOfe8CC2Zb3lmw7+oXYrw8Ni+PCWrsMmLmDKI1QcakkiS3zRnmXsCCzZ7t\nbZ8yqbDRMiRCQcnkDhPbT22DqsfzCvfbexYTeBZFmI21HKz6xFa0EZ1mvn1C99ycy3p1oJ2eAOMs\nExxPA4Jx4D36MTE6VrjZCNH1T7xzHzyMWLnZYQKZcYZWOIVIgRGmz0bPndIqSojyiPgcCDXn7h4v\ne8Ia67utzT2/XUfNGbz1ge1n9yBubrbdFKFnxL1l0eI39w61nYwJ09fKA80AO572AXUVIQQqnohQ\nZwSJcJjEF9HE/GUIhHstA55D0Bd9P/QSIqRtMWFIhKrNzos/03zjnKU+nzRjUp21XNTzrc7t/+pY\n0UYOmE71VHOASSvMfv++Jim1iYjIF/XbN+ewhRwzVO1pe4bP0lwwiiyuI0gEFpLLSjOyB3UQ7+Z7\nFY/FSZfreaovdvYsLTC0daNt2tNpjjICoZTbSum1Ju6dHBqsDdn7PJ4JSt3oteCCvUuE+jB8+9QJ\nDIkm6d7EWjvCgNpCsT4Nons8TetZhIgBDKF2tDwvDUYFad+3zCt4xtJ2ZioyXqgQa7d5Trv3yzkb\n9k3Dm+arBSVW1OGMmZO4G0+b+iQWjR6WdkM8BmzKZ+fHKZ9IITkCIR5PmLhsbFnz5Kg5gyxQGFHE\nI/aK2L6Slsxfj/aStHVXX0T6qh17TvBrdO7kOu98Fqz8JVnTBsrBeYfrqkcU/dAJNJP6vf2v1yn0\naZXS4JxENBULsZrTrNYGPEl9VJD+vjiTFx7OE+Z/17SmxzFyT04vIUImtqmjhvkMB38p9QeMD+Wp\nWYfAYx6uEWJVpbe2lLke+PRV1VUEA1Lg/VcOyxZOfw+uHaLlAZSdSbbZQccmOUBi+1rNyna1Nhzv\noMsOFiiEQMivgp4PMKAmFJalgXax8SKCri8Cs7v1fdWhFsjBwrKn9z5PyMQBhEweA4/jsLVJF0GN\nGfPdcwrntB09q3vvhM47Pbj7GHPV1y3Z0BFYGS+k7gv0cQtJ7k1j9P1RQg2jHBYQbbU9nKsjSp45\nw1R5jjnDkfKUj4VShxaIFGY/0GfaJEiuMM+kPocpR+ETlv2t08wWWvqTzE0szi0fDyxFGjAY4nEA\nzmO177zx7NSN+5sXDUCuTru89S4FngnhOoyIhFZeKF1dzR77A7hpTjMw2HT0jXC2zoSRVc1MlPT9\n9p5WMnh7Yfd9nXbGTI2SqhOjNOh7WngQEiQd5J+XQ4iEphzoqR8TOu9Fn08vIUImFoItkQOPXYD+\nSUM83vQCLIf29hCC5gzs0NUzYvrg3FIROED7PpqVBEP/dUTVJsY1tcxpfgTFMQd8mDfSHIxgoZrz\nQKgV7hURxqS/v3SpIodptE9jFiToSGcGIqrMfVZ9LeOQ2P+aToyasll85lHSNpR6/OEhp+3RkGDK\nMHEwHZGSclnEFCRPU32EPIaM27hz5tszp0HUh0feWMX2MRoxZ7g3eUiEmdZ5DhHv/bp7GnaW1iM2\n1zt4sCfQNfca4jUEwz8GHAaW+ctCtJ68f/QC3J7feIDMPlfUOnqz+q/Zz++scev7Zq4jZky1PC05\namqp8PTAMCnzuSnD8ovRVjP0ORw+rU/K5+KI8sZrQnXQa499to+YyKlS9z4xwUXHvzgoSdOZZdsQ\ns3KPIbS/5hEkAh2r+Hty7L6EEBu9fCJs9BIiZGqhykUr2XnKPVaHFUKHOXrDBf1Dpdmoc7YWaAPz\nsYDmAY+cHOgXoh4A243mPozdCKF2t23LAof+GRoxm1iIwAEZKOWhfqff2k2hc2BFNKN4KC/RGYiQ\nojPhCdhAz8AVRyCZ9LyCDhab9aCYdpCxuVsOqWyvqdQfE2SOCIK8Pj4LwloEC6htI2lHhFgRGOWI\nOYM3Py4D6yfWjWYNKfX97o3nUHQGmOOR6Ayl7sCa6ZlxoAAywkD22kVHqCh5SP6+YEdA8KAoA4zw\nMOO9y1l7WGiv6SBA+ToGRDhExQO82o94GmbOgCvJiF8Qz5xhZq+ePXRhthEzC4/u7bNgdqyOIT33\n61pwDEG5LOfIt8JpolGXmv9h465EaYTyuPTeNivp0hwg7/27iEVL/3/l8TbS5jQvelGllxAhE7Pb\nrBDd+GpYnQo29zrJrq7zaxPysfhCkGcEiWCaM5BmYpxbSULNIwQxgYtgy6CVRdBepRBx8Znk2qAO\nbHLeQaD3Rq7Tail4vgebko6Tvqp82N4PMh57KGfbHhFy6HYyTaFlWqC1iXAQKCYL2/NWIBcJ8Sip\nP2B/ZdBGyz7VQwPMfO8IzZbXbdDOO8iG35tQVMKDnbdcWaYEVLDSpemFZeXbOVELrLE0BKMNJJbD\ntAoHaRy8HxGdwUqj+0/3KUZpwLa27bXaNEolvxOCTZ6M2MiyeSd7zdfue/R1h0I8PojYd8b1nWuq\n9c0qLHYEkdJvwNDrOmU9Xbs0tbLn2X+ZEBrThMqTMuj81WmZOYNVlTePR5CGjDokgwge84MPkqc3\nO20FcdggqKCdL2hzXzbQkzfDk4j1ueUcO7RnsXkLzyqycvtHCRFy4q/5epZAqsus7A98US13npj3\nEbKu9OY0vAnt/3h9AtDf09GrTzZ6CRHSNhhuSluyXXvt6b4m0iPML/4PqGPAsolIWt3e9hqxI+vD\nGvYHvbIA4abE4u1c4TcRmlia2xtDfaAjOofJ6tEaff/1UHZWzka4rbKaIxsFfgc8HKvy8vVCvp28\njmU/3FInjNjnUaeYorZuCwYoG5lneuMJVo4Q83lh2VmyQ3DPgDZjCpxXuqYK3ear29Kmj2zQntnB\nESrjr7SpPpOq5HsuoFlqmytjG/ketmTMbLqPPD5GHCt+a1R8IlC78MBiMVJXt+Y6SAQRGCZ9TcnZ\nX6k00HCsSCa5Z35kVeHtqRGKIBEssysRJutX4eupPggYkh5iqjBi/mEpBTwBi0dWkqPRhzpBX/s/\n9PVI208XQudre8xH3o6aM5B1OF7pmstv96yFXpkCwaqbHUQtRAJTSIgC4h3ybulXlS/Cv/Rp+vc1\nHZQ3DXyHZx6SrUMaM9RBJ+i59mkAiYBmDUeVcxEkwozJ64u+T3oJERyyNhoW/u1YPUv3Py7AWvKu\nEQgjxCFbuo6zzBnO7qcIrUbfsGUX793rCOF5Rh85t9B3EE1r/i3yH2bOgFA1hCqnFBtTlqM8ibzA\n5OgW89uSt7l596w6I2QJBJi0//P1oZVoH0vfLnYaL3+UGMqgcwZ6oPyW6rhumUBdmRz+mTkD3mPh\ntNGcAfumfZfehIKME7jlQUtD5gwwFj1zhmJe4TlJfNCyzA4cqP3DtJSeVOVjfdfRw6a1Bxxl6Ffr\n1HUyeeu0Z86wQNryvBn7lpkfO8R9lGc4R/22Is2Y043QiGmQ5Z8mTBH4vEGz793xriAUm6ViVgjz\nYradvZJwK7Bdm9Cx4kLQbrW8kxYEIHSsGIkSxeZNjeSl94g2rcUrMuTjXqjWHzWtKblOnb4jegkR\nMnl2jKjFV5qSYgKgJ60n6S1xaW8iha1pJaSjXN9Batq2FSWnjAlG0weBZX1pEiHSolYUUdlsBTIn\nMLOIjb4cqLIw/UzLy5u5OvckN/627rF6VHsNiDJN60jRe1SKbhPLz5AIaM7gKu2wvNSnqXGV+7GJ\n7cPxhyY4+pkwTHb7kLFj2hJMW8dJbh/tc5yjlepBdFVpPNQMPqPoB9CweNQdHFmatJ/G6i8FN+6Y\naP1dGMoAqdXmWHV57xCB7Jf2ST865gxVG93XieYMDF5s0VEYNK4VaIPrtdMr90aYyDPIM32wiEcW\ngnKb/284AMsDYit4u/A0Td6zQ6WVqrp3IOuA8azNa/mJwUNYe8/TRg/tu4hAIIvunlLB0wSzPdD6\nGt5c6u6r/QifwfxY7P7zwJZ2lKT+0BWhXii0/XNtv2/+V+bJG6Rt85v8mjPevW8p+9uM8mdEaExN\nl8DvGFXep/4Z+83yqGeQRvpTeGOFusyJSlhsaeClH1Mhsta0iy1EW+O5AAAgAElEQVRSOnv9Qn7F\nM/c5giJ80fdBLyECoaH5IuHtUJruLMQVvsgOwfqwhZ7w2/ZZC6WGduu0sgF+VWElZaEkQhIkKQhM\n7WbC0Hh0dNHCxY8d4qwDKXOSNhMub8jhZdO+K7QHD50e8XjcWro8otlijCyGn+ogl00bEK7IBA+n\nw0RLe2zGvdw7t+rDUMNz2rBdPa/iSGzcRMZ8xHxmj2ZRESNLTgmdFkiLmsxZnwPWuuJ9D9EOfTyJ\nzXKnJXacwkX8lbAwalvag/PGOR1Ze5O3z7G9+QzyDjeYhslSLDh+aIiWxG3tD/SyCGQJ27x97qy9\nYgXBMiNrvo4IDiKkBNbdnt+34UgfiNkZ408tcwaPQnomYRlJt1mKobOJzTdpuvAzlUepL/UV7l2X\nflCsMxp5S5hAqIR6/ARkL6NnQmR+Fq1pX7j6vdBLiJBpJYeaCtPW94fLA0eDfeSF9oCmhQfo00DX\nsd8uZDqY/4TO50NR+GQBCVUR2HZb6OcAGUQVDSCwcaG371pP/y7VUSH+ZtLvlbbPk2wzqtCv+ADx\nhBPI4HjIgRE6wnx4mgEvOkNnnhOoS7okYs7gHSTRJ4Kn+feYlwI5N/JEkCauNhGZ1Ek+Cm1s6bQ1\n2qruO0K1tp6Umm+NCk23pfuEiIQlYM7glVPTShmkLqMcv3xZQ5r00k5J48pkZe7osam0k0VjKeVi\ngf1HLU6BB9akCm+dG4DSB4iea/c3Ycq/wgBxW+ktgBfDJ0Jb9s7Cp7TkA8KMGbl5ZL1CvsATgMeE\nB47fg7O1nAP9h+s8F/7q9rE9BgWEnjnDDB3VjxSTjom87gF8qCBBjG4/GVK2RlICfpCgYDvBj+Kf\n+ZhiPADe83haNGcYUfC0hH5Z0GShXZvqPalM6iT8JPZJxDGsp7maICrcheu1IE4W9TullN5hD8B9\nqS3nRS9K6SVESCkRCI/cX/nzs4jF5bXg3x68VYi1Ex0pysL53iwcVdqqhQiUMSsLYl5KPgHnFGFU\nvAP3nuZjlIm2IKazJqlYHsL8I+QdwGdsbLXQSd+L9PXewXmWZvbbz94EmS+Kltq+QaZgxGfFtDAC\nGFfvO5f2wHfg5iBGfSQt0tEIBB7NCDxm2jMyVtnhfwTZ5LdjKygS/lHoyEGK2RgL+k2KpX1jvegt\nMGLOhjedVMVMnjYLg9QPV6Zgb/F2RGyxI2nOJmuYyBzVPkNyngMCeSXDGpgXIXlPvhZBpPAATjm9\n0qc193n89xCaQfGgEugsYsLBEinmhtfmUH3Th2iRWbal3WAO3Txb+c4kizhW3KEWkXAxTFDaeVh8\nIZwM8jjq4+LbpuU0c+1vnV5ChExKOtod5HOaOw0a5TkWHdCR9tV8kmegrnzV2mJd97dGI0IFRiI0\nYIyZ3EPBwlEP0h7NLPZWDHlWnvd75JDah20k5cE4RgFLe88irz98LS//HYEStwcs3KBDMM8nmEuP\n2OPRj4BoN9pDtjDx1nkl4gCSoQTwIL8nrNitYyzbMI2Yl7TjTwQK1hz3TDQuRdPXMp4W4kK3M6Ve\nezoigGMHgqoF1O+k91+UnMlG52n0iL8EgyLMX+gb3WmKlzWSHHTRh4bHH9RMgRMzOOBj3Wjts7OO\nFY8Qc6yI/k/Q4apHrP8QUVTq++Sl/RPlAoVG1rIIjZhQnE2orNGRy/R8E9cFei/bGRAuVJj4RJjQ\ntJx1oEVFk1fqd+1Y8UWFXkIEhyxNcsQ2yUuDDgEpk2WEn1HlDCgj0Alju7F+aP4htiB1J7T673qC\n19JZgY3VdhbGButgCAQLldDeR4GCp3WPrLuobUKmku0t9z4wKm0Y3Ls5Gw46I2XomxnGwWLw2joX\nYLgZnS1NPlsQd4bPgbPJdaxIBiKD4kaJ2rKeMNi9iCmx/FpYwgRn3hi9N6HZRiuU+AChRDlsOQiZ\nDiIeOBSyg0FFIki7dDuHKRCaMBX5Am+pChFs+FFhzbPWFW8NoOZrA1rxGcVBX0jTZyeciCMINM+x\n4hQ6o12DyL3td17/yaY7hOg4iUbWA4xi0vJr1MH3CTRSnnsutlhDMs5NJcMdP0vHEwNv/N5U/g6C\nhWsWHyjBnqWciMBgy317HavmWPf57h49gbzqOWkNyau/C3oJERyKLGRlf3LE3RemHt4hTxtxZN9n\nmovdufAAeJwnwJg5mHUhssnGNcJARJAI91pweyFWU+eq750tTDjLweWRutjYP7uvI+/ZxXw/qW+8\n+WdHK3DKRaTJYLtGyGpG2wRh5q15fJa9ZYGcto0ylo5vEYk5Ys4w835sr7mWdQUWmgFiQqdDphmj\nm6E4k5vYh2n11jh2iheBZmQv64VQjkKCnVN2a7gfjQj/O/ljuY69773IqupscwYaeeZsLe9AxzE/\nPmaxcG3zPQNiIkJ1LeqVDuuK15Ok+sVmcD8pOoZ9FgeLL3pRSi8hAiUMCeeFeCxrCjqKIo4Vq/db\nKXf7/d6kfQdUANa9PRtnSJB5a0OwocfsorEZMXJ/APXwdI3oYHRW687SWCAv7tkAnu0/AMtlv7u6\nyFDofTZoTWaLmkEmg4aphLcf0UYMCSkiaYhDuuJwDkI81jaMwaPHbONzGyztTuoP3tYYi6YpHsLh\ntdjBD8dCxBlm1RyuuQ1L96xvr91prBwszxNOnOETgX1TvHXUJ0Io34TQboYx1hB7LFfmUFLXlFrI\nsK6RhkktgwudJzqjv8Dx+0UIkQjPEEnFI7YO4j13b+g2f+hH/D8lVyN6lr+DKT8EA2m9tcLab2f3\nWFz3vHfrHUg6aUXoREIOm3VQT9Po8fakQ/AAlf3yAYffEfa0mmHe8jXla830NT8Tnlt49R8Ij3Oo\nwQrKpktEJAKjGcHCkADsJbfo6IVE2OglRHCowPwPQv72JqASSoC3Wo5EGJf2dweApjyMztBRBLvG\nmGijPOUDwkozKRhAxjViV+qFeDTrceQrKL32DnzscINdimtVRFvr2pmjprrdv/K1g4Y2vY7CtZLX\n6T9PcIFUwD0RJWOAeTtymBulTtPqhpGTtPsNQs0U8zkgNAIRdxENOD9IHrQZrexOK/TM90xUQC3Q\ni4Rg0Uh0Bi/NCE8wY84QmRe1Ta1gZXzAesik4lhxoq+9Pqp7lxYUaG/ncm/753rRgnW3Dncf6mzy\nartu+lbMJ8K+wGHEDGGEMGpQW3zhSc6tsqfmpdAUbSR73cPsvJH+u5ffkqPfLhItaMgnEe6Tksbb\n3yIhuaHgVqB2Q6Efjn279ClqlT6dDzDKR8bLtngGDylR1yQRJtQKRcCAe9/HSKM8DYwXSgm/GYuW\nYXx75TNE7uXZ2EUsIvmLL5OdvftFL3oJEdK20XnaWPy9KM+n+Z8CmXTSjLTpTgcdZieI69fRur8H\nqeVJEXmGiAmkR+DfR6Iz0HbI73xl+2GntT9WdSE8oDGyECpnOcY6qsmU3HggZYdiL+ThvahjdgN5\nCm8UaN7IO3ghHn8MtIRG9D512k4iTBDhQcQnwgXTpD6N0BJoO0Y8+iCLmjnOHuDRzjODO4MqI09Q\nM0ZdBFTRmUKdvgc1fX0vLee99k3m3HWqnHy992oTOD9y9Fek8M/2AhkkVHY9wldFj6jc/nlvVMzv\nBRGyqjQtnWbisEMLicTwGdFQXrSN11d0ho1eQgSHpmCuRevhSd5B+qqeyT2thQhJ64lWFusoMFIl\nbV3UtbSdiYe9mNMGYV+MMiV77+6iAojzyr38rLwOku0pxeC30rIJo77q3167PrBAghyIUIRJ7Z6R\nNH2851X9ZoeAI1udRuHw8lxtzsqvo/VbIfGOOlN8hkMx62MLicDydYLXZo5/ZtSXyPx4BnOGezHN\nJTpDy3iK+ZHEAs/3RZDhfS0m99n7uu33F0dl3tjaRSKojpwXS3oOgF3h5M6nYsIUnFORCDHSCmUe\nBvMttHR0C2Dr4wj6gMArZpjlswQEVn+5iBjoFIXaAt6r8Fdt+uFW3o8OuCLZKPAhVjC39bLa6NL+\n/5FvhmkepZhJqQmhLfxWMwI+ALN+A17HpchLSPkLic5gZQnMx0f6snrR900vIUKAivYPvFqnpOd+\n+9s7KB+VHu4JlyPCZ8WGPdGCwWCPZ7yvqmPifUfg8iVPoNwZR3LswOdRAcsAEoFpHlGDOYR0CLSB\nPxPN6KraE9Fqe5/S6ptnU86MwPHPdpLIwvqVugaQCAi5Xyal9FYd7VwaQTBgeWxOfqY5Q80jaID+\n4IiCgEiIxyIgKI2wNcs4BlTkBUQgwNUjFomlhwOfpLLGA7KTp3eQOjZW94ZfKzSxknr95/UMmsg9\nq1luQbDIb7U+wNgMlIPv3fZfJ2MPIBFQaNeWh83yBNaPIi+6RaEiGWl7JOC5D4sZEPqGHBIHWnIE\n1dfmHJGpoYLuvfhGqP33Aavrbd2OTNOCf1TCFa3S3Ey+EROHlGJCJy/JWajVHy2tvhD6e6KXECGT\nclyYrxgChmnUZpxr9PaWzf9SLigEvEN/REvu2pyNSFc7vOeWayWaizFnSB5yQ67A/BEvwKy/kM6O\ncVzaM6Hppk7vsDx4PsoW4GaZjN8qj9RNNP+93b9Oq+qANsxQz37GaAweLGM2M7hNGjl0IUqIMVv1\n4IRz3NF6eo7AjFjnzM/GDBtyIWN2D4nAHOVJWCwWm936DiOOFWfpMx0rmvXR9WrtnpU0xuwZaffF\n4bSHzHuduut6vKpqWkb0oxtv8t7OzPalL/v3DXQg81uC85fu+QcWM+9VsFi2bncOaomT5WI7bQ0Q\nNgDxd5O3aKpv4/v6WXQEiUDLw72rzR/Mm5Jjg08KiQjHMVtk/QpRObTmeohg7wgp/qCUG0ctWDzK\naN0WeTxxcfaaS3pvRgOuvWyd3kU4jghBWYEBdLNHF1DOPJsS5UXfNr2ECJkYBDEy9xGJ8OwUETAU\nCdsDYdZFO+YslFVLJ7BbvTi2/8utiL3hvYg6VpS6Iwo4KKeU2/6Y2BA8YUIs1OF4nSPkCYIGui+E\nRKg23nksFbRRX3uH5HDYl0sRPGgNM2uXpznzYp0LWQw1Ky+ixd/THLXloiBJ+kQLlHzN4KhjRSxn\n5J0eaTlydlWWULGlkNkbzJ6z3GvgHsoFIhsNIRFmaIBTZshAvMe6tQpIoT/byC5ixyy21UQLv8Ce\nVcoHYW37v3dQLrbTFm/CNkz83eSV0JhyPcryjBxiQohwY16gEJS1IaJpdc39UNAaSCsUWR8i63+I\nLvmrFaRsfYRFe/ta3RcXlbctogi1DZ6u/R5nrwLWgd4V3pXxI3PUFiJ4a69ZxwjkxknPeRLNr5wV\nxvZF+/QEVqhPQS8hgkOoWfE2iLOFCad7xO02sOYgsLeERyQPpMGPcjxy1B4Z80RarSTv0AWnh2SE\n3+3hzlTETdbleXWfqUOmBYNcW2mRIWub8kxC9BHYp0cz0Eh28LbKUZqzIiQ5p+1VM63XyEVpd+fL\nZyiLsxynfavkIU96x4r376u1XBe4s5Hydn4TQfD2+0JzAKGpQqtil40Xwxe2yDjoqEioxxl4tTfO\n63exE8kTFB5oJIeeZ1TQikiELkRmk2sAiXCE2rVyV3N7R5pBC3oCAksGE0EieIRoBebXIUQdfF7K\nq0kQkVP9cfVITwvNo/ghIy1tHuTHa1tehIbCFgICV8wYWiTCx/KeUkppWS857aquIRqFBhsDhPUn\nmjO8IPYvejS9hAgOMU3ALg0IE3jYqHMXAbT98+BYIQdogR3w9qCF7LBDu5PagbRwXvouZDEmIyEe\nj1LZ+AUh0kjMQ4KGnfZ4j+810tp5uOcIlPMB+y1Dz/cjB72Q9p0UNyM86OSFiqmUQ6FoKffLH4lG\nESnnRc9FNf769luNF7kWDesD2xURHgTG76Ph/MzxcmSlKIqNyzkajhlzhkfICYpPDxG65Puh8L9P\nJoe0ZDqfCUHXqJnj2AFXGUdKH1FEzNRZ1qIiIOiRCJflE4x4PkPK9qIwvaIzbPQSIgQIl49LADIU\nQSZEHCw+wrP5oY2UwB+lf2ZCQ41QJKQY2hxv/+tnQpbn/62uOCG8UmkRJLxa/u07G9L5i3aiMaYs\niEFkPkLl7rddymcHAew/CrfLV2QARp1/It1bTjMydplTvRnnqZ72yocv4+HIrqOz5S8H+uae1N3l\nzVdSF3q2ViYPYPeOcNlRcwaWr6UW+otLNbXln1gAR6DJI7wgQmvbe6W8cr8XCD8DeX3Tmc4dbTsi\nECJZIppguZL1zxOqIXXbY4F/95k6c4bS3poWBTPeQblDIjwJWeZ5kf6M7FlCnjkNPnL90uCYbXKP\noAJGEBie34SzqdNmG4KMNs0RYuYMHs1EoBrp4/pds3+vpRUi6N2w+CAh/FCIRha8T5QcxfrvyTae\nF30KvYQIhCwmocC7Hqg+qcxGwxgvVprUpbWIzf8pZpRkuhkhgyLk2ePNkHXgZfQIqf+Id3PLuab6\ndt+IMFSa6UZw6Mb1j5OqtkWLQrxxd0Tr7g39mMZfXxkhvPO9FZydMKWZN/bPRCLcyzkrQzFZJkbV\niWXf15bfjbbwzhZ66dOO6LDx4HMjcOjixEyQK98gHzoCYe/ykjIusMd3DmuJAAMFcy11PhEOIhGO\n+ERgM/QZ1nnHCvPuNMNfHF5nTjrwWT4RZskSOLa3h0wih8wZcrniHDiJOUOtScwZVjBnOJ3UJNeC\nUTTHOhLJ4gx6LpHk59HLdGSjlxCBkKWRLo78Ws4HToUMgYCaec9bakkDbWmHKwoNcOHUZ8weYr79\nJu2cmRMk072RCJFmeo51nilszcihmtER3sAzuzjCKKoDn+FcaTH+39plnJoCdTO6t0D/EZrgESRC\nyeOU54aVnGJyn2hSPYBGhJKfSdynBKZZ4PdkXca4GR0aXf13msAraGC3/3UaxjDPfFfZC0cE6wz5\ng+aIV8JDDJEcWE4yeXhGUv13wpxcnky8fW/E5z0pMm4fdWgV1MF6sMYIUnmG2KG1REK7s2DhO9ve\nXzRALyHCyeSFfEQGYpYRFUREBM5f67Z/I3SzpCl+rOqD8gYObuwIEiFikxrRrHphL89g7qd5Nsjv\nh6rKV6OMlHpzCDRDSKm+L7a5evq22+mZW3QaOXJ/Bspdw5adQwid9toUCfHo9Vutc2LsO+VZYRe3\nduj2Reoo2s+DqqTq0ToLDiM25Y6Ar5abn8HvlkJmCPn9GDQ8Si68eiA9X8vjY8t6hxENeIRY+NBQ\nPjjYemi3G2jfTyOqvtfticzNbq9un8HVG88jezQS25e7cQJRYEK0kh2k036uTfIM5c77ukRHqkiT\nWjfOU/b2dV9bzDSY1rtvmfdEet5De5htGvym1rcZMenzknZ8VvsCo/Gg99pjOFb0qEMoeeuCuzfr\nNNb8Y/e84AdlD8tmDDdmzlDavqo801RemHokhzT69lkacFzH2irXsq+/iNG6vgQrQi8hQqY3BS/U\nhGOllfwi8mAhiIQFw7CA9qAt4lLybFdZeD+a9l0RVYDta1p8ERv8wLrTQWAnlRNHJLHMnKE337Cf\nR6Ty94IiRwjNGWaY9FA9ge/NYOqyMKJAQDPGvC4aSitf32Acs039KnNHHDQ6q3R3qCZpMAQozjta\nbtJzldUZgfejTwT9vrpdxUP9xBzd2pEFH8RpqpUfkQjsXWbkC4X5CLSBPhu4b4U9a9OWdbS0TwsV\nInRV82P/AL8XWlQfWPK3k8Og1Nl6s899ar0DWzMXZ923Qjwu5Xn/LJFnUVIHcGNcKGRSgeNj5c+h\nLV/g6o7n/Owtv9M7yTMyz9BnhowTd70f8YmQC+r6vqGKlpR1rOE3dDHNmGp4pvzC19In+h3aIXIF\nKeINyk2pnxcJ1kFv2/TCP1rEhAIjERy8+ygkjoyxo1S12fcp3zL/SamJ0hLamzdaoa/V+jzdSk4i\nRLjAyteuoWzdfGbC9avt8jLuIIz6i15k0UuIQMjSzB+lLhZ94MDM7nuH6JTQnEGnQTvse1JvQvH4\nBYltwrhxWXla8pAN1fldfiYbYvm9zwGwFFY2l8kPHN48c46REI+sPSlxIRbWqQRncJiOHKqZPfiZ\nxKIzdEgdT2uCh8ODzXzWsIaWU7MR8kwr2CMUdH3LVA8f9rp8KUIDEEzlK1tf6lxiBx4+hlBI5pHX\n9yjk0KAALWR6BpOPCJ011iLlRBwEHq3jRfsU4ZRmQjx65UcUHLhfunzVgKfBEO95sk+ECKFPBE9o\njvxeCO0Bgrk2OoOYNtwCO1xVLuwwmJ9EZzWnIom+kcX7LrR8M9EZlmX5N1NK/3FK6e9f1/VvLNsE\n+v0ppX8+pfR3Ukq/dV3XPz9b/kuIkMmDcN6b0eFe7SNAtn1CyNdnTPxHCg86uF2+RiBvQp6GgBE6\naYpEZxDtieUtWpUD1zbu+mLAC9sul28uMFTUFjNoaC0/19nGDYcJEjlALqB9Z+P6hleiSSq5AiYP\nRyKbeEgEEYjMIhEsctcZT3gAfeGV02kGSXQGSbTCe7KD362MLT0K2jH6UdrHNV7KMWBhEHWdjELh\nQyH/EbMGVQ4KlJxnXl7LnCESnaE+7yusDLdfv6qTrAddXjnkkPKwXFZez7AHvsOdEAhDnvWb/1e4\njniEF4po+GSdafdsmUsFheIFpygnqXMcK45QBzlv1mLLYbBnWoB7a0uWIJOth90e7fAFeKBnPJQ1\nhrw0ngNnC4Y/ZI7JYH4BZEn9vVP+QRo1Z7DWOw9pMjInUXigQzxuK+ki0RlKmmZ9Lu3arytEBlS5\nCCna+fghSfM+THgeuTNi5iNU5y9p5pP5BnlRT8uy/NKU0j+bUvorze3fmFL6Ffnv16SU/kC+TtFL\niJCJbbMjB+4FJ/oArF6VYzlNJMWhRBrt7dv/T0MiGKuyB398JFn97iERvE3dghMyJMK9HDYOMacD\nn+Esh0VFIwLmAymlYkMoGtECobvjcBGm7Xrn2M6ejTUiEabryFdv1h7pSs/3RedFPSIIeYCQ0vqq\nwlwyZENEeBDy1eAID/boqDB6j5lu6UmW45QSCBzk+mSIGqTI/j1yUBn5HJYwJiUyjkXo9gnf2/OJ\nEEFtoZB3xA7bR4Ht50dhgncQddsxsAKcrYyq72BIO1I65BMhIug6axpHkAP32s1vRcg951hxl6eZ\nnZwDPhGQBxlBaDIBeGRcf99IhPTQKH0H6D9JKf1bKaU/1tz7TSmlP7Jum8ifWZblFy7L8jPruv71\nmQpeQoRMroO7iLM/nOgDWg5qz42QtQdO2BnNw/reSN4PTC7mWHFIszcRt/lexJj8Gv4s/3ba0mtW\npLxeq4PaYrYxoESa1WPF8GZTAOGUjBGY6WPPsSIeqks9NO34OGSOFeuz3C5HeIB13gbsTZnWCWs4\nchhJaSzuuOeMFe+h8OCoMAEdK3qEggGG/OnKjxw0nDT4aATp5NYZ8CkxgqJgWlrrW4X2OXJOqQ7y\nZKzr+TscnaHAgcfyKWodAxp7crEFV9kW9axeD7QlBQ/G+HvtxwLuKUWLOts+Q2LROla8fVxUO7w9\n1nJsPNKEls42e6lzx26gp1S4B7F3w70+1BZP6gnfVUck4WjGI0g+1gS296DcIyKYm9Goe+UcJSym\nbDmzA2iFb1XOFvtrUV3vm+8714qtnO9bTvAM9Pcty/I/N79/dl3Xn41kXJblX0wp/Z/ruv6voFj5\nxSmlv9r8/rl87yVEOEKts8LqaEq0p3omtd+jQozgNysPQjxWzW1N+5bLEUd04ljo2jThrZSXcv78\n++CGK+0pbc8vtXjwOHHE1HimRMeK1S6cQK2KnwhZIOONl3Lbb4dOJ/38KbcL2uTkkTHRfjN07oe2\nexEO1NtvOsgzS3PSYo9NXmAcplSZAenrN/it3gU6+VLg6s38mGin5Pah+zLPdFO0TwkYq6R3bXSL\nXblnziD9dzaPOsO7nAUUvzcCYTo6A6Q9yhQdER4wzU3IhCDWtJQSW9P6936/yTrP62amfZ5Qx3pf\nhKJvdYmAwRaWdDbFeG09/lrhkJpJYGkISz2Dtq17Y6jtI0FDXcXRZbnf7Pll/cz5PW0sCA/Ygd7s\nvwFaSP91fAzhX8zyDi52HtpvL2rJsE8JaCtqZxkK8QgxoTtCxdmWOrR2BxxmlrrK/tR3HAqJGPrV\nqJr+XuHegSEbJnwv+a7vy+b29CN97fKgGcM0v3VgIqBj9qPFT8sdJ/P9qGg90XzFp7+xruuvsh4u\ny/Lfp5T+QfLo300p/Z6U0m9g2ci96bd5CREIjfgjsLR1LPY0xnStwoRKePBhB4OIl/kR2tuMVIhH\nQ2SsNBeARPBsT8/wDNxKzC045dkSVb3J88KP2l1btsoM3uqZtKzluqrfs33SRSlIvTBHqI7fRaXx\nnOmdTd3Bz0lbkAjKJp2P56K1pOiZXthUn6X8bLuWrjj5gDtLnU1wgmugorPg6vdiWM7e/z1t4lkU\nWU+wHe9Emy2M8AU08RE0FLNNl3wCRhOBcLHpb5EhKLC916GBIBHq74VeU2rQFFJMoKo4t9DmafYs\nvqV2AoOUWp8Iq/rtkqvqhzfMkRxW0n8dHzPwxszvjrVHn4XqKXUT/wQo4GI+B2bGJDctEp7ucXte\nR4hEaHi0jxzC82yB5gh5/Fodd7xhTKjjo8hgP/faJUJAr09wTfOQvJ3E1hnsnTmDrFd28UfJ4g1f\niITnpHVd/xl2f1mWfzyl9MtTSoJC+CUppT+/LMuvThvy4Jc2yX9JSumvzbbhJURI2+b/RpADobyL\n/5tRr6Vcm/+3a9XyZoaMgAGsqmjYIszL0hjPQkiEJs0IEgGLnfEroKIBQHkejUDMKwKhT1OYyE5j\nY6j62vKduvE73C22ukPeWLPCQOp3EsHFovOQOqp5RB5TjlkDE65Z5CWZ8bCL87cdfxEIqN9f84Sy\nCMZQdVq2fGWms6bvgZYpL98XHU59qemN4R8J58WoCMoORKzYFwHOpdX5RMh0DgdmvW/Ed4N2dCnf\nSsrDQ0S7F/KP5Avi7LZEECvl0GUuMK3qFvFfqUuDGvTu2ihW1NEAACAASURBVGS7l9lgbY7U2e/5\ngkLE78kEQEMwf2+iGXGcI0gEXtWqqizKkJaFMJolv9vS0X/RvfwOnUXcJO0ThQdAS+HX2jnudyoN\nQU6eYZoP43479q19nCnNSj8G1j9vj8U53jlWDPhSiqxjsyHSC53NIBygZ/Kx8wy0pjne8VG0ruv/\nllL6RfJ7WZa/nFL6VTk6wx9PKf3OZVn+aNocKv7tWX8IKb2ECCE6yzYMifFEESYGW4Obb7vReovz\no2jEC/b5dW/XldwTQjNJlhbt+SJ2nCHN4W4KkkdJ6fMGCAcMpumyvkLESdVR3q2Oa1sYM0KWxLyl\ns8f6CPzZEzR00V8G2uAJVCJ9MqNli2moVnX9ONknwqw5g5VmpHWzb/Iox1Oj8GpLcLTCHE3J679W\ney9p8wEFwpqyEjxv+7t0R7XYGXv9QpQC3vq3VyPzWYOHmHvxKB6NOG9T5mvFtEMEDllR8kABwb2E\nEh4i6VOFCQc2Q+5vyH52BlqBIRGeiVjo3G+NZt+gCoO+/T74TulPpC28419KW4jH33aksJcQ4QHU\na0Lyb08rAdJ/BgYov/OV2a320PO+jHsjyyNIhM+ES3XIi+Z/a+9l0R6wPA+JgBr52U9QYyZvJMIE\nD2kyh/Zo/+eaABa3+q1oYze6Uu3ffcgaU9yue78VaI5U7g+aM1jtiSBXUGBAyyPasCPUryFjX2yG\nqZxRvnAosX52tEsiME9LeEDTwqHQCle3PQMNGikvhK6SKywS7Lta6Advzyiw2/2mHCfLJ0KbpAjB\nfrxM7zSCwui/1RlIR/sRHfd9xt4fEowG2vUZbT/U+xMLK3X8PV/c05EIBC75bS4YwzqlJCEePeGB\nCMoq/3NwvWFOZXYITY/ctOMtSindz6TlW6NvaT9Z1/WXNf+vKaXfcVbZLyECoQ76XyTm+XcgeoFy\nrHiR/PkKDomUgADyX8t16dLUujBv8wzajvD8lqwNgfpEQGKH1nxFWNvZ5Nmde2Q5FGOOjka82kfo\nrIUYkQj1PqlzYNewYm4zQoecrWnQe76K1rM4VlTaOlvwYdepqR27e68Z6fvW3ndE4zZCM4x/JMdp\nwgMp75zihubSSHSGo7TrKC/QXg91cK+DhmeuUp29anRASiktA8yPiURobk/wut1eRUMsW3YRg2Hr\nRsIuI3njz9L+u9ELqHDXR8sonxKC+AHfCC5FBiBgrz0HfJ0zWmc4sWcPdIfTUe1Tff/oHD1LcNvN\n3yc4p0SQCI+QpRz1MSW057xxIbNeBAzyTJnnQDmnHS4PmDN4SqQXvehMegkRHKraq2MScxbX1aLq\n+TjR65ZG55FDTrE7Jwuc3FrIIa5rQyTEY2cTsJ+FIRJmPWTrpjQHvp0NoqWuH6GvouWxiA2sXHVv\nv3lThPHDGXlamHtLmWkfY5p89YRP2PS23dabM+2JGXnhQVD0rQ25TmcqeCYpe4znYcY2kKazKyX9\nZ82lxRGQsvsjY3QvcsBsGY/UUkYQCPisQ6upNVI0byJg8A6MHImgyu72o3Oosyl+ABdchO54n+6p\ngqrS+25EWHFP4Vi3D034RNBJVnVliLOStlwxbd+ciDnDWU5nR8qdMT84a65bSKezlRgtoTILoyxd\nqXlO/p307/PaVP/f84nwGcQQCb2w8vGn9tuA88VI65jvlR8D+uQM+kwz7WeilxCBUK+17xEDI4SH\ncsusIaUeBcGcHeIBB00V2r29LPYg1PTMI6ZILfr8fVcC8cY4yMWREjHxqL9RE/L5m8o96FCY9Ob/\nAnG785rHGAq5V7fVfi5ZHtpHtDvUwZN5aGVp9yvBEK3lPnGseIE5fiHzY2TejQgGOpQGY+DBDCbU\nBvdZFrTCb48eGaHjeyXp4/YQUiOQ6DGAY8Mrb5aK4CJfxXEwC5scogVEjmzSw8CVubnCvtQ+q20Z\nPxAwJ25yEJP9jR/A99cgQSDczd/GRbw7xrNoc8z42tYpOMrYIALIfL1BnpSq8LWg8QLmYFZbUnr+\nwwEKq7qxxBd89Tsi6Jo1kanfKo+FADKnjoH7kHpf8d0ibShXMVnooU5v61t+RtarU1uauslTw8dr\nnoJntQV71m+PPKTYi16U0hMJEZZl+YUppT+YUvrH0nbm+FdTSn8xpfRfppR+WUrpL6eU/pV1Xf/W\nsnEyvz9tziH+Tkrpt67r+udzOb8lpfR7c7H/4bquf3i0LRhh5d5Oi84+BHMkgt48vDcqyAlmYJVD\nQNVr6aSaf2cTbjdpK8RjCyffO0S6ISSdjXDEnAGFMdE62jJSqsx8JIRYZ1JQurqt7/jY9Oyv2bes\n82GF3z0V9Em5M97e2dlhjRtu6qHbxcwZpnwiFPix3U5PM29pgGMQe+dZALEyQog8CMGsh8p3nkFV\nbHasRtp70Mi46/IerNtCBbRDVph69LofITZuutB8i3HfoRDyh5kzdCEKSaVGp5Zwf+TeEQqFhVzb\n/tv+r4hHvWYoJ3MhQYMhcSx7djsYeIjHyEsMCUHjSafpCNyd9fHZ0VWw3POQSo6EuSA9jUl6B6pO\nU/X8ilghfYY6qCCJVjFVsEfriEPFsjSx+KESAeJCegUGRsDtS+HZn10A9qOhdRlCmP+Y6WmECGkT\nCvy367r+5mVZfkgp/fyU0u9JKf0P67r+vmVZfndK6XenlP7tlNJvTCn9ivz3a1JKfyCl9GuWZfl7\nUkr/XkrpV6VtPfpzy7L88XVd/9bjX2eOakxhfdjX3o2368ieeVq0mImdb8RGLBJ7GhfKiBDm2b39\nfgYdhYVPOcx7oGR7TNMP6JaT2RnWFuuQpWygIwewnffU4cZ0nhvcT2nY5FzRGgiPdZRWOGSV+yyt\nUcbIMsaEirV8W0gUExqIgArz9plN0wwlwc0MsSOYqiZzgEg4iSeKjVkRZHw+I3Z0LcLX1Y6N9zuj\nmvnp+67ZSqxpcZKD0wAS4YiPHUYyl2ZX3ohj2keRagIM8U+J1mDB/Rz6jIgfrMa9aFej5mZ7yOIL\nGfzVF4JeM71yzqLDoSIPkBdKFh3zvuj7pKcQIizL8gtSSr82pfRbU0ppXdefppR+uizLb0op/bqc\n7A+nlP502oQIvyml9Eeyl8k/syzLL1yW5Wdy2j+5ruvfzOX+yZTSP5dS+i9G2rO3KCholOG8gE18\ny5cBC/ckMaOZY0VMXPP3UmbRfJerlNv6JSjty5vbpS9nl9p3GDFnKE3XmluPXH8ORn51EIBnslBG\nfCKwHpFvIxokPCgrLaB1JQVbdrkR5iOy75zl+LJuytv1rTHf6eLVEwgmjlG0V6WMxZH2Tu59ljkD\nIzRnUM9KGn1l3zcyHypjA2gAGNf4v2pL6tNYPLlGivPOHNEKjozVlCpsGVEeiDqw7qXEBQMjEGwc\n1xS9hIeHO51tGENbzRjyYb01ucGoDCfxgrhrIGKpJTSluCs/WuDAcDvP0a9EyN05D2yfYdqRppTv\nQ/pk4VdajpF3+98YaJe50wiue2iO5e7HILBKyYauM3OGmYhCkkeyeHnZ2RqVFDOIBM6uofIjXJy7\nhrumCQOVdN/ZeV9J8+EoiEp5INhsmxT5rns+EUbmCU0ja2U2Wbg1HKKgE96yaF2iTV2bSmWtfYM9\nf2HM3cAm4zk3rXUDz36ydpyZM7xkB9va8gSyyqegpxAipJT+4ZTS/5tS+s+WZfmVKaU/l1L611NK\n/8C6rn89pZTWdf3ry7L8opz+F6eU/mqT/+fyPet+R8uy/PaU0m9PKaW/98vfdfwNAJ8egSCVthCb\nQk9aaktQc92qPFjA8/3WRvZamHKDJtVsltNEZs5Qnp0k/a6MSs/I4kHADX9ZGJv+mVDx40AW3Bky\nzBgfGkd7hGY0FpE+GtEsPWJjs8wZRumZQiQxqCk685qBvY9omNv+sMbFI/rMEwxYaSL0GcxGWefR\nmDzZTtrKGtfcs/pd+VyBw4b3uiMHJwoHVg+aZwfU9qPIAbMc7zATOHRFysUD7VC8+psDoT6J0I8U\n3vfyPMv+9ilIAYOGDsgBlfxCBGqmc2Fw8p1S+13P4tNQMK/5rXtQdRipBa3X2zYvbs2xSFAJX9Yv\nW5osiGvX0F1ehpkzTHjKrMKJtryThQb5+mxz8kXPS88iRHhLKf0TKaXfta7rn12W5fenzXTBIjZz\nVud+f3Ndfzal9LMppfTLf/4/pNKcMS1bJAJKC69yXYWxaLWyK71+IStVH4s+H3KaNFXLK1ri7fd7\nC6YIaBSaSvVvcnJeoLxy+DohEgMjV9MqC2/T7NVIO1tn1YTmDbBznNlKrfm1pS6kKGjttJM+/QxD\nPR4lxn/vxdhuGUjcK3Fcp5TSW/eeeV6MN5eSh/YYoREkQpeXOE9lh7YzaMZ7v1ozjtRd4Pn7fSRp\nRiHtZtjB4L2UYsKAoxEcPlNTgWvPtUUHwaQ+G45bfA0ENMC7AuxZchwr9m1Zm/91lrPadUSjHqHT\nPqFoQd+aPUuiMxiIBNfRm12Fef+zDy5nCA88c4YIueZI3cE7UFAxUxEtd6+4umb/GMty1Vm96AxM\nyZWvluxOjQko763U2adHfqBXD8UI919ZgwRtsDYtF3TCNT/7slxUnpR6JdQUedrCgm4+NjEsgQ2j\nR/gO+tbp5X9io2cRIvxcSunn1nX9s/n3f502IcL/vSzLz2QUws+klP6fJv0vbfL/kpTSX8v3fx3c\n/9OjjXn0/PFizrJNuC7gq/rNDiXdgYUs0haJwmeJnEroIy3UOC1+7gB9L4vhM2i3va+LsiYtCNH3\n0JzBs0kXapm2H2u0jhd9DkXG37NSRV3Vl+jMpE46gkaYKmZTPFDBdj0o9ehCsU3uSyPNuPe4Obv4\nCJLy6Dq7J0xIqY1mIQ3LaZr0M8LmewssmGBlBuHAUt7bBt8j4kc7TLPRHpAskzI3T/O/jJfKk+g1\nSQQH7b234hNB58WyWxpBI4+8DJt3Lyd/L/osegohwrqu/9eyLH91WZZ/ZF3Xv5hS+vUppb+Q/35L\nSun35esfy1n+eErpdy7L8kfT5ljxb2dBw3+XUvqPlmX5u3O635BS+ndG2/Oo6Vh8IrROE/P/IpH1\nfCIgT7USqFlBICB0i9ikh8iCj5IFcwaJwGzAUfDR2RyT9RfzzDILETtVrKPziTBQD8vfHa5Z/nx9\nBmECh4FrKbjehDlz5flswCrOAmCw8RcJhzVUxxPu98wngoXqYQKgGTrbqd6sZuoM8nwinIVIGGGe\nC0NMvplkx/3jrHGJ5TMqSITi+6d5hhq3iMdBhFd8a9Ke1GgKQ2nzwWdGC6qCvvOcCknZhZiz+9Yy\nwzw6tI7MoWcwS0iJ7G9OszqlD3lWriNQu0u/Slq+urzsIz3qjZeZEMMWIoHX7ZQH696VYPDEoeI1\nd3IJSUvQpc+gvBhR1J213p8dxeRF3xY9hRAh0+9KKf3nOTLD/5FS+m1pWzf+q2VZ/rWU0l9JKf3L\nOe2fSFt4x7+UthCPvy2llNZ1/ZvLsvwHKaX/Kaf798XJ4pmk7Mk6D0d2+osBB2wXH3FKd4XD1pUs\nUJ02p/xsBQSZmcztErOIrw3PhRDz0KHpTkzaWT4RkDxt4gppIkyHlqprhs5bS0c2Tcuh8j0Poabn\ne8a3i/mMd1goTKVsvvp+SoSJCbyfN/qqRvTzN7WYY8T9ck5SwtrlN//vmTOc1YRZcwYhax6zM9JI\nuMG9eqJpzjZnmGk7FejBXDw6pka0k0VYUGyLZe2MdDKx6e8EDI8To0a+x4hfG3REWdZKZ34UZIf3\nDUf6ZGIwjEay2dsDQ/NtoD4WEnnEXGXkcMT3yY1QWTOypj/C5091cirj73H7JypKNA+WeZL8a2S9\nYd9jAX73LVf+Rcw4moO4CA9+kp+VtM3AqeaYASofHTYkZxDcKzoD3bMG8k+hyX5E9BnI6mekpxEi\nrOv6v6QtNCPSrydp15TS7zDK+UMppT90butsKpB/uUF2tz1mknpwRw/IzTOsAr3gKkdlRQgh7eSa\nApea1WbN/y8lnvT9N5ozqtBxoP00mqHd76gRtEMkZvJZzP0MjTgzjPhEwPBlHImQuntHKOJdeo9G\n0Aez9VimS7O+IDBKQ8QKacK/kyKEgrrtw9/fiJvniDnDI5AII1Qh+/rQlFJFhKFWMfI9yjwmB7NI\n38g4WSP7UJH8OCgD3IcG1q17MYFnaSSllIh/Edr3JoKjdUxZ1LBOQZwia+SIchyRfO29syhiQnGE\n32Bzfq8P2OOII8ohH1YPFK7tUTtujszBWVVB75MI1sjm1I7RY64RoR3Q2gyoobfN+YbMIkrWON/a\nUqR9nxhx8kVPSE8jRPhMWpKePHjQkUPCNcdAb+GWi/RgF7OvOUhdtYZfJKC3S7/Av2XnNl/ys7dc\n560Jz1T4JZRsiwZjUTdzndvNn+RiPpS0Fd7XWyUshkbBHwcQDV0xq7q27bJ+s5BQli+IlPaZXQVV\nM+pktOCVSKjN8H7kHSTfFTYw1WaoS4aU9r6sy/P8bljhL1sqfAn8LuUpUxk9tsSJKDOn6b7dJJfQ\nO6Wyn2NdXug17z2RsLw27YjncitNe+CzTFlYu00mmtzDpK4/C0eYcC+mw/4udlpGkfxWnREo51nC\nhIg5A2qmv5RxqFJt5WD5qU9bI4dpAZUafzB/8X4rqBJNnkwH+d2uB+a8qhIMmzytfdmXJKmxkQbp\nbCHvAvs3E+5gbPaQABZhOLETam3XcoMk95WKna2XYMjCkYgzZ4V4FIqYRqJAj0UDKPk9h3ulsmzT\nD6Yp2z3Nr6GQInSwZO+SrzdIox0ran7AM5m7wHQd8olAxqwgCGQN+iEjnNp1WniuLxd9fWsaKChf\nc1q1BRahpyyObqNTSnNIhLP8lXyQJfcsh9ffMq3p5VhR6CVEyBSZcnTQBKSEM05PIiEeLSk9s28u\nJgvCtDUrcIVjGZoLFqKmu9Yk8r73hvtUL/7toZ8IUk4k9l2qvf/SPdva2eQfaFfPUPSb+mcqcyus\nMN4IxkggcgA9pCuGauWMTUzIMymVOJnWcuDeCIVOOoKTzKX+8IaEEToiGswRQu32VufE2mYchLw6\nvT4pafN1WDN18hyyDvtUSykH+nKglbS1UXvfkWuU8jovDK7KsF0i+8cNOnUGPaIPwVKpCA9I+5A8\nkwXch04e8+xQY42XhazP1d+Lvg61gd47MGjZfn6x0R6yj/e28/lKvPfXtY0IURf97WvfyP1a0fvK\n9wR1LoM1opjrlH25pkVNMrPxx++LAkN2QLsXIJMKdy1+jTUGGjaj1Vbtgb5hoxDXvyETzok2eW3w\nlit5JhHLZGy0PVYiN4AZgw6RnuvECgIhN+taFu+lJSBw9Q64+ISOfZA3fnbElBc9L72ECJkW8n/V\nAG9XOmFL+BWRGvaHWJT0onZybRIL8qCEdpT40m2ILkOhwCGNKZezJX7PeVqbLpSk4kYTgmMNIBHa\nfqxL6FZyhTT2mltr06RMDDIJalF9zIo4sgBT7Xg5bNoCJWGm7i1MmOU90JyhCgr6MTWikY/5YchX\ncDiqN01MY7els9t01gWvvLNtTU934CfXwqwKcyVao5q2CCWzSkU8W8+aKpw9ju8lNrIQCVtdfm1E\nJlbLzVdvvo3ME8r05jq/DlgCdFpFkgb7uu5hTTm5IVLOTy46rSLshEnHIKjJk/2pajab/WMkfJ7k\nOThmR7LLPtmtQcea0Kqot+tbLfFyfd+uBpJjCaxtTLASefN7bWtnl+uNAXSC6eVF8yMaDQB5GyzX\nacxyFT61TT4/5pmmGv0g9e1m+6VO4wl18H7INwm5J2vjT3Kf/PzrtofdmjGMSIQfQJiwlS1z8sAu\no2x48FkaLp/2sSkEDBeb26Gv3yWtL58IQi8hgkM1soH+PbpY7KVvn1dnL6v6fSWHLjycMvtmkdKL\necTXnOeLMmeQcvP7eRzJQHSGCJ0xEVupa8hz+Y7wZXRRxQ0VD/8MiBLSvoIQi3lan1nIJcusuQBS\nrM81o/IWiD3NtNBHoHQzZgNnkfbJcW4lR4QHDMKOzq2qIE7naf8XB1Til6XVlOIYRc36rUlgIXPb\n5WUGYXGkxyOmUF6+zwwUwEyhyn+yJ+TOZcJO6eruPE/qsl6z/f5XuL55QoRSGe41tqY1QoKUG4Gj\nelUe9S+Cb+AdEtF8iJm4mQ09mWTvXp21TX4/iyIT91Z2kLq31hX3OyZwReEQj85gLZbNfYTLB9bO\nCH97EvtXyPse0TZEn5U681UEAj9c+3VB1icRHvxw1Xna/02ezkMkMHMGy6P2QbL6hN1/FtTmi56f\nXkKETO1U2ZX0elSQCf0j1FwWRIJKo7XuRZjQLP4XY4LLhq02F4nGsIpWaEvz3rzT1ZJEP4D7lfet\nkMmiHippmDM+fX//QOoxCWet1Z6to1XXAtc2zRXGn2UvOdquo591hesNfrdk+SNob3c+OQba4iEG\nRr4rzkk3bQC10NuXxtvCiDnIq8+268jZujMpWPr/94Q7KTVwTznUZK4oFKbO9Tqvf3vmDCPjmn2H\nZ48GuMD7eoRMeNWk1TQFeSDCA7k/MY48kvXrJySYgrRPmHMtGLW4XRKdIUB7EG4lhBbzEnFSPCE0\nGrVHHmMvtPDA5VHGFsB8PdeDCZoq0CrhGjnEc78d+rd8VsXblXYBv0HahWN1BnU0Sig0YFrfjoew\nHC3RxPtjwlPsmP6kyD359pQvNdKedX728gtPLdeflxeqr2+9UEzWsC8gTFBIXoM/fQTJOuUKYSdI\nxvWz742fSc/jqvRz6SVEyMTmf8ScYam7kv596dNc0IFNfn5rkQg5zZdso/jTW6+5rYMXW802xFye\neHrN5bONuiAtZnBO7ftOLGi1T2RzJ2lwUyIbLPosYEwMMjRrgNHpy7Xbt0D7mObWIzy0CRLmfUB4\ncBYr6C2UMWm/TiTOSd+aU+FbN8/0VX9fftJxv8edNvfR0GZIQ2HKJPSmI0wQQt8IbTvx4O7ajEp5\n8n3ynTe1XuWrxNFeswOvwNHoaIhHJCZMiAgYZs5a1gEjpfruGIHgKENmCROoJjNfZU79QMzhJJX4\ndLkRRAKigSLmDELFcVmLNIGMP7nKfteOUUPKyw64gc49I0TaIxhGE7ZNUD3FjMjwwxOuCPs2/2Z9\ndiu+juyi0UXSDBKhbR4KrC1kjEdt13RIhLLHtJXy1kbmukeRb9Sbym1XZoNf9lDP9gErd75vhGbQ\nfDdnr+6jkK1dmr16Rtf2oqAra+P2z08IDE72N1nDRCDKkMGmkMT7HjT9vVwRG9XRPpJ1Je8N7cOX\nYOFFDb2ECMlmpMtiTQ4zFs04rmGeTztnc216NrGN8iSfMGmy2X1hQgTLl4HnWDFARxkw7HdPoo2w\nOPmGH4Qx6R0mye85sjQrPFYxz9tSdYaZf4sNc5sv6Xtc+CJXvTFQLZalBCT3MVQagweLZg8P3O03\n7AU0Og+fH7pdSpO5Y5er0+Zr+Wb22PpMb7weEmGGsBy2ZlgIlna8FK/VmSv9EGFCw6W6kOsJQiGJ\nkKep9xjOGZ7oM00VIkIXad+XIpSuz6pD1O2fn4qCX54H1gPVHkDGXcq6pRnvLa2e6z9c9H1KGKbu\nQqANTgg72ZMtB8dneTJn68tM2XVNyge+pgw5zKCCY2iGnTxoI+uilwL7bdSHENrl30qf9HtPh/JL\nOm+EmHmTJzQ1hUPAq3jP1JhCZ50HN4VDtvwDZUQQmsxkE18PhakRdBlDq4ow/OddRbHWF4T8s/hw\nYTKnIUGeZ87wieE4Z4RE3yctL58ImV5ChEwsLF3dqOUwk69trwHyQEI+Ksc1eZESJIIc1ldH4vCe\nCxBEQrvAFU28kf2NaJ2K/WJ+hx+aRXZd9WY7syktZGW5IOJC0ipHVpqqpqtNo5lTvP/WdAT6kLgU\npqvtE82IyRPOBOorS1PL5WkZz49w4/Z9UTNfGEcR8pD9GjWFDP5YDz78YM/IA6X0gpB+U5dvU9KW\nkKPN+4LzNxRucOiqltC0TFw9xGiNA2Pa0LGixwxVhQ8clshElLpRGNj+3x3kvfc1W1XJMgFQPgcg\nLfOJcIU5U76naD9vbdrtKsKEr4JEcMZ8bW8vGOneIck71HuWrGAhc6k7cJPM+ggcO5BJWm8dsBAJ\nKq2UI4I46XPvTC15yLOiqRYzBjisp9QK/7arrC9fiXld0fzKeCGCJITx4wG3Ra4U+2EZNyDswLLD\nJNq7j95rSvEZ6HWqFGM57x1oiprr0hcFAdj3sbW3sLW3zk3ZE5Yuze6BLnKaI4sQOlasWcYOoYvx\nvmnV97f/M6+DqLKmSsucS/rvg9zz0W7QLqBRpBOW291X31e3E+fz9r/e30p/Uo03TDjn26PjbyZY\nRyHgSvYyqwoWqaPn1yRt2y59HZH6sm9Z0JCwNn69rF3aKkTQ15aqTxThn0d2EkIdKkiuc8W96EX3\npJcQIVMrTUcJU8eHuhjv/hY6IJqxOWWS9z5Nf2CpdvV6sW4hpu+wuJf3c0I8rrBrru/1N2qmsUvO\nluCxb8dMCYSOaBG9LCPFFeHODqqkJRTGpNTDO1eyf9VDjbTTrlOk+1KMML1M2yR1vZdhIt+9rTsu\nsBDCmth8iWidH0U34r+jjPGTbRU9wi7xxhQbJ0idMIwchvFQI9DrixLq5PZ0TH4eW8SxotyaMfnY\nu9el2fntkQfMQoizh+YRj+AjcG2WBs/J1dykWZ/Ls/4Aiu3s1hXye89O+q0pH52QicDb5Y8xfIRq\n4I0/a0MUAhKhmyfEJ0LXhOb/mRldm7e/OI349mD9VtYeK5zce1vQRT9joTrEEWUgVPXZa+8RnwNH\n9bmR7zDCQ1hJtWPKTPtn/r6cm/B/DZVvDt+XtmOBK0kTOBij2alHZzsZrigrfWVUosfkKcBQBijs\nvBZ+zW53QTy5IdJlUbqQNPpbreU611cz+9nRND92WtPnIlOfiV5ChExMOiqLS9EMi+RX+TvQ0sKV\nSOs7ye5VDmb9bLxm5MFbVvdd84y9NpKLonUF2ylZ6gS4rQAAIABJREFUvL80MZ9loEuoyESQDaJI\n7XwiDNDScIoX0MJ6SARLoMBi4faaTFuyXb9ZvrKNWtolXUM2bmZOkpLB9Ja9QwQ2vegc666xseuT\nqn3YrjIOy2G9DZMu7ZFn5B0QKvjhHOwLhPYke/ULCK+EWrQMIn88LVHRVjneBKumX387qmQDIZs3\n9G+oLSGamtKGiXBZbppSrv0MeQyGYuhMg8h46aC+Reskz5u1Y9FjHa9bOfywejYxnwGdA0niMApn\naaSZkvYzkQhCDMlR1o58/YlCp203RRiN80+ZfsG6wkLKdpr0fJU5/kPToz+A0EAQCO36cAkgBnZp\nYLApqLOBejuLIuXi+qK10Poei1E/BU9HjfXRdV/a4swqFISw0IA1NPO530PqYkhAXO+QzkIiVHOV\neq/wKxedh/lEKG0uSBvnm8GmqkIsdwiEnoet7xD/Dvg9ff5KrwNvk+PPMonRijXhk7errI0fVxkL\nqUuL6KoPxXdoHi6CeArRSRvmSClDQquXMOFF6SVEcOkCCxuFPAPnVBbyFp5pwCkZQ3GDZwIH/2i1\ndbLJwc6FC3H7vxwc15vYLDes6EUgyLIpQbsCK0vbFmtxYZp0ZHgkzTpg9zviHG4rnNwLkgvrN4QR\nH2S4uHUYmy8y6e1NFq+5JoGDFB42m/+tEIoM4jdDFcraj1F8b/bt9vp6+58fBFC40NJZB9x7OXEU\nYnNrT0FB0TjwmxWBTL7MW8bQVo33vsCA+bGwiK8Z+Rn0RRVSNmsllIc+Ndr2jHw6PNqMCBOOUsg5\na2F6M8Pcvm++J+F+8Zt560FkfKOT3Ha8oEavOF9kjhURe37vydXQjJaJrkUdGiULiybbVeeZ/k27\nZs8Ynz4b1yCwEMve+1k1sP0SD/Tl2qTZ8w3VIp2uKCvJ9z1fQjhr2doROb+bv0ke3PvY/tYptcpL\ntba0vLdXB3k7QmyP7pFNfB9u03rfwzSPIB+tOOt124cCiyzsBJRUm++t8BT5fjv+bjrtbsMZqbSP\nsVuIoHU9eeQDl+OnpJdPhI1eQgRCnU12kt8T4uaUyoqDmnN2UEZBBQu/WG2w9PZZNM7My+xNS1+/\nNlmFuUUbOyZmL5A5ppJK5q1DxA6eFlWTDqc8A25HTQpH9oF87TSFzgHDo7oR6g3Mc4RYDnpOuTMx\nnts88i+GdmTl9Dbu45o+VTe2feJc5kER2Rw/e7OQcedZDQlZWuf2vnxrS3jH0nrjpNMQCiOVf7fh\nYYvT2Qm0QWHAmYEztLOlo5D/tm5VrjTBKS+incSyI2YNEYo40kVCvz4p1fd7MwQ+ETOYyBpf9iMi\nMHyDdjEk1iEKdLLnELYUk68f7KBsXHX++zCand8EdTDbefeDeGRv/pW1bdW/VfU7zfL8OEeEFF49\nR8wPvLyRcmUuVv6tT9MLd5d87eevmSlADIlgjRsmILB4HY8izRzThNudHvnMxVSh+CuR9bDv6y+d\n2VVt6Bv0Se3bic0wpbTnWHGUH6kCuEX/JnMJ5xkT2r3oRS29hAiZGMTKdMKjRJWYKB9im55FM4ZL\nNimgzMtNtDf6YH+9tYu+pMV3EEFBvwh9FIFAyuXXl0D0wwx5UDpZVKsDR5tES6adL/JNrmq8+kUf\nYXHKDLRs5lJuv1Ej9aYUzktAW1hcaRxTTNveS+n7Tc5yfMak6ajVYZLoM5AITBMn45h5+EfIIApN\nIkiEltAR0wU2dT1euICvJYSc47hbyPteFrtca30RckOo2Y+m0rI+xqgg8ugDnqfUCBiKRpQIRg+c\nozxm1XLK6qU5ikSA4UdpD+LM6o4Q9gVHmGyFC2NbozPUiqTOn4IpCvNmb60HtH2wnlwJMy3tQCGC\nOiR1EBPhaM/lZMseM8qUH2gGmvi1/8eAA8If5KuHRBhrGL+mlBDy42kwmd+U2SakFIvUMFPHAr9D\nqKidec3SenW4Jmre5yj9P9E5I2Y+IaXNdmWOg2sa2Dc9Xnu8mSGizk4LSisLEZhpVdJpS7uazUbM\nv86IcrFVAmbK0BlH6/G69ux+/zHTyzfERi8hgkMM3rndaEdPfNZVx07OgRv8CdS2NL+B97mVw420\ntx/dCPFuF0oMbVPkC1S1AqLKnNYzZ/De12KI2zyizUGhi1cuau2vTQXvHzoNwu3uuZBGoM24oSLD\nc9ZeFWGGRdqvnFfmax0Kelxrx2x5bGIfp36jniE3RnTHzByoKEg4VutUavsvpynP9stdHR8VU45a\n4TeLboHjjlVzJFTaLO15Y/eEJ8xvwrdKbO28gWCr+lXphQhfbjpNZH54sG8hPKi1e40w7DUii/we\n+B6tps5wqLjqRQiS7u/DEYo4hYuYM+A6gMKctpYLfNfD8w4dKlI4gPRXUtfS7kTWNlIM0ohm+ixh\nQkR44Pnb2aOje0xFXYpgL6lrSq3wIY+PjnlqnSaB5CM7WPR5JxAaOUJ3JoDDPsBv144JdPy9LP2Y\nP3vbRjNlWYu+kJCRDCmVUlImhNWvxgDhBGGh1mQty86w1uyEkZuixMfqt7/zveiZ6CVEyNQulMjg\nVM0chKtLqTgULI4F8+qyOD4ROj8AylRBS23RrKGt/waohRpOrzmgCdORF6QbYdq+rrxdIXy/SJmb\n+73zNlkEyYYDaVDbu6XhgpXSN83qjd6+KxPXHpK2K25ulKHob/XvIN+j1Knvt9UgU8WYhPIMGB0v\nTXU4SNJgO520Fo0gEaLl1Ht6855hxDSThXMH0ja/++FMBHD5iogdhoRJVpoBJAIjz8Gl9Yidy0L2\n9JIWDixCV9J/4ulfGKpb6tegHxONs27nk4dEqI4Vtxb+0KDTZB3+aYcKyNdW4CqyYu8wWPIDc04G\nJjpSrHU3joMj+9AOKe3dAckW81TfRRvCupXWUwt1ZpAIjCy0WvusV2eTjkCHisL8vDVpjdCO5bHj\nY4au99DOcpWx1uT5gHtnCROwJ44KPw+hrZz9yLtv1sl8IsB3PU1rvteWxJAJ7f/Ir+2XN0PK+XZZ\n9/RahOFn22coRGgFiNcifAChjjsJInNTny3YN8N7nlPMCL206zFa15dPBKGXEMEh3IunF94COeQM\nhUpqCBjUoVo21oQLyHZtfSJUJzxbI4S5b80j3ghjY1Jn8JsFBIHVxxMmIKlDl7EwSpqvjVgYJeXF\nAzJrTymH32+fIePDDtVFaACMD/fmvOjyCSNxgSgPwgd8KK22PoB7AgLPU/YI4ZeOzIoOyknsDvtr\n7qMBMxMsu6XynWg5dh0zsOdItIe+DZK3uScKC/k9UF7Ibh3qbv9HL+ArHFC3/+UeCPTUnJT28O8Z\niQCite2Sb7taiAQvjXa+mAWsBxgoZqKAc/2RjhXxYP+lGd9rYYwvKs2FfAfr8OZ9Mqy77RsUIjBI\nd1f2xIdhSITybGIeu2ny9V7CMm9sVVOUQB8VD3CX/l4AOmD7XOlfPIau2k8zUh6S6zBOrk6/WYJC\n9p278LWEP8B1LuLYjqFhUcEUOnlHoCEBskwy3HvIQ0XMJEidck9MrDxUWWROyiNZG2+wbqXUm11V\n58INjw2okUKRPi8OMtp7esGqa1l8gZkF2v0YBf4vui+9hAiZmJ0W2pUW+803ktFZ9SsSIT8S+3Bn\ncblCnW3YrSIIAPWQaHOujdapSln1wvTe/JZDeMmH5gyeWYNIS8nq8yjvrewAhM5uqGIKGORIc9fA\neo4MSsucR7w5V6ZDp50VAnj2lTOE2Wt7iVCMRTRJsAl32vpzBg5Oxch7U58IA4eOe4WGE2JQfcuJ\n5ogTPCU4K1ctvLuS8Yyhr0o4OiXI3K9/hp7dIuEztToigKs+ERokAjxDXyTsc3kI707QmnS5rVL7\ni7EftdGCCoovMnAGOhmFB5F5vTLzA9gWV7h/TzLNGVqh7JEQc4E+98xB0KEi9lFKtrkR60dDZ0Hv\n3YzfHjHB7RnEIPsRQkE6FSyXZ3m+TiF1mv8PvPtMlJFWi497vysHwXLIYGDjDcsVPlnWoFYcsD3v\neZMiRJCx3yIbAN0bCpE+IxgljmAj5gw3YmaaEv92I8K/Z99/7033cpr7rdFLiOBQtc9ypNXGgqEX\n9oHFZactKVXJJy6iKHjY7mnBQrW77BdBU+tCYuK6Nqgsm/Eu5rNJqFAfd3i7z7STqOUV4naSkbr3\nKQLLLBuqmHZAXiXwCizkZxziWHQGvH6QTa7kIWYq2L6ZZnqbHmpsmDChs/EkVKOpQHmLfh4l9Ikw\nQiNesd3Qp8CcMjg02sqLc1KNRNAC1+qBvCaqCISNRpz1nUVo9vNIOguBIBRBpXRIhObQLt/mywJr\nZGSNc9JgnWu+0QoIpB1fOgH4wT4q+9H+zJgJ39gSHnZ7LfS535uFLEXrA/eNutND20cBpmQnhuxZ\njmBxn7sHoXNiVufIOnUvwVGvOOifhRqDSJNMa+DDeAd76aO1pO3TWLwce6cFnlFnk/l6dP/o18Yy\no9V9llb8Z7Vo0DoHA4Ohh6nl62zQ13E6uv696EUtvYQImRjk/A2Yq87mqaFqB7Vd1LEb5uxh76qg\nsUW764taBPnBp0UxiGmD936FOobkOcWR3TdzuF9mdoDUMUohrXbO29wb8sYO4w+1FPcgEUwho8wY\nxeKrCZjpVtMgm604VryUA3RNY2kPIu38MVFkbHghD4VQazwSjq/9H8cd2q2m1NvRi2+EtdPv2KS+\n5YBabMT/We/std6YWcIwyyOWQfz2EWFCRdP1QgQMH8zCdIacVYLgtuwxgOjb2qGFGtX8qnagGSIN\nnPnqZzYsv2im4TBMNenG6nr0+6JTx9kQhSjgG4qGwBaECSSHFxrT0nrOEgrdP1MY6JGHMCzCdsc5\n7h4NCVaUhABwagMf5rCwzcivHZJqfoNRdfrLU0WsBZifEln33mSmXXokQp1feo3kaZyX2Gu0x2CJ\nY1hxcNqsYxFn4+i4dU8IuqVZdRpS3vdOP0IWdIpeQoRMTDuJTlXo4R/xZkytavhEcDXy4ITxShxj\n9eYMeVG8NuYM+f8vIOn8cquc2HtePCUEZYgcc4YSYUJCWopTx4BHYJamwmV1+zrbwFQhZRg2UKEz\n8gco4d4cBqDWBb9J+7o85doKdTSTRW0eSzszw10OAts/7003FMdnkJlq23fam1LD4KzY133aIxoj\nHdc8hdtX22OfIC0nZgvU46Vp6ezNAh0r1rZs17PDmqm6O8GoblNK/ZxpZnZKSTtllTH5Q74W2/vm\nIxZ0gtw4+H4jaAyhZz18jFDn4NNJi9+QOeaVg3wEiRAzBdJ1Svtap44/XD5U3XJo/9LsWUcQezPE\nnPh6NHNAnjmQ4ZqeUmMikj8imlqmFEBCRBY0JUnS+6wXDtcif+8PF0Npb26z4YR7TduEGXh/zDyR\nJ2KOfi1B7va/w48GG6p9L3K+tB6cbYFwxNlfBFWKkRL0ePbzM58hfnotyCz3b/ZckiZ83IQHqz0h\nczCERIgQgwcaZDkbf9GLHkUvIUImtvj0DqIcaSGGmhogJj1cA1qTI9QyS9biVwTaaq3V77lIyKDm\nZLtmAYW8Q4SB8tJUaWi8T3qGdumeSYvPPrRhce1eMFJXZT50OTrk0vjpyLONqyEddZ0hbS/YwW7/\na+2V2F/M2pNVe7wIs5/bM1XT/ejDaBdDfVQ7X/t9b8Bkdc4Ym6xFC+G0zxJuFCeeaz+XaijB7foR\nwJyypbIzNSJCNrR99mhEADSzDHjuYiL3q/32Cr8DdZN7S8L5K0JoMqgyucAzuULbXYFDaUzPrFdz\nhu2K4YUZiancwjpQ4vU6IQplH5O+xTrb8YzrUhlrbXvEnLD81u1iNsuSR+r+UHXqJnvmLx060kyp\nGqSv7NSFSI73PkwgIhE+8j7Pwv+WPjqZb/F8IlikjDegOaz/ZoTGR5AInhJ6xJ8CVS0LzyoLsvBr\nzgIz8s2YTb5lusjWkhD6DmUSK863/TwtsYhnKaUSuUw5JgckwpqlL0MCA7UWicAhE8Yb31LlZ/pb\nMV8EI8LJSEjaJwUWPx2taXmZhWR6CREytXO4wi8zwyMH0auWSm6JC443FyS7SU2CjhWXC5ZDpLkX\nvXh5Et/KKGbNUqPVuXQ+EZb8u5YnDJ2pWWC2Hg6hYycPZWClYWEqixd1ZzFEFIl8BhWWLl/3vLzP\nEmo5WsHBjHNEtDef1dyc5VixKzdfuf0m71QmxBqyyXa+VY2Osf2DjPdn06Pa4Xm+Rw3XlaTpUTxZ\n+NGkFZTMDxI2K1f6A2nH15OlOZF5e/bcfnYSYSkKUdsQihdBjViRElqBq0w0T2jQ1aX3pZ80+9EP\n141plv1ngTDFKTVa0jtztAWWH9DesYOP5WBR5TvB+EyZD+UfX2C+vbFqItIsjE8f2CQ6CLXzjlQI\nM/FZZ0aCZz7QCRPI+ncWVWUAL9hD+SEvMd8I/V09tM9narNxLUrJfncOw9+nwhOWcOA6FxMilDqJ\nAMJUMnpS45ONUr05Vc2PdLOqwG+/XCqo+ZZhfS86jV5ChExsksjG/HZxJouhomGOFd1g20BdqEeS\nBh29MXg/OlBDR4tbXRfIH2hgIMxAESYUYWv//iPSvBGGzGJoU6qbOToHcrWzueohnwak3JGDfGEk\nQC61sDRwuL7nOXWBq0dVKJTzCNLhji0cYQLvdaD3DijmIWROudFpq3AcW9EbWtLeq/XcqQeU/O1a\ngWs51Gw3xazh40d+ao+4hkG70rPIOxzdQCDHfOAU03j0YUDipFtCO2Z+VZ39wfhpkQhXdF7mxK2f\nmZxMG1s0eedqx0ccZr6LNp+itXgeto5hNBSZm1QzOtJ/gUEa6TfTEzw9hOxXfW/N6KMiSJ1JQygU\nVGM7HToS1aPwQ0wBtiOEiGjEtTnmfUgEBLI2lqhnKFhL/fsqv2OQJkIdumpg/jGeecRc76gs/0e+\ntYfpFZ1ho5cQIZNmnLQ0tDuIRsSkqnD9s5RfQj06B3EPiQDFM9SC1CHohHXtnccIk3chKIojhO1h\nTEgnLMm/GczV8omgNTVy8NGamkYZVr2HA6x85GCv2wUEB3sFxQbZC/NG3HkELsz5dv3SNOKnN51n\nhfK3cvQVDw9enOrySqR99zqAz2zKjDC6SkVy2IyPMFJoTtSmGal7hph5iUeYxoXLGho4taTBtfpw\n2BK3Wk9EybD5VnQvJ42XGZ8IR2gQiLVLR5mwiGO2DpHVjMe63un54ZXa20Lv14mh1FKqe80V7ZEj\njhXLC7AT6fghGB1MPoKmHOs298SfD6JI2jCa3dozsrENuL6fgaKn1DPfIV8cJ32inmfartdmQF9g\nf4yYIN5tLxwRGExS55i73E/qfpsW94Sj/gA6fog9K1dRAs0JaasiLc+dqx70PIJU5ksJcuoKfXKY\njMH0SITIy6zhRVF6CREIofBAmKGhSczMGVBrPNs+41DOyu9RCvr+Vl6+RiTRXaigfUl0MVUgxaH9\n3FlaIimFORYrGx9s0CNRAkaYBsUAAFPkCSXkWhAx5PCOsMezDmoBoIl52G81DcIwXkrUh8+T3jIk\nh7XxK62MCBRAxsaQO2dI6ZXQaRHt6XzBXrgslqb3BSNP+nlcfSGIgEHmWy1wBabcc4o5QyNmDc+A\nwDx7vLSE5gx4sN/q5wdQ5sStauCcOmFdQuGB8omQGXYxDaxOggMiIbHbvzSj1+J2m47dC2cX2XO0\nHfJu8i4frnsj6+C1eV3xOWIJhil5sAALpnTwVBxycJevxcGxvAuRenb7W5PEmtuIONTPpK62FniW\n/1lgkra/LITihG7pMFHfITMQSslKzAwjbcY0nlwKtepVKN3zpxEaGbVFmCC858Xm8zsTCOJ88TTa\n+VZtfZ8RLvnZfEx9Fr0QGRu9hAiEii01SPsjQgQRGETGV0Uk1HuCSkDpsLdYuFEeUKNMFsGrtXiy\n+C74TKj5ebYzpa5qx2mTbHzy7b7kdrba08L04sGW7LdWz0a0k5QBL0zL/gjBw1sNL1TTIKqghMJS\njiTjq13Mu3Gugxw6orSqPgYN4UR5HmF7R/lja7Oo8Gj7mcypRzrhQYGD6l9cD8qhs9esoDBBMreb\nxkdO85M8336aB+dPm48oqKKI53ukCNPq24Pi7157Jf+OOETsl78+UcRMxXKoGBEaeeYMQhSdtupv\njmtRBErMDhYofBfhQavpE+FB8dHjTUbzg9z6NPm6lmtNguEVP24wqgYPAThe9saPbubSpV3hKsT8\n+YiQ7kvp4/6gZ/IDrmdPR9DQZdH7L7EcqWmN+9Y9s85SN2uPkUfmeosygOHmDb9+He3J8lnpmZuV\nvHbVQ1rtFRcaNT90g1YCq0DFkod+tUj56rTayUxdIkIwUodFVikMTVEUTBdB6eo9m9EUGoDZLqHm\n6r3h8HEQgTnWKC+B/tFxynv87ogT4xd9n/QSImTSIc62/yUc1U8yE/T2lg/bBGVQJ35/UlnyCXZ5\nyxt+xvou72iVn9K1aGjEVjTfVz4M9Iwui6LYm7aOFfP/b3KKfs81NjubLErFcWSEc+9x+U2dIhwR\n4UQOIVngZ03fGIuysrnt/EPYm1w1ZxApc2++Uc0EtAqjHKia8iwP+p4jps47fkDzqBwNwiYn2QuE\ntYHaV02UPhgwJh8dM7KtyIJw6oOFtE+e6TojDMFCysP2MhrZzDpzJMfxI171GJXKdd4RJAIT5Nzb\nLGSE2iZY4QGr8M0uR3wi/NAk+mkRjOb8+f6zOzeeRM3vl/sAOIR0bTnQNwd5OUTj92WOW4uZlFF+\nSs0ehcKDfP2hqfsnP7znPLLP9Yxxt6eO0MACUTzgN/fQG3tJy6qCcur9fm/FiA6MlnLVh5kW1SN7\nQI9IGBhT7JCJdHBROoI4m807EtlEvvNa9s0+zdmIqVo3XNVeqDcb5hx36NPA4Kxzq+E3IISnt5/j\nM9YzI0iEWu527f3w2PyE69DUeVb9w2i+vralz1VMn4gJlOVY0UVAiVAHeLwI+VHJ9oV/VQmX75Pa\nIyP+9h1LFtb0WMXQM9NLiJD6CWx5m2YkC0Upg0j2EfJ/VFM/FNZFFg5gFlq4thcBIiW9GHYChhEb\nAKhvy87fRduFL/BsofdZHT0ku36rEZvHs8gyN/CctKBdpD4MH2HWSDuGvmO8Behg0dfO6rZ4e7HX\nXMzHfFQ8yrEWG+eWTyXPJ8LZtoquOQ0cKoVpUAfIfC1mDeUgWVOJk0XLCWjESWRIrjmQVuWDdgw5\nyHIQCN39k4UHFK0Q8ZdgHBaKcJblgd9M0ICCOGHWW6eOllkd/WadhtX+QJ1ZndL+5f2ihBxmlcVp\nJL+s64hE4IIGTZUPqfeqQ0XY3yINvjkrKZ54Bl6ShbTEZwp5Bp/zkfbX1hrExvMMRdYQ6WkRXjHN\n/FilUFAbnlM4/KzpZgdbz9Q1pRiS0UOjlGdlH2nGS+cfo+dFz/APyvZfS4HAlAKHTBYoEgE3ur58\nRFUxP01Cws9/vPdhVy0+KgIwZnTEtPJFPz56CRHSto8oOG8SRljgmNnx4FUWAKcwgpmWSA0o8S0H\n+Vu7CetiGKGPAVx4ldQaHCs2OKqSRiClJZ/zfkVoEghVUzYleM/IGhRBIrDnxeMubgxKmp7/wb4+\naW20fC20dUcO4Ci8qkKtmgv9JLC9zgrrJxTT3DT/o1CDHM5HaEbzNGJzi+2bdVB0hJFwNQT5yqDs\njtWQmabWGW4ehUMvoA2Tz9RW9waDvGpKa4FfUdDq0BpZAHdIRUMh91LaET49kEc6mx/D8hhjXJFc\n8jvp355mdMH7LTJJX4tPhC/vJe0VtX7Zls8733bkhTYY+Hiz8GCMuoEaPdesYaCZKOxOqfeP84Uc\nunanTiQ0hDpV8zRFmK984Gz0XvpEp23TeM2y7rH+6+Y2mCwxcwJEqS3k2b1opPw6RwMD5gELV8c7\njAjUYEx45dPoL/GqXCp8uJQrjsXZQIGDOzox3/7P5cr+OBJ2ZCAihkciYECBCE0bWDJRwMeRWN+3\nMOEz/Xs9E72ECKlfGKud+f6EnKrPjdGLaXMbVpIGmjXrPb6aMUy8J3OsCO9X/TqcM+kioVU6LZti\nojfqtGvCHLY2lLCIjhyY8fCVko16aJkEC807An+/5/ImZTPN/mdRZOSOHapriWeMW6UZyFds8yME\n/CNhqitzJGtQPiS1pjf5+pYTi6ySCp1OGpTfu2OnGcQEcxSKZmFelJaRoVkRCGLO1rQD17RAhKKg\neiycJIJgixyWRuDzR6CvzNSyMzGaLv2+5PkFGRlTZ52PT/Ogf2e6t4kbm5PoWNvjJ4+s6TREYcdz\nj5TX36uCPhuBgOhIfJ5SSuI+xUMBDNHM4h2gElXqY79cT8bxvQsGXjROLyECIYTCd44VXXz14yZh\nZ4NFFkyrOdrG7nibNZw0M6kCsTroQnbG/KM6/Tv3exzdA6xsnmAENX1tyhGF7Qij2bm8UOMl6fbA\nlfmAEMHMZbU3d5R+o8Yvpf4APsJcjmg0ePvinV38jJBnM+P53quKF+KxaPPLYbNt/6quX/J3fmsY\nUvHhUX2OyHiRE2r/dh3kl7TZckbYOhw0obUBijBU3uGytgHXaVJOedaP+ZG6OyH0BBpFrS/lutC0\nKfUe1a8QxpH56PGcmFVNHjxwIL+96mxt0sgtEYLd54TmjQV5JE5G2xDGH32TU0rtOlvv2f5KJgfM\n7aafsY0NDlCWg7b2f2+N69BVDzy3dCZacF+lzVdkXz7V/KJtR752mm/HsaIydchk+UQozyd5xZWY\n7mztbg7p+V/L+eRWp1F+uCVWuSv9rcwtAD1bu9rmtdFkpOWNlwt8D8+mB2AAt2KO1bTPMgcmJiO4\nzszwUC/KtL76TeglREgppbRSvwdixvAGYalC5gzqnn4kmvoi+W0YblmIrmU/6I8+bLFry1uUDaq+\ntgwd1hlyrAh2WstV3qm2xfLyy8w3EKbHDgvd5obMVvO/aMG+JAgzRhzhyMYli6yAbi8tnLwcfqUx\n0qa2fr7pigabRdHCTVMhEQxGUQ41X9oDWq4pMchYAAAgAElEQVRMyivtJYynZdbgaSDZbzP0ZJJy\n+74W8uCZR5AWLEvnhZkIOTwnnX374ruGl9aqyzOrwffzWjITEmtR40X3iWd3jeP4J3kN+fLRp4nY\nI1th2VjdNyiHRSuwzBnOIuaN/TOpN+HpDwaiXZPvK/b10nsskg2+nooQY6xX4rCsNWG4FI5jS/OR\nce/L+7kdqKMzLHC189U10h7zCPGNCXzsSWmttSK4adf7H4q5kL6qkHigUS6h//AFWOW0gZrfQDOQ\n9pBYTDqkKri2ZNuv7zeJ5gukWeD6tujfKe0L3lQkgoG2otkQMx/CvZnt0Z2ZGTaGxSMFIZFyDt75\nRJCkUk/Pm0gbFrjfUtnnAkJzS3G31Q/tkt+kHEsQp8wPACEl61Thg9vyFu1j4JKZROXnBczDauZA\nAws/TQQNBt0z+tms8PpF3y+9hAiELIcrhdrFISJWJ2v7GSRS0gJlWvX9lFKK2Fzh4tdpghwpqTxp\nF0GJLGG1V+9xuvLqQZbcMzRJbK1G3wgRRz2W5mGUIt95ivkgzMMZUHFvr+PMgbRHt4uXLYdCPUZH\nHA0yGplKR5y9tzSFRGCaVqOcs9YH7D8dCSOnkTqdcixZIhc62Uzgm8RbL2l1OaPzzQo7xRw+3YwT\nAdWe7ngB94ijC1bzWU1zLs2UNzKuWUoUVAgCAZn17X/pE7vOctiPaOtQHS6aVg+JYOw5bXFHiDlN\n7JTFZPwhMSQCoj6okAO1z54nQ6tvVRr5Hnwf9opjaIWRLl67fUOXGyG+X2YhVlmn+zT4+ywHzBGT\nskhVZR2UiFsiLFLf8kM9W9/l0LpfvoVMoG1pv2/nXFOnXYmWHCmyV3/mWZaFqEZzqVUQIQ36Y33T\nM3YhA3p91/lq5M6eNx4JpIYOXD0fFevKry/aaE1j++aPmV5ChEwsTrqEqBJJZdHUv6mMuiBhmJvZ\nLWOtaO1RM99mlzzi0fxjVb/b/Igq6BwZOqQ0jxJy8iTDSubgUbWrFXJYDBQpzyKW9ipoD8JsVfu7\n/K2cQ5fVPiUIgRcNOUEKEDrxKe0lUvry29FuFGYfocmsbkMj0j6r80T/VlJ/A6XhIRHOJrT5jsWk\nrmlEcyvDd9Yx46NoBonQfo83mDtvRROp87Qkab6Ag8WU2nEiAqVcDmhc70kvj9KV0O64N9tbmrS8\njFZIhBrVasaQy/1S9ykJc7wIkm0Whh95tlcsGXeWFnol/3sH5Zp2cX+zZyhsa5EhiEBAB4EuMa1n\nxLGipA3wFRjK8ga/m2b05khOuZbgkN3r4NqkPHm7KoxZumcWMuyoJrbji5z2CYXWdCYQCmQUvm8h\nSNa+XfMvX1Eqzd4KxSHSISWO2IgSHqBbqnyv5lfb8RRBUwz1ScAeVpAI68QLR8zXzkISfO++iV60\n0UuIkLYFm9l9VcdQetZFpLiK4JRWFu0ByLP2vszzIYxR16kP8MzR1r3oXoeuErtXoQzkpKMZY50m\nqXvii6YweErKnNPAtu6ZM3j3vbjUpWyA2CPDo2Iod5vuAr9jMMqS1tC6MPMI3PDPckDq9Q1CGbkt\n6wq/c54Bp03MLnKGItJqj2m12jrCJ0ZkgxqtoMcdCt3aBuJcquZDtdbOjluEFBK6ymkPFXDlq3yW\nurT1HVHTag5xBJLshmsrgqV6r8JiM9NctO+kbCnHb0KY+hj0ei1pyQr1qG3w+brCfSJoYbvsR8UM\nMDWMOjDulPl1bIv7tPG1J+aYV9ql5wL+H6WKppM27NddhW/13UR4gCYohwWwojW9EOO7kzzIHyGc\n8y2VW3A++yjzsC9HxqxY0VybRH00H1E2jK8dbXpc0yjKD9sAwnyaL7J4wOKjzBnAvBZRZcwf0tkC\n/1rerSv/Cn2ASEhWTs+/9GsQOpTkTl7Hx37hF7zv4iB/1uJ7bb9uXMNHnECzaDIjb/uszlwfQ4sr\nEP6e6CVESP3EqcyuXlyopt6Y6CG4WCBKw7U4orp0z44o1xRTGRBqCHHIXKIL5lS0hwny/CjIN3wj\nmtFLYYyTus63IwsITgbaFSZfnJEpAYE+4N1rWWu1xWgqgr4GqFBngNyzQr5KEmpp0zmB08KXkBkw\nQSKg5+Ozo7aMEPMjMKNtZ97dEfJb7f5RmNALDwQe/IUcfBacbw4ziMQO6UIsNGZ5ZvTN2bafz27O\nwJ3uwniWqxIoydUWNOD3LOOGINyWMpewLc3/BzplJaf0Emfd8IlAHVQ6a/jesKDwfiyDRGsRwj7+\nogQ24usHDoXtnoD7bvFeVyrnjZ0kGpMe+lrD3fO9kTogb0uR7ylUD5B5T4A16dnIO6h1czriWJF0\nDiJjS8hD4hOh5AGlBaO6V4MATQ0/nn8W8WD72Wj4FwNxsSz77+TXzdcX2ijPmQ4UUNcvlnREaKDL\nYWZ8nb8Xp5wXEuFFKb2ECCmlbcloF0o0Fyiwp7LYBspszRnwXlnE7AUAIVZKGgw+EEYIy9Ut1ORp\nfopjRbbBIPLCWecsJ5EjabUjnFXdK47ziPYUr8X+stlERKKNSljPnMETJsxEU7AOdW15lgajTYPD\nFmPAj1JfXryce9qToY02HoRUWpDkR2y2rfpS4trwPZrp/XZqep6tU9KbPXPyidRHA9HCg1sz+EX7\nLFfxf9AKkqR9VWOd54ejoS9tOXmYsKqOhLX6MVhJoNadCZS6PM3/FSFl+EJomXURWMv+QfejTCgp\npJIafjhi0YIiTO+IAHjm249or4oQgQjk0HyBCjTdPtH3UCmw59wtpcZemlSJBw21X/LmDfmL4NFa\n9j8ICk1vbE8VwcJCXvAE8hAJhnWsK7BecZ6EHG40dRj8LDrGTqnfQ0cQCXVs2Jlcc8yT94IIovcj\nEDLRJDy1b7VuFzAtUvOvMKQGX97yJg9SZLwEBj29HExu9BIiEOqgjLCOKE2J4UlIp4F8xVFRrudk\nXFALvxZoFDphbMn0KuuKIfWBW3nDRhiqM9lmnNV191Vd8p5a8KOZBDgcAZPZ1uJ5zN9tLxEmjGhN\nkFBQ8AhiG7gX7cCiGvKwf+E9314RZj2GLtiunx0r/IwNmTu81DcZU231pe9YTIR38nvp0iL0Wnn4\nL+3Tec5yZHoWnWcr6hfkHYCqJqgRek5oxjAU2azQDs0tuggb5J7rmwe0aszZbtG8eYx2KU+nqY4V\nmyQfl1wH74t7ejuPEGoGMXqQdlIqz245T9/2G2L+y8QlC+0F0hC/CehYsXN0TBzleb4wZyhiBmKR\njjwjVxmAsi9VeuT+atFIGOIVJTXq22lHo+JYkSJHDX73KJ01BjBEcChtQAiD1M6fzkmkXMmYrw4W\n5bv0Z4FOcOEIfso6KI4zI6aRZM3t5iRUPUpdK86ARr/om6WXECFTG7KlepfOhyRBIryRSYKnLGa0\nVxzXyO+8WEu4HWqvKnlW1ZY2PQtpZlEH3WLCBDSonST0+XDWpjSERIADrodEGAlFdJSwL1z7/04T\nvN3XTKUuh9pQFs0yr3P2+1iO2Zj9YWTjX+FK0wxsVAscbI9qNCJaoQidbUto2dWzcIlDSJiuv/RB\nN6UGtSAa0lXg1rU1eCiS4lx7+BcVsoQSVfjZ7F0TAgeM+qKdJm7lvZXfkqZth1zzd76Cb4QW/gJI\nBEaFWY5wuxOnVdSEsv2XmfmYTQjXzKkTruWrrO1teOLqWFHMh7YWMnMG0ywk4FBFIRECDve6KvJ1\nhd9t9fc6coCeQ51tik8EEJ48Yg2aWfcrkrJSJwQfGIDluyp0kOZH0TeCFjDvKw6saVsPs4T3BPQg\nC/E4QhVd1jf0gihf+N3y2iPn4jLePJ8IlhZpxKdLw6d20cecqFD4XXCetM3zFDgvUcFGL58IG72E\nCA71toWyODSLjMS5FunhB1kUDCTCWYQhYFqmqEpF87MII+C4S65aIVDRB2xQqdapCwckjHGfBm3O\nWDhIIYTiXZxNCWGFLbxZ/BB8QNoI01EYgDbtxApc2+XVZdNeWyMbpWJijPLYomqFdGz9Flha0tnN\nyjJJcENRGjHQU+rHrfcuODbL/SbNO1ki9igiMMQxEOFhSvlOOW6dYDfLHJkiYsW6ptT3CWNWzwq1\n9mOhCFKhRafhHuA5ey2ycfitzaW0IKky5057cGu91cQrIPXKoHjvR3QXBvIj+xBqBonsix+3i0pa\n22L331EBQdXW62bq/U3nkdZUfyOt0PimnrEDmYlE8ODuRWOd+6/tawkt96HfpXrb74t7JqWkDjGa\nr2CipcxZUYud7z8LYgppBf6y/Xbl1SVc4Pv4hznqGNs7J0dKPhKdwS23CNtgfydIhA6Fo/iX7SqC\n1crvQoJkCzBVxBQjxOMKPMrWDk7MT4lFTzRVX/QN0pAQYVmWP5VS+gsppX9jXdefwrN/NKX0n67r\n+k+f2L6HUbuJoHSP2naO0AmzlGpLcnsO2W0ZZbfkesUOlPtITSN6JS+oEsL0drDtfGULs4wP5v1W\nnkW8fofqAo2tEJphtGl65qivC/MwaPIIdV6sT7InDvjsDFH1rL6vPUGfCArdYjhWLHmb95bx0UVX\nIUiYs+heaMLO7IfY9hTNtHi2BmHCli9f4XcZh7rSu5JXPH6XyLLH+h4RAphGjS2rDQymDuZXESoh\n9tp3kUNhvofzVkfq0O1i3+ytrCP5fS96LnnkOspDJrza09TEBzR5TFvXrRnhUs9jxtGxokKeCeIH\n5lto7jvmIGYjGsJ9ogoM7EMN+zwrPBtZD+U927aM7A8o7BRi5jlnEQqAO/MfMp8jkZQ6R6HvRXsz\n2L58DSBIh76VsU5FNLiP9Pzv+mUZIFRENA/sTJ5Do0BnW/10Ifvvi86jNZ1npvOt0ygS4dellH5t\nSulXLsvyL63r+v81z35BSumfPKthz0Sd5sbziVDuk4LQV4D4RAh4O2sXJlnkO40DSdt5dg2gINAm\nlb1LQSQQnwh9e/Rvasd5gm+ElI5rjuxyvTrHV2mvnXuLE4MXRk5fI2ndOksp+6vojUju2/spVaZS\nPPsj7JE5E5+xuZX2MiYmgkSwiH1/D4kw4vuhMNrlQHrOWOtcuQyXiu1a1W/mY8ETdO2R58Qa/Qmw\n9pU8TnnWWBoVzqD5gRVNguYtS65dKQoTlP8EyMbQM32fwCHHad9hQr9AZL4VHwbv0sA8bz1NOvoi\nUsg4LTTpbYRr3VfoG/db6eY1TSLrwYCvgGpWsl1b/yIljGbS842GdjMqU5pqwfV/3GhalY8IDVJC\nVMX27AMOuEqG1X0HvS63aeV/jOjQjvPOn4jTt3gol6ReKFmP6rtofsir26OpA5+F3En1W6/OQn/E\nJxfzk4PoGESs6On7+SdchpAtz7ooI31aHLfClxdfBq1PBPwA1I8FMjl6jSQg50LM5Bf5C9wDWXnY\nF8okEup8KtjRix5OM+YMvz2l9HtTSn9mWZZ/YV3Xv3hymz6dhjTonlMbeSSmDjKJJ066I1qdVrhg\n5VMedy0cNBUe5DwiaPgEMFTEJh2/nXfgtWILqzQnIxFGqIdekvYBc3T0IFAPfov6TesaGJtFKxsw\nZziLOh8QJ49ZhkQYyj+hjGDfdwaRwFAve2sNt5HVwgSNlkEBw+MYxyPhL79lqgxirx2rW1ZE8KjL\nY+gltGfG8aOYaGNhujUon3pYzVcxGfxiS35KHQW23dQPh1928LFoyo79IPy7+p3YyqH+RQSFuMq1\n779qRilzUu57B5aej7H4FaoMsK5Ol0Q00x7LtMDC143ZJu0b9C1DQ5hrLuETal3xNY1FZdhNS56Z\nfap8Xujv6aFKke9dwDcCbd9R7X3XBlIH+Dc4PWIPrA9cmO8IPYW3gfLY4O/GeuGn2/mm17R6PefF\nUfDlpiX36ushU/e97bGfLwB7BpoRIvzvKaVfnVL6b1JK/+OyLL95Xdc/dW6zHk8t41Mg8OAg6lkc\ngKEDGM+cobMLJ/biRUNrICUUWR6TAoIRb3G+N3mMytmwpFXveS4xbdgIRXJ1UGQnEzJkXp0V7i7l\nxoUJLVmo5bP2JNR83xOGhnHIS7SQwIbtRQJBJ4kKfgtphddwnOOHCAUEqEFs24F28W9N5VdkTsv9\nReW12qwypV7YV/vm/kxMF6knUOWIOcNZtJZrz/QilFvIM4VC4YGG2MszPIToK20nYYyrHXK+4RpV\nO8+AejSULmJr7HaZEQR4a3EnCA4IDvHAm1Lrd0K3j/EmiNwoOciBZWT3sfoR/2e/t3Z8HiMlNUuU\ni5WEpC37GgrM7rS8eL5IOufPJD1DIHQUgL7MIBI8k5R+P5e1aL8jjwrijpASuHbCg5yGKEEKf3GT\naDCSQJWuK3P9lPA+iAl/+7wRHnOKN/rOhAcv0jTlWHFd17+xLMs/lVL6gyn9/+y9S8g1TbQeVL33\n+51zHByvQYKJQoIGVHDiFUTQ4EiDZ6IkeCGIEAjxAhIiQZCARnSiGQjqgQRiQA5RQgyIBILEUSTG\nZOAdQhSMGYQY48jk/96928GuVbXWs561uqq79/u93//vNXj73d3VVdXddVnXZ5X/almW31JK+R9O\n7dknJLYouDQuTOOLGkVgklayAkeALvXqo1p6LZ/TzMqI/bhXLv2aeCI05iPpO/4OY8aSex731SMw\nxCwm8ygIUET7QhYqg0K4jxHLDAoCvOx2fWeQjen3wkZE+M2E3gl4kZMZij2WMve8bQ6lCqTx7xqn\nGPVWwCycwX/XYx/PZfyQ97fTQLAPRby2RTwRIkwEvF6KVxCMCNkz4QxHaQ+/NBPOMEMs5CEOyWDz\njY9nfdYrQOrcN+X9uYicda3We1PAik0pHgXYk/rQI8GkHHau9SPM9Px6z149pn8bcrmXI0PHd14f\ntR3yvG5BTSW9OxyVoiFKjVn8+hqtzzyEzHZrJsTIhlDYQniPxTuovE09vieZOUZoJpxhpN45XCHh\n1+B7EwDSNj/EQ0cXEcwfZ0Ti352RwbxY/LjAJltZ2KP7Wq74P6jnqMzqgb7rcxJ+Gt8BKhMefX/Q\nO5bFsOBCxgfTZAIDlHlItHrBaDEFrMjmXX7Li8rTdIrfHe3OzrCu69dSym9cluV/K6X8x6WUP3xa\nr74B2RSPgUVF5qXillqaRlmIWeUTXDlac8QbYl0vqky9hlgNmbIZn4mEMxwSwPU7QYsUWjT1fWKp\nRcstBWZ7nBtxGW+uePJbCzVwTqxDDLisZ0SqfR+weo6kNcwYJ7Twe+AzvSnZ+joDWsIyl+A87Scp\ng9PgqNUgisPbS2i9aWkID2BCpO0NhDNQMMwnb0PZ+3Qxj8k3xPFsvGWDscmyoUTjj7WFVvv94JqW\nOW19ShQXUZ8yYsCKQnd4t3rZludy3hQJsCK2YzARAh5Vv78lEApYeFJb1tuc8u24+TYBQJy9W1QI\nnDVrM5laCOfDmADIztk1iHkiIFYIpnZ8U/kw3yo/0LOg3GsdE0yGmcDBRqQ6eIQvGLnz2QpwTQhW\n+aW9x15mZF8sUMalnTaKH0vokcXHje2nriP60iMA2I3XI5x/9xyy83jv/t73t/GZy9IoX0BBg2vQ\nbLYeDNdAnDDLG6PSziv2Np9OK/jkWU5CO/Rji+y/57I739CP6EWfkQ6neFzX9d9eluV/LaX8vhP6\n803Ixc9v5UXOPBE2ym8RpnHhVnv+m7s5VcYf0j/ScIbVMhQMpKoRYCKsJP+Rj0Ulmt4ovR9lovcv\nX8b9jJyz/UzqafuOUjQgUBmUuagP5vLwwnndrxV+Z5SVuBBG5HGelIX6kOGJ7tPEQNzQEseABu/w\n3F1Jv80lzAgEs7TV/Mi4PNuF1zCVKDjWo5z+CG/Dxrw0JaC/hmMqykKiyxy3OvEKzhJcPqsn51nP\n57xc6pGl8JQwwMaEJ8qECLCMXUvjmxwmgt+PIgDivbRV21GmHeeHFQhwrxloTN4fQ++PYshGwkOy\nfXK7V41mwsxkPjOA2eh2/T0wBe2NCemwLp0FNDpSz5h3nxzrPAE+zVi+4bsyTx3UPx2NvXfAmXCd\n8WLtGlkPzibniQDAiswTQTylbtWYpz0pBY9E5mZ7fxj6q841PALxDFGSGKZ9RG+IO3l/P1FYgm9G\n6/rcMfo90awS4VeVUv4cnlzX9Q8sy/KnSil/yym9+gaUbdTdwjJRoVE02HM+rEFrPrer3rNgpFbJ\nCAuB8BxYhvV3iLGZoDMY4swTIWMLR9rGNGqIIK0VDg5SglgKERRtxHKGlOMejNeT0YyFKouVXfH9\nbcsMuwA9v2W+b+Z1EGWhYIbCjCJr/dnPe3TTHMkO8hG4Fd8bRZkasnAGxELQ4QKXi3i32XuZUidS\nPGZlvFCi/l/tOaYsb30FZpxj9NhJw6yxKJj0cbzC75iY+/IIYejXCPAtZjgx8fou/TR7XmEQ2gm5\n+/FTC5ALLDr0/aFhQ6r3Snfcs0bCN9Jw/QNLDg9vknqtMsF4Pu5oYyScodU/sqaj8o7c44TeBOk/\nNQgdINzDSomzFmZjQc6xeyMlPatvbXM66XMQ/kszM01MdszcQMMZLnZNo8ijB9zvhgDY4ZvZ0CAo\nS5R2r635RZo2lQjLsvwb5FxUfC2l/DcH+/RpaEh5EMRkMgrRVq+rK9N/eyZraxpnQjxiLZRSynLl\n9WXKgxlARWzbxrsdJ2v5rm2J9lZ+H7QEZ3F5C+4LO4R+3ianzApN0fblGGwwOUPr29nyaKBeBgMp\nD/u3Gt+m9jBt7HmjuN9SlNLlwO7J4oajdkYUQBzFWgo9DuLmuYwvHaeR9s6JwmfwWAoDTaz/7Ow3\nhjNgH0rp3zzyWMmUOiPr1wXGlA5vuMDYp/e72OLVnM/SQXYF3fiamyHVs/fHXGhH6Q7rdCnaQii/\n67dLMRGC87ot5+n0HEvS3jClCLzySkBKR3BpnEIlA6acoGwtd3qLJ9GMd5pe7zHjhTzLmxnP9v5+\n3ltvZrIzOK+egeHHiuD+1eeLl6pHQhz20JBxBZUcEzSzlrD9Y+Td5h68lrKQy2Y0kt8DGAZuiTAv\nFOZXsmCHoTIZD+HC4lQ3YL9FQGffu58uvXAjHjTiifA7yLm18LG0llL+zSMd+la0MG1/k6BkZXoc\nzOIQLQb6fGLR/0wULVYzihFzLUmL89E0ho5vmfNSFCMiqbQmllD0SCjFa8+ZJn/P4jSTJjBLtRcx\nUGYT2QiPyN41s15tKXhGGBaDORAINfL7RhUF9p65lF3q20HGgZHsDHtSfRkXXTHcyjIlYywRwJ+V\naYbHZNoOZE2jkNqeSZX5Fp4kz6bGgBLMFReuPgQMyI+lzK3HWCKL0Q4xhEzHrIKAkdsnM/R59EAg\nSgVES0elEbN07lEAM6WYxwERy55WstnGMGREYyJEaTQz6l6DRMhs3gmgqDGCqJwShY9dw4nh29X/\nWQgVNe19DvAHz0oTm+MNPY5RRhVDbJ44Tx0oqxs7iWa+eQic+YG8IgIqagNb1A8KFBo2oO9DxZ4c\nF38OlBw3zPqgigrmGQvdiuekrH/q2ieXUV70+WhEifCF3PP/lVL+/lLKnzy9R9+ImJDUf5f0t61o\n23Tm3KmS+DRGM+EMDKhw+x7fr0YTYFdRm2eHO8xY2UrxVpyOLm4tVRl9ZLpPXPQp8Bn8pmna6hGB\nvFKtNdFso0soMmBsg/Xo5HqjDo5xt06ns8dkRks7jii2JpQZInjLiU/CEKBiAOed9SY53mkmAI6k\nLp2pD6+laPvQtBYa703ZdKyNiDKGHuevByAtBbMHM6GmuYRH6QfVItUFMdgDs4w9EM9t9kgUig4O\nn+hbTwGpEervZPtup3jQbQ/s421tjRZQ5lqTpfQ9WcjEbpwN/IZkszM8jqKYea8PR4FCG5CfjOv9\na4jpTzvGD77AGLDXYL8d6Q5uqgYIW87ZeXw2Sa0zPFpe5nHU3mtL4+Hi+6OsZmdRxxazCrpH/ypl\nIQtJaBaS4//It9uaXz92Bf2z6CN5xs9Mm0qEdbWQeYqpveG1HyvJIi0GgVUzRYEEtBJNfgmAXExb\nEOrQrCc6/EAsKKhBFY3lTWVygCwFd9K2UzS0WFTfQYeXUOxv8wwDqR0jGtFE91Rl3qqTbawYt7mH\n8nh9+1vzCs7ItvrzGahmRGeBNnXGFaxjhMkSYt4FSOh5sdJr59Iea8adWCPO1s6v7QjKoYk6mHsh\ndjNDr96Dp5KmGs1CqMab+m7Jhkd8u35gH5hLsccGeBBVvsBvqqTcCGcwymiwlDEgNUyRpi648yss\nHvL7roEV4Xm7ks3vFVHc9sw3tZlY7I0zAnP3+lD72w4PhPbeGCYCPvB7fXEaDNjhV8gtft2PQr1H\n9oa9yoStb5MBK/asGb3MR4kGXdDd1yLyVe073fT4u9trRJJv/Ozd732+Tf7bejWutCwjxG6J1qZe\n6xxJLQznoIW8CnjizVv6I29a5tkl5NYv44lgzzUF3btW7Nky+D2ycOARTwR3Pb8clnmWZ86Lvi86\nnJ3hx0DrarW716toZB+/L9fHkafFOXfLaa6gDdCk9kFpGPHcTGwXpnp8/J8vBmnmCUKYMhJdMIf6\nqfq0govvDSwEs59gJJ70CGUgQb4v4/Vi6sdHG/Z79nhaUgaEVeZ+G/VPF4lSULJ69llP65EoF7xr\nnrTdG0ehZiqURRR0JFCwjz97z0y9j/7I0X/Pxz3PZ2OxiaPuo5n31kzNe9N2adJjZGQOnk1RmsWP\nRNB2ykodt77xrTPMFVxLdBkMA2xpjwf2D7Peo1AkrvYniXdNICDzN1oTZ8DwWCjPWz1+TRSGCxwb\n+B/Z+/vvgcG0F9Vwg7wyVCsYdlf7VGreNhd7ZOP56R4SA+N5hMdx2QAYJR8k8kRgCquzwJ3je+K2\nz/4cI+vwofSmAOC6lzLPkG70qe9NZBYynmeoyxTCX/pKPoJP+ay0lo/1lP3M9FIilO2NOUO2dSke\nB0IAUOg3TF2rD7T+A54IVHsr2laJm868ICBbBMc5sMcFns0+p+3XipYgdQ7fOXV3D1xgjTsbxLTT\nVJEbngj8E9q+M49arC7bOkas961+eXMc9EIAACAASURBVOcDi/aIQmCKERgvGoQs1+8Az/uu0dhb\nzJ+th4V4Ivpy9izYdkbpHGqMMR9/IykeMyHdjRs2OXds2DlCtf19PA0mvhv1/6Gavz+K3vte5YGz\n/mH4kPp5X+z8yEC+OtDgwLqCv0/mH6knArrlp3tr3bMkZZr2JBJLI+w/CHiZ96//f8Z4HklJ25QK\nWgEphoPEWryZoo9gIoSx8+r/vh7HVtkwTa9qPurdUcXDyP2o8ML0zBmxdbk/37yii3ki9FAWUMqS\nfmJWqJ7mVH08kSoT7KqI2J6FHoX8PjhCfczzJ2ubGROiezGMYeTrjqSbzQhfaRqujGVZ7Oa7ve9+\nw/VLrZVhn366Av6LPpZeSoRKxlJ4gmXlqJrqIz2FthbK2b5E7yd7JWfFF0XuZ2luYlAQaJpRNPQ+\n1H+AP8vqY3UfGUKZJhotXvpyhIZPwcJ2pHgcC1MZrvYwRZttyqSfHAuHtXGtf/z7WWkRd4WDTJRN\ns1BAmSOeCaV8G9dL/C7P8kTI9EtdmPNK2RFyli6iiGRp8krxSnN7bqHHaWoPaI8sraQTehd7/iya\nAbll5/rYj62yPhUb+d/hFxGBpZ0LjoV8K9gvZ4HZoiLy3LP7JRIqmPXrRTyfs70SZ0IUROHAMVwe\nxwzjyHmgUiOXHO23Z/MjCmfI5gfD35nx/urhjbESfw/lCnQ7niWMgRmefCjUtuK1GZWycIZKC5tE\n8o1EmeDWyrBp3h8w/GFfWDjSi7bps3pbfTSNpHj81XCqOveXX7Esy1/C8uu6/pkzOvbdEMYdMhwB\nXOwTOqMMXWTAA4GljMR0ko3xJgJVczG9Jm22styC+0zCzYhrrc/tRxQvSHMfxzwbKWsle+suW49g\nCbHu5POMEoJ6ZS7OGUXvmIFhPmsD25tyLaxP3n99BoOk/2QLwNkehBTo0pXxFsde1goUNI3rJwAg\nmgFFQ2uitm5l14QiV3hUJpTSreHiQdAza/RCMr6acAR9YCkeM2CxzXAGdbmnk6x9BxBGc65Jv8fm\nG6Kks3zr7h4YtEwQaNdCFBFPe9YkmylGzj0I36OmKPVp5lKdYpGEmAiqfzA4Kf9yt3MacTaeuZ8f\nyZLByGEitO+j9tTg3qPAikPhg8E9GaF3Kce88NciQswA01YwBooaoyPeCls0Br74OO5VMDP8gFL2\n71cu1DLxnCpgkMzsMZueRUXvKdv70YtedCaNeCL86cJ32z8YlL8G5z81MZfBEXLaxsy9H60wCZDN\niPbRhUXAZq9JGFGWxgZDJzwQpG9bnrNdMkB0/Lmy0ILMqo3voFtC/Lvp+3zVMpN3ssJGiBsi08zO\nxHp2d9l6r3psrGeF8/qauK+hxnh2k3NZKJr1ZTHXTVnHyPYyW0oJnnkBnkWVd9+jnR+fh1RJFIQz\ncI+TeC66+gLrxOPacJeTdrQQgmPfUzaW8HerO9FG4HvLrERS3e1u2V/mcjmiOIvASTN+DO/ZyzOd\nFXP/UXRva3o/J58V5539HnZMTXkm7HlFVAkNczJZczMt4/puB8gKrsCPeupeAOsMe5RnWZf2hAvN\nKD+p0s69Nz+Z5P2t1QVesJhWBfQWr3uuOhqCNkrZ2jZD6InAQEAxnGFkXMvauXeM4LjLLPaoTKDh\nDMgXtXAG9e3gn2z5jwA0Nd/m9oTWP913PrfZ3u8xjgiPiPUM7CMZoZFMeMSeQjHjx32bqDRx80WB\nvDYgxZv9bZR3soYBxqn0b5b/e1nMn0HL6UbI75VGlAj//NN78QnIhjPUjUbCGN7kvBTu97VFAY+F\nlHHnV3PUbUtF97bpLa7MtalrHstsE8jJouFDNM5ZWfrzs2fYJpdDnuQhX9BqsFoGQFvt2iI/3APf\njpb6RywD0SKdWY1HtOgRsrcF6bPvpqew6veh9UWYFzlq4akxVa1+W4f+H1PC9XejmRirJBJG/uys\nYdwllL9c1vYF5gVTJmB9FPwp+ObUeyRQ1MwCFuFYwpAUqwDav/E10MlZJdbuFvuzaUFZeDLgx3YB\nOGoK53FSM7uG8dErCCpnM3VHvVNGLKM4Vq9mPNfngz2lMcgWtKFe42vbRxBmiNHM4JF+oJK2lJ5K\nEN9blg3AvfP9XfrUhPOgzfURDxGtGJ1os+1nl6o0ofyGLXsWhes+8VzB8aL3861sKN+a5Hn63l/P\nD3T3bK9BRrJ/LcE+pvf5b5nGbwZEdekubKUU6x3JDEGlnD++X/TTpJEUj7/3IzrymWjGLTPyRKAp\nD4dcybgWmKWdeVa+26y/CL7YnzfuQwRMp0k2xAzgrtXnABaTfoIVynQZHoF6SuBvsHJkxBQa8v+t\nvRNfZm1lwPLDnpN4Y5xJWQzvDMPtwksm+jALLh5tti7F2yRFqZxG6Hj2A3ukZQ61sE0caIuvQUZu\n3Kg3zemdfXtXz4Nm38MZQj17hhFh6AxinghCzqpfttcKy8gv5lzmho/KXlp3IBHfyf7miK1/zsvP\n/i5FWRgB3DULMxtoOiT2/COpHiNlQeY5xVzHHQ8hoYdSRncFwfjkaDARLuYUvscMw2ANzjOaAYI9\ni44qryKg36PPKzQEHAyeJyZcxWEiiHZCfV/wQLgH4Sv6fzxq74N14WVGPiFa8+3984OA8kzCNy+2\nrYz/S8em87xIeFcMu5JwBn1esDCbJ0LlYaXfJ+302dvE5/4WWY4+M63l5eEh9AJWrGSsdZAGUeL+\ne05XXTaocMIjIe+X9GVx5xrw7kDM1BEaUlIYhQu3NtHbAk+EkrQ55ebJ3OM++eSfEThdPLJYn1UZ\nZwEJzut6ujWGaLah7TdJl9V2wj7QRVmCngiamqAjvwlzWkp8bpQuA2Mroz4XrSWIYSLguDaeCFJf\nO9p7RpYJa8m0969Qhlnxj1ivMyaGCZJbz2M8YSC7wFnAihnt8RBwOAcDjB16JJSy77kYBoJvqx7J\nWPdzHBUE+nvw45sZf3l/9FjAkiPx/rMphn374y+ZWYdn79XrAXoesLSzfW1YaH9n2YYoT72MP4qJ\nMEAYdpatAzOCzp7MBowiTCJNmDYT1/RS9Peb78+M0MXDLWzLfX9X32y6V6VvsoQnw5TcQqlwje96\nT58Ised1bdcjKxGDCMZvbYTfykGAZd8FRTpLvYmTmRnsdjA57X1JisdP6qXyoh8fvZQIlVhIAWZl\nmKIUKXdcyGaEGuMsR/uMBn8IhwEsPkuye4wAwkSkF8HbxLaJaLqIo6D/R613tjn5dvw5Fy8nTEJq\nqVnd+SYAFOzXwGZHzjU3W/mNKcT0/dBEd6tU9e1wp8TvspdQeGMI3EJHPAc+GzGU7lPqTS1d9vjZ\nYwBZ73A+oJXMlN3xeJkCIlI0GKDGtkbU+dEUXUmbbV3wCpsjxISau4SOocKBhDM0pQSG9pE94kj+\n9REycdwb8/5sF2qe496uuVNeXOp/BD8+jVyguW8zQqZfg/83m4TSdC88oNjrY7b3t4XiXVARfA6d\ntT5j1ogLuRZSJtETTwShEfT/7NsjRVlHMmKeCGhcyOprYwB+6zkeecamr20HH32YxCko4aMddgYZ\nG/472LUoozzU7XPzA8+mz84PfRS9lAiEHBNUgt8fQNmCJDGot5u1RM4I3Y82dnbuRMqYymghY14L\nd1QMJKEAIxvDCMbCHOM03vYRYjH4GP+ZhSXMxElH3hCfhfa8a6Pgk018oJ4LEbIev0lZtPImZdM2\na/mGidD6Us+b/s3XexbtCYP5XsgK3vzat/SA2qtAi5SKmvYoMT4C2R8pslSfxQyyWkZwVGYIBSAG\nBnyIDlaEFvTnB1mdT2dnwHH1pxgreNxW2D9rDjFQ1h8jzby/EWPIsxSk2VwfSRwSedgwzzjGO7zo\nRYxeSoRKArRTivdAWOAtrUYtDEc8r6jXiwIGsVws6GWwuPKyqKSgiaDFpPGa7Rx38ZvdpKLnFMo2\nxGzxahkmBrpzFlPVLYW1XulLIjSk9cH9M+7MnaHojUcCqPEuwOPCf5v+1WMHYSSWR2BweppJZWl1\nscBe8XMGGZdQaXtHDvAZ8MApN2ljfZ63frFUm65M+3qxAgPHHwPr/F6o5UsPLJCl+PWux4V7Jdvp\n/Qvq1WOrjTf53TJj9P4JcOwFtVhHvXogvCLzdrmiApLU19Z79OBThQVk0YcGkfpmxuQE7hC6nC9s\nbsLz6u7hGnmHuWRAaOs7kZAvAc63a6S0besdoak1juatr3uqxGYnt+P44xg985ThDDksGFI2Utqx\n3+0bVX7vCt+7lDEle+tfGL5GnsHdy8+ztnWZazAvsixaeG2Xd+1OQl4n38O8Et7tWSf1a4+nbAZq\nibzOlKcxA87aQQw7aQSPZYv0O38pFl6k6aVEIBQyL0fCGwpZyD+Qcc8UFw2R/vbxGudIoJp5Nzz1\nnNWis7SD7Tect+kgozaHu3c62XhaONYO59kZ7NEyKI9fNxfLq9uXc9YDIdtgM0yEiFJviOQaAmWe\n9a26p8/EPa1PA9anCSZp5C1mniEjbXwLUKVIEXI2MSEEWxx5bNbLLSbtKCbCCGWpMZGQcTeuv/AW\nWChT5H0zQqgAZ/UM7begfdYCwlnx2qM08h5GGPmRMIvzQZVXc3y08Tj2vbSeT/bWHC9hNWXxXlP2\n5PkRvdOP5HxGPAC94p/t+RPzDgFI1aTAboxgIezx3uF8AS87gsMwQqx6Ga/C/yC/MLuObXqaHZQX\ncP4xyrJKtTKJcq2dq8eXomCbPju22kfRS4lQyQrVcq6eOEn1icyQiyHV15rFpnbBYDbIf5Wha6m0\naln1LJC+3aXhyvrTUnSxPLc7aMTayUIUkHHt4HW+3rPj3iNBbMYTwSzezRIlR27JYJRZCNuG6DxY\nvLUFU/5oIREZHKy/lG5V60Kv/T3iDsqceaLbMqGLuYZ+dNQRjUN0v72lC9N5fYSb/5DyYEe9iNKd\nMf8zqOQNTyCz7IF1MkuRmTFJe17/jMqDMZsj3iOyZJ/N2EVrDsNEcFY2Uk+2n7X7BsrEN9fjTubt\n2ZgozJOjAfktYvm+mLK6/Mj8j7KhnE40M9P2bWevYT7NnTx/LJCO4OUwQMWoPmx77wCM3g3zoutt\nrq7MGbSXjwufgbXRsJiqYULOJ1b8TDESeZicpZSdGQupAiipp/HUJ2k24zTW4y8i8zJge+nZHiEv\n+r7ppURg5Nwy7URatUC/Y3UfsrTc5JqoIX07URyUqX/dFlIR2dUrO7RVYvx5o5RfFgmZ9LnkCxsS\n8xxAre2MkG4An6aet9YzfMcYYTYE/SwRYBfLK40KgSycobv62j6YfgThDDZHsWWCZgRIxrRF8aS6\nf7I/L80TYTHnj2qQ93hV8HrssSmWSLVvi702sux8C6wTij2SXDuDUsECfndGdlFluGWUUTSOR0aC\n3MIUkAgIxnhAfE7Wl33gkHY9sNfgSMpsKg3J5JQ95nLxa9omNoher4Qp3+jCKHnvKnvU/2Oo24hX\nxVgf4Pd0DTsoS4mzcQujGUwELKmrPWMNY0odb5VdaflSiEI4MSDMZJhIwyRgTpoQmQzNuhTzAtfg\nI2WeCNgHem0H5sXM0rR3zM8YZWbaQl52IUaB8J7JTG0uDeQMD0qMhC7ktR1jpZjL9qW78A34is9G\n6/ryRBB6KRHKY1IxSxcteGa7AzFTmXvSmGXgySN9wP9pDmHZC2h7sgC0rAyrPZ/f68tGwIoj2Rk+\nC4CcF1atEMKsYgson/SzoGfDiOfBsxbcIWGaID5HdL4nywQzM6EgYNTim/fdTuqzSpi0LLiC2jm0\nmH71o68XXZ33PMtHIK1/BrDEvYTrMSrZjtbnKMlUNEQHPyjO+56dZ5t2yNaGPFbNtgXc9UH9j5mE\nnkZaEAVl7K39dkVDd3eD8RHM7c86lUb2fqF1h3BtFPQnGyK6kWv+7bJsDVEoy30nnxkBR35kCFLW\n1oyCYW84REQuTWXCy+7FL3vRi47SS4lQyYQLoEUezLGLNctCRb5uB9QIFgvqunWV42OJWxWaoygf\n2vYAq+BdAyfBSsS8A1q/ZEGX9D8DXhDsdxS2kRFuIsybolt+7Hsb8zLwloaOIyCN1uYM0NZiymTA\nisgAZJa9jLqm2D4fehSU0i3Ub9B3a7mQc3dTtp1XnRJ80R7OYMvqfvhwBmJVhHfd39W8cK3v/+yU\nobIjFsXZKeZGiFlUXBkYf89695jqzfZhnJjrpQdWfJDW34r+c58V/3EceTeMnd8DsHqUIitsxjBj\nbLbxhpKxBGFOQhqIuL3/usfIvns19YkFD15KBxiZoiNM/dB6nVi1pe23uvZe6ub4xjwvdvfyAM1I\nyBOElmproQeB8Rsq3Yd4h4n6RsLrssdEsFPcu/W5I8aumXCGvdkquseOrC+Vlxpoixk2ttopJQbZ\nHAHz5v2x612fx/5+VKRQDwTh05603jOZYoa/mInYmfG6+THSK8Xjg15KhEqG0cikQCScbDusLnqx\nQeCbPeED2S6CDJ9uf8Y6JIvgZ5hGY14Gi/ofjif1Az0R5OVcT6o/QzBvx+ZBoMoAY7KAEGvqa+ER\n8TvtHgyoPBh5BjFl9MJZKEvU9gghsGIDUPoGo9ZY5h2mx+PYXDG11e7kfswwhN6aKAJBzGF0r4OJ\ndavodzOiEJS25J4Hzbyrs97rZ1VqubUoIQfU9kyl1g4T6574bc2koyeM61IiYMx8X1xfszJ76Wm4\nDrApru/9GSSFNIIUd2u0ry7zRNjqwggZhSFIZBgexkJRhtoI+pwJrcwTAdeakcf0BoSBm0gDUThD\nejt67uxcDubWnvF6uhHuORK5CbcNDH0W3NryNIe9SFr8n3iC8Hk3SljeY32YwhP1ftLN70UfSi8l\nQiUDZFWlvp7iEdSj2nVfJEQwa2vGp9UHFpaLvH0t0AujfrH36E3JMSkXW2JRWus7eBGIZwOL21za\ns6ym39qzQVZ0Z+HT1iYHtAXCZmFlcTdOhMyN34yGPBEq6cd1IHhw/nExL6MX7Q5+WX+T+hwAYmum\nWiVUh9/gnaIFoxQFhFiisrptfo0pJVB5QL1cim37WWqns3J7s7F076YGW7bds10f80T4KOKAnPaa\nLoJxuP1+L3pHc48x4COfCGNamZVyy2o/C+wpYKTeayuuKMMl2ENHslKYudmAVe01lk2htx0rFXu9\ntoy1xAV9ln2JXMY0wCbFMu4JgE1kmFf08kNQZN2m+03GKOK7DAg5GclzuXAG0uYblGEU4bFQoeYI\nmf2cFzlbCZ+RdIcpDHEOjjw9AkwzXKCIZuf6licCC6WNQhAf5+wYzQjDGVja1Qyzag+5cEn4LpSX\nCHCWsPwWjXh2NcUA8KV4XV/DPfFN8+w3qBewEMz7lXMTk2Yo3TQCqJN3fESByfQ0P3VPhM9qQPho\neikRMooQdfQic7FCv5RZCd4BKgboYo2+9fIrma9ZPFS0IRihHzwRjgpkM5ajGCG8n781DW9loHaA\n5/yYiDEPuGHbPORW+ZDlfEchIWViQHnAmJspgCMYdyPDKLVg1GNmMdtDYyncBspIfe0eqV+Vmejz\nt9jUMF1WRlGJl0Vj3ztg33sGlTsKB/sQt/KAgdcU7SMazLi9t4HFAlt6lkfSXktkJFesxotucefO\noLb3ExAghy+U1TMw/JoioP5zSz7hHY4/JmLKIlRMUzDl4NO78NudNIK7keNCHFGIHtsLon5lPO1U\n1rDk/vtq+VJUgvKb40suTPlkPqa189p+X3SAXkqESib+ErMyvFlFgY7xHJN0sC34TSzVe4gtWutt\nQhlxxA+LYkHs30SOIt/fwQVsJpxh7ydAN+uziFmzhXp8vWxcti/mfmBIWGxl15OBooFYS1AISTE+\nEs+LLRoZCTPukENtkphl8UjoaOwDgtBW/OpOsmkCo7Yfxx3T8Ck044mwR6gewSCRuUlTPE58pChT\nQkY5mr1lvC/qbd2mFAMDViunBCz1d8Iol+0yEdM8sr8xF+IRot4JUVn3+9yJIfWzZ7kCJkL2jCKE\nyR54U3maEbg0yx0/QntSzaGQOZLOVY/95jHwDdalM775SHaGma9CwxTRW4h4/mTpEH0jcvRlm5Ko\nflBUVN2JEqvdu92yI2uQkOM5gwE9EWas5agEYDSiTPhIOkOZ+Mq8ME9r+XEqNvfQS4lQybj3g0YX\nvQzStI6ogCjKbaqCSS03q5QwwjukwKIYBuRcKaVlcsitO6tvE+qZAt2hnDtvv4cGMCFzm4FtbTr3\nu7F6Rutni4Ns3C0unFiLfY7demT1gQumDQGQI2f2dThDFJqhnwmzKaCbugVhrIwrtqnDIyTneXXV\njRx29P0+FaUX0jF0hFE09UYUBWd7JOwlL7zV33C9lOdtVCyMAcm5mtKc0cjs+pe7xeR+pFtkbkUV\npvyoAvNxPBLqcD9bwE23LLsenIUMP9KPs5Vre8gKaHAtDS14HFPlUPC8DJhtCIIJhIYZz5NWRzIJ\nzspfP0OIIURZinq8FV/G7btShoytGe+Tsz1yeqiWrV83g2Fm3WvQK6b2zJ3OO/pze2jmVoadhHs+\n45k6O24VrTPEvTetEobxp1JmdTyTBrq81F5t898zNMKHR+ni7TPUc3DvgBjTg1BfioYXBfRSIpRS\nSlnHFtKzd5UJE6FJ9RjcJwoCXTZKP7N3oetpf05aKAf6sYevEQsNS+fVhMkD9TPqlqjHkQMhbtcz\nE4eLioYrKAoe17jygLpTokALOAqlMMY4FiQjJpfF+UXfIYuHzxhGbCtKP/YMOiM/fEZ2PG8I6R8g\nqGXPi4LPJ5AbTycmSM4oD0Ys6bLmpq7EwbpMY1px3ha/N0SWrrOt+Ez5uxCFPNIK7mQdkJiUrcfs\n/fU9we4ftGxQz1kWye6JoPdze27KEyHrlgNWVLehVx+eJyCC+Ri1ZV1XWLeSrm8RG6uIFUX7ETzD\nUSX0WCYXW4iNKZcCsMfvTZHzRLjh907m31xTjhCDhFF/rHP21Gfthxh6csizt6i1rAEs1t/Z90gA\n2V+y/7n0Sqf5oJcSoRINZ2j58y61zOPn+kYGDwDYMFWq3C/prdpiprXCcnQaxtX9H+IdXPv5++1i\nyjLvhwumD3CmZdWOeFGA5ti0367ZRXWGmDt5VIZqmcGKqrvZQXy8ggELN2tT/X2FsAF7P19U3kjZ\nJuTXBgy4IRwbmI94AJB0T3KtXLy77BUUR/L8dVib/sm/PQ1kMfc++mWVEhoUrZRSrmpxxVCMnpmA\nfTNLM+mGNGOGCjO59Czlgd5MZvI193G7XbZlQ0mKPotJyFI8+vR29p5HGW+BKkUzyvFDMaAshm/7\nPRD7Pg7dnSkjgvrusI5lxEKWcG4yT4R7UOYobaWFzGgP4jwjzDLz+N+fQ9pq/mgGBaxfC3HRusLm\n25AQE2nST3JHEcFPPxIqGkawFpBYWfwsTGns2gQFM6unnR8wnLDsDEgO+8fMTZiLJ4fDZcCjzyL0\n2KFeOEHIpS4z4ong5k5rM+afxbOze6L5el0WLFXmCryNu1eHF5/s6dOMes6D+dgaicsCs1u+sIxe\nVMpLiVBK8cv95uZLuQioJdPEt5lZ77z7ay7NjtKct/8nFoxs/8MFyBHR2iPYUrYp7WGqDJjURllj\nCWkCZK0n8UQI6zu4NmYpdEbW9q3vOeah4OtzjAlRsEQMjvVEQMEi7i96ZWwh6+8l6rrqcDFYmf1t\nzmiis3aybBlCz/IyXuE4Qgzp/ygmwMw9WxZMllJ1yitgIKzhiCfWUOjNB/JnGHKk6ZmhDaMkSoMs\n7GWNhOHCcXG2CK2v+pttjfVZpbl0WbIqym/miYAKIxSGH+esYOGl66wzVSAinggYDjaCiTBDjJeY\nqXtC56w8Kgc8Esa7cDqxsSZrbuQhYJRsd7xWj3QvtPOkvyNVhlc7RF0ZoPaPYK6wuXqWJ8IW6ec9\nEjIyRPI9aD9wDZrhN7ziTGgGxi174z/l7AxreWEiCL2UCJWM4CYzSAAVIVBteUuGD83gYOtd3irj\nLakf9Vd4t/1p6SCvKgUWaFIzpYcA5DUPBwKws8AomMJEYN4U6HmBsWcnA9Bk2QB4qrncWmBi+kWT\nXX+D/sacEy+FAooM2z/0PHhc094A6IFwbR4IojnvY+FL/V/ul432jeAmyH0Y1mCFwto/+YbQl8c1\n24/L1b7jLyon6A+17xhfP6K4mCEL3GW9HUZcbB1gVLJhZ5t56P6txxR4s2RCnK+/9kHX7fq3Wc0Q\noRWMZWCIwqNYnPkRK/acEmD7Pv3+zlYIRLXl468eyd0YxiBl2lgg8xdJr0G4DnTQP78+N6Vs3PVt\noqC79Qj7HKMUgyigGQUfT+kW9ycCBmwC1k5PhA7MO34/A8Wc8UToLtNWUcPuRcs+CzVgQIr4O/JA\naILLpLJ3K7Uj2xt8GeKtMKCWkP0WrewjKwphnTomQitj56imkWjYnj2sft/K6y1a09qycu3nz/bu\nOchfZH04gonAcLMkzee18tbZvJXXdW38Vv8eb9X78y68dgOmIs8AmdD2UKIjGruf1BOWqUfD757L\nvr/oO6eXEqGUUha7ae5hWlw4Q8I49Xvqea15Z2CLWE/AJLB7FrEsJAtklC3ie079gukgj+pM3efV\nFTZm/nG8wianLctuUSYCGgIhdiXA6soi3oHUvxChATfontmhUxNo23P6TR2FywxcL3adZgKp9L3e\n0873Hi47BiVa0jgWRPwMHx37pjX8M7HnkWv82a6rVim24/5EaXQGg8Jc95/F+LD68ZWsSdlnEXoQ\n8fmGysR63tRj5yvLOZ6FypWSM8yoaGb9S+kEc9AMTo3+/1kZVzqTX4V1gzlQFaTJunCGkv5bACzu\npT1ebiNpDI/QzNBgCtc9Aj1Vvgj/hw9KU3juH9DUYyL4Lix8A68xcOazqL3byk/d76I4jKmlFSd9\nQuDhb5l6/Huat987vZQpD3opERgJk5DBzke3ErPbCnGfDiFXKzAax2k1s5lrLVp1TIx2M6GjkJQ/\nR0TdbbQKZuDp8D1RxzuAjYzEu+iVZAAAIABJREFU9Hfr9uM8taTXaiRWmyJxo6s0EfSwDQQ808y1\nUzisizmvy+MGyCzEF9gQF1KmxRJWDf4FMBEuauK0svV4IwOFCSZHqI1/2MxlCrBwgbNpJF2U0AyQ\nJiNpYY/Sb2QjRIGF4lnAPDFt7GjzLPqpbvRt7SAxvGFqVhKPjOve4X6hVx4JyfOhfNK/tmB7AmDF\nob6cFNPbQwpIGwfyq0o4g3Enbwrr+IM0d3Tnyk4ESjA5zry/zzK15gBMxYsCxtjJ7Y3UxzA5wr2a\nfO5QaTLyDbP0FkAsc9SeMKdM0TAC+H1kn2TveAZk/Mg81oThJO3dZhlTRsYb4EB9BL0wEV5UykuJ\n0IinKlz48U0VFgZH3JRo3XJ/LSsuZUxZcQ+uqYUeLT4ZOj6uuDwFm5SFC3uRy4L+sbzGaNXeIwiN\n5O61lvR6XwBMpt2Dr+BCdydCutqeeP9MX2u9aI1V/zewxBY2IEebWvHxLFZIRyA0XTe64iHDovvX\nPPLgXenyojy4QjjDmwr3ub5bV+kemtFbjZiCGWBFCkgXWJsYJgbGTTPX/W9BqCC44wVFYXYLVVbe\nqXc39u+EhbvoOh7/H39PWWYDVruz2MJ1MxaW5NoHEw994B3icrIoiaGO5HkZRdZODp6ICqTt+kfI\ne79tfxgGqHiG5S0Lh0v7ExTVSpB1IAtA95R60IhFHRV7zF37KDr8KGWghCz0A9eyrhg5tz+Z509H\nvN9uNArR2EvoJcQ8ETC1I58f8Ax3smHC/KDeqiDI9/PPWSwXwzFZHgc9nkrRY51/q5EwMdoP51G0\nzUf2UDDF49Rwho6l4xW3Z1IWdpGleIyIzU3Xpi6/0b+fCr3ew4NeSgRGu4AVD7STtDfCJJ2mhYxA\neBjw40i/ACSyWbVIk3vyXZ9N6FFQivIqaGXifuJaTYWwEF3b/9+VHMfezda4sJkXbP+Yt0IPj9iu\nnzFKW3R2JlWZrrfVf2DckMc8B84dqyNM6hiuQ3DBeMLYcyNxv62ag9/l2V4B67PiNwiJJ9FZqW4z\n2npvpyG37/WEAct36jpdeBmakozMV/bzURaOGoj4hHAkFtMf9WG6bqhX1qR3+K3/x2/FXdnlGGvd\n2n1yJA+HClbspy1rq2vV+u4NET7XUZ1RnJ1BvWMou4eY4cCVAWVCKSyUkSjONsaznlsjIx/DGfYA\nK46kuN37PjOQ0y1CT4fH//Uoiot6vDE3yXbPjHLRvjfm+YPg6rSeWqZ9DwYS7ry2/Pk9772PCVGI\nPH9PfdH3SS8lQnkstGaRCTwP5PyaSTngddAaKMSDgMWQipfCVyiz6v7V44jFgeXVCfsOvw/mUNvj\nibCHWPxcB9VbfBlw2S/tt1zv1Nf6BX77MgU05l2r3qllDYXnNeEHDUwJGAppm4Yz2Gss7hBDC96I\nJ0LPELDCUQF7YjgDeCLo8IYGvghggkxp0tJJwvvT/WtGlwFheiRsYSzDhO3HVG72k2lGTuaZNWwZ\nCjwK1iAGENrbsGOLpchDRVR01JTINK7eVlZCcJJ3g542+r6ofkYNe0TiYMm7kb53BaQ9/7i2rcSZ\nwVKQ/lxbv0r97eev/3Z2zuu+999r7W2/srkPJaC7zKV4Sil+QKpkAsZWWfx/i0bcoKPX1oWG7QZp\nWroDPucmBfSO+PyzCD0U+xq8jzCc4SPxbpxxAPY9fQ5xN0yIUfuPC5AZZd6vvQ/2O2fhDLi2ZcTW\ne5/KkvAvjq/abivthwsVtoJypgzM+tf3H7tvshSPCLCYzdWjKdLn7qtH+f1dBio/n9aSe4T8lOil\nREhoLM/yvJDuwgcyEEUSzvA0CixIRqt5e3ToUl3WW7wqyasWpatk9JFuxpHwQmP2xGIBmANGEQJu\n8xFYUCllKMWj31iLaZMyjC3rwfzCdiFMQlamuR5erSa/XVdKBczFfGnxzV5pwto6g1ZQABklkbOy\niRDmhZooVdxI1oeZ8T0Sa2gyEMA5F7KgGR6xMAhzngixEfNy1OMJGVD9NmdqRsOqWE2M0BWMpbPw\np456Isi3Rku6pjjDhF2TGGX4Fe13UnaGnpUDHeNX0rCGezzfwnAfo4S2NzIvIWdhDeodJZy/N2jT\norHX9WlkjQg6ZizLmJ2B4CbguocWUdYT7DtDlE/DcrC++JJrE4md7mu6r39rSuv1eY+VF40VzCiA\nXohmXG5lEjroe55mH9r4PUuI9xRAeA0TZstI2wZFDZ7Hmm0Zxf+JwSp4b2weznjyZimqw3ufKOBK\nzS8MxxeV8lIiDFGarWFGeSDaR+eJoOqo6R87boIIbKo/aPnJrB0QaLjHOpEuguTaFmbDMwkt3m9F\nYtjUol+P6JHgPRR0bKIIol4T3YEZrbCKdZTSgQUXsBQupHyUgk1btzzCOhHSA8tjF+L8hnhtFk3b\nh1I0oKKMTfvEV+VmIfgIgo3wpXZUp6DsbUh/al9a/1XlA0OJuWF+T6QVQZI2ijG7Qhe45paDZIna\nSo9WSsDIujIPynSdzw7RnnG5TAxxU/ffm/WKCeu1zMQ4zHBAZsbzyLYUKSftevAx1haToSh6TvZO\nBoABjwj9mfU0IiPDwf47Iig3ITsAAdT1DH0eeDcUWPFHQCPzDUMxZgwcxwVmS8wTQfbCLw3/yArX\npZSyOkUXPotSgEcv4+L/H8kIgc9wdHVAb0Nm6T+jLZ5Nxh7RGKJJQh0yr5yRfbLNfwznirvuiIU3\nyTqzXI+N0iEQx0Mt/Hjo9R4e9FIiZBRA4zL3JMf9sRyAeD+TILELCbAiSguUoYiyMwxw9FR5sMbX\ntijNASyW0WRmtsUZNn6mFR7rhzBpduO6r7o+W+ZKhwQoGDDO3pVULnq1fh3eMCNsRQxt9o57lI7f\nsLt1xB6NEkZCFESZAKvIRSGDYU56dJU3baFSp53Xz7CYsiM0lIHgAxVdzZK3o0lqYT3AXdFsI/WI\nQiZl7Jzrq5/jTnkFY8so5GRaQEiLbkXKI3PvlmLS52bt1fW5p/L1RNQ9lZigh+sKaaPIWN+WVKI1\nknsm2eP1QuakzN/qXSaKQq3gew9cnVPAssxVF7zxWopH1aazUEs9cmJACJ6xxM0quaNvlm2J2J/s\n/cnzy7vXnjXt3Zyt20mMAs69vXm9PYeYQgnnqO7mTIrHPWEM6OI9S7gGoZLcpmy2R5pBYA8mwgS2\n1oib9lneglFIkTWC2LIDDrxD5FI9knWgh1bZvth6pPDBDm3QjPs8A1bEcYchM+b/l4T8okF6KREY\nMTQ5RVaTH+1yO2chhjxUeibScsS0NfAhBTizwiZ8r9z4BwFB17YSTTkIpLeBrR9jFVksfVcmlFqG\n9cEqE4R02TcUkFfPJDTLPAj5jNndM8ywHgrqCM9pXC4ljKGuHpcvlkO5vKv/If6QgU1G6az2Mipb\nLr8WA+Lb7ZbPNvLurb9bh7bHH2b+KPeLa9sxL81VVxQFvg/S0kzu9xli7watu0PRbG0es2tcgzH7\nvJESAkFQH+fsPV1R6JnyHmp0N/dor6NyiSP2sX8u4wJDggdvPPbiEKixWdIr0qAB+m17lBzrGkyA\nFUcEx2g9GBkLe/dA7ylR+9s8EXTZ7WdoZdADQdblnUDJ7R4C8LZ5z8r/3yobkX7XeyI9+9DaoVRQ\n8w6VakuypkWKeW1AiLwP2bhsfa9j/U6+757UnTN0dP/0oYzz9el3PbJfZJnPziDnCUnm2x3aXMj3\nkdDh292uLN/CeYgZwn7StO4X8X5s9FIiVLLWksaB2SOaZTJingigQl2qtLogyl4pjbkS9ySzyDTB\nzN7CmLaGripTnzBtoRcAMXG21Egn5WOK4tEWImQiNWA1U9YKrRIFohnjt/qibsAAvFne61F3Peae\nCKhFt6Qzgt5WYRxE4WDbfpS3QlyUik33o2/G8XdBkK9uUfLvGgEarSdCvfZFPBJsO9cvWuEgbpn2\nSPPWu34VVxYtv2ej43MPDrE4LmGZGTorP/2zyYNdEYVX+55QloTIoOXjKuvgXZe1glOz+pIxem9j\nv54n+lyn202FfnvPnCdCck1+B8oAc08T0HqhGR53gfmKIK2lsHAkq0wwczOYXzrMwSmXMmWCC3Xz\ndWx6BhCmHD/AXOiHV7CwsLDwfujWbDwyjoueOaD+nmTbt9YnpoSZqfeoJ8KMR83ZIWlS3YcCKsqx\nzU089od8a+uovTbiIk+zKQQsq/GmlXOhAs2v5chvWCHTrvco2DMlfrTX6PLMco6EHmys6ALr3nqv\n6yHhbZ2HhKTbJjxnNKTMGD6gAZhdByIa2tfq8SOg2F70fdNLiUBoyurfgIiAE0g4RVd/YrFhv59l\nwYziS226LHss+NwJzWRiOLrJj7g4tlcKjKwOR7g3JpzXr25X16zgYy391Uq+2E1YM6veE8G+t1n3\nWw/0iL/7/00YXG2/jDv0m1UeXL7Y9u7qpXcBJREyoR+oqMk8Ekbi4Gc8GjJgRSzD+IHI6qktiHuY\ngSzVGQrETlAmzWXL1J6Z18IOmLcCzh1ox4YzyJi31s6zPRIyl2kcUmz8NCUHUUpgWIULeTDhUo/j\nyPM1XBZ516s9z/rc15I+Ylo4kltfHse3AU+E2wAWjup4LyOTW7B/As87TSnuAZwTTwQDBgxYNTg3\n2Xqa9QfXpZmxmaVFbL/hmFH36umVuDbw/Rmhxu7fYQy9qnfGE4GmnvwEOlQEvLVDan4FdCELRsnG\ny7L97QpzcGSvx7j4VXkCrqLgZ99e+gfzdUZJ3hX9xz6qN5TEZUeUCVH9+v8WSiX4Y+9tQW3UsAbS\nUFxhinHeyW/FS4DSk6Z6vNj1HUFA9fp1hE8euTMThdDj9qdEa/k2HiGztCzLv1RK+RdLKe+llP9y\nXdffVs//9lLKv1AeeqJ/eV3XP7y3jZcSgZGkORITspjM2AYLKZFa+kcz+wJVLAubAHOaACxqi6vD\nVGALkZSVzQO9F/RCCd3zObx9vc7llBCN58MyIAHhoq2pWWwSpFyftsfeW4rf+BDDQNf3FoAlmlfd\nbl/VX65E6BZCK6xqbwW0fp0FTIkbIForS+nPhakojRBSLZkN/BMxEZRSQQSV5pHwTpQSzYXTCpDN\nqsDiI4H5G2O4PXkG7xxmKPpdiv++GVPpGCbP58SeRBPEMAxQAEXwK33Nu8irbwYeL6gkYuFDTUe5\n2rK2z4+jCHEsbtV9X1+Nn9sD9/S1yNchfHsTUGDM6uXGeVwQC1rzIltxbJF+tXXl8Vu8mvT8vUJW\nlQvglthQrXvtZ/xS0BulexvQDtoysoZc/Bx3RF72TAagEVrAC4zGDR+oP1tfcMyj8HBGG2HbAwvo\nSL1dwTAhiJ7z6UJi4SBZ/D+mFDyL0IODzber41u88CrzLPJAoEq2HXsDx7fhR02RAoCnE5Z77HNb\no4oc7fsbgBTj/ZA2wMu3j0PVT3R7a3X4dxJRBkzuMtCUvt6vgbFir/Dav+MC5/3/mWL0p6s6+L5o\nWZZ/pJTyC6WUv2td17+yLMvfWM//HaWU31BK+TtLKX9TKeWPLMvya9Z13eV48lIi7CGS72nGEyGt\nb6ofG7+L9xhoygTNiMmxarBXiSttx84x3m5Wc9HL+GdgViHXvyAsgt3DNLFb9Y+QSy+UlGWCVFNC\ntCFgGVAWKYMurCxDwgx4YGbdjlITMkJFDVMENethlZacEkFjIjTXaYjxpC6S9fdmL3M6IkwzT4Tt\n9shYrcee/lNZD05mTqPnHXJbTJjAEdDE5nZbv/O6Xty9nvEU5lmURLqRx6GDm/oORgqVGUUSA2aL\nymZu1ujNVErspSA7tPGeCT6ejSHfKJPI6j2FWr/m0MkdI+8ZWlyLpnJkk6JdweDbFHIeCHLevBtb\nVvYcHUeM4QFnWZAil1/jddTatGtw9v5kK31v/V7UNXs/W6fuoOBHjCMtELksS4lWNupzmg0hrq73\nAebLCO39hq0/7rvoMvuUN6WM7fk+rMErEa6JJ0KUcpiGM8j8UHtyKVawRYE2U7SMvJNI8TvCo8zw\nPGfRs/DGWAazFXji7omg5iTgu0jZPvef099RerLO77uhz+BRtUG/uZTy76zr+ldKKWVd1z9fz/9C\nKeWX6vn/fVmWP11K+ftKKX9sTyMvJQKjiKs8efYuRJ3bXUK3rU5z3LNnJrcoy87gyhiu/HEYWZzP\n9kS4OsubRR4vpVvnbjf7MjDd0KOt2oapzQpSWMaFPqj/xU3x2j6EZwYxnOEKTP8IZUxqBqyIxJCQ\nndty5r4M7srOakn6ESRF2U0uFzUTahJ3xc36SeiDfyUz347/b8qYuu05tISP7PqL+R/GhxypQgmV\nTbasrs9bkmScawlc7rfHRY1nqTuKtWWWFag+zYrb+p2NQ1AC6voiL4VWDSkbeVVg+VHC73BVaVhd\n1o0A/LSUrsBAkMjLCAdFtIKy54nb/FhoW72XhjOAwAyu3aV4N3zU8+u5Gq1Pe9ei6Pn2ejwxYNqI\nENiNgSh2wVOkze0+4PvTQyGyoZgy9Yhr5Ej6S+pJhEoibFu7kw+AbDoeB16Nri/zlEJyPEQ9GkwE\nAFMeCQF1Y94oidZ6rH1IQmdH9sAthWtWht9neZ3lst2HPWS8KcCTUr6snNdGM9RUj3iF4hjTIUJO\nsZfw7qGyqOi1bbM7T6Oz8aheROmXLcvyJ9TvX1zX9RcH7/01pZR/aFmW31lK+cullN+6rut/V0r5\nFaWU/1aV+7P13C56KREqpe58LiDZLwrLxGxeQF1tQG7Q3ZMJaltIg7qtCXc2tOowzXYvG2hUi5dZ\nXB7yCWE4IxaLhq7YhYGFEbAxfa9pQ67hbyMk2TJNq05ckwVQsQMpesbd4QfAMdvIZiyE/HlFkWKf\nwYYz1H6IKzJoTZa31ZUVIaYrE7zSxAEoSX0HlQloHbLhG8fHYuqJMHD/iPMSi93FtlxZedcDfWCC\nN47DEUKlwqM+LpCx1GntHDDnGU6tPGeUDk63gQI+Ixx/GSZCVl+GSSF0g3nG3Emb58IE0+ZcgBkT\njcoEpiSS99/Gn+1vKWNj3BXGfY68I2+tK9KJXiZQHlihdd6Ct8dde4aydXqGN59SfpLQDy/UbNcz\nhzEzXjYb5keMxdbLQI52nOz1DptSHsCc7PgHei+sRgYMExvgmYbCGehCJW0U2ybzPAN+hSlusezM\nm2VKk85HydpTXJle9nFMjSiChVA3xjsoWAyYLKwn3BuPK3qcB1BRigEwYLGJcm9ti/IgLNr7Is92\nshLm2SFH3x8tu7BTdtBfWNf17wl7sSx/pJTyy8mlf7085Pu/rpTyD5RS/t5Syu9fluVXFz4ldw+Y\nlxKhkhEEIq4etLq2DDA8ZCE/1D8tpEc7aoaNABu0GUUOA2EJf7dFsDEdRNEwoGU9k4znACzy3TLs\nhdYVvT3IPBqJ7/OhCZZ03vWvLVsGCOvmeazgjkKcAQ0Lpr7NLZ4vdsyKgPKP6QODwQ/IMSaEGUL3\neWS6jIBbjxnK/h463fIx1bY9MtqTvznrA2b1MNbYIL0Yj5ENFF6kLc88o0Kt09rG4aOstoSLgIzZ\nFDpAanFlW5zpBGN7gXvtOds/uiuDQqSd10yl7boKH9BlVlNfr9j2qZT+7B3LpH6PAcwB9BZ69PXB\naYv3lwOJLHNKJtfmDumQWtJhH2IhBQgIOCM46pJOCZZUM6S8r0dgJVQ/SX8m+Ncfu8EQ9yw8b4Fb\nH8dbHS+3arVJBTOY83o96PM/FnCdEjtYD9m5THmAgKGtT0ZJZDXKa9cGqg7y+jMvCPTus/dBfwTv\nZaecgvwAZmAwnlMbfbEX4SjtGV6nnmtKBFLmAK1uE1PXYKwyT4Q9obzOy09fq0eX+YjcPwJq/aLn\n0rqu/2h0bVmW31xK+QPrw2Xkjy/Lci+l/LLy8Dz4m1XRX1lK+XN7+/BSIuwg4znwQYLy2XFbVCmB\nabJOSuN4lPa437uUc8wy2oR+vxkJ3QMOzDImcj+X9BhwIVJmuR2hu30kuIaM9p6NJxFCcBOmLpMg\nZDLmo7UV9+OIMM2BC7crCtGX8Xrx7zYDVhyZ0hHI32lx3QlTNASMil5GNK6eW6+6gkr1B85ln6cJ\nD8AXj1gHR7wLWM53ZGjR6yirDz1EWH3UyjYz1uH+BhColQhBqBwTWDpejAgs+VxgtNgJV8/JiW1h\nCTER9lIkxGTpJZ+VjpV6sg280giUlRJBh4/LbhdBOivcTGhvOEN4z2qPpezzODiqhEHQ1Jn9SH6P\neBiyfX3KqyUIpbX9gaPcm4yxkTl0lneq0Ii1Hn83cPSDm6vPjvI8PhrxbRjtBaDcop96OMN38Ph/\nsJTya0spf3RZll9TSvmZUspfKKX8oVLKf7osy79XHsCKf1sp5Y/vbeSlRGAUeiDU47u6jkg9jJqp\nQX5a7TXvA1SRhAu4eLcBLAPaTQGnqiA84k6lsQMwhrID93hJ4GwFS0cltow7a6a7y/twBrSMtnsW\nX1P0jSwTKFYNubZAWX8fWk8M5gBs0FkYQ5h+cOcC14UjK+ybcJC26S7mSF1hncAyLmQyTfkMuUwd\nI8wM6R+ON2Zt30MfpH8cIuuJwJ8vs0yJkNpCCohSDL8ra2cFwZ0x2n1OAsPtu0UUAfH8iNK4suwR\ncv+1zeMlvHZb7Xszz9ssXLHA1y2hoI1ICMMYUkEZFXy6f7DGijJBM5BtXETYKAQjBcP2NHW3bFlX\n6r1wvZS+VyFSPaOOibC9opyFiRCRTfkq5+pxRAmWrGUYBpLFYTfwthEERCA2h1CZzcKwQpwN1sbG\nb9aPEZyCZ7sis2eJABWvZm7KEeat8T6UOfj4LSCid5gvj5P4fee18M8EO0SlCUsB7e85p+2MX3Zl\nZe1OhHVct2RuSUhnKYq3hnCGVf3uXsOiuBX+cpu3Q3wLWqYeOTZUvSb9Wu35x/+LOb7o09LvKaX8\nnmVZ/sdSyg+llN9YvRL+p2VZfn8p5X8uj9SPv2VvZoZSPpkSYVmWaynlT5RS/q91XX/dsiy/qpTy\nS6WUv76U8idLKf/cuq4/LMvys6WU/6SU8neXUv7vUsqvX9f1/6h17Mp/eVTgXUGZYMFUVlPGM1vE\nFHey58FQHm75nTBZsoEtbSNb3D3Pst5ExKyAiBavFQSYcs7hKJi6eZssnCGymNm2L+Ye5ukgG2gU\na6epxXaCa6N157VMB9KIa57RdAeq7aZMIK7TjinX/58cSoAkbb0dnFMIcCTvem92kBDaRFcHDDHG\nqDOa2dspQjjgGlxREWS+L47Vpd7Txzwyy5jK0wrpIrTWd8z6tyyqZHEvUteH6SRRwM8oUjbqvgtp\nxu664LmYccewnKZ4UNU3dO7AY8rkpK9tuXAGxcheYNeX/OhcwVfvkf62Nt2jxJRw/ZmHXVcMQONE\nyu5hdn4/ihSrjBn3qfVImcRzDds+m1ChPLJHYFx8CuY2gaG0l1D4OMrqII5IFh6GYJBd6aHGC9zj\n0wDr+qySciH39DVW7sf1UK+VFhMhoygrQ5Z5oZ/360GGjSLkeadijvoa0ogXSJpWEsp2rzWzWLr+\nhBSEMSz2A5uyqWcrEPP8HAH2lH0CvyuzV56x1rBwEJeemIooP10lwlo+lxGI0bquP5RS/tng2u8s\npfzOM9r5VEqEUsq/Ukr5X0opf3X9/e+WUv79dV1/aVmW/6g8lAP/YT3+P+u6/q3LsvyGWu7Xn5X/\nEkGG0uneykxMqInR111Nx+/ZS36j2V7wWMjDs0M8MjfrxvxJSsGr3eRL6Yw15rJGYamU2GVL71u3\n+rwipL7foS+qbMvbLhY+SXNHLIXdwmf7MJL+MmOKUtChxhzY92b6F+3mCWXu7lHMPNOYZ67hSMis\npS6XUM/ZgkCmKMlaGulFBEiWCRYoHJoxiuBeicYC48IRQPNRD1cioDJBE8qLVzIGRJGJ35VhGIwI\nFq7+BsDq78G1g73q9lx3LKUUzIs93trzqvkr76v+vkFrKf6ErINE8dN/2/N6rHYFRjHX1r2YCJFE\nkBHEc09jIsD7GultrvSsZeD3XsLb7+QZkNi6jNTXMLtY2ph5+95o/4IQtL3PvTbPnHPX2JHa0Btl\nDoj4cdSgp9H6wvYsGUOynjRFHxOYB0LJhHwmDP1Mds5kfGR0Lc2kNDCbcP5ZSLHt9+9C3OC38eKE\n/nFru/BVtX87eOsRHBSu1LHrFb1/xxh14bvkmsdCYLILKCWtDsVee9GLyidSIizL8itLKf94eWhH\n/tXlscP82lLKP12L/N5Syu8oDyXCL9T/SynlPy+l/Ae1/O78lxwsEX6zRNPogSChDjdfpuXqfbPn\naU63GesBWmoSYu5JUa5t5iLaFsHFlrmrPMSXtxFt637K6u3ZAKqQfveb8cVp01dz3jBLIgdkz1JX\nWFQm9CpW+r8tM04mb3gDiKobjpxnYJhB6MNuQglU3rXauYdSlT6JMF59P9OLgko8vhHsSgQ/9q6d\nRRmOpiwcNQ/iwCaDe0vx7x9BvvS5SEChWT064p79Xfy8kudmTLQ8/aVZlBb3DMgMteVvtef1/xmz\ni0qMzMomFCke9DVUyMktmJqSkbU22WM/TxbzIm0/qClqdIrHN/6tmNcQgp3i+VL8eMAwpyytHKMo\n808Dx9ReBnWvQg8Evf41MD3wSBiyjB70qkPXcwR3xP+fQT6cQe8N9R95f++xogY9OpgnB87FEZqx\nOWQKiKht/RPHghzf776M3IdeC5rwXObhhEJvhvSfkez5K8wHmt5U5kc9LoyHDYiHZER7wnZ9I/RM\nL56Patt5iJi5hMf6Xch7bd8OwhluA/204UPzzzXiiYSp1n9q9C3Ta34m+jRKhFLK7yql/LZSys/X\n339DKeUvrWsTvXUuy19RSvk/SyllXdf3ZVn+31p+OP/lsiy/qZTym0op5Zf/7M/b3LCSeiBIQGxi\nv1GAZ3gEwYK9y4tB348MADCDugxaDG02BbvY4abEBCBcKBmdhWC7Va/e2NDyJpZR415drzXEcbE4\nXuxv22bcn5Yz/fIYQ+jazatkAAAgAElEQVS9YPAYajeEub+RijOwuy1iDJ53e9zWgmcUvotuIlbn\n6ilAiTffrGUD4NUxHVvrb8LgoSfCF4jvzp6FunLK/CKKKdc29IG5ZwqJMJ1ZsZzFn7SJ51IA0uBd\nl9K/x5YyoZT+Pdu7qA/O5pv3NJHfujP1Gy1WGcNStOK6yTA00JuAP0mu2MvwSpge2LdVnwlcn0sp\n5SreS22dtoov3WbEs7HtpYcz1LmldvrLl1rduygY7NzUHlm4lrU1hPXvstoTzM0FJ3USw+s84Uh2\npCyTkJBTnmI76npbn6C7I8rPkVStLO3dzO4feXSxPWsmNAF5FKbkQSXgzPpylPw47L+3mHlqo0n3\nwLzeWeHBhx/ZMUbTGc6MN6dM6GVmQlULruWtT/7/LESQ7dtbJHN9uY4/f0Yjc9Gntqzri5qRzVth\nwJfZKw9EgdNfUsSDZesW8jjWhslfFPNEmCHm5fGiFzH6FEqEZVl+XSnlz6/r+t8vy/IPy2lSdN24\nlt1jT67rL5ZSfrGUUv72n//lfJbhSiSmZrWgrDizVzivrslChIAuGqgRLQErAEfZ/lnhv1lqqFs+\nub89g5Sxi9/tZn/reuQMi0FtGBBP1ipT0D+wvF1q/65EaJXudWusF2ZbDHUGZNXfRv2Lwg0RmKW/\nxPshWvSppQFc3xh4WGRJQkuG7c9ifnOh+jnfN4tBZS6l0f3oxtd+a6FhAB0+Gscz45unybLXmMwl\nAra4tGdNonA0wgAwTIStz0ot1e0epoCz36GleBSFg1mc5Hkfv27gkaDrwbAG1v8RgSfyKuBMfr2n\n/hbFjX7XkZGP93ecwUNlQlM4kDZ6OEN9f1+UJwK4tSATbTAv7lbgaUod3S9UXifw892FeHzuNEGo\nAbj6MrIPMeV2XxN5/VlmElredqfRyCPtyQ5g2nDec556Nh45kQiZ+L5YGusd9FmtdN0ThB9HiH3n\nvsf4Odmz8aCCKlYAuX4bHgzHeoHfviy6z48oljIQ5CyLCfIQM8T21MgdnxF6p9Fwho2NkWVfG8Ie\nAWLvuCkWBtBT3XcmY7TzL8UcGaE3I8WzCNdIVt9z+fvPTp90iftw+hRKhFLKP1hK+SeWZfnHSik/\nVx6YCL+rlPLXLsvyVr0RdC5LyXP5Z5dleSul/DWllL9YDuS/tNpbqzxAYERDkQcCA7ch6Mi76OSU\nMW2xCsIYDBq2uF+5cAst+Xzs9NJMr4QxNOvaTZhpbxntrpHAcOtNc8B6Lx4NPcc7bLBECMHfM/K4\n/h4YznBrG47qn/ue8+OH5U5u1+A3izH0cdiEcX/SsowpFe+JgCBE02UdSJHJ+tMt84/zV3H/Vhx4\nln8caSZLFubatsCK1Xun4RvE367Ns1pWrC7M3d1jF8h30QIf3NOUWfo+KVP7mwhzCGrGIgBwuC4w\nJ5mLMp7SQ6KHsNgyMu40Kr0UEc8BcbvLFGcZyKH82xQ1bw/N9UW5qYgnQr8/ZpDlO8i60jARRuJ0\n60MtDNDiLngbxwSNkZh+oQ6EWn/DuliKFlhiIb3V96RtDqvVbygGVkyUoMh/kPd3hDJ25iirgx4I\nWeaFPd+De+7N14PEs0Hh7xkDguofKD5cCuf7vvkxQ2gEmaE7e5Yns4yWfxHBW97juY1HgJf6/xH8\nIm8Yknu3mYC9XsCohGHf5eWd8CJNn0KJsK7rby+l/PZSSqmeCL91Xdd/ZlmW/6yU8k+WR4aG31hK\n+S/qLX+o/v5j9fp/va7ruizLrvyXa4GJ2TwH6oSUgDkWzqArUdcsxgLWC/XfSdvigUAQqUMXtSw8\nAiUMUp+LrSPhDD7FI1koIfYSy+jejTAxcxZfYK6Ii+5l8ef0eYuf8KCMGcK0Zz51VaLJH3i2pr2u\nnWGgYehWbXATqlR/ry40d9iUTFuBdpnOj4mcZHnYy+btvemJvbG7XIKgTISGI8RcCtFSnREmu6DW\nExD6TVs4taHekbZn3B9TwEYSUhW2SRVoj/vf6zfCUA/zf2Q1IRfQg+Dih7Mr274HaQPr4+E0tZsg\n+FjLj32YszBDXEjUJ+P8RoCCp/CA5Dd4JDz+t2XS9W9kPYbfKIgyS/AMpeEQMobq7xlgRYaJ0Mpi\n6APz9hjARMDsB70v+9ZZUSJGygRGIhSykIUGWYXeeaavUM9spzcIMVdykD7yrYJnT71N0X2eGLki\noul6J3CG5Hkzb4+R8NihEIWALP9y0iI70lbJ1wMHfkooh2R77rO8iNNaPq+31UfTp1AiJPSvlVJ+\naVmWf6uU8qdKKb+7nv/dpZTfV4ET/2J5ZGQo67qekv9ShPsOs1/PS6iBAhHsXClcY2Aq6LXAwhlu\ndqVoVpNbsvE35N1q+VGDuzGRDUQL+qLqlqOEMbCFPUrxqOO+xDoZbnYZMm2ibR2yfsnGnLjo9swI\nK9zrrU+7k6ceIK/Mqe9Tvs+99/C9Mc2P3wx8J/IsQQWEpgx8zH3XSIollTM3vj385QxjhyEjZ639\njEmdeZYI0VvX+gbzlckMTkBOrByurXq8EsXZUOrPNr9qP5MJgwwopgt7XLPKA7S+m/4FbrPME2GB\n31F5XXbK+4OUaQCLUg8oE0ybQR9MWwKwVfw61crA9+yeWaYi2mavo38PYVJbvPBqfw8RdavYvi12\ntY/3hpH9Y2T9m6ERQeowiC3QyPuPgGC5m7U9atrq+0cy0yMeCOi9xQjBE48SKhyNopCc00S/B4xj\nveffYY9HhYjxWoiyAdBNH9fRc96Os6RrzzN4ztPnSRaGGgzcGaVlKVoRZdcT4aMv6sNj+G/G07rv\nerLCYIEjvQb8gqZPppd+0TeiT6dEWNf1j5ZS/mj9/8+UR3YFLPOXSyn/VHD/rvyXK/UGEK5vQAWK\n3gETml5Ny5aZjVBj7NL49foPoKin9abCfnLtgKaXIYT3a/yd6FCFhoUAYQ02nEGwC6AeUv+IJblZ\nnQO3BebajYKQiSkMnjO1WHygRrr1Y2Rcw05zIT73W9bXvUwqhqk05dGTsToYXYygLOce1NxaCfO7\nSMhNwhjveT9dqH7c/KaVbJLaMRiH7BumbW1YrSwGiaxh9ppGY8dr2BvdzEy4ELpKdy+NxEokMdCs\nCPSvYyJ4pYlr0wgh+Z7AYlMbeCXxRGgKH1rbifMje+mYr22Aspj+9L4dyoKRMAGkvRAxcYgbmZsN\nt8f2L2s79UAYEGbOECb1/N3rlbBFewD9hNLnH2gzI+fZ1H7bte4ssuEqcm7gxsAVXv/G9MuZ15co\ngHsZ/6AzKR5n1vK0SBDO0AxPen1pBrp63PGtuJJonLdGJYwe3w4TAdaORxm5tj3eor1G3/JK8VhK\nWfcZv36M9OmUCJ+BvMfACr992TavBrSYbg5Omr63sBVYjOcMIbPGwhkKCGRnTaijngiiNJA0ZoKJ\ncCFCEm5gWtHg2rxLSABpsx5Fc7zrnQ9w0zTlJmww7zBUH9eW4FjMEf/fpAFVtPMIIXGgm80kWnCZ\nLkM8EtlgRygCsBLaO/bbO6n1dYyEXv+t9bmYsprQwwJjv02b8JulWexKBFuW1jfCRAd9yJjCC6yV\nVgmzmGvIyGbjhYV6YIgDA1QswTnJzIIhTI9rcZutPnLuCC3gydHXQ90xfm9mZRtBE9/0UGKFEwY7\nsqIazzjBhJH1GdY2/b/bxgf2mplwhJG1c8YCzsZ3U4iSvQoJPSDZ/uHeMeEtnq10zZQKmMrxqNeD\nC2Mg4QwR2zdD2RubUTZhPx/9wf3bjlXt7YceREIjhi3mmbmHopBLcw1xHfT8hfumsj5MrLDsnTDP\n3fB+mF9sDYl4CBbW2te0eo8UJW0PeSbtmMdPws5+0Y+IXkqESsa6IXgEIpG9yQIXT1S3yNBdKVCV\nG6XE+AqJyLsrW0hAPc/wEiK3R2xHd3Vxi75fKMeeYbxsRAwtXtx3V/FEUHnSm3cCfDTESHj0DzSy\nLMQDBeRk4/Ka4m1lSZaiLMq0wMGLFvN7L7m42YEgfNSUa97wDbJiIEaAppHsDL3sauoXK95tuaoy\n2/WcTQ2rQZ4F3glzhe0hOGS8RJZqJkzXcxIm0evvo+oIAnXz/rje/TmwojJwLlEQNA+J9lu1Ac+C\nQ8Eio0sfHkfmWRSFf1yIpRCHuCzpF7KQNS8FrFfXJ98eyjAaMd477xaxuqmdXoAORdGaWrFk3NXf\nLJwBlXILaofoAw88zA46Ah6racsbh9HRtSSyWNvXx62Jup+ZEFOKFTJd3voZy3VC+The6O8OdLz9\nIq330nz/cAtL24I2WXMjoU8z5AGsY/4KBWWqDBzwDsW9mWJEgXfMgC5riHCM7n2Pbew0D76TrFsT\nlCl1omwZOtzWKU0Ln8eM0GhTCv+Oj/P2+GjLHhmf9VIsPOhsrJTvlV5KhEpmkUbgQzDvZlka2CYc\neQ44L4bRvjpgRTnWjWckZdDAgpTmUkbrLFkoo/pS92CqeZdrm11u+dCFaV5ununC2GwhLfhgf1ov\nJDZRKy6kTN1RRYO8K36YtC0CAdVsByBhLO4QQa9YrF2Gfn0GNeA9nUauMc/yXeAeC8W52UaUHaO7\nYs7NDwRry4BH2f0R9SwN0m8vML9BNQQapX2z7sGwmvO2TbtGdIRwVUYYxHocYkCz1FIg+CDon8U0\nsMoSVgaVTeKNwno55Pq6USZ1Z4Y+PJMiZG+uLPLz7Fjb8UtynjlNYU0LQ8W+/rbutbbhFiIEZ9TX\nOduFO1xn9JFxv0550M57Jfme75qFg2R4Ca1swKmkKffavZ2+JfMdWu9XX6b9PthmBII55ZGg/w/2\nnWwfwqw01KusdvRywfXa79VCI8DTGUXeHjNKLLJ9bDQqgnzlqzLv4Q2v31JiPqDxu2S+9d+2T/oc\nG5sRjQDVCnX+aHwAvhQHL4ropUSoZITgmRURrbADi84I4eJiMBYCbSbzSGjuWImCARUBboNVZRvA\nD4QEWKXJ+Ioz4iq5JZCZFGcgsHSgRcKIobDKNLaiEBCLKAmFwHCGGWJKAMdnBy6YuiyGM9wIU471\nZHvTlOtg5oHQ3j/ckihWvJyRlN3qW+mb5gyi9F4a8fJwFgE5gvDwKGvPMdwOEbAFB1aUCV2loK0S\n9tjDGTxmyBFic7JZ9gEYUK9JKKhkXikluMZzWmdjCNuMy0Zx17rNPVbcs+1l0p22pinN1NJiHXir\nd7J2RL9308BLikLbqBAMe5f+pl15wNc95t7ffm/2cp8lXBMunxjDrNfKFvIECmtGmPKPew0CL0Ez\nN+AYKOnvWUJvP/078krIMkP4+tX/UhbLkP+xOhqTHqwHGaVgf06pYw0IjCJ+oZQimVTVNdKfJ2vK\nXIrp4teXkRBajIBiStX2vuQ3hEvwDkI7k9tf9P7bfLuw57W/2Z6DCq9U6SlrubDnGX910P3LjfVM\nM/UjpbUcX/d+LPRSIhDq4Qz1eIXVi92TuAE+a245DwSycCAwDKMmqARMpWZUIldJ5m7nY6q9UmKG\noufU/W7uXM0Tobh7ImsOUy5cUGlw94s+6pFEicPxE0aY53yRZ1a75vLGyreYxG2GbAVL9ZTAnYCC\nZnnNL9DWWUK+b7OeH/gGH4Gm7jIvtLK9DGYTYPq5piS4WGVCZ3D9TShkMuWEa6e5Z8Zl2vwjKVWP\n4mC0a9JWPNxc2T2UZmUYEB5kXMucYtk3kM5yI2/uxrLDs/QWQdsr8SrzOCCqTCKAOgLrHwvfQ+Y7\nw0SIsjKYmOrAE2Em5MHWV0x9SJnn2cgYiO55/G/XtJG55UIWqIK5Xkvm9tkW+j0kXThrdaZOpaAs\nGJmTz1JMU++C4Ok5L2aVEKlXZJDRalEfHhXBRwmfJdt3ByDKHKX9TMDQIwq9wQo3CD3K+rUyM9Q5\n3rqev22sOx9NNJX8i35y9FIilFIQadPFfLcNFlYvVXbBBcj4n8GiELh0uvtKoe5UDsMAPBAMcwRt\ntfh4DZwkCxtYLNAtX1eHAG+6zK2me5TwgBkk2q3zW9dQIzuCqjsi3EiZ2wcsnPKN0LOBubdJmRZx\nI7/JhuhSm6XhDHxDPEp7Yh1Hwhl0P8PYP/BIYGX7Pf189M3zfO6JIIFl0VNCXXuDF9Z0WaQfTRFw\nsd9O14AeCM0onbyTswRbDGfoApAef1xMsHP0+BwcscawroxYO7ENB+SnywT1WcWeKCWtcjJTkJwd\nC+zi6lmZEJCYSOCwl+oUxlvjTXsLRAB5WTgc1m/e9cBrQwyS4/PDKlEly08azpAMXwRWlW8n+/Lt\npo0CtswIYGYGVree9E6QMpYp6gMFTQzCGIzlu8Wg2/mGSihNbUQcfG4cz83L0aR4xP7EY59hOD0K\nbe+pR7NyRMI+Ww6Q19Trs18/V/tbvXSnAKIYYPZ4v9nfjLIQRhxLbb61tOp+bXMeRGTehSCghNfZ\nw1fNePOw85mH6E+BftpP3+mlRKhkJqGLmRofLnQhEsGWBTR/AtqK2bdMlrVcMBd7iWXN0jWeSdbL\noB7FE+GHeiQx+NEmqT0bbgPfzAHX7LBi200pL8uALlFrbeue7k4jjF9//L91k/8fLdQUDFN+Q9uM\n0AqdlwUhfeDzjHyPGesTtSbWzr/ViwLJYb0PrCS71pekAQIbI7bye1g/0CvjmnzfGW/FPanxMnqW\nhc96EvFGPjKV1REkeE0uNEayMzBww4CYFT/rVzgumGvRwGIUvfc0Xt9Z9nwlkZ5fr6dRzPcI0fSc\ngacAS8GG69+V3Ht1eCXxS5lxz75D2OTZLu7Gu29jrLMQhhlA3W9JWUYXvHS2ou/oJ4sMLkzBPJPa\ncg9ujMnGs1HWjJfV9m/PO6aKtANpyzVFHl3ZfjmzJ7BvGPX86N768kR4USkvJcKDFvBEcKpTe56W\nzTARnDsmlu0VtjYklCIJF8B0OJRpaP2yixTDWMD6GZMlzJnkOm/aUiVs38USCh4TqF0359IYec4Y\nHnU5x/vbq0rcecMUPbRsvEEwrTJeQ/wJxiCjO5x4JLC4Q5fasV33fShwbSr7xt3/j4ysBbrk1TCm\nPEvV1/vHN+qMujdPXBbfdX+P8Vhg1Me8/LZKFK1EkLauzQqd9c/e0z0clJAUhI5kTMxctpVkvdrB\nMw+BqTqmt//PsoFgX0ZCjKK2mreH52OniOFhuDItZMk2sLDnTd14+V4gFmoej7w9nnsZMAcyUz+G\nNdDxYtdcvP64H9c2f49TfGP/CQjtWTQTMiHk56YvM6Kkk31MyvZ0mGT/INhLrR7wWEOPjr2vrK3l\nyZp7BnApm1Pdu0CeTV3beCCmj8vWoOh+aiWXvT/wmHj8b8d6Oy916O9b363MbVHiW8/W4s5t0Uw6\nUzff1L231Y5JxuvNCNEjyqY2J2UNQl6b4YKIov4GvJl+hqrhx2/HwsOQl7hQzymoB65rQuVBto5l\nwIrR+3sBK3p6YSI86KVEKCXcBdsm+Q7nmZA00VzbM5t1Vu9Kq7n2LMqYm74QxYvpHiXkUUyEGepp\nxrxlVKw4M+56mSYan2uPEDtDWQ5lzMQwS+3bHFkgE0+EdpoCXeJ3Oee9zVjFMV/1Mwg9ETCtoV0O\n6tiyw9mS8EQgw2XUlqCACc7oQrx6kLL3x1yIt2iubHwtCzsQyrPHbNfbU6rG/Wj3Qb3oOq2v3cC9\nmrXt2mz7CXl/RIDH39FazRQNjp7EeR71EJkCjR2oZ4Yy5U4EovqmQU+ruxK+Awb0uwvgEwQsfc67\np5/zfV0a5SUefyx7kIuQqUdRxpp486APVJkP/cvGTVt6B8aWj5mPy/Yy+971zLoZeQsyhb9TPpN2\n9kz/NIy1Hp0Si4Qz9HtiJSgaBdEoN9qvM/CTKDZHEA53vK3tvTk7/xPCT3zRAL2UCIQQu+BopoVd\n5LARthcqmp1BrqH21WSjQCbS1suQ/kXruq4eJfqtnsNsDxlFWvURGtlg97pnRuEbHJzKWw2QogV8\nJWWyOLzetr//UYeue/8ml4YzwDtdiOtABF5J24LfmWvoR6Zeexb112SVBwspg6CdhsCzAfOZa6uC\nYwKLZRg1jaR2dPc0q446l4xfpASbM24TympPjkjpuRcTwbW9WcuYgg+9NTKmTZjmCLl+u0O1nsDD\njsf7JoqGyG0+c7UfQUWL7h2wMlJMhBCQzt+PxDBIIs+Go4TYIVfiTh79ZpSBILP9bJZYjDuSXq/3\neBU4UEfSJnroIDaCLjsi5EdlbTvz7y0TrtHz795AmtWchDZRUNbjGZUbiM+lGz2bz82+WT8ngjIa\nYvx9Ia9D6x3pYK3v3b63LJwh88xC5TjzioKmc6UJvj9yvo0liIk6S9H6Ik5rOcZX/5jopUTICBmd\nvUlxG8rt4+ezUuoskN/XXGuIu/W3TqMEcZZRTHQpZYq5j7I9zBJujkMLpAhJgo2g3vmFeCfoenW/\nJeZ0BAk+IuuOzys4ezkyaQI/CALGhfZokndeX4bxDAEPhLYvNiZaVSMCMowF/f4ixnomO4Om0zM1\n1GMMsNjbuwIjLO/CMKJ3y2g2sPxmkevPe4V3+oV45eC8HcEF2UOXxIrVv9Fiy5YuPI+4EkdrxWfD\nRMgI155MebCF95LRbjDbiJi0JOlHB/ZAtIR+NgvYiELTg7xahaH+v8/NR5kv4olw7QzH29vj/4t4\nJLxfTL2z5ELwJATi6uvziqTt+ikv4n7bMzRErRZhbupbLuxnO8R861jwaP86ikPTXeItP3hV469n\n86njsKLzsJZHQjzOyNgzCbnSaAbj5yOtFhmQ4hHqeoZYO54ZIF70IkYvJUJ5TBgT0wqorS336sF2\nFtQWyts3pkc4tnv7bF5viz2XWAxnNpYo9WGWtnLMunhwc5tAoHXvWL6dYopQaSKkN0tse4RGsBCE\nZkD+8B577nHEahiQ3542hSgzCFKcvGutoW1KHOkn+R7XQHmwl1DgycZfdM2kKKz/ikeOA6+bTWkZ\ngA+yuPgb3NNTcOq26j/QDZaGEBkJzEmvCTFNMhIPhDtFgLfWpqHc3fAMP2Wa8UTAsuma6TwR/Pce\nYWRDAL/E7Dtj9cw9D2wfGCr7nhj+EWVM5InA57qt12RcAE8kyZjypWLhyLGUvmfJ+skU4lvzda9S\ntK1Byf2I48AgmSJbzF7+KgwPIOvfEeIeDx+zQO1NDY2YITSVL1ivZWwJP6Q90q51LGKGHRqnD/L3\niAeKS9+ryHk2BOe3CNee05WnEzQzF9k66IyDSYrlF51LL2+NB72UCOWxDXBgxcocVbS69QO1kc8m\nFs6QAcsIiSDQcqAz91EAa0KE7wtZOHNgN+kfP38WMeEf285S/Ai1d9SYTG/1zJhzdGnGNE3MPROJ\nATFFxLJvlJM3nj3eN0ypIP9mVkAcS2nuafRyyfpz8jvBvtPQEeg76x/qHcWiydzx5b1doa2Rz4Mg\nbLoNP0/6fTOM0swwmUlH5cpMhDPo5TASgBg430yoQ5oGDVI7trjw7poQ1u/SFRe1nwVrmgmFGnB3\n9665A1L/twwVlK4U6UqsjJmKKZ9QPDBCLIS+1nkFuFCm6OvztZZlSiIpG4A06/vO9sg6QmbPgpR/\nWIZhCCFIpCY5FSmdTIq9esyUnVFKUYYNE4FQ65DSLTdqi49h+TTEn6D9Bf7vmdm1HGC19CFpMlVo\nzpQFJer9Fu8+bq3UbYByPKMofIjOX1S6f4DC6iy8mBf9dOilRCCEzFDT7l1JWQhRYCmSWm3CsH+R\n+qrQ+uYXh2ZpuHpmq6Et10VvBWvHRVnUL/CF5d713sv0Bdsi+LLNoy/2mTXCWkls7eeT6SeAVa4N\nWGx15XuaLKs8MEBCYPlp24fO81vvk43+uljOmIUz7PEKYOnC8H6Mp8XypSjLF6ljiGEIvD3KWx0/\n78r98U3GuIz9x7XrV2/deBP3yQYoVszvx/+yscKYJ+/ReWAU9v6wHmFI4w8TuSjr+7yCwH+z+Lss\nvmw7w77Po5C8P1E8UE+Eek7CGMRl+kqsna1FaHIkTGlJxh8SjX4RJYd8Z/1OIOzjbCRpVJTaa5am\nwBPb77kOyni4IXYGUR7gfKD4JWB5dClQSR9wzE8pcI2/sT2HLtSmz0CppwSUmWGCWbab3vXxijL8\nmEuyXr1J2tYWxvD4LR4IbG6itXgIG+Fu31UpsZJcrzOb85euvVKfLyM41bKMYO30+ydz/E76fIS2\nRvbs+hKGVJHzOBcZT7LAPpaF5+E+xtJudw9C+b1CWdVn6ANbXlpZGOsZxutZhFWzPXAGj6VlsxgI\n6ZsJk8xwtByQ6UC1mcfZHvDkF23TS9HyoJcSoZRSFjsJnSV+T7Louz/XLAtByMKjcaxPFBmK0WmK\nClllFvM7s/qi2xOjPe5PI/dkIfOnEzaSpLXaQ4xpwxzKU/F56n+X2sdZMjQTPd7Gnhhv2RhNXKTz\n57cCwUpcB5w7r1YMCLMMygOGd9AY9ZMX8D3x1mwMDM2DibYibwVNolB5A+GXpVCTa+KJ8EbdofM+\nsRSoIwz8iEtuhvbd2t+0xG02Y2gqBCC4Z28/HBgcqfgOZTJPhLBfCcOceSK4MpPpTLdoxBOhP96+\nSd8teQ9qHl4D92ZgthFlShga+gRzUtbBKwiUz6ARL4Mt0OOjzPSefYl5InQDR31/dKxu1x0VYR4P\nV2hixLHmWwpzIzxi5onqFI5gQDlK3CIvR+GH7Pdm3ysTwDH8iqVu7xWhsL/9nDPzdQ+GQ6qgvwTn\ndxJmOnnRi5BeSgRC0UazJAoCR9pQjUoDTO1oUfBsGao5BikVrDnGCyKM+dZl5Bwvy0IVFujCp6Uk\nB3IUHpEJh5J3mTGDwvQ1Swv5dkJ71uTu+jynFfcAR8gI+PtT7TXG36HUz6yego1QAyO1hwzGCXem\nWpQKvRNteqCVg/R9hjJGFq2JGNtpFJBto48FgBkgsDsoBKhwDUKWWO2lnnc10L3LtO/nESC7kZz2\n2CZjQBFY8SihB9WQEqCFJSWWPlLfHiFrV7rAAemLM8bJNSwarDksXGUoLWqQomJEETESu4zhYml9\n5NwZOB0s/AC9jyYwqRgAACAASURBVNj6jGCnb2Q/RiGQLbky/qK9X79Hl7nhPvEtJ4hZszGdcA5Q\naZWVzBOhrbnfMOzibAOJB8Pzewr+5pkDkncSdPqzAZkKfQbA25H1aiqFuAkxsmuYy8bBqv0RhVp/\nD7SWs/yevn96KREqUfBADE3ILPxLXMZlO3BKBb3DApNAPAdkQ2mMXWXILg3ETjMx9lkwUwR/lu3p\nMbPBnAWsuId6vJtapG/AODUmZF+Ars9mEfd35F1gDNxy0m6OLrWJfqDRAvfkDSTSMY5n7YlwteEM\n4t7bwhlUp97aeH5cpEBRQHtieU2IQjfpm2sYJvEowtvKFEl4xQgYoBBAq3QpimkGS2a3uPY+SZ9b\nGANxl52hGWHjLOsIokujUJIkBWgKgfuI9f5k2qtwjcIZGDnlLuD6PH7UQ7DccSHTlskwYRTYgK97\nwJU4C6fL+sr6mVGbf+SekTUDBfiu4PQCH7qlG6UdKNVQwbd7boKXEH9OOZ4jmclag33XYxaxWrKs\nSy0covh6hJotZUM5y4iuFUHZrpyNFfR7aO+6iE1P8Uk6vPOyPU42qyMhfUdoZv5RPmZCn9l/s5uq\nolt4RrLfRe+rgVmSNlz6boKpE4W9mdCWAFjRlC98PaHih8zJYo8velFELyUCoT3umW3iZ2kcM+XB\nDopc0mZB7BrTFiyq2lJ4A+1oBqwYbWojjhysH0PXAyZVM8xuAZcYcqZIAiZrZoNlng1duyy/7Xl9\nLqrPgIAWW99HkAtnyFLOAYOCWRoe52CT2/E0HM2Zb9RsrKYI8Pe8zBhIH2E+Nu/yxJyhQgtcYwhW\nPHVo6eEK17hCl0YusRavuL6Q8X1r9T1+v0N/burldN2h/YYGGAvux2WaKYbwHRAZvdUrQo2cf9f9\nW6PjqsoIc2+VQ02ZTAS07h3gul5WQHNssfI3Mj/qe3tPUIUZgN1m4QnKmH3p661q+pj1DsdLq4e1\nNaAUw+fNVM8RkJrthwjeD2rhDM2gMPfOIjBMfFesrIQq6SbXYM96b+NaCUAiiEKf2GePsirQtRzu\nYeEMMu+b91bjX3rZaCzob4hzUeZrn4eqcHtRssdIn/xz+T1fjolCjlC0dmcu958py8BRQvBeNjvS\ncAaY41l46+Viy4wAruI1Pd9wHN+Sb3aH8Qd2QNuvRDnr9lJYtywIt/RL+v44akOOa+Kzuqw8k9bv\nwAv7g+ilRKiUafcc6fPg25wpD7q2cEnKipoQOVstCNQyoIJv4H8GRLDfZX5rzwbICe3T05F+JuTT\nWq3YpGsL79Wb3i5PhAlFylEL6UzWiO7OKr/H28lAlshn9WWSuNxDNPAQHS9B7tFjtPYLwiu6Ra7X\n30NGFlN2Jgc1O49j1Yw/xB5Ztt8nzgHtMcHAAuNnsPcImKBxX258LMxjqYMoOSJwx1IUkzEgULFs\nDOx3RkypmG3QuB7twSCZoRQpnJ0L3klPEXcu8e+7sYclNBZaMFB+Yl1gaRFbGVGG7XxxM0rJFn7Q\ntla/d82EM1wBHPF2t+tWKR4L5mdr4z97eTAXb9fOZMhene2JI2EMQncQfs8i3N90y60bIhwl7xMF\nJ/buz8hlz74velGc0c4ssRTB6LlyOHxPnrdKAzLGJMW5BtL1QMT2vCZR4mReKdgfFga4tCPnR2cf\n36UwH9jnZnjQo/xklO2h7/MDdUwodZhCLi3zEp5fpOilRCillHXLEln/EcvNzV/LsjM4wvlNwhkc\nDYDdMIqYe2OZBw4CF2merq1uNOCRoMs8e7FplhUTqlB7J2aShDtqHgjw/rTwdK9a5Pf3mgkj0Rz/\ncHs4rn2924+vszWIRc9ZJUi/Ire2zBNhhhncu9mF+eAnuBmrtLNHTHGmk5e0c/UV/zDwfZt2/R5/\nu6E+gzKhnTeghLzuue/S/7+5V0sUIO1KwHQQQsGKCYU+faNVouhzLVNMU0D0OSCWGLQC0jzfIjAW\nKGusdfFzRZRZX7C6OWbN1xG1xdxTjyg+MkyENvbFDVe5Z6wVtEXWSpeKV/XpFnjhMG+FbhVrH80e\nCWXAimMAlzim/DPMZsN43J8pgm3/jjoWtrAjEKCaJwKp11lGybXoNxMI0Bp71HI9MqwB5oDr/Qe6\n0UIowCMr82gQQtDNEcrGZQdG1fOjHgMvq3vxc6nXN/8duLKoXmPzmfCEpcT7HSOjJBrr5m4acIB0\nc9GEaLUQLxzzvh6cDzRNauDxw9Jld+/eyleudt/U92f7RkgpPzRezYu2KVK4/NTopUQoftE7AtyC\ngEf6XBjOwIKSCpbVq8xi6nV4B4zpSFwiFzD/jaRwi/L77qUj2lsbzrDYDglarQHy89puW1///1aF\nIxSE2Eb9XsuKEqFZqC+dPZK634nbLVKLqdvxbjKGNnvXCHbFyIUzRNeL8jyAawbjQ6x/0Gj2DFFO\ncEYYzjCyKRvLaGvDKp0yz5ruzRSXjYg9i0vlaYC2Hhff643yfNKmdpYasajMZC3pnhu1rZt1Ky/F\nu2y67CPG9fxx7C7EizlfimKIQUZlijRUCKC7JqMZyyPzOnjH/kA/dajCCv3Jctt3QVmEpfp78WWH\nGE8A0etrnHa/Xdw53ZfHfbaeRmR/ExDWJDri01MUztB1qUTRh+sCAVbElLbigfD2plI8XrcHJc4z\nTFtLU2Si4lAr0qGs9ADHLP6vf5+N7m7GX+00hhsscP1x38i+W0w9WbhOA7GEe3VIlVufBupFYimb\nz87ygF5BLQW2Ad0NeKadbbr0y62dffX1sbma36YMnFwTxVnkKbsXpwsVDiw8Ym1rrlUmpPsR8Ltm\n/uKcBEWrvozjV/YyLSj2PeYlRL/opUQYoyS+vnkn4D065juql4Q1uHraDh6vqme5rI7U462dlgHN\n2mIpHvFaq3ejr/q81TK3jpqK9rh/Pup+HG/wnDf1PaR9UR681+NCxJooP3Bmccjy1o/QDNMxhFHh\nuGb5PXEvaxuEc8ZQROELNPXhajdj+Wbv5Nv5POmdIktDlgoP0c7NeAbvEWRA9RxDhhNDPR7PJ/9B\nP0n/Iv2PjZOu999RcKzrFYnhFcWDKBHEc0fXfQMhhHoiSL0tFt8/C3oyIHOuHw2vNXwCIqT3Z6r1\nDMyXrhSM2+xMoT2v70O8Aw2g2a7B/Ofpy6Bt2Z/eVZnmiQDfDuZJKX0te4f9xyp+7qZtH/hLRuIA\nwKK7hXgSdYUSzGMyh/YQm+tu/DnBeXvgsP5hVpovEgqhlAjLWxWO3lEY8W22tQfiuhnGUfPSuotl\nVHmuwDu4wbtmXj0OZ0QruvCa67kv6716vCIOlToa0G6rf9a7T+abb+txvv++trUcV/OPpwyLyvEt\neg8U5TN60WIaosl+TCk0gdIQMvx207VLG3b94552xZ1D2jKAMcwLh11D93zOZ1ihH9YBttTi9wiU\nWli3qUO38YpnKGs5tq/8mOilREjI5ZGdYHhoqrNvYH1p3goTGwJiGLAY/BEace0+45VwYKJzZriz\nmjJrTqA5FguxQd49wGTsxUTYQ7usHMnmkrstP2c1dla2xJ18iPE/Oe1ZRN/j5uQBSBOmaMBdE60k\na8LoZEzljkibIRrhozAkY6jeHevWUCieJtjPnMsuYWizUJkR8MAZcilBxZunpUvs1y9wD9t393z7\nXW7kE/WxfRQVpOjN9Dgnhbf7EwEyslCyzP175vu27o0orGuZb4E1kFHHqnnWvoS/n7+vpIKuC2OQ\nYzynzqKz12Wk1ENxgJ9HPJaRd5G968izgaU5PkIvOf9FH0UvJQIhzMU8dy856Vy6YcFQK1OYqmUg\nxIAh3+O1kcWlxaZXS4hYREop5QZ9v5J+bQlbs691S8g0rlvVyiaYCE0BNLFIsxRnosn/2iw1vbzE\ntd3geF/FstTLMgyEiISZv+5gZkbSwCFo3+PcYs5R19zInH2Qg0dwJQ5cOL/Zeve9uTqaO7CExohg\nSsqOhDMsYLXKvm40TkzKtHoUnAgJa3hrL1QJIWDtzDw4fJuJkgg9L9gcOsFCdRaNzL8RxjEDVgzr\nHWj7KGH2nOyB92SgYd9uSBnogATsaV2PpH5tv6tFXofb/MzbY8HvYS+PMm8Kh6avZcUcs9E38iwh\n7nISzsCA6NC7SPZbCWO4flHzd4dRQPZxCY/4cvM2eikzo9AdmUNLO/a3LfuhuJynse14lOFs1iio\nxwnpA/1kWxf8Zul1kVgJPLcPTJmMqWZAqPNDPFcISCniNM0YxGapeRSKZb+FKtjfmpziUL0jnLc+\ntK8T1syUspjRAD2c4E25/jz64BV7iNXA5tQXWafgIfTji7fInjDWGZpRbmchSy/6adNLiVCJAq+I\nexfzi9siHc6AO+GeehKmwW2ABrp9R5utXmYt4SuIFbxr07A4N0sXsSQdIQoKh2CY6j1g3Db2gceM\n2rYY0Bu6nguzxCwN2OYU+i+Jp/UMst/kUChH5pqda/VlSqwILl8XiXBB1O0YF0nDGYJ+ZnxZD0mR\n754Ubm32QjIemjIhyaqwZ4N1qQ/VtR72ssI9cX2d0Y6tnXuIYXQgfsKNxJciFoUDwyPPgnHYNzMn\n7dFbyfW3s/UxF2xHIOdmsdAUWNGBQm63mblXIxHstrBf7R4do32z56KUt/r/DIMEv6vz3FNtz6Yr\nLGVMAX6WNxPGRz9R1nKEa/f14lvf4xWJZPFeQOk5gpmCY2t/V6aJhTO0fgRzSJ+O5mAWzpCHPhRT\ntgS/dT2fTQiLeKUZzzsmyKPi7JM9dqNnW+1p5gpkmXR4TvDaMxDVpvAWxYjBWLBlfXiE2s+D/XIE\npPSnRp91PH80vZQICaFXAPMSGMrG0Oqz3Gl6D7aZrOdYD8VYaNgAclRTALWiwOiNxOJrhmfG/a1j\nQi6+X5WijAjpIiaLaWWYb199zHcDFBOL/9XXGKYd1IKtE/AeF98uwgyqDQI25iw1YReqvbDfysKx\n5RgnjKJ8oxWEQWu5EIH58RvTQ+rGnEcCUx5UtLClpVio9X1V1YHFEd+5seLHTTnCccOEzhkPlWe7\nnTJ8DLTai4CcuT/27xq31TNgxPNtD40ApDqGm9yCuenttUKvYRjRo606lggD1uqrR3xqhuFyNuO0\nh4GdWV9n0pfRtTdMNzbQifpBsn0OXacZjaQPzTARZjxeWj92xoNHhIoz2nYdiV/Agjnmdq3X+3qc\nUKw4RdLOgR61mGIiwOcZUZDuDYGIlIioGH4meTyfWKmTpSNGYmsmfsY9ANap8o7wJrg2oFKbpTfF\nEJ6Msi8VXWPfd847Nb6GRpkRysbfDJ/xrFDQXr8/9xKeX6TppUQghAyN5M9tRw1ShQJ8s9yqk1sK\nhmSFykIUovr1xI9qNvUFu3aK4n9A0NCLtyyCqEygMdUTG31zVavC6rtSInz9+viQP7w/XEzkOTOt\nK8bcmhADxwRZy7VWwlChPCB83pQBlfqY14NzFYwrQuUB5oUuRSnD5GT1o5fzK+uo3J8oxSKvgix5\nyQi5lFqqe5ieLvJOyWjEssSAFRHwiFrk67mGkryIZd6X7e7Q2x1yrro7w31khblA/Gw2xlCZQzER\noCzBsu3vJhF4ouwMKylzgTKNmBUG6mHung7XQSycyefJxoBQE4QWeDhzz3OEoqx/zSslC52YEE5d\nqkKiEPE4G7GwHn0X1oYHUyX1RR0fIOqd1hSkoJTWKYy/+v0xqjvK7sO8hPy1gf0pEMizskdppJ4G\nRLr4sTASStWVuZYvYJbg5jUSeB9l9c/Q7nTMiMVB+En5v+GgVl6Jpfs8A/dkRtjW/Wp9SMqO1Izr\nSPN0AiDSUrryOQJELGWbL2VAsHiNKkblCHyC3t6d5y1hXCI+o8+BcQXuizp9No+ib0UvJUJGwhhL\nOMNR33tYaxzKfUmYrCFPB1+27T3ufj0D7EI0FA8KArJmVDIgLNeLwAPhLCZYUKx/+KEPdUnF2LIo\nQAqsL9duhlqaYFbjDcl3kFNfxfKGlgbtLgbp97IN1VslwqK9v+ycMKf19yopxC7k22GYgNyrvTSa\nQqB+OwnGl5t+UGY89L6R78rAwtyzjK/SJiTDjSU8aqYI65nfGZiVDeth09ehnTNrSeunMAJecERr\nzhfwMNE9eQfB4khq1Ue/ah9q6jnx5rnc+hNHnkwjgh4r65UQcVkU8pnQj/ehMot6SgR9ydrCkKhS\ntFBjr1mliRVmXL91vya4vhEvt9YGzB3WygXBQqRjugE0cY9kBEIvg0mhJmL2RnaYPULTLPgavoI3\nCGPQSoTb1+3Kj87pUULlWCl+DvU+xfejQlSXjTwOrGKg7t9BP8cUD75fXYGZ14/3z7bP8ECi3yOU\nAVc3A5mWRAVnAzECIHtLKWN8WYiJAF6O+przQiQrTBiKQs7NCHhZSvMs1OsInQVCO1J/FHrH9tqh\ncL9W70uKftFLiUCpLWhVeXD5uXr+iwhNSgBa5Z56ggnywY66wOJt+tCEr9W0w/tr27ReBrUNvGba\ntMyf5KKW40h6xDcleLeN4GLv7znlF3f/DOEGkzFt0pZOOfe1pTuySoQiigLVvx6KEPu3NgCsr9az\nAT0SSinl/o5CnDxTpxY6QcIhsL5WD9z7pt4JhjMUSEHJ2pZrAlBGPWtaY1aJsGjTsIy7n6mAlD/U\n+tTKs1xs/94u9t3oz7u447jlbIYoHoi0JOCTI7GOBxn69pyJIglDbX72agG2dOiDxEy+7YhNT/sJ\nYHg6vOkKyiqMftnrmnyWJUAUALMWsmcQA4cTQLLbSf3DsDxU9s6O2WbpGvBEwI+Guekf/+ft7c0c\nEJH1srLvYGZ/anPVKEhRSGLt23X4Cl49d6WQQ6XuAnO/lL5TRd9xrwv0FOjiKv0aqBd+61Zi8Mr+\n/2fL7rBFDseIYRy1334cyp4cea5kJOvyReF8LfUjCb8nhMo7RhneAYYlSpkLKdNAIaV/C3knobFB\n9RnuyajNuwakHj9opjyQ79f4lm+4jzwTMFPoZYF/0MtL40EvJUJCLXyhCf3eirqL6ixkngj92nYb\nR1Lv6E2krTvvUm+mNHgcZQJlTNECSgSGEYmeCDRm2WEhLHBd/Q+uapKt4atCpH6v/4syoWMOxM8t\njB0LeWhYA3UzRuUEY4QaczCw4aBSQtORPYMJDSzGEWlxXBB8j2TsdoVazGhjBoEMs2FfeAPp165Y\n0X0TMLKyz2TuYITv69oQ6vsIlOnRLUBxfe6dEGsMgl9iWIOuhymttmjmXTDBJQpV4F4f8nyxEkve\nCNaTez+s9ryuD77998KYWOAu8BRowGz+oRjY4ijlLvxSrXhKPNfSV8rYOGYpgcP6QKDqdfj/RwS8\nrT5pwhAIxuJ8FNjk0S/X5nybd0rBEgGFkvvxFTAvnzbOYH05i9CLUJ8bWcPxW3WDiTopxqw2f70H\nwrOIGVFcGfj9rF7JczNlAgKuaor4RhYaiWl0e+Yov56G4Y5kf8MPfVMxGYiVMRLW1epPrr3oRaW8\nlAiV7MJwEeWBnBb5U0DiCLJ8+52BJoIFt3kimKBvuR8WNDabI0BFskE0jwmSacJ5nzbDMllMgxXH\naI4hnMGl7uNVhDRlDYL0nEOAl85a1NsTy6os6NJ39rzNCnsDiz8BTkr704Roa1Hu/ewfER+PPe4S\nMKeL5X8e98OmnqYNDVI86vPNat/Guq9P5hs6ODAKLVPkXBQiw9Dn99Bei16zzEAYA9MpRi2Y7BsT\nwrnPB2/78mj/8T/GUjNlVgdiG3+PDtOAPOQNhCRdJGKG8Prjf6sYYEI/kiiqGBBYpITgIQ+ruTYU\nL91CF1Z3Dt1HO36MKjvAGEZCR8+E0UdST524QBk9Xmqbci5Ae7edt8dsnXaK4SScgbnjRu+7e21p\nr5nH/++LKJhtWfyf1xsrSPt5f59TAhKgX6RUgAQhhoE7OqWECEsD2tmhMIHtIruIPwOu977snjaQ\n59H1oUBfQKE2Qmy8NMs88hQlNnowoTUad8YToXoJLtWbFMNRbyqcJgo30PtR9+wqtIzuU+NxMK0p\nm0NQX7bfpfhRjkfk+xy757p6Tzvhx0bwrpDfYECwaEzIQvEQE4Gto70evqdSzBDcUwfW058SreWl\nYBF6KREqGUFP3PjBE4ERWqbbZGaFIwQ1Uz+foXoSh4wDY8ho+IIts0LREcE7A7AacQ+bIZfGZkLu\nk2exi77dCJ279XW733ozWCTLw82GSSBY5OOcZcYzcBtELL40JkGNVXAZvK32Hn3N1U+Yka484MyC\nKYR0I8tq3Pgm7fU2iJirLKPBHq8CbtEbvx+XAxTYSumjQr7rG3GLblZ214eL61O3zHNrh6YIr4SR\nZjQf9/p6otSHPBuF/PbrjFca8O+ty/bn9X2PlmNUQGT3rOSaA1ZkbQf1MSEJf2fAitG95v7qpSXf\nTtJz6pzyX+Ec4njoa23dq65mFxm0GfLlBDWgtzsZLwMxy9EoZgJLDio8Vz8tSwpfUYB88+8tCjHU\n/cV1DpWner69V4XRVTwgyZyUcYEChsyPG0mp2kjWJnV+az1n79EJVMk8RmXbUQEoA77FNvpapNdw\neX/rZj3ojcIMAFcI98so3NeoUaCYNvtxu6EME4aVaW3WU/i8PNuIPTIKFYbM89EZ4QgP1gxhj0Xt\nvVoUryqGpitCOFPDlJ43AHDV/RYlbsdKKqZM9vwN18K0X0w9eJ6di5QJL3oR0kuJQGgRITKy9J/e\nnloV3uzCMZTeacQXLLH4oAfDjIWVMW/Osn9QmYCZEVCwNYv0vRV6HL48XuDP/WzPKSjMrmzYP1M1\n8F++PI4a36EJQFVBwBbV9/fHNJIwiR/qsblX6xSPsKBTJQwwDo1BbOf1BlbfTcF31Anf3wjGxRSJ\nkJBwR5kbcxTOwCzs7PmQkFm+JYIy9uEjyAuZlpH4SrryBucYGKaQFgKRVvivu6L7ObQQIaYULmDd\nRYAk64EwTAggKUftiSD/yjnh1TL0an++X+m4JNDf5HNnzNqMB0JEZzNmPJQCvqv6lI3RFIDZul4J\n0OxfuWklwuP/ryCMfFWC/Nf6ohoQmyy14omgPvDyZr99Sz2sPZNOxutobUv9IriQ9bSvkVKWCBYz\nSuygbOqJIErtN49H4wQftljsIFHWtb0xGaRMsdevQf+29VyHKcaiHm+Uhxzaa2dl/UxDBcGQ0bw6\nlWGjKZmWbeZwyouzSgNMebWnPiGnpFX/ixeQeCBciIKkz9faB/F0SOZmBhCIc8+l3dYKG8AewUwO\npXR+7+3OsSpyxabfL5E/wH1TK7V7dinbP4Zz1e+BPgx8UhOCB95yW/vdj5VeHhkPeikRCKErvMR2\nNhC3AWXCSlSBkft3A6YrpSxtNbB9oMLXQDhDa1G+NHExXWAUoEY6Y6YxRd7jPl/+Uc/qyka0qg3i\ntsEMZPVdvjyOP/dX9bycIvAI2KIoD+So+//1q1Ue3MDqVkpf5L9C1gfZGH5GsR9i+ck2Fgxf6Fr6\nel1Z/KXsWxur9vz/z967Y8mRLNtiHvmtKgDd5573Hu8IqFOjSpVvFJQ5C6rUKJEz4RwocCQk7zkN\noCr/SSFs22e7uWdEVqFPdyNtLSAqMz08PCLczc22/UpxoIRsiFdYn5LqDK2ETnHDbmhkmfa1yheL\nXwvsLYIERUgOmYWDwDqCXvw7Y8F/Vp34hvvxjyQGAaZs6vH94jxRBOT7OiNC38LaHN8E0OkoSUXP\nl3p+s9LRi8lkl8tengh99wpKEJ8u8xS+KZYudlvO2+C3a2jJgqhrkiTktL8v1NYExRogMUX59nvW\nZyzKv3oUeC+DhheP/6weNHI+KuIAPAgggrhO9ySwLAHvR5I+IzkuM6VhEd+dx/m5ck2PVCnCtTPF\nR44rCotbbeXcdQLaySIfdlnIXE4cj12KAXzgtbr+nJLEYRA99/4p1lLQoPMXyha+r4mt0YHfY1y6\n7N43b1piWprUltoMyehb4WZZToPKG0X37KTNHcae7t4iA8S8G5DryefAmeCp06Is/xMqkSw4nMGt\nybXKKfgs5ybvxTwx428hcSvl6tIKQ/rMHWADcAMeQHKuD99bH2MIFIeNZsR7opdReqWPmfR9Yjwy\nzswT4UEP+hH0ABGEwqa0xh8/6GKU1X7YWICaAhbKISdwgBnj7FqEdaeO14xCQi5QBE+EG2P2DH2O\noDglAaINVM6RR7t+MkV+cxwBhYW4n22242/YMHxJreshKkcQtE8uUePhHH/zMcU83qyEG5PFHUYa\nEqWfBQpAJb24XPboiKh/FJ5TYfCWWdeDYh+wg6WeCHxMBBQW2Hvu+T+qLFpPAWchAS1DvLkcoUec\nKLa/FGeZIEXABnFbwcjWL8+XzPbPilTmBdHyROBYTX8FS5D3PuqFCdxqO8UTISO2zODTFHBoQQBE\n9tu7S2uRJ8KZ+NYxAQg4IsF7j3C+BPBPTazoTLjqiQCAYYKnnbnYx+P4d60YTyX2SCjFWYA7ylKr\nDK7+PiEnQsavYFmGQgXwYLFNBr/ne6n7q3JJ4Hv//Di8LlE2OVmlhbQk/dH+llVnaL0pTn76ryYe\nZ8+tn70eegBTvzqDvHPyQFhe6znVsnT7zy2gIVbwim3giQtdONvDWA7MZUTe3yJoNP4t4yQlPfO0\nY9DAQFm3dyV5bEqJ3kYGCMQ2mecsZMLlOq7js6v2ZZUlbk/cltzs9/zTJT5b8Frw4JW7uVaOhfcS\ne9/8KFXoT0vXR6gH6AEiCPkkRs1cCBPg9TkJ/dJ+tVxe7CfM1xt9h8R2ZA3DuRcv2M0YXruNY9Kc\nuIbDG9x5LRnSX7JVyih7DAxgqIves32/Pow3j81kBQ8EtebXVpgzgQdeWdrLdxbTLuCQPPuTi5Vr\neSBEpR/Ha9rGI91c5QEbTOZd0Kqa4S0ELHRk8YMGNjWkvqX3TY4uuSnf5bJqlKCom2gxE1KrnAhy\nxPDC+Y37df22Nov3eiu0rNp+TWhYuRyPl1roGKhtxbb8NRtjjoIdgU28ppK5ejiMxzRPBGebhm5J\nMZ/+t561HrLU2gAAIABJREFU85YiH5X4vG32FFq9TgEO5ig+U+K5s5wIlnRRPie+4lOGodUT8B7A\n25K51Uokec3aEIiQhTP8K4mVN7b6lpLsVamiNx+wsHM74AQpRzBmLDbWRkGXfWwb+4l8nsGEjO4B\nYezc+2hOideeCzbnLMA66YUz3FXVJ1u4yLVCvPxeBYNL5WYgFHsm8qLP5xbtax0hTOXfa70XcpjP\nnHc4sCxa6lwIXBa8lKzqEMZQ3wqHnLC3Sym1sUw9PLW0uZOvkPR5Dd47hHH6e2jmdZgQztD7bc5c\nmhLuaf3XHTMImK3tVu6RB/2c9AARSik1F35HT53EihYW0aaqfN4HjCmOIflOzddyrLJh3+43cxez\n36R7oLjvdDecIsP1LFwAD/R90LP1TFuTJVJCnLMHGhpK0pQa2aAAmjRyPmQAhGUYx1hqxbvyQGAB\nObEM2GdophMmAZdCLR2lpgsM1GCT/nZ7FB9ObInvedrMcXWurpN8h8iVk3QounrZh4zZ8txlfGuy\n5swFO3oC3fjZ/obAxZnks5wIlbBPR9+mUNsUaED/HSkLQiW3yHOR5L9l1RmqpIkhD0P8rcq27frm\nuFIGDPzf/BsSrZ6u9bWZgrUYiRSFt1kyywQAaoA5qXCJI3IjwOU+yceAjq4WZebGKucrj8XnJFSm\nyjje5pVMCiYEEAFH7NWJIkXHjyL1DKNywoHowd+TbLj3bOYAAr2cCBpi0GE9dyU5TM5h5Z5BtkzZ\nmZSkjvtrYwh2vxPCneo+/P4b51saAoW24Av0W88ToZtvpGK+0+8hPser+79PVb4mMij4vrmaVDa6\nqvpQx0PRKlXA0CEAgQtnYK8FBujCuBpyS8g31JDlsrw2LUrXAMUudpV/5unJ362KJ/G8nxdEuJb7\nwdO/Gj1ABKEgJKjpVg4o7Yij0w657m7qgcDByRN8bJVp4ZrOmsMMQ6lzbS4Bc+1lCSLlIY0FJGvO\nyiXjgeuXuoYeYlyZTwxzK37Tj6NFmfuoklrDXN9kiTP3WxGunasau51lFhu4oWITWiHxjyp1DtmW\n39YAVJJN81ZMsL/HlSZZgsAUx1SKS9CowmlEzrPwCL5WEGJ4QsB7Rr1oOhMmEWJ6glIp0VPCvmsT\n53VYdkCJj6Ze9nBQs2BFx4qA5T/InNg5AQ/saIvcEkhWJd+vw3yJyhEoW0OtKitZJZvNZlxgm8O4\npRxcuI9mE6d7SvHShgKfTT+2fvW4xK2KDmMbWK3yc/x3FUCQCIG162r8nJ2fCSYZsNAi669j4aKL\n2HZX92/PAnxKnlFnKOoSLzw3AAXikzvFO6GlIPeE8gx0uuVJkoFiXGpu5dvQvCVx4W4PJd5brtne\nJX8rQIN92IF4ywvmsewx74Q7bpUlvjf8wObWQN/XCho7v3lSd/bEcn7r2n90GhIeXOUrKu3nV/Fc\n9JdI/jzfWE5Kx5d4F3AlHKyhNJyB+8N68/OZ9m+TPYfweym2hgxoGEK/pZgMDA+f1Wa81lnyX4Xq\nXHjuHeFhoP2tW+KRQ4N6mM4H6egt/tcCFUppg/mlPNz4HxTpASKUkeEEQZkSFGoyKHHTHoJEwVJv\n50KNlXnNSmBl0jPG2wxsHg9TsqUOvk5wFRvGx3oDA1MBs1+vDJVQ8EDAhCUly7m4Xf49XglZOS6+\nF2QKP+1cIkQBCTQmGJsmLHsORDDFIgICPS8Djr1fuw0RyRfRD+KPs0R5rXJjcROOirLiS0Pdnks2\nWeJG9/xoR1FrdszOF4/I7bFe1hdHv5q5CwpGPUffszll4E5tQb/vAr/XpqmJ3sI4IXSMBMV55zwR\nwJ7WOkfH41bm2DrR+HoCyhyrpoIIT+Mi2h7G42VvnSADdyvvRAYQtFx1S+lYVCDvuQ7r8o/pEML4\nemBCBRAkVrcKPCj5Z38eW368d4WFONDgVXeqX1gvx8etPDQeTOiVxrQ2sV+AsZej8Latu5dXAREI\nAfLAhpZyvMZJkHlkGfjCYEJ9j617CAoa3JcpN0KYozgvUVBa1CtB2XpXUOZ85VyAB0heqQpMCHGL\nyRZZyUkrTlDyv+jCjmcQ2/zRiD12QHP5dwvYy8IksF4vtE6mWCk5t0Yp03gvt5mSK8qqPojBI6kI\nBlJPpSOvw3oMmiw7ydFTg8RRVvHjMrCkhM/j/cV+auDBD57aZs8T1xJxZbkVnkSGNk9XkhF9iBDL\nV733oImhf5QVv+Kd9Zy88jEBCHRed4Z5/clt8Q8wZaQHiFBKKQMjlSJEPslm/Dw+Jk2A+PXo2o7H\nnvs8/6YKFKQDLyWAI/bq4jQClnCGZ4KMLgOBXqzqNtxfz/WNlerN1swlAA8st0Szmw8hjxzXIML4\nPF+/WmApC6lnKt+YCXorrRxQK0Qco3gmN0CvpL8dx4eC57YWF91l0p+69S9vcyu0xWvtbVKcMTxL\n7MSfveWCcyIMW/lxI8eDM52Zz3AJA5ywAU0pr2aCbW+utq8xxe25Re/NHs8WdQWd3IDx2PhKEXyL\n4MGLlCh9kqN/jkd1CW8vSvZA6IczyPN/kmufD4Vpf8Kcj+M8qwDeui+77zzJYa3AlxJZJ5/WW0kG\nQuRggm9zVcW2vib4CNi85h4gAS2cn+RCsDa4zwYgMnMactx1qyrKOGYIxkO4hx6Bv6qHl7/ffaWZ\nhbb+fC7FC3A3VoZAcsgh/Oa5i74H9I/1NkH5yqiZ3PWd1m2rPCNz4Rifo/+7tyYr9+o7wdNqfKy8\nJvc9ZX6AWmv7kvC235NqzyFad36//ICgln4o6O37n9JGvfJQNnRj4zaAfzycBAA+oeKOM6qwbKN9\nJMAjvlEHXP29HldrvJ6mWOYrgCH5XtcH8mVJ4lIYnLLnycDKZUaohyf2RLiHuiE4Wbgy5VaY44Hw\n0JMfdIseIEIp9UoBkxET3/AiGY7gibBxLAkKZK//ygNBLpu5dE4JUSCqENQsyKnENsPabSJgKoeI\nBvdI3Shhmfe1hXENGKap5vFHUZakihMBQuja722qa0bcpKRZKVGh34qb9qpExd67j643KA0pwh+B\nEtH9djxu5PyDcPKVezac8GslyqCh4OZGwvkNWBGaS5MEYZaiVyiBkYAIIHgrpOVO2wLxLeKM4elw\nyYJ2L36eWSF+BPneYTDSZFJQNl0rvOuNzJftEsc6Zokrh/Q9EqbPIQhiG0ErveC53Uuow0JKqS6Q\nnBRKq1sflbWz/ayr/ATJcOt44d5dRMqynzN4kGWoZ/CAMdqsJF4reeIUymO+41ydUgWhew0WQJPf\ntMStvPvTQbyunKfdmcBskF9TWiYUuRVK5Ne+Mg6UGi5PeQ48d/p6bSZWDJ5iH7v+uTcFo0VhOe5r\nMc1Kz9U5STg/yRTqJVaswjY6t89tsvKIc6ow/F5hB1Oe2D35J3qUyS8K2jeSU5di75efYwaIK2CI\n/mHYcUjhgJqJMIhRgtSewpy9Sw5x0LUED03Hr6rKUcn93kPdMr0aKixt8f33tvzLIa/5NeOYrwmg\nWQFUSQ6XewwbvcpTVVuqAPRefwIusfyz0M/th2H0ABFKEU8E9xEMViysw/M6NvcMuJF13gttlSeC\nSJ4KIjgOzCWwsplaCYQcO5l5GYA0RMOb18JP5fwWGbsnLg+oIIKrZY2yivd4IlwSxnuLApK/krGL\n4wHuf3eyh6L1zClZIjwGlitTgqHAr6heMCo6lFLK+iWOli1I3pIEAXtN+QiyHAa45notYSBkoRvv\nPVw6BQ9uCT0BhGnEynf7uFXy0ROsqq5Ns/pB0n0lcE/wRJhD7EIdv8spWqGnCwAsSGTnGogAhRvn\n2kU3Gr4AMEHmrMwjBg78Nbm0W4+6zwZW7BcZ097W0HYnIMJOwA2Ma1kLH5jjvdrsLcp4Bi+Hbnyv\nXAtNMkCuSqjYZtPNJFV+CB8hePWsoXptH1dP77xK8uX+ZqU8A0KsDOQ4z45iwQRovNkbr8Q1lxKH\njD3CKyrgl2cqF8rJbf13mM9WbrK+n1bCTB8KoPsHlOAk5nugI0U/ziaruhMVyAuBMp7UoqxKlxvf\nFJ59g7rJY/WZDPLZ6Afjqx9GHPo05d19FHhQlwitlWr9nLzf95B6Na5cPKt42OpapMSrk0rTBh45\nfbDsbTkHPJhWNazU/aqRq97PKmqAsL0yru/1UNRL/yCd/L2hFB+MoT7oT04PEEEobJpIZggPhCc5\nwqISStjJsaf1coIalmoywGGKFk39DhPOhQV4WLU5gTF0+dyNtUO/yW+YXRq32e6nmwjsVgxvkogJ\nnhYe3ACZ66u4yxIgsnH5HbYS643kO1q32cX5Lp/pXo4iBIpnx9WBCKsdwAM+Wn/IM4FkdetttO6e\nXX/1+VEJu5fqkm4TTrq0c3tg3l07A2OAirq4myqLj5tPdTbs926w+flDB6gB4el5l2A8CzgOIRTA\nCxjPMie36p4ehVTf39xKKxmFeEsopwAin8Yj4kxLsXwpW/VEkHuSwRxDjo+omExR0HpzsyoV2ekH\nrwXngM1nOREQgZYr1bGfit0n461xYQfUNCxG5pXSbmuAQXJNCuvKSjwyiKCReK7NkbwBANhiTR13\ntWeShWgBVKwtcRWIkHiOaTgDASL90mkjYR0uQzZ2HPO15P+usNPmFb1nQ63gM5DcSmjqSceHJMYH\nB4TMQO1b+Tuysdclh9v9zuHZE1S5ZEzuWgAEACR1enqPG/m9xJbfHrUq44Syg1RKsHSA4Oo7zQfg\nDGFP43pdSGZezWGFJKi+2sMiztVWmeIeBc8LLaso41rVsiKXdqwNJ/OuyUnLp0w8TcYILxCfE+Ec\n13bNe2ve1ksEW+8FBPLO3MNZ3pgyHyfYgX5qupZrt3LFz0QPEKGM7C/LiTAsGzBwauZo96/WIPIY\ngLdBcO3WZItQQK/hnPE76l+DzeSYeJOrq1rGHeBqTi4JU9YIVzgYv2PpWRjmJTJQ/ns8d7plNHXf\no2SYC/EY4KoD4Ry4gyOW/MlyXqyfZNNYA0QYv19s3fmyirJyZVMp5FhAhnC55mqLeSIWXOcePEdY\nsxwQbFV0746yBnffAxqdzuGYJQrFvLseSfsqxdB+nTYfK+j1LK1Mc9wCs356CdS0TSNDsypjHuSg\nZFRrFTKtvxUJdGd9nmOjvXP/hqIHhXGYMIE4jCNUF5CBnPeItZVxO0PXkhSylQJfiHm/OYRZFFhc\nh3U3CecgTMz1wayNwYSsDXsgBMDhQm0UaJguoGTVHjhJLBLxlWLADyyNOid0vtQAwR7vXr73kXj4\nbXceGeHTUXJxyO+bnYkZ8K66yI0D+PbWdoQrHCknAub1yXnWYB4zAHIOe8x45EdqnggBtQuUvYZ7\nPA6m7GcKWGjJuXp8+FvBcap136OM37NSk4VszdmTrd/xmCUgriul3O6HP4c5P3lUH0P35kFQfjCn\n/OOEyWaeZvWTGCbsRxaWKAAuFHkthe3HM4MvdTzs7NJxPvt949Zws15bXkdBvqdrqKx9hRzs+YGM\ny84eP5/rNclGkF7S8LoseLLeKJfBHJX1o7whMnp4IjzI0wNEEArMmkvVqaSYKUfxqOS9C7hkzpra\npl4BrIgnLeg3/eyT4HHXaHtwTFU9BqYoFNINEm3BOnS0c1d8v+yJEfqLCq0OM8sui0RnUxB9eabw\nEnh5soRv5hY79vMkA355Httsnw1EYLfbNF5OukZiHjvWjevM4zXB0rASa+5iGwXGpbM6aVLHGRaB\nyp251M/6Rgfx4+6Ufh8IVg0Zu8/Ofk3ApR9BfW8XHG9bc7htsDSQ4JRbI/Ix4JG411vWmqQK1o7x\n+41zwQb7wLz+fooMxgszJwIqVp35YrwDSnD2bMbj8VUEMFRgOfs2bHVhEMvattjoJMes5LlWCsuE\n+a3XglA4s18GD6rcDT0L0AxRcYLzW5VfYPx7/O4gYQf703h8xfFsfOtA84WTRpZiAvZOzns9RbFi\ntbP5+OllZJYXZRnwrnLJ2yhsASUKES6RhTP0wi1aT1RjoX11mgUdh9i2R5OAV4wpGRRC3HBtKFao\nfOK/Wz6TfNC5hrml1wBLDWjGZz9+Fy91IfCzRxwDXooBCxmoNn7v9obbtzmL5rhymys8BvxjLI9Z\nydIqwWJnAuJdLRL5zZK6ym+X9r3A8LLcjAIM5Dif36aK+9cwImujtgUF/eJ1/D6sXi7qiVANq/Ik\n5JKW03Jr1Gtc74GNPx60A+CwjOP0hOeDd+Y9T8fx1fyKPRDCHn3Nj5YQ1vWN9QvAOwFhbL+dwpfi\n/aUVj37MMvjT0Y8KN/mz0QNEEPKMRfMciOIzIFHcqVaAVCmvc5gptZRo9XjY1DvEddfeNqscCx0A\nA0yFq0j4pI7KHxogQqZ8VQmtfFnEs1iiuCzOByuJab/kqrZ4Ho+fvuyr82D9ehbQ4PmLbJ4ux0H1\n3BLQCKDBeQ9AJT4Tn3RSvTFIaAvurQiZQAjFOo5l+eZABMTKI+M9XOsmCEsXUgz8d1WbbDqqtHCK\nn58StiJAXJbr4575UbsS14JJszRmEGL4mAhXjVjH94Y+sHIJtuJCyAs8ujcQyBBn7vrBI92JBXd/\nycfrx9x71i1LQyYkoR8kfxtk0Xt+qtZwFqCy+HVWWO54xH4+f7TVxACC+PmjSMM5Qhnc/kO4ZEoX\nnjFVSiillJPwJ1TNgAfBTibbwSmQB1IEVOh1N36Qse71/HEergV0fzs6EKEcZJxxXJl1vE4CGhVe\n/7eFAmVzKgeq1U3a8WfeL7liwvi3/DZhblV8JeH3VUlf8H8BChYu/47uBcIALratVdesQnkSqyee\n16D5dn4skFvKPIvqPcRrPuMBZs2+Vm1aPONuD4TGDWff8xxQT5Nkspn7fA0OaX/XyO8z+QVnIcRh\n9UlHOH6/c9cUubRbIYDKEvc8L+qEinIdr8jLd0tad72qKFX+E6/8U4ycKuD67F1T8ThVcEOfm/MG\n1WcS3wcoC2fAMzklvImBUXuONZhflzMFf/HyPcuEP36NP+jnoQeIkJEGc4p79jEiBFdnKoQC2XNl\nZ2RS2QJyL2xr+HBY4drYTNxvFXJP5BU0MGd8hr7nkzmiugCSOsrtsgWjlIQJwvX0YPewFaVScwN0\nwASOHyvJ58piTgJ8OJc2yUHKdD79J3uHFylDByX/6fP4EtefazT8LEIa6t6r0OveNxSogzwDTdwo\nAtl6bY1Pp+iqyy5rKZFb9SJ4mgCdnwAaUGLGzPX+npjR6yGujyFIYbLxaTC1fDvBgjaF0tJ/DQX5\n3q2z1d9HgWJ8D6FMmjwnKHNLWZNrxwTO8rx39NwghKydQOY9GEpx1o2kzJhaw1SxSIQsaXOUtbR/\nlfhaJ7TtD+N3+0uc+1l8vQpMlQKU/32LZuVE4EF0zmEwwSv6bGWqKhsEDPoaf9PPrr/q2hAKh6St\ngIlkUfYgAhIf7hREGD+/SRsPIhyTMZcSrYuswB8ptODgwmkUxEKbU+0pYeE4uHbs7+TGdyLPLvZ2\nGf/u05BYKRmI9HBGSxi3uVsL+S1vJj/mCvQUBWbxxZ2LRwnnyH19d7WnFH1OPM/OJT5Hn4+C807c\n5V4dWjf4Ka2FH0nvTS53i3Kvy/HInpWZK/sUYiNAZmnWvE8yX9Rj1IccUs4SAFRLyIpHtz7oEilP\nq+4vntOVMWj9leKV4NBkEmVri0tUq3yFMA4XqoocP1rNTOSXhXsmnBTSqrTX998KF83z0MhnvDvs\n1eH+Ijikfbj1y54IHBJ0r2fBHK+5vyL93Hdv9AARMgJ6+woTs6zQ9biDey8BKJm9tMTN2s4av5/4\nIHGIgwcG2BOBZ/Ol/lvBg3PdZoDLvkC9cM8HiOCtE0dKdqWeCM4dVe/3GFHw3qZZW8D9LdBmCRdv\nMFt3bX028CJBWIMTxJ4kc/xZgAGAB9gwgpeBtDm8ju8IVjwI4qWUstuP5iEIy3wvn9y9HM8AGuLm\nkXl7WL6J6icldvXLlGpVJEihUGHdbUtqmSrx3WXzD+UaC+VA8FaT6z6GMWiySSe3XNSRIRfK57jN\nepoTHtELZ+B+1EU8EQCq8qEyN8OSTIT5MBb3PfDKvT4Emc+DFxLycYKe3NWXsnasNFcN7N2iUG5M\n8nZgXWAtLB1YoRZvAGhQLpHNP3P3VOva+L1/vVdtOx5bJRX9d6ApIAKe7Jk++/MZPMjc51thDH5M\ntSWpPS4W2vB5GdbveIQiD5D35PgVQB28jzfNjSAggLvMufHA/EhU2FUQIeZayCy7AA/AR48OaDjR\n+XadLLEixkxAgxsguwOzt0tQ+u9wLTGlAcdkfyvxt9zFOa5FrRTx7CKyAfSrDJLNKeJBFAZyyvZz\nWa9cKtOfxyEjoO56o2dTijNoNEAD/9HW9jWeE7xv5ovz4LE9MIErN5zp+6lk8y0Huvp5h2olkY0x\nvZwI+ApWfKw7bwhDOCLyFWnSxSSOS/kehSDGRKuRr4OvWKJft19quJVcUr12bz/kWZV7Mi8NQiVQ\npnjh3PyQbBLVzBAG3PNCZFninORwYT51dGuSwVjmX1d3bQ0nkfeqeSyCTBLHpd8nY28B4PG8uAZ/\nttKOD4r0ABESMkVUvAGE4Q4bWTwO/YcLuypWFFNZiilJwyLZUUuJ3JCrJ2TwKyuVvNEE2QsLXpqq\n54RdU+vjCgM6S31vuCEfg1WCFapakdcrnzAuOmaeDV1PhNi26EZWgxzw+lBm/yQb2JONb/lJwi2Q\nzOcpjtu7iAI8eP0+7iyII/bWNbjrsiuoZjI+1cush8arsi+KmSbgFKHy0vF6yYQiFirNvbcWKm1q\nRoGxK1xzOnv/E0KAKIzBh/8gRvtMm26O5MdxJgVOZrmY89xKwZyGZTQDwC783Giu+nvQc2BhkG78\nO4QgsTvjM35xoB31Y2W/xy+2HtQh63Vv+2/VxA6u2HC9Fpfw03cIkH59iKcOsvez0uoty6qQ8rEt\nFF2prSeeC5nCMZCWq2xUQUt/Pq4VFSDfaws8YG8Dfy0GCOYIZtdEoWKFz1d0AahzUM8QCKttntQL\nC8dZdSgK+E6tVPO68Pz+pGBB5CenBPTkuZ8lVuT5wcpbNs+nlNZrKaCh0gTteap8BW8A8GHhe1Tx\nJJSUlr/hSXhNlC6+L+b3YS3JkZ/bOdnzOewqA9BaFEHAxnPDmO7USe6xjE7yBJzTX6efK82/zIpv\nXowlPY795OdzroBSbP7qngrv0pPzzHxDYmSZU+e4kEM+FcxRmkvZnGKwREFfrzADZBdZ5yJJRX3J\n15as9G6PFcl9thBPXJXh1269CXiAkGP2uhzPy+UBlgFKsXs58XoLIEx8XlW1Hw+QqmEoAkmZzM57\nayY7geq9awZi8xPQtXzA/PuL0ANEEArIIldIICUus8piESMGbXAzDL8tcCK7U2UggmgCQIWz5E9T\nrCbKwFQwAdNxjPwN1x4bnxDbn5bUYoG7Ht8cmmMBZetBL5HVRSzgC37WpZTFBkw+CmIAD47fjAG/\nvY4AwbedgAhivTs5Jo2Y4lqovDTHV43XC5VQrnbRkoes3Rfv9QGrlU6laziGa5zjZsdCje9vMSF2\nXp+peOigVFTxnjUVYCbXDEIRjiys1hssb4TZZVQAlmobyBexmhDInikULcGQLUy+LQM2GXDGBF3B\nZzTHJg7B4kDf+3HgPO0Hj2FCecm07jVyINAz8eXGELe9lSxcq+/jb7B2j+PLBaZe9mqmCCTJ+sdv\ndPQ0xUrJbRhUmJIJPnPnZfBgioLxXhfRau1gHjp+dYTgTusfd+3vXgsUyWeI0KHserKNefK8SCvD\nUMLHTOmHgKy8KAE92yUoS9WGlTf2YImDFj4KV+oJU7XnHtyv1iLjpPxCFzFeLE715EKYYxZGyW7u\nDGBknmf2uQbmW27pGbEdI1OU+Un8KFn83hwGzf6S7phXvDcHS73vzgET64ufVeTEuhuqbuHVAvDg\nIjkQ4GV7dgmiYVhi75RTIiMy+MSAle8HMieqYHni9dq3Z+TrNexh4GmQrbfE/7wX8MruvRTTBS5H\n953O8bjXswzg74XDGDLPqYpvqeXfXZu9dBNjHq/bOimwffHQix80lx4gglBA8sl/iJPa+I37TEnD\nIC/5zaVylWao1qObHNrQCwAjlFrDCPyGjTY6lhpEUOUSyushxi57i5C5u9Mwk5izOiYz9hFuhRld\notiC2JIUmDSEVA0Qr7ccK7EpLQAeSIb516/mz/b9bfRxg7fB4Vw/E7MAy3yBbs31nEucZ/5cT9h8\n9rtYbx2l8q7Jht1KolVKOwTllLgH61OrPEPag9ZwHAETwu/IJ9LxgVVPhMpTIj81o7Cxsluw/Koh\nGsncsnPqF4JxcVJCnt+l2LyoXYrdNeWIKBBeD2v3umBdsvcyHndu/eIvJOTcyDx8ks9bl58AgAJf\nM81BwqVkOy6hq5fx+CzlUT1/gUcOvrFEWVc5Wn9TgIVbykwPOJiUyRvKf0cjmOL22aLoeh55xoKs\nxn48c7J6aGbvc/QqK6W28GvMMZK0DvVc5W3Ip/nh3/izf4xH8Uo5VxZ6B3IQeG2WzLgW/Hc9gKoV\nzqDCuRe8idlklQhu1akP+xHdJyv0njhJMcD9xXdbiJBFLq9yD9jvkv2cwbvsXjRmnH7L9vyeBX0O\ntU6bAraBPEBga+d2W77WrOSYST898eweshj3+F79HD2TDMLAv38vSNCqngMq69XIKObbWeWhOt/V\nQbyYqjXaARFqoMqtzXMME13CgHVu8wO2pHsahvgs8H6j/CJHeCI8Re+PQGxQFPAOobCllCqvC3tX\nZUa4KkQhacNqQm+91R5eNQ9/AAQfSNf7+d9fjR4gglBgIFjhSHy4aStUrJSDiXnLvKGgsCTL92BM\nbw7WBNMil7JguWVXN914knuZIHge98LIhRmCscPqvncMHYhzJTi6GGhWtlpK4vhdPr5o/RPGe8k3\nI+8VcCFgoJf4EgLY/rvEBr+O4AG8Dkox8GBHCRE9aAJlaCNKvrqRS0LFtXs2rNBnLr+IE/aCfymm\njHnixPC2AAAgAElEQVQ6nHLA5+g4HN4nC+wnPdaAgyqbGK9/9ryrCYigYILLkeBjLz15BdUSPmKD\nZaGhDZqwe77v50zPmsuYleKEq8Z7Ga+VzzsOvyjFxTySpSZzL+R4bvYoKMWFJgzoH33UbZ7k8X+R\n0IInmY9bN2/MGhTvMwPihoGetXq9eN429rj6Zfzt+Zdxwfm5uzlEjxDMLYzbz5Bzg79kVIc11Ouj\nF299q9+SWLVa4EHmGcLeBZkjTLNtEvJgn+NdZErSieadzzmgJeGgfCmoMx5Xbr6wAoD34uco5wTg\nc32lmL2ACAxOHLsggtzTpV5LHBLDccRjP/HI53rXadub83Ucx4XvYschFIBAxPpcW3sK7sraOXzH\nO/NoniiKxyh3BKWrwe9794J+jxnoSfyJEyv652p5i8bjgs4ppZ7PvVjtyvWa1sl4fuygSjzq21K4\nWUnWZFXhhPjLMAFk86S8Akfau2JODnlHVDbQV7/iyljmoRP7Ha8FABdzvWa6yIEFD8zDm8h9YsTw\nXmWQgw6UJDfLa8MKM56Db4uw0MMhJuQ9+BwulKuFEw36vC2tsrohnJAmoIYqIM+IY2QIi71KCPPp\nq4z7zeVwOUUeyzlhMkCu9Yz8fR3pPjNwTfuh5O1pokadH3E/6lEmk+hvswJHH/RXpQeIUGrBEijt\n8lksweKmjXioYdkJSs/65wtgMcM1yiVqXJRYThLUqxOcxUXWbcbfkAgtc2uuXUzjJhWuoVmrsbHW\n12wln5mb1X5OvCIDKkiMiKzxflwAN14BHuzHI2K4S4kWwVKca7wDBp5kPjwLaACAYS2luUJowSGG\nPmRhBwq2yGdT6Et1zok2qlTxVoEwujGn8dxy5DeUgVigAR4IKxFe96e6bWf+1mUvS3ospVbEMutV\nqx7yR2XknhIf2KvJzC7nltCuPmetivf4GdVgfQb9J2nzRcKtfpV597Ss4zdRhu/csbKzK61VaRm/\nXSycQIZ8LwK0bv4+vpmX40HbQED8TdYX7nfPma1K0TjrHRRdtEiGe08cc+/NzenuvdbYOaSu4fq5\nM7fkLixhV+1ttFAPkIschV8lnggqlE8Ao2vABmCF/QAlBO9zJXM0evNEHsbrJQNh6lwa/h7y8Wm/\nvmQpVRLiHCc81lukte0bNe496ThRKlOUuMu5PodD3FLDhnyuPC+C51kEatJxJc/gI6gFHsxdUwMl\n7PioMAYrvSnHCZ4Ic5Mutqgf+hTBXfOqmLJGO7xD5j7Ag1cxpgTPAVWQ454V28iR5IssLIaBM/XC\nyWL6q3KziQw7Z+4oeho57DWED8kYXoWvSoipT1QLIw1XxLHkk3588flnXgJz1tmPrjKSzWctQ/zh\nfjh/LnoklBzpASJ0CODB8AmW6VEw9gq9KcpxteWx1VHB1fKNF2MbF4PaxzYiFQXFTUGDfNz+2q02\nvgRbXbbnfTsh7tMyxcZ+oyddfq00wR217VlRNa5WkkR++2p1ezTZkDwngAfIbeCtMFvE1S/juRun\noH3ajPNiuxUQAYqfWIT9+4BCBq8CdbdLkoVZSa74fZoJmZJo+ez92h7AiroHI6yhRq11W1Ul3T37\nVmJQzGNfMooTKmooibvfhvU+c19uufillqQyn9IcBjfaxnh94gOJezpbH+CswZaHUgw0kCTRqvDt\n3aA+C3jw9834cL+QB0y03MZ7SHNn6Hwdwmfcy9E5TkGo2sjNLL6MC2XzZuvj5W1cH5/E44q9XTxh\nHmuoA3LEJNKh8q0Je3krp+0U+pFAgWUsl8+lni/alm60N7/Zau+FcgsjieDBUhXdmlqKuP+NlU1N\n+OY6BI/dLiJfPSXWOvClldZfr8fASrDxTmvTUjp0vN5KifsUPpUqAjQO5kFzQXJeg+qZkHikDQpQ\ni9dbEuI2ZxyshHA5uP65Mn4/9sZpfq6yQ90cPm3u6Y6f3shbMRdUaOnimcr03hwIpcRnre7okBPE\ncnBJPUMw9yMjzMIZdC9Nqj1w+KmW5JXQhUzpZ4DP27w4xKEXzsBegwomdEIApiQGBDGAEYgWsOaG\ncOVpIK+cJHxI84V54JHuoQ5ZvW+SsOw+Z67Nuab3rEFON67e1APHLOTyoVT/jPQAEYTSeCgkVcGR\na/6U9sIOiQaFyZibP76Xa/vFR5mZ5wSGt7Kpp+Nb2TXnJEXslbaxccgfIiDWMeTtcc5JSmWlH/0m\njGctbVD7PKmQgM3pQGUXPS3JkgTl/2llivJGlLfNNnqoKIji+l1SyAMoQ5TtmtD+o4dCKZlAge/r\nNpxhPQMIdF9NhLWKGqa9qw9nqPy/5XCu39kcQInpXkz8Hmv2XCXh1nWqcoauLYwkG/JI8OsQnggI\nWwB4AEvzMankMGesVe4RbyVC0q2zeGkJ6rHYGoiwkuzXa5n7GB/WnwcTEhYbvg9t9FnIUflB3R9/\n/lfEM/ZAD7uHkbziwy7J2C/wjLyFdEGKfBazjLmTAUgtYotZ5p5es4OhaqtK+R0m24+2e5kO4XjR\nKT6vKZb6OTSH32QVj5bLXCCYsi/3vN9+FA2N9fyRpID3ENe/hpa6qTbHcstrEWBFJvOhDdbiFIUv\n40GtpJihWkESEvMuopeT5fFpUbfKFH/O7rcBumcyCV+zp7Tq3tBsYR2roQ5HJ8ax0YMB9fHv3kXi\neuO1l60L5euNvSu7p3tkknvJ1vTvd80/Gl3Lv0aG+CPSA0QQCotQzUIkrXaIF/wUhT6N02fLrSpd\nvm/5I0GVp5IfLyzmltcAMZXSNmHWzAy9wAPFYlhEFD0tB1S5dyWCZwPRzqxjeO6MrvsQBUO2xW0U\nqL/c09Z5GSBEAW63K8Sbb80cu30Z2yy3eFmYN9iUHIggaLclm2tzIihbq2V8wWcf39yIsfNPqu2J\nEBF+/52WtyvJHNO5KY2QGFSsJte3U92WshqH6iDkLs8JwfwTykIwmKpkiSUes/nXShjq++ExWPhF\nLfD0SkfyOMBudnX0QRHDvoIIL7A8upF+Wp3lKPNQwIOshneVMTsR2qocEOcoVPq1D9fX568CpP06\nfr94tj5WG8nNIOPbLlfhHg4OlDBFp8i9lIpMab69i3MCtdSSfuNz1h/nQshDbgg07vTHyWcvyUks\nNFt4w9V9N/5tcbUxPrcUmx/WL45xPo5/D3J+qX6zNrEtezNlXgZ6bXIBHtvHOTkFRzeF7zaxBTNL\nSgi3aq7rXkr9LHrlSI231XygugeWIdCfXx/YN/SItvX6bV3Lf2uKSXyxASRKwOYWtZ5/7931Eipy\n/oV+cjm+B3yuea8+owRQ4Wu2fi/FGStKvFb2/FqW8ywUhct09kA7zWm0wAgcP1AZjtaZG8QCZbDV\ncxTrDuvY9zfQcfy+t8ec6EGmvJL6PZ5rnmElImM/ISdHiW1SUoRV9lLZeM/fpQ8fuglPhEMM9c3o\nljGklDq5cLbPnem3e1T1mBdDjvT5QQ/6CHqACELBMso+WqIkISdCQCppA1SLUs+6j42BuatvcqTP\nXsG4AR5km3EPGYeQvxa/6sMhIu7BCkjnqjXfxYitJZvvgmr+pokVW14GiaJXJ+6q3cf0Pay4rbWB\nSy0Ea2y6iCF/2djD//Q8ZmhEfoOVuJGun+yFoMydld4kIMgnYSRPhDzmbKSteDjg2nAz9AoBK4qI\nUVyGZyz3OcT42dodMkH9Mb/DxkrrQ9zUkSD08mrPRstGSYg83N+zRFGabbrcJn5s2TkVQNUQ4jK6\np/Rodu3MatSKzYYrP4nCpRTLjYBkiX7ePKnnwVX6iYrj68nWpl3jtjDU+t7Pv0He6/4f43frv9fV\nOLAuFpXbfKYo31Z8QJxRQRUNx+zY4ydbb1OAKT5/iiCmXgFsffIftcP67BZBYTHXU3+/4LXjZ41Z\ndkr6YhHfI5R2C6+xtgibOZDgniVvO9I8xi3s3PyzcQrYQcnhSvnxVjWeA15Jv1C1gynW3knARRWK\nZ3/jlxVyVCywxuUXJ28omI18O8sps7ZNsyzzPI+hALkHwKDdtGcz4dp0TX/OssUzEvmFr1nPTDtv\nyfenHqXtcbJ3lP+uVcUjJpqe7rPR8j7MciMoUIhzvAEL97kW/kyebJ7meLHYNfn7WrarjFK++lWj\nHx1T9l3nHWk4sTC1y9t4PH2X9+vnM1Uu+4jwlbnEa8nfW5acs9kPnZ9WNVmgv2s4yfeuIMdP7IlQ\nym0PlJ+FHiBCKaVcaRGCySC2G25PYmG9+szyZ1ZkISDXpAyIAQbHtNC3ggZZboUbu26a5JAsF+Hy\nsnmsxR1/tR+nhSXesgsuhggEgNnvXbjASpjzWtyYDTyQW0o2EaZYdrDebFvE4QzIT+CfCVuXoJjB\n6+DFeRk8PY9/A2jBRrvYOmBA0i2o6xvGkrwnBZlIkQolMuERIe8D7wXfHx1gU8fTyjH5rkVTFKKw\nPmj+Yp1cvgnI5mIK1ftBHumZsoqXUs+PawM0yigTVtWCMiX0huZWJpDMiS+cpHQM+We1tPhKEw0r\n4DpxkTwQeLBDqdDEemKCLdbH7WelbYLQO/799n3MK/L0H2ORcQ/iaRxpVaqrBiVa5fiysQ98xO9+\n+k2Q+rSk45R1QGPIhGBe9ksV9DAm9+6qR1oLq1VsLPpN7k2reJCFMIC1SNwnGdZ3sofh6PNtADzY\nq1Kd0CJegz2fvKcJgNqs0sxUytaYKlKd8zgcJCsveSV35Slzgudf+A25bwCaKG/q9IMEl5WHYCnb\nJ9kTXiIgnK1fzMlzhyfhWQ60BjLPKR4n5p8PR2LPoR5op23wfTI+Bg9wzaDUyNgZTOBxjufdfqF8\nLQ0hm6DfK/DghsKP4L2hHa2Y+0E/JyfJRcFrvZEKIAnkQHg+blZIemrXg7dcJXckfzfDUN2prf1y\nriFM2xSMLx7jAOQaYiyDBwK8DXrAnK7nO/kXn5Xtcy0jw0cBGOCDyDVzTeYqeMZSQ3isER7P8JMn\nVnzQSA8QoYwLO7g0inXt8k9wWrG0okbsm2tLZaKQuNwrkLDIt7wTvMCtIIKEBKSKKNBBYuQ97wfN\nx6BKnd0DNg9VkNUS0uxOSRUWByIspRwOXP6vZGn2VrGWJ0KvLA4oczW9kBUMz97nMFDLmDyLZ/nt\n83Z88S8vlll+/STPQhNZlXAsxcADddUnRdlvSlPQS1gCFNTZQugVK9SbB3XiuXOQaQU7EnfPzJ26\nIoBr+3FcF2gf3msBX0mVjJN4qXgg5ETKL6ynenT9Webn+NslMSlBiOF5EsMZZJz4TmttdwRv9TKI\nffi/W5UmwjXlM4MHPi/ldwmFeV5CoJVQo5U9FJTAgtv4m8w7KIX+TUJwQP4Edh2fSxoutBtLoW7/\nH8xZGx8Ahu+Hsc2r8Irvcnx1rqsYM6zh/L5LsfKlePdW9rKes3OAgSltzYWWgLSAm12r78bvazpL\nhxaGUJ/LJR15bfowB1iH8Pys9KE9Y+xq34QP4vnbvLG+rR8ZV3IPED3xPnBN8Mi9uzZCbrAfaVnX\npK45KLMWa1sakCbUdd+fG++MIgfHv8ErzpFX9Prj8IaggHPlGeIL/hogyOsA4TduX1+/CAjzLNeS\nUsa99cuAYUYMpmY8ksvr9sIQ9NzSbkNe5fn6uPKxBvyyNVNKDipeqUIRWoUQHp3H13Ds3adZdSPf\nyu8hAnLhWVO/nBthHDvOj++q9371HSqI4EFFuQcR4dZiTMlKJVfJXdPx4b5wJNAjOb8er1tDFM7A\n++Y5Ad2rsLNkfcCj8ixrSMtqDsYAVdZWMHCk5TKbrdOpSsbqfuPSlXy/HuNQ2Ybyp5wSGftEzysL\nUeP1hZ8G94wf4RAj8b78s9IDRCillDJEJihS1vH/E7Sf+MVx52rYor6tMnABDHwtdY1va1w9AfTQ\n1vILeEFR/iYNspuHQa6BzePskOjNIgnGbhALGXsIoA5EwPhe5NmczlFJjPFzOZoZSwblIELmoaAg\ngjw/ACM+ROFwivV8P28ieLB2SeH0PaowKEw2CS85kqu+ltV0Cp9lH45uvJnSupBHOiwjyLNauVAK\nKtPGiSBLmQYGvYcur+IWuJPrbey3K2pQy7M5ynw+ORdndmlmASATsqbEpE8aO1kch0zYqISg+M4y\n98wqMVYvFpqOnk3sZIf/rgnf6jUE4QBlEaH4IVXFyi2xzzKnVjQ+T1lCN0+Z1wzKXP3jH6N2g1Cc\nUkr57fVpPB7GifH1KGACSqx6EIFqgpuLvBsfKS+9WM8pU6Hn9VD3l4MHsW79jT5m+kFyvXu4K2dA\nH+dEyLw9LMwF4EH0QDgEATSCB1kcMnhOVg5xvJ71t17EX7MywlUeC/k+8w5gq6fmcHHXaCViU+Ha\n5Zix6j60xv01b8yXKYDcJeFpICgoGwEMgtebgAeLrYxvP30udcv7kdKQhRzOUR7Yatr1rFEFXK7t\nfmtxouDSjfFVSevG77PSjHwr2Zzia71PbaypF87AuRFCyUOSh+o10CbIYqe9W5P7eAYqf1zFOgIZ\nt5Sp3n0ljgvn4vc0VHW6kDJnHnZLA2O+HeMsC9XX5G94Tl1ksx1O9cys8iFN8KDNKlgwH63z8Ljz\n5chJMKMnb358L/3s4QwPGukBIgj5ki0AEU5vSKYyHpfCXI97Z0UVZlJlXXVKv4IHjTCGYWXXhsJo\nCZPk6ManrvDExwA0pOUlsfHIeH2230UDVc1cG9ESiguUrr1TBGAtxebD2X4zL4PWtX0bXNPcv2sG\nfCZ3PTyj52fzLmBQ4+UJ4IGUaHRQr7nfx4cdSogd4/1y8p2NU6iOx1hGMosxrkqBnuPnIbiPEngA\nRaP8DnQrA1Wx96CJypJKGBqbTcIRCyOldAT36aOm86Kw1itlp+fQO4vumTiflZpaSWIyt1trAKvw\n1yMAgvFzSPR2jW2trvb4+cVVYsmsr0yc36UW+u0LuFxj3X3djbE9rwdDkr6KB8I/BTz4fmI3ej8X\n4tHWeK2km3JJir37mxXSHrXa9OYCWyBLqZUZCi/NczbwnE+EdQ6LwJTKs7zHo58vAG003EW9Der+\n7rE64T45SWYpNYgwJelkllyT6Z71nwngrQpCacnNIR61bQJoTsGNWBEAeLD64r57hjVAr5COtzUe\nOyP+Bv50ypSajiWZqZWHYJbi5/4GXG5Aa32fWm2EQhkzarmKZ9e3xHaDfL59E1lOhHtIjTWUo6MU\nk5+qNZ7l5qHPCiruTfTffD+ENpAHF4tatm2Vl4x7dGMvleFliZzhjbghzx3f95zwRhtLu+2VBgaZ\nPZQ/X3EHMjv2/hq0PtiQ4O6F11d2b5pQVc9v30SVhLbjSTQtNEueBRlnsupIPzs9ciKM9AARyrip\nRk8EcamVzOOwzG0EmfV1m6EUaTIkuAM5gaAu7VgrC9p2wefcXrEKOHQcCjAejP1wqF89mKgqeonV\nsxX3enSIBpRClE5kxpZ5GTD5J3OmDcuy9NagBO4PCfw0vnRt29yLAAr6XjfxwZ2dq9/+bVR8ABCg\nf/9ecJ8I6WAl7NPJvCBwLzs5B/HCPq4UCtnhTXJTHGP8q69rzjSFwbcyLPPfc4mTWZZSylksHgcB\n3iAMeeufzhdSali5GdtAmb6G3zKht1UKqxd+kEnIdVI0CD7xOYZrcxx8ABoiKIafskzN8Cb4Jq3e\n5PM+CJVF+mNA6fZkyIQYvZ8W2OHdq1dx7fzHbvQ6OLuKJF8JPPgGHiTPb+d4AEAS/CaRMmEOwHB2\nkkFz1m5P5qnSfhaZN0uzrc6XK33O2sYOU2W/EcaQuUq2whiC5VbaYC5kPPegHmElPWbEirxvq0pW\niWFwSAYaYublOw1j6Owx6Ief8ZQa8mf3UDTchV4Szgk5OeApBqCZXKnH88CXcC9xLNNCyWrgQj31\nzvA+HH9fbG18MDhcpMqPehb6bPaXuPcxH8zyHbDb9zVR4jhL/lnnmt1Xa2cKoDsBK1NCHq56rBtV\na2YCMMXVePz7ZTdv8Jme+7JZZUXeWPg5GucJA7m5AUHei0yCo6/IVIHtUEjbfAzj05BBZ30/fBOw\nYEVj0LVUG30s1DAex99wfxgfzo19+PHAO3SzRB4GGzvzJ/C2zB0fa13znhSMxciqm5VAMBJ649yC\nYqlgFIlla6N3KXsgRIAgfpd5dnFeoIpP+3BR8lTJeGT9ruT5aX/JmsL9JkuqBiUf2vTPTA8QQSiA\nCKf6O/85tJXjQMy/h1IxE7u6VckhD5lXwUWFjBhukV1bmQwJRwfnTn59G49AYBGvnpUHa+UnyJQ4\nXEPjX6/R4lxKe7/PvB9s448bRIj/glVbkrkhNnvpQASAQRoDB8EWAISL1//t26gUvYo1dX+pLelI\nUHakd7UmgbkUQ/UBIuwTEAGgxOvraM2Fe6u6jjsQK3PfHb93f+tmwUJH/N1/xwJnGiqDJFdrKBFy\nrpMqkazIPBDqOaU5EWizOyUgQkvxmZKsKSNW9g1LaPdR1bYOv8Xx9F0ZxyOEArR0jkkFNiIVmJKr\nMmi1FQEWYQwbJxShb7W2aR/1GqqTdo5tli78CXHb8EhYfxuPh3NdUvVIwu8U92BLgue+Y6GSBMcc\nDLjKPZVmm0lpQChcwM61LyprZyMEwv/GitCcEo++/wspLOaK7vlz7BdzIEsKp1Y6/U7G59po4jkC\nD5D8c+s83SwXQuSj+frl+VcqqlyISUGre8mU4kSJI6Xav+/abbk9vinE47kwr3XrV/d65Gc6Ri8/\n/7eVHyTFxV+78dwyT0BWLDisyJ/PYEJ4Hw3wIOMHmjOE11RnDVXkHiffQ8YPWu+T+WwYj/Rs3kKO\nP9N+i1/S8Bzeq1Vmqo00Jzo/22kYYFAZzIESMJZB/mOvwYNruz9HWedIc2Ecc/xO9zeAgm582PMh\nV21JIR//pv2DclRE3pFPgixxuuXNknPkNgefdGARz8H68zIY5wqZY6HOmur8aOSn8uuEE+ja9x7E\niv0a/4pydLhG8mwfZHQt0+SXn4EeIIJQELJE0YZlHjHtOE7JZJ5RDUrI0XuTNWZmxphuVWkY28BS\nIYoZrIB+E5G/oTSYpfW2J0LP8q3n0TlB6WqFM/TuqZMESnM17DC1EaLgBdki38VNE+DJ685csf9D\n3LNhTYXyn7nkMT0lYSLIYcCeCD7bPhI/niWWHPNtnfR3OMO1kQUS/0ygFF5Cm3eXUpNJOWxiP5eD\nBxEkESBZ7UNd+EbiQ7bU+7H3NjkWxOz7CKLEfjqgQWvdZpY99vJIwhl44+dKrz6HAV65uogPONfa\nrBUsGH/8gkSp0vbFCUVIrMhW4oynTYlT1bn5PIIJn9ajqcaDRGuRIpd0bS1V671wtPzgbR6L0XF1\nC8+TWuEMWZs5RLJl2rdemwT5UP4Nc36CNYerC9hYPEgZFZaWkFlKKYL9lRWU/kXdf5X0TxPXujm1\noP4oTwsqMpRi6wPzo5cT5hKnSfX9eL58R2Bq7vURyZSd2hPhSHz+Xm+tFu9IFUdNPCzPBsaMg7+g\n7FmUUT6zFmOHt2t2AE0CGnru0C2Q515qhSX5K3yUUlMBKcke06KPy45/m9S6LZ+P5xpEaMkdecnh\n8Yi91ivBb5dR3uFw2L2EXr4dTU04kNegAcNu7AS88bP2+x36QU4thDvtw/2i39jfFCUuBYurZA01\nXwZZ2W4ZA3I6Bc8QgDpRFrsme3/LSHNJZZL2fem9sLFnQjjDR7nhP3IiPKiUB4hQShkXlY85wyLb\nPI+7OBLagU4HY19gepanoM2QrH9Z8MJNg2UAlSHOLHzU42PSTSC5lzpRlLXhOt4AE7LNClY/Zkze\nagmhlBlkL8dCL4a/xUwzd0C1dMs9LUQAQ3xfKbXnAUIVvgt48NXFc/9T/v5NNjm4kUfLyvgdlCN4\nSqxVIXLjk3wRQODxPPduwiB7PZffwlzzccXqBaEKqXg2OLEI12+5t/cs9yqcB00+thnE1H29iGeM\nqy5g4R9yrWT+cQx/K5v1+PeV+pMhdTbGbI7ab3GOcvbpvD+az/43OfbCGUAQpjSuUb73JclQRQFl\nuLL48GdZvp8kfvNX8bqBUue9XHqu5qB7wKWVVDH59ctbsw28bhYyP46IvxzqucDxyB7kuEeY71ke\nb56beH30BNh7PBGmUMvKlnkiZMogaCugEkBFDSlIJldVlUEfoLXFHML6grcL9oGnpTEEy/hO+1t6\nZ/Mpc7/NMvqX4tZf4snGruLBEwbXwufqfdfPkcuRZqSeCKgMIaFgi+9hwpRSSjmKC7p6GPo9WkER\ngMZ8L20Fw4DNek2y11e2FriSRlaLnqMur43381EU313cP+7RgzL5i99rGjJHc7PHQ5QP6jWdTJfk\n4rlFXMnB97cX44nN5/E3gAevLmm2eVCKbJN46vA8wWeFnlxbyCbIj7OBASWdfyK3wSsgmTctV/tQ\nxpXacMiCN85p5S3kG4KXxsn3F3lEVY0ieU88FzJPO15nmSzB7zMDIPQaFP42xRBje46ffz9oof7J\naG6C5L8qPUCEMi6yyGREKZRazMtP8r0o+MtXByKsJYYLmfiRG6FTbvFCjKm4GPyzVk8QVJNKSPrx\n4ViVeuxsjFldeAYLlgoiQKCw87NEOv6c8e/46xRLCIg3svAbKQJoc0pcOY3J11Mc7wjvHODBb/uY\nPb6UUr4jtAAWqkyAkCPOqpP7+A0RxyE9lmLoPDZstfYm7sFvWhIvWga8jN7yHsncNu25s+Lj5p/c\nhCZ6JOXj4pIOnclTIssWXz+LEo4+1p0FMHYRza5Vof5dwOE2oHIPZdnOcX9maQEIZW03IuA8yTPe\nKEBnff8qIOcvAh58oTwFMVPz+DesxVD05iRLCvGgGhI0fn75ZWSSlUt2MbASbx6C6CLkx8BcBy8q\n1fg0FAN8QD6bsjRvc+dQAvYc6J/bVoBa4EEOSqAfKO2d/aPRvz9P51ai6G0W8BSI68Rijd1clT85\nfMO/D/xp4RCYxwIqONDzRB4Icyi17DVciadZ8UbKYrQZTOiFAHB/WTjhFFdn86ASRUW8DIZvdjdT\nu9MAACAASURBVHUADIc3UbbOtSdClR2+E87A+3mmZNozIDChfSuTiJ9F9mhqZaY+9xawl5UIxb0M\nuu6S/mhtdkNUZ8y7CoROPNm44kRmqZ6yhiqZKTkH75erVgE82Plwhqp0LPp1/cHQ1BhD6jlKMo8v\nC8shE3y8JvzU+o9jKKWUKyodmatYGHA0wsnzP0bwIKuWMUm+bcyPSV4VOqa6Px1DJ5FzBUrMGd9D\nX35Qgx4ggpBnAFDaAB4sfxWX7DcRvL/akgegcIVVTT0RbNWxUq8bBBjT3jEkqp5wykrJnHEtSNi3\n74/HsnSCHRgONg9sXJmCy67wACU8iGDeGeNnbE6sAPp+OBt5Kug0GFnYwMgl9LSv4/oYRED2eE0A\nF2IAI5CiceFuvFu1uEU33m3iOeCVZ3+fmSC7V2Fe3g/AHe9FgvJsMs6jjs+ugf7WqoC2dwQGpHTD\n8Uqh+krD114UA0n2dXx18/kMTwSZSxNCZLJa6i2aMvXZypZe+3J7LXEYwxTLXs9N2ywX4x9WktFu\nHOABvAw+qRXZ+vubAJm/Sn1vKImcxLMUE8hgLc7CGeo5EO/BC1DgTwBE17+M53726auFvFtsKaWs\nE4XyVebxkvI6OOcv42FU6tC8DPx4c5BkkUznxQQhsEXvDY/4aMri1UFbmh9HPOshHktBMJgDI2bc\nW6awMP8bOmDJHKpBRb8moxLI+3FW3UdL4ZF31Pj39DHPKWHHcxShYGefAwd8XqzHaZ4mNS4U+U2O\nHTd3s2SOX3jDwT1u0LZG5dxkvV0IAb5/9UWaIQ59mGv3pGvR0b53744A78xTTNtW7/V9N7NTg4l4\nIJxrrwA1VsilTgQYxHGVcL7JfzZODrcyA0odzsBgewbmTQN+ZTxycfU20EpcfiaK/HeIHq4+RwUr\n7q1qDeE7/S27Bxknfc7IgK4IVkYZJ/b3XjLvwI9asX9Cuv4x9vk/Aj1ABKFT4omAbPPqrn2ocyIA\nNABiuUjCGTjWDEfU6j0enJB/jBaGTPDhUjQaL514P5gbpSj7qEF9MWuleQ7kVqKelRJCYPREqBUT\nT5mXQVVSKxNimgm3PHIc+4P18zcXosAuzd9l03zT0o/1+Lb6bMfj2j3rF3mmL2IBxjPZKqhg2wA2\naHUBzgS76puRuCJGKXVFA7ih+uR8HNfLXstTFKBg+UGsrkqa4jb7JiDHvmYreEfm9eIUUbWEFvlN\n+i/xmI2vv8HGTd3CB6xN7bZcr9/KXZmBAvdbZi3le8DffL/7RCADeIDQBOQ38PMP4MGnlYsjKaVc\nL9FNdSq1whm0H8crUeXl8E1iWj9LCNizjW/zNn63lXFuzwAVhc+6pzPQEZSVmOJyctnUxXccyjPF\nW2GKRwIEqcy1sZULIS0H+cECCZKPWWJF+21JIDEITby3Ff4+XOp+QAv1aCihX0uQWsdz95SjW5S5\n6vaoUtowTlVKPIjAfKq+b+VLyfof2/r9iIHRnD+UUgMqakhw8sGZQBjLY+THF+dkrdRUl67OzYDW\nzHONqSUr+K8XdBwY7Uj6s3toyzgd50+lChBR3lEDjzZeeSZdPhDHm7ahz9kcuAfUqObNhD6yMtHY\nkwEmvJ1rHw5OepzlLQJla4c/cwy/JfO2Z1PlRKDjFO+e4EmpHgfSRsCD4w7AXN3PQWQalc8zz587\n3l3uSTm9P07qeLpG8DPrrycPsGxs5U3r/h70oFIeIEIpZWTmvDmXYspSCreiDS0ozo2Q0YXAhL0r\nt4i/r7RxByUdyumZ8jE0r+gsAwAR3G9IfMX1hwfZ5v0mZa7w1/B5kVgyl5QjICPOiZAxOPZEGKit\nv28WmOCB8E8XoqD9qitdFOw8w4R3AcanXgYupODT6ihtBUSg+18kXilA+WEFzNy1+dpZIr5Wkj4P\nFPB99QQdFezUzVM2eWcZYBABib+O38bvPSjGoM6Uih/sOdCL2cs+1+638ZhVV2GAJboMshA+0LE9\nrsw60RLqUUosU+I5KeGzS1YHzwO8VySl4lAXT+sb3gaeuA67X6MHuLxKOdKnfQQy8v7GY+aWmyVf\nZWopIQN5JIzXqNeX/378TeZ663qJ0s/s/eJQpyqvBr9vD0Lz/dKzCd1ouEVsnIc1jMRJO8M4qjAi\nrFFrAw8nlFSF4r10U2pBiVHhDXUht+ixjcQ+L+M8yWbfR9UjV2CK54AcIy+SPZDc/DPPhho8QL81\nf5miHGqJ10Xs+eiqBeGdrSjJcwwviaAVT4/ec53iKs8OkH6v4VAjeAt50I7zQ+haQmLPpNJJBRSG\nTV/eVQOYCgYYlV/Qze37zPqp2k4wvPDoUis08Qp7xjYn3rMudJ9zDGwxnMI1jr19lz5nT/weJVPl\nDfmcheDhagridXYJfh/BmxZ5rSQ8GSHEkFuyUDyA5VpK8XdQpCvvuaSNOoVeKfdUyGFQwm8gtJgy\nnz6KF/9V6Fr6xoWfiR4gglDKMMUj9/JdQhaQCNErVGzN6SDmusCROAkuk85dEUov3CmzzPxovxRJ\nDh4JvWoN6r1Ax1JKedkcQ9u9liyU8A0nZC3V8iGCe2chaX6ICSBHvTl5oa39WymsFA7h2vjs3eNY\naDbPgfG4cULcZ/EuQEjCRsrbPbm485fNuBtt1pwyaqTMI+O7uHZnijKuBVCClUPvnv42gbmrUElH\njl0er5V3mMWgIkPW+VVAhFeZN6fagsFhA5mlS7tlS0Mn5lG/n+LG+GEOs7dpjpDB6L8PNzGLaGyT\nbeoayyrz4/spJsEqxYEHc3x+hXQeJ+/uTfKKvPw2roWF21lQMhUZrU8EJO2d+6jVrh6PUwTZeygH\nGvKX5q+ngIIqI7KWXBuOM6/yFXorEQBH9cqQ6wRFFDyX7sH5WTCd6CFlQA3mBR8Pbr4APNjLWjeL\nl/UN/oHvOC+L51cAwVZaKaZ+9q09pZ/LpP2ZhWgGsWJ4XTym/V35GN/DFMDA3yO8xrC3IM9SlldJ\nk1cqYD1+74EHnsetee2JAfnMvXoKcRiDrbMaiMNSqkSmsAdFxVGBMz//KpATYFsNIE6z0sexZx5E\nzXMTV29LEjudNEwU+Ut8YmjavytvulR2at/4ZiNhcFT9ycZt55qXKX671Xuf1OCShMVqm0bvWdLd\nOSFpKodTgm2/Xrhceasixngezulck0Ig8zKVt/vRtiRX3ZN0M7ujCkBLfntUZ3hQKQ8QQSm6Ownj\n+E3QPY39Hg+IjyrFkEm1ZiFZWIJmqneBll1E/GVdbpFjR69XU1CRqGqF0mnkkTCFAojwdIg/ysed\nVBLIsrszkwnu6TL2TYmCTkYtZpflYTiTtKGffYk4eu5nFYxtfHtyzd3KT2sRbF+clffLenwY2xXA\ng3HDfdoa8PL0PP7d8cpUglUJAAEEbD9sCNq/CDgBAEljyl1oxvIU31G2yZlVSIQrDaWIv5diCiwn\nQbp49z3EEO5EefgmQM3r6O2R5fHAJqzVJHzyNvKiqBJbJQLtlIzFDFhgGWfhDJi/y7TMWJwvlWdD\noqBZmdQaNLm1Sn389V4u+ipTcnOK+S1GioDUV5QqTSqJfF5C4YMSV8LRt2/hDP57KAQ7sTb/9s/n\ncXwOZPv2KmVSJffIN2T9BijmwyPITbbn2jlFuZljQWmFPGT5EzBN0nCkhreC9jvUHy6sCGWCMV3K\n8oJlcxbKVz3/GGSCx4pEnZSdm4DIRVE547lLQgk+ERiBEJxXt7/9uoDVE8DIfEE0i79uffZU5SaS\nY1bZQHPrTFEcydoe9kKNK48WzHjN8ah8mUpLZ6GR8EQAZeGEoHMSNgTS/bwLmsRngE+qXFe91m2z\na7JHgu7uASCQsRNf9muySvo5Qbmpcup15g17L/SqM/T4TUs57OVE0DZZCGgVi481ZW0MdG4PDHNp\nrQlXI9Dn6Q7seRKtaC5lvJ09XyBChMfZuM1Ywl14onggoBz4bj/uT+wJVIrJtHP4lb0fPw454nO2\nf0C2mQDNsCdqVvb8VhhDNme7fBTn3RzdX5sexRlGeoAIQn4xY3LsvotSJBnPNlIL3XsiqFeAWvgv\noY/xb4AGUSHTpGRuHFpdIHFBBiGfASeta1Vr8N9lYRabjVSYuB7DtdenuKn4v+GMakkZ7fntRXB6\nKWN/CxVoR8piyEGZ0sAxmczzsrYDKcxegLK41JGgkCGnwZe1AQSfxUsDoMFWUPv1xrmTv6BCh/Qv\n7znzDIGViTdsr1ngt8/bQ7jmSqy9HmDaHFFfGcrXIP3aNSvwYMI+yIkBfTgD0mloqb5dTDrk6VxZ\nnetwBo6zbGVjDuMq8Rg36ihcWdxme8PuufHys2BLcya0VZUhkv54JeK9HFyHryd+n/hsz/pVwxYG\n+SygDpIdOlaC3B51LgjP/6IiW5dtc/ygYMzjOf/xbQQRVs6q9U3Ag38I+MUVT76f7NoYs4EJwm/c\nA7QSXzgSf0mF6HKTILT1XJxBdbLcdps65M1OBm+8xz2WS3Z50nh/AgFKKeUoQN53mTffTjxvHIhw\nxjmYNzJud/8o1cmeCJAyPYBrrvbTb5jXZhaOdKXjlOeZKfQtADMD2dT1+hIBkXtdnTEtoNSttqLc\nrS30Y4mcKFuRAVAd5c4cE8xPNbwmAc5afCvm27h9TYuzJmAA/QWQLe9jzjNOvVLw2/RuZlVniCEZ\n+UPJrMb3KCYMFGT5MQxgwBqyNvBk3YqBBIlXF6WWT80KjQ7ac741X7JbZI+Ej1ZQU2UdSbNlP0L+\nrE2iFbHH1DUBZZhPsdyQ/WaJEEvSJu4NmfzLRpAMMDCAIZ9cjxwHD3oPPUCEUjNuKEyIg1pqTOKo\n1HlLq3kiQBGvlS51AYXVGUjoJYIAnk7knhTGp+eNnyvvhw4HjplnR4LFAwruag8Xuqh8luKV8cgM\nfUme5Tm6L/dQ0lZN3XMiKJr1IPbjBZfzNT5T8HqEKoxtoiKF3APPEqf7yYV3IBkcLKt4VotlLX4Y\nwt1OitmLPQchNhHhEQzyPB0svwOUQoQ1rJJNeEUb9JWEuJ67p1oyfYlRUTouou0j8ZeCJ97KRqWb\nEG/pXeyPBB4cSYHMalBb9vk4H8cx49pxnmRCTW3NKRVV4IFeu16jLYAhU0LYs0atbu7ab6d4f2da\nA6VYJQPEsqsCLp9fVm2BNo3jhsAURudzfdSu03vxRPgH5qaLkELi0n+qh0QEPXbBfT7eC46ndA7E\n+cEu/OPYo/Cc0b+y7vU9AlyvugpcuTWDuXzv+SnW3k7W65sABQAPfE6EcwOgCfN5ibYltAX597Ii\nEDuzvF5pruOXLDVRS+n3V2GBna8TAKprBDmzHB2sKNYAxlC1LclvTFDMsLcsN7IPbA2whpfCSn7L\n9vPFDC+PRWRB6bhbc3SOwtvzHNDrTO8uHUcrRnmRvI8Lza1Mka+ApEkhczinA0x1zjclP8qIqVEl\nWYvjGHoK7kgHl6fkKskBlhqyGQ0cxySctUetsMFsvCwPZaE3c7zJqmeRrH0zAkoOiGP0Fjq7TqqQ\n3BtJw/0YphgQMkMEUw2W17JOC8AIvzX4Vu/xoo2XsW3tzHgxfzG6lusjJ4LQA0QQymK+T1QhAcwn\nS7zCzD8g0dgICDzAMcR0kdWYrbTjeQxC3L4/KLIAQPw5UIz1qEh0rWQyYXyLoUYudidizomlprUR\npu7phAazIBDayrPZSpzpF5e5HlZctEXeg0/igbD1bUWg0xAUPD/3Pk6i/SIxjweQSjHvlFJKORzj\ntXkzGe8LAEgUKgHybJ1lCmERTypsANSy/jTeEFboGdIaP89SbB4Poiji2WQek3Bz5zAG77miLnmw\nntLnnqUmmz8nUu6zWu+t8zPBu2VZ6HkiMMDQE+xAcP/20SCwAMPVPAPONos2AMJtlwQczRHQNB7b\nuVIDXMMz+X93T6UU8zgpxdzZYZFWoKDDD36UYp+7buYPIROSWMhVHuSaVnG58lFjtf18HuIfHNZQ\nStGs8AocoT/pJ4Yz5CBRLNMWQTvjRfUzB7C10ksDpLA2HBY10Pc+9AYAaR3LW49Z+9fqDzXvsL0h\nfk6VQhpXGlpAwCML6RmxIho9Gwh47IAmIFiGl6NTT9kejd8PK+wJ8nkn59yp3NWKsvTrmtYgSeca\nH7Bsf6SbcJXPosP/6sR24PsfM8DensNzyYfIVCWGe+EMNHbsjb7k9fEYQ3KR74lDQ8c24/Gjqvtx\n4tdsX8KffM2spO+kdUDyfKviSSluv9Sy5eNnHwA8iDzZ2kvzEtDMF4wAarbuxMsxrXCGKTN0yivM\n2tg7+nlBhAcZPUCEhC6k3C+WcUn2lH6QZxxQKo8obcboq/ubhXy2yox/E8OYYHFQtykwTifkw0WS\nQwBAWXUG7VfGtzdjiSqyyMrNbuWzPREYvSXBxzMzPh+Ksw9RWJNL92f5bQNvAyf0asgJLOgHXNOB\nRPhN7vdIIMLGxYfDO2NPuS8y9zMg5FDaEA7jrQGoErGWh7texPkTvkNYCQn7vcSK2fuAp8VAG6uG\nyri5wCWbunkE9PM1fM6EysoKGJQGAg9Isc8shb3Sa5U7dXVuPb6eJ0KrJBQy3m/c+MyNfDxCwNg5\nCyRAAhw3NAeeXDwCPFeQYHFOqb0sCZ4P6ymllPW3i4yv7Q5lcdgYp78XmUsdbxkmVVpJuY79xDb3\nUpU9PXl+zdhTAgrC+DCr0jbyk4IGOZggrfJxJ3+jX4uBHr/Zev5H3Z0QTuO+Q7gM5h8AB3h/PTmv\nLYRqZXygRT0LbsuSlwEiPCP7rr/tcdUeDfw54W0dpYFJ92FJfePLpQKr1zJ1SUeWqyDuc92cCDSX\nouLzscqCKqKNhxABORmPykMY033X5lCUOgCvraxmXmCcxJHPyagbFkEhOxwOWIoBXS0PhJ6NAHNh\n50IPkQsA11yrEUkAh4u15TnEz2YKhb2axtV7rwZgYDLUjQfdo6MM4ecwZN8leZNWIaallDWSW5MO\n4IEHzkkz55lkSTebZVIH7BVuHIl3byn9NcvPb8qe6EPwsnLGPyM9HsNIDxChjIzs5JBeMBlzJ5eY\ndBGYvSfCUhUp6tMzrSS5mifPFCw2DInPwMDt3BNZ9jnTa3YVtIFSvDvVrx5MFa5uGYNi4c+ETMdk\n5H65zvDpGhXKUuoNT8eZgibymSzMfufBZov72yzhZWDWHGwWGM+ThDHgPRzcBgvEfi/fcSmdUgwQ\nOJALLDajp2VUtEop5espJpcLMcbSz7f9Vm4vKlRZvgzObtwv4xWV4YzYiu+Tf56TxIl+fH6DfZP7\n3BOYEMIZZCDNetB+7I3xZuh8Fc6A8Sdzq7UZh3Ho3Gyf0+ovUyzY4wJPbeUe75LiXLPXCuXtRQSd\n5xW+v4bvSzHFzgSm6HWUEcdLh2uTF9NnSUQahF4VTiUXDO5lEd9LKaUAe+C5EIFWjOu2MPQR8Z5Z\nH3M8JSqlc8KpHyWg8Foqxc0zeV7wgAEY4NcHK1kZUAPwyxKfRV70nIR+canXk5tbDNqBrrRu/N98\nzKyxPAq0PYZwmjguzEP/vpvABfGd8b7innAmHuK/u5ACiQe63LprwDsL5elOtZIJecNK3E73BOQQ\nq/G7ItfA56ighbnK84NACt8f6B5F9F660DxZ6Ps1qvYfGlfmiWBVWtrKMCv52f5x0WeNd1bv+cdq\nLsm94DoJn4YEgrnuy66ud+MEWzZCjfz4cD7H8mcVITjsbEm5U0rxoVWi2EPGSdY4hxFlxHw5NUrB\ne1YmnoZxyO8b54mqIb5kyDkOGfwUr9mbAwyG+abt8CFZd4N/HzhGY9Qxe37UT48qA0e6tz606Ac9\nQAQlL0TDooqs+0+fR6YyiADu4xBXYi3mWKmQzb7hMaBt/TgUbY2fey7d1l/s14/5eo2Kn1cKX2Vc\nqPpgG1gUPvw4MouFtpFnCcVRN4YsZpkRVHzv29Bvy8Zn/90BQJAo8CunyGPTYDc2AAbeje/7aUTp\nv0oCQxN63XmkIGMMsPa+rGyEeBYAWLCJrtxjQH//2G/oXjDu+n2APrqer+ax8IIxknktMOeLHAVE\nSIQOVqa7irxa38ffp+xVYX3QRq1rKImp1vOpn1lxmJ1+esnW2FrCyl0ppWxo994s4rGUUr6sx35+\nEVfnz1DsUR7WCYebRtxr5l3VivsMbYW/rJ7G/v7++W28NzcH1ot18bRexNCWheOn4FNHiv/0wiHW\nHlYVLpUl/bN7Sm9lEmU5Q1qVHP7VxPBeZul/gru8rlvwLYAxbq2TkgVLpL9bhNNg/1iTt0sGop6v\nPNLblIEBrVjgSUI5WepLMeXerjV94mT5J7j0Wkb6TMEzsB6y/RJldaVClIUnvo/x8yPKchJNIW6b\nlQmsvINKPN6bGwGU5SL6CPqoMIZejoQLAUpc5Wc8n+Z64r3UIgMebP1BxkGJUW2bhB7yXp0pzLdC\nVCNgM/ajFV0utcxpMsM17T8AfHRNAztqeRz72IrCRX3OH/1uFaXNexOZguZMTZOv6rMwCgBLzEum\nUACYP3jN/JXpkRNhpAeIIOSFBQjR2xepn/t3WZgCUK52xmSW+3zLy5hM5WKUIcZJHBqfa4pddLWf\npmzVSuHhvJIxl9BPZiVqucyFjO2Uz8FK8eTn3h5zHJe6NuK+3SPDd/AO2IiZ96lTsQK5L3YUalBK\nKb8dBUQ4RaX/mFjS+flD0TsHhQoAy/gd4pP9PQB8Ocm1MS5Uj/ACWRYOcYuyuFwmRvBDNQWUlSQL\nI569D+fQ8bHgFIAGXEt+0/5u30t2B7dciH2/7M1j4/KCSQQlepUNWkmVUssoC1vSja+m8EL39iwI\nw5PzLvjbeuzxP4nHFHJ8ZAAkvkMYzDIJf7lFsRyu9CtmnM+/jEHaIVxqF4U/KJcAywan+rJQeU7m\ny2URJ4plyk7W+IT7uXXv2fNjYXVI9g89H6NLlBu9FWK+WY4FKAmtsAY/rpZLdikWrmBuu6KILuvn\niG+UhyX5NzBfAX6xJ8LKCeWsFH2Ep8hcYvgiAzSP1fyzNrf4UhYecaJ9vaf0Ky8SbwNX3bmcJYPu\n4U2AOAG3w/pQvhTHPiUsIbu1lqt59u44P0YWRgRPK3gsggdpmE0AhOVack8o9Rhi5nENWidYHxmY\noM+ksZ6zsfcMJnotAkjSa5Z4DPy0endxr8nOZ0+xTBbgPCB+Pn67oMLTQo7ikXqJJWBLMWWVQ1Oz\nCkoG0o2frayrtcVv8EQADzl4+Yrkg1ueIp7yvEXx5aywX2qFNSfLaiJtGfu+3vPVgFji3MyG1QoH\nGTrfMdjmqX4GmAN+TuUPqLfvdcMHH7kQHuToASIkBKaw/izC0K+SfV7Ag+Vvtijh5mQJe2QRB2sx\nKyrxeh4ltaSJJHSE9rGNWiM2NYPT8yuLv33enfNpwFbkUnJvglJMMSjFFGW2OqfxltTPFIGHN2Pv\nFaCeCBrWgDwU1objwOHa91WU9le3af4mQtq3c1T6s40QMrgy4AuE6cG1FSFVgRoRPtzGhbFr/Psi\nuqyunVDeyjngN6um9UB+z1wRQVa2zbmny3w7LRFbeA3f+/nUAjdiSaN47SmKhcUH1o3x3M6NnTBa\nF6MAy0DBOJ4cEEizxVObXpiECad1P6CtTCrMrc/ibfDsluzfJczq7yhHuooWpUOSnwCKXVYLvGVl\n0fXmwllO4om1kYex+UXCGk676nzwK6w/gGMXtw1h7r9qxQmZWyFvgvQ3xM+p1ZiUjh+ltGaC2o+6\nVickuEl+BiBHgbkmR2H/eK35Ac/rXim/HlgMPjIlFwITg8n3Eq/jfniTXDPppzWMGN5UW1b9GNLx\nIQHzm3w+2rkAD3ZvUn5ak8M5pYH2UN5LM4VUPyc3xc+g9/hb9+VHoMrkEHlbVlwKjuWt3AiltHMW\nsDenJ05G6KnlI5OtO86FkFFrvpksUMsH7KmT5oiaMadA7KVXihktdpqMeuwJ4IEPS+XKPxyyEMZH\nn7N7AX/fYT+XuR+rN4k8SZ4Ic7y/vPwC8ErnByqerLK9MJ6jCbYzT2OaCx/N/7P5l4VkcZv3UMbv\nLR/VD9rg/gR0LTnv+BnpASII+fmgyKI8nUFMyoMGn91m12nddWW4Ma4+xDNeoUAO4XhJBBPEyWm1\nB2HAi2TX1DgwRenthrmcFRRQ/r6U2vqqgItTgvG3xZPG8QR36A56Xt2DJvWKm8kiUYIx9rdzrA4w\nji9e7ZsABb8JmPDNKUlWOz1unhktqtjg7B5GquP0a6AGmzq7dm8SgeKkc0LGkCabjGEqGajF7yrz\nREDYx0q8PC4QBOT5+aRNuIYqcSUe/fWxKVUVGMptyrwLKotN4rHTim++l9j7YU6/WcJFxJs/Ub6D\nT84L5JO4i79ILCcnrzsllVN6ORBuuUYfvVC5FxBhJ/ljvohr6JONb7OX+uOSZZ49OXZOi7OcMDJO\nOfo8ERwDDMhkjjt0dvdT3tU9bXo5EebEqc4hnkuZp9h5iDw8y7aNs1hpyEI8GFw7yLw7JJ5JePdZ\nsj+m967NVsx9Bhhy9Zg517a9J1MK47PO+lUvDdl/Dt/F22BfJ8HDMVM6W6EiLaXOX1s/J/fVmte+\nbTtS3AhXMotrlE1C5Q+0wUmd9zEFXON1Ad4xJefFFMpKylbggcax1wDzUYFWeGnV84VzIYB6nmc9\nnohravWcBWSnuBZKMeXePBHqd8ZgH187y2kCWXE/YCx1GwOzCExI3hPPhTTECLyMckEEWQKJtcEX\nBDT31S1uldycQp6fVl48nfMY+M32wNZzei9ffW/Y0YP+GvQAERJaUibW64TVwh4I0b0wtuFEi/uE\nIXFiuyx5260EixkBbV0lya5OCjTE62TxbiAwLQ8iPKmSHpNTQUjtuUEWvXbWht4LxhS+w/MaP79q\nQkRrs6ZN47u0+SobhkfB8UxwBjYnDxDAnfeJ3IQ5Nngcl4xPN/zblgwbC66dzIVL/OylrZZim7v6\nxWtmMZTIp3E6RYv3XsAY31YBOd3I2vdbucs2W/aJ76vORXJff3OoV9pRx6EWs3GgrKiVyNBYrwAA\nIABJREFUUgsUmFs+g/6K5jMnrfMAEANooABcNEc8kn+ecKfefxe+8nRIz/HEz7/3fOdHzueUxePy\nb7fOzeiPao2ZBMrS+uBSq6X49R+VBe+sAosyJ3wD339NkvhyJvRVyMmBa+fj/ihv2jwmPX43B9tR\nb8RS7x/W5vbgkU/psBuf2/fXjf72doweCAgFuE7g4ZlrvFlR0Vb6CO7QNL4ZQJrOsTvf2Ud4n+Sg\nyXhUL4hM3rgxD6eSzQvh86QUx3LHcQ2tFOCrx8XUu08+Z5mAipz0GIYTf/9Q7m2cwhcShsP7MIdU\neMI1NBmy6+9d756OnoyPCChB3gaeEMIJQ0lMHExhxRQumsmnH0XMw8/0/XsJ3WQg90ftzX9W+qPu\n/b83PUAEoRCDihg9qQp4+SZOdbCsnxxAQIxHNwxvjSCLPlv4dxmqKZ+zagVH9VIgTwQ5LpJdz1BX\ncTt2ya7YctljQJXroHz2ijLirU0wkWQ0FD9YSqmTAanlula8pxDHlyM0wYcocDjDodo0h6otexX4\nxHZwD35ZsmBcXw/eBQXJCeX7TEjg2OXM0tCKwV8kQiCXDe0Re0iEHBAIt6AylVAWvODMG00mnN8j\nJKhAkllP75BYf8+EQhw3jHkC192jkzrwt2XOrwd60vkriUGpCsolzGfxHoH1L3XDn/4wtJKJKDpa\nwcYlSzwcZF7QfOHqGfy3pywxmyWzlR9mzKOP8jq4h3o5EbjU4/ibrH/dG+J9+6oZnOwpi+fWUC/k\ngiGvN5/mB6V7D3Jk62cpVvFDrYn0Xr8vbH8DwIwcNQDABodHGp8D34vgdnZ/Fo8sc6MDVPcAltrT\nDv0b8Xd8qcxbLcLqOXEujb2sm9eDgQjey2scS520Uq95h7t7j650x711pwD/O9dQyxMhvI/WuBJq\nPYOw/2q/sX+8n95z5ISr4doEHmT5NioZjOa3/3tOiJZ6JMm5meco7mtHoZtZPz2rew3iy2eVPxKF\nFPdCfXji9zHlfYPyEN/xqCXYTzV8jn0MFcuw32XhQ3pOB7Bu0Y/0CmjJNv0KXuNRn/mjxOODGvQA\nETp0/Caul5LWHV7Bp4MxmxOVu2NvA/83ew7Axd7HxGmcapVt2reRa6NfYYIYy7ITbgGAZLuxMjZP\n4m6M/g7kDhmSGBHjxudQW1euj7G/aRnDROqo4jVH8qJRyyKQJcFjQQcC7W9Hbx2P/TBP9PcCN3KU\nQbOyjfaMv0gMOrKQs2XYCwDIu2CbhqDYrj029achghIZyHMPwFJZiZIYWfNuGT/HcAaZZ1LmCGUc\nvwOld2NSl3OKMb4k12x9not4c9Kn04RNfUoujjmxjy2vD/+3bdDxXD/P9/pBlBq5i6eFPRWE4ewI\nnORSo6XY3NTvpJ+gv1ziG2Bhw885KPKvB6nA8I/x4NfUb1JC7LvMffC9vcyjg5tbVUI7+T5YTyns\npQ4X8PwgUu9dtWiKxSGEBH2wjAVAsAUmeLJncw3j8sr/q+wT3yhUC1bGnQOAMP8kWiUNv7he6Xyq\nODO4PXKzEY+VxQc/pA5x2AsoCx/K1mspuZLJSlwWmtZSCjMgl6vcHAEiOE8OGA6QSX8K+DnH+slJ\nGUu5vT7m8mdTBnPgJ/BDsCmc04lZ4PfRU7LVCJLIEK2kpFxqudU3k80LHMd+kBfJez4+gf8t8r3G\nj+c9tHS5cLYLAJgjad6nzvnsIXec8hw6bfiW/B7IuS3s/vGMJvBn3/clysvwpnuTo5/PKqufIgCe\n5UyqPBA6nrw9kG1OWAQbeTA3s1NNZscav48H/yhw/c9Gj3COkR4gQhlZUWaRO+6EYUhio5UIQGcn\nFHGZwKu6YyWJV3QTgftT/H38LSoAIL9w4QjRrC+dECeP8XFgL5KQTZmhlPzRpGbu2moVoo16Edzj\nxmtsBWtZn6EEkyRVEiEfIMWd/o/mpghheuzHW9cq0EBe1fMSCpo1+EUy3z9RabwXV0v4y3p8fhtU\nT6BrZ8RhK/794hpfKMYdytfOeVXo+SIhL0jZHP+eTpwnAY8t1m2OOTmQSHF/aYuTrYRl/lpc0jGr\ni1yPt93GnnGkXj4AtTZ13p092/dJc1nm8lJKObnJ8Fowf8fvoKitF55nSF6CBeLNI/n5/CIuNRsy\n/XjPFc6pwuCdj6+/kpAFd0+/xr4eR0sq5i0EMQjPPgcJFFBYvs3N1fqrwnF0nFFx5r+zz6XMc0ts\nCVA9eYyV/SwnQveaN8bX+91ABHunmEOIeYa3wU4/W3/gm9gLMusplh7AbbVgLq7xc/H5YgA014rZ\nPesry3L+HuoqPDMuwiDYJZmj+A1JTjmx6Snhq9gTULq4VdXJU5YDp2k1DufFNh9FzPfQ/UcnhQvX\nmNH3e8IZeqdU+537jUNPzEhjbbj6SUlkiFvj8cDyJ5EznpYCBIvBxYAbNz5dZ1d35ah4t4wCWprb\ny5NyXNMU91PDvFEir5gyHzNFWb17UY3rCI+f8f59NRmtONWRbar+5ZgB4NV6o3P8b3xOtjZ5DvWA\nCx1fwoPuoYcS/aBSHiCCko8VRqZ8ZB4fyIfTgwjebbcUW8SZNYITHmWKCudCyIXeqID2NkaABSjH\npyVr3Dkv26P0ExnmEeW8Qgk2KG3jZ3a192QZ4GObyDDj4KHMBO8HaVJbCOJG5s/DuLJM8+ySK0Ut\nVNn6dW02q1/X4waL8oqwAD2vDUT4vB3jwPGMcU0AST60RZWtc/RC8fPlWfr523Y/XlOujc3un869\nVeuaY27JNPaJ6Nj6zO8qJjfLFe+Y+FHmibjmwKKcWb65ZB+X7vN/txIxeUGgVV7Ir6yWcn7rvPB9\nsDb1O/LXyRLP3bommuLW/Jrf0WSFcv209CDleNxQJQfNzeHGwlYSwxK8oNO/33UADOM6Q8y2F7q+\nnSL4pcnr1IJt14MimuXrAF3pt8oTIRlzJUjN9C64h36vOtIeAALnWnZCAPC8WelH3gM/5dquutek\nTbwYu4WXYqFu2G/hnddLLKZhDRqCYzTQMVv7ZuGX32g/WXWuzcn/RsKcx4bWASWbv7jxkTcfgP6l\n5o0wjog22H8AIpxcSKTde9QwerXtewkMW5bgKUn7MnBnRecZv8JJ7trYE+jdXZN3lgFSTJywNXu/\nDDL3PBpafL7HQZl/ZUkYcQ+Zxw7474qnX+ei7J3h5V38jXDMTbfsr+zj+s5EXnDjbD3+bG1iG9vS\nfb4l1XhwvNI84bwjpRh/wvg4hLUUk8sU1D63swFdCOjzc4wBhgxYaVH2iPm5M5jzXieuXmWrNkhe\n//Az50S4lt9vf/+j0wNEKOPiXCYr0/IcyKITS/X57Jl+XPHmdVC3aS3QNMkNxbhn3goZ8+S2JvDQ\nNV05mycBEQCIwJoIy7dX9M9UvhEMz48FYMlG4jVN0MuU/v6z6VFvo8bmi83pye0PLBQwePCrAwh+\nQdm85fgdFHoPIjw9jW1YSFPwyV0b52/FtIrM9J4hA6gAOIH3wxm5SzEhnKsgBBd2hEVo/HFPSBiJ\n53UGilmm9VLdA4gVRc5Q7fuDEsMl58J8IcbdTdLZIL8WBgJWskcCEEzfOD3rcO1Gzeig+JAwBUEH\nYSwH1++BvHiwzn47OKFNRv0i13xZxv59/CsL2JkiXiuObeF84zxyxnGNx73zlkG4AoMHmtvlg/bi\nzA10CnhwD++Z43nA50Qrb/4+0lCFxm9ThJngyUbPqec+q4lk1b36Km29kA9BffwMJWdDPLgUC/mq\nY9w/ViDLlH6mSnF245hSuq/qj/rttk3arAjoX69jmFwptn9gTwAtTx5oiBkYWrXp/Zjtc9zfP4oy\nxRHsxCzrkAWu1XlQmM0S7pT+GZZpEMskPWmi1y//popu0rZVpSVry+PzvJeNAvBMXfTA7s5PmFPw\nSHhZjvJf5lGJ+4Un3KT7JRDAv7sl8Qr9fpHxFxkPzZOsUgxT3H9xX+PnExlBPG/DcwfQwqG6vj2/\nq16oaW3Iud2mRwwSZftT5eHZmde9pYTfHp4IDyrlASIoZSi9Jlic4CrINCU5maLMbjWaon17c+Nr\nKTPzma6hONLRE4QWtYAM8ehLf5l1KfbjP83ZzOt463ide/ooxca3TgRZtbbLVyzseqFtKwo9Nlok\npFytrA2e8RRXyWWlZMocc22wUW1EiFxLSMVFYhY2rv4RAAf1GrkgX0EtdCw6im2LdMOYcG+qkLvv\n2NqS5gggRZZdpjMhobfBDvSMTSCracHHhA9AGGgpCT1Xzkw5WtC4FqSELcMFaH4kJbXY3ZYFMw8i\nmDdKLYAxtXhY4C8CrG4EYsksPrco9SKhzz26R5j5aNfsniI/hS90BbrGb71+GajyxBZBeC0BXFj1\nnrmcdL74ORXPUzABfNVVO4J3Wi+kqDXePwvNBUR4L8Cawn68cXuN7j9y5FLLeb/j54+2HGp/U0AT\n97fxvXjk70uxdTHQPbTTSdZrKfNK6fK9Rj9cWjCj6ztBiSnUeq+XROlvjsGNbyBFGeGUWTjHUktQ\nltDGh59y3ixeDhmIxfvGkPw9hw9Y8l2c64Gp/guIobm4FwFu5Nn4+11er9V5retUoF2HP38UzZlu\n3JYTLPrvHpb4B5XyABFKKeMC8e5dUAoXm7hVLcRS4EMYVuf4ndoAEqZlzEEYEVykEi8qDWsQmLmq\nYhD6jcdQE3wVrRuq6Lk3v5DfrtfRuvEsFm/Uwr0kVmiEOOQxtxKjvYxJtOwR2/jM/TuizV4x0M2S\nLMA94Qj9fELM6MbGh1hgbLZfRFn/RXIbIMdBKaVsxePAwIM6btUQXijysX9PthlFBc95rOpz20jy\ny83zeMT888k82ZVufYmVMEoxLwoI8AilYCt8RlnyRQ1bkCPuYakId922jt2zazCy3bOMcpUMFdkS\nwYTnCQS8VWIJ4WO0xJFwQPMwKNVY0zKIrEIHC7K4EvIUnJ3StVNwCABN5DOlWDwpPBD+JqDTpxXm\ntfGxT6tjGA+7afrfWt7anlfCIgrF528SzhATIeI+xXUdVWTk+57bLLQF59hQKbtgx1d9zzX1FIsW\nzYmL71VImFK/vucyPYc0kzzlRvHrxqx+aBs/+7acZyIrSwcvLxw/CY/8LMdPDpQFL9K1eYnrzv9t\n2dyjohxAbd4LEiWx5X6vyol7X1i3uO9MgalAROUDWdsIaFahBsXWAfjz+gl7zLi2fjntbHwAFp7G\n53jcjw997ZL+cKjI8gqjQA0w634k4zohyWF2fwzK6r5cmpR5e4BfKWiM92KlSrStLivME0TteU82\nuhYPJ3ot9I+l1HxpTk4EVV6z3yYAGAbs5TykFF/9Sd4zMn7jYflQPPTLnoVJnhLkeYJHJubum2O+\n4L0HTfCpI7T+sD9CuSZF1PMX3NeaZJFYwhhyBsYu95YwTf4qAymUjwCsE7nqSYw02wS0A3iA9ccJ\n1UvxSRdjaGkW/sfeNx64Be/Bb2ycuYS5EO87I16vPd1/QpMHlVJKuT6qVAg9QIRSSinXUNFgKUL4\nSjbzhYSgX1Hp0flir05S0kwY+flcb9TK9BdQ1qUfKGOJu7EqX8IlvNDGse3mcirCglNCFERYi3Ik\nQ7+6TRi/rWTzQOWGzbFXE1fGSTkc/FixUdUVHGoFTUcMt1kvJJCywIw4WjkioPIZsaPuGcPVGpd4\nkY3is4AHWxeqgL41Gc+pznNwFMzhTOCBvV+7Ga56APLjgxCITU43O0nsud3a+J5PyGcxfl6e4/2X\nYqCExdjG5xYtNVGJzqwyapmXtk/iDYE2vmQpZ9sH+Y9VUi8FHOr5koEQfA8s9KpSom6HRlAaandF\nL8hCKMK1Y7+rJJ34iiprhJJaOo/rsZcSQ29eRLpYaIWT8XtfYvRF5se/Cej5709jTAHAsGcXcrBe\nxvvLErKBH+G3M8F0HjRZCa/cfhmv8ffTa93fMDLQDapIUD4QX51hQdfCOFduweB5H2keI9Zz6GZu\nl/U3QUyaAq6l55EKMSfcAG0z+WSO5Wep83o8eqF8K8ejfLeXG4Xs7JNYcmUTC2WyNgAlGDxAYliE\nhJViVnXE8DMAXkrNl7DeVgQ0j38P4RxTdO0dtF5jN5yBckpkfbBVPAsl470689RBuNQaoR6oCPQi\nz7XsbXxyUezZMF4E+UWvMX53hqICsNdNXig450qZqZ+xxabHNdRTsvNws6hVQknUueZYgK4LevdT\nqjdlVM+TeWO/h97rVXmrbQs88dc+kReFl+mwpiGfeiPKSKYmIK/NmvjLOTCsgY5xTUbAJq4P7JN+\nf1upvDd+ZiDJ4yN1EuBSXVMNOORdijX05PfLdW48Ogz2TJD7Cka3k65FhPF5QETGIE1MN7AB4mzc\nC9+3ZyHMV8wbuTSJcyLMnecmrz2U6Ac9QIRSysjqVq5kH5S29a/y+VmUTkH713vbwk6SyfYUQ4PL\n0gENYFor0YxPwlzWQ1RcPAEVRSI6gBSlJC7xleXrmv5divOYcN4UA11/Se5soe9G3JcHEZClHx4J\noJ6bXb2p1215a+pZMsFMYfnCsRTbQC9qSRfrzrJ+D0faIDJSZSuJqRv7tfkClPpIceKZcIkEnqgO\ngimwcvks0PdpCe+Cenz++qUknislEwAixfCDKAwwOOZLknFcYNa7uommV24IokP7N1PupS2dcw0C\nMgFSKnRYGyhVOu+qcAmvAMVns6D+49/xaUDA8Faj51UUMnBPW2fO+TcBl/5dvAL+m+e3UkopvzyN\nyoefLxcCwzCv/do0niGAWUc6R3jU6sv4+ctiX7VZfhXBUDRPlAQFmOdBJzzLk1Sc4LJo42/SL94L\nnjWEG/dYW6DTR5Nfdx8tW/WqOzBpuTzyKtg4Ho/wAvCejZZkBE+y/o7K08bPUBa8kA9FArllAMoi\nLMxXslHFG/vajCo8c7LtXxt/e+J686XUAOStPjLKAM0auK35gSaABB9Y47O9EDUCqCCf7JPKn8CL\nJgBmOJc+xzHf7EZpihePemAM8ej5My55YVDHAz+Utb8HJrSSRE4BE97LQ6o4+AnPU/meW5Oaj4r6\n5STVvi3TySE1SPaMeYN1myVKbnnhxO9JoaU90a8tTuKbge7M02p51+1dlCchuyYSYK8FdH8+R9Bk\n7Tz3YFiDMe6C/AlBvs/DgE+lfn4sb6wq8M6MZU2PWw+I6FqPn1NvLfRf5lM29X/2cIaf/f5BDxCh\njIvMx7gvt7LQ/00SzHwad/Phu7gC/9MJRa/SlpLCZYq8CbtyziIeSyllXSKwYC67XlG5n2BBR+UJ\nP66PIhM4wfzjYgvjp2ujZWS80l+DuaaZd0sECLx3gVZNYAVX+vGZrneywVqSSdybDynIQQSMa+vA\nCWwwULQBuHiXN1xjf4gJjmD19cQhLD6Tt14zsa63iMuAZcIqX0FLUCL7fqLw2XhL6D9eS9bQHcy5\nVwJLrVfq7mlt2Vshe34FpRMJ8FnRPJS7KKXY+4QwdAqW9HrMnrwA9WmFuTV+fkIZUudt9F8EPPh3\nAQ/+y6/fxzYvbFEyYOogbtAwcnKp2lJKudLcwpwPSTalv0H45/o/j799OtdgwupV2kh1EcyXtQOd\nLkVCqaget69DflAXeAhgMj59vW2h0mI864d/VVBoCJ8zYmE6K3mIV64hKFjjv4PssaA55vMSaIgX\n3IQpvGTnNgQxeLuqGXE+lmJzHdfYECgbQdTIK3vU8goIbUipzJRCPo2fjRfg31O+NXOdNl4RhX1P\nGtKmdZNlBLIsFt4yL0v6KunxrwkY0wLrzejgxqzPD2vKWvM9VJWTknkM7smQey9coLLGOhZsIS0j\nZXk7yH5j5+JxBiUYMkk+llKmhR3cQ3Wpvdttz+T56X/jnSofL/Yf4ZWw4rtrA8Q1j0Xhp+d6bk1J\nxnqL/Dhb5UOnyLhzlOIAhEC2huetTLIFJTYtxTx+BgHzsa0tDn5OxT2G8zB4L1N4AXGYY5RfBvpN\n5iw+h/sqoT8O1cqo99ww0ml5Px70oAeIoOTRx+Wn8bj4dXT8HD6NQu9VuMTy2bat5VexwoIRJcCA\nWvZFaAZPzpJLLUip4fhG/1sL2c5AAbZgZDFdWTbeFqFFxthAYESalTdR9pv2/cSl8UrMVGPxPWDT\ncNHKNhEQexuE8nQS4/1G5ek8wr8/19/58T1fbW6txcy0I08ELyhCcEA1BsytzVniiZMgVGxY/IxK\nKVUyIJ0neq71w0h25h1gwnJE3vFLpiAoEKSCXd3vQAKeXm+o/+ax+00YrttaTg7rTgUqa4t31Atn\n0KegAlgMWfJKv815CAvSbyhZFQUHVnD9vQAswDP/JMIMjqWU8p+lise/fR5BhE+/jp/Xn4U3OSn7\nvI9vFIk4z04rrHJ8IHHoueYPWu4W7pm/jnN2czzYNY6xegnm6u5Ubz8A63ZnvA8outZmrUKWXBMu\nogR8ycXGcUJ4S4RoI555bT5Yh9MkHdJ7hYeJF8LUwnqnaykTFD0FD5As1vE8hHiBzy3O8dq+pC9y\nuF50bdaKKDwRMNex7qwqjF37IPyUK36kOREAvlD40DJdS/G+V4GfxmcMykBoCOO2txS5b3eeHI2P\nRr7q+wM/aQHqvs2S9qVrwnyxlk8CIvTy7zClOVxUFomf03AGrDN6JiEfDfH3DNThErRolO01ptTQ\new6KWez3VOLcitUAxuOa7mWdgLwH8nCYomCBpoASPeONlQqXtu632rsv7tnpHFNls/YyrfIq6Zyt\njQIc5tijKWEmg7aJ9xTktcY5U0i9XXyOBSQSfxa5aCFJgbcIWXDXoi3qUuPyblxxz4fIfk5kdyu/\nLO/Zy7tyhAfkkWQc/zhtHkc53INsvGYQBpJ5dnDi6h/twfdnpWv543siDMPw35VS/o9SylMZsdb/\n+Xq9/l/DKGj/b6WU/1pKeS2l/E/X6/X/vvc6DxChjEzXo4+LZ1lBG1mS6mdMO25xXgZIHphUQeAM\nr0AR1JXLI+9qBYsK1Uej4l7o2O3WYcwAGI6XWim86vgirTMhmihDl6uMtkkbWCiOGhs7fp+6kyuj\nlXMmhCPsxdvglWK2Synlq3z3eoobaiyZxu9KNogk3vwMq72M66QCkHWIMb9RTopnuB27uXqQ8R3P\n8cl5RVTjwGmj7rm56r3gc9LWBJ08RGO8RhwPAxhTaMrcz4AQ9jLIyrdpvCUBUkFQucQ/LA4U8zIT\nUkVQAUjhNIIWCKgAi+tPa4LDZVw05c9uDsBdHLlMEI6lFnHPr2DlJJ4UqrYglwkp/SA/1+Atc/ou\noROw/G+tzWIdc3wAsIX3QxaT3qNblsIkRUUl0C7C+ojn38NrMy+fa4nvWRWCZHz3UE+IQYWPDGhd\nKVAm40HCy+S+WZnR/cldmnNQoAzpcah5LyssXC3E/80JTE9DPKeU2h0YeFncE6KSf6U54G/b+Fx7\nEtxSYlZufLxHZV5zPOfV2+AUx1tKKee98Ni9rLtTDM27Z7ylONEmuf2Wy/+sXAQJf+bwBSi6vjEn\nX1zSsRRvPIlKf7bWoThhXXAYh++vDheI/We0oLGE75Jrjf3WfyvwpZ5U7ZfIwE/GQznnhW8D4BZr\nE3vXq5b6dvyevC7n5sMYr12T5Vq5DVLMqXYzJPeruaYQLgRgZZOMlXgGtvGsYtuCZAcDFe1uEDKG\n+Yd8CdETAeeL8t+QF3xbTgg9JP3pfJajgmKh+poADR0eCfqjK9EPKv9rKeV/uV6v/+cwDP9VPv8P\npZT/sZTy38q//76U8r/L8S56gAillDJEF6bFE6myBymnBI3Px6dBQQPz65SD5IR7WINHpzojVpQV\n+LDR6KaG4dSCXYtMwXCbyCnGResGoRuGje/UiGX1ZREr93Fcu+PSyW28IoUNgBNrsTDiv/v/2XuT\nWF2WLT1o5d//uznNbV5TDS4ZD5kgPIIBErYQM4/wDBmE8AQkjBhgGgkJEPIAIXlawpZcEqKTkagB\nkmWQPGAAAiMkBh7AAOGiyu/Vu/ecfXbz938yiPWtWOuLlXn+fc6t51vv7hjs3H9mZGRkZMSKtb7V\nYWywEXrmlYk9fLQfjtCC1rqPABhOrcDIZU4MKMyXfaAyMDHYLKEVX7pRwXfc0eaO77M41bE2dwsC\nSRbOWI3nHQf2zMol2wM2LPThMWE6UEybY9rY77Z47aRZIJBLkGkn3WLCXVVrqnPDLyaYieh3ZLea\nTDDgYKrHMWCFApSF7C/o+0B/RZw2R++DlrJGgqztnSkzSepTPRZuXUSO5xZE2N2pSeyDBtl0Fg9n\njRuDZx91vpwMdPKuQTndOyfrY4hJfW5MgkZDiHbo99g9vrDLhLlJcMMybFrqGTR+H2bevKmzgQeY\nN4lJbb2PBYJIm0SqG8nOLLBwr29pqB21qPIxUs4Q4tTVYRb9r8s1e0roZxbItIJ+WoesUmrvnDBI\n9/r9Y0Z7Sw38NrZrxfbHLBFSQQA0BzRS0ZLDPq4bkeqGiHWHa8HFiNZ0E7A2MU9H6dL9N74fv8No\nqlEDT+o5fF8TaPn+xJ1hhvhFPYQvTyPLuWr7NFwYhMjmVBZ3QeTTzbifE1OCXRUuAS7azB9tqWl/\nS8ueX9ucVFGCYKcn8Dy6fh0/tDf+tPzOYtZwGUt7aUKrxHYy90mOnWQZn9wEzOnTQPa1eWw/y6Jj\na0cn1wl7md9TB2JhZZbGPAKZJeVz5ku1tEBfIt3Kn/pSvovSf1Jy6V9q6UXklf7/WkR+X///cyLy\nO31ZOP9z13Vvuq77ad/3f/ApD3kBEaQssdnSCRZqgdA/aeR7pUj9pqgGvEmTBSo0s0LRezzTGxcx\n+877AITMyB2IMROpssFQpP8xIQA+Xt59o99oP07s998CGJG9q0TMB88Cwd7q5gQBagxRRanRmB1j\nTBs+R/KNprXRXA9WBfeOkWX/VLgWwNogR97Lb4x1SFml7UFLXE3VytH7I6OwVtwj5cy8nA14aIVz\nfLM9pXb0TEfm7/6xcsm2g++KZ4MJ8e4CLCRV5qjWwb99//H5MXTJb8IzCljKoJOf2oWKAAAgAElE\nQVR/wIw0tVke6EkfZ/tM32Kq4zpLGDx2jzg6f5U2mGOcY6ezn/uRidyeW3pgIM5mKb4sDpqqy9ED\n0AYL2nkanhsMPmEeeteqna6rx/vy7OXP2+wM2wdlUp+KqmejJu0QLjdubWIt7gxki2NTzmn/9DfH\n7xgrl8zrTwkgl7nc1M8Y0YPgDmIAg35nejcRcfnfP94f0JMaPR20rt4MEAi0EWON1Ldbt3fZOaTa\nzCwutGOgmzhaADjnTjMj8ADxErx1C6d47Oh8lp1hLGUaGGy4ZjDjPk+sBk3ATQRnNkjE3Wl7lBEB\nv/23NACT9on9VgG6fV0flh3IXNPaOcXCTM1IgnXcliEwQcS/e7tXlbr1f9sf9XfjuiDtvmgufXSP\nSLvvHs9xfou470r9zSwRzH2NeImpa481t50dMY4fX4ieqrLby3PoSxb82GKE2O94T0w5HP8BwL5y\nMcCqJUKk79X6srbN4EEG5DZziaxqZ+F7xH4OxXsYetbYeZHWMlBELPuaWR5AN8hMin+G+hTYvul4\nqktcibiwhZK3jhzS/mfzj12oeN2F9vhoLzDWz9hG7Mf3Xoj+VShfdV33v7nfv933/W9feO9fEpG/\n1XXdfyJlif2Tev7XReTvu3q/p+f++IIIXdf9poj8joj8RMoS/u2+7/9q13VfiMh/JSK/JSL/j4j8\n+b7v3435dHRd9xdE5N/Tpv+jvu//xkefL71M5m4l6Y7S3xf48bwF5SyHs4O8a7RWgAnY5Iefxxqg\nXUB61cydBPkMRGBmoRIJt4kgOJOZcCki7dJJTB9UcAJhJN/5sU0PxNmnkcMGpWmuTcjJCscRwC8P\nIkBLwOasrDUSiVHIRUSezkVguXOBJDliL4+5/3TmmoB4GBadvNa60o35ahaFVkvd5epWDUqMPh9S\nAAIIuYBZMcEOjJgJMI6p5Hs+YdPLRE3MSRNGTm27GIsDCYP+u3NU6THz8qER8XWWKpiwIJ9ZkbAF\nQiaoMJjW2zzE907e29qDW0PrzjAUYDGELdBJycLb1bTO5/caqBBzFcDS9b4QKp8SFK4woFcnmzft\nyJoGaECzKVKBraetpnH8RXSpEBF5eCwAw5P28/EAt6FoASTigTwwtOW8BxHwLzIFVFP7eCx9vYDh\nb5jweCKb+1Wb3T6HY1tUsCMKfiKXMXJDJYvGjgKhaJYs9S1pGjf6G3FfHo+dq4sj1m/fdlcfAjBi\nZwy2jZJVfav7xFrTyGE+eoAU4FdDI6GFTuInwLcYwUBP7qN25ygwjuWQ51hEsOgIIC+OERuSmhGj\nzkCjPZNoKu4/ndEcpJHTjh10z3rS2DjlPgVJKHhleIcEqPhYGQuWyIJJ3T9b2sF7jQH+gT5jD430\nc6Iv7rdw5oNqijz/zeKx9jsKr74O9u/av87Vieu0tVQa3j8zK4Ymyv4FfBXPTS8Eg44sJhDmhgs/\nwvg1l8Zxb/yngroJmPhdlGxsmEdKPIYb+nsJ0FBdyXTe+ODWFiwxTnpTDnoFoN52hFUQlIWuDrv9\ngW872fpw70JzKotTwmDT+DxhvkXCMbtmKdOJDorIJ8XoeQ649qtT+l+WO8cv+r7/00MXu677H6TI\nzVz+XRH5MyLyb/R9/ze7rvvzIvLXROTPSq5L+eSX+V6ACFJcGf/Nvu//967rbkXk73Zd97dF5F8U\nkf+x7/u/0nXdXxaRvywi/5YM+HQo6PDvi8ifljIof7frut/t+/7dR3vgV5IG9Trdafq8+1jnuHXm\nt0jxiFRp0BQ6pqgyt1hs5Wjmnq4uTMdYaPCLuSLtEG603bFpACKtysr5uRJV+FLXrAXDQj96xcTf\nI9srjRZvZme0GY0JkEaQvOCNjBcD/qXR3ze2B8HxPgkkaX2wd5KmvdUkbhAoa2cO+FoDlcEag83b\nfRAoaF3xzdC/pWMSFiQEo1Q3E4+C65FMis9ui22EwAHz43hOtB1p6uAcz9/MjQG2qgcyg/Rp5KpJ\nJI5xo81cAawvyZzP5kXoUtDq6JyiY6yv7UKLj813ZJO3zd3Mhtw1Y8JRN77L0b0UXGEALICpXjnV\n2ZSiP3EMjMDQTnRtkouM/76s3TS3pjQSfDkCKLx/WOl71w98ty3nAB6wr62nf5yVIbOGqtf0e7Bp\n7SdGg+pIw1fPt3XZ2GvMr9S+M4EKIm6MR/ZwM6m1dj/+fibowvrB0dwdmSlDaNjRGi3/x7FOPPoG\ntZOwIpm6/iIHO4AtWMnM947JBwBHFkApvSeanQVnZaHXfMcTej9EM3xpBYB4PQT6NcAwAsN+vpgQ\nYlEJdax1z4LlTmk7gpJIV9dxGpyx/ifvYmbQyWQfcvfJin3qkUoMsldtub6Lu7mz+BrgNzo9+vai\n0D/WP04nyZmz/P383mPB5thk/5LMC5kwzNYi2R5jgih1JFMOGD90xm+ACBVYhjsrnsEAbsheMgCE\nBJcqqx9Bjsx0H/wjAKXnBG5E8aMwZAXh96NOQSyLb6DgweGp5XuNnzfLvT8aYCWuSayLjz8ro2H8\newz0EslB98vAg+dbuL6U77b0ff9nh651Xfc7IvKv68//RkT+M/3/90TkN13V35Dq6vDs8r0AEdQX\n4w/0//uu6/6eFPOKPyclEISIyN8Qkb8jBURIfTq07t/u+/5bEREFIv45Efkvxp4/6Sr6LyLSK/U8\nlkxpsrtXIqvEB6ikSAUP2MxwzNwJCzQLXMhuDNZH9z+EDHhBMJjgizEoWnd6pYzyolKJ9QfyJlSt\nogkPbgdj4rKaKlPoNqX1SlNhwpQb/vpaJfdv1n4BIHGqR7Y4aNPj1LqLieb1NTNeTSfnBFHmt8CQ\nQJBfOQnhtbp9LEirfe3e982yBJUDeDJTEOCcCNX3anKOcYQp4Xrqxk+1BBhHlD38zw912T4lEe5F\nIhPDQuWRTOJ9zAbW/J6J8fbtQOtXgxjF7+OvYT5bqri+rYN+VKGplOCaYYIZGJQILIk4IWRIuxEY\nMtwDN5gRYY6uZYE9uQ8TEiJ8P2oKqJYxRtnqC3cKQmCMlsE9YqrP0GswWT2zp30t7Mfp35vdGMbS\n8rGL0eO+CDweOAN48EixRzJaNyQL9cl8YSa8z7TkWp7D+rEclVoicB3fP8oUwP2KdDoKUtWitn0L\nBg/GND9m1p90nl3kTrQ2s2BpY+AdLrGmOrPEuloUmrZQEME0605TaHEEbJAhOGtdR69qgDJdQ3qL\nM6YYBHEq3Xd7DbkfVM2hE2yhKaRvl5pOQzDWNZrFXMG5mUaHrwHftL9urLHs4Q4Ct0SfbQlAQ28C\nVHynFDQhUwT/fVt3wji//XwZCh0RAmfqEd/O5jX2y4m/D88odbaU3tX34xKN/5DQNQnA8ji1GFt3\nz8Evaxac4furwqQVq6dddBsyWhLmflyDS+WPVo63wPOvNmu9p9DpGa1jtChS1xkyB+Qjhu+L+YK+\n1Bpr5alhzQlatAkgm4T34v3cP5tdWczyxMfsil5/5sYA96Es+xWUhQbMuzr4lxURGS/R9h3ft9ap\noFj7fuV3PWMxb+hZnge7xKLhpTyv9JLv0d+z8vsi8k9LkZv/GRH5v/T874rIv9Z13X8pRQl/96nx\nEES+JyCCL13X/ZaI/OMi8r+IyI/xcn3f/0HXdT/SakM+HUPns+f8RRH5iyIiP13dRL8+5WQRHRlx\nDzL/QyCVTdDEpEwSIi+SCyHNZuT7J/GZYwXgiDEm6wk3J+svVIOu3BlSIHYQeEdYcLgxzJ1QPYeW\nSTeG9S4Kw950FYwiB2P0G42ZMg6AByEPL9IqQhBHurEk+jy2ZfhHXumG9sq9y1tleq9nyvwq83a7\n3lmd69vy//xK3Ti0n/Cj82XyTs1boQVUwcoHOgJ4gFR9KItt6ddsUzVTWwtSFwWCkCIJwr7+ZrQ/\nt0SIfT8P/C/SmiL6+Vwta2L7nhEb0towmOCfwYxc9HuFi0I09eU0SCJOo0cxEUKxLAKRoTPz22R5\nYK139Gz/P26rzFor+J1Bi0jF93T0Y6x1jXEq/4Bx8gzjYhWzqlf6Vc99LIaGZ47Ytz1L28guNjXD\nC4SxWirzo3NWf+/dIOMTDTFF2ekxlwUWAhumNWmvdRGq//O8ZSbfN2jAAr3T1L3FyYRV7DEMZg0z\n3BnQyqbSlbkvNy2DEKc0Fsyznp+5PsA8ndNJwjLLx8u5ud2KiMhircKvAvJh/wCIoP2ZGE2KLgEi\nFXRawEpQ6/g1NCOhtwpC6hLg2psZWKzPsnGs7XFqUfShApLtWm9oUm2ufoeFXlMhZ6EWgut9HZsl\nxvRK07jqXus1pAtdg1jH5vJm79bS+4YHce+LlLY8Fhxr4tLC6W+F56rnD8BX6YDBxN7Tg5qmV/uD\nGDNkneL7znuWCxHVmH/X+0G3P00aY8uktA6eNOCq6gunYszaZbAEYN3MvfCV1rl9KPvE1bTwFwAb\nfeatmp0KLqBYm+2z6zKI4+nbWxitiAFWn5yLb00hC95QeUUoJNxcQPwy7DWYowv3vpNiGCcdRVo9\nEZ9f/i/HGq9E540j+Hi+ge5m5dcCQNMu0jCk0/WWYnDbssxMDEpLLbiLv3N0j0Ud4rXDG+m7kDuD\nPScEHv3eC88vpZR/RUT+atd1MxHZisq7IvLfSwkF8H9LCQfwL33OQ75XIELXdTci8jdF5C/1ff+B\nfVN91eRcP3K+PVmCU/y2iMg/9upHfXQM0s1CR2e2iL6K3nTQEElS+mX7KgshNf1by5CZlviC9doS\nLw9D6rtoEBn4gXVOSp9/AQ0I3jMKr2ORd+HG4INCIQ7DVAn38inmJQ+uGSDAEgn6ORG6OB1YFnQI\nYwuz2VtlTt/Oq+CNTAsYN6TL+0IBgzeL+v6vVwUguFlF//L1qyqYzd9of5ZR6ugRkchNhr4v7WzV\nzxX7mEfKV1cKWLyO8262gVartrdWYOFocR3U9DdhZNuAW033msCZKJ5JYGbITBHNlaKWJ32tzAKB\nyyU+dZekjWLBnYNN+rqcyz4jOaZZ0N9NoKKk33xPDFQG5kBCP1fKKK+chLHRhx3YdNX9D+ZipQzi\n7bzMsddXRWC7elXnc4j9IpVxOrrsHh8zlw+WPzpvr9blGVP1u/BzzVKoqjnUNNE48rMr2FSKT5c6\nFETqNMAAiUQmiB/N4MFYUD1rb2yIulinpwt+fDsCUqq88nmMGmuPveBdI7THe/BEb0ZbrRYUmIK/\nvpuA10rv4eJ1qwAuwIPX663VXb854iHlmWC03f4BSy588woiRG2liMgRbhZ6+9x+u/mC6UY0KLMc\ngKYWgVAz7SkYdDb35owO5dk5oBnWL64peIAU01e3ZU35qbBYKjCo+w+UAycX42iloAPS/5p1pL7b\nYeKFdKV7fZyHvn/VvQx0NQIPWcyaMRcIBv8t+1LiQ85pdBHLwAuiFq+IQA40k4GUc9I2Z8E6GUR8\njjuDLzWWTq91I28XUmhfoBjCngV6N+6KEvdCm2vOnGe+Kv+//lB4nde7ZehXyOSV8ZgSrckwXw80\nTqAdfuxh/QkljYEILk4OvvlST5kSBDTD8d49fXR7b2fp1M3zMQYNCpnazPVBx2ISf4tUVwez9IRr\nM0AYl96ZaRjol7dUPHagPdpf2oc8L8YCfQYad3S8pIztl3VdfBqY9qtSzqmU9/0pfd//TyLyTyTn\nexH5V7+r53xvQISu6+ZSAIT/vO/7/1ZP/wypJ9Rd4ed6fsin4/ekuj/g/N+56PnJKpnd6k8lQDB7\nOh991UicJSGybFRcmVXV1DtmzjbNCQjSxxcqWyack3s63gmdqmb6unAi3UJTWZ6gJSovunKaENZS\nLpRRzHzJp2tlPFWjMldz/N6pdSxXvCXvhvbEbepkhtkGp/ECWjnCzPOVAgJfOheA1QkBu0rlW32H\nL9Ut4dWyCl03Koit1qXOQq0NAByIiExv9R0WcWz6REUzVyBg9b5smthwFj67hW7q02vduAD8KJi1\nODnXh8fSDoLpwezdM8ZD5nWZRQubitfzjkkwZq9UWptZarm+dQLpUEqo6ONOz2IrgxCPAYz68LrA\nWoQw0poo17odzaGMSeC4CXZe8nHlZzTPtHeJBQzuwlVewA3JmF8w0/W+21l5PkCwL683IiLy+sty\nXH7luY5y6HvV/MAMuhrWhHf3BXPAzy1ottbXCrKppYNPgYX5taN1d0wYZqtr80aBBy80mEZF6TQ0\nK2Cy3NxohHM6L+KETPpt/GgGItBvX4cD91lK3jPa92sJoIne83nYga2LGjAOwn/dhW5U8JwpqNNo\nZd1meCBQp67j+g7XynTfwEpL5+GV0t7bVxVEmF6Xo2KpFfBzjHsVeCLKaeC7+5iYCwe71s4X1sCd\nSaO5nLbzeXY+hzr+e1crjyhkpZYIFLA1TaGIawr0T67K+C9fK0A/r4sTe+rsVmm3Trb5kxMKN5Hj\nMIu7M2hHvW6ACrkTZjFIIHuNmUUzQIOS+fTD6oNBP6+5hZa9uqtAk+vr45h/jxDILwEhym9Xh8CI\nscLAdwrMN3te7/6OW/lx4GlfeN/JMsVwXeOhHOc/U34D1pVfbMsRY+9jEiEIK2dyCIae+n9H9L3u\nb7UyAE0fo0FE5N7FAVlqZ7EvglYejJ7W+zCPz2YFoM929KVbxH51SAmt/O98VddHN6M9X/dj7yl4\n3CjPqmMy08CweGJwDToDTIR1j84FN0nBmjNoN1bG+I3v2p2h4jQ/bBDhpZTyvQARNNvCXxORv9f3\n/X/qLv2uiPwFEfkrevzv3PnGp6Prur8lIv9x13Vvtd4/KyL/9gU9SM9OX6uP1FpBBBUATxsntJoG\nM5o8pxG4tQA8ALLqkcoaLyEy0VlhImWm6M4UDDmnLU2lCrad2yG7K9WKK/WaaTaKxaOaKm8rgT+c\nYn88cbZ+aXXwomAQTdvrgIgmpZ4S2SAIDIAH5pOebZq6Ud2qJcFPHCF/OBRuDZsjmN636yJ0rdet\n+TcE+9mV9mGZUOlG8sb1eqqDUAjUGyam3twO0YNVUgSIMFGAZXbltIoK0Cx2kXH0DMbUzB4/nehP\nwnyODAmYcIynBxFYozzmR8ta2bQftJoybXE1HUY/4X4Q02CW9nKpzfs89id+5uWS3iV1q8an/F45\nrewtcllrndUUwFet87XG4vjpTQni8sWPynGljlzT1wur2+s8makPxEwFjpCL/hTX2xgPg3GaX0Gb\n2tIDjAG7OmSxXCx9pGqi9maq3DJZoJ+YS2ZWHp6t5y4AEVCFNZHp6+tJEwTcZ+ZYITbXEzUvXh3P\nhAm2n+e4fSz4Ihe2QPCWTvh/MUEsjfhdsmwybBnnaQncF2CBcKNgLOioWR+IyEQZ+OMuvkuX0Kvq\nWqQMt2nx6teDW0W1QNDfwXIlHmHlBsHRZ07BeFkgRNTx9EX/P1C71c3heRqqCmCW351O7NmXKmy/\nrXU7NR+BJeFZ1+/MCT7YkwHILRQwzIKomlacsrT4NQkLQjbzbwNWemsv0HLM51owv8wKjMFZD7D0\ndA9pmMv/AIn0/fW4p/P+2lggukoPIijxnBKzwsQ9sOHXkswuKDWYsuc3YNGJdj++rzNYHq7p8l/p\nen27AYig+7mn2wr+7Siel7dMMutZPdcTiBetSKLlKMb6ygXqNksE/S4W5NWyU7TjdyZeYuItEYDA\nQ6mg2+PiRt1FV/Vd4PqAhuACcd76cVT+RweB159Xmh3PsNQ7hf761mDVMRTrYyytZgZ8sf6wtaR0\ndQemesYDnA0Me/76+ONfeumTOCU/xPK9ABFE5J8SkX9BRP7Pruv+Dz3370gBD/7rruv+ZRH5f0Xk\nn9drqU9H3/ffdl33H4rI/6r1/gMEWRwrTTAbIIFvlYLAN/OuaFROj86U/QEEA5HPYMpUG2XhrZpY\nDQc+O1DEe+/WACGobkaK1lu6SQci9JHyAEToHVfUqboTx4kKGlPVls/uHZOFoIFk6ha02ScAKiog\nQwBXbYnPDHEif3NkhgjaHNIgs3m6NwWz4H5KyBdL9cFdOL/c7T48+0pdFdbqRpAh0RZTAvKY54r0\n45ztg5QDgJsA2GBuWfA/gFDuAw9QfSDo0+tad3mlgS13Gofi0IJY8Ac8GTMYmbcYPyEKUNZv9z+u\nATyAKSLAg7PTIhxpcwMz6BkfDs43JrQOWXkHRhHaRPPXh/DRrjfUnRCoE4uOmwox0HZwwLLQHxKE\nZm6t1xSe9BSMq/dJx7zT37cKML124N1vXBXw68dflzQy6z+h/fv1m3LvspL5XmnYdFvuwZo8ueia\n00Ock2xxkcV9gSn2/KflWd5dqpuV9fV2+1Tq6vsjKvjRgYo70nTBN90HjsL4IL4tM5NZJptpJINh\nflfz7FJmJkREockX/uIhe4mBI7im/UwnL+rGdRHch0D/+s7f4t7FC3HlOKf15jV9iGOB8UdmBHxf\nH6x138X955QILgAR1pR5YalCCSz6sgL66i0RLA3pOc5DvO/Mge4z01CrMIM9x/vMk0bvbHMCwkld\nmwgQjP0XmtIQdwfrn4L8cbq18i6gvVFI9xZ9oD0wswaoP9WjmSOJSDeHKlSf8a6s4+na0ZcFYvPE\n+ZYFfYYww8Hc/FQ9WiyK+H5ZbACcYVo+D9pndXNEcMiBLES+r6ARKwW+npy1TPX5Bg3X39qsB4BA\nR7z1CfePYz+YNRO9m4gX5BkU+7hgn5U6bvTtwlhHelxB8Uh3RHw8AexDLb8Bxcbytsz9N8dCpxGs\nc7apkQgxjzmLjp8L02R/EGl5AJG6N1tQal3719vKY1/p5rKZghbpPIargXt2dYfT9wa/5YB5W0Nm\ncaxjo3SqcwqiyRW0PhF46B4rPe1htaR88/IYrSp8sTglA/GBRETmZHnLrmlHHwMH/aQ6YzGY+J4Q\n2JM+XWbJB0u6F0uElyLyPQER1HdjaEb+maR+LwM+HX3f/3UR+evPej4/WilPt8YmrsO0L0Ri4nLs\nAuGElhi+V1mgshrHRRHZhKCDKGOTmys19JrCoUjZWXBHWAUgSGSvGqA+JGPGbqvvbYQXRydk6v/n\nY+yEN18+U7C2msKKNUy+gUm45pF3FtbGUjwy0g4AY76qLgpgsjCm8+Up1PV+4+bCop+88i6e8uqY\nHuM9QOIny1oXcuyZqHXGc/Rb4oJw9EKmfg8IqZkpepPHuG2m1pX8WhS6MO5R4w/w5BBM2XFPbNhr\nLljQY2+cEAmeNzm6V6SuQQOSdGwO5mrk6tKcBLiT1enhe3vm9/egHfoDhrYFGnjeskWRN8+E5SUE\noS/UpQWuCyIiX98Upu/qJyoQfF1sxrvXJdp2GDQFm6CNmSjAFPxAB0ywU23Eidb6tVo13VbGc6bM\n1frn0YUHwoPXdB0pSJj5S4f5J3o/jmActS+JltJuj7hceE+eS+ze4EulubENf80YWaGJPWnrgjED\nHurbg1VWYwpv/fWAHACu8tssEZxmD0H5prvoM1+zBbUvDEsxGMB4lyM8A/sZ1h9Mpjv38c57XV+g\njbrFTh1KbtltjCBEYDn4GMPtD4IuWSSItJYCQvPGZ4aA0D8/RKA1s0SYEy0z4XXSriW26vF17H8M\nO/ZhgH/XLpz8TDdlDVbcPZZv2VVjI5lqbCPsMbByg3Jh5myxOe4EBzj253gsMrP/KM62ApBIax0D\nxQTGxu/95u434SxJGT3FO9Cz3XRmKwjLYOGFaqIRHFMjgwI5u9QlpWb3qYVXXs1c5AXH+JBLLBHs\n281aIN34FJ1asL6cHBTQPbQAuAWzxLg5A1WLf2T9Q7/RhlvrXdyrEfDRZ/tCwNbWIkHBBPdB8Oy6\nN+DdXCWsr5VaGt/q/LOAGQ60UyAPwEOP/dM9dAL3U+UbsZfOTi1PhrWHdQeLCR9MlOMp2Xk87xNl\n96HsFsHIhSZ3Zsk3Zin6Qym9tG63P9TyvQAR/mGXXqoAGMqYoxG3AeYqE+T1iM2xSQXj2mkiyXdM\ngr0JFIhoZAIPh0oED8oozp40EJNqqidbx+jcqM+lMi2WnQLP8QCBCQ36bAAk3s9S65y0WTPT7OLR\nF87xnJkQcgC7zFe9WjRoHd08PDDA1hO2wcC3P/N3UwZssokMskgFauBfbnUhzC6cpYSOxU7jQyD4\nlXdnAGBxuo/9aqIKu2JjO+JU3QRWpGN6T3KO0WnMR2iRt6d2m7HNHK+UbEqZeWw53wpdTZ/cLby+\nzGUkA6gGTFVDthYIyBc4rPPc7kiI8P/zZ8yyUdQUWOV4q0zgWxe341rXLwKyNXn9RpOWo0oL/AwF\n+fLZVQAAHB8V/MQHWlVrlG5d6kznlAJ1JN5Lb8dIM0VGhAVGCqS1KkCJIEJ+zMA21tQabW8xRRO4\nj4ykufc+GwBSfs+JQS79iODBmX57jVDXvEu0yhGpTO7kkK/8LFAoB03NTWqV7uv6B10EcCAicnqM\n9wBE8KF2eJ9o3NmkXUtVwMU+0gqZiKXQ03mvCQcdnqnCgNMLl/9xVCHdQDf0+3nMZVOf4xatHEIA\nKz4DrkliS9q14yR5F447Qb9L/dxyDdr2QHtJmGYNqUgLbGFuGr32Vhp6bnGMwGNmOTCj71K/Xe2f\nASCUXjIHFbG+JLxvN0ZPk4KhZMfUqoXum7rM02X3YY5Xt7Dk2Ty1kj0MfJrxTAD/jnHeiHg+Lc4F\nP/3O9j2UHhAdTbXkGHPd5xaJ5V6N76Jjo834oMOwQILLg7Xv6QuBdAC+ASr4yWBAHsC7QwLCoFzA\nH9S5FGlZdLGM3Zg0MEwtuFKNYIfnAgq76fgZxmRkDLD4VGubl/KrVV5ABCnEM+wL2KAV5cdK6lUQ\n94CD+T3hSCkf/f+WgcAEcH2OF5LY5zuJgEzdbEEEt/Egv+30SV0Vpq0QPH2n6KrGfoDLAzYXn4Ma\noIGZxiPPjmvP3vcQXRW+q9JqdVoCzEEmu2nbBzOTRbaGnX4X975bTad4VCYmEwoxPmyqBuEVpnoi\nYrEQkJ0BKRoXDvjZP5TBPDzFPiOFJOIyiIgc9+pCcI7zz5eTRNPD1iez3rg4Va0AACAASURBVGOB\nD/V3FmjRNAx6bm/ggWougharHDHWCLSYaX4qUwoGr3kVZ93SXqvtRYYETMjR3Ahc/8gCIWOyjLka\ntOgYnlsZ0FWFl7iJmzLWNWfPpnu9CbbVVa6q1yjbqQod8U3ggqPN+Dl/pACI0Exb1G1HXzbquvLw\nvmhLV9+UZ3fOEqFXYfWkTuTWPkyVHei0P0UaxlZWYyUPgNgKEiJk2WBAQ7zG5qS+YJlVfCBZQ5ir\neAcEwZu0davWVNdAsFzRcbOGtN0ElLXAinZvO/8MACGTZBz3fv+gQJd9wqTidfAdD0rTppp3ffah\nAl7YExDMzcIxeBpO1kBjaZOHMqRkgcVsv9DzBi5MW4CFAyL6OWDm82Y1os9J+od3aUBer1nGvyCs\nAAbs6Nb6oazf/rGss36jgUxdQiXbz8i9MeNNhkrMJhOP3cB5kRaA49++bbYYw1id3eRC3YWOASw0\nM+tDE/LtXvTXjbXRg3O4NpYClc/74TvZksSehTF2PB3tu5doknmvPrvZBQHZsoTY2ozP83XAV2Yx\nrI5bKD8iD3FUnsTzf0eiGWOgIpdMaM3cYUUiTzekWOPYNb407pj+W1reR+XpVnDBU2uDwOzo/1iD\nCi7227omESQWtM3Wn/HKtTOVd4oyQXDJoEePpVhnpaW5KIzcMxQM9Lnlh+7O8H3PzvDLKi8ggoiI\ndBEYAIP9zSb87lWjcqzBpuWwB6HVIzHBIl7wjoRjQkiySBvBfKxUhi4SIu/zCIb9sIeQpIK9y78z\n+YVqCK9ga6/3biJTKFIFxhO5H4QUOtr1GmAxvkvwwWIQ5hnB/7Lo+GAIkbruoBskBBgRadL1QBAH\n4LLf12XxuC9aILy3IcfBBSUKWRzF3qfPw3g97DUXs47j3GkFF8oY4j5s4tcay2F9qKDEXhl1WDZw\n9gyROj5ob3+Ofufe/aCmdIttZPsM3huWB4+IieAqGxODwGxJO58TNTgLxliFqz49etn6c3IeZ1kv\nWODJALQm7Ra+j0XDrnUt+KqeQ/5sH7zy8aEI7IufKaO9V3N1Dbo2WTl3CygukYpR53wAEQgU43nt\nadNGLRHePxTXievfK8++VhcLEZHzXfnqm8fSz8etrimlK4/HarXAQFRGByuzHH9nJQuMJxLnQGuJ\n0Id7MmsV+856OCXm8+h7i0t52oH3xF5QznugAZq22QBy5s+bSX0yN1H2ap32pN/hUWkRYiE8hewq\npcHNKX6PjPHE/UsFSEFnvSkxzJU7c3XQYwbU0Bw4kQBTznG/LicmppVOUrqZS0YCEDDYxCBFGryO\nwOcQONjMs/SEEoB+oy4LUtcSzp3vNPidrq1jrSKHHfazuFdjvQUlA63xTMueWaaU89n1Ljk3Xiro\nq4J9siFYsNwkGCNqDwWi881lgRlF4vdlsMRAxjPOu29ngPewQItiQ/sMEAGVvWB7smcCIED7UbAX\nqXs7nj1DvAwXmPfwpDzENooDUHRsDp4+qwWlKaxaOp0BjUPFXHzBG1+Qjew5ZdT0Hm6IUBKeCLzz\n5/RlzvcaT8vFCTuqdRV4TfCPe11/e09PaQ0yKOP/N/c82udCEF+6R85tnfPA9/jMLMIv5aWIyAuI\nICLq3+Jzzaom/qjm5KeCJRjDA8ZbpKL8AA+qds1FqB9gdLZ9u6lDwNtBe5CaMHX2X1Y8EwNGDkK1\nad+9tv1D2SQWaqoFRqqa5zuGFv0iZg1xBfz9EFgsS4PFgGj7yjmJo7l7ZMDY3zxEHgeTqvdjYxwD\nJyCA745wMajfDkINwB3uQ1ZsEwVD5fx94T9fA8ipUOj8wsGEPxmAMQn9e3Pe1L6rQICNvgbwqv0x\nK4BT3Pjt6F4FWAaOmCUhxSNZvjwch90YFmSuDWEkS3k4tOFfpuWo/2OemW8iYiOcY5Ryfy3T0HCx\nnPawXiCLGBE/NzHX+6Z9jlINzebZxsi98D4yAJ2S7JtZNXGePkCbU37faHRtpP+cv3VrUx1KoT0x\n64DU2kiv9ZEWeYYH6+PdtvjaLH+m2UJu72t7ahjxqAG6PuwWeq+uO2+JQBYIWQYWA46I2UdJTc8n\n9Dv5ZkMWCPlajxo0H/i2MnYSrkFzE0BUAtks8ribjgAUhoOKds3/CEC+mLbzGkzu1tatBqtL3JFg\ngYBzoBW+LzMl8LZ3aTpdtDLfuaCOGgBwinAdywjoigxbrl0mlOh8ycyDyYTDMjF4SwR1e4NbA3zx\nc3cGHLtQx4MmZtlwjPQgWCbNYJVBAuO9Whs8OEsODegGIeasa+u0a0FAVmwcE80oKzamRuPc+NGe\nd4mQPmalhcIWY1OKau/r4HtUMKG2W+McSLg2TegDu7DAJWjhXFpmVgffVcIxxMsZ2LwyU+8h67ns\nNNZ/Hdu2Ft5lzNWINdVwrfQZCPr35RroM2dl8PzpjpRkWaDVQZdD6rdI3ScNqEZQ7sQS4XNKN8Rc\niFTLY1jp7b0woNeUiJ/UavfwoVaBsg3gLNYfwAMvCzBoACsSH/OisfKg89looE7l15pXeFYZi5v1\nUkSKPceLJYLIC4hgxQMDvWrptt8oMVBBFIKy19ox2mjMoNfukpk7ux9sHJExhBJElY4iDr3FtZH3\nYv/mLPryfgczLmXOkbIPgXUSIohim/yVE1QUuD5tcnQ5s0QYK0M+5BlDBmYDyDY2xqd9RdOnpBo0\nIf3Ugjq8SUJT41MGmWmk9U/rJK4oYOgYLFqe6vgBEHhUZhwaPvTPvy8AD2iEYR3gc21bADsIbfp+\nu2QDA/PCbg1ersXcRN85d3QMQhZBoufEX8hSByGYDZi/6grkGU89GkMb2xlzrwHzkrmFfE4ZC3iJ\nK1jPW2+9rCcx5jVrQQUR8D0xp74C2HQq6smbSRVCEIkawCi0lsdju8bPJPRWWuQZHvRL4x48XomI\nyKufO3MtLXfbshbfKzi2I22WyGVaLBbS2X1gErj1OMaNQOnOdXSc0LG0HZ8lyfxzeqxwDWQw5jWP\n7Vb3HzefcbT5EudSBLFwjLTx7Gjag4I4j4dogbAxMMFrqkuDiqs7t4ZaYCVTwcly/wJr3j0bbgyT\nNbOntcUTAfLVAgF7o9uryRw4S3vX0BUDqEqZJoGD7fcIGeCgYzZfMkuEEZpjLg+zOLlO79V1waG8\n0HrC9Q5APdaxiNOE2p6g33DEEgHljACfF0gevG7K/31zjsuQC6i1676B8SQE2IY1iWfT92CwUaRV\nQFhQwcR9o75T3ofSwfb9PqdwvKvsAZwGvHalpZ1131VARIM8T65qHfAyABVBF7y1G4pZIBgP2643\n6yf1N9tS2Z0BfJsHtRmw4ICKmfdBo3UPQRv04l7Xl4IH57uyT0KJWB6it2hKx8MHXUtPjmdXS9YK\nzkZl1D7h7zn72iHsqfH9+D291VuTNQffJYvJRkA1u6X6YiPw3bJBL+VXsLyACFq8uTs26s1jYbY2\n20JUV0eNieDdD4hggFhHd4Z4DkwQCPC900LzxmBtBKIwvlHHQIPxHMzZ/MZ9fILfvwqgIEwURFHE\nm+3FzXh+U59vAd6grXuKAEZmiWBE61mgQqs1gbksgB6AB9/sKvTOcSYw5ucE6eW0VpbXeOqiB1Oq\nKmZaPZK+O8Ylhyt+vrBLzJbADf++ezJvN41DEgEZ866mDcWGU/tTgxVFBixuXDq2usE+wWJFr88T\nhqwKm/jtBcfvlhMDEFADesb58ssslWGu5ziHtcVGoLESEdnpDwA9UJLMOs9klTluAf10Hi7VLebK\nub8gyN1pF5k1H5dgyI0hm1uVoS333ClA8HBfYyJAKICwem8argRYQTYGkjE97tcI+43wUCtz7vjM\nx/1jbgzTZD6PUakKQnShP3jdkyOAHOE+yzZShVTQJxJ0Q4wPgEzw7VfQyFsXgLk9R9c5i9HnmucV\ng99jIA9rrn3Q2Plbnfs3Sq+2Y7CiPnNkT7jIOoF+s9uBz0xiQWxBQ7K0jRa4T/RaPGaBfkf7Bwu9\nRRTazpsouIhUk2kA89Ase8XGgVwiD7SfZCBCTT2pwqbrysfip3mhu6dzY/cOKRC81nhCGayyNJps\n2cW+8lldrItzPwl1yzNQNx4zUPGSYIsfc9cbmyEZTWvvj+BBZhpvsXWULE9v6wdGViqAdI/HqGzw\n+/mxj896TslAtia9J9ym3BxF7SFN/CVd8Yqs3iwNFDRQF4XjN6qAOvgbywFxI/YbpZ0OtIOlASyw\n9mbhpZYJyXpjwDW4lJLl8sl4Ju1SAhLZkc4P3Zf99uU5rjc/xNKLyLn7+N71QygvIIKUBeM34f4Y\ntdlmspogs5mfMNpEYW32kQjIzhG43QCI4Ne7pdui7qQMDwRcVRfBYsBv7v7dfYGGJgZZimg82q/A\ngcj0jU4rDTSBCNLTXRs/ofpi6v0QYHwKLAvGFzX+HKBJpDJVFpdBx/zh2H47fussWvdawYIVAQVX\ni6rdXa/UbJxSR4Jx98H6Hp+gBYSWSFPiue/RUT94o/WbEgQBgAhApuduAiIl0nlAWLgEyffBfTgS\nsH0HPC8JYlk3zbz9sfJcc7wm+8mknccoSDvacR03OXCKUx0yYxvabeIxuGsD7jkLA6xq3a2NV9zV\nH1yKVU1+UN0OtKr5dfvMJETxs7SwVpeELQMPzm696bcG2GFMkaOVy2mMhMFzLDOHthRsXcu0crT9\njs6PAQRZrnJUHwIPPKDBgRpNA+cDIerx5O4ScZYIvn9wszjHdjPrhxooLpY4t0qZEw3JYtZU/3IV\nFiyFYkC8yj32kfQ7e5cgm7+l8lrTs91cFWuUq1eVVk5/VKQYC2am9vidzx4BdyQCQpjulL5HYT9z\nZzD6RGZ4U6IPItWKDmD7EmkIXZ3exgB9wP7U0pkm04QFD7Qq5kKB7EiIHg/t6XHnaK+5JWp70+Qd\nPgJceK3xJZY/Rq/sd3wnXzqqU60VhoEVixeB4PhzP1eV16GAlx7I5OwYQ1lWROpcndGemgENDTiZ\nACPoBpPPMTPwMbmsUnnQOHU/cDex6Tqyv8ACK2SKwRGWqADWb6sl2+J1MUtbzUCnyxq17FXe1UOP\n5koxwfypDzUwG9lQBuiqiHNTmUdXQz+H8ep13sQRvETODZYIByjSdC0+lov7u0lT19YgrHLV6iAD\nNqvGP+7DmauCAXzmDtdaf4GXY6tk/32rciYCZx6UAAjR82+027xJ6xaRBnb/rs1wXsofy/ICImjx\nmvkeKL9uXHP1pbYAdcF/OGfCQ4rHAfQ2W7y20Ee0L7gCwj2mqQFzAaYIFgNemFirg7QFWYOf9B75\nuVt/bvb17lzwNkRmx23TB00v+aRCjc+jrTt9BfWAitd3YkGMmZrgX7rUZ8DPsosMqG8bhBEMNyI/\nr53Q82al/uWanm6xUFBh7SwRbjWvsu7LNXhdJpiVZ8GkGBvOwkXbR+orJtwQ0DxDZoAUg1le0Ovi\nHK0xG7S/bmyqebA2k25ccfxY+Jo5hBYm0lvbGNu1UCPw9+F3dddxDDzOdfaPDBVzZ0gyanysREEg\nMu6fW7gfdf6V3yuHd+0oCYPJQb49iULctQpx66uyrme37v5ZZCaz0qSfwvfVGbNwQbkQj2Stgg/A\nsblP0TXLBTJ833kiEFQ3mHLeW13PSQjk1H2e4R7UFktbh+OxZFpAdmeowmsLslldcmuIoNN3NKnQ\nGoEkMwjkDkSowkIsh2QfOU3ieq3mt/UdbnQPuFEaebsuNPPmTZl/yx+58ftS7ajRoAYIDIIZaDdZ\ngVmquATUrmACzrv26BxGwubP0u1HCiJYzvdE8Kma7wgemOY7AVG5eKEfQe6Qkx6Dgf3Er1VLz6n7\nN8zTp86iw+KxmJVBfHYQ6AfjKvn/CaAh+hVICYMmiSBv48SZcQCIOPpnVpcMyiZrsvYz7k/+9ev8\nGG7vUwrzdn4+41oFHuP5LIYB+r5M0nI2roG0p2a8jrljIpDpdQURZl+WdYp1u9q4gAkS40Ww2xD4\njD6hf8YzABjWo1eKLJWfgqvwmWJ3ibjvqr8boCqZW236ZMffQ4hWN4bDXWl/96ipHrM0mKRoy/rH\nJXOtOhIfxFZg5VqsW90awO+7ftm1WNdblx7pfgOW9JgpabB7T6luvO+HDSK8ZGco5QVE0HJOhJHl\nWrMWwM8e+a/71r9+Sgs8Y3SG0q7ESMNxQwBRyLRNRoAghJkPc/sc26BXSqSdTyoEWJiWItIzgBUf\nFG5BOZ1Ny+tprKbKmSjaPVFNvTE+3udRKTrSEHKg6ucWMCCdMlfQil05JnpPfqBX+k5vFsr8Lqo9\n2+vbgtJjLsyvVDPgBLPprQr3Gs3MsnlsdIMNHEZp59XTLvTBuyiAye+07xDUzDfQzVWzRKCAdFng\nQmaIM41S1bR+XLhB3RVSKSabKVsgYLPMth9O8Yg6wZ3G+h4F+3Q/I9PkGvDTA1TZmxHT0Q8dwcy1\njVwS64MFnrX273buQEpiDK90DV07Qf6Nau6+WhZm8MtXxR/r5qdl/sy+rvQKc3N6r9cAlDqhn/0r\nZz3cdMpvH8j0Rp+J+btWEOH6umqfFwq43dyXuf9aszHsNMholkMexeLJOIqw7AGaaH+x5gFauqGH\ndceCGMOQ4pGFwIHfvrAlgq9hKQ/Pca5WALY+vAU3Wiaa50mTDs21V02xVUBW2rZYVuDgViNdLjVd\nIOJroP1tiIET3++Q+PBe6Xy41blwfavCyNdKK3/ihJJbjah4X4PDho5LXa+WAlBBfPaxLv/rHAVo\nAoApZMtgQSze4zXfENynCEA3hTWY27NgiUBZM8b2LKZPQQjB/J0DRVTrtGu1ELlqmVWAHRMd2rlD\nG+fqZ8aZehYJjWSepLoIZpaAcd+orgGOnpLAnIIwDXigoAcsHx1Xas8CnUoCKzZWRg2oXdvDN8/S\nDdozu/x3JqAyWJJZdHzUncHdY3I3ASPe8sI05QN7TAxyWO47En8LSyARkemXZRK9+qKsyTePZY0i\nRoLnTU7UzsR4YvdMPVaNeqkD5YKn8eCtF9dwJdA95skpVeCeh4DflMnG06IapJh4Cd9vZD9BAPUn\npWlIh+74UwbMpkmg2qOS1ro+hoVrkwvYcjlYBz2/jGVeGGrP5Ijk2hj790MHD15KLC8gwkhZvomY\n3fFRiaJDJW1DBDEl7UQ5pwigmZ3FDcwzKJDXYa1seYj9umWUldwkTokAZMGKsDk5ywH8fzbCrYI9\n3A880ScmHwwA0l+WG7UOzDPnkTHOfEZrbIRh6lW10LQhekIP82DlVa8VXX+9qULNE8UluFUN2pt1\nMb+9vakC/rWi9LPX2vw1AJIqmJkGqUoPpb+I9uthZk3ofa2507HZ+Y16vVbBTCfD2qJtq1+eS0EJ\nvztET58ITJPrM/F/T8JMHqke/8WNImO2MG9XlK3ACyE7AhHGSuO7nAhUvCNekh6S06slWTD/oRTe\niqF1euXdD6gOQIRbByL8eFXmy69pRoS3v1Hm8fy3yiKYvF3XZ2rE96lGmYYLDtLBiYjMz/FjVUBT\nrWac6Tk0SeursoaukI70S2fCro9/+6Ggk/DJ54wnIpV5YWbV07SDmeqXI+JgIZq6/7xN2jd7TssI\nsTYy004OCQu+LtZZzdmd98H/PyaocKA4tJgxenCP4PSFyIogIjKdlfkB7RoYdtB5n52GMwplfvWw\nMAGtXd5qe281S8OXLoob3gB+ycdhwnBJPIHmngtY8M6OEGLdNexVs3yvFnGWCAA7zu2+hsKAY/rt\n0PhCF/daQR3dY2aPEXAWkZrVQj/01KWcs4wzNLYngHaOmZjpXm9uhZhrQeiPQEADQvtXoflrAFjz\nBg5E4HSfredhM9cz7S+D4h39zorJ44m73tDv5xa2RBjqg4jXQuNerL+2E9V8HmszHkUqzTBXN9zk\nfGG71wVEWP24gM9v3xU6jRSwfqwtgLjFe2lTkmMsAa7tDNzFunEAFdxUdI+YKNI1/+D2mCkypSgf\nrh+6xniqz4a7ypE+ehCqocjYaV2Nb4AAsJ2zpGSX3ulIFqcp88aplUsE6MesURrl4EiQzWodoHMg\niYuRzSGRuD6G8IGMz8oykPxwSv9iiaDlBUSQlpkHIj7/SomKbtSTd4WYrfZVU42gi5wWrXeqed7w\nWmLq/KFAKBGJ2vzc/MYAgbsUDqhzcEG0Bl0dXIjw7qZsFlNlNPtjQaSn5n7QahG4IO+8iMjkSS0P\nVHiBq0OX3Ms+2XYcqTOh9/fFTNhViwOT2q+2VfOFvOho91ZdFt5+UTbP9Vd1A5t9qYLOazB2Gpno\nqpoDylJBBHyIneb3XmogzpPblFSaXn9brgEY8GO8WKkFwg0sGbR5Rel3DqVHJgdoDcDY+o1rpZsw\n5sdcueaqcfWbsKQls1ZYTmDGrLnKk0ChEPBYkMqyjXB5TsDFdC4AJAGjAo2XYzompKHOIoZzNPHn\nFOtD4pPObk7QoN06RgUm0x1du3F1fnpd5u1XPy1M4OJPKXjwJ7/WRur36CZ35dp1WQ8w5Z67tFYc\nHR9CRH9qvwfGDy49U10esy8d/bsq8+32fVlnHMU6BNHSMQHQB5LhaSgLM9DEV2o6XNf65P//DF4o\nd2fo7Wqok0SLb9sbLs9ZD8z0zm8cfVFGHZq42R3ovIIIDqTkDAmZNRTmx1LpFqy0umuli2tHKxXM\n7R8RCZ24YFd4vY2twzaqfVs4cK4x+Y4Lwl6FvXBGAGlpgEDswSe2xYB0H8MA8pyZJGncCBXupuzT\nJCIdfJ90b5k4lwxod6cH+G+X8wYmJ0oGi95vcTLc+05jmsux+VvdfOh8UreJXQOLDL84zzg3DNQ8\np1wCMjFfNXQUceNn8w/nM8Ex/KzPc1XbDARKM9w3O9I64Lo+3SxiTRmwYETSdeL1tYiIzH6t7CPI\nrLN80nSiPh048bvW7yTDzpR85lDDK6LMOvUqDsriXbWcAv8CfuM0haDca3sOFEMMDUKtAs0ASI74\nEGz55PZWKMmqq00GFOr7oh3M1WTvqvE12n1jqDwHxKrAUnt/T7/H3Bk+pw8v5YdVXkCEpICpmFyr\nJl01zVMVrmfftqj/9FRZWJG4icASAcQOAkoNCFSZBEaXj0b8HCGi/nKaqzFhx9JFOarQqcVAr8DC\nRH2pJxobwAtAJlCQhuX0WJ8xUbPliTJB2EsMAQ5MTBTaMkbxTO9Xo9YOq5ThWrB8W97h9aaCCIha\nD6by+lrjHih4MP9xXRaT18rQATy4VvvRVbVEsJ1BUwYJMn3MEMPA9Uuj4M2uFCh4bP2TZ/BzvY7n\nYYrezSqIdaXxJm4ObU5nFDCPlt2BNWkeIIAmidoIKfEgGGs7cIc5npGKsjYIRLzm0y73eFAMQENr\nGgqhqz6bU5VmpTH3Ru531br7yMqfUsZcFXhdVA3f8C7Mgo83vcf/AHfeKGAD6xkRkbc3hflb/rj8\nnnytgU9e0wQSMW0n1sdE2wtA4TTStJONOda+W5u6brHGp7f6zV5XwRGms/NXaq2g0bAnqgnyVhAW\nLZ4CofoRmtEcNe1nD0Gj1h3Kdz0mCA2ZMz+3DFstuP8H11tb2BIhfaYeZyyg+ZRuak0FEGGu33ml\n7g0h6O4pWkFNE0sE+w6Wr1L7mwxcf1focP+oAOsx7ie+nGkvqABzbZctJbII9UNxXlACQLqA4kD3\nAhKg3esN+l9nrpFcUnqAhhbqm32jsYV2bo9A5zWTA6zdJs4FrwZbhACkNFiFp6kbG7gqMO31yoI+\nsRjydcdKNlP5u7KVRmaqY+90AZAxIWAv95n/+Br6oy4s3InUdcCB97z53JDyiI8itt1apgXLPOCt\nVFQJAouh5Y/KGp28U0XHth0Ry0aGPkw8EFyOsFJggC/VasMCaKG8sUsZvtQ9agX3AyhDOhxrOxaY\nl+IrpSmWYbmmcwsuX97agIN9Aug6O1wPfO1c+zlVJRXcN3w2nupio3ufDM/nIauebH9DGQuWzfck\nOoGmMF0I7fyAUzf0UmwRXsoLiGDFb/zdAJdQg5I5oeYZ+eQ5GNfCtBy+jm4e07iJ+BQ1WQRv335I\n7wLNEYIl3itzuaxMR/dGKSJRjFzoj/0ESr3/4JhK1YRMXhfhHIwi3sG7g+D/MwEDHiCw1Jhs4oyg\nln6D3YcqMn2tFgkub8/q4Rjeb/FGCfuPdTN9XdPTAWBpqOjeMXbKfMuTatc2+qzMVBeRgccYWZjQ\n2TyU8Nu5pFugx6Vqq7pWaeWCS3a+uTx2RodrbTsovCkhLgOCKD6GPPPhFZxg5YRWcgGqgEM5HBOt\nZ5YDfKi0WRrcuyCqMefc7ts6zPRyKsTyXlGoyUAxjorM0Zg9U4Q4CaAV5nqzdNlBrtXyZUUUQbPM\nhLm6VeENyE1CvxgkYYHHm7vD5BXAwFR9W6eJ6qIbEAj885ABh9MP+tY+tnWPuQtkGhXWTrL58SVW\nM+H5xKSx9snDCBWcu3w+Dz2vPKMcszgOVkf3sR5TyOi8/vSRvZEe8BSjknv6bGnFlJbDVcHcue4q\ngHv6WQG8zogXo304OYv9o/omY79g64csRWFNm6x1g+Y2HlHSjCQjAEhTdyBrgS9D1hMZPWgC2ihg\n3fkJeIxuIL1a/cWI8s+fRKxRv6RkdVnbnmWvwne0vV+nCQSzicfVMTdp0Yc1qUeOOZK5611SmL48\nZ80bj+fjlNj61+MFz8ZcBSDvdQMMOpsbg95zCMSyXEMcKKyz/qnuHx34FwUTpm+hINF95a6OyHEf\nwTW4N/hAzmaJQO4+Nb5XBqDpcQZw28X4oCxVc8omk6VfbQMruh/oKuYHgqjqMztnbYAYKZPKEpY6\njl5hTJn2Vssdp7B7jnXlQNVsPjKA9JyYCBm54H1z7P6X8sMuLyCCFKKXakJUS9ypJITAgxDIReqG\nyO4MWa5e+BRzKkbvD48MAVvSGl9m9jRcB0Eh9w92xq5NXxUmr1urmb8KGDCfP47koJ7t2ynUTcrm\nM30bTVZPqnE8OiGEmdPM5/ZIjCIKxvMU3DdiX+BXurh2G839Ma3Tfal5YAAAIABJREFUvVGmbVnf\nyXx3FRjowCA7F4X+Q9lFzmqBAQbZTDG9jwAEjI2OrY6J31jnOu7nLb+MNIUzDwAw8ExqjUoe52Zm\nzobXahjuRPuHb3Sv/b1Ta4inU9vRKZ1KAiB/58UEAvg3wzTRPbwCBB9vb2h9jVsmdIN1LHWsPntz\nAsPnhUw1sTTBtLzUzCFJZsWz0bn5TTELMkHo6OreFVNVpLU6bDV11aEF9hjQwzrcnRLLgW8wgBrU\n0aVAnaiP/FGtlWAJstmVdfe0r1Y9iKfxhLgJBtS08481cpeUS/Kuf1elI4Cg9qEPtUTGLWs+VjKQ\nowpUqFTr9NjHFFDeP5Qx3mj62YdttSIBYMQ02Jsv431u9f4VsvHc6dEFRDl+o3sLgZ3nZP5hbwCw\ndKR5KJLkXWfzbck1tIOlpiIJP7PAcRaLqI91PS3J4gDx78Fvv6RYOyIiCMh7X9Zxr+Dx2Qs1iKED\n/3UCYw6ndvzMxx2KiETzbfutjaeEo6/b09EXBlbAm8iZxXdpAPRLSqMDcteG1n3I9kD3f0rJujsW\n92SoYD6PAUMH+w7ZPFeNN/jSnfZsU5UqQkGeJ9eRD5w498nJlOjKJ5RgyQZWzNxW9DnO0PNTXFjY\nZD/wiIhholYPcAWCK14I8orYIysApMpfOQbpOXOTASCmISIuDhq9C//2/1+S+e1zXBLCGiL3wR9m\n6eWchqT84ZUXEGGkWHR9CNUbaNSdFqYBD6JmPZ4rvxkQ8Kbif1TM7dm09iq0PtVriwdFYIH6b8Ho\nJVon0kSZT7+LhoRI0SbUIB9vIrA1fn3neBQZJpQcLT++sJ6ES4FzkpvQDZaznCVdkWo5APAA570P\nuZr9gSk/bmMTExcoDxvVUTdzmHL7tJc27mruXYNjlqPXyth3vcRfmDZWnPcbGDOBKEnq+Golo31A\ncMdLgij+MotpgJ6z2WeaQi1sOp0FA2XwoA/zmRmJUqoJa702h+sTCUtHL8hrKtajgmMTTZs3wZx3\nC+esZuQnVQ4jjatv70TaXNMckra39L1cQ8pSCJArF31/ppstzGLhc787IihofTYChWYaZXsHm88E\nJlAMAn/tkjLE1I+Zmv4yfUUREwFp76YjOs1GE+dphsavwRw47PR74LscKluwO7MA3woqlptcaRkE\nlV6fc3aIgWlCSfA+e4v9j8y/LO86p0yLfubxmShp/IRnSI6f8u1r4MKRBofsj0VE1GwcIHYValwz\n50hzTgTEnfp2P7csFwaEePpH9G6E7g2VbKwaOviZ+0abylKPfvhGYqN8FyU3+479Gb2fftd11g6g\naZIbV56sjh6Vt+idlWSHoNMItnjBGmjWUuJ+ekkxQAmWNRmO9BEQITMyqO0nN1BcCIvFAbLnPoJZ\nHyMVkDFLteFqsTvazdgF+mZx/CRcG6MzLU3LnnV5v4bK94yleynfo/ICIkgh7t4kHowONGd1gZfj\nfusCx8H8lqLWeiGYteucxizz3+T0RGPmqc37OBoORgKCxkE1S5ONE2z/P431cINAgNpvZS69zzIY\nTGbuPRGET/VKg+MAVTaNSKLJZBAmRGOn8cvMoLnAamS6hs+C87FG1ghslips9YdodSAicvoGmlsE\nndTzLgbE9k6FoU05QkjCd4DLgYjISqPYPz1Erd800UwhsCWAGou/4Xz2dvqNjqdWwOOyM1NxaBWj\nRqncX47MYB/dbgVB9kn7BauZe2jA3PQ2H8UO7Qx2b7B4noZNxFHSjZK0WNVX+HmdyIItPrf4zZ5z\n26MgNunWAdxnWg/mEu1pyHutq/273RQCtrgrZked8484KzC1e6/aZw2Utd1V1Q+vSdYAe6EftKJa\nDgAUq+92/bowqQ93BUF7tymBH+/VAmGT0IPDyNq2XOV8PlH8VwaehIcL5MeheAqh2D3tnOJHwNT2\n4OvgGXQM7k0Irol+cf98XT1ij4HrnddUn0sSD9nclfG/fyjf5W5bjveHaomAtb475/OwvJe2hyCv\nmm99+h4PdbTjqXzr2SL6OfngbRzYs+ZSb/eGIX9wP3+yYL2lPT3vFUrQUsKFkSy9fBmSteK3y+uk\nBZp4BG6GmbmzJBJd27B+O91pdpUnZ12g+zVbkeD33ilBsCcwvV964IeAo0sEio6OQwF703v9giMa\njlgNWYrHauEZnxniWYyBOANlzIKgukrEBkPGI/SdTO3Z1z3rV03x24J2J6rD6YBLHfp2ABEeKxU6\nT9QSFW6s6oZkyiRHsE6N+2lsP7vGMbs8b2ztqcIJsUj8JGsEbsFxbI9AM3qvD/yoAzVBwHSNF+P3\nSRRYK2D+naEQc2Ny3EfLn5YmJUo4OkZLhMiXNRYJCfvCdTxPxwF5PxdUQLy30+eifn/My0tMhFJe\nQAQpCzD46W/K/4/3hakCMzNXAuejVwM8APMLwhb9NonQmjCsP4MQFxmlzCT2Y/uft2wAwQF4AG2T\nF/q7X5RKK91YsJHttjGKukgVErAR2AbtZtLJXCd03DTPtTGHiX/kibSch8z6YUDzOAl5ffW9VVg6\nq0ltt3GqGgMPIBzqPdDqbCpxOLwr7YBJO6nZLUAZEZFHNeM1zSoiyyP2hbNauNLx3ygYAw2ud2lh\n6wy0B8Fg7YLqIdPE47EcOW6ELxszFS/v8KQMhRda9/Y9wJiV34tJW6cXtKPfO6GpzMjZpp5scuyX\nO4bEs/uwr/IxYd/HNIFDIFtwBKaD/Ayr32E8H+7HMbHmsbSeFAMCG//WxT/Bub0BDC3J3hANQt9v\nDkXQmK18kLRybfNY5t2jglg+zgEDobwmvYB2IEYRda4+1KCO6M+Hp+Iu9G5X6OrDMYJaWRkDT7MY\nMB8rlfFs2+U5Zefd/5PknL/X389M7i/DaqG6MyiIgGCYjvzt7tXtSOnW014BTQUBntxc2JEVAL63\nfxfkb4dwij1m8dQGjcXaNFejNNo5jnhWHMeYji/2J9PsZWb35bfOXdfN/gCNaAQPgjEA9ZfBpks0\nkoEG4UbsE49qyqbWPL0LrNi/1/ScyO6jgNDBBYs9Gpir3wzf5RzphEj9rjVeEwQiR68kfoexwM3t\n2Og+kqWMtMCPelTsqnPJPKwdC2yHe2t72BdnlHUI4NunWhvwfV1yHtuEURWM43PAI1eaPYaeXa5p\nP2xP1b5QANF4jZ7jUnL3d2qJgNhVimYfSyIf4+NEqitaFZihkHDWaSb8tgAD/waIcCA32yCk0/7G\nLkynZK2zwO1daG29AyhEUEeAKE6ixzjBEvV0p/xgGJOobDMr3cRyasjtKkvLXvc3CO3SlKPVjcBD\nBHUif8UWqWNlaE8s9/8SNrSX8r0vLyCClhDIT4nC/aYwu2Cw1xp9NUSWNwGKotUm2pIDCYc47s5t\n3TE/zoqySnjm2HsdENQw84t8LJrBlWoj5xpgxsxbHQFGKkFsEMgp76M5g2HABtEpTwRhwo/1kK+t\nR29r8Kzye8aov3+2zmgEWDzcxfgOIiJTzX6AurA8gRnu0QEEiFlwsHgO0Opk1ijKrJF2B8ybSB13\nCIOPh3YJYoyh8cURzBFSKvprm1M0Wc0KLAYYPPBC6/4cNxx8S++nD4GWBdwaVKo+c0Zaf8RciIJA\nZIZQ0o1L32/MEsEAADNb1GdmrgUIrAiNbeJyMxQskU2BfWlAicTcE2Mzp7zrXnOAbwRmA2M9de5D\nNXVnuW+tljRYx72zFYcrFixYAFAFFwViTBjYDKbOBAoBULp3cQ6WClQA8AJ4ADDL07g2c8jHhX2A\ndaePwqttG740wdEkHkWGGS8/n5mRbWKQXNgf6xf1D5pNAHwhuwrFWDANmqN/sJiC9QnTG78fMXjA\nQUDL83Xt0Poy+u81wbAGWo6BQy1QcWlhX+ixYnPXjY0JEEbT2jnVkeZ79BlUJUtVaNmL1BKuU/Dg\n9PsFITjf1fV7ICEGe5XPOIM1Db6lBiaOvIqIyE7XK4+X37NQLrFEwLwDeDy33x5EUKEflnXq7geL\nxS6JhFhT4oFWujllwFmf/o7rgwBrPR/2IzrWNK7xHUs/JLSHZjLrIC4m6LoK1VUwtu9LDdyat+zX\nTUfnsP56V6lHfJx35ff+UenBk6Zz9JYrpATZm2LIg+QSzrFiwwMOZjXzAMZNhXVPrwhs3hEt8u6T\nnAkCgq4HxSygLEwmwc88tgAGqDX4ye0HWJ26OD5GR7GnRn5wHxSKRE/7uK+Xc9of2kfGCqpklmIs\nL4yVIYDUl5d0j4VHO3eXjOivfnkBEaRsAJ6J3uvGDNN95Cyv6eXqKmKikEYjbkwt9bm6ZB+8Kade\n43003zD6cK0SC498fly4fFQNFAjt4qSEPAmkBoKI91yoj2bIrQuBDBuMEmWOHyGSgQft+PFGj43B\nUjllObf1JpjsPtzX8LpwL5jqhsoAQZY6cixPOqPxbdoxD5oUgQoM+8OxZdYMPDDzcWXG9X23fq42\n869prvosww1BQYOno4IcDuLeEV2c2r31HObvsY+bOHrlPUdmdD+O3uUBT3+OT+FYaVKsgVdoFaNN\nRHrWgopIk360aSNhE4eAB1/wPSEww/WjCwKpjY6I1G+4de8IpmrHZuAQELxWEWAEgQfHZM43QrDR\npvqhKpAZ160XVNgMvcmB7oYGY7FS7SQAlqBd0/WEHnPUc/8mQ0G5sm9m0cMHAiJe2k7tJ9qNc8AL\nps+Z80NZH7I6KFkcELjuDWkwx95prF+mdSZB2btfwSptutZnUTYd385QCUHwKPDwmAsK3sr2Sax9\nB6IaOkJdiDEWMF5Ecy8YNgMgfAfxP/zCFQQ8/kxd337uAAIV7Cy1qrbn3ZH25FpUA6LGvULExbUx\nobWlBxhvVlqMzd2hSPW+z5YtZ4ajoBO10H405sKIMuHjWHrdZwBWNSOQE8Axh7r4OzzDjhFss/4G\ny644meZmVVHr129Fz7ngHSaZ5Y/ui7BQ+nBXLMbgnuRp6PHECo7cvdX3E3MM/Q28E+bkPvJBfg/f\nG7gZhXIOKCnS8hdGg70lIDwm1F309Fgq7d5hv3S8J4IdK+gO97+dUyJBMbRvxiYeRSrvtjOlQAQT\n/DtUOqN8vp4P7sro5wi9amOZDBfSu4yui+lzgky9lF/Z8gIiaPGBxWD6xFHosSnPHALFZvj1vBeU\nRetEBBWExKfEO9EGwWbgvgDlP+pmfKT+iojMT5E4QwvghRoWIM4qXJ6M0Hnz1ghKZD74HlAQqSm7\nTEj3PmINeNCi10NWGdmYmCWCAhdAjO82K6szVVcHjAWDBplpsgUhJBAl6ztrbj0DZS4KtsGgvfpM\nCFK4VgXGdsPZ05zKQKjWXB739uF3aSfuGtNJF+qKiGjcTJcxoBwxVvOEacM7PB7RXw/ElSNrajN3\nBttQ6RGeMTbGDu9FmtEssCczYCGYaJOBJYJGfq6CwWwikLu2MYcghCwshVW57r/dmP8s1xky/c/c\nN5o6WeAuEsxQw8d0mRgTzgBa8gx7hyhYuJinBh6sp9H32a/9nTFTABP1+yTvZVYj+vsy3YG+NxjQ\nizLjJOeoD1kKtmrWKuHo5zeAJDDGlhjG/PUd03uJMESWLxP6HkHgEwi9KrTC+sF9D9CrhX6zpYK0\ni7Wm+3RWB/MvtB31NT6+G/4iDThxQdwJlKzVlq7oGvWApm7WnJY4tSxs9i5tI4BEzwBkYAX2UJAV\nCDWPDgDfOLBARGQBF0sP9FM2iwMJX7sEhMbcAn1dOZ4E34Fj6bDG1JfPAoT999DG4YaF7+H3/iMB\n6EMm/CIe+InH7PuyVhvrMGTcpDGo6TprHRPIeD7TPCwlPgubQatqqDTNXFaNz6x1evt2cR6GFKb6\nQnBffVB3M2jUPb3HXAJ4sEtcVPF+R1onmQWF9f0Q3/DkBHmev8w/e8UHngl+pVpNOhq5U9rzQfmf\nd+XZH96vQ59E6l5v1j3kWlHqRF54b2MUlUEiNQMTLEerQqc+E99qq5MKmXLxTj59aKVB5VpV8LT8\n1ZH5rGSRom3MLeyBfgvM1vsPsbxkZyjlBUSQwlycEiFkZr52YLpaJPlTTHuqti4ykCJ1odeAW4mg\nrEc1Ahj10WbTX7zT2UsqSqSMoJO2fSxdFgSpkKJwWRqEKwBMLmuU6ProdlNvXnewpIwKTEMtRlXU\nyoiITMzfFX0v57P0iGcTWsnawM8XpOmhjTozvT/buIm2235fJtLG7OpvP1/girAjEGHuBDMW6vHL\nzOWSa9yrse+CuhAGffwEbGrYJLcX7EA2vxP++5INzIKkWuA0HFurnCG3g/7c1sE4WcAoYjLL/XyM\nazMrS6Uv1yqEbbxUfYz3wf/cj/GV3nc1K4N8rekVEcRzfuVSdCmAttC6SwRKTegMa8ygxMrAiqmi\nd3eHds6DNgB8XRqoAfCktnelqStX07hBeyAT83luQi9aw7puumclzV6CI72WCbGXzLmxa7TWM/o8\n9gjz7SatpLkuuLo1qFz0IfcZYhYLWJqV+VGZXw2K2coXVjjAokj9ZjfL4he2vi3tLr/S/rqAZdMf\nFzC3R4yaJK2f0WME0TvH9w+gLAMi+GauPQbgRufHASCCdi+xHmEhM6OjHyuZEg8m5kjbiAw+OxeD\nqfEvT1wEWflRXVBagflIQlbmU133i8ivAMzKQHf+HYIbykeKn3N4xil+hzGQgi0RxmCcMbrMj2BL\noKFzInEuEOZXLZ46PMdLrQoagKZFLEH7HNtt4gAkzzaQg1XN7lx1N43zZBL4oXht1HKUrlUQL+F5\nKC308djOZwaJsuxcPAaZJcIRIIIe794V8ODbp3KMlnZxLY0FkuTsRQCId8FdNPJr+1M8X/5XEIYA\n5WqB4vpHY5wqXppxi2DYJMytFqjgUi2RXtCEl/ICIljxyCIW5nqe2D9LRP1R2GQuMBSNBj2pw+cS\nAskF0b7Zp/wUgtzopqSMHrREU2dPDv82M2slRiIDTZi5nCUmq6JpJGGqlpnzDgmn2Wn2Vc4YCmbO\n8MxJ0iLunyvDjWBNWZ7vCUWi9dGmq2tH+c2WCV6Dtldf9oNtPJlAFs8toYkcmQu4xEF5tANpqQxe\nclLitYzxNtBAr610/JZO6tocgMpjM1YBMOEkcYp5jG7kV8o4kYaRgwh7LQczLzb3g6aB3ASISY+M\nvX7XJk2dY2Is60EUjl5p8LCja49zz8NVBICDiMhrpVNvV0WIe/22+FSvv1JN8FVtDzFCFh8URDge\nm/7V92a6VX4vJ1XAnyETyywK/QtXB5osaKoBEMAccuneZa3gBoRgAyndhJ6QBQNbK4SvMWCdEZj8\nAUH+EuEwa72ja2MpQRm0M0HXtVet0vR+nRT2/m5xWjYUBK1T8ADuAyIiK83CAzcD3rvWPvsGvWCd\n87WHeNb1dQGvll8q+P6j4rqFFLoiIt3rAiKcd+rvP6LMMdP/xKT7U8pQWk7v7mOp5gxY12/n6yeC\n9lC5KKMLGrdn634+EnB0zFS/DTY5LPA1SoFz39QRU56gu3FMMmCXrY4uyZwJOt0l52oavZaH4Meb\nGw3WiWtwKI5FxpPUNanzb8SdobE2SJ8SS5Z6FFZjbMqepVg2wOfM59tvZ24rcI10wSs7pQMWowLx\naM7tukN6bB7HLgGJTJtNcyHeJ+H9ODOLSA46ZG34Z4FWGgCWZISAkuuDZqWB23LM5oG5j+/R9oWV\nSEOxz/z/Znmmj/KKIXxXCs/i3red+w2w0vSyvR888RhgMFaOP+jsBL28ZGco5QVEkLLgPIgAwnF9\nUyICXkMAUmH7flvNC7cURC8TintdpHD/ZJ/CKADFc4cRaoAAW2w25jXiNYibMvBLtfOvr1ADA5ob\nR2QU/aaJDRnnICzM5k6w0MDsnT7zoPZmHBxJpBWYMY6XkLWMoEPrBRNaBJebO5s3y+oAM14EuIPm\ny5nvzaaRUGSgjmn7IMzYRgiQo/YTfoZzjYg+h+bLtYcxqSlB8budY6ce30zvnaKNWgcCO+6rwa66\n0H6ppO9E75jhDJgL18p8LAyEqbWfdFog7kIFqNw7mCl331zz/S7XaL4QoyzSMu41xaPOw2PL4nE7\nMRAi6nRpnTx7RPz2mTDLZ65VuO4Wfn0gYCsE+HLt1q23H60LnfrJVx/KtX9U5/WPr9GZ+pCuAAxI\nv7rfl+MhAUZPxPmDHvg1AauH22lcQzNnSXBzXcCNqWY9GUt5u5hCSw6mN1njzZlY/LjaNzMT27bO\nmAuGSC4APcdiqsqIAA7rNTCP0ERBCxVikJhprq4PMz0vJQPZYOYO8GD6us751Uppt9rJzt9rXf2u\nBx/JnIOiJUw+6OX6TZkL8x8XGjf58Y0+0Jngb8v+c6b0cefTiMBsgtmwwFx/t/c3mRv0fGYZMlT6\nRBAY0gRna52BkCFwS0RqbvosraQeOTjh3CkFWAjs8TsRAGHpyFY8l+y/z1kD/plTSj/ayDBe6J/Q\nMRtbPV4CVFxS6vwox2rJEddfuaZH4+lawew8sKfadd9vMj3Hs6aOPDN4wMqFscCKdn5ZG5zeKm94\nrRZED1F5FmIiSKTZoOF+9zCLIawZAsM8vZ8Sf2Xr2YGLnCHFLEyMF3V9JRqRAbcWXHifuyicPb/7\nzHTQ30Vp5ANkV9DrJ/cxmQeprtO1vT3xVe26TegM0YFgrQBg60WIfinyAiJY8WghiNPVq8IUQZuD\nwDM+HdpC0UsTGnCz32j0OLTpZpFUx8yTrF1iOGsE99ZfC4R4vlSh2qV9O52KEDIUsd0HUMEGgPeF\nVjGkWVSUe6aza3oXNV4ROQZBAmrbvmc7BhEs8RobMGATlZ/WqzL6SGUn0mpdIbhcrcr3RuBFEZHl\nlVpuwBwYri1u17So0hSPARF9ffTvzX2pvLwv3P1CASm/yZnbDGm1LXq615yR7jITLOaTuIlAcwlw\nIaRmHOB0MgYNYAcsEPD7g+sfgjeyxUUI/GPvEq/VQFS1bjXNi+1lMRFYgLfI1El79XcL/HBA0CZQ\nagJAshVP5v5iTIueh3n+lWOseNxhOn7rrKR+8qZodV/9SQX0/tTbcuGtCnEa7V1EZHKnaR+XUQjx\nxWjZKZq3V8a2HZurq0JDlovWesvoKAKuQuup7WeCwa6P1lG+8DwZK9WUGJok7bc36e7bc75M3CTJ\n+vOxYmnGcEy0TkPHcM7MW5WO0jv5AjoNmjS5dlu9AgqTHXKzY4cqc+OwdZk/CHCDmXETvFREZsi3\nfq20dq3HRX12/7MyV093ChYhI86x3bN6Wjsc0NCfY+3fIRk/9gm2NRosEfRoYw43ttpe68aAfrVf\n4iKAwiap0islzNNZu5YggBs4rsfFsdadaRaUuZlelMMc/s5OMKqgLPiE4X4OXfPfIxsDLkMAirEZ\nmRmO9aEPR/+/WT3weW85AD7jAvN0VvKwoCbiAWbaq/yH/xgykwwHW0GlgfLo9pxXxPvpvoR15lzm\nJq/LOl19qUqzD4UOTLZtx06TaGE3ZiXQ25yKe6JPzzkBnQIggDFOgH6zCDH3uM69od6vP2CFgieF\ntKbHSHOYrvi3hpUvW1PEuEXn+H595IdijJm4zi7ZTQBIddQXX3o6jgZW/ARcxN9i4NUPGEToReTc\nv8REEHkBEax480yU2bUSARVIe81aML9rTXWhtQOx8rEMeNPkNRxTEJXSMCrJnmRIOTFSwTUDgbCg\nZVdheHZTG3w1LZsHUvvM7mNqyyxyOwoEcK8xBCM2Weuz55HYZBolLn34PxJ5y3sryUamIML0dXmH\nm/dFgDoc6jvs93Har9eFib5WTdrii/r06dtSt1vrcdZuwjJXphuMg2r4ej2eN26+fFOeMf2ZMoMf\nyjWvCZ4TMANt4JMyh497H1yrmAdDY50JQtjE4Ic37+L54FpA+0LGBA/FJQB4dedAkx20YY2wPvyM\nMUb0ktzEzNgg+vf0Eo4+KdWkOc63mi3EV47PTn3wed0CDNM16t1BYJ0Ak/83C3VZUOsDEZE3v17+\nn/2J23LiR2/KEcKbAxGGXDxixoAcJNlRRO5SR10SFDy4eVX6MnU++HOjNRp1HrnBVarztAPMffVl\nbQVHLvxVx4IcZtYj7A/exkYY/oZZGUo/mrlHDDF2WR0u2XQ2JtdABGVAbyqICiG/fyy0qNfIqlOk\nODu1zCFAg6o59C5zef/kADOkmjPt+PtlLu6+0Tn1pMC8o8mtZRy+T/TxF2nXEB99nUZjS+/mi8VE\nwO8EuBjyz/fTpVoelKNZQyVbqu0t6rO0uNHYJveHpi7iWsz06APTzQjoZyEumFdP4qScJkI6C0NT\nEuI8vUbL2OPrdunaA+gMd5oF3r8LR98v7IWc9SH2mfur7y9tGfPpHxLgP9cFfOj+EG3/gmcw/3eJ\nUMhZiHxgxe5tUWiAq3j1oIDwvfIvPh34IQLfKBmYgP2yo3Uc3OFgSbOMfOTBpb5u553Q7/ps8DYH\n6s4Yv4G+V4DAWUrg2WSt6gv2KCi1bF3ovUunYDvow8ESV2tQ1z/qp4WN0W+WBV7m0R+NGXIJcvFS\nXsqF5QVESArM7IzhJoXAmAuRbb4jixi3gxgsg2aAkOMRpJc3j2xDtDSI0/hOnfvyi6+UOK2RV74w\nL4gEncWA4KAsiOwrIrKEv7Wa0lYGQNH6RCBgZvoYNvXIBFo0dmKSREQ6DUww+bpoYZcqqHzRVaFr\nd6daex2L1Vs1x/9NNcP96rp27LWq166U05m2Y2Gd3uz0Acr0PagZ91WdQN2k9GO9wwZdxtoj73Nl\nDBHdHON2rQz32kXrroBR6V+Wy7tqZsp/97Yhlro+qA9M+TCiY4wKviNnGXl0wQBPF3A4zKzxLWna\nLD1Xg1PVAkG0WiDwk2oZWsuXYOzPi4Tv1mQX7695rxW0c0zHrWojwdjAlQDAl4jzd0fDjzrX79XH\n+ptHqwsN8AFrG3m6gx98aYfzXm8oIreIyJNeM9cgxD24cv07RAbRNPM65/2zLRr2KVpDeaHwSEDA\nOZnz1l5DI9vzfK6Zf+7/S775EMiWPzsKYtVPulaq10A/S8mu21Y6AAAgAElEQVQitpurkTLnFtRw\n7mrDveARplL6HCVTx73T2lH6W+u3A5YBcp6V/PVP+PZP9Ftk+w/0+BDBA5/HHeABu73UFIVOqBnI\neJSlTDvSXmqRzT0AzgCStKXRACd1UKZk6QNwzQe6NEBBwYNuXb7P4kcFcHm1q3uXxThanEN/F7u6\nxywoPgmUAAAiQ0o8c/fRvowwLrhmQhzc5Nwrsql5FQCdi+AMAIiCCLqddUsV5nzUWEEdWGCoC47P\nEAOAhvo7oesiHpwEWNkCTOymYhZxer5PaMdYgFSzUqDNBuenwX8j3pvRmwrUPL9gHffOHKpTHmei\nlkPrxz8UEZG5urydNu7+J72f1lIWUwdrWj0uq2Wr43cxJBb8F9a0bj7PLXtRuQ/m+QCJLnHp9yBH\nDdwagYGaLamuHyjJsKYyEAH7JAedxBP93FqC5wIgoMM2dR8a72Vg2whN+mXhAdk8nPzSnv59LC8x\nEVBeQISkgNA+/mEhqmAEkKpwd/Bak8jY1ABFnolphXsRlxor6cOYdsw2kYENJ5vaYPQOO03b8+jQ\n1mslWiovz1dKMBEAzRN9I+DaT233w1NNodj9ohxnauLcW0aDaEIo0jKKnMbH/w9hF8+uqZ0SYnZd\nOJPJP1JMu5ere7s0f6f9gvZFAYfu11SD+/qmtjOHPTBtkjuX4HyjTJ6CB/0DwAS1SNg7pg4mq2h2\nGjdIkYrKL26jM+Vkru27sXm1L/0YD/ZXChhGi2vR1KhlyGQyPqucfX8GeCB6rLWHyKwXpHoDzBTA\nYE2Be/oQwh5dHujd8aKJ9dmQViJk6CBNFFvAhLociOkjQaFE2jSdT66f4PU4lep6XgWz9R+W/7tl\nmeOTbwrXBw3z8Zv6FTbflvX/oEDUw26hz3HWSz3WW8xz/aDC3ZMTKCddLvC93VTB5+pJ56jSyveP\na20HPqntTMSzObK8P1ctsETfoWUqh0CETMjkKNZDbYh8miVCBebaucV0ftR82YQS1HAMMo4AVid2\nk9XpP5Rvc9Z5sv9FafnpXZkLT091R2JrABQvNADE3d2rJdsvyvfupgdtvz77w7fl28MfGe1kKQox\nByxgGUU99/3iuRBjSrTnym+dWx5AI0udjH6xWTuDWb6Y3z+Os3bisFUQLIimX5c9dXV2UpxNRn3f\nOwD0tQprT/EWsx57jQOsz3Eu5abS8SR+GQ/gr9HewulcRapbE4CUCcCDlYIoXtV6jkDwJTEluGTA\nCKflG0vxOBTAUKSuRRtpLLsEuGALzLrGvVBNQIP1qZ6b2hgI1R3ea9BnWKycvYsbOnJbGMDprxWL\ntu5arcreVV6n+1at5TS7CtKhexdfdgmc2hxL5j7GBt9XY1l5NzsLpEsWJ5eUSnvrTQC64baKoMAr\nnckLF89nqaAV6uLeAKrqVgfQ5DiN+9kyuM7Fd4GLUZaSu2baie/k339or8nq8xzNylDw2ZfyUobK\nC4ggLXq8U+b26dvCTFlAOqRgcyCCMcKUQ9lvSttTy/yIVCLhU/Axo2mZF9y9MBFkWpoRCaCjRuQf\n1AffaV9eLZXp03Yh9GfmmhxAEgIGxkGkMmVrNd2HORwzh/7/qkmKYIJIza1rYIx2HeMZgn9B6gKj\n9HUBBjrdIEVEpvdPEsprtTx4rebgM6e1ewJAgKNuqA9OO/ReNW7vysZ8flCLjiQqJtJ4nTb6LlmQ\nPzArZMVqqaPdBmvxHFRjzcKc/78JOtQ8OTGlGxFqEEuB8xpnQhftq3JynGdryq3MwjOQbm9SyylP\n8VZsWlyeHetm2RQ4vSeEmsiil1J979EOBFvHKNJ3wDO3SeDM7VmDuarEcn+MgRZF6np7+1jm4WKt\nDJ5qlPe7KhQi7sndpggo9xro07tz1e+roKmBRAATWgESNA79+2Jfn/lmo3RAx+S99ucpyTHOgVYz\npqaCWPGbVUulWtiEvfrO+/bisXVnqP9/jiVCjeLd1h0LttsCXcPPNvNWZti3VbN3vi/fY/f7ZRE+\n/Lx8j/cfCo18PFR3qcxnvPyuowzz+deP6ov/LbSK5XD3i5oaAmAzC9wBRDjH2C81JfIwwMxBhX2c\nlwrSxTGx9pwrgNFcisuQxS3iILF83pcmw0TmQraPKCfcTqZfO/5gA1c53WOOOfDqC6d+zuPRxHUx\nFueF+QxP/6Z2TzlCAPIaXFjaTWGBoOl9fLA/K+iQaocNgHDTh+kpr4EsxXINHt3Ob05zydmvsrFu\n9rBE6B+zcLK+02/M6/COxqehnThHfbtMX6A1P37jXAreqaUa3N9uV7Evh1p3oson8CAQqqduTbIl\nIJegRAKoof4H01kE3Uo78f4mUGoyn8e+B9pbrspaenVUsISClYrUuQrFGtbS7tEpEpXYmOUAsn1R\nal4RF7eDeBE/R7EHWgrfC6ybP0fmz0CZS8CEH7YlgkifaaV+gOUFREgKQIK7fTQRv1LEMjD5CHZH\nvrue0WHmx4ID6XW/iGF9ulIbpqNt3J4QlcIa5WxJg8ACGMG7eSAE7gbIsLBX1wTc432g8b7m1z0i\ntN6+K0wpTBB3x6jZFBHZnOLYQFDbufGz7BNwXyBXjxC0bq8dg2uBAQTOuuAafhbgdGgZ3Ffzb/mm\nRLyXOwUK1AT4rAHqROqGfPigDOwTUlqW60FLpM5w8AX2Wj8UaGx3G2VeMG8QINH7kLP//whdZ2Hr\nMq1nPJZ2ypHBA9b0ibSoOprJ6qJMbPPUe5OUeGOxEcDEsDtSn0T6t7oEHsTggXGesSVCFq+karGU\nOUr6OTWrhfK7RuqvdRBO41EHo4II1fIHawaC2M1SA+SdWi0yAAeAB49gKpOYCJgnAAgA5oVAnBA+\ndPk/nCIoKFJBCFCI96BByfdYW5YHpUkJ1MUBsIaEuXKOhV89jgnyI0z552hosvayFG5cbE1DnjK6\nDwGjFozxdBoX8vmxIpKHPygL4umbMgfuH8pcer8rUt3WaRU56BjPaxGRlQoSW3WRWWl0d1ju3W+q\n+xXAbBbwxqzTGmuDLCYC1hDNhVK/HAHeYDxRd+sA8PMh0g6jDz66e+NPj/Pl6K2PegMRJZZz+y++\n0WS1DQ16/3WA0GdkOnlqgRBYFR3JSjLfq3OQyO+/iAlSFSWSvreI05Lr766xikisZFBSn7kEqRgo\nLLRm/BUKZ+O5JF3nWHmOBnesSnXPw55qI+nujy0caWyyPuBbwYp2986BgL9XLNhsFahbTX+IQJWI\nSA8PqFPcAyPoHvfLsUDERjN07i8FLrUfpwfMz/j3PBGtDO4MsABWF4obicGG/TxCli8Ezz5uW5Bj\nqIxZhnzKfc+xwMj4QJwaa4e2mrTu56bafSm/WuUFRJCyofhNpAYQi0x4lu+2EjJo77UNRwS3pgkp\nv+GLzgHv/P0MFEyfsXAz5J1NhydOyw3BwptxidQAfl7ofzhGEAH98/sYxuS9ap2uFgdtB8KD20QI\nRABTuA9CSBRegPAeSFskUrX//V2xCuiu1epg7XJazn1gQhFRDa7AQuGd8yH/Bw/l+I0GhVOvCJju\niog8PRRQAhsimFIz53NamOUMgEoEczxhXqhGake+wdDmLFz0fjD8bPq7T0Ad1tYdbe76+azHc/zt\n+TOb4zpdSIEWeEMEDEIAITzrU/w5Ly0m6KhAAJCMffJFWssDTvdUrkXmh+dqlpebrRfOiZTIa9sY\nvQASUR19l3tnDXCrc+BG59TM0iS2gAhbA+2IMfOFs71kVlYmAJFLwC4wgbmAgvbY+sCfWybMGgSp\nS0jikBY/j7afgwef687A90SrGb3Gv137Q+9QgTTHIGOPQmwTBDZ1adv29wpSbmM2HuwNnt636Qxb\n4AxPxz4C8AD0MOR8N79jaO/U5z1xaanjPwxg1BgS+vvc1mGfdjRs89u972ELLSraA82s/TrQHGq+\noY8XQcCCfUu/YQLo0W/UTdQdSTc8L8SdNNPR/r3u6w9q1eOyD2FPYeELPMD2nOy/7GrpIj9CqHlS\nurQ1y8D4/iIi7K1hoJaPYcBO3vZyCWCoYwALkdOpnX8fK5k7QxMcNxFEhwIqhk/X58eYEo+fHY9Z\nkM0DTVY/xmzFw7EbMnqF9bBTuv90X+fL9O9rIMX9Xfn9SvkXHfuTCyR+fNI1oxZtnCZR5OPglR8b\npLyefii84ulYUAoPioEuYd/AcUt8oUidmzVuQnx/kcoHwJ1mcVPW3SRB+ifEKgJkPOxd/yibGVu5\nHDKAhWiH/2agNfw9sTwydz0GwH1MHd7PPtedwWIa/aBjAvRy/kG/fy0vIIIWH8OgH5DYUScI6VQn\n00YMmVZVYWS4XzVAUT3HGm42ifJMuREtI65R2BSpTOOsg8/kOdR9cpqpLZmYzs2Eq32J+0OkwDBP\n3SeakKEo2+VZegQRhTlfkp3BzDs1TZGcvy1HZ0/fIUiiDhhiGMAd4fRtRVh26s+7/aAAwaYcPdMG\n89/KhCPtpz7ajc1SBTxsLBj7zJzt7hBdZXD+2oE9aJnTBWY+nk+2Geu7nXBvfTaDB7nLQx/eDzwu\nhGKfuGKlExeM3FGfGdN86jnLJNKH376cYA44ojnCJg4LjpOaSiJI3DkABFFrx1YHpb3IcLbCphdY\nJF7DOLoXhiUSBClocidqr+BX0oTG1OLkOeF6Ze0gCKOuAT0evasCp0dNhFbTdNMQ46efz+zyVDN+\n1DqYFxBs56SJ9O5cGBOkslxQ0CuRNrZHjc4+PCcayxp3rdWyDzbTzP28zni5RAAK5tr4Hn28OLH1\nUisP+ku7TeaocXHYCqcKVq6vemTtX2bez/21PjkBcgVwSMFUi6fgLOMslZu114Il30WpXgR1fYBG\n4JljPvNs9m7+8V4poG2z5tILjmd4f6jlWX9QwPpO2985EHCj4PNTBA+8C8oTCTXYP55MOVIfDmug\nJuhksp9vyRKpCq/+3rj+wUvMEhDBxsAsxtpnwrIQ5u5nmrNZGaJfvq/nBDy4tHiZH934hGbG+zmy\n/wKIH+r7mEEH9jWfDeXx26JgOW7KvFvclKPNS5fZCmb8T5sy7wBY7RPgsc6/ludEeTpGXslnqULZ\n0ryt7kkSjuXZfTw3iX0ScYAeDa5fZygAr1AXAWHx/iJ1DKDQ2ZFizAPqO+JvKxCX8LvJ3lz67/o3\nAHSNlU/JzpDdc+raFLQv5YdXXkAELcHkFwy2/gbTirzck4ShyAQKLrxxga/bJGuRfcgz829UGTOn\nbExCE6bo8RQFPWj/WPj0/7PwceVUEBwvAQQo82m1c8SQ5dG18YD4HF8snoBG+es1yNfZ5TxG6kkM\nIJg3WBlsP9RlAW3dRpk1aO12AViJUetZc+vLhjTduwSYQrk/RFcZlKepFwpLYRN0X3Bqa5okfTed\nON6S4EQMCu6dOsmgCThFIMLcvcxiEjf1THvFhXMpZ+/C9wdNkkV4VtDA0kapFv7Qak12xui0Jr8c\nLPVg37edz/iXtRKd2+XxXoiWfjMDCKCgXRIvAoKyWprKldPmraYIhKpgBAV3HCt1jNv+oVSrAPyu\n1xBkHnN0GpeWiLRmxgYw6FxYhneJwAqEkOCj3bTbub+5EMxW0X6+HBuhaJhJ51OZ5pHnJn+F0L8B\nRjEr7NaQYSZDDKLPMGRACtGVSSI42jU9YmpmoCcsYMxf2iynXLRzdZlDoDIEKJvuHOgEVxYTyuNz\noj+8HgEoaUc7N6BGT+jrVTcYJySpcIWxqBY77X7EbhInAtT8+01szmsdHwdJs9mcdQxO6kH34Q+L\ndhYWHSJt+ss9WU2KOBABsVYM3NZjUCC0+61IBStFKt/CMXAs/FA2D9EOlAwORGDNO6xlGj87qeAX\nrMrg6pdleOKS8WRsap8G6zRN8Hdb8IQxbW/V8saSWSaRnFytZ1zdIYs/D5I/KiD18FjABGTXsn67\nuYq5iIC8j8fye3S/JADSv/aU0oiDl/Jr1cAvc5+MfMw+rE3l5XRwzFLW85O6/8MVCMAheL0slgOs\nrJ70/Z/2LWjH625/juvO/1/fBefrM4foSwYoccaezPunp2sonxKgMpz7zlfIH5/SS7FFeCkvIIIV\nPx04ZsFYXS7VdK6uUFusJHSBSPhN3YifMewQwtoVX9Mn6b1mslbrdif458f7vbDJfnfsc5cFsmKf\nM19qXAgIWX3oX2DgGTxI0eV4RBnVBirHs/mD0u7jXXVnsPRnyuCwkOmZNkPTiWnzwSEZPNiQtYYv\nGK8Mpba+g/mjOhnTWy0G6Ls0rVagZm/tglGuA8n+lZgL0TgnCoxwWYCAu3ZCIfoxFnyxDTgV11Ae\nsyHe5NuzYJ0HuJXEXOpj/ptZSkEG3libEIGbyDhl1ksTG7cy2K81ZsjDAgyyN+UsR9ADgAdrJ5gh\nqCa0u5jfnCe+dKgcADxUBsPTK9Cc8lAI+XDJ8JYIWOsc/DSzTEIxuqXtXjn3HMSdgVUFGGOvxeqI\nPl/io8mMVGY9wuajY0w+7wFjjPtY/7KYIx+rO1ZYMwV/+okLvQIhH4L82gLftubGFeRgQaBWup4V\ndd3NdbHoWt7CPFiBoG2dqyszHS4Nb9TCC3NXRGRFrg2dALhGH+ron8l0+Eg0SaTuJQzMs1WOiAM1\nJn245oce/zcaQ5z37htE33uW/MRZgqjWfXdf6Na7hxJT6MEJLCdymzwbUOBAbaJhewKst85dil0t\nUQ7JpGWhJpuOnNpxngSrM3cGAD4XSDMMPHghk/m1Grwu4Tfwvl0ED8J+hOPAWs/Kc8DAoXtDPwgo\n9K+PKZUBmE0futCcjZXnB8HTQKM+VYAAa2Dm9hrwQQAPnsjlUqRVbORuf6VY2kZd/tMuWl2WtuPe\nUt2JcL4VwNEH7M1+SLDG4Qr0oG63H+i9yzugXV1DCWjHoIHxCbrOvBKOwQPwRfsMRMB7Ig5K8r2P\ntH4zJQ27R6CMKRm4brjvBwwevJS2vIAIIlLZlFLmZh6sEYFNWMdidqg1meZWU8e60Di4HJtDesEN\nd9m5SbsRcrtcPLFmU3jT5oxZTCSMdlOH6oYUTiP9+ZzSp7rGWIzZAMKr5mf3jy4FZbKRijjzVmdl\ncKTNg7XQ5RwEqQgmjL33mCvLmQAVFlxC0DCaS8YwJ0JrdVXA++Mda912o2n7VyNvl3+Q1hvWKFc+\nuQUh7dgQu2DeH48MUgQBHGM6wtnZNyJT4iyIFp87EJgg0jJBDB5EU0mhOrr+AtOrmlo9AnT5SgfS\nrx/EPsBYwGrh1bwydsiuAiEOKUJXaonh01HBjBUC1PzYavp70uxzuXYCH6wpcP870+TW+nMCFCBc\ngmZcufbwP8yfa+rJLDRlKeZG8/Gp8UspiZwYSuYOZwJusn7nJCVU1xH9hslaN9oGQW1ZKy1ujNKV\nKnAfgvtLYpqMa1mcjbWCYFev1Rz6q3JtpsH/FpuaIm6mCXDOGjtw+qR1Zi6t2gkBjON7oy8+ZRpo\n2RxmzBgb1785WdaBxkEQDZpqM5ePc7ZL/h8yRw8g5Tl+WPPHdvXPOv1BE+FvDhcFn/mork0GUbvm\n/yZzRUL/Gvc10DT3TviXA5fWvb/WrbyOCqAU+0JEpIM7A15LF26nR281Y/PXgMdz+C3iv0MffqP4\nPcyCMxPQkqVdpS7UbxbaV/5sJP3gx7ifjB7wM8esjtidNeyX3BcDIGqlA7lhouDbzf9/9t5sS24k\nyRIUwHY3X+hcI6Ii82RldledOfM058z/f8G8zMuc6eqprOysqFjIIJ2+2L5gHvReURFRNdDJyO6Z\nTro+0OgwGKAAFKoiV65cqegrbZTBV4LubByrdKbz2M377sP9PwQ71X53qtUA+jb8bVmhqmGAee49\nKhV9hJC6rSSitpiyjPzftn/RLlCAwCxIkc3DAM7G7JP9AtpM1ct254pzm21RXLIvjSa3037HTufP\nv41d/z9n6zQ49bW3JxABzUbrKFw3H6GetkZ30ktDFFZEpA1IbJ5cSmRW669/Rr/6UP9TzZVMo5GF\nTRNMkLUSlI9pulCHvOSpmXiH6rSdOkb+P3+vAn49C2E0nGoghxoinID3JT09K/H739OxsurkMa+0\nRn+MaRr87HNmYj6tbVwYNrrA+u9bc3MieNCXJhD78xhnq24UpY3nAA1Q3lsritj2YUsDpXP9HFSM\nQO1XxTj9VP+szb8Jwk4jIEqMMBx29t3kYhmAApdOEwyd4tN0SMczDAqqs1cEAnlOGi3PxmlmmNjI\nPKNDuF9kLbyc5Trfr16lPJyzb3CdF4hWopLI3hQbWd/4KX8Bw8mJy2lJUKYj+b7PR9nKf4ZKEGM4\n/5erGY6X77GCryr65LfPzPGmoVQpn5VjDgRjiN9Euv/ntlPz1WNKiFUb57Kw739PkENdVs5tZCLM\n83MfI9F3eAUHHpVmJg9puy07q/ea7w6+sxF2VvWZvMbf36Yx0KGs5GBVGluHFUumpb/t+0GHk++F\nAl4twdl8B0d8h/BACGxWmQicKzQvPjUfqfage6wEYtsprSNHJdb0Ba5Labtde7JuAtbmwAypAQQ5\n5YvvlhT7xPWxeE+kfGdiqcf0O38vYkS0tp6TOUWdJctEIHjQUC8ngAh9L1e9bCM/645PNZ0hfFo2\nWaef5b39Le0xonWHcHM5Kw9rzwwtgu0Vfz73gcxCY6+R3bIJdqCycAx+e+iCHXSiuoeIHUv+fRvU\nHPCQKryvgAinnkOdau+/q6X4MshA8ICVjwYVUdF4jj4h4ujY10A7TVHQ/pljB+ZBH4MgVibKx/uy\nRTAuoZ9TdeSpfZ3tCUSQ9MKMzaQ6HyVj6voqqfUPx7704QfU0xbJ1K+YF28bKZddiJZw0rEiZKei\n/zU0MtLJhxUUl/8nq+ISlRKsERMV2vmbqAwvIjJqvFN0BuPg+SSXPKTxFwWeRk15vTGnq5YzeuCC\n2vE6/X1wdXgZcUN3MiiR9+G5cg6hj649hoFhm9b1VZHJ0yhuXlD8dG3PSANxi42xNJm4fVMLgUwX\ngShz3PEcGHk0O5+iuFlNBI63OUCES5St5HOxlQMeA258qtV6FMUYbYunosHECJhsyrKasXnhOP88\nC7qruWfR4M4G6Wkji22KaOzE0EdnoPXzu+dnCTy4fJZBhIt/Tp/D31+n/0A4lBVKBu/zvg3KshyP\n6QVpl6mHtbxrbSFB10ZqJgAALi4T4DqfJ+BisymXFmpR0KCjQzA2rIqWzwr9WQVxVvu7TFtmZER3\n0H3VyOLxe4AGZez8jQ2mPmZCLjXn9/2tTdkFjORe5nSuwVWKvA02cPIBIgxv09/Hde4Fgy1aeo79\nNEg4ncLBdXpWzQuU1V2mnQbn+fkeb9bu98fKeqmsOVxDq0rrZLA05b7FZ94nOrt9TuYxjM3H6GLE\n7TXRvyxASjChMh/oPF86yqfaSAH73Ksd7tORDx8fNSYb19b88/K6830r761ItjtEjJ4F+sCAzMCl\nM6TPZhzAA9JxzNRBYKXBWqPv/iOYCHEutte1D0BLTazub9U+J/c8RtKZImhBsbjmFWC7sa8iIM93\najLOk/oI4fH4flSDNHHOVWCubBwvMa2kpqeyi0BBDzPkUcK0PEwN2FPmQExpKa/31LOrpevlV5pj\ni++L+V3rbeBcccwcp5ioPmMAfUGrHb0YUmaDlhbuaiva19OeqjOk9gQiSHph7KTAqNr8RbJ0hldp\n++TW51aLZCqYVko4Eb0TyXPClE5rJdR6CAiiLgIVNu8E2yheR0FEC4icw/lglPMlSh46NJMR+OA8\nEOSwyR7DMG88ByhB50ZEZDZN2x6WyXC9D06bvcJGJ1qg4biRNaX1msMYr6UJCAMjIPb5ZgME9PGO\n+2Cr3RdvyEHZBZWFJiysewWN0veuLjIFekL50FrZ0AGFAJnSgu8tfZmLEO8X77R9TDESzBxCCqI3\nFacrtrEZGhxv05DTXtN54ELKPrcDAlX5eLECSe062bIh7I9jx6VGsVlSiuAO+tlVkXxGEUogKRpV\nfcrgbAR+NhrVNxRJTX1CRAT3S0GENjtdz6bJwbs8S87X1ev0nk2/Ne/kP71M/3n9THDBOGdqzUP2\n+NoJKOczlIHcQ4C04tQo0DjkNZVUdqb+8D7OnoFNsctGKunaBGH77p9W1Ajn6kurielijrHEU/E4\nuq8xtHX8N+4nXcWR5H8/p8JCn0HGRnyLkSpLFa2xs0REhthg381hoD2oY2oFAS6Q2rVJY6HNaBj2\nNWOVgoc8Dvt0OrtEtN4nLqYzyq379yhxi7z/LUql2fEXx0d0WGostTgWbM78IIDX0VmoibJ2HSul\n+DFhz0HHrgvbdwYY0ZQqzrmsjGH2GSFIMQBexjVrjHlg75hnvJa0D9N/Rq015YbuerNOCVkWBmA5\n+G309S3QkCvM4DfhvbAO7iTYIjWROm1kWe4JCnK8GBCL1Zb2/pnZSHoGlzyQxPfDAiwRNOA1WHND\n1xRN18O4qby3MbWo5lZEVyvuU3PFpnic86HvA69CxLA33VaRtlLZKjq9k2men893aY2JZcDZ7G+j\n0G0tRZAts/kABKFfBJjs8XiGrHNQHm8Y3jvaMWM3MdbHW998nQNtpa1YpoOUB+I+uRQ53qljOXfk\ncRbtDHOPyVYoAL6yce5X2wknmLg1Qdxxos5GLTgVz+k0Fni8pjban9rX1p5ABDRrfI1Gnn5J2l07\n6YrvqYhOYZRaXh5fVi3Thjd0ornpeedNZREX8RNRNJgmrZ8EZ8YIvBh5J//6ZQIRrFAR+xypzQt4\nmY0ZJhHkuBwlp+HiPDMRZpdwVCZwUD7QQSupycew0PBuOfqZLup+zxpVrUFeeTMfoC+pX4tFXjSZ\nC9eGfM0h8y3NWCBiHxcPW+uaURZuY94rqb+2pjCBldt1+qyVeGS7xgqxCurati3DdzXsOkar1HlV\nWrgFMPzxeY/tQk2hPTr5sYqHudUZBGNEtBKNYIvU2toSdWpBtZsLI40gQlCNT/3zi3mNghjTU0q6\norsK952yjZpyzMeKKXw/tm1+zs+CU8i61e25sRK0/LMyPV8AACAASURBVAlu/AolS989pPO8z+/m\nAVgfy16y9GuNsh9bFnHK7IDjGue+SR/XHeYX66RjXOyVCg+AgNvNuCZ4QDE5po45IasivcT3uzZG\n4nd9ZdAeU8bxMS1G3pqw/bEtUlNLymoPqNVzMqYbdCjtdoQ+wf7OzAcYOnTitLxujRk3x/ibpDHQ\n3ae1wdaZX/4MEHWBtSawU0TMcw26Ihx/TggxvIs1enVMHdMUwUc8h1ilpvZdbFb4VucXRj0r4q4K\ndE/S51QgVIn7VwOuCR6cIThQY+xoWhceGtfP1qkUYs0Tgglpq73HZE5G/4l7WBAhl6D1KSlu/eQY\n4sOLJYVsdQYMqT7gsdAE0P6V74fiZT2vjJ47fNbab3Gj2E+L7/G/E1wM2X5Tx97EWMcmFRN8DLCJ\nq5le5jLWTEfimLzbTNxvZqO8b7RAaDv4MZ8+mWq0wXjjuLP2KVPjpuqAV8qKn2AZ1UpKcyiV/cz/\np1DkGPtOWv8UrYYP/QKOJY7nmv2iASKM2R1Tycz6FtMv+dXRRFW2vM4ALLPZP2MqS01HKoKAn9Oe\nYIJTrZNOnjQRRJ5ABG02esUFa3kD5WjQPjvmjpkauyz5p4rwFaGZuEZmITA6//k7zRvG+Owbpnmx\nTC0iqiIi52AKXIJuPH2FSXCW+/dqnJyNC5Q2fLhPkap2mcUI2bRkHe7XHMcfTbLnODzHJDhL29Zw\narSmsDFiBmrgwPir0hXrs19OSzA3eASn/E1S8JrAgbpcrnUXOvWMek7P0jVMLhARmuXDMb+8meIz\nUi9FpJkGpgUibx1qdx6X2Ym7fAva99t0bxerCa6xBLG0zBgMT5ZVWhmhrZzPl7bVym7FiBTBAwYI\njxWDW41nVdk2xwuP4wHO4ccdQQR7vOAEVx5lzhNkP/2+tThDdNBqJShV+wKO8rC0s086HzsXzeF9\nC7/R8+TjRaZELZ9TGSuq3ozxqArVpT4B2+gtxugkswtGDTz4YSosf7xN321/Tmdd3xoQEM+K6QYr\npA3YFIZY9nKrQBUrk+Q+0dgj4EhwbDosZ65d0BWpldPks9Pa4BWRUo7xpZb64vNo3DFsU7Gq8Azt\nd7E6Q63Vclg/1R5jiKmji52t4GpW3o4nbdz36Thw9jmf0GHeGGRvA3DpXUKU9u/Ss9rcpnu9vM9O\nxG7vmQIEWC1zQMXu2nS80SZ97j6mfRYf8/FYRo7rZs055HjbhEo4dIrXjtmV/s/qIAxiW6GytX7n\nwaGaqC3p3l14fz2oKNiWPvfHsN1VW/KsqOG2vG4C1UNkSY4gfHm9QDqSXRvgAM1mWHfBYhg+5Ave\nK7vA2yQt7qcHxLFeYqBoNNXsQe+DI6gr5t686yiwIQnYWtBdxyRvIB8a1o3OGEwEEQh6UvTTgjAR\nGOzLSY+pGdW8df29X49q774Cy706DnAmw3ZlRZltNCsI1E/1fuZ9NAWUzD/tr/+0+yqjhuv5Zd5n\n8ipta4dpXph88PlrY5P6oKloD96xr5V41HEXwB1bWYipw3TOqUd17LLtucAzp1mb053Ql557z+dj\n3yHq7rA/WUDd/y2SxSXJDmT6nn2WvN4FgO9BQ+Db28rp/wDS8aBVk8kJL+O5MpWMcxKPYfE4fQcx\nJiq28ilwnVdZs65PVSHyx/2NKPtT+7toTyCCpJfcRseXazhmcPCGH0EvhGFMZ1ikNLBr6u77UJZJ\naydX6LJ0qhdCGmTabhcGLakXqIMjZSTkSf9ilhxYIs+DOSb2q+xRTWG0jG4wof+CSNJbKVpeGHBu\nTMhWjOuIVZdK3KTOjSHVPzBO8FAppljIKgsun8wp4bRqlOJ5Ovnoj+maLuRWvzrc4/7g3g5fwOh6\nc57Oc2GQ+DkWsynuF/NKhjYSjN5u07kaUrnvYQQuDZ38PKncNUOAOjdgOlgmzFm6T6NzXB8ORyN/\ncZdBi/l9yj/+CICBz8eOZy5ihQBkzE2RbFirSjfurRVN5DPjvou9ZyBYZydSkNkrV1LrBEL+GOBc\nh4QznAiSMPoHcUItVWgdgjZ8liDCLtwLDaBVBDT5GHd8xyvHi43GBp1ia9Dea0ktX4v6GziCIiLn\nPxOkgiG2SmPhdpHQMGtw06jnNhpttYoVvCc5BYcOW4XLjnv8I+ZMC2SOAptCS85Vrjen3vhWxk5L\nB6Dm/J+66zVhNqZL1ebl4nfqjJw4gdQBs74+pR+lj4PBYCJVVasLVKJObZgcOwzeo9HFIDNg82v6\n4cPHNMeRJfWwzfOLzie8RyGSJpLz3tlYZ34BtsGHZUZlVbRTHQteSz5g1BfKJQpLRhYBhVy21oMJ\n6Zy47jC31TRNakKFscXnGv+2a/82CC83TYlkTvdYm8+w9l2k31yCZj75aKLGZENewrEIeiUipkyl\nMguDM1eJTNC5aWMtRTH3gqkeZJVhs6e70xYJ7D5bFpbOuPadTlJ5TdAAVXafsvweEVatlV3M4Php\nwDE2vSN8D+13+H3UibCtVqZRJAMGFqAn44/rLb+bmDmU688u2D01EcB4DzQIZM45eJPe/7Mp0nen\nYJNVvIODak1hfVuAvVSp6MKxvwYyOgSoZQFmOvSsLDTfe4BZJIPsWYzQz0kH8wLm9FD+jftYCdKQ\nAXSxo3YXADoj9EsWxhRpgDYNhG2z9uLHuZpbyeSNcwV71Rkmh4pfYl9lQnb+N3Yfvb7WjxvbivK/\nPa+QAhbav/zd52h8/L22TkS6Gh3vK2xPIIKISOPpe6wXa0sriYicY0KxL9/mBHhQU3enM0cDm++5\nFSobqUJs+vteqwvkc0bQQD9DbWaRPPkN4Bd3uprkfdqLdL1cWCZwhs+QS70zC0QUXdNUiIWnwImI\nnIOdQLpcnGRFQv6yafb1zBOt30fra9tthG/HeHa/fyUiIqOzbBgP78FKYA7wcwiBvQA8PzHMgiGO\noxYY+WfmrLhfstfQvu+ocdbbeTIihxdI+dgxXcLsDvBleO3v9QBgz3CaWRX83XgBvQ4a1eY58b49\ngPI6BRAyppNtTkPQKrMB/IImksctxzVrHmdHOV9/zlf3i/vW3CPmmmrEpi+PFi0yEVzZSzoUuAcb\npuUQsHoEy2BfOV6OOvl9bG8P4TexrGut0fHhu25SyOW+DSktwfkXEbmAqj6NDzr9TAWw7xgrP/D+\nMcpbLeUU6ssvaBRaZXlNB0mNQMjIWKksYclnlSPD5fs7CsyXYePnONtOCV06Kmd5WSIS5536s6kZ\nS0X5t0cYVHGX2m/iHGffN74fnEa04gePZ8/F8UZlfwhnHs2gYkrBAoyD21AnfbG36Ws0YP27aR1v\nRu7G/MQcfLPGcbemmhGvpfF0d/vOx4o4m+Lvcm3lWMqsgLzPPkSUeb9iyUKRMne8r5Z6bDUNnMjm\n4XXa+X7Pd5nzINaI8Xfp7+Gz/OyYrteCGXcAYDNeG8dnvUN/ME5q3uAnmi1hrDoxQVuHzcoQDYIN\nMhxS78Gs+fGWkpnAT+OncRtTonIJznIOiqlpsQqHSB7PbZg7nAZEFD0Oy1qtJGOcaOw1tpVtbrvZ\nFmWyahkfcU6LjBjL/ovsBK4btmIPS8gO3iQqzJT2BUFLY3weIL7a7TOwJZJLB4sYECuwSpvw7tvv\nxgw0YfvFOgdePm7TPMV3OqYeWvtlH1K8OH6sTazpQ/i82md7SkRkYli1ZKmO54GlagbV8PbxziTZ\nQDFIc3CVrfDeBuZFBEFFzHwazNKhG4AeFO9j0R3DZ+tvpzvnU3tqIk8ggjYbuaVhvQ7idzQALN1p\nH0re1OiyhUIuS5vBoB+b0EBkKfARrY2qT6YMegOb/RuaCZM0Qk6m+4/4e2OiG7wHOnOgn5UcctZX\n5mLOXMzVMg+lJSjSw/Fduv4DqVup2fy5GE3UhcLSl08s+Pq3pTaC7aD54a+fp8+rc92n4QLFC54A\nACF4YMOA91htCRDwc2MIn7fMAUYu+hJG3K5cXEjVPC5xDTtGqEykZot9FsfqbwcGr+EiR2ojc24t\n24NRghGAoyhAZUXcYnSzFt2NV6XDhqh4a8equHOxOYrpb6DFKTXZrKwE8PQ9JkVSz/3p8WfrSmf1\nZvGffKcqi/pWARF/HrttEoScOFysk84SrQRhpkwdabNjFquqbAODoKYkzd9sKkY5G6+Lkd8+FetC\nQduMqagxwOPU6OQci2P8Jqd+VfblWA1/12ycOK67yne5v3RKasfx1/I59lSf8cWvqhVYCMApW+v0\n8TTKy0/imjmjSlaLNHbIuCOzbnXgWmNSWyJwW5GB07QrRgzJWAnVeUSM6B0FwTR9IB8vMgTiu+lT\njXw/d+Ed9cfDhjC37SvjuVcQMLRIo7fpPsMj30m8izjpwEaWyazgmCJN+xpphdflyVSs8liC0Ewv\nGYSUgiysaJw4MhAecX3H8F7U3jc+XwWUkG7RWhCBgr764vrj2DtfULAr6U27sC0CwY4Fxhx3dbj9\n3O6u9xFOl15T37t94n2tlrPm2ORaUKke0YTxG8ty2u5Gx5Pv9uqDKfl6kyaHwavkITfXJp9TRMQI\n8zawr1gtg/alSz/ltmA8tLoO5AveYI4gw2Q0TRc+m2T7lAESlnhlAKJWiUVLhmsFH78Oi+Sg1vQS\n1Wlg5w7HeE8mud+DOT9bXkTq7yq/QwNUsxmNyFhG8Ax2hwUwaHvEAODALDYx8BKlb+wwimtBXAtF\npNChivabYxnoj/y+tfm5/azV7++tdU/VGdCeQAQ0v7B6pzwbz3SGv2zwDP08VDhzIhlQOGdVAHUQ\njGGizhomohCtG1SidocVDLB1SUU+Q+RCKxFQfG3vAQP7/xzxTp+3hgJLBsfZjaeC8bf7nkhwX6mz\nx1APdXL/CLo3wYN5LstZlLrgDHl3nz5vDUz/LgEh3SItpBQjOxr1wP0NKH0ABvYr75g5EUaIZ20f\nYGBvyzzVPQzE4zsPqEQBRxGj9n3sMwNxmZ8x6fNoESCofcdFb1wZd1QJztQ8fJru0tYY1U4WGmso\n9zlShTFJR5ligtVIuj+QU+SPY/MRY7QYz+Z4g1A7/WzAXMry3Yz3tgQZe2jzFeYPrzMa3rXoRozo\n8ZEN3fFwLuxzRgPS9IN5vbxfIzpCdI7NzpzLolisZSJEsU/t+7E8XsztrLKgg2p/H0BQU+tP209P\nTrGqTP15deZfL7Z2jO+FGtFNsW90Zvi3JU4d47N/xLzQB6ycahk8zz8icEZhQFKHrbhmTDEqVPfN\nRRJbJ1ipTATrVPP/J6bIGoCWjfHHX3AUcLQtRh5bGy3m8wBrZAChS5mAQWXKb8T153CPsbs1QHqM\nzH/Gc47H8Nt4DemzWmUklOfUNcuQ+xREoCGj883pex3f430FCN6dAJssSMRpZBTAwFpTkIRrTW1f\n9j185wLB6hT6fXI1mfwFbU+CYYxZ2PUps9v8b1oFG8tzsPGdsszRyb8ne2cKA6a9HruOU9tJRKSD\nAMNhgzFbsRGPIU1NS2iHv0VEWlwo+zNHbe5aCc8vafneG6efoAEYny2rowAwaMwJWTKcDKAOgEFn\nRUOCXgzts0Flrda1v4lzm5h9BPukzy4aXBVbTH0KDdrY7vG+e9spX6TZl+92AC5cCg/H7Vde4vGp\npfYEIqDVythko8WvEDVkmpPeUA3vElmM1H1OqowA1RqN6doCGymhWurIIp+Y5NcPyVGhoNreaBis\nsUgMAqq8Qm71xkS1lyrgB0AF3bLRF/7/5iEh2ldYVGgo2gWxqNf8GcZqbQrT+uO/3Pt9ZsaKGYf7\nDc2C7iYtpt2HZe7fu2TQ7YEvHDYlGMMcdFL6tiENxi6IFNEiYyAayiI5z/B+PXH7MLpjc/bUUQ40\nOZtTGHPb92FRf0z+b9X3Cvvk/M28z3TgH+QSR7JOYaT09VUOOuiC6PvgmzcQsyaJdxZ/a4uofV9z\nGhX4L0Wlrsfp3Xy/9eKYIll0lc45RanODBuKwCPPQQBjqNGYT7caJVlp3xVjiC2DgJinAisiXUO6\nIK1UocwpKfoXhdnGbQki8DgTdf5PXxdBA33m0SAzTevKe1+9Wu5z0LNPeVzf6kYxN54e2JzWW9KP\nK86J+mX85FRkmAh6Rn3O/vn65+yfb200cQvXnzwf+PVJJKuxX88gwoio4HpjKn7Ec4T51EXZlKGH\ntWUQ7qNk5yoK5NX0N+LckK/Nruf+/tOWzhhPOV4i5d6p2eOTIHSLNUdagPtGyVZBAwD9uyWAeVt2\nekdGCNYYTQXgffi0A24ZKJHtEUFVC7QMFUQg4J0+HT5a4/GLdd7MySvMxM9tNY2AU89ZxDqeHj2o\n2STcFF/XWsnIgokgfhzZVqxRZpLT0qIBzNE3wfy0q2wTyWxREZHB22SnbZEWd/YS9P7KXLl7SAda\ng820WkGYt5ICRU2ErBs2LK5NU7MeUpCHY7euWxTBCW8L2K5GsNe9kwd/YST1cfx19kGTtIrADt+/\n/TIfb7tEIId6Dnv/vnnRTtoip+3dmFIQW83m0fm+AvDl8VX6JrGV6xr6fSz3+apbJ9J1h0/v9xW0\nJxABzekIII+PTlenjg8WxIrBPQwGicvzDZRufldTm47HrbWMPPt9a0Yblek5sbGyhC0JtYXwlebX\nw0HRKhVmgaAK+zb02Sv8p/+TnTBUJ8IvBvb/FFmrRQ/2Id81Tq4uWkSa4ru1+7Q/as9C30Nps+1d\n/n6zhGAhDbO9p+yKZBovjbVtSIOxbbTx9yLmGtv2AaWW1gFoOK8o37PtK6FWHpnU9ahkbnPwY55/\ndJr6Gsf5zAAHdCCVEh8M+cc0C9plujbeJaX8fTqKdVDaZ/m+FQwC811OUfLHq2ki6G+UcYHxbZ4L\nnTaKNl1Pkof3HLnju2O2uHlPzxjBDZFcEZsO4a+LZ7TzQWZwYM4Q/3fav2400+mcOHom5gjqT1SK\nqZfGc+yfddA6t62WxhDb/0ibJpABHtWi+91XXrIiWWMcH/zdczx17EjbZlDRpDC3ASSP64ZNR2qZ\nV6/ICq/J7EMK+9BrI+TyrrmD1+fJUz5/lqxzBd/v8gXrnBjAjeGBaRd2vEQ6fumhUkWcW/pAxN3B\nv0NRE8JeF7vBOY1kQTt3xJQMBfoqHgKju1sIOW/uy0oO201ZEjP+zYoraxW2w5odRKDt/7meayqU\nma82Yf3VNKQqEJdaMcNW9u3igNbt5mcUVOwBE2KOfNYRKJ1MbhsGMKEvnSG+r/bPU6w0y1r4Evwj\nntOu+O2JftUwGDZ+pULWZq34CAHeGzjyZx/TuzkGwGdLmtOOZFWp1a5MWYrVGTjGNoEBJZJLWW7X\nsE1ga9oU34c9dYFQpYp9wNiwJaU3oRJLZNWJ5LFEIE7LiD7UJnUAy6gcsl3hXdpkm5jH2ytoQiFI\nz6hK//f2wCboA4nk1OX4vvXNW0yH0Oo+ZkAeNHiC/j5i7eqrzpDFSZ/o/E/tCUTQZg1tGvcaAQYX\ndFKRNaYybKxB7VpIY2DbqZNeRiViioKnQ/PT7zMOuZAiedHdB5VoO7HR2edES80HRpYciID/cxKM\nfbDXoPl3YaGpVa6IedJ2EtRtYfJTY9rVvMF3i7Rt9Q7gySqDJsyJ09xCCNBtkVpgS3juAyCg1NNK\nSoYK0YXf1KKUWXH3NIhwu/Oq+Gx2vLBFRNuCUFmQLX2uD95QtAZjHL88Sk3YLlPt0ycjw+fD8iXg\nsyNwUdMMiXRZ7YP5Oy6ITQU8qAnsfW6rYRIRPIg5qfbcTYiS22vSyiZgpVw3yZp5DRDh2GWqKY93\nAQdNaeAWRCBTgBoIQUByMijnLSpH18Yf50KCLdHZvDB1w/nuLQBKvgfwZSOZmqeKB8LhoRozVlg2\nVJypRYvjWO/xaQqNgD4DKgJntfe2yJeuHOfUOfqEGlWZntvNPtHXImCW2VvmeDwX2R6zMpw4nfk8\nel0vgLda6u8hVBaKaTAieTxcnq3d8c9RXWBg5oPzb1EiDSWGjytcS5fH1KECRNnWmKJ4OhMO/VVa\n7Ya9ghK4Biq2V9blfQDiYjnXtA+Oo5F9ghSfnnBqoKw+IdLAker28WNy6tY2yst1V9f88t1WjYs9\nNS74SRDZsBCjYGsom5r+j3MHZ6aprAl0Uq0Nkq4t/78JkkR5J2y31RlYSCmsl3UNDd+/WhUDrhdx\nDvdlEQX7eNurtibwEg7hWiyWz6k1jg7Of3ae0dSxhr/xzrDIaTLVKdDDtpqQNcfL3Q5Bn1Cm93KS\naUy0J1nOUJmpVoiT74VqE/ngkesf31tso81odcc+BR4sTUnpDR4e7UdmAtlzMoV0e5fOsUV1BTJJ\n24r9rKm4ZBtUKhRx3K1DJSVrP681kONFiq0NpsEdBRp4/JoNlvahDZaBzbxvHOO9a+AJG9u2vB49\nAo34u22ddE+aCCLyBCKISJrch6ZM1QylbojAZkXl9GmdTBpemmvclEZWG9S0+epF1ff4OxFx9bg/\n1WoCdTFyHjUNREoByWzopH2WZsKkQ0sQYaIRw/KF0klVj+8BA5ESid2FBSht88djywIvuTEaxFJE\nd7cJZb9b5rrDw8C00GiRRlxKkCM7ISUwEA3rWKnDR6YE1+t/U8txj+XLstNqQKcQSckgVD5nBAB0\n4cLitDYWVEULEscwjjLG2RzvDCn3ZCDYsXCnom2lccqmwnv4u5eeHhbCmB+ajpcaDaZS1DH//1TO\ns6VUF0KewVit9bdcuI0hi//S0WPN92/AZ7aAJgXZ5sO0z/kkzU02pYV1vE9VL2ltKgBLRkJUbxfK\nv6X+wdDGd8OWhl06z7N5VrOeTQG4QuTi7DZpkLAyRLp2wTaWwvIGmAcR/ACM4J3bFqO8VSPfOxR9\nTkNNH6L2t0gNcPi0QZVzmD8NTlTPGZwa1TuwYz/8jrm8g2m+53Moq09hhU/voUB+j9KPW+u0tjgX\nxkQQ1hXJoPvlizTpjp/7TjCvWERk8CLNw8yzPm4AKhj2EgXKRqBIDaFhMzoS3CoBXH7mFBcLigWw\nBUNM0wwrlSHYakLJp8ZSnyYCWxTBs+fnWr/Hu3QHQG61L800iifzHbXXsIpOTGAb2BKZq7D+xioX\n6Xr9Np6pNuI55+o18Z2yYv5ko0X8g/aQWSNiVYZMES/XwNhqoLSyGvGTKJqbjuc/H7UeFSe3O+Gz\nxkOXkL9OmyZckv0zA2Xsnx/f7tThGmpAJsf87c6Ps7MD7aTyN/cAjTm2LLs0sm0URKgAaMQXYwUz\nC0IzaJJtCMEnney880ZtxfQZBTRF8hp4RHUalnJfAhgZtqURFHVFbBCJNgRtRTJ+FuH9S32O14L3\nzrwLETwgmBWBKhGRjuW2A0PMrkf6Hpxg8va12rPXQI5U6ss+ta+uPYEIaBY5pxHDmrBUbSVy3hja\n00Yj87FUmlnkwsTdVzYqrjM1Y/JT1PJaXfgostSLqof+1Yy2TCv0RkPa5MGRGM2q5X/Fv/vQ0hgF\nrDERdF+dpI0TcvQLQgQIrCEZo551EMEbsrFSRy1SHX/j++2dhZwiUzo52ZDgZ+k4BlmCIipbc6jY\nanYPt8VSo8xfr1XWeEwaQ474dNXtIqXh2ue6Req+Rl5NCOzxEN1p57LuZPJZlV8S7OMzYqSWdbrt\n+8a80rNxssLnM9SON/WqxzMwa/hglO9aXt1mATo0jWlWTqnMSQqw4FQjihyadJoxos4TiFLtwREd\nGvXqWNNd2QV0/AyAyyi4zhmfiErbVhOOK4EV7NvjNPTRl+NvYuWJvpapteXO6gBUwYP+47qobLgH\nFK9rZoaJBeu+nZASAmcBgjID8zwYAc7AEtY581wIYg3PMZ6vYDSzysAkG9HNFBT9FUvF9V+bbZ8j\ncuh+VySUcLv/FCnn95rTfwjPvgt/f3b/qE3B+77zDnMtRY1AFDViGgd6+kBBWXnGXksdhK6yeh51\nLf6atFkx20AR1+Pz3h/ttkec9BPNvesBeKvNB3SSHsVeisfBdjum4hrN76L2ikhp2z2GTdc3f8Wx\nWWMilMwub8dEYM1/58eW/X1ZMcUDBfU+87c2kOM/s62DuddeizrMeIaVshm69h19CWgydoZmAGpF\niRO2okge61HvJKfT1ABI/10t0MRnVqsCxdaEZ1YbAzFF83PeqadY+1P7VHsCESRNWzYCNpmDMvwd\njKJr0IwRuRn+R47EUemaE8iw8WkDIjminxf3tD3XzM592YdJPr/4ZtI6MRGpoI1BPptCu0A+2aII\nlK+57fdVES0bSdfv/M41enBcnvJvT/cvCgmNDPWNQmIIniqgsjH3hP0qwY1y0j8NIuS2D/cpPg/b\neJzN8fQiQhbBqeP4mur141SzanjfPsMwqStwp09S7K/g4NLYfW8qdSyCFkLsS+p77F809rti38c0\nOqQT1irXd9w4VIE2n0sl2RM93pHtgsMSdUtSP/xF0EGbnW3dp0iO0E4ukJ/6Esc9M+P5CpVHqObO\nyOsOzuFtnq9GP6VnNRwn1oNW9zApMqRsUgeEkRnev6Ghpw9Rkmv8AoDAiyROem3ESberdJzLuxSF\nJt2zVlFE6bKaAoW5t9gz3zct41UxkA/i39cYxUv/j0a0uL9rLYIHjxmWmYnw6fZbnSelmo9Q/eVV\nLnE7eJNkyQcQlB28TZVsBmDETO6NcOu2BiOK0sxFRFrMucMX6VztK4xHSIXb6gLH92lcHG5QlQFC\nbQdTTqGkrvu/H9Nqveavm/BO1vSHIjXeA5mnAcLYHlMRh4zHAcogUrFeo56V9YjVHaJ+hEieh08x\nazp3vE83ZRdEgAqf1vFlLrsCSwjANAbJ/pyxncsgfvkLYc/HdYg08Fq+eWTG9fX31Hrr/uZ7H5w5\nvSRz/06tu7YLnwI97W/1XELAluUSLZDuD5ArnMCePHrmmEiZqmDtwi7YIhnESn8Py8MVzTJhTjF7\navP+qXKatvF57mATLjXtB+tdVVfKAyC+WoYP1BXVQRwoVgft+ppe0yP27Uu9eWp/u9aJSFfkY32d\n7QlEkDKdYXgGo/lZMmBZN3dwlhbG0X0uATiG43tnvAAAIABJREFUMTTeeIp8zVHL0Zv64m5bnIjd\ncU4sIkqn2hsQgfnMjCLic+vEqfyimelZPU4/xbSwGJ0benU0YvIkW1KnNd8aN4zzd63kTY5gsp/p\n0zo17ZzX7h3HOnPAgwiZhldbRAT7ls/lFHhQe7591MPYWjVy/XabqnAM94ZXb4GpKFK31hx3Al/G\ngA/nrDnBPN4ZnHPS3O+PCTx4sJU/Qomqem1xjpP69dqXid1gpGHQ8pnZ6IY/F/OGqUHgmDrBkXjM\nQs2mNb3NQ2yCscHmqh8EuiSV1clIGE0yKDa5wrY3cNDepJB/c5HTc+Ri5ju0Rc77fWIFdMvMJW7J\nrpp6dpVNm1JRvmDAc07aGFGpwT3mSjASBhdpn9GlMeyg33DYJ6d1iKTP7c4LUaWuU6DRi3FZIDMb\nSsGpabhdihaHVI2J8Jj2pdHmWh9E8iOLKQq1Eo/RaOYurpxc7B9PMDfjZQbNjSaVnGnAbmknGDcr\n8+x2/tnr9tqLoiFD8pghsLjIoNj2LwnQWr/HWrUuTZBdGBdbBSLLyKhuC3OvdWo0ihjOU3NQtaxz\nT8ncmKeuyuiVJxzLRdciwWT2DOcAtwH+1UCxCGZHlpXdlj97AE2Ov1D1xpeIS58MDvMacjWefDx1\nUkecF9CHjNuqcGIXKHJHnNwyFDoMfuap/xadGxETqdZ1BOfuea37QHdeegQpXYpl+H28hr5ranr2\niV3OpffKbfykls7E2GuTLYEFjL9HgHUFcGG/0/B4/Tj2WmKqZQ1E4Tgeqp0g/tOcXIcUWVAVUCE+\nj6xnxp3Ldz/3q1zftUqL2vWPH6Q1NlSsDnLsAdBi5Tftn+lCMcOGdbJWEjnsGrbxHnyOtfTU/l7b\nE4gg6SWyIkGkWLK8X7tOkRpSQy0F8wADJyqxeuE9TyvsczajQ1oBq3XGUVFCHIB9sMZHLFc5Hpb8\nUeYvt8dPT4IxYstSc9dTw87QaGI6bqSA1UT/SE2jYWKFrAY6cYs7t35vAKD2AsAPnhWjPN5465/k\na1GP3hQUXUTY/IRuW6dGi//OTsdxMY+M7pp+wiCcy5YlnYSFeqTRd78o2/934W+/jz/eA57zB+QU\n3u2skZ8+P8dRY6spBBM8UErx0QNLfY1aGIOeKExfP7hnpADX6emN2F/5Me9BhPXavyfjTX5H2wHE\n6c4R0btDHW1rOQE06PC77iE5bUfkuh9uMyixu8MnylKRibC1YqJ7gpFeEJVzGkW1RESW0FY4W3gW\nRU1RfoV9WRmG6vFWeIqRrajIXYt0RcFVGoE1aij92lreehSc6ktRyGBi2F7ZNwLA1eh4MOgiZdf1\nmRTd0JtquhnXHybbbs28z/Hya1rX9r8ksGnzS/p6eZuZRLEqTU1Mj+/TYIyyjRuUygV2sM+Yu9y9\nS2AGgaidioHmu8WUiWUQb4sq7yJ5vDBvmgyvVUUYMOcNpzZn/827qc/jBDvFf0eARU62U46Fc6RQ\np354QfsC7B7MV63RFxF14MEKquRvDxSw8H/Xa9L7NabmdGXn1F9oFP9zv8eaTPCgNRWWVQ0/RKQb\nPCfrNDHwEpdSn36A+SBoB9UAJT1XoIjvzbURWDiEOaMGJmRQws8Z9nFHcElLM7bltUSnMFf2Ks9N\nAT7aUJHh6vqOv6mpc36R7TXS+SdrppJ5O622RkZAynavDWufOp3YbFmr1MPR9JweFmeMyD+GbcCu\nWJ2mIUC7mGZXe43jPF8VutT/E+j6NIjQDxxVrf5HHafGRChKs8aDuLU1HI/nqZ37qwYROulczZSv\ntz2BCJW2R7mZ5Q3UWikgdwkxKEO9XMEBiBUIrPAPjZ9Tjo5zMFiyTg3Z9Hfrogd+co9/231Zdusc\nytnzy7SIzFf50cfShLwG0tjsVMGSdTzncyj3vnr+kPuHiOrdxxQhfdgkC2KwO410M+UjRxzzWfOi\nQWPBb3dMBFC7O0Rcp7N03bYkXo5oRaPI33ORTD2v5cLF37HFtAg7FpYwxikuR6PXlkWcDRjhP+I3\n6fe5eoZZBvBdBFjsQj0Ohua45XEE/TPjLygo8zkb9rz2lddHR+9+V5a21Ag876PwuPl4GoUVP9ar\nC6JWQ8FhRdzf6fcEzrio4/0Ihk+tKUW+sWMA/dQVFe8ZWUcuH9SfIxryIvmdZKMR9wCnCcUaRERk\njXJtFw/pPZv+DNHX86yYTYGy3QPGNYEB/PZ4zNUe2CJQYNkAsZ581PqwUVo1YhZgSLwv5yA2/i4L\nTqW/rdBbpsDyNyXQldORMFeeMo5M66ujXdnb/FsHibyZLM7e03cn/KbGwmHrYv+sY0FHpfHXq0a5\njcTFFDIy5H69z/27SXPi/pcEMi1+Ts/j5ibNnRT0E8lAT190klWBCO5Mb9NxI3gkkgGkaMDbd2IX\n6spz/eSnFd3V0rFKry6dkMIwDnOHX3/B/NFyl+m7qXkgHK5HDEr+ParY1BnEb925huZ4ZB61V+l6\nRxAhocNnhX65tlBY9QIskr1hf3XhfR2SAYjva4yJDNSzn+V38fK0Ko9ZuxT4wDYyVhpLnyPTSVlQ\n/rg1lkv5DPPxTr33fdR2vT6cy7HxAlBWvMe2H/iM47nWj1iullk+dtxwvM3w3TlqUY5t9Sv8d62A\nWfo7C/HlExE8neJ5zAHyzl9le+h4SClGN6jKMMA7yrFqq/FkVo+3A2vVlrKuAd6BY2m/zMmM0IAY\nrynflBEGhIqmDggOlfYabeCtrvU4RmtBBM5XtLNYkjbtbN/NCKDo++zKEnsdHza+f379ACu3eJtO\n25UK9KkNmvfJ1+fXXfs8xgo2++PXxXvLbbnXqW3V/v40yPHU/v7bE4iAZum8y/tk9Hx8SE4wJ5fr\ndZpsB2bRpFG0jFE78xIzcjLUSSF9xjJmIiZyof2pIb3ifhfpizY6QSPj8hXKb/0Oau/7vIgM//Vj\nupYFABEYfXT+R4aLyOvjZPpinjyey98byvRFOsfk5wQsjH5M0acW9YhrBinvzabxKQbp/7ynPIH/\nfWudaoAI3OPsZerD1V1G3mOElVEwGkAWlFCqqS48abstW6Z5n2Fd2AGMIl1dROT2Pt2DX1cAWBgF\nMNdwMWIN9fQ3DfltId4pMoIIBCs51CoSnA28mcXFnVUZDsZiJIuF6DUNn+nALpp4Vljo77UUJcau\nORcd8D7njRGf6GQp1dvsy1vcF/2Lp1Bl70NpncYa47U65Gyn0oj6Ihi1MpCMhDBtgA78x20y4ix1\n/x7AwvkqvUOTG+QcGx0QOhkRyOS8ZQ2oWP6RY6pG3440Ty3DWjGYOaYYAe5j1tyCqbJUZfi8b2S+\naEqKdbpClLgvfYib+spclc8zgoKnj/s5Oag1PY9TTAQvluh/T+HRAcduD3pyRHSx+ynTATY/pm2L\nD2l+/3CX5sy3C4AIuzzfR+2WWpuHtKY5WC1krBAMqDXON425OXwfNjGNAX2woNNGx3EYoxZ41Hsb\nx0n6j30/CIgcO5Y55nyaj8c5baToFR3w8gHHMcrPkZnVBhC4bF8k3YoG2hTXz2FvfDQgB+717Az6\nFRfpnm8XRiPlxveD4AvLuo6csnz63Or7j75U3vFYCaitrDWFDlJFhEQ1W06UNrCgApkI+xDg6KvQ\nUSsD+Tkt/ixS7D8nj93+Ln5HMMdS+gkePEM6yDVYKraCDcf4QtNWMzwkItK6CYvnSH+NEVwZ/y6/\n41cAFn63uxURkQ/3CRAmc89WAtKywQAcyGK1KaCqzaV2b+v+vjCA4fPpxh2XY7Uxukqrg7dJiEcx\nHbMmFBrfW+v08x7QhjtfA5inHWj6p8chqDhixZgyCk0236BJ90YDgAagJ5hIsWJG873YOOYTTWPj\n9ZfrXNZwwvUXvcotAt8xlU6kPyUwtq+7xKM8aSKgPYEIaPal4WRAo5z5uVwgZwaZ3exDlKQKIqT/\n05mbqbgNkdR8bjptzd5PvLbFPLe4SI1suUosEJM3QFn/cJW+mJpF5EXiOF+8TxP65ufkcJN6ervI\n+bTMWeZEe3WdDJ3hq3y85nkyRqdX6dxX+wQ0HH+GMVhx5tpgaFrHlk5GE2dBCdtFcn74VRIPm/zn\nGxERebnJTIkt6nBTTG6EXODJM6DMc91VBogONTN8kjs4zf1V5XPyE/eI/oHiTXq5iMjVDwmwufhr\nusf3uLc2zeTiMn03mYN2B+bLZolxucoL7EeUrlw4yqs3aFnvOSPjgr8ZVWjdL0Vy9JO31qZHkOWg\nRn0w8qtIOaMxlbxLCvlH6nnNocrUdQ+u2XdgqIsjnV5QnfFeW6AgGvmRGp9+z/407u9IYbUtRw/K\nL8ekL489rfJB6f2GuYLydozeE2yyz5cABZ2uSEG0ThLnnE2oD2+fR3SGtkdv6FhAhPvy2a8q7/a0\n4z7p7zuMZ4IIh9p40Yof+Nu+48GYj6n4tnETn1lWqM8nPSWo2MdweMw+j6m5nffle+GPb/8fVeNp\nGNuo1iY4f90Gx73NB1zeACReJGOXYPE9xti90dTJIAL7AsO4klJFMIsgwCqAtXZfZc1V0iNihYkM\notScBsE56p9pf//exvfVstTOwawbDuAQrKeu37WWWVvp00Wqg4ObtWHM/cPtbp4BAH+dzn1x+5OI\niMze5bWrpWalrktYP95lZlLTpDW5SUuf2jFTaC2snVPTuW1a1tnMQbwGShXEJ+bTQTBGyWiDqdSs\nreeD4zCtgRoJZCaYVBSu0Sr2WtXF8AAS7QWW+9uad4LrGHtTKwPJiD6PwzSivjEQ0wbcetR6YJUg\nVK6YkBvB+is4qy/GyXawY5TA76BB0OfgHfmaI6nONMU7v7nQ78bfp+O9nr0XEZFLCIcr2GFMs+Mm\nbZx9SA/2YZnmEMtk22sZcJQGZgUzbL8aZ3vo+hxljXG9ZN4N7rIRttQKQp4Vld/9/PD2Qf9D027N\n/ZtcMW8GqbiwTw8Yd2OjSTQkaDBJ5xiedeU9wRjf3gE0+ehn+pEBZfN7xnQ9flOy8UT8deZ0otMD\nkbdia+5JbU0R6U/B61u7auvsU/t62xOIgNbGOnimccFaa51za4B69Luv0ZjnJEpH3DIHHoDA3uHz\nntFFc3w6caRhURG5pjZNR3RwhYmMAlvXWa27fX2dPm+h0v3XD+nzXwAQ/GxQcEQRycYYXyLStc39\n42TXQhF88l0ycM7u03XbOuT6G/15+s5S8ki/J+Ut03lPP7Pu+bPUh//tDyIicn7xk35HhXBSfdur\ndE9UwZxAhEgWIZvAcR9SityQHAfMCyCfEDoMCxhzq2zgTa4TiPBimlD/87cQNRuZZ/Yd7vG36A8j\nN8iHP/yao4rXP6VzLEwes4hfBHhvmYccBbsaMw0wahBFNc8N84LjjgybIufW3JqJOoOd+3tpnM2u\no9GBfWlU06i0DpV6yN4w8+sajT44UKRIkqZZySOOgmW1vPov0XXIMSITCYEI4QgCrhS5GlXGcwzW\nZRZAfj6nqoNohMsBkelIBAZUXdtccMzppCNJcMYLs/kO7oKRbvuxh5FGI3qgNzSfr4gg4XNsLkE1\nPgiCteVx2A5+VxWHs8yzRvf1544pBrbpuKvsE2093to+UXJWkRj0RHf0G703jLrlfSJlmu2YcW91\nyA4BQOpj4XxJq62JpP4y4j8HIO8ie5guKag4ouPIVAND+WIJN00x4HbXD/wVvEDOSTbSen6RTj6C\nkMLs4ej2FcnR4pz28mknk/3qnUPOsNa8TOvxEKD08N7kN80wz3Md36T715zd5MMcIJjZprVhBvCZ\nDppdf2ewLwj4kFE5Ml5Svi7M94EiPzNBi5zOEGbkSilPpmHx5nTh07Ysrpe+dOkgLDUcBIPZhRpD\npG+kx+huwXys/sqfw2oURfBgEN5fmw5yhv8zWk/n147REahHdMonKI+yJrPVpmN2fmxqVRVrv3z/\nMm26To77+S+3/sqMRg9ToVihbAowgSl0IllHZaPBOJ/yOx/nyejsHFo6L5F2u8kAAxvHJOc23q/R\nnvaHsY0JOgdB54kBEUbP8N6O0+fVCDpDeLXamXl2yONs5kg1PPPBGpFslw3fp763g/S+0j6drnJ6\nGO/BBEGfCfVPWgPsKbPTX58GM6yIND6HYf4blUt+oavRByJEkLz2vgyiqMlX1p6YCKk9gQiSXhAn\ntnai9FONZcDWBuPZUbqxO52vC1C4zucwWAzyeQm16ktEiW5AY7biY60ulj5/U/MtjUFmnVMRke5m\nodes7bu0iMjzxFJoILw1vEn9mxl198HSTxw0DrY/G/R2nYyY0R+RizmHYTKlwVjSq9sDUXn8bc5x\nig5YpbbDqKKz3/3xD+k3r1/m4737gH2xYBEomCPMYxfY7a5yEjHerIgskSqxwueONwWfZtJnnfQB\nUj5orA7OzML/AqDGNfozQtTpeQIV2hfZqGwv0r2eYnHn87BOA7etb5H/zjz4CpU914j2l2vzGKeB\nypdzFcv3Ro2hgR+rH3c2RSadc33wzrAoayGfK2J92nMHmmAshXFDp8TDLTiORi4+jfZ/SXORKVRG\nYLnGq1/Ss7tYJvBqU6EbD8NcZB207kS0Myutfxr9sOyCU6Xr+G6OK8yGUXhJXU5mS4o47j8NHn3N\nyvNxzqRRbccfnQVG4HcaHa9dl/jveoyiolJC6Is9nmJZFf801qLnZfZSRPEbgglWxC73Kzgz0dnp\nadbeif0YFOtJeURey65yDcMADGg1lIFnQNl9zgGkX54z6pkPzPHM6GYUJrbpJvy/1kKvhIKVjh4u\nnNouVql+egkxZc1Nh7aOSemL/elrp0oE23tyQHSX4LOAXSD/+A/+Aux1cd8PCZRu5nlW07XlHmB2\nm66BgZIaiFqWFMwbyjQmRGwVIDbVZFjacYa0iNLn0rVJWQoE7fjemeHHSDAj1TrGzDkJKqlg8JGA\nw+l5ITYnlCe+X5Es06tmXxHVOyUIGFl6IjltgSCJplweSoetYKQWe+Q5TN9fBBK6m1yCt0Epc/n2\ndfoEiKXBkI93uu9glMZbt07bpqCRDBdmfma1BwRpBisP6luHnsyI4VXrLuJ6k/v30TBhRURGTHnQ\nmdVWI8MW/IcON8eliGjJ9vZVAk0GbwDEXcAOtPbfJATf2DbZwGpG9+6r8SbZzfMdwAmruUKmxRbX\nDQBoYCbWmD7Twi7a8JrMGNMUD9y3vObbAR1th/RZm7407ZT7VkByTY15ch+fmjyBCCKSjGNSjEUy\nij5ZwoAgLQsGhc1H3gFepmNVMzBYvnAOY4XiNmdXMFiMoz86gwGGvMgZqPAPyzCJVRqncTthsh0g\ndiU3OOeZEUJkpHyM4QARN842LkeRNEVMbN0dmAMm759lLy/GiIgAQqZxYBdeRokjhbVGl+ViG8sa\nHi2F+hYgyYcUmenepIWxO8/MCz0TAQLqQxBU+Jj1E+Q9FtCVhsfS8Qw6392n745LfBfkoBsTHmzg\nQe3fw8C+w/WbRaQFuNQApdYUCobojcXTjAjUeCi6WeWHdsTlDJBnSZCJDBjrFE4HjG56A2xayRtm\nOxvw/Tji7/x+vABgxhQgOgiDZWZ7ZHoildrT9hr9eDtoim0imcUgYiNScIq0rCmMD1eu0t8DFZ20\nQlY4Jx15TbMI/RfJjjaBFYpXurxh2PuDF8louXqTHtDrBdJ+LECgAlZHnKvMocwpT0xnYB+O6IN5\ndjC+dQjt2b/TljYfPYGgCxsVw5eqlQKaph0h7Mek9d/xWdoz87L4rrPv00Hp+IhidMy95d95l0wz\nxnimYK2ZMk6lM/S16BzW2ueVjkztoGkN5fPQcnT4O4PTeV9GhbmGUdCuHefOkEXGdWJOpp0KABsH\nsvXXGVNbRPK4oHMwm27RX59eIyJyju8unyNl6xrj2gTbI4ig/SYTwWzneCPwsSEQaa5hUsmdFsnv\nvK3uM4AfMT76SHBt/PG2b4/++J6pgzk3PE4rwrbf4v+3cJzusTZfYM2yTs0a69Ad9nkLp+7WVEei\nDgbfD35yze4BP2ris3k+9Tdw0vp5VsTkjMNcITje9bwMUUvI7ktnegJgfrKGDWaCKmcdbS8PphIM\n3VWudxLAT5vexLliovNCWM97GE9svow153D+zbWBQFX+8VQ1OdLffCdrKWRsGcjFcS2gLly70t8U\nAt//kJ300ezn9J/vYQ/NsTYzGLLODrNWAIITfITJdDQpKGR5lSV4sX6a93ezQGQeLNXBBebyubkn\nCESMYBBQfycHL/L4o8YA1w+KT1p7koEceYOgGamTF0ih2JsgSa4jnj4XfEfzhNXtmB6B4AV25bi2\nGmrU1hqCtTohe9DM4VGfqNFrAmhuRV4LDQje+/x7BbzFtxo76tQaaHWQeOzRV+w+dtLJ8VHqKH//\n7esdBaExL14k5z+dLXZ+HxrDxknnCz+GhZdL0OWXjoj4dOgFXeicayTCNCK0szlQUhvp4sTDHHf9\nO31yIRfJlMHdr+l42weN3+s+03cpF06j4WTnI492s8zhhMVDsrKY98aoxtYs6uMVohH/lhz6yUss\nHpu22FcVuIO2hC3jVeTIY7uWVrSTIHQImp9/TZ/rnEqgjWkHZArcY2EAS4PpDiIi+1+hkA2wmTmB\ne/PMWOt8vx+jP3COyAyxQo1gnWwhTMTyftOpUUAGmHE8QFMBPyf9fZjTGXNeqa4IuERz2awmQsoh\nF/FDoL+LnHZ8PH0UjgqexNnQp9VcT/PJn1+ke8nIHvOwJwZoyA68jyyzV95A6yrbvIOgYnxM98Hn\nCqu7VdI+hih2puyba8f/aScpSl9xGjRW1/hPZwQSC3qRmCaTP6T+vbzNwB5bBD624dmJlNVU2Pic\nZibyo3Tjrb+BGwPERXE0VsS4AhD0YpYdlkHo12xfLinsB0UiY2pGdE5EMmhV04DYal40fk+tAKUv\nm+eLTz5DrXVvx0vYt1ZOLTYt79ez7+eBCBjzlWoUOs5gjOZxx/uX9+W91OjnGYxygwQT5I16BNS7\nsQ7QLoAGCjSY350DVDo/A8PuWfpkbrE9z/w7pO58k+ZKGvSHd3lMzeC0nOEz6jA4B5cOFFlGrU/T\nEcnAgjqX2B5L34qUVHoy5SwIEMvb5WdVDoaYHsU+2Pdtv8U9vUmOSftjWrvkzEc4RUSdF0aSSS8/\nPpjABoQY1wD4N1ifdtR42pn1V9fduA4bzYGgRaFOSZjjRDLbgdTwZpaOY+9MAzB7EL0bpjPYqCyc\n1DEctTGuc2KYCNtQ+SKXMMbfpoP8L9lQBO0m5oXrdI3R2Vw+1ayGjkhgNvA+iR8vWTy2DJiojg+2\n2/Gs6WGhkhKbfR6cG1QwmVpb7y3SkNIXBhh/DdI7aVh1hol6hG7W9lc/xmwQSfUrsI1pwHbcsY0X\naaAM3+K5QiTgaPz4sjqQBwqd/YJPtRFr6WG8yWT8aKoqrsGCCARSAPDLh/ROdu9zSunx1geRDviK\n4ODO3BstmdujofY5LY5QjpKhWRO6sI/+3fnfiJRroALsZicVlq2VUXlqX117AhEkTbqk34mIjFM6\nvTxDeGS+3uh+ImIqJ9hSaTDuW+ab2okt/Z8GPFHb9QNyFDcmVUFVYH1EyRpiOcXTR9WGwYAUEdmv\n0B/0cwEnzuZFtlgQppO0WExnHrhYLjNV8n5NIR2/cNvoLh2K4fvU9ytJ95ELjUVat1rOixUISiNQ\n87YrwlrxejtEKuSnFKGRP79L21e74gcdqxOAnbFDWikXRhGR1TI5erxfOulbkEMF7UoUWMRrXlAH\ng+OF92qcFXbkfJkspyV0MXiPmBd5eZYNbo4LfnJs1gTLDsGY7h5hHNUao2vTsacvM9fx2bMMwoxn\ncODvodReczKj8UcgTsudfrrVokNKqwboN9mXIMKX3oNPNY6BXBq0shMqiQyQ53y5TWN1/N9yTuoG\nqutatg0Oh600EXPcI3g1MwAV+zNGlZAx1MPWRkzvVMlSggcvX2SwYwzmFEG1xX1ZTpL9mYFNRWXv\ng6Y3GBaYUl4P7m8rxvqwS/drE4xKjhcLOBwU0ENfPsOxr7XPYS18ztiKx3kcGyKahyW41lygvK6J\n7J2tmfoE5fcHr0twbkoyxhSKTUUs8RJihFffgl3wHQEl0KGneWwN/vRN+s85DHjMde0x5/SPb7Hu\nrjwAPAL1d2zKUezgbYyYy09RR3MjKBZIMCGWp3OpFCFqz3vSp7+TdZHwt/kup4dhHwUrjX3AyC2i\nsccf8f4j6ktmgYjIceEdFTrZVoxwCw2EuNZvtJxrfnaxjOZK12O7j9/GO0Fw34H4rFRB53VKj8MA\nnKcGN7YfzVpIRt1gRbsIgRizvsV0hXh4zwxBd7RML7abNSHjCR6062tRR6bWcpqZB8LtOxYrzehv\nzDXsg4ERqxpZwEsruRC4YPR+a57vT7jOH9I8MAIYSO/SpqTsH9KBltBgosjz1qwfFFg9VTrctjHT\nGvH6k/07NkE9FfbUMpB+3rfpf2ut+OPf8dal8KCvqMqgjNRFSEcVURYG2aaH92mfw60J1OF2ce7Y\nLVP/VrCbl2Y+PQ3a5fsXSx+v1SbmXJK7l5lD4podIacEFaMdHX9nf+syqoTn/LpBhCdNhNSeQAS0\nockWGL5OL/35NwoVi4hIhwj79kdjlAcEeofJoFbbmVoAdAB2mEDujfAKjeYzOGQjQx1m2weaZ164\ngRybF55RclacoLjSykYj6MiiPjhL3tDhtfsymsioJx2AqSmLQ+PiFk4DmREKuJj+x/JdNaX1+Krm\nSQwLhKWakp3xITmy6z+n+7i8ySvhAH0lsLJZJ4cq35uypGUtah/bMTjntUj1SpWKPWhiUwp4f+53\nI7fPCNFj+zyiIUxn05YpIs1YQacit9oaWbinIXrCvGeR/Kwv5mlB5YLPcmP2XdovAZhR1GtfUqY1\nYo4oFtWW+ZxrdNRY1s4ufrwG3gOCYnzvqEZvry+OqbrhCYAmLKy1XHctbdlnWzL3/MWliIgM/5f0\n5/xNjnLMEGnU1KIt2Cmbykn5zCAYxdQYU0KdAAAgAElEQVQZm05zQBR6+hOixzQG13nMn6I7X10l\n5+7iD6YE1ktGcdK5zqGjYvvH9J75L6nv1yglS1CLgGk6tz8nIzfWEOPcejYIURxMldV3NIRPLcb2\nKWDA9imWeYvRnfDL6tZa00hSU/Yv9xPzS+E0lGNV0xmQK99c5pdyHMTBxqDCj6HNcVhlkJKGMe1F\nsuZYMUYkA/DTP6X1o/2nN+kLaLkoPVpE5AUQejLEfgFjzPRpgHllcgYnmoKcuKahjXqycpJGeeF0\nNnZ943fe+ZhUUhT2KMt7gICwRvZqc2SotFADjeJY4tiMQJ2IyHGJ/gDkIXuQTknql68sxGbHKOfa\nBd6ZWPp1Y9Zfrv3rAN5vDCix0civP1ffWhgZcq0NjfL/qgbnF32rXXFYf76hHllllqkTy2tzLFjh\nzFjKkq1P02T3iJp48W7VmAg5H97v7Z042Bd6XK7R2lOzM2xPAvWwJy0oxqpPDwCAeWqWE51MDfMW\nIPZyxbEFG8WC2p23mWgrRuq9iAEa9qgyAsbJfJ8FFg+BcRFZPfY5BUKmqiXUAk3NrwmsI3v1+B5s\nAytciPF3uE/bCKIQqBOxAQN8B8bnA96/5daUzFWwDqKTB//eiWTwgO/dOqRo2esdFYKe2G4Diewn\nrwmfNecvvm0KTph7Qtum/e8UgHlq/3O1JxBB0uTO0kkiIu234Iv/HkIzUPoXUOTH/8dfdN9ZUJPV\nqGAlUjgIIEKOEORFXRcwOpcwAGrCUzE6MkLUZGtYBjzXPqDCG0N9Xmp0iSkZWFgHLAmVj7cIkahm\niEW5MyAC87ZhaN7eGyNS/IITqckxrzH9n8fl9eOTRtygXDQ7RFgX79NE/v42P2AuYloyLCDlTvQq\n9KtW4uwUeFBbNGngcKGoofPDIHi40n3Z/1IaMBqr82MJPkUwQXOMjQG1D1GSKLomInLGvOZXcD5e\n0KvB/bzLx7v/kAwTiiM97CpKW+LPVYh89dhnNRNTKc4wmKbnnr69eW+qUSh7x5/b9uFUadHHtKow\nPDvNSCtFmwAmNK+e6a4DRklItVSD21AuqWUyGoV9caJFzt9s/ltiO8wGiZY5GMNhuze1wDFf5Soo\n6VNF5y4MiwniVPIizZktL3Rp5kVQsAfX6Zys0nIEKGaV2xnV2dwDjN2X7wf7o5oXMWfbDApGfFme\njg7K4TcaQBF4qH33mFYK7336uJ06zHVnRyQ7/Q11VL55nr/7h1d+3w9J92V8BR0ZU5I2onUEhDi/\nioiwRmH7O4zbP/0u7UOh2pGZrxbQrPkV4rZIIbOUaRW/pLE68NHEthIBi2uhZaMoQMNPjd75d18k\ngwf7nQeoqtFi/B2ZCLbl6LMfb9b4j30nAEchXKYjiJSpjPobE8wgaMDPZRDStakU6wAa6HpsurRR\nZ9BfQw1EUOYV9YipE2Q8+SaCBwRI9z7NUySnNtCW6Cr3+tT7pgK7rvoLPzkxp49hRcyWh42AtW1f\nEouMa0xtJopiuPYaaQdlmv+n5zICDGSnWR0ugnQEBDi2yMJxrEsyWuEY18q4Rl0wjjf+PR+Wtgnt\n0d22fLf3YazHufJQeTfVVqLGkwUMMWEe36W5Z4+S5rtMhtJGhg9TcSlMud1m+1mFjRUQAVCA+7nc\nlwG7CN6tLJMoMCwIIjCwZsfckRpOAwKZqVmWQe13Iqfmq3qrCS8fv8Qg+ntpXSed8Xm+5vYEIoiI\nSCeN5QOxxN/LZHgdv/1WRERaGOmDv77TXcfvIWy0ByV+DdTVGL9tS6PcGwBdj4FCmpOq8zblcqWV\nDcKCc3BOMKn24Yor7z/PxcVN+3IoJ0FOUmeBGpquxzvpliqdtpcsDU5SXUDZa30+xki/WRBVNIcC\nQFxo7EKoz4Hn8n874UcFNVp3TrtwnRJZi/n2aVvnvmPzQkyIuNEZ1vrw5Xl4bi7USgevgBMcLwSH\nphX1dOZZZoMbxzMaBmSWjK6wD0QdD1ADXxkn/cN9ciRYspQAUw1Y+Vs1rVJCESPUdh6gtOLkzmgE\nQEF62Pjyra5/4u9JzAmuOXFsNSaCgmCgbesuBBMuDKJ5BUAz5m1aBX0IQ3VDP503UIlWDRARaSYo\n83mOslnQfTnuzD507gPDSdO5TP51C5png9QMuQ79FcnRf0R8pMXnAyLNC2vQpk8yqBZgaVn2TY5M\nnX6H9FoqjoSIzwPVUowB8NEqDTaKdWKfx5hTX5o6E8GDuL3WmvwCp89ZZiJ0zyAoxnEB+m4zJ0fe\nANZMD6NoGKdyP6nhpOH6+Ju7rO4uf/0xHfevCZA//orc/of8Tu4Z9aPhDoOdOf1OUyfQgyPDS8RU\nF6gA1LGpk37w82eNOcAWI3y2xfKPewWCTWQP8xQZQ0yzI5CxM+sn38ltWFMte4i557wnETxY90Q9\nOZfVHLMMLPtrtABzLJWtIMAiP982vmhsgZFQa1o5ywDfRYnhwBSptXxqzg/mO3xylovVIz638diq\nt8MMj4pgZWZKUGAR976i83LQecFfZ62bmuJGPQoT14nPLM+vA9cnkezQazBKK6hUQLbwvtWq6OTK\nEt5mdOkRXWnLuGsz/2/1ffO2nL1GFb6GoPaWxbruUbmiMj8QaInlK+3+tKMYlKqlKjAFL4IHFqCL\noB3x2pqdEd/X2noUBRT/VvbWqSpOT+3rak8ggmCRsO8Dy7e8TYKDLSN6hub5OS2CB5HWbydgjYbj\nb67PNrISSzzGyFzNuIyCPTUFeDqQeVEqIxeRWq4Ob4Uaejz61I6Y0ybyOCQ/Ogtx7moNHZpOksxQ\nxmfgqwKk46XPk4udNUBPCN/UaqDH2/6Y0nqRkihi6IQNBQzxzCrHU3El7UQd0PjSxqt04llMm4Fd\nuL8BePBL6ufb97kSxnuUKM0q06nZ4ElcACNt0SHv8bvwG5FsnKnIF4YEUqplbMs9BRGubICa60Vf\nY6muU76TiI1+lqCEUn1vVu6T1mV7bSw8OudnLOkAg2RcMjoazlPsGJkON1nDgNEXOm0U4NybCJAK\nvRFE0CooeD+W+YlM79PxRhCXal+jIsvYOD7QI6EIHPNJKVbKiKuIyHqV/n+7SPfgnuBTBejKUVO+\nt6WTmPU/cP0VkPJz0hke+5v0Xd1aq+37OVoLOU2qZx8OcVSTcWwU/oc5we8SEH78KT0QreQjIseV\nf9e1wk4ZTJT2IoEFzdkP/jxm/O3/nM7F6jR7yqdYIxqK7cwpXmkq1Kdz+jfBKRax646/YSp0F+vG\nShnxr873n1iXaueqxZ2zGCHeN0TdaSdYh0WduL0XXLV9ifciCtHZ+7A7AR70jdEYza8CInS86bBZ\nXYfgzRTVGSrJ2nEfW6ZSxS+Dpk5mtllAGMfreR7/o1pe5/M2/l/Xj8CatP9XJuUj5gpNy5kARLAl\npYfeClMbsVqFAk5wiKg7pzUwdfrAuybYssdK2enIRIhOsKu8oLo4vg2N2HiDNKuO1R6gG0bGz7GS\nisy1b1thXmT7Pn2SVRHTONLvaGuL+86XbOa5/efntD6mzuccr2/fx+iA/D237qk6g4g8gQja7MJF\n5dXuJxhF0/9In3BQj6acEktTbVdwmKm+apgINAIiYrmtUNq36nj7F3RYQasP4P1xQTywHJeZQunE\njFo/4GsGbs6ZF3x64yOds3F90PxzE6nWBX7nf9MrMvcbmpvLsjR/6suwrNXbBcMwMxu42FlqXlyw\nP21MRnpqTX25zOsrjzsMDi57ZY02FVzqia5pNJbHw7iJDnRfs0wYHmcH32B9l4z8X28Stf3tIkfS\nNf0lGKc2+tIF4zbeE4vAk6YYnS07pmKKAqm1vH+jcUlD+1uzIfqOR2ruAYyI3YfUzz1ynwfjLCg3\nvEhOVzsJY2xqjBgNVeBv1U/A3zZdgNWokNtOcdf1KoMS2x0rQHjGVFMxaMdwBmcQ5ZrNkyM6Prd0\n9/SxQ2WYxV0ClsgycDmjmP+ydgj6IGXLVSliNLVitPE1qYyXOJY+N33mse0x814djPDzche2e6op\nPnnfWK3mx/f5gEiFIbhz+CV58qt/S1e3vMssEq5dNKJrUVmCcs/bdJzxKrENOL63b/POq1vkUAMY\nUE0DK8xLHQwASKQD05lwdPxAC1aH2TrKn4ikN84J6Yptp1oBZFbWVK1kQwCyMi+QSafAG0s0cs2x\noHawGQYVHaQIfBfCj2ZfrbjQs36capoWYkUOmXoC4gtLjFpUlraWAgPjMLfZksiY90i/J7vMV+hA\nIEP1MEDHx/FtfCOmrfEonmlSd0T/1q0ENGz/+M77uVdEirW+sD/sOcK4G0AMuTHpJTr+wvyu9pBh\nvR30/fIAbjV6z9+E8WevdxDs0po4dbSF47X1PSe1U0d2wsJ7BmOCrGFqiTgmbwgA5vRWCyKgn13c\np7QZyzKkOEbP9UXWW22feA+c2Gnl2KdaAaD3lDLuKwv91L6e9gQiSHoBraFNo2r7FugonJAx0kpt\n6gMNY0ZNtLyNpTDtva4BJ9xNRbV2XzGERXyeYJ5TfapDF0q8iWThQ6Wy429XR/bELFONwoc8ZNbR\nvjw3wAoMTjoJZFzQebIGAAV/OqUdp89JaydpbywPOm8IuChFmHFp/FpF/jiR5+ssI1ZxIeivsd25\na1JavXHAWwUEymcVW9YswPPF9VtAiP2L5/R0fBxPf9e6v60BRQec402BjIrSG8GDm48JNLgB62Bl\nhTNPgCS1Osb6XdinLypWaxxDCk7gHSVjpVa5IjanicBt0WkLhqj7PX+ru5Z7keq7+pDmh4+4j9aI\nGQ8phCX4Du9ApVqLnnvAZ1ZeL41wRlpXAA8W2+w48n3lcVX/BH2wTo2OUaqoo7wchWFFRGao+kLn\n8OPK62NYuid7qtRQbHAUWO6jTlb6uwY6FWNJPt36bCO9lcGwq7ECyvryPccNgoq1lKVG/+Y7zu3l\n2OLzPSJdpVl91O8orklnbvsh7fvhbQIBPywzE2Z78HNjvpZ8zstJAirmNwAs2nTO1bv0m4e7fDyC\nEromEJQ2c9rmRC5/VmO3oDsjo37uttHZyEZRITrObSYSO4STtd95x6oGBOdIN66BgH3FweU2Li32\nbtKxkwmE7YYe5PRRysb1p8Y+jGvAUdchrBXm5EyVi1OiE/LD/3MAgddWAi6qxUHnH2lT1mZiuoau\n26zcUPGWBgB8jwC8hre4nza9rvXrJFMBtASseaELPQx9l+yc5l/yvrS1IK1QAEv291FJXwUgzfNQ\nAURWW9KJy9hDYSzpGGWf7ESDDlG4eQgJGwtCDwACZo0QcX+7VFrYZW0cxzXQLQSc2C0bEGPw6RB+\nb+01tZlCv3hN+0rQp2MqKL6yGhAK1oWU16iNZfvB+S/bJGX/olZXrZUsClxTRQzzqM+O11Yej99F\nPamBSzer96WefuUb15oqMPVVCyt2T9UZ0J5ABEnGhQMR7tPg2NwiKgY18TlEFMeXefBQA4GUy1je\nRsSU8Rt446ALi1StebcvfKfI7mm0kIIrZ+PUd5ZxnGxy9G8ItXpdLFXQpXR0R5g8OYFfoezbxZtN\nsS+jlIsHX/atpicQxQ5r+6ugUJi8bE3hnDPu97FGcBRQjHoHdoHQhY8Lt/DwxtA54cBH4yb9Hs88\ncBCt029rYNv+8F7ZShixXGNNCJECSdmZJOXUGw3perloeAfFXi/zcnfI2WUkOetllCBMQamrOl1+\n35j7af9fgBLl4TTCsCWTG2yhx4AItUh1KahW7huZJlVhxXB+0ihvUfrQapCokcvSXNSscNHT9Jkj\ncXAaEIKz8w7LXRLsZLT33rABInhIR63OWEn3NNdmpwFf0j2ZI3q/Y4QZRltPqpE60F35vp1irNix\nEUXIqjmj3BbHKD5rc29snx5Rv71FRgKv0l8vnhkUwg83LOeYj7N570EhslFYtcSOhXUl5U7Ejz/q\npVCU8LBJd261KEucnSr3NnAU+zZ8xudczi+x3FttzmBrqFiPOZJlaEVEBhOMrR3Bd7L9zO+1oouf\nc/dd+W5G8cYaBbjF7WGFihbODbVnYrRWRGSM481G0GIya/U+vL+F9ID5f6SK52bWwOAot7pGlKOe\ndjXZBC1KjLJKSOpAmBTHwQzd5sHa4V4MwM4Yf8Ra9mDnv3KNsq1mX0Wn396FKKT7GFr5l7gTPM2g\nMl64fnM+tTYJlf0bZWmFddOuR8HJHFwwZS5rpIxuE6XwDNVzGPTicWamQphWIAhiibYpsMrvyPzE\nn9NBPt78LJ2TgScKiW+MBs5iF+wqzv8ECswF7/R988CrKdaijGKKuTYNgCp87wNOATwlgGaZmcGO\nYgaZMmLM890FjZS+haPQd+jdh/09fbzHtD7WQ2xPRISnJvIEIqQWjQzcFRUxQvSE0bamzZPgduMj\nK/tKioIi+K1fILoOucJmwaahHfOpHAWMTkJwRmrCKYwIPnuG2tvfIRfa6Dss34/c9dLBuIei/mhb\nMWLgoFy/TKyN6T/naBONodF/A7X5B9Tafl/OTIOddwiykGQtUk8n1S8qziOdwWiBITIYptSUtjIF\nZ/TWL9h2clQ6avi91YCgk8aSgiyNpCJQJud2vfa57AMY7BejHLl9dpaeDasLcPwdlMJqn0e674O9\ndzbnNhI8Tf9nKUZSncdY7SxosQ2RBqWKOvEsGDYY+0pBDAKEIiYqV0Q3DCgRzq2RGvGftVajCefI\nDyIEdDDQ38mkTOiOpR5rTATVROj8F3ZkcN8YFbLRyQEwtSaErxlRWe7Lsc/71Uk5H8RynDSmx6Ha\nim2crxZUcjfARY7mehBhFAxc26/s4JGeXp4r56/jOiuGaHby/XWO+gYBWp9N8yUVNh4DHjzG6OJX\nvWCxsqtOA8IE9qKzVNM4pAghdSeOpvgBNQcYged8rxV8KpH+fXguTmwN45bzAoo19LI/1BHlmDLz\nKR2VmIKnVX8M2nNUtpYHmmujgUdj38miG12ad3OOuQyiEnRa7VpLwExBnXCekdvXMxFixFVEpMWS\n0FylubyBNsrZdWKP2GpLelwADNM5WD4rI/R2i3cHtyCvqXhOleCAPmcy0Ox8ik86KHlt4JpTecLc\nxKjvlRGLJdDPEqDxxVjlgESDyi7tPDmbg9nm9DnZ37Am2LlSUxyC42fZFASHTs0Ztfe4YIPZ9SP0\nR5mBwSkWyWLH11NUzQkVlUREHlCKm3P3LYDgGshGUG3Gd/Ma9tHvX+g+I9yUZzdGANW0sUn/i9c5\n2PAdaIp9OO5YbYpzk2WpzZ8z3RS/QUrf4j4HnhasGrHjvOD7YAm48R5wjLZ2yJ+D8YOyG6NpAlFi\nkC9diw+4KLjTWhAhfVKnhEGVWtUWbqMNe6zOV+FFU40PzE3meKMwnkXnZ3NO2ilxjErZcpDMnbpq\nD33NuoqdyBMTAe0JRECzVfOYx9copcw7183K0LXp9IcIizXcaXhxkiL1/1zrX5dOpkZ3gQpbJ7Yo\nCRUmTuvwPb9MTv7Fn6Co/0/IyTCzwvQ91K3gVB5Q6/3sh7Rwn5scWYrOMA92/gcc7o+mbNjzVKpu\n9Br53NOfUj+PWdyLjZNyvH/eMPZOahTIsjXLNarxOpUbO/uHJL37EgJwIjn3jY2AwBlQ8ZFxMkdn\nWDS4pnHSNsJErE7QTDAuTpSwEhHZ/5oWrNm/pnN9vEvG1cU8gzrXvweI8Aq08i1K4gHEOhp9z/nP\n6bsFon6kshM4EBGZPUv70Fhl7n12HvJ4zmWZGGFGBMiwH7J4Fh3vECkw42+KbazJznQaa3RsVQwN\nzmpLZwbnM4MhvyoegbcjQhf6IPJ1wHWTQWH7/hjlfFWQDvvav045ii7aBLytPYORxSoSlQosMT81\nmwrliQK2oZopdu6gs8aysos9y1BZNWx/bgVBKQBnzhmvl++mpQfznSZAujzwswQRMvhCA1twvIoT\nd/SO929tp1TYa4evVJM8fdzwd5/t1Q9GnAYPYqNBy3fdzpEE00agcHENox6FTRegE1JEO825udYp\nlR1TcL6feWc+1wmcYK6JQ5NSMMD8rKwtpZhwh3zuoxDk6PCZtlt8PaeIYH1Ed+igDV/kAw6uMdF3\naa2avUvz6NRUJNnrGOf7gDVLOH+ZaznBeqpWiHgGQdrX1yIicgbtpeF0qbtQa4BrTnuG5/zOlOX8\nS/oYPvh0QkZ3ayCgMk4KMCa/y8fgdtD5tc5XFt7EARiWtQN7hnscGQiKgFVUO3n8itN/qrG3Nl3g\nlICuBU3ogB0CsNd3xt4UqLBGRUHFsXkel2CMvrhK9srZFaLlxka8vE/j4h7aMgOwMlQ7xEbP8W7z\nHM0F7v0/fp/7/m2y3eajf037/ktOfRIRFfwUES0/Ov73BDicoQ9WA4zBDgWP9wyCpONcGVtn+juA\nzlfJfpki/Wr0l2wrWiaTiEl103nKVO4JbEFdT+xQQ/U1CixOX6Vrud6hUsyhfJhMcxpOj8XxyPJi\ndYcxnwuYhQPzMkWmos4drnoYr9P/SCt7me6R5ZDHL8d33ucQzql7Mr5jAcM4yPVdMPvo8b5iFOGp\naXsCEUREGnHCZYNLLLZTlIQb+zrzXSWyV4t058Mj8jFNC8Tlt8lJH17A+JrlCeSIkmlbzOOcmGzJ\nyFyXFgs+HXDkHI+MEu3FN+mcw9+h9Np3QKAv5rnv/4zrgeBW+2s6+cW//CIiItMfjd4BfHFVvCct\nzq7UFzCGUJ5uAFbA2SId73jIxxsu0jnp2Md8bJFSxOcY6hDvNsaqJBXyu7Qwjv/3b0RE5NsXWVjs\ncOerbNAQ47U0s3xv1NCZwAOvUTA1ooJ7wEjLvkS2x7fpBj6fp3sx/yHda5ZLFBEZ/6/JiJQ/pr6r\nZUb2yG0GRMZ/SSDJFcAJUnUbM55bGg5A3pkT3TRlCgqNs/HeTw22osFwhtxTGHuzFdgtKgKVf3cO\no4hjn1ENOjIiIvfQziB1cBvTTCrCcVzsami65uljwWfO8XJBPYD8Kxr5TYiM1qqhFMrPlVf+VBkl\nu6s6AC+SMXN2nZ7dxT3opAbU2Qadk1pN8KJ6SeiLbZF6qVXVKvvGMmjMNZ4ap4ERWjXsakyJkIOu\nRyXdutK/GcEwnOvcgFg89ipQ7TVa7qwlRm+8Q1BLQWH7HN2EyEpxx/kCG6uP2UDgKIIJ7pz41Io4\nKJNo1w8a/INKRR0R/zwyA4Z98NtF8js0gPJ7OwNoDjB2aKp5MJd9NkNaHT6trs0IpWKbJZ7zjppC\n6fu18TGZ777jO89ou7sePPOQb86+0IEREWm+S+DzEOvZ+c9prr28y046xx/fzWFwaAcVqjObAnNm\n2x7T+QRlOLvff5f6NU/zw/Q/GVFMOuAcKEixHP3wQXe5PCanaPRLulEb6J4wQGHLpZJlODl41Xk7\nz6wrOIBIBoYnttrNOLtHIoYyfm8CCCoGEBgRTALfZACcJUappM/UxT5tIrbaXB7ZWqrJ4TQv/Hz/\nJb5SLXKrJR7DOCQjRkTkGRzs89d4rs8wn07zvRrd4716l5xeMogGgaEgIrLh+6DIMliwF7mCUvfH\nP6ZzvEq24ehPP/iL2RiA6kMaWxdXabxN/wN9MCbVgaVZYZcxtYrsqPNn2e4YfJtsxOZPsHVoK178\nrPu8XoPR+v7MXS/BCV/+PKTmcpzYCQHvlbxO1zu+Tdcw/AZg3cEcD3odBF8azAudKUPaAewbv8cz\n+ym90MMPAEhXmVWRAwVj160as4sgXWSDWQAyjqnMRDCgO8YxR5l+U1uzuE+wr+wd1nXoK8cQnqoz\npPYEIkh6l6zQDCeM4Tlo4HcwakiNskJlMEQmoJ43eNP3xiriWjQ7w/G+gdP6TZrIm3OjGbCE04+J\naQqxqsN9XmhITd0vYEBBl4Hl0Uam5KHWA6YFQAfULuDfvPIdRfm4FiXARodsxDTvUTKR3UHuaPdX\nsw/P9btv0ydqx7dXaZ+hNTrWflHvQuTVtu4EI8Eqy3fvUGLuNRgXv0+LU8v69SLSki5Jo4X3YuIR\nbxGpAgFFY711Gj/D4Nra414lgGLwbfocb1N/KUAlIiLXADFQz11/z1l7mQ2y9jwZnuN3oCLy3ts+\nEPBY49kd0zlHMPAmxipnVDIaaWPDzhiCmToF5fdiC+ol3oGpYUFcvAJghkshhX/7azZMBu/ARmFE\n9EDaMpwH0w86BLHU6M7M5xrpAYuEYlIjaHTYkml8f5V2rGwIswjj2DlA0eM5hj6wOSEmgFbN68TY\nmf1jun8vHhYSmzX4RYwgnTl3VINmY8qRTW05m/iSp2PQU4bV9CEY00yRgbFrU2/oQJJNMkIdTZv3\nSvoqjXqyHlTgzkUBaVgfcE5UfTB5uaoLARrvJkSmOnfzOR/jN49w+h9TqeMxAMEpQKB2+LzvY9gV\nHsyyThKniFxZw28XyWMzggh0ZtZmbRiFnPlYnUdEZI7xMLrEtZyn30/mAAyWebxMARrMX0Eo7xJz\nugl1NS3zpD1YzOc7NKK7Q1wYiQxKX64yEaTou0h2DERE5BprMv4cP0O++M95vtLxd6Ajygg/0wZK\nh5StNsa2i3S/5gSJB8jZ/ocEJug6IKJrc7OAw/NrcuaaebYhBlcIJgCMOWANGwI8Ghm9piiep9iB\nuce7I0FAfw3qDJugBe0NRq/5XG1Fq2YTmAYFimfGM8ZOtwSDDVVl9oY5FcXvojh1TYPpCKSxD3D9\nklZjxkVHj39zrFpQlgzC1pMlXaPeBKPivP/tpryIrCuE636fbIfBza3u0716nT6/xXib4SHCPmpu\nDDMBtsTggbWBYb/c5ms4Qr+COhYDgIgErJph5WYj4CQA0hqDBM9++Eu6hl0aQ9QQamA77m0J8qEP\naKzD/JU6BBvnZbIRm/+M8sTf45p2JvdrhAdB8A6Bk8aWzG1xLwE+jCECOlkCxDP2xrb1DE+mYTmW\nD+9760FjnUqcrcP1glvKNbULAAN/3lftIQoH14I1T5oIT03kCUTQ1owrIMIV8v3voF1QoznBeyGl\nj0fZGt+T+VOjKcAI5u1PK7d/CkeitEoAACAASURBVAeeEWXkFDbTjN4eH3zOPeMaO9R3b4wFxSiH\n/AWR6n9PGwYmMt/+AQ7oBXnW5CSSeZG7RybCYYUFesUJN0+8o39P5xox+sC6vFhECHqIiDwsgJ4j\nfYOl3UizFhG525F6TbotJ9fU7g3SyzrkI5TlZFqDNYqUOcALI3thiQTiVTYYiTJ3fKBE8o1OBBdN\nqu3TUaYh1V7ka2mu0iJ5RBThcIt7bBau9sd0DQ3RbowJBROcBbr32/Tz0xndHSNMtqY6q4toWkm5\n0pBSO4IxcCEYmy3AhFcGKf+HuesXjcLRIY9nUhgnCzB/cG9Hh3JBPCV6ZUEEOkyaNoDIP2tFryzo\ndCKKb9Mb9uFcpZBf/r0uzHr7076bCoOAtOUBrPPLfUr7Gf1bzk2l6J3mmWoJWZN+UNFhEclG63yW\n7/V4csDv074UxRtXKiSwxzR4nkGF//lFBjtIQyeTaIlP6/TPZmChrFDBBv08G5aAA1OxCHxkFlh+\nwCvQW1ea6sV+e0aCiK3LTfApbXfCmdwm5XexRaejlgbzJXW5y+NWHIITx7F9wFSkqSNs1uAjeDDC\nWBjCaD0DaGzPQ8eMbJJYWlBE5Nk8zfPDa8/oGj9P68CVSWObIuA4/A5I5Azj+0Om7A/v4Uh9xLwa\n3tFaDfToLNV0NuI+rPnerY1DwJ0x5zYVXPmoILZnTuXyksap4bsZBCDtFE5a+rO//prOyUgpHSt7\nwQQP3mL9/vkm7fIuv5MHOHRkMS6wxvLdtCVVY4WU2v2jI/aw9yyPGvNMSztO/fjrFnl9O95u/XXR\n1uFEb28O1kAVu4aeh70G5szfA3B92FODhWlyBsBVh973b2kc0aVqg6S/ubY8Zl5QDMZcwkHP6Rcv\njoWqnsAd5i2UUW4M0KBA4canJTIdae2YbH5N2P0Eraj/68+6rd2k9aGzYJVtFtxGEIqlY48ACA6G\naMKlfb9C/7ZkImDueMh275RRe45nsANs4KUFU5d2baymsDna6/U2Iu9xZ8gUQgCAAaIp7EesR7Ip\nGZoaKLrH+3fzoF8dkQ7Mkra8fjIwlqbyEcfqAyvQVHRoIrNuW5SMlGLfFrMb5zg75rUCNMdxeXXm\neKe2m6AFge6n6gz/X3fi/xftCURAa2bmVrxMk+kQq8Yc+WlHGDeHWzt4WCaGCHmaDMa7PLFpyTUo\nP3cbRO9v0mTWWX4mQQMKEnGBNWoyDXO9h4wUYtdKugVFEw+/MB+8kvLwX1Nd79FzRJle+WoK+3fZ\nAFi8gyGCkpY8l6sb/iPqht+/TX9/D+Gfm3TO5SKLLN2BgncfFP4tgrw6+IVhGwyxhTUo/po2Thdg\nPVwnI6udm+cby0CC5bG/gaFyawyKe0Q7Qw1haygy1/SoVDLQvhFNtXoHFy8Tas0FdgXxSpsTfIYF\nqhkyRSFtZ/pLe2XU+xkdWh/d36rPIBmsYg758YHimrifG+uQwpgMtchcBQckqg9fQkDzDcYhKX8v\nM1VSWRA3MD4etu4YIjnfcIooAqPPmZEgpmEs4Odc9GwtaUb9maJEEGcGGuXK0KvJHIoUU5unOgsC\niExPpUNay2+OObc2T5XPqj2Dxf0qRUSGuFfn32Zq8hnAJh2rAGGOJuqkrCB0WfM1OS+Y1BZGBkc/\nsdRrGVnmOCb1koyGN88TyHb5e8MiuSC9k3Nj5/sgIu00HW8Ouuf8Nj0HgrLjaZ7/OH5JjWfj+2L7\nPEU1gbFGdTztU6QWOYfhXrF/YuWGmtOggENgDrgWjv0lQc5+h8WfYOioq/g9n+GYmi4G1AGVbfKt\nP+7kbXq+L9YlAMk1zOnPoE2vcY4/wAEAcDuGUODo1jjpYN/IHGOfVOmdjWaDpUCtEFWq9++q/X9U\nbLdMBGKxnOU4/ZPVc7jJ47kFXZvRSjZbdjWWeYuaPS7yHZzyvE8+9gKg2O6/pLVqiJTG5hzBhoE5\nN6L4+/9I8+nuA+aFTT4ngcfb23T/7wLNfWlS1RaqRcRrEddPkbzuLvG+coztKy+R6knNvGnZrYzC\n/wqsgq23X3RNsMOPDhAd053PsxexJUA9mBNBo/R/cfvE0nh227jlPuhKT+Q2fuePx8vicf15bKN9\ndviIa9lTqDbvm1PS0qeKeldKch/D9d7/nMbU4P98l/v6/yRbqQmVNDQSbt5NMhkIRqxvAGCssqOs\ngQhcyy70b22YKKN/A9NnnII+g+8RyJllG5Q6DDukQBJEpkNuAVPaDPtQrtvadBOCddywgH3Gm2XS\naRik6RAsO7xL109bVkRk+xHjDe/HFkGK20V6/z5uDIiw90DXMpSmFSnXizie7ZLDXhTVc8xROI61\nWIb4y3WA1ykQwQzwzRMF4amZ9gQioKnTLiLyAojs929ERKSlgNfPaeId/JefzC+Tkc/a2DSyiL6m\n7/ybuX+PSRSfu48WykcKAfywdh7efBE5LGg44HgwIBhR3hkAg1SqGOm388D8NvX9ClUBLp9D0Al0\n8PVNHia/3qTIso0EFA1+Dx3SF6tk8JC2+WCEcgge3GtNcCw0JjKwwuS8rgAW6Tf5eqnqu8BatPuv\nJU2bBjEBkNXuDJ/+HqV+RCOrnEBzRIaRc++IXpl7tUJeKu8N6eq22sMcKD8jZTSO5tAXOL/ISLkC\nR3SccW3jeTaMxy9AJweiz0WZJdmOFRRcj08jy/SPqRftH5AyghQNUm01TURE5H0yyo8AzPZIY3CR\nAfF9j1VMRoZVofWz2ReyDlq7CON5IEWpvU6L+eR7aDh8zCenaBPPyajsqFI3fBgiSbkaxWmPj90y\nKZRyBM1Y1ogAvUl0Uvkn5Kb+Lnt3g4UXIx1o3rC5gUfvcGsjS8Xsq+k+o/RcXgpYQ8YoojHE50E2\nwPkbzE3f5/Jg7RtES0GnHtUYMOjH8OcEoE3vGYkkGGpYEEAAOth1jEB2VpyKz4o52RTtxPFs2To6\nlbFUpJ1DVMBP/06taiphY8Ec+BKkQEpKqB6nBnLkvdy5hz02HYVhJ7/Pcxq1OJpvsM5hcA5/TWOj\nM+kHRXpUxZNSRt3vSYt+g+Onh6jUe9tI3Y8GvBhQfEAHzz/vkRnvsarPqOKYHU8YvQRK9x8NKPHT\nnbsmMu/smFL9j6DNkx22ct9YgtLeRq4BDz8gLeLXNC/st0w/y/3fY85+WCQDgeuI1V6gU3kH54WO\ny1KrpJRRd43YYrtno4jrO1HU2pAnm0AdUdhV3TCvWWTxsSqSAtWVgcz3vqlMK2yRaaK/7dFNiOtc\nFSDgFTYeTKjtE8eYF8LmNnxGnQwb9Fn7SgvbSnqhrlVgJzCIEZloqc/+XLQ/xv9hUhhVNwXzwAgV\nrfCch+N8Z/fbtO/yIc0hi5UX77T9iAKIWp3BaEBMPsBJ/7/T+JjeIPjzIttMW1T1WgGooJ1GUGxR\nAcVoM/K+bZZGfPEHpGCA/USNKIJa1jZh6vD2gded+rDe5EAYrz2uHx8hrHi7M/YfRYUBtNCmrWkS\naX8JQPrhmP7PdL0ACHixRD9G+aTq47neLKZK4uDXjiU8MRFSewIRBC+ntfJhCKv4zBxO0jxNHI0p\nQTREVO0AdoFADbszho5S1PDd5h4LBHK77h6mZl9E2ZC7zBy5oSmzQ4AiUpxJKV5UqH4s4cZ8ZDv8\nGdHjvgQe2Aerjnuzmrrj1RTlt5VovUhGqBkZERG5I71r72lda7Owrg80wMRdN3EfZ7QF9Ptmjf7u\ny6Gec21hiAbKqYgtKybus1ZWjY32Nu9NjfLMPjMqNHV0xbR/XiQRScdzuq5di+byA7gwFN3L8cb1\nR8/DKI8xKg8azQD1kNQ1W2eZUaYXiCpSpJOOwducb3n4c4qqr/8MdgEotgOj20GnlcZypAkvjSgc\no2EcE7maRO4ff6+G5wXUkv9Tun/zX97qvreg/uZ742m99v9kHuS69eh/D62PC7gdAzvcnvHPzGdO\n8wrnm+7583yAZ+H94kOzWh175GkyJYZzD5+HqUzSIMoyuEbqCeavMwM0MC2KzvoIcw9PbanJClRQ\nxwM5rc7qwLEbOIwtXxDMuY6JheOxEskOrNFtpSJO1IJQw9uVKPTOG6nJ9pWNQECM1NTsu750hr9F\nq1H2T9mZtgdUzKbhztzq9lU2epvvMb6eI9UL9N0GlN1mZBw+cGA1Gl4TjFDLVSlx6ZOgopX6eJvG\nfAdAiWldx4VxVAgAkwYd1N537vlCvI1zRSWytwtOPn1VHTeGvXxEZaIG6TRKTTbRznVYS+Pate3t\nH8eoXd9Q+nTlPz/cz8vrPfh1g806i7yuCBrw3qwO5Xy6C2urnXVyGlf6jHodVTJOKO3IFE6RnL6l\n731cQK1oHSb2Fqk3baC0p75H24F/+2tL1wVHikBp4wMUInlteQxQSPHF8rvG7CM4V/ocKQsi/W3L\n6z6A+s7jcWxY1oeW8AWo9v+2966xti3ZedBX67Hf++zzuo/u293u9iMCHDAk0IAiILIS0RKRTYgR\n/oGVSIQIhJUgQCgGJQT+gISECMRSMLFxIiNMICQ0BNOklUQJIBM7bSd220G0u9t9b9/XOfv9XM/i\nR42vatSYtdZZ+/TZd/fZZ3zS1txrrTlr1qxZNd41xiw/JxXSLu8isnykog8Pj9I7OhX5IpclFlli\nXSn9BJ1IlE1aJc1b23sscr6AQ7l2knjFhuIxdD7lErRm+57einIiRrZz+W5d5ksl40gk8fj9dHz6\nze2qL7Exfox8sSXY9TmUIfh+TvM2m3Iu+8r+MWnpMiO0NTBoEjxs0WMA59OWs2vxPYhlETX2u1d7\nO4ODcCMCAASUPe8AguzPCuIJwAOzV8xmFUaxWOZIBFVGLu9Zo9NFiN9lY49iFoQZwi+ETZfYy4md\nGMLJ9rKFtrSn98cBhTFoRlOSGso1QjDnpi8atICum8R0QBFweP2FKamorfQbpjbvSKiYTujFcCyr\nvJEJ6z3V6xK2G0QnaiWd6xJKuad8HqhySs1wZXVNOqftvS9hkWpuhfY1LRQPuFH+NZMzBhs+74ZK\n5jMTJSEnXjJ6qU6wxtwe9Gxxi0FvqCUxaYdeRDGqxfdSLofp19WefklNcXGSDEcUYphgDSiCIfvB\n97kpiuhcbX1gJMKkX7/XfhU5YLzX3AwoIdSDR+XcwdfrkOlc0rLazpCOLMcU+11vokUJPZT3ocaY\nxsT5VyWs8kC2rYixAw9LEtCcSXpgSLWOPqDxgAo9P0uSVl13nXtZKZwz27nO3j8x++lzKVChaeOT\nst42niTpb+2t9Ay9N5kgS20mZx4RCdPO+2kltwujDYCSw4WCIw2tOrpKlxMDyvraEOV1roaqL8Ia\naUhLIb9OdYt8Dc9dIv1ZDySxLHFj656tMNb0fbeh9Zysjdvs5FoVXRAOOcjyHiUHzFy88Ny2B6DK\n/QLUuYPydwzP5mfuoZb5Fw/K/uHp15KFgGH4U9k6ofXSibxzVnCxW6yW0fKsTKtu2rJldltEVAI3\nFQxuGeS+cx0pRhqxNah5l+T+qxT6QldIy9P3UZ3D+cvtG5zfufRtla+kPXn092WfNPub7rVZZnY+\nlzSN4or1egJdj+Ou9PMeE2quq3FYFN+/oSpgPJDogitmiBb6wCTNZypyyvAqRsTpMtaMRNqUJD+l\negaNJnps0jFX6MjbzsqE2eCWmAWPUvXHjM3SZHUCzo+dAfldGb9cnpglGeVarYjz3WSltUceM6va\nT+fQU53OYVRZf2AGVt2D9HDW6/I5RkGUKIPFazJv9+ncqQvm+Lk8lxwp2qhzyRKRNe3JRhm1wLPR\nwBDLsZaHxL8yOpWInYuN6pk0cv4Fcaosy4EzlTkUzL2r/mWnArdoLTJClXdvf9MRBH0zBjkxcSPM\nwDrAmtv1ul/JuaW9I/oqXukSjxGrzey7DzciAECs90WGryRPZbwUDUjKvPTeEmPCuAjR9KBcHkmo\nlYSLXSnFuaWEA22rZiZkslApYKwrRpP3fJsyRVTeT5WXgoq3jRTU05+Ghr5pjwxDh9sxdIwZ0TMD\n76mKC6FmNDryQD+3bscmwqn3NbeP9n5AXUUgnZva096XrlAvQo18Do3fngeZGav98ONsgeaeuHrs\nga6RKH/P9hrhshzTvihSWunKgrAoBFQcpzlJn+5f7e2jMFNtIjcVObhPcPRuOvdsv7zv84s6BDEb\nvtT7YPlIGswYNcLQv3O1fi5n9TwpUQINpilrM+4npYZJ03TSLwor2Rs4qz2H+n+bpGoZC1mW6Z8K\nO7d2zL8hx0lS4nrrJVKiz+1McuucvFM1PJNSeNzeNK91myrTtySHziW5zg/Su3p6XMqaXpocH/la\n1qBWQtH2h4lQbX1NSnlup2fYeKCSJUrT9DBfHdPjSppZFIzsVTRhvDpcOxp6x+NVwzO1KClVS2jj\n8y7zCtl3fh0FY0lE9jPv07pX69aUHSn0jk8kIkHVXcc30v/MlcH8Gpcf1CG7AHJZNmIwqD3CALAu\nOS12zyX/zDtpDkykxODlU+WJk6g7rnXSMm0k5/gfS9QbPXr2PQPFy36VExiiA8svWfLMll8EioLB\nNXR13jXMX0xr2l1Ck9NxV3tlc2LP9Jle8VnDiD8QQ+3MRBto5YZzqlQZYHvlGfIWvBylJc4Aw2tT\nn2vDfI6uWjKvN8zErtbmpdAiSfTISgxh2JWB8l57ceAwMmF+3pWvuK1kPKp5BFD2l1+aUPZcvUnv\nN890Wda6HEdV5Iqcwz6Yfut1/DyGBhsJ04o6GmRDl0RkqbtSnpiZnEE2IgMoc5TGEubC0lsUCPLA\nEkkwrz4DRbG9zLS3G9lKFFluMeUrjjA5V3jBVPF8OqG4baPw6nrtA+Vdcw5Qrqq2FMvpjIBkxCeN\ndctkvpnZwpSeU96DOddGAAGFH5WIqfS9viNbXjS3tCw/MDlgsuOvVQqa7XZ+6Z5jUT8vv3uVjQgO\nwo0ISAyZnhEAiJMUYnn+jnhAhKftfWcS7vsPVeTAWbru/DwRv8PL5Dk8VdEFJOrW656TCM60Um09\nrKn9dUUEc1kX9sGUszlTSiEJ0NC4Y1qW401hCGsmkZW2vlJgIrHZZBk5RdnY9nmutFBPMy0EMtTr\nKhsR0vdaKWSQiM2svk5moPpH5jgX7yfH9mi8eKp/qyXdLHHOEQTyxUDVHd7qM5ytDjXVhJ3eCBqX\njo0gr6M+yMDOc81kzheVOFP2A/Yluz49byyVdKaMPEwCVEKI0/G18zJH18UTHSXh5unbqZ39g7S9\n4UQlErqyRgnp354yJG1K2SRe954oDwfyzo5UVM8lPedGAGtllKfSGqSWde9QKm0oCxX5IAWJo0YI\n4pkJQX5WeLkGp9aGemc5GkW2ih+/m8b/4CSFlU6U0NHPXrF0ZJSQ5t95b7YxPpHe7KwXA+mWVEqg\nZ+bgItGr/asyB86mtSHFbovXBq8tuceGCPtrklvh8UFRWh/cTw/K+fb0JFkVjiV096rytPKZaPys\nPSzp+dKRAuyhvKvTKdeCoh1ZeauVpao6g8kxYPvSwreaC2Fhu0vutQhaqNyRBLycz1SCx5elkZz8\nVwyuc5lvh8dp/j293MznMlEZeUAruuq+VA4abqRIpJ7k+nnyTtqec6jao/Jh22UyVQ0aD0j/TrPy\nXh4458sxdEGDnmkqjowsIp3QJefmEkk4EnpHI+ihomlPuW0wKwk179rRJTLJA+Xc02lXceT6paLD\n3EZHsj40P7fVg0Njllrl5Wpej9GVEkNIT69TkWSSFbVG+PcFo8CE5rCUr57YRjtnYlhGc87VnvTI\nsZWIlbMLoZWKZz0ZMa8Slcr0Pdf+SM0Xjt+OKTN4qcaE2xlspZSWYTgsiAxpJlaUIyMdSOPuqSgz\n5gvoy82mxkmQ+tqvro/GQHquzuW8uy/Gg75Jyq3vweoWV4ZXbym5lY91bgxorddLdPNPdMfM5ogK\n49K/s0nNJ+gQIo8+Urz6RNbvsRy3ZGgH6hloVLfGaNKZVrRBcbChc451aPAcrr8TxY84Ny+mfGdd\n3sP5wiiFXA2hMdWY9HnLeAmPx+Wzvcd1I+GA9va/sfVWvEqInhOBcCOCYK5kmKnsWT45EoNAFrCT\nh2V3rPYPnwmDpvfUeFGB4m2nIh8yU+p6RHqZcECOtJTr3tZUoFjca6EG0Ml8zGd1PZsmEwpU6BvZ\npkdZUWFPRGHWIfFiwe5LgzQItMpHWdgSfgDA7bg2fxy/10p1Ts43qA0hGotCEFuWX0smyHhae0Y7\nHoeGgLdIVmv1cxFBr5Lm5D7XN9djTKWBEQm0wDOEcKyUVuvN6ImgSAUQAKZHSdChl/NI9lTum3wZ\nqb26XzRQzSojUR2RQ6F6Guu1kJ6zPraQvc4ieM6fULCV0OKdhgfS7uPUQv4SBRRYrkja/bBACckl\nD86KiuTvOJt0yTINAxeNqCYrvHAu0cB3Txnx+D/3lx6KMH6kPK3Hk9pjyefbkLW1oQyS1gsWpHSa\nFrLY93E26ElFFiYEaxg0rRFVG0E5W+3e5/G8O1/Ke+XnxS/L/rJUsTK/vWhxYpWykMuEwVzukmtf\ne+9F6dqY1oq7LT8GFEE4J6YE30eZhzR0MXkZoxRooHpyVXL+jKxhyvAR/VwjQ4vG2avf8orVa6DX\noJEUznlP8g0dqTM3VQDGRmEDlnnr5Nq5/o79ql9Wva9Z+iHri/IAm9Ge5Ukur8Zru+3xukURfLWS\n9OyJZqeZ5f39oXp3YmuhIWB6VhtlgGK0smgljiOttO9D04xFz9mK0shVnc1LHFVbHqzCWEOvzUVe\n6zpa0ijRzSvaKPxjMc9apdxspqPMLaET5ZlqD3Y7wlRNLuu4aspypuKFDXtvymtGuGslMrXKem5D\nG2yyTGi61OqmGdMsdzTW7yqOprx7spNDqZxTniH9OGtNBnOvZfcuc6B+luvYtkODVy8rU5xLnl7j\nHo67CzciNEBGw/ApRhVsSskkvZ+MCWoYfksPy0iHNNJYkAUw5iXIrvRyLhexrOsWY7ChjDYhoKYn\nzHFllVTtPeAvdi9lfsZGopkcGmr28AFlrx5DrcYUZHMiw9I2/+0kN1tBcWSvNFMqmb3Td+v5GNV1\n6X87jqX97phbhj1tMU+2YxRHHXo+N+20wH61whOBentJzoVgmLreR0uv89qothzPsme9+36npj0d\n1jw9l3uI0sCtCpbZ27b1s1X3NMoB50dhyuV6m0WcaPHZuXi4phICe3aWlNfNs6I8TUykREs4mhph\n4Dr1wlvcXAvdQPHClC0uXSGbU+iq8ZsVqji/WwKenVuHY3phSrvnue54fW8KZtrA0stzk2swnawV\n0e1RnXH8wpS3au6nlc8D443R/bk0STbH2QNZ2uOUny4T2swT2L60hLjrRCJcR9hapT0KxDY3jP4u\nK1Bck8pbR69mjmgz2890pNjYrOlcbUR1NIcDX7HyT/rtjFE9yojFtc15mPfyKnqVjU6drW7pdz3/\nrOLOn/QaXZTZv7WdIect5ZYj5mPQ/NJ4fu2Ya35Z6Ep9rn5nzDtDusDcCEOj3Ol+8JtiWyvnWEO3\nvXetJMlRvmsZPa0ynt9DNhyqtSkVgII8y0wiYHTOFRqxuJUsmGirnuLntO/MmEi3FaZteKot4xih\nx69+BkLP5/EzHKyhsd6IYmDRqLlC95ryRd/IVXxeLeMMcySD5Ta18q7/ZyTrYIORCOUceumHoXs9\nYLdvXEc97V4P1NvhLPJcavCEqXnP10lq22vcszXXgXqtW4NAbq/R5yI7SH+bRm3+lo52HmpERiYt\nHfL0o92dMlEXTc1v9rm1AXeRwaz1DLNX2BMfUfJavOpwI4KgKptiRoXEilbwq4viuphnQlELxK2F\nT6XalpODKovGbPjFiNDFvMM8amgBheHAtvSV5pM5Y3EjdBho798snpB5dWy1w2MpQ9O1bC9DTg7G\n/prPWogJLAsm7iYmYGpVkbCj2CtZD9VJRmkl4V1C2DtMWFvKjWe1hKqtzpyvmxE+1zFfILRppt43\n7zffUw8JmaXZk0m0elfyTnSf14bs26iZ9jPZ9pecLBg1trQsi4pZFa03t+xtMpQ010df8u6L0aU+\np5mAz6wvnjJtKDWjWa0cVoq87a85Lusn0RLEcqUT099Weati0OS8Kcj7wrOyVCtNy7YqrML2l3lh\ncrv2nCXtLTvXmmBWgZWH9cdFAmdtKJToghUSn3US58vnUCmiVPAkeslsg6u3GtXzxEaetLAKHbC8\nQdODaJQsdj0b0lcY/JbSsCg7uTbQT828y9sLNY9mEj0TRZd5ayuaTo42uhHQNFzoPfvd7O3qsO+q\nJGGsBI50Lzn21+swegDoSag6bVU9YyxZVjquxRvy816j5pylV4sSKFfnsA/qVJv8Lp9zjcGuPenk\nyfLucwJhvYUxjSmVVEtDtPzGpnO0i0SKBBWJMDDzzVaVqreSxeqcfmPMrXJq34tOrG3fPZ9fJ6wt\nCaZFZgp1v1pDvUzxto6mfn4WymaqHYro1lBfJa/kf+Q1sgaaBqU25o3/sz1lGf8wSn7T4G0+95bM\n1UVRlhVPzdevLrM67i7ciACxKmnGIEdbAjDv1zrfgAW9O8VT0F3Ng5zV2ST/q0K5WDqR3pfunjPb\nchZI+l1paEu+22VCLKFMOlKCWy8yEe0o/ereMhZsd0dKYXGvNVCI6EjC04vwIaHUTaVarjUer1Ww\nocazL9tv44yCFBlQ9zoSwb5hApoxFi8Tlf4uY7XgvRi6r/fD27wYxFplhBGGbxTvYpQp59LYZPNk\n9BqMP4eLLuz5YlRKyKQ2IkyXePFtpYpc/UDN1YGp8FEyDaM6pvbS0SoNS3NWyCCxfBaPQBkTWwZu\nmZK+rFRSS3GyYPh0EUBrOtNSqDqCWMX46/GyQlyrZJXdYtTak8m5VcK/a/qg72HHTeWKzXOnrEVj\nLFL3zoINarToQVGWaqVpGe1oKe32u1WSpVnlobU9bNG5q0AL0eEZylH1LGYO0HDYquNeSpPV9GHZ\nPTiX9BTNfHJaGxFa89h+6bRBVgAAIABJREFU12/ctDt+NV1uGZSKmaAW5NP/6Fy3CHGBkaOFRfNM\nG8UYTWHXtlZCtjYS72QC0v5FTQd1ZZeh4T9buVpBae9kUssi+d0xcagS/nNfadB8xrMBxXvKffG6\n/OqWKLi9LZEpdiUS8KLwvZmUpCX/oJc4H9XzMtydNDwYfgIU+sQ1aJ+hj+5ceB6s4vAgQvV/aP7G\no3ZwkBeyigLzKQ2a8kH6zAg2zjEtS6yLg2qTlRtK/tzSnnEElfxb6bjeqEwyt4akxuoqEXGo+rum\nq1FIrga2tzav5VQAWJfSs1xLi5xU6f82D5irCJacgyNHwtVvVl+7nqMBhHc1Ins53nlbsYmwmygB\nJpoxsQYDQMtw9TmqkYW4Tr6mZVgtwu5VNiJEz4kgcCMCusLFfCSCl0kwxqywUIl/SPxsAjktLJFJ\n7K6lC/e2U9KxXSZyUWuRoeG891UOpyyELod9x9qbaJPXAcAjSXr1+nZKb8xM+Do8nTkfbHgrjSZn\nar80n4uGkI+9lvJEbH+8KPJ7Uvpv72l6zqOTOmGXDnW+EiY3nNXHq8rQIMKuCVnl3mxtwBi+JqG6\nYjTZFiPHduMZ+O5yhEjDMGATVy1jllZhZkWNzaHKVC8Mh4osc2jcWyvPwLrMNDhs9IdVu3sbpWQf\nt9yUfb+1cQcoZS/pDcrM05SHBLpKZp9zTSkhU6nfzhKlNqtzXeKMgrC8D0mgtqWeN+/3F+06Z5Km\n0qq4+ppJSpX71KDn9DgwlPbKrCmgvM+LHMJP4ai0MzOM+TqRIGTqlZFIUqyQB9kxt3kkgCK8XEcI\ntoYbQG01MsJWbaipjRI0UlJh0c9iFW6rmALau2T7texhYnUvnVi2GNekXKhNbNXIdc1naeVEWJRQ\ncVm5tuvkxVi0TWIZrDKrYW0KrSRu5BF5m51KtjY269/SPf15aN1WJmlsdY5gYpSaVttZCR7QsK6T\nt9UGURqkOCZ1uHZNc9rZzmujVc6NIDRJ50QYyIOurYnS1eAN7FdJMlkb4vS9W9WGLHb2Ej0fvCG5\nKiRB04N3r+Q+xejJZ9gUHnFvfST3LoPC3Cqbso1oS3gMEzTqnEkbfdKc9LmV96Wbn6Q+R+fLiWIg\nCJvpWQZyDGtX+ZzBjiT4Nfb0lq3M5m4bnj5bcM/VDxoRCi0+kc4p/3Nfve1O6xUG80+ZY6FzDtdM\nOadLnykr7NxL49WTodVGJxptzk7Tez6+TAyFfHhdbR/ive7LPBk8Xqt/ALD7Qfrt0UW6Jw38NM5u\nK1mC8su2bPHdEDlGV2CwORXI13jGPSW/bD9M/69fpnvMcjl0VZLRyCk2WlLzSyYRZQGmbFhXNCpH\ntmbjosgovcVzq8h06ZxN5bhiEms6zbi9a11kznWVgIJrjzSDiRb1M3S3V9Sf2/xDeKzJXZP6Xrdr\n53WdKLT+J8/Vxj0HLGnZME46Xh24EQFpwelEMxRCt4R4PhQiSAJfEXQRzraMgLOm9i5TgXp8Pyny\ne9+ZmGiQ1R2Um3x+mYgU66VPzkTgU3uWWa+d+1x5HAvz0JloX3sz1eje+h4pX/PaVuf5I+t6C4ed\nS6ri6b4Qx0OlZMq9B+uirH6vKLGffrPT7uZRysr+4KspU+Xjr6e+nJ6USA4aKmg8yVnFdYmfbKCp\nlQVia7copP2PpwoBvTdS/75Dyo49ljJ/gPKYcVuJWMOHsl+wv9ZV+PIWFwoCa1rq4Dk15eXnoOLj\nGCEx/SCNCcd2sKWs/XtClIVbzEX+yuHvRabMpa+YpyCH6ql99/Q+0ALPZFcTeZfbU82w63nc2gYy\nN8pBrnMu48Ya9UCpDLC9lY6bu2lNcW8mUBIgDg7qe23I4O8NVaI3k1+DV5yqPbfsz1DGNIpQfk/6\n0lOVU5g7gjW7KejVhgvmpkB1T6LXYJ62pOC9ocoOzbKN8tW2eCIfSN30lseLinMrF0fXa197MHXm\newqETARLJV1XUOk+H58hXbuhFD4+O5NiUtDTQtaOGIzstoa1htBGoxPfIWmujjaicHosxs89EWS5\n917njWDeBLtfVd+5hGcG87mLRdsPlhkclp2zCPrUhRmzG98z+eUgG26ELqi+UEnYlPdJb+C9xrlT\n40kvIc5lBGgA5RonfX08SoRrS2Wfp8JkK4dsbhQaToMlS7tdjOsSjxdqruYKBDOuUeGNamxsXhau\n9R25Z39PGfwZhp8N02fSpzKntgdr1b3In5gtvmWE2R0wSiN9v6Wk8o3XhO981+vp+Hoat98CKaGr\nqnOSH/V3pZ/3pRyr8vR/7JuJt5w8SXz25CIdOY7aKXBpMt63ykBy7TDXCBWU+8M6ohIA5pIDgUls\nw04aq/4bRe7o7ZERCX02louosh5SHopTMUKfJaXz4VVRRHn2Wo+VnoxzRec7mNdGRdKv1nauRZEH\nrSgmoqwdbXSK1W80yj4Uh86DzWJgefh6Yuhb3yXzZU9e+GZ5Z/E8zc17H6RzH7wr1cSO6zLjAHBf\naOTDHSnr+kaqmIIHO/mc3Xupqsp3/2Y6zk6NUXGrK+tMj9I5V4cieyqlf2JKR1Mupdz8+K2zfO7W\n3yfPx4UhZT9nh+X9br0tzys5yXK7MnePVWWhB8ILWGmB83i4pqIfHorcI3LKd10mGZG0sq8iL/g/\nE1IOt0TWUWI0ZS7K7BeHkihZqt0cqUoilG/Jby9m3fVmt5nZPFDaINlNRiprSMmIz4Km94uM4bp/\nh1L5Ybgo2cwrg1e4OoWCGxEgi0itB8pHDDOkUK4FHeJcrMCMFJiLeV1bAndFcN99M12/9n2vpR8e\niHa3qbZHCLNcuxQiepwoUzwtRDWeiVB+fCVHEeRPuwrpxmcSNel9t9zzUVKysV4IW078J/fujSS8\n8v2D1Jf3TvK581MqJKJsvibPsFXaw3q6Z3jtPgBgeD8xp73dp6m93ygK/flROnd4Xlu/63BtWrJr\nATGHqWpatiGeDxnbLWG+W8uyJeVajN3M95344Ja7xFJensP21tQyk073HidBb3iYmHvYKow/vCYM\nvi/Xc7sL29P9vJI5yZrbOcaxKI6sxz3fT/eK79RZ2VuJGrNlvNeNVqARYcjoApnfVEru7RWhaOdT\nEpYpHpCwkxgra4IDwOzDNLenMu+2rljSqVsnfWY8Zzb7dPpO5otMSSqru8fpPtrLy3Op3JSkaIqp\nY3XYfZDWawmUUN+wno4PHksJRMnZMOgVekAlLhhlvbrngkgYKvt7G+V9bG6kdzQa1aRf96+biT+N\nDYXd3U1Fi2S8GJUyEuFoXSn923L+xFSd2Bbjmg5vXZM+7+yme63vpna0t3h6IVFLH8q8Nr6Vvtrw\nG1ArRzaDNlBC8/OWpXxtY60LOkEUi08t1+T7PPvcZVgl6oFKP0OVtRFmSEOP8LPhcF6dy3Wc+lo/\nGBX8Vjj+1j0xIoxT+/fHEpGm2tjbSzRo65EYMO53DenTQ4nW+jC99BMxOg/Es15HOtWRWJDHDFUe\nkOoRynrhPvEd5bl9kO7V25OIKYmq2z0bwYLGjKz/5IjArgJecgk1jIA0SJM3v/kIALDxaKdzbuYl\nw2H1de/wNP+/tZuUov566vvwA5kDUoZ6TZV6YtLofqBSk1tUz1B/k+mLrFtNT0f7PEuiKMTAH9YU\nk7bWNRoTZHHGkaLlQrpYerMVoWNVmdUifdJxZvKpVO08u5mF7WoxIeecMnSaU35HyZUbH0vH/idk\nLuyJtrpdeEIYibF5l3JZkiXivCufUtHOijFlh92iBQdpe/jJx+mYH8YwWSDLFYODZAhYe5J4l1b6\nafSiY2NyVfOs9cfK606jxqNd6YwYT06KjLgzfJLuKaWaWe6ThotqK5mZHzTwDTcKj6FBq/+pdP3H\nPpUmWZbBlEcxDOV/kSvBzyqPGeR9rB2m/q1JPwe/mdbk4EAZMCRKqFTESH0YKhlnkbOM61DzJbsc\nchSI+n6R4XsVZMN647f+K29EcABuRACQFkhf6cD919PieP11Ct9CZIQRzo4LUVj/poSKH4sgljOR\nlwX2YDNR1eEbQoAeC4N4dF9uqMMgGI8py/ZhOjecF3dEEMGmd5yIVf/JufRBmMuGIoL3hfmQurCd\nqVKq19fqc9if+4nA9y4Kc4qX6XnpLZjvpz4EZeSg1TxQCNoQQ8YjqW7xbhF4ZvuJSF0ZL1OrzJjN\nFE4ie3ZUzK47TxJz6+XYQTkqQRFDM+0z5TVjr39jHGRLE+BYWumFfZgqgU+EwLBG5iR9WVNzwBoq\nyPhzmnzV/01jySdOL0pzMk9yeL+8KmbJZh1moHhzbZ6M+yocmgLJozfSvBtsi7IpFv7+G6UufHj0\nUPpZm8bZJ6AYpoLRzKbZk6QVglpQp1KoM/LT080kUoMH6fPDiayTD5Wn63RLnjc9d78hgZakfMab\nTeFaJwrldMnKat1vjd5bewCAHfESfeaDNHc/uX9cnoXDxEoa9KxPSnvM6t6jMsgpQa/ltoqEkU5P\nniYasr2f1vb5eXk/DB9l2dYNMTzsviahp58q849RNnGUfpuddo11QVxv88t0T0bEMLqnv1v6F4R2\n9XZpARKj00VRbGfvi4dbjKnrlxTMukJlNErC1ESIAEqhWJB1v4Vl0QoWi5L/Ve0tyaXxrNrdemZt\nmNwtO9vyzjZVSPKmvNe3xEAlfI3e3ko2FBrG77KipwYwRz/tpXXPOXZPeI02EPTeFGWBShGV4isV\nTfah8IdeWq+c8zmha9QCN0Oca09/S+rlV9mzLka7qPgbHolRQzzog21RhnVZU9T8x/IjLfxfNQwL\n6bP6X5wAw0Px0O6JYZ5jo+UD8jPyKlFgdNkR8haSpWneztWN5DjPWx241avmtUCXxq4Z3WGsKn+c\nHkr51kPpCw2bKvJCe4XlLABtAwHD2+ndPpaoilMVTXEqfT/JVV/qtaSnAsfdKlarVNxZJdqoZUss\n1W34nOlzTlKqc8yIQYmG/3Aq8tpIGf5lnfIcglGi2kDMCM/NcSK6c3EI9YZqTnGecW4N7bxT92GU\npez5oCE8rKvotCn5kRhLxBjBaknzK2WwlqiKIMbiLIvuFhmi/5oYObJMIwb/UfeF2ATVmXerLTz8\nMuzINt4tuedmd6tHR/Yi9L6YSb2Fp7cjPIzlSXWlLFlfJQKIx67hkTSDgTmrlEZvbeciVklGvWgd\nXKkpMDYnvZrbGDwnAuFGBCTmpUPE+59Igk6HuAixHTwpnvkwSNwyfCMR+7Vz2Qqgwqt3dpMgl63x\nZAxCfDBWYYE5jpybuuQ4UoIOr8vFtoWgi7CmBby5WIohoW9ZyFfzP5dlEgaWQ+hEGKEHGwDG70pO\nBdlmMZda45fnmiKl5937WFKGGA0RhcLxWqCEWu6LIkAl9lwprRRsSt3dWjF4elKyBe19OYWArr3P\nPQDyjFtKUVnPm2xTO+J+mcl+Sx0+Sq+nVtqAkhcAKNsC5qYUI8OEN7aLAMDQVQreeauCmn+9tSRE\nzy5qTaW/Ix6NhypqQYxEYb1eymTOQIlime6nfozPRJhkosGJFirr8nslsVB5/rWNNAdyyKUYh0JW\n/FRfyN0upT8isFf9u5Jxl3dvc5GMG1Z6zoXCcMstL00ZxP5rqX9bIqj018sLnn6N+xjTmNJwcaU8\nDWO7L5xRODBfq/+5AnPiRh3JIfONMyi8mYwJg4dpHg+0cDg1Ancr82OmGcZw1pISxJPUfySGzSdp\nbmwfqMSoEwqKotzsSfMfFy+tGD8AAOvDqj99S5s0SOeyciT93FgSe5mVS2UUG6Y+M8dHqe4hvzcT\nP9aKRV2yLx2t8aBlRLiOQcBe09pvXq6J1W/XEct0Poup8Xxzz/HmZ5S3/VGaZ+F1MWbzfeTSAWr9\nWn6UjapqXjJqjgqGVXT1A9OjZ71YlVFbjEHMJJ/ttrUSBnQV91bFgPKu0nd0xB9cJLrw6O3i9dzs\niRFaooVy3hJlBKAicJENrnVI8qQyaNaG0BxFp+bI8XtpXa39yvvVvedCF7UXP4o0zzB/8o+eWkJ0\nSJ+8l758cpzeN8OqdcnNkwkjEOq+t7b75L3ti3WZHE1F5ZW5ODT9y3kxuG5zuH/9PaBKHdJhMO6W\nDeVWtlPJ2HwhZKa1P3zR2vwojAjMx0JPMhXI08viwbr/bqLL/f0kY866ATCddTE6Ts9/dJTm89Fl\niVo4Hte09cGviLf86+/n73Jy2LxVZgn/ECI5l0U0F7I8OVNKsMhDNACNxajBRJqTkYpSu0yyzvBx\nWnf9B3Q4dbfdBsMmZo0SwbOcJ6x2OF2clou33pMxlmhIbqcJNtkHkAcnG09Fo49jNae4qOmkEXJy\nfJjW3b56HwfceidGsdMs66jn6mxn4PdYCK6uVQzg+Zol69hWuanLJpNXvYrGA4eFGxGQFtzksHwe\nSpKX7CW2wtVeIXD9PQlZkhwB4aK7sCaicI6/KV6Nw/fSfc/SudyGoME949zPbstOpn7JQQSJaQ79\nU6GIQuAmI0nGcy6eV51okB4Ghj+L92VLQooZngoAx8fJwHImERfjvB+0m7jwoYS4feJDCd1fT305\n2C9hmu+dpQf84Ir7mruWWQp91iLL1/LN82JE2PxNyfz89XTOgSRzrLPP1946Mp5RkynVBL2pOGbB\nvxZayn7YwjQfSbKs4ZIkPhzTEyYtYrIgeT9MkgQAO1uSDEkpxkCtSOU9drPUHhNdfihjs69yBBzL\n3KEHjXt3tRBo5f/IrSKyvUYbCGaHYnQ6lHbEKNNTnikminpykObF+xepf08kUuJIzWf2i443Ms1z\nVfKDDHqcdtFgQG/Hnng0Xleh3e+YSimN5IZ2T3A2YDRyJBQFtDZuHCtv3Sgtf/Q2ksEr7MpWD5t5\nCygGwqHxiLSKgRNz07G5Fnhqo0Q2HK5rulULRRn0vmjPbacswzWs8xRCLpWkLIaGKDQ4nkiEw2G5\n5+iDdN2ZRJEwJPtUFKJTZYA8NcnkOFX1nnn7rmbZm18/WqvrnH+1PCVCljmX7baNCNJe9iQtFtCo\nhLSmwpbwCWtIa86XhQYqbWGmZLzg3FY7fGAajdRWsigKBCNLot2XhGJku/xAlKOTRKcORBjXitGJ\nKJMnQiPOsye9dMcK4Ux69w3hhetvP8jnPpQ8PsyzMxEaRIMDAHxwRW94v7rn2ZT8pHvvK5l/U6NI\nAsA3D5IxJ/5yUhwZIfZU6KA2YFglmLlDmFsCKMuWysv70t/jrLiUuSGBhZmu2oA7jRxVNeQzyd53\n5Wm1yv65ROF15qPqZy4/SHuVyrfB5MQ0AB3Ju/9A7cH/cJRaOhHFjvICK5z0q2ehwYLnyDMtMyIs\nWbcdI0Kr5KEcSd4ZKBrFjHz/+F4+d/T/SY4LGhqmXcGP+Wa4RYmRYweSG+Bg3I3SYMTJ2jvdSDG+\nK+YHsmW7dWLFNVNdiu9lqrccsqIYyYBJOq5lnw0J9R98NR25VW7v9SKQD2V4JuK7uzhO/T2WKmlP\n1Nrksx/QmCXr7sOjInPGX0tHzttzkT1n8+4cnS3YWqBfM/PDMH8P5a33RC59VxmJKF/R4MX+jdSw\nWoPyzPCY1o7aklBXjl07SLPvgN063P5trIjalfx/HhsWrlcKHokAuBEBQGLMTEIEABBrbX89HblF\nmZ44vX99fpZW/9WZ7N8Uz/ql3v8r1lqGmTGs8EQ8A1dK6KWQQOGATFSXxOPeVSqKJH4k1mPFsG0p\nHir754rxj4SQrYtit3uSiOGm7DnWggsT1jDBXURNDNN3CSToFPpY0UELge8LAX86rgWxC0UFKRBa\nIZ94+7K01w/35JrU3occ80Y4uQ1jboU2rmJrtS3bLODryk3EREc0ZLQy/fN9MBqAfWDG+3vDYsQa\nHJLhx+qcqsyTKf3JyAM79gBwTrmfHnmZxifKSHR8mJj27Mui4IkScSl7FU8uilBEbx3nJOfjeqPU\n5VNZD+/K+2QCn2MVBTI1Ah3f4bkKLzwSYfng/cTEe32pTPLxrsLCMFvmGuCYn6s1xDnJkL4cEt/w\nEBQFtFZED5QR4d23kyd//f002EzaxvW8ppIwbohQxeSfzNatjTB56yrDvrMQHap2gbL1IQykfyKA\nX5wW+jdR9AgAhmK8Ws8Gl7IdyQoojA7oaWf2kPRKrjFbMrSRMnuvRAgcy1ab6awIiowa2Ze1RAMk\njU06+7wV0hiKqSNXqCRMYv15WSRCMRwuMQxkr3Pdni7fODfntGpwLxICW/vrR2JsOpI1fvSBKKKj\nkhejv86Q5pPq2jl1hQatzPdupOnm++RvM3mfVxLxdKnoM43PgOTCYc6G9aKokL8dnad3/oEo05mf\nKKNi9kLL5VTWdcgtbRjFiJCOuwOpIBB287nHQoP2JHqLSgQNBwDwZERjVX3vs0YQDu9JwZvCuM7r\n8JtizKBSTpr57hUTOHbfR6kMkY5bWj6Q3xhlYHnrueKtV5ne1zxCK8N9c3saYXIlFkXL+yY5Zyvy\nxypkjODIYf/KSj015fcot5yrNc7n4fFqVq/JOvu89Jk7Dal0qZdm5YtlqkJX7ZT7aJtdvqfIStwa\nJN9v98v6ODblOSm36HfAKgKsbELQqKV5zZHYlvaH3OKyU7UPlOhD0ko+fa7Ko+5jKxissh3EJuvU\nlXZstZYdiZR97aTQqz3JxUPZgdXE9kdpTZL+A8BTcdhRdqAc+bZyNFEGJs8/HDP3UtdgsGgLgeap\n3K3FRMZ8lqdCJ2jkSvemvFzP1Zk29Jt72YoiLXtw36y3ir+hvR6sMVqfY43Y2ojA9XHUO4bD4UYE\nJKvdN/ZLiO7wMAkV1nL6+j2prvCoZJelAEzvLq2iOtv5LFvRE/FjHecTk0FWw9ZkX+9rolVb7nOE\nqSn5CBSvuGVK58obQeWI0cWbsoVivVGCjUKaZfyamZJ+8ZyL2UbVnjY4HIpAeDSuBZxLJehQASCj\nn2UPQ7rmiSLSm32WHZR2JxQqO49S+ruKpWAJnhXSeK4kilwmlPdmG+o7KjN8bnaPz3sy7YouvXxO\nOntTzZd1U6aMTP1Axv5EKelkbpM8KOk37d145ygZCSYHoizkcN76c2onyDOJoSbWfQLK+LEE2b7M\nBTqfz5WbiMqBVeYu1Z5gel/YT2Z5331PQvd3iwX9SjJZc0/waT6WMSHjzwx/iafahsJTYdwflfa+\nflKUFqB4U/W6IGy5yyIAdCcthZlcqpVtKMGPpfRopCT0Pulx9iRxjaf2mEhNJ3e05WUJrSTRiFWS\nQ6Zzp8bAme6ZjjZHgD6HdIXeZ65xGsD0/k3O43Ge12y/q8hbBX6VBIYtL6Wtn72sXXvujPuHsfic\nnhFs9cj3p1yv6X1+dT/l3ekdlDb4rrqlxGgcaxhczWd9hq2owflBPjetyhPzGjkKL9NKMNvjmuSz\n8H2fqeAh/n+ejQhz6YMSenNgTs03DoR3b/S7+XeOhd6xV/ujbrQWlfIj8YCfCZ3SY8MxpjLDfq2p\nwd8f1yVyST/3x+Tnqj059nu1cnna6/IERmed5PXR5a3sF2kaFd7K8GjKwdKwzHVYbT+QpJwPTMLa\nNcU/aCwpfC02j/p6jg0rMGyoe7J6DudUIN/k2ixDkr/j1YW+dJUka+ArbZT/W15hoDbwkX5OzPri\neO4Py7njOSMREvjutRFhvUc5QAwD8j0NK5qfc26STn8ghjP9RJTprKOF9zxTfGm9V/MGO44t0AjG\nCJF1NVUHeUtLwppYn4+VE25LjIicF6y+cSTr5okyQlOO3B/VdP89VbHCVu84XaG8s0VrjdP4xXHj\nezhSgXt2DY6NTNGCFV0res8St5z7oLxbrrKyCA2EtmpIOqe+J68Zqfay4yYcLezz3Ucs3ppXHG5E\nQCLq76iQKDKsXB5GiNd7Ev794LBbN/dIPCwUeC6UIjXNDJAlyISp0yPXmIu0WlMxWKv2CYrnUj7z\nl9Z+Rht+T4J+oQQxfjekckRDQ4NDWiWJ/E+fWrwvoTryWXSo1UUW/ElU+Sy6PQoDXaIHFE8QAByO\nKbjy2dhG17BCrLKvkYgrnENk4q2+Y/brVZLc2ND4eegqLJb1kKnoZIQbRgHNY9Ma63l9pNCrvX/v\n5brUlvl2mTCbpuDEe6tca/l9Uvmj8HtlPEupz/VcKDWfyzlU+tnPQxFg41H6/qHe/y+XfSBCBgV3\nCiOpP1QA6nstC0u3Ro4TNUffEc8s3weFmFxCUrVrPQ35++6tu2GKWWkq3w179XdspxXeT+R65vJ1\nXf6tPtpKCfr6RQkM9TAuWlf6HM7XC5knZ3mepO+1V9F6Gq8jrMXGuRTAWr8tQo4cMOtYf1f6UAt4\n0kJ1jn33OjSe64IC7NsSGddK9qeVNaBr8AO6QmULJeKqVqKX7uHNt+iWRWR77A/5JI1EF8rAd2Fo\nRIk00Uohn0X+kQGUSsbVdqm8hzpvbUvf6y0AJx1vIq+VdaKIuTVQ0eOo7YVHYypm9ELzXCyEpS+t\nOvMlgi82r9HnlvUrvKKqXsLryc/T9zS4jpTCtymlMR/cT+GXe5JgSOeIYpUWu4QYXRV1TglGho3p\nHEj3XFPlWriVnfOmVFSulXX77PJ09ou8xjONNKdU8lWo2y15WRZLCCUySeRMNRk2GpE+Flke4NYT\ncM6nz9pzXRxMQhemtaKb2pPjAm21SlpsDA3TRnctDyzzUBTcygBkDFRzri0lr8m/AzPWjDjTvJpb\nWi5lEPhM+zraLdaRdmzHevyBxZEWrTk1NM+St9V0m82w1Zw0FrEY3c1GPbHUh6q6lKzfbDyo763P\nJW/KaaACdaAyfmNRnsex5ClyvLpwIwISEX1f7bHbyPvAa6LAEGdaQIESIWCtmjqkNuc/lAXJxUtC\n3l9ECUwfS4N1v2zZMn1ul2Cw3+UcPoNVLPLt1P/9fK/6HM2UOgrPks9k+Jt9PlNqeKBOmjaMI4va\ns0pqyUn1bOa8LNGMRZPom8+tcEoqYpY5Va+X15m+t+SSRQYQ+w6qexnFoAr3DPWR12jP/FC8QYu8\nEbXnp+7DwLQPaGVXP1AOAAAd0ElEQVS3Ft5YsEIrNUVoqx9QKw0UmGjQo+JMY9aBWr/D7PVMg31p\n9i7rZ+DroKN7mcBolUxtqGH0zbYsJvv8y6bhKsYDIiv02svWiHYATDQAj3n+GqFae/FNb1uCD7+y\nxonWeltEe+qcJunId8c9xtkgogaEttwSNVLP2WVYtgfa/rZKNNN1tj5cJ2dVvT9XBHW5iVaQiUk2\naqfP1tDcwrJzSgWSdLRKnQYfy+aSmKqHsMpCibKq2wfKu+eq6TO/T8OIQNj8aVWlBCoC5kFbOXXY\nn9IHiVzU78MMf7/H6MZyUk4YnEsZkwem71sGV6I1T0r/anpChU3z/tECBWqZI4KgrPOhcsAwgoFl\nXVk+dE1l7+d3tu/cfqUNDjQiTLP3WI7qWpvHoShz3cGxPDnTAzVZn7WWW0aYZVjEo63S2T4nHWv5\nSoxV5jq+nzqqoqbdNMJv6u1mclwzcmiL11jDY4v3lVKEqPvZiGxdtM+/4isLZE5C0wM+F/NckQ6e\nV/JLOto8Ai0+asc4P0rTiMB26/Wnz+UaJM0YM6GpejYrO1gZsTXl7BwaVl/UPM9eX19b/9qikScl\nO+wrjVezKkUXbkRAImQHypp5n8nGzF5WWuW0AjOatxd81T5/k+OQSkODSlvGSmJa1x1OKGGatfGg\n5QnumWNVtnmJkroILYMFYZWNjndyiUJQcgSUk1oRDIBiQA2r66C3jOQ+P64zRr0Gkcl71+Tz8pDp\nZ9+s5W1edM/SLq99Nvh+tWeAwuNaQyiw7dJxMWgIdItghXTdf7tFsZyjhPJ53eeZ4XnawIdsNKjb\n1bfhOqXnp7/KnArddUsw+oYCxbARxpu7Z4Ss1jvr5FW8Bm/LcoC6xm7TKPQvHXU4aqfPSwwDZd7J\n8/ISdc1ghaEtAg3fb00zWlFRs3l7LmhY4a0lMNrfsOQci7kR6Ovf6paXbbdYBfQWc66rqr+dOWTL\nImrly0bJtwyjdr6VcVvW4Vp4rrd4mDON8aDOCl4rjANGo6gO2sRklmboOdyi2RY9cz3poFUm6j6T\nidVtAMUBkRMB9upr6/7V15NutWk5jWxmjJQ3meuNypZNGFq1Zt496evbyojAxIe7ss8kJwHsl9DH\nvuEbOfEv7622RnH7H5OmMtfHlaLhi95YK2rIGn57DcPeMl5qf7+OGnEdSWSQ59hi/m7XFxXejb6e\n+5RhZYxRtwuobSXsp7nXMjkhNIyeWYbjMyyxQNJw0c27ofq3QCYuiTjLCVSeNwf1XG85uXi0+Yz1\n8xa++2wZ2a5NRvDorUuFdtW0Z60yItTvahk/t/J3r/H9dWRWi7Lm1RiLYW8tditoOF49uBEByftz\n1UjUYxNXkRjWCniNiQn5AxqWWWOB1ndZTC8WUwJrLZxaTQvLFbMsuJqbl31W3f5ZBaPap2UEJ+v5\n1gSOnhAKMa3EZwxFthZZftbGmDLuojRkQ0vBskgL3S5wveiETtTHCtR7FYVvWR9scpxWZANRwoTT\nkaGDertAKyQcqOc825kZzj9bYtFftmWEd+K9GWbMzyPVP0Yc2Htp70u/xySJ8ixLvM8lp0I65yIn\n6SrnlH2L9TWl/8tWrRgK9BwVqYX7Iie99jtc1OdV0Zpb2cBn3odKoJ/DMG0kVs6poS5e1N4yb7v1\nXtWJz8w13Wbyu6eCnMPK5Z1VWzMMPeE8WW68W/zjKiGmi6999ttsjdui6IRl/VyX3DCXa8x/0DVK\nTAyfeF5Z0/aiJPmqDTepH/W5rZD9wj9QXZ/3Vjdqllu6VRnSraBtlJuNmf5N7mFCkfX2P5u8cZzp\nVXd9bLFC85KcHJQ3hlm+sPz42W+mRXNthAjHT+eLKPmGeM3i8bNGEm7DCCqo+qnQ3h6GC/tlla2u\nQa47r8s2k3Q8VE6fU1nwlybvhM2FASz2fLeWpq3g8Lxr3NK7HGknFrrzqkAQ+QXlte4AFjmjzTe0\n7HlpttpsD7pKdek72zX3a5y7KKqx+k0+2+o3urn1SEXb9kEZiTp0D1V7WnbnOuP65WdtRM3rgUYr\n09/2aqvHehUHzCS/j9IiaQSPVrbV/SCWGxHqecL+6cjMcA3KbmWZVs6QS0mkPcMErzZe8VAMgRsR\nkBbc06syIc5NqSZLXIeVEaFeoHYvPlAE2b6hxi2Gs0jgWZYt2ZYQW7bvdxk5sUSUxo5liVdyP9X/\nNilL17NZ+jfORDVdNYn1Mf1PopWOU3P3N8alfA9LIpUM0l2hiI9zHWK9DNfJqUDwVq2SWny/tjs8\nRZ+7SuIfm4SLw88xP1Nl/8p7mEk7VK5LBuRzKibyuZQ8jJ3+dfpl9uWl79KRDP9UuPzpJDGpq1ik\nrJEwrlmoSzNOUZ7h9XFKJrfW26jOKfWNy3clf4dUmJAXcjEv7V/Fsdwj/TY38y+GLjMJJqv4Tije\nusk8/X8irqOW4kO0PL/A9eZYay5Y55DODl0U7nl171Y259yupUlL+rrKMrNrVLdh39m5CDVX83Tk\n3AUKzRiLC5jvapkCbt9vC9GcM2/MgVXa78mbsPfUn2Oed1KhQ5S2uZrzRF+Ut/HFG+lzSGtAe8OW\nlbMDar7UDf9efB3nlt2ytSw3wqzR4CKDFJOF1UbP+t2PhFbMGmOT+ynj96CfxuZkXW9lrG9OYVwn\nIyzJG+dyT+mD0Im1UPbr70nm/ePZuDpH06vxLNGrswn3q9e8a9mYt36y5+fkotnoUebWldC5SazX\nhR4/S/c2sS79lRxRan/EIJO91RUXq5i1ZJ0cESdk+XBU6POx8ImLmI4jpDFurfWcODKSh0nuC8VP\nLG3gc9s1D3TXPc/tKQ7XizS2pONA5t9GlPk3KXxqe8AcIYtprYWlvdpIZLP/319nTolykZ1nluYu\ny9fUyrNBRTTnVzJyqd6qutHv5miw97T0w+a5uZhp+YVrUea10P1PTnfVOf2qHY5XSxa7jhPJjgWf\nt34fqX8Xed3Vsu1K96m2E8p2IVHlSNv43Iuu09dqtGQZe+0opGoZh+Ovrdxnx92FGxEAzDDH8VgT\nIu7DE+Iq35fQ+0JZKFiTcE4yQeoKYrzOKtktLEvkkvc6Wq9ONnqs3m7qT5TrULXLBI7LDAQtpdAq\nJpaJjJSQT6FqFHhMeyknoSS/m/Sk3JYokHO5vi/C2nD6HeXmUoqLwgKFo6UJ1cxv2hpr36/9XqOX\nx6L+raWw8J4tL/YwLE+Sod/7ZN4m+joKomQNroVTMrITlSDnopcqkEzkPQxFYBxfPcrnXE7Td5zP\nOXEXk3I1xsaOwUD1ryRKkhKgMSXjOuulUoJX0icAmEQp92Ss4DPFNGP8NABg7zIpUrwVDQQtz9TZ\nPM23iyD3DqWM4aiXxmcmQqoVJmNLAMiCsSh18Y38006uy53eC5USm0AU6M7NFp4V8aLfx6BXz9GS\n5Ks7JvZ9trxii9Ca87ZdPtuy/rfm0lTWNJUGvrPLkN7TNJTqG9MwkWvSd3xXTQFqFeNBbAt78xec\nqbk1p+IK9wiBkQfpuHH5MQDAmgrXGi/I2Pc8+RjSPdOR82No9kBoQwENDeQfzD3SynhvjeNWWQeA\nc3n3V/LuySu0gYXvNStxkevvcWr/qigY9A7bdaGNihcyl8irKFSPe6kv/aiqPUzTPY57qe79Va9U\ndiLuTVJY8GQ+rL5v0YNVUJRCUWJk3KhYXKr1wTUzC4aeVko1Sz2LESGmqjf9yetyP11i2fK+hGUy\niZUhWuUROQak4QezwrNOhE9cyJEJ31prncp9MDxWr7eOkZhGhNbaN4/Voiv2nn0Ru9d7UgVs+mY+\nd0cqWZFnt+ifhSWf43np54VaK6l/aa7pNWrltE41mEYfZnn90sCiFVuek/6jEYqK8jrKPN/o1U6f\n1j1tv+y8PkcpB0n5hTIDZcbh6DtVe8n4RdlpmfNt0fi3HWtsh8+dPmt6dSm04kLkC9KMuZpbvcCq\nG+kddQzWsUvbBkFksijymtDF1nXL+FxTlrHtyPVX01e8xON1GeUdxZ00IoQQPgfgTyJt8/ozMcb/\nZNn5c0QcTwsT3ZgzS3JbiNb7LckAZ9naX3tyNYZzepBqYrgKtKBdyjDV51hips8lVlFoqSDbUCn9\nXbckVLcfHAMS04kRZgBF9JGOI4giAKUIzEUwFKVhbgjnWXiczx2yfBSZnGFgy3BdYY3gGNhM68vu\nUY5dz8XAeLED6s8aHEsrvPRUGwPUnhBeQyX9vFdK9VzNE2Mg8x2IJ7OnhI75NHnOaOxYRehYHiKe\nfqMwcNw7AABcIAne43lhiFkZNAyRcwMAjocpMuVo8kCeO/WHQkdtyU//nwpTP5Pax5exMMjxLAn+\ns1gL2suYcTCC47BfvE1n8zR+LIlphfxW/5Zh0bzLa1PNn2HsV78Rml51DD6gEerZQZxFEe32m2ux\neNbj0v7rvuuxZjukHWdSamoU03viHAGA+VwiV0g7xEO1irBErKK8LzsnrDBuq7S3SoQE6cjp2j4A\n4Hj2EACwrstyGq9zaX+FudYynmb+KPNkRi9q99x+JyEq6XODLxm+cSUC+GWv0IOrkOYA1yt5hX6/\nHEu+B0Zr9CXD/0CNzXBei0TkG1rxJo2goE6ldTK/qNoHgEk/XXc5r2mZpvdn+GR63lm9dlrvY5FS\no8+doaZzxUBPBeYkn8s1Mze0zdI6jam0s41tAMBAJa1bZHSv+1rDrg5toO9lwzcNh+lZ9nv7+Zwz\nPAUAXM3Sc3H922dqgVsxltGDF7X+i4FPDMs0OvXKnJvEVGp8KAalQYP3W3mA52RDi5KdSCMHYtha\nm0m7KsR+ami2jfSssvebSBUrxwDATGpsMkqDDqHsNVdGpw2JyhuKKmINfvo73otRPFcyfhfK4E86\nQJ7Nex4rGbEvET92nfGZlslby2BlMY7DhTIcXoX0P+Us0gNtoOoYuJYo/zFHC9IYk95va/0WY9jq\nBu8W7+L105lXZ/h2RgjhXwTwJwD8/QA+G2P8RfXbjwH4VwDMAPzhGOMX5Ptr6c7AHTQihLQCfxzA\n7wbwDoBfCCF8Psb4a4uumWOGfRSloSfCPZkuGX5fBAwtdNDrMAn0ionCoSz7JEpbUSzPQlRtSLbt\nE9AmqgxnZUieDXfVxEYLNPocjRz2J0daM3fmu9UzpuvJGETJ5H5IJTNMRAEdB4ZuSnSBeIl0aZjL\nWRKuRrPECCZTsSDPi3V5Jl7iSMIoikDoSYh4cSRhFFJUAsefgt40lvaWhScuAgm5JfBA8SwQwRTe\naTFE6yXRQiWv53U9c09tiebY2mfRfaI3nO1QcDyffggAuBgXgWwyTb9FEcR6MsZXW2V9XAw+DaDM\nExocljFfO9e1kYPz4nyehMGTq2+mfk6ScjiflUiELOwtieSYb6d77a49rL6nwqFDULkezuYfyj2T\nIHo5PsznkFnOswFjdY9w7vd2eWc7vb3qt+N+em7O0VkjFDG32xjjnvnOzr++Cq9eRA/0/JkbA+hQ\nDEmkA9W5K4Tx8x6LIjmaz2TmvBaKOOft/LVzN/3P+cLnvNvegxBYZz6N8cbaTuecca/2UlkPVUuh\nsjRJI0eECT3gHBs0xAvyUN7L8oj6nmL0FPpAujWeK6F8KgakaeIf5BvzqCOTaoE6UInbTuMw6n88\n/8YoBc7rURRD66zQyItJWq+cb9NMn4SW98rWpb5sqcr9EqWB7wkA9vbeAgCsiYeUkTSMomnxc9LP\nrKgp/pafm7xa+O1IFCvyWgAYy7jNM4+lUXbx+A36ieFOt1M/z8JbnXsv2y9t51DP8rvGHGNk3FlI\n7+Fo/I382+XoSbrnPL2HyGehU+Q5jHipgcU85jrIRpFcLUMiEmQcR5vFqHM6SBF/dJCUNhY/wwbq\nNX6J0t7ZLNHIzb4Y1GO3HfLmqRwpM9nIT2A5jSCsfFUMuOm42XuQzx300nNy3eU2FF+x/SCtuJoL\nr54c5HNHk8S3p3mOS0TW3r18zlT4K6O1+Jn3acmFq8g2XIP5uaU99hMAxtP0P734s1mXXqmWU3v8\nrRH1UfrHOUYDiVp/SyJtV4WmV/1+mm9aLnv1EF8GWeJXAfwLAP4r/WUI4R8A8MMAvhfAxwF8MYTw\nW+Tna+nOwB00IgD4LICvxBi/CgAhhJ8F8IMAlhgR5nX4vBApElMSEIZ2a0GchGgMCakFPbmFKAzk\nOq5zMsTmHrsFAp1WDCxBs0RLg/emUN4KaSqKWTpQAc/hn4qAkOCSkOdnU5ihrcDT6loJgaIoTkRR\ns8IWUAiiVd6ChL+PZoVIXw5PqufkvUbqntZ73VH6lwgdy4ToVYSVLKQtMWD0svGgFhhpwNAKFZ+B\n3+WQSU30meRKnpNjQcF7osLS5tkyXvdvohjGqC/XoWaay8D+tQTEmTBJKgQUzsmkVvEoaZBBX6yL\ngAzul6aSqbzaMjfPRTEYN8dEFJwVFNHiiauhBfcLGT8qCTSeFC/qYiGG77cyOi2Yd1lYNYYDDSrZ\nmnbYdz/spRDY5lo379WuJaDQF3oILZ3S1+TnMgOor+E4jcXgSCNPzHNXKUDf/oz+hYLPTmPs5Vqi\nh1ro5/gRpEU2yiddVxuxW/OPdGpN8n4Mg8yXOKyulQ9Vu3a7ie2r7m+mWw0lOBv6Gp496/sOFPpF\nqb7qFf5B4ytpEu9ZKyq1cTPm6BZ6dFVUD9e0MUAG5WSgoSIbvk1kgwYjw9jPeawNBfoeBHkg18t4\nWnhhVrz5DMbopp+LtI2r63KWxmE4KFnabeRQyxBOY9NiOaarQDJCMTsdJoU+z2Q+LOIT1/G83gQy\nDcrKnHi+Za5OlKzDdx7D6pFSXFNWuQYKL+S6HfW6xiaOMeVSG9GlxzUbCBZs69KwcpaNCAKAATbk\nuC7X0OBcaHgxPgsfIT2Q904aAJQxLUq0bBnUY9JPRnzKVaRBi4zcwGKHDqDkW9mGuaifuq/XoVer\nGLNi558XjIqm1c/p+PZEjPHXgTrHjOAHAfxsTEzpayGEryDpzcA1dWcACKtkjH6ZEEL4IQCfizH+\nQfn8IwD+8Rjjj5rz/hCAPyQffyuS1cZxM3gMSMyh46bgY3zz8DG+efgY3zx8jG8ePsY3Dx/jm4eP\n8c3jLo/xd8QYX7vtTrxohBD+d6T3dtPYAKAtfz8RY/yJ6zQQQvjrAP4dbmcIIfwpAD8fY/wZ+fyT\nAH5OTn+m7mxxFyMRWpsGO5YSeRE/AQAhhF+MMf6jN92xVxU+vjcPH+Obh4/xzcPH+ObhY3zz8DG+\nefgY3zx8jG8ePsYvH2KMn7vtPgBACOGLAN5s/PTvxxj/50WXNb6LaFcufWaUwV00IrwDSKaihE8A\nePeW+uJwOBwOh8PhcDgcDscLQYzxdz3HZct05Gvrzs+ZcebbGr8A4HtCCJ8JIawhJZD4/C33yeFw\nOBwOh8PhcDgcjtvA5wH8cAhhPYTwGQDfA+Bv4Tl15zsXiRBjnIYQfhTAF5DKVPxUjPHLz7jsWntM\nHNeGj+/Nw8f45uFjfPPwMb55+BjfPHyMbx4+xjcPH+Obh4+x44UjhPB7AfyXAF4D8JdDCL8cY/xn\nY4xfDiH8eaSEiVMA/0aUzJ7PoTvfvcSKDofD4XA4HA6Hw+FwOG4Gd3E7g8PhcDgcDofD4XA4HI4b\ngBsRHA6Hw+FwOBwOh8PhcKyEV9qIEEL4XAjh/w0hfCWE8Edvuz8vO541niGEPxBCeBJC+GX5+4O3\n0c+7hBDCT4UQPgwh/Opt9+Uu4FnjGUL4nSGEYzWH//hH3ce7iBDCJ0MIfy2E8OshhC+HEP7Ibffp\nZcYq4+lz+cUjhLARQvhbIYS/I+P+H952n15mrDKeLlfcDEII/RDCL4UQ/tfb7stdwLLx9DnseFlx\n5xIrrooQQh/AjwP43UglL34hhPD5GOOv3W7PXk5cYzz/+xjjj37kHby7+GkAfwrAn7vlftwV/DSe\nPZ5/M8b4ez6a7rwymAL4t2OMXwoh7AL42yGEv+L0+Lmx6nj6XH6xGAH4/hjjWQhhCOD/DCH8XIzx\n52+7Yy8pVh1PlytePP4IgF8HcO+2O3JH8Kzx9DnseOnwKkcifBbAV2KMX40xjgH8LIAfvOU+vczw\n8bwFxBj/BoCD2+7HXYGP5+0gxvhejPFL8v8pkrD11u326uWFj+ftICacyceh/Hn26ueEj+ftIITw\nCQD/HIA/c9t9uQvw8XTcVbzKRoS3ALytPr8DF7K+Faw6nr8vhPB3Qwj/Ywjhkx9N1xyOF4p/UsJr\nfy6E8L233Zm7hhDCpwH8IwD+n9vtyd3AM8bT5/ILhoQt/zKADwH8lRijz+NvASuOp8sVLxb/OYB/\nF8D8tjtyR7DKePocdrx0eJWNCKHxnVu4nx+rjOf/AuDTMcZ/CMAXAfzZG++Vw/Fi8SUA3xFj/D6k\nGrx/6Zb7c6cQQtgB8BcA/JsxxpPb7s/LjmeMp8/lG0CMcRZj/IcBfALAZ0MIv/W2+/QyY4XxdLni\nBSKE8HsAfBhj/Nu33Ze7gBXH0+ew46XEq2xEeAeAtvZ9AsC7t9SXu4BnjmeMcT/GOJKP/zWA3/4R\n9c3heCGIMZ4wvDbG+L8BGIYQHt9yt+4EZM/zXwDw38YY/6fb7s/LjmeNp8/lm0WM8QjAXwfwuVvu\nyp3AovF0ueKF43cA+IEQwteRtqV+fwjhZ263Sy81njmePocdLyteZSPCLwD4nhDCZ0IIawB+GMDn\nb7lPLzOeOZ4hhI+pjz+AtE/X4XhpEEJ4M4QQ5P/PItHQ/dvt1csPGdOfBPDrMcb/7Lb787JjlfH0\nufziEUJ4LYRwX/7fBPC7APy92+3Vy4tVxtPliheLGOOPxRg/EWP8NJIc91djjP/yLXfrpcUq4+lz\n2PGy4pWtzhBjnIYQfhTAFwD0AfxUjPHLt9ytlxaLxjOE8B8B+MUY4+cB/OEQwg8gZQ4/APAHbq3D\ndwQhhP8OwO8E8DiE8A6A/yDG+JO326uXF63xRErmhRjjnwbwQwD+9RDCFMAlgB+OMfo2qG8dvwPA\njwD4Fdn/DAD/nnjIHddHczwBfArwuXyD+BiAPyvVinoA/nyM0UvkPT+a4+lyheNlh89hx11AcJnB\n4XA4HA6Hw+FwOBwOxyp4lbczOBwOh8PhcDgcDofD4bgG3IjgcDgcDofD4XA4HA6HYyW4EcHhcDgc\nDofD4XA4HA7HSnAjgsPhcDgcDofD4XA4HI6V4EYEh8PhcDgcDofD4XA4HCvBjQgOh8PhcNwAQghx\nhb+vy7k/zf8dDofD4XA4vp3hJR4dDofD4bgBhBD+CfPVXwTwdwD8CfXdKMb4SyGE7wJwL8b4Sx9V\n/xwOh8PhcDieB4Pb7oDD4XA4HHcRMcaf159DCCMAT+33cu5vfGQdczgcDofD4fgW4NsZHA6Hw+G4\nZdjtDCGET8t2h38thPAfhxDeDyGchhB+JoSwFUL47hDCF0IIZyGEr4QQfn+jze8LIXw+hHAYQrgM\nIfxfIYR/6iN9MIfD4XA4HHcObkRwOBwOh+PbFz8G4OMAfj+APw7gXwLwp5G2RvxlAL8XwN8F8N+E\nEL6XF4UQfhuA/xvAQwD/KoDfB2AfwBdDCL/9o3wAh8PhcDgcdwu+ncHhcDgcjm9f/EaMkVEGX5BI\ngh8B8CMxxp8BgBDCLwL4AQA/BODLcu5/CuAbAL4/xjiW874A4FcB/DEA//xH9wgOh8PhcDjuEjwS\nweFwOByOb1/8nPn89+T4BX4RYzwE8CGATwJACGETwD8D4H8AMA8hDEIIAwABwBcB/NM33WmHw+Fw\nOBx3Fx6J4HA4HA7Hty8Ozefxku835P+HAPpIEQd/rNVoCKEXY5y/qE46HA6Hw+F4deBGBIfD4XA4\n7haOAMwB/DiAP9c6wQ0IDofD4XA4nhduRHA4HA6H4w4hxngeQvibAL4PwJfcYOBwOBwOh+NFwo0I\nDofD4XDcPfxbAP4GUjLGnwTwHoDHAH4bgH6M8Y/eZuccDofD4XC8vPDEig6Hw+Fw3DHEGL8E4B9D\nKuv4XwD4PwD8SQD/IJJxweFwOBwOh+O5EGKMt90Hh8PhcDgcDofD4XA4HC8BPBLB4XA4HA6Hw+Fw\nOBwOx0pwI4LD4XA4HA6Hw+FwOByOleBGBIfD4XA4HA6Hw+FwOBwrwY0IDofD4XA4HA6Hw+FwOFaC\nGxEcDofD4XA4HA6Hw+FwrAQ3IjgcDofD4XA4HA6Hw+FYCW5EcDgcDofD4XA4HA6Hw7ES3IjgcDgc\nDofD4XA4HA6HYyX8/+BZuWKvvSoRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XuYZXdVJ/zv6s49ECBEYkzABAgC\nhpGMbQAdAbmjDuF9B/IAgohovICOxgugM4CgA8IoXgYd8woSZ3S4KRAdFDHI4AWBCA5IIBBCSEJC\nAiFXAkm6ar1/1Gkpmu7au+mqs+tUfz7Pc5465+xVe6+udDrpdb7796vuDgAAAMCQbVM3AAAAACwG\nQwQAAABgFEMEAAAAYBRDBAAAAGAUQwQAAABgFEMEAAAAYBRDBAAAAGAUQwQAAABgFEMEAAAAYJSD\npm5gMzikDu3DcuTUbQAAwPqqGq7p3vg+mFQdeuhgzZ3uedOoc915+61rHv/UZTvzuc8vjfiNt1ge\n/V1H9jWfX9rw6/zTB295W3c/ZsMvtB8MEZIcliPzgHr41G0AAMC4v/iPPdUhhwzW9C23rNv12Jy2\nn3iPwZr/8Cd/P+pcP3DUFWsef+BjLh91nkVzzeeX8t633W3Dr7P9uI8fs+EX2U+GCAAAALCGTrKc\n5anb2BSsiQAAAACMIokAAAAAa+ostSRCYogAAACLZ+xiiEsbvxAcG2Tb9lFltz7y1MGaH/vtNwzW\nvOr7Tx91vTd84MI1j3/8lr8YdR4WlyECAAAArGFlTQQ7mSTWRAAAAABGMkQAAAAARnE7AwAAAAyw\nxeMKSQQAAABgFEkEAADYTMbuvDDmVDt3rtu5GKcOGv4r1pia513wj6Ou95fX3zZY8wennjJ8oi98\ncNT1Bn93ruPv382k01naor+2fSWJAAAAAIwiiQAAAAADbPG4QhIBAAAAGEUSAQAAANbQSZYkEZJI\nIgAAAAAjSSIAAAAHtO13vMOouo/95/sM1lz4pN8ZrLmlh3fNeOJ3PnFUTzs/+akRVV8YdS7WZk2E\nFZIIAAAAwCiSCAAAALCGTrLUkgiJJAIAAAAwkiQCAAAADFieuoFNQhIBAAAAGEUSAQAA2LK+ePpp\ngzW//IqzR53rB/73vQdrvvuEbx0+0ah768fsusC8dDpLdmdIIokAAAAAjCSJAAAAAGvpZEkQIYkk\nAgAAADCSJAIAAACsoWN3hl0kEQAAAIBRJBEAAICFtP1e9xisuc8vfmiw5qUPeOSo65382feMqmMr\nqiylpm5iU5BEAAAAAEaRRAAAAIA1dJJluzMkkUQAAAAARpJEAAAAgAHWRFghiQAAAACMIokAAACs\njxrxSW2v443lv/fFwZJPffttgzW987Pr0Q1bWEcSYRdJBAAAAGAUSQQAAAAYsNySCIkkAgAAADCS\nJAIAAACswZoIX2aIAAAArI91WjRx27fcZ1Td8s8OB6t75xX72w6wykIPEarqp5P8UFYGQx9K8owk\nxyV5bZKjk7w/ydO6+9bJmgQAAGChdSpLVgNIssBrIlTV8Ul+MsmO7j4lyfYkT0ryq0le0d0nJ7k2\nyTOn6xIAAAC2joUdIswclOTwqjooyRFJrkzysCRvnB0/J8njJ+oNAACALWK5a8Mfi2Bhhwjd/ekk\n/zXJpVkZHlyf5J+SXNfdO2dllyc5fk/fX1VnVtX5VXX+bbllHi0DAADAQlvYNRGq6k5JTk9yUpLr\nkrwhyWP3ULrH1V26++wkZyfJUXX0+qwAAwAAwJZjd4YvW9ghQpJHJPlkd382SarqT5N8e5I7VtVB\nszTCCUksxwoAAAvkwh8+alTdvf/TRwdrlva3GeArLPIQ4dIkD6yqI5J8McnDk5yf5G+SPCErOzQ8\nPclbJusQAACALaCy1Au7GsC6WtifQne/JysLKL4/K9s7bsvK7QnPSXJWVV2U5M5JXjVZkwAAALCF\nLHISId39giQv2O3ti5OcNkE7AAAAbEGdZHlxP4NfV34KAAAAwCgLnUQAAACAebA7wwpDBAAAYG62\nHXHEYM0x548LTC9dd/3+tgPsI0MEAAAAWEO33Rl28VMAAAAARpFEAAAAgAHL1kRIIokAAAAAjCSJ\nAAAAAGvoJEs+g09iiAAAAMzRxb/4LYM193j5BaPOtbS/zQD7zBABAAAA1mR3hl38FAAAAIBRJBEA\nAABgDZ1k2WfwSSQRAAAAgJEkEQAAAGDAUtfULWwKhggAAMC62H7few3W7DyiB2uWrrt+PdoBNoAh\nAgAAAKyhU1myGkASayIAAAAAI0kiAAAAwIDl9hl8IokAAAAAjCSJAAAAAGvoxJoIM4YIAADAmrYd\ndtioumede+5gzW9/87cM1gzv3wBMxRABAAAA1tCpLHVN3camII8BAAAAjGKIAAAAAIzidgYAAAAY\nsOwz+CSSCAAAAMBIkggAALBV1fBCcNsOP3yw5kf+7wdHXe637nnvEVW3jDoXbCbdyVL7DD6RRAAA\nAABGkkQAAACANVWWY4vHRBIBAAAAGEkSAQAAANbQsSbCLn4KAAAAwCiSCAAAsGhG7LqQJLV9+2DN\nqX9/02DN2Y995KjrJZ8cLhnTe/fI68H8LPkMPokkAgAAADCSJAIAAACsoVNZbrszJJIIAAAAwEiS\nCAAAADDAmggr/BQAAACAUSQRAABgXkbsTHDQsXcZrDnpz64bdbm7Hvb5wZq3/8R3DtZsv+j9o643\nip0XNqeRO34cqP/8Osly+ww+kUQAAAAARpJEAAAAgDVVlmJ3hkQSAQAAABjJEAEAAADWsGtNhI1+\nDKmqx1TVhVV1UVU9dw/H71ZVf1NVH6iqD1bVd6/3z8IQAQAAADa5qtqe5JVJHpvkvkmeXFX33a3s\nPyV5fXefmuRJSX5nvfuwJgIAAMzJQcd/w2DNRT96t8GaLzx/56jrfeLKLwzWbP/nddx5gcV1gO66\nsC82wZoIpyW5qLsvTpKqem2S05NcsKqmkxw1e36HJFesdxOGCAAAALA5HFNV5696fXZ3nz17fnyS\ny1YduzzJA3b7/hcm+auq+okkRyZ5xHo3aIgAAAAAa+iuUWsWrIPPdfeOvRzbUxRi9wjJk5O8prt/\nraoelOR/VNUp3b28Xg1aEwEAAAA2v8uT3HXV6xPy1bcrPDPJ65Oku9+d5LAkx6xnE5IIAAAAMGBp\nPkmEtbwvyclVdVKST2dl4cSn7FZzaZKHJ3lNVd0nK0OEz65nE5P/FAAAAIC1dffOJM9O8rYkH8nK\nLgwfrqoXVdXjZmU/k+SHq+r/JvlfSX6ge31XzVzYJEJVfVOS16166+5Jnp/kD2fvn5jkkiRndPe1\n8+4PAIADy6ef++2DNa/70V8brDn9DWcN1hz6l+cP1iTJshX3YV10kuXpd2dId781yVt3e+/5q55f\nkOQ7NrKHhU0idPeF3X3/7r5/km9NcnOSNyV5bpLzuvvkJOfNXgMAAAD7aWGTCLt5eJJPdPenqur0\nJA+dvX9Okncmec5EfQEAALDwajOsibApbJWfwpOycr9Hkhzb3VcmyezrXfb0DVV1ZlWdX1Xn35Zb\n5tQmAAAALK6FTyJU1SFJHpfkefvyfd19dpKzk+SoOtrNYgAAAOxRJ1nu6ddE2Ay2QhLhsUne391X\nzV5fVVXHJcns69WTdQYAAABbyMInEZI8OV++lSFJzk3y9CQvnX19yxRNAQCwAGr4k8XLfvFBo071\npXsO3yJ71knDOzjco9896nrAfC1tic/g999C/xSq6ogkj0zyp6vefmmSR1bVx2fHXjpFbwAAALDV\nLHQSobtvTnLn3d67Jiu7NQAAAMB+65Q1EWYWOokAAAAAzM9CJxEAAABgHpZ9Bp9EEgEAAAAYSRIB\nAIAD1k1PfMBgzRdPunXUue79Ex8brFnuHnUuYHPpTpasiZBEEgEAAAAYSRIBAAAABtidYYUkAgAA\nADCKJAIAAACsoVNZbp/BJ4YIAABsUduOPHKw5otPvXaw5t7fd8Wo6y3fdNOoOoBFZogAAAAAA5Zi\nTYTEmggAAADASJIIAAAAsIaO3Rl2kUQAAAAARpFEAAAAgDXZnWEXQwQAABZLjYsUv+BD7xqsefHD\n/p/Bmp033jjqelvayJ95uje2jwOJnzmblCECAAAADFi2O0MSayIAAAAAI0kiAAAAwBq6kyW7MySR\nRAAAAABGkkQAAACAAXZnWGGIAADAplEHDf/v6UW/umPUuV787XcZrNn5mUtHneuAZweA9TVm5wU/\nczYpQwQAAABYQ6eybE2EJNZEAAAAAEaSRAAAAIABy5FESCQRAAAAgJEkEQAAAGANnVgTYcYQAQCA\n+RixIv1lr/umwZrlT49btX7nZ64aVQdzZ+cFFpjbGQAAAIBRJBEAAABgwHL7DD6RRAAAAABGkkQA\nAACAtXRZWHFGEgEAAAAYRRIBAIC5+OyPPHCw5qC/G/6k7+RX/MN6tAMwWidZjiRCIokAAAAAjCSJ\nAAAAAAOsibBCEgEAAAAYRRIBAAAA1tCRRNhFEgEAAAAYRRIBAID9cs0PPWhU3fbvvWaw5uv+/cf3\ntx2ADSGJsEISAQAAABhFEgEAAADW0ClJhBlJBAAAAGAUSQQAAAAYsBxJhEQSAQAAABhJEgEAgL3a\nfvLdB2sOfcJVo851u+/+1HBR96hzAcxV251hF0kEAAAAYBRJBAAAAFhDRxJhF0kEAAAAYBRJBAAA\nABggibBCEgEAAAAYZaGTCFV1xyS/n+SUrNym8oNJLkzyuiQnJrkkyRndfe1ELQIAbFrbjjhisOae\n/+uywZoLT1sed8HlpXF1AJtMpyQRZhY9ifCbSf6yu++d5FuSfCTJc5Oc190nJzlv9hoAAADYTwub\nRKiqo5I8OMkPJEl335rk1qo6PclDZ2XnJHlnkufMv0MAAAC2ipZESLLYSYS7J/lskj+oqg9U1e9X\n1ZFJju3uK5Nk9vUue/rmqjqzqs6vqvNvyy3z6xoAAAAW1CIPEQ5K8m+T/G53n5rkC9mHWxe6++zu\n3tHdOw7OoRvVIwAAAFvAcmrDH4tgkYcIlye5vLvfM3v9xqwMFa6qquOSZPb16on6AwAAgC1lYddE\n6O7PVNVlVfVN3X1hkocnuWD2eHqSl86+vmXCNgEANq1eGt4t4aLv+8bhEy1ftA7dAGxe3bE7w8zC\nDhFmfiLJH1XVIUkuTvKMrKQrXl9Vz0xyaZInTtgfAAAAbBkLPUTo7n9OsmMPhx4+714AAADYuuzO\nsGKR10QAAAAA5mihkwgAAACw8cqaCDOSCAAAAMAokggAAAeoC3/3foM13/QjH5xDJwCbnzURVkgi\nAAAAAKNIIgAAAMAaOrEmwowkAgAAADCKJAIAAACspZPuqZvYHCQRAAAAgFEkEQAAtqDtdz56sOYb\n3zB8f2/fdut6tAOw8JZjTYREEgEAAAAYSRIBAAAA1tBJ2u4MSSQRAAAAgJEkEQAAAGBNlWVJhCSS\nCAAAAMBIkyURquqeSU5LcnySTyd5b3dfNFU/AMDmV4ceOljTt47cTWBRN/yucZ+EffpVxw7WHPvy\n2/a3G4ADxqL+Z2O9zX2IUFWHJfmdJE9Lsn3VoaWqOifJs7r7lnn3BQAAAKxtiiTCf03yfUlekOS1\nSa5KcmySJyd5fpKbk/zkBH0BAADAHtmdYcUUQ4QnJfml7v4vq967OMmv1Eo876djiAAAAACbzhRD\nhEOTvHcvx96T5JA59gIAAABr6pZE2GWKIcJfJ3nU7OvuHpXkHfNtBwBYFDViUcGukZtP9dJ+drP+\n6qDh/zW79snfNupch5w74np//+5R5wKAXaYYIvx6kv9RVUcmeUO+vCbCGUm+O8lTq+ruu4q7++IJ\negQAAIB/tSyJkGSaIcL/mX39sSQ/uur92u34LtsDAAAATG6KIcIzJrgmAAAAfM26p+5gc5j7EKG7\nz5n3NQEAAID9N0USAQAAABaK3RlWTDJEqKrHJHlikrsmOWy3w93dD5l/VwDAZldHHjFYs23bl0ad\na/lLt4woGt7BYcyOCknSO3cOF93/3oMlhz71M6Oud/hjLx1VBwD7Yu5DhKr6+SQvTfLZJBcluXXe\nPQAAAMBYnZJEmJkiifDsJL+X5Nndm3CDZgAAAGCPphgiHJXkDQYIAAAALAqbM6zYNsE135bkgRNc\nFwAAABZWVT2mqi6sqouq6rl7qTmjqi6oqg9X1R+vdw9T3c7wpqrqJH+V5NrdC7r74rl3BQAAAHvS\n0+/OUFXbk7wyySOTXJ7kfVV1bndfsKrm5CTPS/Id3X1tVd1lvfuYYojQSW5M8itJfnkvNdvn1w4A\nsCiWr79hHU+2PndW9tK482y/89GDNUe8YnjnhX7IV33+smfr9OsDYNM4LclFuz50r6rXJjk9yQWr\nan44ySu7+9ok6e6r17uJKYYIr0ny7UlekeSjsTsDAAAAJMkxVXX+qtdnd/fZs+fHJ7ls1bHLkzxg\nt++/V5JU1d9n5cP5F3b3X65ng1MMER6alZ0ZXjPBtQEAAGDfzWdlxc919469HNvT/RS7d3VQkpOz\n8vfuE5L8bVWd0t3XrVeDUyys+LkkV01wXQAAAFhUlye566rXJyS5Yg81b+nu27r7k0kuzMpQYd1M\nMUT4rSQ/XlVTXBsAAAD2WXdt+GPA+5KcXFUnVdUhSZ6U5Nzdat6c5LuSpKqOycrtDeu6ccEUtzPc\nKckpSS6oqrfnq3dn6O5+wfzbAgAAgM2pu3dW1bOTvC0r6x28urs/XFUvSnJ+d587O/aoqrogyVKS\nn+vua9azjymGCL+46vm99nC8kxgiAAAba9uIzaB6ebhmZLjyo780nCa9z/cP786wh92xAZiDns+a\nCAM99FuTvHW3956/6nknOWv22BBzHyJ0t9sYAAAAYAFNkUQAAACAhdHJmDULDghSAQAAAMAokwwR\nqurMqvpAVd1cVUu7P6boCQAAAPaok3Rt/GMBzH2IUFXfn+S3s7I9xWFJ/iDJ/0xyQ5JPJHnRvHsC\nAAAAhk2xJsJPJXlJkhcn+aEkv9Pd76+qOyV5Z5J13X4CANg6eufO4aJax09yRizF/bHf+dZRpzrs\nM8O7QSxdMbw7Q20b9+sbs7EEAONtht0ZNoMpbmc4Ocm7kizPHockSXdfm+RXkvzHCXoCAAAABkwx\nRPhikm2z/Ss/k+Tuq47dlOQbJugJAAAA9q7n8FgAU9zO8KEk90zy10n+NskvVNUnk+xM8sIkH52g\nJwAAAGDAFEOEs/Pl9MF/zsow4e9mr29M8vgJegIAAIC9qPSC7J6w0eY+ROju1616flFVfXOSByU5\nIsk/dPfn5t0TAAAAMGzuQ4SqenCS93f3TUnS3V/IShohVXVkVT24u9818lyXZCW9sJRkZ3fvqKqj\nk7wuyYlJLklyxmzRRgBItg2vkJ8kWV7a2D62iDr4kMGai/7LuN0L/s0DLhqs+dj/Pnmw5pY7jbup\n9Lmnv2mw5qlHXTZYc/+zv33U9e72oncP1ozq3PLgANPwx2+SaRZW/Jsk993LsXvPju+L7+ru+3f3\njtnr5yY5r7tPTnLe7DUAAACwn6YYIqx1I8mhWUkV7I/Tk5wze35OrLEAAADA/uikuzb8sQjmcjtD\nVZ2Yr9zKcUdV3W63ssOT/GCSS/fh1J3kr6qqk/xed5+d5NjuvjJJuvvKqrrL19w4AAAA8K/mtSbC\n05O8IF/e/fK385WJhJ693pnkWftw3u/o7itmg4K3V9Xo7SGr6swkZybJYTliHy4JAADAAceaCEnm\nN0R4TZJ3ZmVQ8I6sDAou2K3mliQf6+7Pjz1pd18x+3p1Vb0pyWlJrqqq42YphOOSXL2X7z07K9tN\n5qg62m8HAAAAGDCXIUJ3fyrJp5Kkqr4ryT/t2p3ha1VVRybZ1t03zp4/KsmLkpybleTDS2df37I/\n1wFgi7HrwooRu1R87FX3H6z55KNfNVhz9zedOqqlz/36SYM1208cPs9hnxt3T+kbn/jQwZo3fPyT\ngzV3u+UfRl0PgEW3GGsWbLS5b/GY5MNJjk7yr0OEqvqRJKckeVt3//nI8xyb5E1Vlaz8Ov64u/+y\nqt6X5PVV9cysrK/wxPVsHgAAAA5UUwwRXp3k8iQ/niRV9Z+T/FKSa5P8eFU9pbtfN3SS7r44ybfs\n4f1rkjx8XTsGAADgwOYm+CTTbPG4I8l5q17/aJL/0t13TvLKJGdN0BMAAAAwYIohwtFJrkqSqjol\nydcnOWd27M1JvmmCngAAAGDveg6PBTDFEOGaJCfMnj8syRXd/fHZ64Mn6gkAAAAYMMWaCH+d5IVV\ndUySn8lK+mCXe2e2iwMAfIURuwnYeSHZduSRo+o+9t/vNVhzyCWHDNY8+huGd3A4Oe8Z1VNqeNXr\n293hqMGavm3nqMstf+ELo+oAYCUpYHeGZJpP/X8+yWVJXpLkE1lZVHGX70vydxP0BAAAAAyYexKh\nu69K8si9HH5Eki/NsR0AAAAY1AuyZsFGm+J2hiRJVW1Lct8kd05yfnd/obtvmKofAAAAYG2TLGJY\nVc9K8pkkH0zyjsx2ZKiqN1fVT07REwAAAOyV3RmSTDBEqKofTvKbWVlQ8Ywkq1en+Nsk/2HePQEA\nAADDprid4awkv9bdz6mq3Zfa/miSn5ugJwA2u62+88KInQm2HXroYM2Nf3LsqMsd8Y7DB2u+4WX/\nMOpc62bEzaZL110/h0YAYA/szpBkmtsZTkrytr0c+0KSO86xFwAAAGCkKZIIn0ty4l6OfVOST8+v\nFQAAABhWC7JmwUabIonwZ0meX1V3X/VeV9UxSX46K2slAAAAAJvMFEOE/5TkliT/kuSvs7IG5W8l\n+UiSpSQvmqAnAAAA2LN57MywIEmHuQ8RuvuaJDuSvCTJwUk+kZXbKv5bkgd1txWTAAAAYBOaYk2E\ndPeNSV48ewAAI1z1jFMHa474/5ZHnev4c88frNmUH4iM2MVitBG7QQDAirI7w8wUtzMAAAAAC2ju\nSYSq2pbkzCRPTHLXJIftVtLd/Y3z7gsAAAD2SoAtyTS3M7wsyVlJPpDkfUlunaAHAAAAYB9NMUR4\napIXd/cLJrg2AAAA7DtJhCTTrIlwUJJ3TXBdAAAAYD9MkUR4Y5JHJzlvgmsDwKa0/S5fN1hzw3d+\ncbDm2B/5xKjrLe+8bVTdXI3YeaG2b1+3y/XOnet2LgAOAJIISaYZIpyV5I+q6uwkb0ty7e4F3f2O\nuXcFAAAArGmKIcJxSe6e5PQkP7Tq/U5Ss6/r9zEDAAAA7I9O0sOJuQPBFEOEP0hyTJL/mOSjsTsD\nAAAALIQphgg7knx/d79xgmsDAADAPitrIiSZZneGSyN9AAAAAAtniiTCLyd5TlW9o7tvmuD6AMzL\niNX2kyS9dUf724+9y6i6T/7YPQdr7vXjHx6sWbpp5H9aN+PPfERPdlQAYDKb8D+dU5hiiPDoJCck\nuaSq3p2v3p2hu/vp828LAAAAWMsUQ4R/l2Q5yY1JTtnDcfMdAAAA2ITmPkTo7pPmfU0AAABg/02R\nRAAAAICFYneGFXMZIlTV3ZJc2d23zZ6vqbsvnUNbAAAAwD6YVxLhk0kelOS9SS7J8LoH2ze6IQA2\n3rZDDx1Vt/ylL21wJxtk2/B/rj768hNGneqgK4Y/3li6/obhE23GXRcAYCvokbtObXHzGiL8YJJP\nrHru/3AAAABgwcxliNDd56x6/pp5XBMAAADWRcdH4TPb5n3BqnpHVd17L8fuVVXvmHdPAAAAwLAp\ndmd4aJKj9nLs9kkeMr9WAAAAYARJhCTTbfG4tx//PZLcNM9GAA4oNW5BoG2HHz58qhGLJi5de+2o\n621GNz3xAYM1f/hff22w5qnP+7ZR1zvqj989qg4AYErz2uLxGUmeMXvZSc6uqht3Kzs8ySlJzptH\nTwAAAMC+mVcSYTnJ0ux57fZ6l2uS/G6SX51TTwAAADBKuZ0hyXx3ZzgnSarqb5L8WHd/dB7XBgAA\nANbH3NdE6O7vmvc1AQAAYL9IIiSZYItHAAAAYDFNtTsDABOogw4eVbd8883DRWNqNqFLfuVBo+q+\n9aHDd909+76PHqw56gv/OOp6jDRmh5H2UREAG8B/XpJIIgAAAAAjSSIAAADAGqrtzrDLXJMIVXVI\nVb2pqh48z+sCAAAA+2+uQ4TuvjXJI+Z9XQAAANgvXRv/WABT/GX+75M8cILrAgAAAPthijURfibJ\nm6vqpiRvTnJldlvnsruXx56sqrYnOT/Jp7v7e6vqpCSvTXJ0kvcnedosAQFwwOvbtvYfh9c/dXhG\nfeudlkad65rvvGG4aHncuVhHdl4AYCr+E5RkmiTCh5LcI8lvJvlUkluT3Lbqsa//h/sfk3xk1etf\nTfKK7j45ybVJnrm/DQMAAADTJBFelHWa4VTVCUm+J8mvJDmrqirJw5I8ZVZyTpIXJvnd9bgeAAAA\nBya7M6yY+xChu1+4jqf7jSQ/n+T2s9d3TnJdd++cvb48yfHreD0AAAA4YE26S0JV3a6qvrGqDv4a\nvvd7k1zd3f+0+u09lO5xXlRVZ1bV+VV1/m25ZV8vDwAAwIGk5/BYAJMMEarqe6vq/UmuT3JxkvvN\n3v/9qnrKmt/8Zd+R5HFVdUlWFlJ8WFaSCXesql0JixOSXLGnb+7us7t7R3fvODiHfu2/GAAAADhA\nzP12hqp6fJI/SXJekuckedmqw59M8vQkfzx0nu5+XpLnzc750CQ/293fV1VvSPKErAwWnp7kLevZ\nPzDStu3DNVa2Zx/Uqd88WHPMD31qsOYOD7t63AX9/py/Gt4fu7YP/9nSSyP/2dnpAYCx2poIu0yR\nRHhBkj/o7kdlJTmw2r8kOWU/z/+crCyyeFFW1kh41X6eDwAAAMg0uzPcJyuLISZffdfHtVn5i/8+\n6e53Jnnn7PnFSU772tsDAACA3UgiJJkmiXBDkmP2cuzEJJ+dXysAAADAWFMMEd6e5HlVdcdV73VV\nHZrk2Un+YoKeAAAAYO/szpBkmtsZfjHJe5NcmOStWflRPTfJv0lyhySPn6AnAAAAYMDchwjdfUlV\n/dskv5Tk0UmWkjw4yV8meX5373FLRmDj1UHj/kjo5RFjUivbsw+23/nowZpjf/fSwZorHnTT8MWs\nyL95+WcDwCZmd4YVUyQR0t2Wk/tyAAAgAElEQVSXJ3nmFNcGAAAAvjZTrIkAAAAALKC5JBGq6tX7\nUN7dLaUAAAAAm8y8bmd4WL5yrck7ZmURxZ1Jrkly51kv1ye5dk49AQAAwDjWREgyp9sZuvvE7j6p\nu09K8rQkNyV5UpLDu/u4JIcnefLs/afOoycAAABg30yxsOKvJ3lJd79+1xvdvZTkdVV1TJLfSHLa\nBH3BAW/bEUeMqlu64YYN7oStYuyOH0e8eXimfdXTvm74RH3jqOuRpGq4ZhPultA7d07dAgAHorY7\nwy5TLKx4vyQX7eXYx5OcMsdeAAAAgJGmGCJ8JskZezn2pCRXzbEXAAAAGNZzeCyAKW5n+I0kr6iq\n45K8IStDg2OzMlh4dJKfmqAnAAAAYMDchwjd/ZtVdVOSFyR57KpDlyX54e7el+0gAQAAYOMtSFJg\no02RREh3v6qqXp3khCTHJbkyyeXdm3AFJwAAACDJREOEJJkNDC6bPYBNwK4L7ItbvvvbBmse9dJ3\njTrXXz3n1MGaQz/+vlHnmqsROxwcdOxdRp1q+YbhnSWWb7551LlGMbcHgNEqdmfYZYqFFVNV96uq\nN1bVZ6tqZ1VdXVWvr6r7TdEPAAAAMGzuSYSq+rYk/yfJF5Ocm5XdGr4+yb9P8j1V9eDu/qd59wUA\nAAB7JYmQZJokwkuS/EuSE7v7Gd39vO5+RpKTZu+/ZIKeAAAAYFOrqsdU1YVVdVFVPXeNuidUVVfV\njvXuYYo1ER6Y5Gnd/RU3f3b3jVX1q0nOmaAnAAAA2LOefk2Eqtqe5JVJHpnk8iTvq6pzu/uC3epu\nn+Qnk7xnI/qYIokw9KMXEgEAAICvdFqSi7r74u6+Nclrk5y+h7oXJ3lZki9tRBNTJBHek+QXquqv\nV6cRqurIJM9J8o8T9ATAKnXooYM1Rz1neHOddz3ztFHXO/R9m3DnhRG2HX74YM3SNdeOOlffduv+\ntgMAbKT5fNx9TFWdv+r12d199uz58fnK3Q0vT/KA1d9cVacmuWt3/3lV/exGNDjFEOEXkrwzyaeq\n6s+TXJmVhRW/J8nhSR46QU8AAAAwtc91997WMdjT3tL/Otqoqm1JXpHkBzagr3819yFCd7+3qh6Y\n5PlJHp3k6CSfT/KOJC/u7g/NuycAAABY0/Q33l+e5K6rXp+Q5IpVr2+f5JQk76yqZOXD+nOr6nHd\nvTrdsF+mSCKkuz+Y5AlTXBsAAAAW0PuSnFxVJyX5dJInJXnKroPdfX2SY3a9rqp3JvnZ9RwgJBMs\nrFhVX1dV99rLsXtV1TF7OgYAAABTqd74x1q6e2eSZyd5W5KPJHl9d3+4ql5UVY/b+J/AiimSCL+T\nldsXfmQPx346yZ2TnDHXjgAAAGCT6+63Jnnrbu89fy+1D92IHqYYIvy7JM/ay7G/SvLf5tgLwNZR\ne1pr5yt95qceNOpU55318sGap97zYYM1fctnRl1vUS3ffPPULQAA8zL9mgibwtxvZ0hypyTX7+XY\nDVlJIgAAAACbzBRDhK/ay3KVB2Rly0cAAADYHHpOjwUwxRDhjUl+oaq+Z/Wbs9fPTfL6CXoCAAAA\nBkyxJsKLkjw4K/tVfiYrW1Mcn5U9LP8xyS9N0BMAAADs1dDuCQeKuQ8RuvvmqnpIkqcleWRW1kC4\nKCuLKv7P2bYVAAAAwCYzRRIh3X1bklfPHgCsg+13+brBmi+e9oVR5/q+u/274aK+ZdS5AAC2BEmE\nJNOsiQAAAAAsoLknEarqkCTPS/LkJHdLcuhuJd3dkyQkAAAAYE+sibBiir+svzzJs5L8RZI/TSIP\nCwAAAAtgiiHCE5K8oLt/ZYJrAwAAwL6TREgyzZoIt0vy7gmuCwAAAOyHKZIIf5bkwUneMcG1ARZS\nHXzIYM0Rb1werLn7d3141PW6jdoBAP5VRxJhZoohwm8n+cOqWk7y1iSf372guy+ee1cAAADAmqYY\nIuy6leGFSV6wl5rt82kFAAAA1lazB9MMEX4wgiAAAACwcOY+ROju18z7mgAAALBffBSeZJrdGfaq\nqrZV1dFT9wEAAAB8tbkkEarq80ke0d3vn72uJG9J8lO7LaL4bUn+IdZEADZCjbiTrUbOVnt4J4SM\n2OFgzK4LSXLrQ+43WHPjz902fKKdnxt1PZjEmH9Hx5j37iJj+7brCQBbwLySCHfMVw4stiX53tn7\nAAAAsKlVb/xjEWyq2xkAAACAzWuK3RkAAABgsSxIUmCjSSIAAAAAo8wziXB8Vd199nz7qveuW1Vz\nwhz7AQ40YxY166WN72OVuu89RtXd8fmXDtZ86f8dXuxxvr862EeLuvDgovYNwL7xx32S+Q4R3riH\n99682+vKyH80VXVYknclOTQrv443dvcLquqkJK9NcnSS9yd5Wnff+jV3DQAAACSZ3xDhGRtwzluS\nPKy7b6qqg5P8XVX9RZKzkryiu19bVf89yTOT/O4GXB8AAIADwQLtnrDR5jJE6O5zNuCcneSm2cuD\nZ49O8rAkT5m9f06SF8YQAQAAAPbbQi+sWFXbq+qfk1yd5O1JPpHkuu7eOSu5PMnxe/neM6vq/Ko6\n/7bcMp+GAQAAWEw9h8cCWOghQncvdff9s7Ig42lJ7rOnsr1879ndvaO7dxycQzeyTQAAANgS5rmw\n4obp7uuq6p1JHpjkjlV10CyNcEKSKyZtDpiLOmjEH2c1Ym7awzscjFWHHDJc8xvXjzrXl55YgzVL\nn7tm1LkAANh31kRYsbBJhKr6uqq64+z54UkekeQjSf4myRNmZU9P8pZpOgQAAICtZZGTCMclOaeq\ntmdlGPL67v7zqrogyWur6peTfCDJq6ZsEgAAgC1AEiHJAg8RuvuDSU7dw/sXZ2V9BAAAAGAdLewQ\nAQAAAObFmggrFnZNBAAAAGC+JBGADbHtiCMGa256zP1GnetHX/LGwZpvO+zSwZoblw8erFnK8C4I\nSXLiQbcO1hxR2wdrnnD6M0ddr6/68Kg6AAA2QMeaCDOSCAAAAMAokggAAAAwRBIhiSQCAAAAMJIk\nAgAAAKyhYneGXSQRAAAAgFEkEWALqIOG/1XunTvX7XoHnXD8YM31v3/oYM03H/3BUdf7H0/97sGa\nP/rkFcMnqhFz023jdmfoG28arFn+4hdHnMiuCwAAC0ESIYkkAgAAADCSJAIAAAAMqBZFSCQRAAAA\ngJEkEQAAAGAtHWsizEgiAAAAAKNIIsAWsF47L9S3fvOoukf+4d8P1rz2JY8ZrLnkf1486nrJhwYr\nlkaeCQAAvhYliZBEEgEAAAAYSRIBAAAAhkgiJJFEAAAAAEaSRAAAAIAB1kRYIYkAAAAAjCKJAAeI\nbUceOVhz6aPuMOpcb//39x+sucPF/zjqXAAAsBAkEZJIIgAAAAAjSSIAAADAWtqaCLtIIgAAAACj\nSCIAAADAEEmEJJIIAAAAwEiSCHCAqOO/frDmG/725lHn2nnxJfvZDQAALI6KNRF2kUQAAAAARpFE\nAAAAgCEtipBIIgAAAAAjSSIAAADAAGsirJBEAAAAAEaRRIDNbNv2UWU3P37HYM09f/6CwZpLXnj0\nqOsdMqoKAAC2iJ49kEQAAAAAxpFEAAAAgAG1PHUHm4MkAgAAADCKJAIAAAAMsSZCEkkEAAAAYCRJ\nBJjKiJ0Xfumi94461X/7zO0Ha656+rGDNYdc+L5R1wMAgANNSSIkkUQAAAAARpJEAAAAgLV0khZF\nSCQRAAAAgJEkEQAAAGCANRFWSCIAAAAAo0giwAbYdsQRgzVP/8BHBmte/Ij/MOp6Oy++ZETVdaPO\nBQAA7IEkQhJJBAAAAGAkSQQAAABYQ8WaCLtIIgAAAACjSCIAAADAWrpXHkgiAAAAAOMsbBKhqu6a\n5A+TfH2S5SRnd/dvVtXRSV6X5MQklyQ5o7uvnapPtp46+JDBmp1/dufBmnPOeMxgzfLFwzs4AAAA\nzMsiJxF2JvmZ7r5PkgcmeVZV3TfJc5Oc190nJzlv9hoAAAC+ZtUb/1gECztE6O4ru/v9s+c3JvlI\nkuOTnJ7knFnZOUkeP02HAAAAsLUs7O0Mq1XViUlOTfKeJMd295XJyqChqu6yl+85M8mZSXJYjphP\nowAAACymBUkKbLSFTSLsUlW3S/InSX6qu28Y+33dfXZ37+juHQfn0I1rEAAAALaIhU4iVNXBWRkg\n/FF3/+ns7auq6rhZCuG4JFdP1yEAAABbwaKsWbDRFnaIUFWV5FVJPtLdv77q0LlJnp7kpbOvb5mg\nPbawbXe4/WDNF3/juOHzfPB969EOAADA3CzsECHJdyR5WpIPVdU/z977hawMD15fVc9McmmSJ07U\nHwAAAFtBJ1kWRUgWeIjQ3X+XpPZy+OHz7AUAAAAOBAs7RAAAAIC5EURIsgV2ZwAAAADmQxIBAAAA\nBtidYYUhAuyybfuoso+87KTBmvv81EcHa5ban0IAAMBiMUQAAACAIT4ETGJNBAAAAFgIVfWYqrqw\nqi6qqufu4fhZVXVBVX2wqs6rqm9c7x4MEQAAAGBA9cY/1rx+1fYkr0zy2CT3TfLkqrrvbmUfSLKj\nu/9Nkjcmedl6/xwMEQAAAGDzOy3JRd19cXffmuS1SU5fXdDdf9PdN89e/mOSE9a7CWsiwMxBxx83\nqu6k1w7XLN144352AwAAbBo9e0zr+CSXrXp9eZIHrFH/zCR/sd5NGCIAAADA5nBMVZ2/6vXZ3X32\n7HntoX6Po42qemqSHUkess79GSIAAADAWipJzWd3hs919469HLs8yV1XvT4hyRW7F1XVI5L8YpKH\ndPct692gNREAAABg83tfkpOr6qSqOiTJk5Kcu7qgqk5N8ntJHtfdV29EE5IIAAAAMGR52st3986q\nenaStyXZnuTV3f3hqnpRkvO7+9wkL09yuyRvqKokubS7H7eefRgiAAAAwALo7rcmeetu7z1/1fNH\nbHQPhggsvO13utNgzeU/eJ/Bmpf82KtHXe+3nnrGqDoAAGDrmNOaCJueNREAAACAUSQRAAAAYC2d\nvWymeOCRRAAAAABGkUQAAACANXViTYQkkggAAADASJIIrLvtd7zDYM3FZ913sOZN3/9ro6739duH\nax58/nGDNa/c8YBR18t1HxxXBwAAbBkliJBEEgEAAAAYSRIBAAAAhlgTIYkkAgAAADCSJAIAAACs\npZNanrqJzUESAQAAABhFEoHxqkaVfeRl9xouOvjWwZKf/c4zRl1v52WXD9Z8Qy4YrFkadTUAAOCA\nZE2EJJIIAAAAwEiSCAAAADBEECGJJAIAAAAwkiQCAAAADChrIiSRRAAAAABGkkTYZWjnAVOnbL/9\n7UfV3eFfDh6sOfa33z1Ys9PPHAAA2Cz8/SSJJAIAAAAwkiQCAAAArKWTLE/dxOYgiQAAAACMIokA\nAAAAa6i03RlmJBEAAACAUSQRdjFVGvSIf7h8VN1fP2T4t9WSnzcAALBI/B0miSQCAAAAMJIkAgAA\nAAyRREgiiQAAAACMJIkAAAAAa+kky1M3sTlIIgAAAACjSCLssm372seXl+bTx1SqBkve/pTTRp1q\n+fMX7m83AAAAm0pZEyGJJAIAAAAwkiQCAAAADJFESCKJAAAAAIwkiQAAAABrakmEGUkEAAAAYJSF\nTSJU1auTfG+Sq7v7lNl7Ryd5XZITk1yS5IzuvnbEyVLb196doTfj7gwjdlRIkqt+4kGDNX/1cy8f\nrPn+kwZ2sNjFhA4AANhKOv6eM7PISYTXJHnMbu89N8l53X1ykvNmrwEAAIB1sLBDhO5+V5LP7/b2\n6UnOmT0/J8nj59oUAAAAW9PyHB4LYGFvZ9iLY7v7yiTp7iur6i57K6yqM5OcmSSH5Yg5tQcAAACL\na2GTCPuru8/u7h3dvePgOmzqdgAAAGDT22pJhKuq6rhZCuG4JFdP3RAAAACLryysmGTrDRHOTfL0\nJC+dfX3LqO/qTu+8bQPb2s2YXRVqOCRS33LvUZfb+dDrB2t+4JsfO1jTO28YdT0AAAC2poUdIlTV\n/0ry0CTHVNXlSV6QleHB66vqmUkuTfLE6ToEAABgy5BESLLAQ4TufvJeDj18ro0AAADAAWJhhwgA\nAAAwF51kWRIhOYB3ZwAAAAD2jSQCAAAArKmtiTBjiLDLHH9D1PbtgzXbTrzrYM0NL/niqOudcPqn\nB2uWbr111LkAAAA4cBkiAAAAwBBJhCTWRAAAAABGkkQAAACAIZII+f/Ze/N427aqvvM31lp773PO\nve8hjRIEFIholaVigwY0JjZVEdQStMTYRNGofLQ0FZt8LExiIIZKsKzEqKVJUFE0xg6TyMcOEfWj\nZYM0dtgjIDxBmsfj8bp7zt5rzfpjjt+Yc4619zn7du/ed+/4fj73s+/eZ+2151prNmP+5hhjAuGJ\nEARBEARBEARBEATBnoQnQhAEQRAEQRAEQRCcRgIwhScCECICAEAOVugf9/hTjxn/+M/3O9diefZB\nnZx5yMEL7z7zmM03PnKfIiEdv36v44IgCIIgCIIgCILgNEJECIIgCIIgCIIgCIJTSUCarnUhrgsi\nJ0IQBEEQBEEQBEEQBHsRnghBEARBEARBEARBcBaxOwOA8EQIgiAIgiAIgiAIgmBPwhMhCIIgCIIg\nCIIgCE4jdmcwQkQAgOMTpDe8+X77uaOX3XrmMXfvsfNC94rX7vV7UdWDIAiCIAiCIAiCK0GICEEQ\nBEEQBEEQBEFwFpETAUDkRAiCIAiCIAiCIAiCYE/CEyEIgiAIgiAIgiAIziI8EQCEJ0IQBEEQBEEQ\nBEEQBHsSnggAUkqYjo+vyLlOPvHDzjzmvm89W7s5+PXfPvOY0MGCIAiCIAiCIAjuD1J4IijhiRAE\nQRAEQRAEQRAEwV6EJ0IQBEEQBEEQBEEQnEYCME3XuhTXBeGJEARBEARBEARBEATBXoQnQhAEQRAE\nQRAEQRCcReREABCeCEEQBEEQBEEQBEEQ7El4IgDYPOwcbv+sJ516zEO/5zf3OtcbP/9sderx//DV\ne50rCIIgCIIgCIIguE4ITwQA4YkQBEEQBEEQBEEQBMGehCdCEARBEARBEARBEJxKAqbwRADCEyEI\ngiAIgiAIgiAIgj0JT4QgCIIgCIIgCIIgOI0EpDRd61JcF4QnQhAEQRAEQRAEQRAEexGeCACG2+/F\nw37wNace845nPXmvc33Af7r37IOmca9zBUEQBEEQBEEQBNcJkRMBQHgiBEEQBEEQBEEQBEGwJ+GJ\nEARBEARBEARBEARnkcITAQhPhCAIgiAIgiAIgiAI9iQ8EYIgCIIgCIIgCILgNFICptidAQhPhCAI\ngiAIgiAIgiAI9iQ8EQAIABE59ZjF09+x37m+9w1XoERBEARBEARBEATBdUXkRAAQnghBEARBEARB\nEARBEOxJeCIEQRAEQRAEQRAEwRmkyIkAIDwRgiAIgiAIgiAIgiDYk/BECIIgCIIgCIIgCIJTSZET\nQQlPhCAIgiAIgiAIgiAI9iI8EQAcP+IIr/+qjzj1mMd+5mv2OpcsF2ceM10Y9zpXEARBEARBEARB\ncB2QAEzhiQCEJ0IQBEEQBEEQBEEQBHsSnghBEARBEARBEARBcBYpdmcAwhMhCIIgCIIgCIIgCII9\nCU+EIAiCIAiCIAiCIDiFBCBFTgQA4YkQBEEQBEEQBEEQBMGe3JCeCCLyFADfDqAH8L0ppeefdvzy\nLffgMf/8N089576aU2hTQRAEQRAEQRAENxgpRU4E5YbzRBCRHsB3AXgqgA8G8Hki8sHXtlRBEARB\nEARBEARB8MDnRvRE+BgAr0spvR4ARORHATwNwB9d01IFQRAEQRAEQRAED1giJ0LmhvNEAPBIAG+u\n3t+mnzWIyLNE5FUi8qo1ju+3wgVBEARBEARBEATBpSAiTxGRPxWR14nIs7f8fSUiP6Z/f4WIPOZK\nl+FGFBFky2czySil9IKU0hNTSk9cYHU/FCsIgiAIgiAIgiB4wJKmq//vFPYM3f9SAHeklD4AwLcB\n+JYrfRtuRBHhNgCPrt4/CsBbrlFZgiAIgiAIgiAIguBKYKH7KaUTAAzdr3kagBfp/18M4JNFZNtC\n+yVzI+ZEeCWAx4vIYwH8FYDPBfD5p33hLtzxzl9ML/7L6qOHAXjn1StiEFwXRD0Pbgaingc3A1HP\ng5uBqOcPHN7/WhfganAX7njpL6YXP+x++KkDEXlV9f4FKaUX6P+3he7/Lfd9OyaltBGROwE8FFew\n/dxwIoLeqK8G8FLkLR5fmFL6wzO+8971exF5VUrpiVexmEFwzYl6HtwMRD0Pbgaingc3A1HPg2tN\nSukp17oM2C90f6/w/svhhhMRACCl9LMAfvZalyMIgiAIgiAIgiAIrhD7hO7zmNtEZADwIADvupKF\nuBFzIgRBEARBEARBEATBjYaF7ovIEjl0/yXumJcAeKb+/7MB/FJKKTwR7gdecPYhQfCAJ+p5cDMQ\n9Ty4GYh6HtwMRD0Pbnp2he6LyDcDeFVK6SUAvg/AD4nI65A9ED73SpdDrrAoEQRBEARBEARBEATB\nDUqEMwRBEARBEARBEARBsBchIgRBEARBEARBEARBsBchIjhE5Cki8qci8joRefa1Lk8QXAlE5NEi\n8ssi8sci8oci8o/184eIyMtE5M/19cHXuqxBcDmISC8ivyMiP63vHysir9A6/mOahCgIHtCIyHuJ\nyItF5E+0X39y9OfBjYaIfK3aLK8VkR8RkYPo04Pg+iBEhAoR6QF8F4CnAvhgAJ8nIh98bUsVBFeE\nDYCvTyn9jwCeBOCrtG4/G8DLU0qPB/ByfR8ED2T+MYA/rt5/C4Bv0zp+B4AvvSalCoIry7cD+PmU\n0v8A4AnIdT768+CGQUQeCeD/APDElNKHICeQ+1xEnx4E1wUhIrR8DIDXpZRen1I6AfCjAJ52jcsU\nBJdNSumtKaXX6P/vQjY4H4lcv1+kh70IwNOvTQmD4PIRkUcB+DQA36vvBcAnAXixHhJ1PHjAIyK3\nAvg7yNm3kVI6SSm9G9GfBzceA4BD3ef+CMBbEX16EFwXhIjQ8kgAb67e36afBcENg4g8BsBHAHgF\ngIenlN4KZKEBwPtcu5IFwWXz7wF8A4BJ3z8UwLtTSht9H316cCPwOADvAPD9GrrzvSJyDtGfBzcQ\nKaW/AvD/AHgTsnhwJ4BXI/r0ILguCBGhRbZ8FntgBjcMInIewE8C+JqU0nuudXmC4EohIp8O4O0p\npVfXH285NPr04IHOAOAjAfyHlNJHALgHEboQ3GBoTo+nAXgsgPcFcA453NgTfXoQXANCRGi5DcCj\nq/ePAvCWa1SWILiiiMgCWUD44ZTSf9WP3yYij9C/PwLA269V+YLgMvk4AJ8hIm9EDkX7JGTPhPdS\nV1gg+vTgxuA2ALellF6h71+MLCpEfx7cSPzPAN6QUnpHSmkN4L8C+FhEnx4E1wUhIrS8EsDjNfPr\nEjmBy0uucZmC4LLR2PDvA/DHKaV/V/3pJQCeqf9/JoCfur/LFgRXgpTSN6aUHpVSegxy3/1LKaUv\nAPDLAD5bD4s6HjzgSSn9NYA3i8gH6UefDOCPEP15cGPxJgBPEpEjtWFYz6NPD4LrAEkpvIBqRORT\nkVevegAvTCn9X9e4SEFw2YjI3wbwawD+ACVe/J8i50X4cQDvhzxgPyOl9K5rUsgguEKIyCcA+Ccp\npU8XkccheyY8BMDvAPgHKaXja1m+ILhcROTDkROILgG8HsCXIC8MRX8e3DCIyL8E8PeRd5j6HQBf\nhpwDIfr0ILjGhIgQBEEQBEEQBEEQBMFeRDhDEARBEARBEARBEAR7ESJCEARBEARBEARBEAR7ESJC\nEARBEARBEARBEAR7ESJCEARBEARBEARBEAR7ESJCEARBEARBEARBEAR7ESJCEARBcL8iIl8sIqn6\nd4+IvFFE/puIfI6IXLdjk5b3uffD73yNiHzWls+fKyLX3bZKIvLhWraHXOuyBEEQBEFwdbluDbUg\nCILghucZAJ4M4FMBfBOAYwA/AuAXROTwWhbsOuBrAMxEBADfi3zPrjc+HMBzkPduD4IgCILgBma4\n1gUIgiAIblp+N6X0uur9D4nITwD4CQD/N4B/dG2Kdf8gIquU0vHFfCeldBuA265SkYIgCIIgCM4k\nPBGCIAiC64aU0k8C+CkAXy4iR/xcRI5E5FtE5A0icqKv/8yHPojIe4vId4vIm0XkWF9/SERW1TFP\nEZHfFJH7ROROEfnvIvJB7jy9iDxPRN4qIveKyK+IyP+0rcwi8gQReYmI3KHn/HUR+Xh3zA+IyG0i\n8mQR+Q0RuQ9ZKNl2vjcCeH8AX1CFfPyA/m0WzqB/f56IfL2I/KWGh/yMiLyP/vtxvc43i8j/ueX3\nHisiPywi79B79rsi8pnumA/UcJO3i8gFEXmTiPyEiAwi8sUAvl8P/fOqzI/R73613u93ici7ReS3\nROTT3Pkfo9/5ChH5NyLy1yJyl4j8Z332HyAiLxWRu0XkdSLyTPf95+r3P1REflmf2VtF5Juv5/CY\nIAiCIHggEgNrEARBcL3xswBWAJ4IACIyAHgpgC8D8O0Anors1v9NAL6VXxKRBwP4DQB/H8C/Qw6T\n+AYACwBLPeYpAH4GwN163FcC+BAA/5+IPLIqw3MB/FMAPwzg6QB+AcBLfEFF5CP1Nx8C4MsB/G8A\nbgfwiyLyUe7wBwH4UeSQjacC+C87rv8zAfy1XvOT9d+/2nEs+UIAnwTgf0f24Ph4AD8I4L8B+H0t\n188CeL6IfGpV/kcDeAWAJwD4WgCfAeA1AH5SRD6jOv9PA3gk8v36FADPRg4/6ZDv5/P0OIaoPBnA\nW/WzxyA/r2cg3/NXAfhpEXnqluv4RgDvC+CZAP6FHv8f9Tp+Ru/N7wP4/h2izn8H8IvIz+y/INeR\nf7HjngVBEARBcAlEOEMQBEFwvfEmfX2Evn4egL8N4O+mlH5VP3u5iADAc0TkW1JKb0eeBD8OwBNT\nSr9Tne9Hqv8/D8DrATSX2ssAACAASURBVDw1pbQBABH5TQB/BuDrAXydihFfC+AFKaV/ot/7BREZ\nATzflfVbtbyflFI60fO9FMBrkSewT6+OPQ/gH6SUfuq0i08p/Y6IHAN4Z0rpt047tuIYwNOqa/oQ\nvYZvSik9Tz/7FeRJ+DOQBQUgiyWCfG9v189equLCNwN4iYg8DMDj9fy1kEIR5B0i8hf6fx+iguoe\nQr0CXg7gAwF8BYCfc9fxFyklehm8VD06vhDAF6aU/rOe41XIYsdnA/hD9/3vSSnxGf2CiNwK4OtF\n5N+nlN695b4FQRAEQXCRhCdCEARBcL0h+kq3/acA+EsAv6Hu84N6J/wCspfBk/S4vwfglU5AKCcV\nOQfgIwH8GCfbAJBSegOAXwfwd/WjDwVwDsCPu1P8qDvfoX7nJwBMVbkEeTX877jvb5BX9K8GL6uv\nCcCf6OtL+YH+/XUAHl0d9xRkQeFOd29fCuAJOgm/HVl4eb6IfLmIPP5iCiYiHyUiPy0ib0O+B2sA\n/wuAD9pyuBcVtl3HHQDe7q6DbHtm55G9TYIgCIIguAKEiBAEQRBcb3BySHf490HOEbB2/35b//7Q\n6vW0pIMPRp7gv3XL3/4aZWcBekC8zR3j3z8EQI/sceDL9tUAHuzi8d+eUhpPKd/lcId7f3LK5wfV\n+/cB8EWYl59hIg9NKSXkSf+rAPwbAH8mIq8Xka88q1Dq0fBy5Hv1jwB8LICPBvDzrhyXex1k1zN7\npD8wCIIgCIJLI8IZgiAIguuNTwNwAcCr9f3tAN4A4HN2HP9GfX0nTp8s3oHs3fA3tvztb+jvAEVk\neDhad/mHu++8G8AE4LuQ8w/MSClN9dtTynatuB3ArwH4lh1/fwsApJReD+CLJMeQPAFZJPluEXlj\nSsl7D9Q8BTkXxOfozhIAcqLMK1H4LTwc2Wuifg8Af3WVfi8IgiAIbjpCRAiCIAiuG0Tks5Dj3b89\npXSvfvzzyIkB704p/cnOL+fwhn8uIk9IKf2e/2NK6R4ReTWAZ4jIc+kVICLvj7xC/p166O8DuAdZ\ntPil6hSfu+V8v4Y8qX6NEwwul2MAh1fwfLv4eeQkiH+YUrrvrIPVK+F3ReTrAHwpcpjAzyGXF5iX\nmWLBmh+IyAcC+Dhcna0qPwdt3orPRU6i+dqr8FtBEARBcFMSIkIQBEFwrfhwTdq3BPB+AD4dOenf\ny5Cz9JMfBvAlyMkU/y2A39Pv/E1kweHpKjh8G4DPR94Z4XkA/gDAwwA8DcBXpJTuQg49+Bnk3QG+\nGzle/l8CuBPAvwWAlNK7ReTbAPwzEbkLWZz4aORJs+frAPwqchLA70P2YngYcu6FPqX07Eu8N38E\n4ONF5NORQy3emVJ64yWe6zT+BXJYyK+KyP+L7NXxYGRx4HEppX8oIh+GvCvGjyHnVOgBfDFyfgOK\nLH+kr18lIi9CFg1+Hzk3xAbAD+qzewTy/X4Trk5I5ZdrCMkrkXeR+DIAz42kikEQBEFw5QgRIQiC\nILhW/IS+XkBOlPca5JXjF+uKNwAgpbQWEW4r+CwAj0X2FPgLZEHgRI97t4h8HPIODM9GzpHwNuSJ\nLo/5eRH5NADPQU7CdwLgVwB8Q0rpLVXZnoucP+HLkF33XwHgf4XbDSCl9BoR+Wg933cgu+6/Q6/l\nP17GvflGAN+jZTwE8CLkifsVJaX0JhF5IvL1/msA740c4vBa/U0gixhvQhZMHoX8vP4AwKenlF6t\n5/k9EXku8vP5cmSB4LEppT8UkS+A7vSA/MyejRzm8AlX+nqQBaPvRBaL7kSuC2dtjxkEQRAEwUUg\nlZ0WBEEQBEHwgEMFjOcAWLhdKoIgCIIguMLE7gxBEARBEARBEARBEOxFiAhBEARBEARBEARBEOxF\nhDMEQRAEQRAEQRAEQbAX4YkQBEEQBEEQBEEQBMFehIgQBEEQBEEQBEEQBMFehIgQBEEQBEEQBEEQ\nBMFehIgQBEEQBEEQBEEQBMFehIgQBEEQBEEQBEEQBMFehIgQBEEQBEEQBEEQBMFehIgQBEEQBEEQ\nBEEQBMFehIgQBEEQBEEQBEEQBMFehIgQBEEQBEEQBEEQBMFehIgQBEEQBEEQBEEQBMFe3K8igoi8\nUETeLiKvrT57iIi8TET+XF8frJ+LiHyHiLxORH5fRD6y+s4z9fg/F5FnVp9/lIj8gX7nO0RE7s/r\nC4IgCIIgCIIgCIIbmfvbE+EHADzFffZsAC9PKT0ewMv1PQA8FcDj9d+zAPwHIIsOAJ4D4G8B+BgA\nz6HwoMc8q/qe/60gCIIgCIIgCIIgCC6R+1VESCn9KoB3uY+fBuBF+v8XAXh69fkPpsxvAXgvEXkE\ngE8B8LKU0rtSSncAeBmAp+jfbk0p/WZKKQH4wepcQRAEQRAEQRAEQRBcJsO1LgCAh6eU3goAKaW3\nisj76OePBPDm6rjb9LPTPr9ty+dbEZFnIXstAJCPKnrKqK98LwBS9X9ApNVesmYBABM/qX+p+Y40\n5wWSfielqfq+J7n3+0RpSPPadQsAwErOYYn8/16jPXgkf/04bQAAJ7gvfz6tkbQMwqPtu74sfF/K\nnK9t/p1Jfyfp67b7VvD34FpxuREyF3Md/rf6/KnVpfa4ZOdO5Z7Pfu+s9/uUI79f9EfosQQATFp7\nxnSS36d1PvvWZ/tAZF6vT//8Us+/i23nz/WBbbvT9zx2qvoWsX5Iv6N1yGpMyv3epK/5uaXmfPOy\nJvde4Pud+Tn2uU+Xcy+3l62Tpb4OVf/t77neL9fXTWmq6vP6jN+9XK5EO9lVlm3nvthyP9Db8T5c\nzP27mHPyvNp/Wz/e/h7rH/twkQ6r7jwAYKX9LcfuXrZ/d0rARu2SDTb6mvvmUetwaeu0eSZc2fp3\n2rn26+/67ggAcCDnsbTxD80rf2bS1xO14da4gI2OR2l2rRfTH91YiJr9iz7XqSVWAIAebZ1KCVjr\nvTzGBQDAOB0DKHWn2MuXY9dc6WdwVv271L764sopGNB3+d52Muhnvs1vKwvHbx2Ttf1OE9stbapt\n8wWObZdTv7UedAcA8pyhPtN94+0Xc953ppTe+xIKcV3zKZ/yMen22++86r/z6lf/2UtTSte1R/31\nICLsYlfrutjPt5JSegGAFwBA3x+mvrsVALDeZEeJrjvU1xUm7Th7/Wzoj5pzjRM7WA5Yx/Y3nocd\n9mq4JV+cGhDrMU/UTzZ3YzPepd9XQ5UDn7uMYgR31aR+aP7WyUrf58/PHzwcAPC4/kl4TP8wAMCD\nV71eVz7HfZvcKb3xvlyOv+z+FADwns1bsB4vNOcfOhrleQLDzrHX9xMmG3D4Wr6b78m963fm1wu3\nNdcL6W2yg9Qa9ruFlm2c5WhTzlUm3acjMtg931Umf67aSPTP8tTf4sRP7/XQPwgAsBhy/eMARTjI\nbKYLGPV5lQGHRhQnlqfXsdPo+zyoPOLWj8VD8SgAwAXcAwC4Y8r63p0X8uvx+h1atmN/mgcU82d+\n+udX6vfItvMPw3sBAG45yFrpgb7nM15PuW853rzHhIaj4SEAgKVOSihiXhjzgHjfOvd/9528ExP7\noz2vTaSDsD+w/ie3QXv+Vh/5pc7auF0rxcVLaCswAzifk/3TucPHAABuWT4CKzmv32n7hw2O9Xen\n5u8n091Wny+cvIWF3LuMvmxI279zperQPnUn2M1MGHd16pLOKZ21iUH7z8WQ66Hvxzlenqzfo8cf\n4QOOPhEA8EFd7m8fepDHx8OBE7/83bUW8b5Nwu3HuR29bXM3AODt/V8BAO4a/xoAcI+Ov8frOwAA\nm82dJpbtvI4t/Z3ZI3vWa4EAOr7P62o7Tj3k/IcBAD5UPh7vuzpqrnmhdgufyt0n+X9vOb4XAPCm\n/vV41/r1AIAL69y/nWzyPZ3GPF6ddb03IotFtv/+5vlPAgC8X3o/AMB7LbKdcdjn57mZEt52ku2I\nv5BsC77r5C8AAPee3J6P0XHjYsZ39smX0s/vA+tjLcLN37PvZ+3x7x1V3d63vIvFw/CQo8cDAM73\neW10mbLt2+tC3qBTsC7pOCmTiX4XJLfbe6Z8r99znO3k+07eBgAYtQ7X0Dbjvb0Uu4tt8tajDwQA\nfNDw8flcet2vfPcLLuKZbf7yogvwAOD22+/EK377P1313xn6T3zYVf+Ry+R6EBHeJiKPUC+ERwB4\nu35+G4BHV8c9CsBb9PNPcJ//in7+qC3Hn4lAbLJtn1WeA8Uwzsf0OqmjsTkl7QhE32MsHZZbdeg6\nKpJcRdw0f3eFyK9+cOb7UwTVYgjz0Px7i7TAUi0Ovi70p8cpvz/SVbuVZMFj6I4wTZum/D0NIjWA\neP7eBogRm669Jl7jQlcXFiomSPWdzFRdsuvUTzFUvIEjV8V4npD8gHPGhOJyB0nWO7v3es97Jxxx\netZjsucls0GS4gHv1aWQn/VSjnAw5mc4dfl3+GzZRkq7emCLCPc3M8+fLXTS1oeF5HufpG0zU7+e\ntT1OpLkqOXb5dd3dY+eezpj0zgudYG1CxvLRqd+ZG22X0l523i8nei7lEEu9T31q+/y19kO8J+zL\n0AFDr32V1v0EJ4bsUba97+Nlsk/dCS6CK/TcavEfKJMp34+XyU7p91cprwpyzF7pq2oJlWcCvRgE\nR70KDZtc9w9SbvPHKiCe9HmSsh6XWsABcsbEbruIqtclFzNWc3HgdKGf9sUKPQ4GXnNrt/BXN/r3\no3W+rwfpvImlm169MGyhZ61FHpuy3gyCG+vVoB4IKxV0eF95nzcTcLjOxx4g38eFTlKHPo8TXEAT\noafWbqGtiKnOE+wy2pdA9nhmZwgEZ/7tUukwqJ28SPqq93zQsWehYoKRgE7LO/JYb2uL+04DvREv\n/Xps/NDntEq5f9hclXv0ACUBmOJ+ANeHiPASAM8E8Hx9/anq868WkR9FTqJ4pwoNLwXwr6tkin8P\nwDemlN4lIneJyJMAvALAFwH4zv2KIDbpsU8q4YBdEI9ZqEFZVnXbV8Fk8//OVpHVi0GN+M6vgnX3\nYdROYpp4PpbOdZKnbDpRDBD+fjvRWGGJA1Waj/TpcxVj0onlgX6HqulSDpH6Uc/b22dAZQih9UhI\nMhVvAit213z3hIY5jadL2EyjHkDuHwOgq8QKZzxd6UmC3Q96jGj9o5eMGZ9c1Sn3O/W5TJsRDSzz\nxMUj+oD6FeJT4O8epPM4h2zccny5S8u2HLKxcbzWOo179fdvfCPtasP6x76FhjKFATtORbwxrW1C\nzGM4obBwKq3DnFhkj5u+OebiaENvaMglG3K2nNP6z8vx7mgNRlv91Xq5kltwlLI46kWEY+3DTIBN\nbN/Aos/1nF5Bl9JugpuHedhfb96B7McpbHlPhF42zXF9t8JKJyFHQ66TFA8OTUTI9ZGr80DChTH/\n/9xGvXGm3CefdNmjbd3fq+/zhHDTrUxA27tei1Reg86rQNoJun0FUhk3pwsPg+R2d9gNOFRD5VCb\nrXki6FdGPdVBl8tzNJ7HgXqYjr26gtMlnGKChnjsKuuNBOsk69Vh0lARrVOH+nqkj3MtgsNBhah1\nrjsMq1mriLBRj0d639ZeuLtFzHZMoH27bSHoSsD6aaGVKVURD6yHZwsaF1umvluaALCEjj8qBvZJ\n7Wi0YQ4JE3r9bOKYrKI35xDdFtHRbAL92wRn+F0CtvBoY3aMdcGc+1VEEJEfQfYieJiI3Ia8y8Lz\nAfy4iHwpgDcBeIYe/rMAPhXA6wDcC+BLAEDFgn8F4JV63DenlJis8SuRd4A4BPBz+m+fcpWVU9cY\n+26JSY3JIgSoiEBPBGcQ1xO3QY1PTvz85NvCGqb7SocsrYvd3IjfHkvZHMFVDH3l7x5hYe6AHJRp\ngBCKDIfr3Hnd1z2omqjqvQBXP/P10R2LYsKEEWthGEhbzQ6RjZiT7j4tIyeaHICm+USduAn7Ja22\nbREreAvOGihqYUQs1AJNWa70RJnPkHWoiAitIt1Vnh9+RWAy9zaWlZOsEl93MSEdAHCUzuNI3eRZ\nRY/02d5NjwSt/5uRhuaNNRBdLVFkNgmp66e0ohKFgaN0qz8JAGDq1lZXDvWYcykbhXRRHLXP4Srl\n0B9gM1JpupiCO88rM2oI+7YtdfUi00vUq1AW+uNiTfn7NH6P0i040snU4PqWRVJPBJ1Q0NAbugF3\n9/m+MaQtzfK5XD94r7Z9+7aL/p2r1N9da66IJ4eNMdoeuuVsQYHiweBCf8hGXZEX3SGO9BiO2ed0\nSOUrtYMxldHogtoh9Eg4P+Y+eT3p+CsqIgx5Qrge78WkIVC76vXc26+38aDYKV5UP2VccZM2f+8X\nOvk66nsTD87Z4gcnn5lR/3NOXRTOb45wt641TT29RvN10SNh4uSXIZdb6vINU7913GD9O1RhyosH\ntA+HKVlow9FJrjsUrBcqNi+GXF/MIwEn5X7tWBQqK+m0n2rxmGPOpvpslwfMflBIbr0hXf6bK9hH\nFpF/MO/Aw4kiggqDnKAzR1H1/TXHQ31Zd7mu0u5jroJNLfLzPCZyX/4qOfujnp6uqTvt8JuMFJ4I\nyv0qIqSUPm/Hnz55y7EJwFftOM8LAbxwy+evAvAhF1suQWfeBcWFkKsAS3R6m5Z9q8Z68cB7FwCV\neKDfPdBVAE62+Z11fx82fTuAT2hX8unu7/Mg5HK3E0rZ4ep80PXmgXBuyB1m5/pjG1ROctnvS7eW\nSYGFReiqiq7m0T2rjjPmyl7HDk47Ia4EHqsRw4nmaAbMuri8pR2Kqh+gUjrVQ6OllNEGKZ047BpM\nmjwUlpSuUrbzFez5+/vCEJjW+ORA3pmYlO8vJ4K1Mbp2LrKjCjsUusz1PU0zdX7XgMrJ6/l0hHML\nraN6K450hZsrQPfqgHfi4iAfaNxfhuQsft68XfgyWVu3PkVdTTk5NtiEusn6G65GntdVqI0TQtkm\nh/5wh/F1WuGLESiu7tL1JVUrLgX+X0MgKKKetSooPcTyqHhXWRVatG9ZSrlHnJAtZiKCCh76uzSe\nhqnHYZcnIzTg2FcJVzKvg4lGMaxbkflqrbJeD9d8NbkUMaGEQWq/aGL+CgvNpcR2y36cIoLZDwwv\n7I/t+CMV4s/pMM8x/Khvx/BN9UgoInBSfe+Yv7we1UtMJ9jHOiE87t+DzXivlv+kua5dz1q6ZbUI\n4Pr2pOP5lu+dWXe0PbNvOxzExIO5B2V+HRM9FdTO6BY4n7K9NWrY6Ebv6Vonv7zeJAzjINP95pVw\nf+QwySG7uvqt9Y9hq+d4vxgOonbhySSlnukz5iLBWm3VMdGeyCLCOh3vtNlKcl/2u/mctV1LTy8/\nP5MduZu23iv33NhnT9O9+vcrbac5hOE2h+bxd6AeCIe0yxleaKK7Fi0BCy6QaX1e6znuFgr86snL\nsXVc27O1UOvUhklfTj6XOgNbEHiuh3CGa45AzLtAKvEAKKELwFwIsAy1ZucXo5RGOWPIvBvxQrMs\n03A46e7DSc9kP9oBTIzj850eO54iHPhVDFu9ViPaJhp9j3McLPo29IEzFf79vN6D4+kWDM6bgOIB\nV+94HVzdm5AwqCE1uGp2pBOYY9FEgXqP1poAKk8qaIy5pGu7Yigbt0i3EjdbPak6Q3biFA9knB+D\nYhR2zvU0f6n1SLhSiK0c6DPUiTnr0pBa4Wijk68OnYXGWWI7i/NuXeFo940AkIonCABbDfADNdvG\nUbcwA5VQeKLQxrCGCwxr0MlX0LJLPJhPYHqrg0zWSlHOQksIFzS6ydrnkYYo0YOEnghcubhX69ay\nP4cLNOjGfVeci8AmzhOKTdJ7wuQycFW/nKe5gB3k/s+XrTXKWFet/5OVTcgWrs9cJIZ/UETQFaVJ\nzHheaH1ej3ezEHCFv3bQa8W8pVzfFjGtl8T2xIC7njuNgXaM7vsD6wtNRFDvQLrsi42dGorW5f54\nJedLfgN9tOdUPKCIIPqQ11PpL8z9v+d43+sxuf84UY+ECxQRhvfgRMdgm3DNvArc1crKhDqZWu+c\nkW3/EpIX8r5Z37YoE9pDveZhJiJAr5OvPY7W+R6PE8UEzf2ioRx0yzev0pHvbzBELMn3YZ/Fo3M6\nBhRhinUqv+8l2d/O9fnmP2ijUcTsOvWZbMxWvWD3kPj20znPlVQtihVPL2+DtOyV0JY2sCaiHie1\nr6+yDWJhAP058/g70vp8oG1w0P5jUPWvnqCvKSKo2b/WvFOHai+z/7igws6Ie2aLhiWh9n5j6T6E\niOAITwQAISIoZQulvtPMyV0JXaBRdqCN+FzKWdBHzsAs/0DloquNluelCz9Xajn5Zhu/IOctHplx\neyNX7RJXC/0Wf9WKujOIS9zlkf5uHowPB7FB2A/G5HBojY4L0wGGqdcy6Hf0txkvJewU9WZMANYq\nNPjY4/Pa+a21TNyx4lgzKGfRhK5aLV5UMNJcGCjwfs0pXgWMg/YH+EnRslJ382e2ydEVjpPmSnAJ\nhWnd1jkxpIcHs/qusSq5Kmyy2Bqm3dR6jqzHDtPElVgVE8x+bI1ACmvnhsFWLxjyw6RWLONd1q50\nBVe6y1LFbwTmggEwEw282FPB3WEoKp1X74JzvfNG0gnFmEZzzad4wFhXbk87qWfRPdoml9354kVg\nMc+nuziLlLhvCl9cNbFYZK74mfA2VV4KNBgpDJxO3x0W41/dkSmw8Py26sb+Twbr1wbngrWYSt8F\nlJXOfhScH7Wv6rWv6jQruRnM+ydm27WyfSkrkPWEVmx8aIVOc3C/StnQbxZK2+wrLw/vsdY+A/Z7\ni/4cVhoSQzuCwtaQ2udFz71JJ7wrucVW1885D4Sjga7gKiJUIiT7ZgsDWFAk03Frk/uRCynv2HJv\nfwcuDO8GgNlOUd7Jj5fd9we2CEAvNwudM5d0DdOs3dzPEN14/87rJOzcIDinix5eOEmpbbfmiTD0\nOD/SvTufZ8PtqykiDEwQqOENeg2SyrPdtQp+xXA392qEH4ksbNw4Ug8U1odVR3uvtQt7KTs1nBsY\nEpPr87EuBN3jvGgE3cz+KlfnvNMUenV13crai3lO2oT/4r2pKETRvjRviakKuXBhDVcCLkSuuvMm\n2p9fqDezzhE49nANph6KKASWHVdaQY1jWgkV7Wzc5aLhZO3W5YO4BG5uay04ixARkDu5hSUv0cQn\nXO3rjiwp2Tnkzpduw4ydZS/JCZtIby5a9Fo4mnIHQDdii4XSDmPdneC4yyJCUsNg7RRTDnRlta9M\nyLywwImexQJPZXukc6Y45+8O1udz8NWcCDRcpgUWE1dJ9Fr1ogfnjlXvW32i3+kTQyHU00EnO+tN\nOxm6t+dKarVK6eKwygS09c5ImLZMuFrRxd8roNwvuvUn93t+q8zFcGTfKZmemZyO4Q1zo+Oi42ur\nPB000rgaeqgDk9h9pbeB1htZWp1lnbS9wRn7bvsW8x712IyMb2zFEYxeRMh16tzQmdcKx/YjXbE4\nHNvQC7ar9WYBpOvHBfz+4FQvgx2CV+f2l65hfbD+SN1SOTkmfCbr6dBEv7KiyYk7RQR1l97k53bQ\n3Vo8hLi6MTqPKDd57btzZqguLYs3d+9gQjOGanHyv0bqaDC2ccoybp/0WoKw/qC0RRNddJVL2wIn\nbue0zRwueuvXnBONGW/UAvn3XgRHvC+6zeq9fd4eb6P13Lx40pZQjDO9S5S02XmtMy+qeos8J3TS\nECeTeVhcZNK8oKXx9NguTJvnQUcRjbsqnDPx4BDqUabx/ou0xDbWUjyNztnOBElfc/0+6Dimtd4z\nAHCBuy1pfb9PH/tGJ4QbraPnN/l37uxuxQWdcNErcEORzAtQ+jPL4RYT1jZqr3BVmm090Y4xUaG3\n7+/aDrlMeFX07NNMOGFOhNFEhM6OzccJjjYqyKhQs1E77ETDk+7r79DfUw8EE0COq3bCe3qGG3xK\nFz2m1XkArmb4kciAQevkgQozthuD1am2bvUids95LHdyWKk3ywE914Zcp483dxUPA2ersW0Mrn/a\nMDdIf2QT/uKlQA+RTfN+H+jVwDFgPaiIsLmzElSvPLzOg+5BOEoU7fMz5n2ciQjV97lNa8dcBGqP\n3bWmvdx68J5U3kC2dbM+w2Pz7OBuSfv3/X4L5Okmsdf2IuH68D68DggRAQAgZRuVvk1et5Lz9rej\nKTfQ8+qGOHIvchq1vJ1SJqX0WqCizpVAutKqDYDjdB4XOm44oafxIQpu9Vikn+1zbIkPq/IDwAEn\nGgNw0G0fjAknGAeVGyTLa54IZlDRHQt6rmLELFR1XYyt0MAO9UQVVhpXg9v1AiirZ6TshOE+r8IZ\n/Laa1R+U8veyjz29SobmmH5LeIttqTht32qHHiS+7PlDLdNZq/HSmSFKIeiA2ZQ1vs7qnYkk+dls\n0nIWSkIvhVET25mnQs+8FQM2eo1rFRNOqImYWLJpy9OLGR50JbVVoI0La9AB77g7NLFj1+rCjSIu\niHNpxqxe9rPvdC4ny7ZMzDS0uDLB3VRWvR/0M+v1YHVkZTuz0PBuJ87nxhL7yt852ejEwhv8ljxR\nM1AvbrXnTKGJz3+TsgHH2GT2W6mb7P8bbrGoK0ZlVbAV5bjSsxxuKTllJnoKtdvFMpfBOSYR67tq\nn/nmcrBs81nZSlAnJbTrQHQ1ecj9OvsNJhbzW8jV92mXqGmkY0vWOoerrzwH68Wi6u9a911CUZBl\nmvZxwzxle76bDd+ORVZbPYSA7eIBkCcyFA8O1RZYap0ctvQDQMlxczSdw4EOSxy7TUTQXZO4kjlU\n4+/R1E6q6ZrOSfdm4i4Gpc1fUFd3Jlu0spgQQNGi5GWhsMYtUjvJx7Jds22AeUS6ZUm/M7W5Fzg+\nMn/E+UGT+A7FXjnUax6EAmgr5Zy3RZDsjZDLqxP0df7OBfadWvbN0C7YbMahEhQ4EO4Ky+CEdyw5\nWnh9u3JJVMLyrvCjXULLxVDXXW4RyEUIv03ospt7qNKLhbYgV9KPtO4ea86Je3Qh6GR4T+UdVpI2\nA9VuQkObu2ejEH+S3gAAIABJREFU9WM53GIT48kJEWVLTudBsO3eWBio2ktqXzIPxr2yuCq5mSwR\nofYBy3RoO4Uc2M4i7djD9lp7IgwT+3pdYJxoU+nzowhJD97+FiyH4kEIlPvHe0BPvcIpYUouLG57\nTxcEmRARkDt028fVMuBrB4TzttWhxRPraqtlQmacL1exuxLqwA6bk3h2KmUrJh0kx0Pcq6EONB58\n6x23uDibCzo7ahMR1LDnChy35etLOANXMYaudQvkoLKyjq9DP7adzTbPg3xd+TUB6KmoujhlTmCO\nVVxYjq1ww1VLoNzTstq/3WOgHRR2iAhWdk5+hub/QDEYOhdjNlh4SAlvseRZDP2c5W84e/DfZSCI\ndCWRogpBh1MenLg6471AyHqaMHC3jNTWj7UwN0LrqdDJwpIf+l0fvBHIjNnZSNNjrO7oa7UNJFBE\nrb47KBMsWw2g4bUjpAQPrMmLn3R0bkvO0+pnvStM/m6bc2TCZJ47zC1y6BJjVWcDkCfYFJyOhraN\nk3Hi5/Pt0S702cW51FW+tkLbsj83Ew9YV5iLY6NJGicmY0trc682cY6Gj20b1nr4dFWyWtvlZtx+\nT+kyzus6GEps9eAazqbjpARaZr1KkbIt7pjvyd300lDDlL9fOu3lFs+ntoy+7ac0VLGscMfSPbWI\nfvn9UAlP7S4utvMP605Xzr17YmJJK/RAf1wqx5STuSMeOG31NEqYTtuO++5gVs9MvOcihFsZPOoe\njPMTQxrbMZkCHxclGHrEPvtIVlVeg9YD4TQR4cLIY9pFgRMd/9cMW9yoDTKdxz22sqyTORdbXRK2\naf/e3WoLFdxS1ufhWXc5dIC9fN+VtjGKr+9D8/sUPQ+6hGVHEaFd/PCJFQ/MLb8z8YUhUiejlnts\nRe5j7bfGKiGdeX7aZLj1GGlCspDbaOmr2EbaSa8n2xCuXzCDgt5H8/Z05m4F4uquLK1uchHC7Lyu\ntQfNLhRgpc/0wMYNLgDlMt6rHgkr8zg8xILii9pxvE/sp/w259xidNEd2nl4T8epHQN8roQsOm33\nZmH+Go4BF6pxeLTFHFwysx2UXCjfYTpn92tlIgz0WlsxoV7IKzZ1/uyYNpXOHQ6nNjHrYjgybyDm\nTeAwxMTWY8fcIPyVMpb70A7zhjSboxwZkBQ5EZQQEZANALoWWhiDvl/i0PZ2LRNxzYY/cRCzILb8\neRrNAOCWLmbE9pzkt53+4TTYSvMsy76+cKWu3gViI+xkW4OV4Rm8Ltu2sU+zVYzBGc/FU4ErFjLb\nwYFvex9XrG8nFCO8bJuZ3y/1PzQQDjdtwqmEsRgZbvAwt6yZUl3vVOEMvB0GX9ctbHLjf8/uY9fW\nCybDAoCxb5sPXci8ILHtt+cuf+446WbZ902I6qkQz1Vs+5yrqqlNoNd58YXlkKnkBDNjJt9rrhSM\naoAxrOKgFzM41mqQFBdJHfB0WzGbVPZllbTs1d2uNswnq5UTiZ94nTqw7dnJX4Rb2qkrS7ZK3MZF\nd9J6s9ThSN5lkKLBYJ4IraCT0lTadmKyJk4S2jLRy+Bk6swwYdtbumMPptZIPNyszEhZqauqF8Xq\ndpTLXIxATiwoYnK71862gGV4zaqsWGq27s3AsAZuS9rWEwuZ6M6bGEb8DjkHoOtuuUdLZ8CRfmLo\ngL43ESEVD451m1yX2d4tP8kpbd+Hpvj7OU4n6Hb0B+zfvIdKJ4Pd/96MdIoI2k/QO4O/t3URzgsa\n7QSp/Xzceiwp3REN/t3tcD/B4dLb8WUJGqe04yLitN4lfhteCnEHqcRH+yRr7Mfpji9MZFotWnhX\n86Nh07xy3rG2/CJShTxwkpiP4aSEbtMmQh4f4lA9be7jima/Pcs73y/lvAnFZQcnFUX0uwv1aqiF\nvsk8EPxYzbqsk1ObfKWZcNLrggI9EXjtxVsjWZJALpCcsB1PXJXXFXQVOpKeeyMDRoZxaT6XXWO2\n5axKm1lf5Y+Zh0T0Ni54oWZK7fuanR5LsxxOas8OR1YXD1EWlPLr5F5zGcckdi+9mHBBn+WK3qRa\nB5bdebODJjee04ZiOchyyKEzy/6cjW0TQ9z61r4lU2MXtveUdchySaH1yu37gxIy57dT32WPbck9\ng8obLF+feo6ap+BRJb5AX0t9zmXMn9c23MK5olyoEoUCwNHYhgFfGG6pvFVV/NOQGI7dlp9kdIty\nzdbeJvMBqHeNgR2bX0NMCAohIoCeCLqappPEhWZMHqbBhIClNmIaoUk4+GvykpGu3SvbOo0TP98J\nFxFBPx8HHI5MPtcOGlOddR+V4YIOXaKB2HakFsZAxX1ZjGgbjAe6BbLThx7DwSRXj5M+2SRkm6tv\nuQqg9qhmjLG4Y+gid0GNJa6o0jAfu42JBZ0PW9DrLK5ymTFt5uEfO1Z8i/fBYub+3O8QEZhBe8DK\nJk9cVfXeqPQY8S559Xm9KOIR6U1EoPsrRayVrfjwOvlsSudOgzSpy+rGRAT6SLKsNFgOMbEO8RAT\nCLgHtNYhPq8+VeEMOlia+2OZjAJFNV8O54q7o8vS7N0f6/u2yygrY+/8Pp652kp2rrrOKWsEW1aC\nbEW4nXRwZcLnLem6xcwo99t2ehEBUgZ3hjEsGa/aS3Mo68OmJD2pnk97LL2qDjb6jGVp4tW9XMXo\nWpfI4r5ZVqNMfKXLrL7vdHWVYsKEMrFlvWN7Yr23BLOuniyq7PZsl7arirSN8WBqRdSDvqxUUvC0\nCVjbNBpPBEtSp0IH7w3z2BB6A/j+Kf+O955q61sni539gfeQqsWmznkQ0aAkGxM2dmfJ3zUx2j0Z\n2ta+9jtH/bfT2u/u39n+exDM2rD3zdluAPvzs30yOeLSva5M5PNbOnpPRttaeTrCyvpvHqvtRwvJ\nPpRtcTkVsYGTkEM30VsN9ETQnAg2SajDEvN3aL8cTG0IGtv8kSxKqIXWobFvFzR8f3WA85Ys2gRR\nLhZoW1/3buvZ5jxOBNQ+k/fPvCH7yQSTAxUnzBMBvG+csHGS3Nn3+YQpNByq98WhjmUXKJp0xVNv\noxNNn8/FU+d38X2Vv96Z4CbdLGSt7M41n/D583m8Z2VXeYktLbSV94fiEj03vIjQVbZgu6JuwpPW\nUd7HA7nV7KFNascLipy0Tbld+In2oSs5b/0q+/ONeojsEhG2PZPOxkXaT7lNXujy5L7vlrYg57cy\nLTmK2lX5Og+Kz1dEwWZw3kcHsqxCRlovmeKRwF8p/dIorT1XPIPL2AyUMWjZnbd+htdKzGPO5Vfb\nJiJsG4/0oGAb4YkAIEQEAHkCQKGAgxeN4GVazVaA2SFwEB5NMaYBWVwTLRGNdgDzlcDi2n8w5d/Z\nqOFr26LpJJ+reF0tIrhtofh+RVdnGr2caHTJBgkbjM0TgQN2O7gc91Ido0WzcIZyD+v3CXM3PHP0\n7Zw66zrFTXdcEgE6w9cm5tJ6JPRbBtVtu1jkz4vSavfPhJQ2Z4DlytD7uEJZSe8sZow+afll4wyJ\nbSKCXc8Ow17QFyGIE6GBA7kTS+j9kfgMksXTkV4N0xHtTGmq6hrLy+uiiLDo20RIq8Q6VerI2q9Y\nsL5z1Y2ZyLsjW6mw+PipxMcDc4PrNOPprInM9mMwO+9px21DtqwoecPNJ2n1otb2cIa23nVbvI/Y\ntpd2r/VzLpDow2XrOxnFJsrW/3Rt21z7Ntn1M7dJTihsJxMmcWWfWRmBnIws0JafeWMY7jVhLG1Y\nr5U7iHAVihNmPh/Wx5XcYmFoXHnpnIiwAo3oYsx5EYGUyRz0uviXVIxBGuDgNls6YWcXoKLuKOvZ\nffIChxcM+rSZicG+LdBAroUD1hXeP/Ybdl7e835ucM+M8zPaRErjme1m9v6i2m8pyVll3Xb+s471\n7bY9jhNbhhSV8AWghCrkMJrWE8G8QIR1s93S+TAdFO+sgbYAJ3z51y08kosSJurLPBeCigcH5omg\nIoJlYxdz/y/u6tpX9+2ku8S99zjatJ5jnECXLO+tWHeUbsGh212C0KPypN8+gcn/b8Mlhr69f6uO\nZZuw1GuncNLbeOE8EWzim6w/s77Q+gEVE3Tr4Xu1T6Vnp0hvCzTmKSXbx2oTwbu15UnatUiwzZvL\nh6zRG3Lc4dV0mpBXhN0ieAE5R00J7WL9y99Z+WSdah+up9prFc3riXex35REiww5Zb9k/Ts9IBJF\nhFwAer0s5KhaSW9tBHqIkA3DHLr5vbDtzU3AaxNKLrpDrEU9Tzr3TJ0XZO3RYQLNFm8woCQz53h5\niKG6b60gQG+DbeEMHH8ojpkAoe2Ui0k2xnZH5dkmZ6tpO1prG/R1rK6fvm7S5qVtH+EMwTZCRICK\nCGrsLukqrB3PIVYmBBw4VdEau3MRH1OPDdrBqnw3H+PdiS/0nanjIwdlbdN07WInzFU9QWdGMxPm\n2WrxRGW4dV077MciIuwYjOmpwDIeTMm8ClzOn+KJYKLCPLarc0Hu7FCPXadIw3wtx3Y9fuAuE3P1\nSKiSGnlsNdcJLTS2a68Ci8FzXh8ciDhZWeHQQgJOtJM9MVVbV1vVNXJb2XgMP0s7DDCRDivRbeVY\nN503C/Ha+TjV7nFt6A0FL7FM9MyHMdlD5USI73k9LPshmN+jGBlrF4/KSZt5T9ClsDs/8zJJOij7\nCVPtyXGWMbZt0nDaZGYb+4gIp60A0chg9unBsk6re7mbTPYy7FT/bWKIRfPdhKnyBGlFBE4SbAt7\nhjP0yT7zxozFE9tzy+9XXYfl2Ma7cnLPuivO7XGFI3vOS2svy6b87MNK25jMYOT2azTkLVRgan/X\nvFrSIZYq/k6W0RwNJQQN+t1UjGcvpLC/NUG09HbFGNSxQBOHHtI1V+8vyz5UIW3eg4z4Oj1ivXNS\n78XNetJKY4/92tKtRhXX8+I5tcvjYafLtvVXZ6+GbvPAOuv3Tjvn5YgH+4gUuydic/GArxQLzKvI\njRdFPOA4vCzuyCYitJ56nNSbCKh98+HQlVwIKgStVDxYLZ2IsOHqPHCwYd1vV5PXzuOhTNQ7rDat\ne3oJrdwuIhxOB7YI4NueiQiiu0518zrAPB1WR10In4l33WTXTuGEdouFM4ydHZtfk9k9dV+Yz6u/\np9fLkNVRJ13H6KyNjeyTd3kJVW20c+Glvt1s90RY2P8BoEvbvT9Om/B5fC6npRyWMdjGjTYXwrJz\nduGUsFo7IUq/e8H6Q3rS5t85TOdMRNjo8+eCEL17aVvbgldXBDcuUFgOJzAhbytgU0zNtoEbQ5lo\nmEIUbZBU2nNvNsf2BN0lBIO5iUoIE+9tGe/b7dRNQOy6mQfCgYUxeG849RQFsLZ5BfS7+ZXjFu3A\n5aaMzwfOWzX5RVHnndZX9XNX3ezDE2E3CeGJoISIgCwiLHVQNDdcJlqUvjRa50VQ8iq2A9WYOpt0\n23f79rs8Fydxq74cu2JiJe0IRk66bJCZr7CPFBjUsGf5VwzBqJLorOgKudDBuG8HYxMZqpULGtQ7\nRQR9Xy+S9y62i8dS+V6N7T1a6aTlAlbWgVFMIBNzIkg7SPsVtFym+Upv/pyG+AIDVxuofDsxhqu+\nC50MrepJv+tcbSJjfy7v/YSC+NAVIuhKXWTd1Drk3bCLJwLPWUQGfsbQm7VPgmYHFAW7iC65/ByI\nCN3oD6r8GmsXU3/gjYx1iRWmMWlCkVPFt01ktk1itr3fVg92TkLOECZOY5sx6LdXLdvEUkRoRS2R\nfiZ+dZXABRTDq4bba837pWKI5DK2iZnysal5JeMsqWpnq3RsA1y98XWZE6dlOrT2sQRXg9hZtn0Z\nVzUmTLOVqpOu/T3mHjFPhI6um0dYuPbrWVp2bNirN+Ss73LtqBZErY/iq/YHC31Oo94DSwQr00xs\n8R5RxSmI93Pd7DJTQ0PcEqJaf7+wOsIkqpwsEIrOFDjq3yYzD4Qd7W1qJt9te/X4idS2850lROxz\n7MVMrk77fe854pMkWqiCHFn7pIhPsc/EZuZR4q4g3bDTG5G1YsOumB5tU1kxXrp8ABQPliYi6Lks\nSXLlreAmgifmPdaGQS27zvr2Q7cyv2uxYoWFrUZjasWEcYe3zoi1ra73XVn5z+/ZfzAMifbRZNfD\na+/c4sdmZFvXnVlqTwTXFx44kZvefhvhNpSdhV4NXGDA7nAg3ivvvTD37JkLEb0TEbiwQEHC5xbw\n/99Gb6E4HEeOKpswH1OEgVY8oEDVT3U4QztuMDntCUNSKViNh9YXr3UrZ7Mj2Bbc7lL0AlmlA/MI\n5vhwwhwJQm/FdvFlrDw5iyclhSFO6il4qbAiKxMHdnp50PvXBIKDnfmKfBhZyQ/RzcbbpXlsujGo\n6o9724GCC4LOS9CFitbiC8e7Sdsiy8KxlG2w7t+L6Nv25wurhy7OLwgqQkRAtqcYn0iVdAGqmX1x\n/7LBlqKBxhzb4K8iwtSZsmjxyqYitu7EnLgvu9I5jFVYRH6vnRZXyNL8sdH1jQKDrV47T4hlV9wC\nFyYi6Co1d0swZZodnswmqnzvxYQ61Jr/pVBSEivmV3agdo82RTXnxHKXELBxHgpjWs9cmUs52nNQ\nOOjToqyMMrGiE2O8eLBIC3sOtrLszr9BO7GpXbZnifR2hDN00ltd5MCwdG5t5foy7ONzBt7Wc8Qm\nRnx+JhRw0CnqNcvI8l9AG15TJq8JK8ubUMJl8t+cQIQSspIsPCdfO3Ny0CDYNoHxAx05awJTn++0\nY/z7ndvwufKQDrUnQhsXXRIUsb6USaWfNNKg5ABOr5C63rBt0xhcOnflUkZ9JtVPsB/yq/Cbru3b\nVr2UUCw1+o71embhDNY2ljapX5prfZs8jp4wRURIZdVHz3us4hkNSGHuEa3oJrCkhfXTC9dH2vX6\niVs3zQw4rvyK9sXU2WrhdOU8bPzqlhdWJim5HtiX+KSmXvjIk6vtdZWrorUACuS+bLCtAtsJkdUt\n9rvSioE1vo2UsLHdkyBf/l2hGNuEh/nv7+GRsEc7PmtytS1cw5eJE1qKB1xhLGE7Rybw1l6BQC0e\naN9N75Cus/bqvRHpLjyYwNt6OuY8HioELFoPhMWKngFah20SIVie6KSQORFsXG9tEooIzUKGjsVr\nyUKAiWNoPecOusGEtbKoQo8YiqhsIxQgenNTp+BKbGvtxO2NeQ9Gu3YvnPB3Vxu9Nz09liYr29i3\nfeGyd+OThiGsKaZLebZsx6PL3+CRNPde8HVrcosfgr6ICPQ202N4z8c0P9dZYhkntszxtZQjc+u3\ncNKurRf08Fgyz8aYzDvBxhiGM3CRzOoyF4IW5knrQ0XZR3P8YsilPeu0sv6cNuOxUNxpRRmzIRoR\nQT0oKOgxlI1bjU/03lqVEJLJJbv147GJCCvzcGB/wGddfq+tu8teSv1122dy7Bks9KP85sZ5Ei6d\nFwg9UVcnZXym+OLbIstywS0EMZwQUuoVPYfKeHx6fb+5SeGJoISIgDxk0/WeezYPdL8Vsb9xgty7\nRs79ijc8rktWv+w7buLMTmOwz8sx9nsUDTjR055hqCYUIwPx3eSQ20b5Mg8CDMxuzJVLLRM9EgZX\nxl6STUh2eSBIdSzh6jfP448p97W9znwNdHtuDXG+pxBgSDnG4413do49BgwUbNzgYfdR/87XRdVk\nBos9bwUIm2TRgwRdyWvhyuJXI4t7bG91cVf9m23rVC7YxAIm8Byn1kAt5yp1rbe6n9pr79rVlaF6\nrnyWgyubnVcvd6iuy7vJ2eTAjMLW+Mh/okruJmI7VnrqfAP+O+Vz912ZT1J2bhO6ZbJS3FL53FjP\n2omfnQPd1hjZ+rV3XXSHrmrbbftyuRKrZ1GHGKUdxyb3naoP0XrgvXZYl3l9A/qqDrVt20K/GOJU\naRhMAsorLX3YdkO8hCN1pZ9Obdvv0N6jup6Wa22FFP4+k5DW/dS29lL/7uATqqX1TACt2zZQ+gf7\njix21je2lVo8yOVYmHhgz8nGCz4fGtdDc44aH5InO8LEpqp8Mmt720WSOg/BrvYrru/eJhjs0463\nteFcNhrG7TlyOE0rGJpgsyMvziKtrM7blsocH+y5UITWCUwnsz6R70tTbO0J9t29SDMWA2XM7nqK\nB/nv3Vj+Tnd/7mLg671vG/l32rHYxgC/w4fSobaPKIa0thTP0VWTEtvy1SWmtHAdtiu7V5PZJ52z\nWyad0PLv9XXuvlY9r93jth8ZMMy8dc5aiZ1kUdUzfkbxhX0mjy7eaGyXvAdjJbbUZa3r/zZPnRpf\nhxdpZX2lj8OnvWf3pqdgD8uFNR/f66uovbm6sq00hS3mKkB7r+07YL/VzZ+D9WmaL8cS8rY2Qy5v\n11xzsV/c70rZlWvsnIiwI7yw6wbbMcSLBz4nzZDKczP7Z2b7zm3swnzMymXhsXzVOpS60l5nbZH3\nkZ69bd8/YSpjjo3RrSAeBKcRIgLyZGzlFHgLb6gy/JobWE8vgvx+pDefnm89iU3wvPfCwjwU+J3y\nnsdwVZerxKMaBgPDGOqkeTQu0XbUh8xQSxXWVognLLgP8EInuXo9mw1XUv3KRW8Xa5MAtIMxWdQe\nFvxNNxrTHZ/30/bMtZXPFTYUD1wIR1ndd4pxWszdhRXfGXJg6jHYYOVdqs1VO1FlLp4pdt4kzav/\nvbqsU9reMfe2BWMrlgi6mbrsvVn81o7mJZIErBi2quryeJCSFBRWgXk9FmqjboG2ommeCKOtcq0n\n573iwnaW1aq2X9mxa6cngswnMPusjAKt8HDmyqW/fxcVzrDbLdVPOrgC7MOQOvQzF1m/ilIM8MoT\nwfomNK/ePd8SBEpJrEgDcuEm0H51ctnJbFWSq0K2Dar+EvMSrNLSVujpPbNw29QywSf7vTpbPifv\nzDB9gpwMSpwhbklvZWGTtE1q93AnnIgtzJhLJR7VeSJsOOl2nghjKnkULKTIQrDaMA3LK4Jh5p3g\n276vb1OaZpM0wnrS2ySVws5gyStLOIPLeM8YeIZObZkMlR1TivfUNuryea+JWdvcEmp2Vvu1c19i\nO97pPu7a+rZkj8nGHLdFXLWaC+T6Vzxf+Gy1n7Nxot2JYehkFspIF3EWbUNPGHufX7OHgNZ9xqsP\nOl4trNPPv8P7MI1YXmA4mq4EO1fqtfca60t7YfmPnVjPOsS+bNl31iYoBo46pi5ceA3v+UbWthJK\njwTeR97rMvbRPioiAq/dxAQu2OjKbH29HI/WOjgupO0P7D1/n3cwlTZmSWB3hBpZO0+9eUNOaAVC\nH4ZJ6rxW7PvZ1n0up/q7u9oNsTGoykOwdOOGeVeptwEXlxaL4t2yMk8E9YSxsR/NuYo3aW+eE2ZH\noF38YpvgmMQ+dIHBxjazi9WrgWEmPuy0q70zTLSkVxBDOVinKRCtSrjHKUkrgdYbqXcJG72IYOET\ntpubVHkMWpu65ERohRwgb6kOlPZvubBcey1JLQ9mIa9si7y39dbkQPHsSJiqutkKNNbHuSTdQVAT\nIgJyZ2bGJtrBPxvTrRDAganszsAJGo1TsWSCxShv3cFKp5G/e2EsRobt9Wzn7/VzTh7njXqhB1Ng\n8En4SqzzZIPEsGwH48VG3R87ukHmz0+mhGLqtBYor5N/NbcsSaa68zps0OjaAb24COtEc1qaKEJP\ni+JOSSO3LceIzd4iAoWDJYbiQmhbjrVGDQ1yChycHAGw5ITmEcDrxLysuyaoXEWceUKkrrjCzvJp\nqPHkVgOKiJVLkX9A66r+cWO3jXW2HXTyb+tnE0WENi7fDM2uuDvSbbyEM9D4ayddy3FlBoF3F7XV\nBmmTKAFbJixmWJ2e7Mqfp7r0uQBRHecNOI//XUGPWY6AatIBlGdtv5E6TMIY0HbCyQGcIlbtpr90\n2bUt07O09WJJI2RLToRF17Yf9h/1pJvPzIcMDLZyRg+C3o6jaLCwRGn62yMnW9ZI9LpTEboYBzu1\nho8X2piHYIHO+mmKWPNwBvaH+r5LM0OOdAxpqnY5AbLQUSYdPI/W94nJcNtwirrN+4km8X1YnR/C\ns5FWTOqrlW9OfLgatXRhXUUMVFf0Uybdk02o3eeNN0ErOGw7pjnuFDfsfdrvru9ua8ez71nXvFuI\nMBdzbvNLEYFJdS1ZYtkyzrdLm7gwxt5C0HQc7uvknOwj83u218F5i9m2q10ysZYhiIP65Xer1hNB\n6B69AQadbNuuBlrvT9zCAut2zr3A66Do2+Y5GNDWrWUvtghgiyoutxP7Dfb7fVrMEif7vvPQxEj+\nzojFsrVbZLCl0/zdtU54GdtfhS6t3XhUhBOOZexHipfcxla2W1F9F2s5KSEIaMewXeJch36LuMyH\nqZe3JffIrnZDKB7Uu4yt3BblpR/UerJoBSqRZPfS15VSZ/wiWVflwdHyOxGBY4x5JnD8kK7YFro1\n9Yn2c+vUjpP0+qxzSvmFGI5bg5WRffaRTfwntzvDPLlgyaPA7yydiODzoFgoXzfPfVCEvHYMqncy\nE96DVOysfB3Q7/C1zFmKfdq2RT92Ty5UBmjFvfo9vRhCQ9hCQoQzKCEigDkRSieI+n0nWxpvfuWK\nFQcXyxLcJ4w6sPnvDm41gOPSsiuCw8b6YBoTrRHaNGqtx6O5hbaDI41evi67EQuuZugqRqevgxuE\nyzY0pYNjs2EXVGeVBVq3LLEVbeeJ4CaaCyd8LKbBXGVttR/tQO4N8N4ZN/k720UFc+vDYC5hPJ+4\ne83O2U+OAKDjYOiuzwQPHZA2KMlrdiVW9AZKn/pZXRxsFaWdLHp5p6ve2baPWllZZ02gqgYdJqjC\n1BqSXOnkNRQPkglL2w5Kv+MM5BKDTxFhwMhM2GA2fm73pytNbtJYZ/AnuyYszTFn5U84Y4KxjdO8\nFcy1mcZGamMkt00mS33Wgdu5ANMI4Hc6SBFknKi56luDhC7qy65M1M0TqmuvY3QGS15FceIek1kx\n+RjPb0kUu8rzSZpX/zup7jOpM1CEpZCr920tTNClhpdlnu7s/KtZOIMzbq0fTjNDjrAOFzfS0iZX\nbhIyuPFb4e0tAAAgAElEQVRilcrkI5d1PuHYR0TYhRds6vph/RnLwrh4enuoQT66pGXbfnuXQLCt\njJPPKWKi6bzd7T7f7uSMZ7ZfsqUdn+VVZCJk/R3nxluHL+TX4nHDOirSjk9+nCgr3yVUYOEWGGx3\nBn3dJO8hUMRaCgO9TqR7pihw55rWycZ574lQft+Nw11nfYjVb7YrlxiVLKpFFsI2vtbvmrdOtaLP\nZKAbzXdSxNOS0LopczeZ52RP4YROA6qM8+/LKidCWUH3faXvF/T9xBu5sHCjYUsel1xmmb0vXojt\nLjRenKsnvN77cYO2f/XJl7cJeh6OPRRclxhM0PL1wOw9Li7p69R15pW6spV01h3td50nwrLvbNHL\nL24wBIy2QPFEKN5rPqafE/KNu38bC3tYbL2n+fpYh6CvagtNZVtc29KTVpPrp7jD0lIOTZhZpNbT\nkKK65QAxAb2MISs35ngBp97BzLxDOYaNzgvE7nUZn/24O9r9a8fu0r+X+untruL1FtPD4GyiloAi\nQv4/O552RS7/bXArfnTtLx4JZQLFbr8YsfwumtfJOjhUngjteddukO63SIOjm2wvzADRsteDMd0B\nTUTQ81JMcB0cJy1A5TJvE9h2QtvEdlHgcG7WpQOV7a/SmRjiJ+gWazjzRBhnRvouz4Ta6KaIMJpr\nLAfAHUZh/SwmvujEwtxR+btcYSgrjPPEiq0hYp9Xk8XB1yGuYPE6bUVO33dl4C7bkHLFLMNM/sWL\npvwf9l0dhCdO6lsDc9lNWHCFTAc6Jgoyoc3Es6Ka0yDgCs/My8SFrEyYb+O0l4hwhmu252J2Z9iW\nAI8rmHRrXDpvAr+Kl8u2Q0RwhlBdtxfi6wMnvbyv+TiblAvswfvvkE1q69ayk2oVX8syMnmr62uq\nnRgsX0YVzw3YYmExLF2dzefVMk6cUMzjN+vPV11ZueJ3vIFPEbdMmKbZKpD9Prcm48pmtYVcmWg5\nwZP9h8WVMnb37LrUuT5hrOqp78s6J27W9YOu2IPro9jm2ax7WxnenTBrJiacInTs9kiYv9/VfjmB\nOq39+u/s4jTPpZ3HyjzsoqyKM+Gb27Gp8rixccoJ4d7QX/aVwOrG5Ha0KM+PXmMLSVYXzZVfHQS4\nuyJXL63+L5KN8+am7sf15BYaunqs0Xswtqvivu0vqzCNydkeJmqpCL2mp1kaS34Oly/GJmgu/HPo\nx2rRQ4tEEUF/vz/mseU6fX/Hax1MTHXtmbbOVK45ORHBY/e8EkS9OHyaOOdD1kxMsFBO51m0h4hg\n3lqphAqUxRo9hmGtrm7xPks3zT0RnPv9UNWd/Hcp9urUipm9Gxt4WG1jFfGq7dc5xjCmv7YZvL1g\n7RdtWxxGjlfLWb6TXVA4GORgJh5wfC85HShasD+WRgTLr/79XETgf3teu7P7BvHtrC8LTXwO7Dus\nHbf3r66fRZhpxap64SLwpK15sW5GQkRAG84wuAltL2KNt8R551fG89YTMX63c6v4fm9yTqQtdqla\nqfATvE3HwUU742Yeykmwdvx6jgPntmeZePuxGCL0btVaQFFhUSn5fKWxZGLFPiKCwrLZoDFzeYe+\nUnntLXZ6NHdRTtC9UcvXfmdn56UEMWOnqxK/6e/QLdp7R1TGIb9vSXKcYSUTV9f07+hmkxvis9WX\nMks1uObPVjZQ81m318eJmaTiHMfBgnWzM6Ejs64GnSm19YwTS2auntxEc9FNWwQnt8phq+b6Kj02\nqZ2M+lWAXQZYvsbtE5aL2RJun3jvXfD3tyWn66tcGwDMg4Mr9cVdtdSBkhugnVDaKgq/UwmHPs7f\newyxPoxbBAP/fMjaskQXw8Wvtpug4UUE25VCZv0n2zTb/kZv8TZzfLRtcVvRoqzua39UuamyXm1c\neJhIe4+G6h55Q45YeJJdQ/77mKSqz62As7QddVpDf1vS07M8EYbke6r6fBSZ6C1RC6Htc+A9KQJV\n/rt5azQ6b1uGEoLg+9m2TQLVql1qjynfubz2y9OdFlqxrezbfsezNTzDtlJW12Cu5lYTMSD3YYuu\nbcsl50gr5NTeiyU+ul2dZK3wdsRY9bc24WMIIifSi7bOsgb1q2TjvJ8sclw377FqPPZu6ivbvhF6\nb9rfyeEMWl5bNMjHMLcThYiV7f6zwUInb2u6izP3UOVllF91sjpMZp+YcKLdAx+1eVQynKEfZ32j\nrQg7TwTf16Er/dxodXQ7jYigz67kdKK4w5VzfqdMeHtbuW/7evOKdMlWG28gVyofDmdb/0lfhRZC\nX7V+MNG2W1ySrtxLesLMFsO69nXoBAvrx7T9W3hYOzbMRISuhMZQuLF6YN5U850svL1g98DqUP4d\ne+ZpOfNEmCXBtfGXfcDKxAN6yJloQFEbRdzmvZqHM3h7Scf9KhSRWzyOlUgAVF4NzluoHnc5R0mp\nrc88x5jaBaEJk/XjtF/o+Ve8rRAEOwkRQemdEVBU06L8+cyqNJnYoY614WCrWa3R7pVxGgpDNYBz\nBWLtOmiaGxYLL8UzgHOCsgLnjWi9zi6hU6XeBmGKCDo4m8tkdb1T9Zu5JK0wYMYLvTTKLZit+M0z\n08rW1/rM3nXQ7ggFCmw33HMZ289ro7uUv70Qu492bDsAApUtrhea7G+tAj+mVG1z2ZaF923jRIau\n+q2ycpVfSyxta4SaMDDBdsagpwvDR9cu9KbUQ6kmDhxs3YSFLtSVEUIDZOi5MtoKRN7IWHSdGQRn\nharUCaVsNWNmhO2eLOxMwum6vYtLqLjdu6FDXwQArlC4kASZPXspHjD0WrFdYlj/+Hn5TslYnl99\nH8N6MZohUaZXPiM30SbfGIns15jdmis5DMD22bbzygs/a8uY2q+aq2YNP/GGT7nnej0UaboygRnM\n+NRzud+33XAkVdnqp+ZY62tS28+3Wd5Zr/11tpMFbBGwfP/Uuc9T9Zx2CZ/FE6H0lbxffWVUAqU/\noFB5wnCNqg+l9GHhJSbauj6bx6G0RSS30qjHWNu0G9vvbL/1eT27BAfffuu/W4LcbSoVtntAWJyw\n1WsmYGt3XCju0Z3dcxsPd4wTZujXq5I2eeJ3OQnN79f6ytXYQZKtrttuDDZ2u4F5Kn/vF/REaCcs\npQ7796Wf9mOxiSZOXFpU9hGvb+0mjfOdD9Is6369w0t7H7WM3TSzV8RtEdAti+DA67LJmgtVsn6h\na1/Ni2cqbZX1YbNDlGZbhACTCQKnj2l1+CWv2cZ+egrx8myhobSZswRvnxA6h37p39zzH3yiSrUD\np5NUdu7aYb9uC7XcmLGoAuu0o8/s5m2FZZz8JNi8tdrwvk2a5v2OC++aCUVpYTtODW7L0ln+LNtx\nYbXTs7B44hUxnb9bbF3n9UFxjO26EfVZ7u0LNL3rP+qwPt8WTcwc2/tXvN46q6Mb+2z7dsmBI3Ii\nAAgRAUA20GbZeqvJzy4hgJTkdJmcxMefZ3snzNXqxVhWmtdOgNjY5FQ7kWoiWzLy59d+Vv65Empu\ngUv25noOfu47L0k2UBcjvUzegdIJmoiQpHzHGaRzQQXutUM38fxqFNklt5OFOp7aK6a7OsFaEfeh\nAJx18xZ7D5Whk8r4zzA1z+R+b7JJcrLtjnaVSZxxNlSufWWyyNf23s/oiokxmTFjH+hlat3Sz8dU\n1Gurk6yHFvJBQ4zlKKExi832AW9wk66FdLPVdR/SMZp7MR9Ov9MI8zGMZEKaTVg8sxXOM1Yv2/PP\nj/XbvHnjYuvqtOXk0Pf66rdxbEWEto3v2qqLGcl7SWZoLZxRQ7wL8lBNKKxPFCY5daJM5abqV5u8\nAOp3B0kp2QSME1cziEbWR8Zv8nrKvak9xvKx+mtWR71RVU0snCcCb/7owhnGJLO+qnfntz6a/cce\nBti22Go+p1lolgsBqoVQfw8W1u/qPadAxLpW9TVs6wzN2xUuVosM/pi5END+Tn1du9tvK0gAuwWH\nUvb9hQc7p9WlyqPCCYOcNHoRcFXlx+E9r9slsCVnRm1H7JiImSCv5WF721gdK3XWVonpgeCzMyqy\nLu7/wyw3Qn49ce7SveyehNST6vp6eynXaJ6YJki2fUpvCuJQuYC3ceU2QfPhDMM0977gtesgxnvT\nWxjHNLtmW522Z1H6u/p3J3Q2SSh9iq5+O6GS71NKFg5pno32bF3bqNp+70QEC4XS825M+KrbjA9x\naPsSv1V5EyrgVsVt1wsm66yc7AbnzeKT+C78+N6JLX6Z94oTpnzbqUPf+l2TYLU96D1TvBinWb9D\nZhNr1iV0FprAnBy7Ql9LCMMw8yz0IYdFZCxtf5cHwtKFGEklIvD/ix0LkcuqT8mfy8xGZFssIibF\nmHYBZ0Kq6mj+7MTmEvuPZcHNS4gIyOZtUUfz67acCH5Vi3CixEE/77e8XTUcbBUszV7LSpJ+Rxvz\nidmn7aSyQ0nGZC5wWiafTdwmdf1ogy1PxMFYjl3yJssKm2xhzbprtwruRYRekhnUo9+PvdtyLOqV\nC1QrKzx/c4qZ+VgLCLN4Yp6Kl10PWjZx0GPMEyHjJ0N90UbseXC096urNC66VCbr8w5ZjQp3j3JO\nhHbQ9ft9+3poQgGkxJxzVdp5WpjgVQ1UvAc2qHftc1lUK84shxkg3fayzfaX7gQDb7LloeAkWwcz\nJypMSDuNML8aSnpsX/XJ96SduJCzsm8Duyc0uWR6f3YYF37CARRPpHksf2sAlQRu81X+eU4Eb9h1\nVjeLa7O7XxPbOvRcpS/0faI4t/tFM6lvy8bXWU4EfrlpuH6C3DfHik1aS5v0k3mfs6WUo+pnXb9j\nBpwZvW39X6Q6thruNR/r89ZImk82PBTtymREZvWg0DXHWl9ZCTfleYmeLzWf2z1CB1/Vra1Vnl3t\nBfG7W8QDO1nbNmuxYSYwnOHNkD87SzCcT6TOEh7Ithh1JrTb6YFQ7TjCe14885xooJ8Xg7/e4YOT\ngfZ62CRXej/pkZDbok42uAqvCwBiCXLaQU56gXBlmf24WwVduHF4IampV/lvpQ8BYOI+qSdKJfyy\ntX3sHKxVUu7tWi/ICzbF26oIAyUPhLYF88JAc2/q6517EO0QA327kmSzX9Zv29nINc1K9gJcSIyF\nq6XtbSP/VjtZ87s9zbwwK1G9+uUGL2DnfoK/x76+FREYuVKHifiQGC/GzPvX8uyshJZkvLVfrb+q\nxE9+lwsIM48YeiSwz075DtX3p5t91/0e+iIUShse4emrMJsSrsjv6j3YUdZeSlsvtpSzl9wrAHRq\nH21mAoSzrarxudiI3pZ2r84lUCqBl+2XmyX33o4OMaGQUBvcNzUhIgCAzFXSegDc5crFOlSUTujf\niwG5cIOYJaLh5K6O1bWJl5u80brQfqbOibBwXhD8U0lw1k4w+i7NXCH9K93aasHD4u35O1UMV/68\nvc4EmQkLZC4ewL0KyghaJk81M6+DNHcXt7/Z79bnV68CuyB9ppxI+IGhEhOsLEVRyX/jx/X4ZuXd\n0QFzHj0rs8zui687dVhL/buY5tdaJkr5PcUnDkSbVOoV74FfSRrN+NDv9lOVvGu7y6zfnaSv2lpx\nVZnqd7YqWkSFNPPyOM3dmvjv2Oc7Ys8FfpIyx4ej1IYLJ9e9rQK1dWibiFB+2/3OKd/dNjEGSlv3\nbbGX4gtUPvOeCN3sO7MYVnoBscxmnJWyzia0tIdZR/kdPUc9Dls7dcZlyTmSGU4RLexcO+5RL1Mx\n6Hi/2GdZXhnYseW6XF81E0ukuc58IpyK6z6Q1xfbyam3U2b9kRTPFGtrdq/1GD3HSW1Q8rlQ6GBZ\ndoSN2SWlZGX0Xgx2DNr72UHObL/bwpLmnl3b2205Z2WI7+hvy3WpEZ3KSubAbTRTKwb6dlx7wJTf\nQ3OMDwtYVOKVn7zbqTi+26S+jP+cZJSJnuvAKfCNk/2dWyBykihmg7Bez92kfaiUHxO8mv//s/cu\nIdd9TV5YrX2ef0QDMYkKausgYDtohwYJTgTbQRSlMzDYkyBqkIDQkJE0DpzYA0nQiaA0OFCJfF4Q\nbMhAbZKhHTHJIOiotYP5Yga5dSYxft/7nJXB3rVW1a+q1mXvfc5znvfd9ef97+fsy1prr70uVb+6\nteZG4aV4fJbU1bmub8WtQQtmVYmzvfeSQ34lcyyTYpZf96Ab9LW3Nso2VwE4lcnHACzv4RkQuLv6\nG/e0bT7BniaJx1d1WeI2sHBsn2258a3vtajjd0la2273sEUjush8x+2orq/YjyHvthDdWCFTNi3N\nC0Rr521Jhcd5h7H0xkBE0v1b/ONIWn3oPciM6bSYwJ5MmG6TAcVbvtl4NHwPWA3KPkF3hu9uwB/x\n3FSgPipmIsVjrTeyRECwm61Juf9ulKqlcPU1XPsCgNKLLvLoAhFIWyIUZirZa8i8873F7SDz9eQs\nlD7DzwEE35Iw73IWZqK6WRVLhLrPlUXDmr5Dmbd7ZUQQ0efzDuN9Rx9QiInAv6uGMxemT6ZK4/J0\n+VwvX0/VRNC4M6imlvvuSbgZoEABjHES/VeFD97s6zXZNnkEI4nyRxbtX39Xwd1jHlRFwBPcliSE\nM5/ptOBMqa6ASMVShbiNiFTX38UVJZgLVbBlxutemYyA2aixOLiNVdAUnbB1wfZ9QBt6T7b/FtDg\ni14ofxVhBjo3CnC3hHpLca/jn8qEJqS8ydd5DYJUSjGI5MwJPl/BJC5XAwPlmbv8Bj4TWNpirtc6\ny7VgrPJ3WpJsr253ZoGd57XGCNdi4Znab5tmhhkfwazxuEJGp22JoJm0CiJs9RYN/jYu7rn0cQRI\n8m8G2m4DkFR11Urqt9cHFUAGRnWJBT/uay6igKcpVXAC5jqcLlS/V7WWKJZd5r22JovxHs1fJgMY\nCA1ZLdfvUTl/q7Z2gXt8y4T1fSqgsJajwcCb0OauvyvTXuep/S74G60C0S2SO066IfGRwVoOKsgf\nPQGIwOk86a3u8ywk9vYRKfTg+GZvadyPb4mcOUbmHvk75VT9/0vfM3+BghgLuvfKn8CmUgByft83\nvnw3lp+Gt4L9kX9/EWBt+UqBaRH/vN+z0N5u+0TZy7SAK5U+aIlQLfC4Xg1IrNeiPWyb40YJ4nwn\nAdAQEXtiCMuOpPpSPWuUY2JNZqulssfob8o8Kb+BXL/KvBG8tDwaID5Ld1keU/rZ6lJZny1BLAE0\nYEKXpje6GeWAAQ8ANPsu5arEw/gjHMwSAD6unYjo7d0fu9alzllvyjeGcQAKnDvlqgzl6tEyJlKA\nfdOU6YqJsNIFImxUUVK94K2BFbdraAa7PVsEaCGYIXNpzPOECSH/5r9/wG0ozMT6bGWy16MUKMp7\nBG0tm7EKUASb8fb7Bu4MS5KaMWREkCHZzERzMnUzYR52E/xssaZw4TrGzLvQbhgQQTAva31SCCkv\ntlWX9PsYyxTRF3o9LhrTGu+isuYpRy/gSFPctoDhifq1lLikYiaPjNC9bKy2bNQao6+1RdpzDcbE\nZvLAtBXGsbxXCoVRlGCkkFIEE763odkh0tquyCKhFBWADR61yjRCR9Ek8qbstDPpP1Cj6ZlNV8E5\nEg6YcanWBeiGdAMBxroYSQFIf/diEQmMXWvMGuFUnOdzCITyelqnDjJtVtipYIke5zKwLAJdTMWk\nlIOwFcZvqWtWeVZbbvD6/l7iisRjkynDeiXdoRDAIbMO8fWk5pa8p1p2cH8xkCMEpILWbuNagCC6\nrZXqsufPKwQDM2UjPFX3CL8+CTJUoND3A5dnEWiIAEIJNjDcg1Hx33C8KaZ9m5f6dQwzrwQkI3jp\n8cEgVrH0EpYJC7ozYAVsiVACK6Z6LwiNVUnAa3ZdN3DeIChCEBth5XX0vZi9CK2q3lO12kIf/moa\nTrqMN8uvVNv3+s5EAjRZapykyIXSA7nL/RwwGaz4kMr+IZQfPJwNMJD1mF1SMv3DQ7MGbERATFgD\nZd3HFczCsSusxHDf+A5dZTaLkR/cQwAK11VpcYjut1T4WP1tTZYrsX/g+EMwXRPPWx7HsA5ifZQq\neADBVGsGJV4DeFzeCK07Yr6oHm+w31aLIs03FXBkyZS2jZCzsllrmq2PlGLG1i2PCfuxWLd4Y1S3\niSly+bjo26YLRKB1IlVN3HpOovQWxdYLt8m0kJLQ+MLiC75R1U+sbsaYPucHd2DwpFYSNHyI9hpQ\n4ZarNgM242ImCGa+qyUC95XYZEW/oUCTUkWI30Hr1NdWW1O4KPOCJNws7Hn1uspPsGhySC/UdlOz\nLhDMt6I/XxbqVk5tF5kpEwgcN2FZEQFDfB41qZmyMGsD5r2M1fVn8em+Z2Giu9VTmNhgs1wqk4EZ\nPWww0m1TXnIpN7LC8IQUFEzK6+hHXV/7FtAg6+mBDbIdns1CETpQCwQMpUdmwzbrUJ3z1o9XMyol\nFawAdKp2Rl+jcl4LFN8tMnaAbj+6DnjmqJUZX38Xk2N470xZzFd+D91/yLtLKwNkjAtDadYUnjN3\n1w91rYgFMtC6ib4wlghcPrgAvecWcCjfVoIIlao1AfQNzMXVJ133NZq02nlca0IgA5XjTLKndIvk\nPRoQ8Fwjzpy/1pohE8/MaJ4ynKbbxlrj9R40rbfBQpOZA9xcdGMo8ynV1KKRRQC/vbRo5PtubHKO\n4AEfi7RsQQRUCkSm6d8lO65x/cEBcktWoLQZobZH3+vYLWsl+JmzdrcKp1sffXen9KbTFCVOW/SF\nrTS287c1tsVNBFb8AYDbFWCr74FHXnc4QDL3G+7dS1FOiLUKwARvT2NCLfsN9yPGu4S1gTdP1HsJ\nqyNumwG2QKAtIIJgPBLEPEIwpgR5FrwX99N7SQCg3y/BPqL3Nt3XuBegNZ9+d5/vM1YnKYlx9932\nrAYPGGSolgiL69bktVECYN/BXvOGMaQgbomkGrvkDkecv5ZPtUoiXrvW9+KMGYkswH8HZdsFHTiU\n6bJE2OgCETYKETz1t96ACJjsMrnvmb4YRN/fuKUZcWRKWC0RQChJ0mQUmUxmmjV4sSzZMCJsEpm3\n48KbsGCm7wk3Cw0eVKGnCjK5nENTMSgL+zzVeAp30NDGQrgQ7knfi7+VVUF9nIisltUzT63lasYK\nlHo1mCHlaiIIbamB7u0GeEP+EI6YIaNqEVdtz9peDYrcs34vPn9Ltm0YWI9lrnpdWCIwmHDTwqiP\nzq8/Mtq0g2k/f+I75ZoOEjSY2G9SSJFMl6SIAetpjomo4UZRx8wCDA/6aOrG8EBA4WpjvFggU+uR\n/rYIDJTvc9dzdG0DCi7klrWa2fI1fnZrMo8DaNtCFvxIsC7ht9WQH77X+ptdBKo7Vx3DZfxC2+z4\ndtZZBBGY0BJBBWjT72fMvsW6hYImU4klQLqsO8l+0/OUCcEZCYQigFP3BL+t9Q6hTUWLgVLvdn+2\nVgUIHqA2Nolz0fxFDe3aFgT5gJz5i8AgE1ozSJCBrRdYaJNpdomkIFa/Cc5lAy6Zb2L35MgdDd0M\n3lKu5s7F1JwFZi3tZ46Oe1vqvTxWUIBBAdCxKvDGtXpv8V5FmGLNMwAqfP39PdVUtmCRYGOqCK1o\n4MJhrDFKgMW7cc30LK5kvanwM8l8n8qL8J66vY9QPCBvUCxhwNKHaY1xo9fROq9wAalzpcYA0m2R\n5fJ7cNnGGpYVNDxOEGW43+s1h1/Vv6kccS4UywqcG8DftK0v4X0KsFIJM2AhDyfdMtGdJnJvkGUh\nqBjtAZJPM26CHMRS8ONEVNxCuYXy3tiVZKt3kWsTP6PbUgGBbZ0v30Zsopnbrd/9ootadIEItC5i\nmG5ZahKsaaLeCN5go/0uSdcDn9G/CcBhLSP216u+k5rJXmMi8IKW4Blum27HcrsL5kK/NG8iJSCT\n2GxqlGEADQJLhDslsTmA1jMM0lNNhMsiFwjfuLwtyd7DhD5dcpPj/mHtTwatAH6Tt0UKm0kdi6aC\nK1IAgS+gIgjE5JuogaAHAMGinud7kioeAxfJcY9a4wUYFAOs3O5lrKSgTdb/Vgbc5LY5GxsJpkBs\ndKHAwiQ+dRQ8dwm+hR1VlkrMDCgiOWapCRhiz5qmMLlwDTWBpT+XZMb5myMMrL+tsFKsFDAyPJjn\n31I2a2Ik2Nbx4bS33OuDPh5ZE8xtLSZ9Xo5ZHvvliIxjquMUgc/yHikYy+IZ7FMEQrnItyUef5Ew\nsqRqlfG24EP6vALlAOyrfV73MNnWW6rBtAqQYeacfi8Ze4bJ+HmXe0BQysk9p8gZFkbj2wX5Umkw\ngnyRhcV6LzPNm8Ba3BjQEmG9f42G7pdlAD7xTUIXQ+4bTrlYBN7yVkJbbAa2PoqFg/fz8iyAzgsI\nOG/JzvUqhG9NNHySHfu4BkiQcS2Tilb3h0Ff456X3qqwa991u4f5FyGcFm27ARN0mxD0eU8QJFUR\nXqh7EfJF7l4mn5R9DoJeuRfmoIxLYpQPRltO5Xck0JbJsej+I2nNAlYsC/Sj5Df4szBPZcZBeS0Y\nj4nUGqX6AsZQCdQr3x2y3USg3C0lSttc48CJ6MZQ+lHEQUBrCJmaUvWFAF7QjSFB3y83AZJtlArA\ngO5HdZ7K92uBLwbU5+tiz86A+t6hzxvGH982ZQNrf5N0gQgbGW24OF+ZPdj0yz1aYFuZTtrObUfC\n37wI1w0ey3mDthh+QTDRxX/cIOwavFhu2TIiiOQD471QLu29m8VdM+RVKKpAwJfAEgE3kfKeVDfU\n6ufG5evNkUnmm6/1+CQZhgTfB8eB0aYkGenALxdjJaw7nb8SY/Ch0naxoVq+0RdkChOfLcOAtXv9\nmQxooO+9mb6qPqfoO1mzgpA6Ly0RqjuIZazUZeprOz3f6jjSvK7P04Iy5ehZZ2dFM+66lmgmQ1e+\nXnuHeozJp/DBRsYtATBQmQ4BygHQlWANs2BPNnOhgkz+e3kms8XiptQUS3O47qFA9l76pB5RWKvW\nCnisTHA1JdVMAKdhI/BT9azE+Otbaw0en5jwVb4n/4V31N/GigHAVGlqiusnunZ4/t4MZJS1jMeS\niMEt9QcAACAASURBVOngNS2pL8nzS7e5zFvRDHyd9oxc53eUCQVJzt/QeiGwOpKR9hlMeENBAkFB\n530i8Ex+E1wLMc2qAbwEj1AtEcxmoI6sGMhLqmMGtcmoiVbWkLpY/o2WbUyeO4O1pMzq91uqkTwW\nPMKaWfpCmjmxRQK/K5j0cIDA263kSrBrpdlD9Z53S1ahEKGCco1jS6jITQjFDmnCz/fWdY5qwWvj\ntzJyCKLbPbuW7e3fRFQDbSM4c7/X/igWhhDzCHg4yR9hvC78Fp6VJ1/7YtYu/T6SMEgsU0uwLgE9\nI/BAuDGszy5q35H34tyX749pl0sQS9EWInItEeT+I8vwXK89cNk/rn8wv7GG/uD30TzUFVDxohG6\nQATakP7G3sxTCRFNJtb0lBR4ieiHpWx/ATC/yQpc0hSNaBXM1+tUnjEMo1l4dNtTyhY8gJ3HYzoK\ncFJ4Gb0YVg0nM2d9SwTUoErks5irNTYPSe3sDNs9cF1urLUcaAvZI34PvoqMjyyzjCFoN1sEeICE\n0cgKs0ndRs0ILSkXtPwLvB/XY0EmEWyNNyQwDcfsDItMFwoMamkrgBhS81IEGbSoKNhC3dxQ2xmB\nB4qpgm+IFJtYS9JPy2Bx+q4krIE0k4EbvKIyOPVFFMKlxgwzoyzQ94ZJTJmorDOaeSa4V7pERIwI\npvSTzEwBoGCtKvVsR+czldgpICuUuB4E763myHZHBNbKvkLAk4mBMA5FX7RF74vVZMK6VK9zEdad\nwaSGA7lQyijIwNWMETxntvoXCxJwW5C3lhpjtNZC6wicNDXIaRJWCVV4X99PV1StGPrz17NMsNYE\n/kzW85fr0W1jwkjuJDS0Sxl/eh4bYDnZ/Qi3VBN4LlnBFfdFzE4iBbXy7UJTGwDAliQsDQEUA7AR\nwYy1Tih++43ufvq9+N6knvVcBcpeBelbkedRwlbEr3DbDP9i9yWM5YR7awVNHCFeAISS7mXKJDH/\nq5BGZF1RJSXoN3aTrcNd709yDuI8TdDncq1ESzV0kUFtRVrI2d/VLe4Rv13Zu3BPM/OqzkVjYYbj\noby+DRJr+GYAinx3hu37bOCBcQcRzyAAEMVGkPN2gdgHC1oiCMawrPWBOwPyBponQFBn0edLX21j\nKknXGL1GV4ulpI4XERHlKybCRheIsFGCo7f42kBI8Ez5nYXJk372tuBiXBkL9B9GBJ9JMu33ohXU\nzK3VANfFChkRpb0QLyIXHgQLIvCgMqGZ3oPMCpF/ndS8s3CNWvGIlmw3rVrfeqwRkesRNaWR5Yhc\nuIswxYw1fCdkyd5SZbBtX2zvZ+zyxbtFQiOcZ8Y5UTJ9XBht8BmWfVU26uyPc9OuJZexxKmgcLPy\n+JOoWG6T0cqnZBi3iKrgcu695tmTNlRcb1DZhRkQJAhj5k95BseLLA/m6UboH31zrKmYonGxqOf1\nvRHT6xECA0gyTkSXyYS+Sikbv1SmMsYw1a2IiRBZNy1wlCVX8DKpetAaaKFqTWUtEfR89UxZse89\n0IV/I4BR2iqCsxLJvs7bdQrp0HyCduRc1wNMzSvviQjXO3N9O46wgZ6w4wKC5Ain5ViB+LfFf5+m\nIgNMzi14AOfflvKSZV80lg92H7YCF7wHgqpi/Elgay0P6hePxtkEuB6+b2vjWy0gyXckqoEVQfJM\ni3RDUs0O9/navprW0lgTIIAk5hkHMy1jl+vnZ3U1myUR8DiFV9ATKrass4TfS/ItrPRCYMoAVCmJ\nMcRtgL0ZFBtJ1Zll8y2P7bS7uJNknEe6zNrP8RzGNVm5TYBgjNlCvFSZdczUPlVHInPeWux2+p4c\nHjuwRKjyhnQRJXXEPabuizwukwVrz2FtLvpG6AIRNjLacDGxjFBqJp1m5t8Woh9mmPBlodGLsVwo\nyh5YApfRVu56xDh0SbYtYKINc704J2FzTsB8qHeH9zAa6LJxpHDjwUWxvoLtc9wuIyb+LgSKLuBQ\n6hMgBS7MgmH0rq/t3+rG71KCF+bSNo+RkuUZRVyqJp/oExeN1WIOvmR6f9dt4H5kBshznfkC72VM\nSh3GGLW6FTXXQf4kwIM8IJujFmGL2yE+PprcFQq0k9IHO9Jg4r29+2TjChgjBptJxwhz0TUPDACb\nVktwbiODgppGNa/ge9mya3skkyLfB6W3ltkjX6kp4px7IgYfjjlD/0oNrWvjIBm7On/L2Aeh6n7H\nNaCOexRGQrACzhNZAQLBhBbhOuhpAtH1xVhemXmcyjzqgQlMsgyMo4BkBCfxgXvz1wMMevV4993J\nzk+i+r5ZredpK4/bqMc7BjeV4HOpO2DedaBSPR/fwBKBzdi9vaZqjX1tvIv4mf3cF2hwH8ZiZFvs\nflwzv8h9VTXJlC6f97+tt05hDCdzs/O+kYWckZe33zKQpAUP9G+md/E3l9cDEzzCdY7HaPH/F2Xi\n2C9lgBAsv4F5V9aCg3ZFKpVS8PEia7hFCNsVDPHfE4ewjK8RfWp8z3cx/iqP4JcvAQm2W63pXG+q\nXI6FIPc+A+gHY7eOpWzcB0t8EgxqmepvDqiZAGyM3kcqZqJxjecLP0h13SxjKvhuFwnK1EbUvyG6\nQATSwjgyXIrp3O4xWjxGR8VGVSM6I5gAi4pYjK2/ni+USGaRTc+5SWEQPhKLGCL6uAnD4pGSiIkA\ngm3EbNyFJrNci9DYcr2+p7lGpJ5BWrIQVPAa/JaLLy6q2Mde2yItVAUNmAmoi3OGb5jhe2EkZuVf\nDsyYYUZL6ik+LmpTl9fQ5JRrVX0OgkWUfz7JiRMQMhtqMxaWE+s95SsQkbZIWOADFUEm0MoslMJA\nb+ZesYnGUd31vSiccJ1rE7m/tuOi+08/tL3rXfeT0W6I2xE8Qo1FLdoKCZHg4Gk7DEPHZVBwPjnX\ngAHGOXqvy1FtIwhxpd+MtUQsQ0XHCDyR13LW9cu/0ezZAL8wv7eH5CE2+xdjL3IDMXOQvHfU93hj\nCUE5BBMsqMBHYT4cWCcgU3oj+84YR8GkWxVlhgJTwwWiH3i1rot1DUnqWWtNWI/oDlTa5OzR6++6\nH6I1Yn0W10oxF2HemL3bkdRCATDaQ1O8V3rgWL3HB2xwfVJxhbj5IGxHWl5piVCPfXuSaJ2rbYQi\nxbGsXXwPgAm1jPpeUTrIVnYGFEqNCyCAhDnnEDyPBHS9NgP/5anQ5VHe29lLdbv9tmF1N6fPsQwL\naOs+Iqrfx7w7QT0kxxu4MwCYIF0gMK5AFIdAAbwAWEdKt/oNMjG2WK9pHt7Gu0rOmqHnEfaJdF9D\nUNjwiMF6cdFFRBeIUAgF9yTOmwwHwFAWZkkcvUBl6shRW4XFgl3DdZvuYhHksopQv50L3RnKbi1S\nPIYc9/Z+wkWhmj/pWyPt55pmEOom3f4SXBIWeyXcBxsD0l2UixQh4asPHtddF1V5j7cRIfBQ2sDn\ntZXltplA+7fjl/pZDJkNNQAPbEwEu/kStNloEOB5WS9ThnqScGfgLA0YYNEg4oJRhTTSRXtT3p8Z\n/Yb5JmrBW9rdqLzK0NrBFZlURwGt1mf2E7bAaCFE+XW6aoYEs5/Itt3AP7qcd6xdbHYOXS+SnLcI\nfvCLGYEz6bGh36tPpr/KkddFYLyWu0mvxXTnrCSLdndYA7Tp8dxtR4rN7aMxJK9hPWiFJv2L6ztr\ngMOYEcux1JcFFMn2eN/QO3+ElqQ1r0TxvJ1xn/DKqkH+sHy9t8q9vPRxKYOvcT3699siLBWTttai\ncm9S5znV2ptcZ62d8vZ7u+HtVq/DREItqHVVyGK9bo93+SyCixgIuEW4tiBYp/z2QyGX333TLr/V\nMhFgRWG47n/e2r+S54Igz+N+NktW2bKVJ14d2xGuQwbIqfcbnmbRFbhgAo8dE78KxhA/SraeOkf4\nu/ggSRIwqgGWgzKzY46PhAqVdczynPc7UsZC8Noj22/r4+vCnQbdmDnWxJs+v1W6Hm4wRsv6oW5T\nPJWxvJvYS3t0xUSQlK+YCBtdIMJGuEgVwTbJDZWZNEyPphnwt1QD2uGktptXfRYZXmRuauC2uvBA\n9kfHAoFUGav2GDfjRf0ufu6izRWV998D++Kek70WPItWDUm0GwMdhothgoVYPOPcWuvBja4w3nrz\nkIxRpCUscRzA1D3lZIRq4wKBbSf5meBbwjiszDSDWjX9UPEt1MUb0ExaPpjgkuW7AFMtAisuhXfF\nuWK/bcQQYHA3iZBb02VS9zBJJgrTbNXz+rcSKALBpCfI4N/re/Cz+qgL0DfnrL+LMU+UjHGpV4MH\nCbQeUjgqwg1kJkhfcF3yx6R6BjTp2E55xHXKKxdTgkXkMca9Z+S4XKCfyj2sPSyxXGo/miCMIOzg\nu9zJjiXjZgDfUbpkmfLwm5dj1UIZU3otWyk3uTLnAosEpBE53Wpu65wxYwnmrwcGmrUymLdq/KF7\nBHy3jGUlGzcB4wGgJZHMSOBF21/vgT2OclmvDbDP9fC+UeIcUXk2zs6w+OdTnRxokdCyhsT36JG3\nT0XgS10PRWC7QFgzZSopmFXAMKNgMZDz28zf4H0SHGWx/K1xPs+ABziGV/5Sv3vZB0v5FtxCsDwF\n+4XHU5mgx4H9vwzOadPfUvDbvjOOA2r8Nnvm4Dj06g6D7lKq/cXa980CgWNzyFgIa9k1xaOdanof\nlADcLWFfw+8yVmu7a4BI/14m2Y4ah0TzDzaAqH5W8unoTnpZIFw0QheIQNTnQIPbjLmvWFhxobbI\nqmXLsBwJZBCRNdcibdLktck1m4oQfWhkq414Dwo02g3EZ0EjIcXbOEbcGcI2bsfsXI+EehQSkOFX\nfwcbn6wPe6AnYErwqi78/ljaQyMIdbShez60TGEUZ1FG/ZbbmIW4AB6YEAkHJvp6lvcwY6WZW2Ot\nAPm45d9hhHh3jGrGAxmrkjlLjtXt7xrEy/+4rjtDMB4QyPHcGUz5jqYumo9RG72zJjUsVO9h+UbJ\nasYFlx2PXyvYBDc2yHsmmhPSl1peXwtaD9W0efvdqNvw9fhbHK2QthIKN5I5LGsKtwXmCpJcH/F7\nWMsEzZSqaPJcHsxfe712Pro8lHrI1t+KkxBex++De2lpR12Xoj0ZGXDXVBvmZRUaK+Agr7vU27uX\nRBjbyAqCzvoQHDFdHzZD3mua6DyH1l8RUF3Wq0Thu0YbYkrZWF2YQHfbeS9zQASAGuBaNKPGeuS9\nYP0duv4487e2X5cv54oN7ojP9Bc8s755Yyr595rYEk4xGKemvEewhqbGeyDQJTM7DcUykm1XY1a7\nM1Q3T7sGROBBBNzIPjFz0Fh/iHvv+hpmTsK03QhkS4qWCfkE8lsZlS479s5vgi5LBCK6QIRCEcPs\nI+18TW/6cmGNNtBQCG8w7RFDeUtS67OWU10DHGYWTyze9j5GxrfQ+Y3AQvSsEaBJBmXEev323MW1\naG+UqZj4PLoCcFBEs+GJzRTz1jOTIdIrb1QFKBSASltgTKHZcotwHBZBQL3XVmCU/51qfaPof9m8\nlhxKcdY0mJ9NYSuwb+R5qwXaBIiGiXPV4gKDbRgwn8Hz6tljQm3KFNW3TFZlfW455R5fy+GVgVrI\nVtmecpOIDBCgmKXADBrHaDmf7bqGa2eC81LzEwG5hM+K72dSnPG9xfSUzHkEFbH88j7O+Ii+qQGF\nRV/ge2H5UtiKgsJW+ct+a2PhAGCCSZcm5kgEiNr1tT5jrTL8eVXKdPovAgFl/b356q0bPbcpI8wl\nKRzqe42pcXmmWiIYMAHqsy512ZqaP4BmuAG51xp3ujIetSBW9o0kr+l7W4KYbcR29f29FjxJZ3Zn\nSskEyo0sezxFRryWeGN2ok3lb1u3W1gNgDJYiyjK6c+oj3Fc7CWc4waAgDWVyAENDCCA10V9Qf3G\nSkxYsGEgxRnqDWuB9cR7ZynLblAeMCPPX3RRiy4QgUiB3DZYWcwQRxq/RVgiYFoWG6SxHtHnHQMW\nLdkyFzVgT30XvEf+tj/ky+sVyLMqMCilLsloV7xq6rMtYWc9vmd7TT0j7sd3j+qPBI5WW6Uwwu+c\nQTAqFqfbdc+HMWpjWcgb7S2bE2rHC1BQr0fa6fcCkqAgZTvDmwvqesoiwFcgmBWGstaDQlSGb42b\nWhbvOyrEC35uikIgY0DQiMeMPkoy87Yz3uW9SBGwt6j+098pI+Mw6yx/kFaBYmsLvNkI8/RI8syh\nPYZUtcUForiQ9XB27IB4fwoEs2TjjyCNZNzw2kIUgIAwrntg4EjbZuKfjKwb0mdalmGtTuJ3jSwB\npXsQ5n3nIoo70lDeSVCdRw0QL2C0yY6VDga37c2xRQBsPWvBdjn6OHQzU2TSSHZNRAuEUgQULdPm\nYWDFI/PY7hExnxTN0dbeFvnwT62VjY/RtI4JijGxjoK2KeuPzieeqd9TREnXBnlM8JvEfSZLC+mj\nqZ/EeEPXkSgeRXRO1gvyhnRpw3UnIjneryQDOygTpcsSgYguEMGQJ7j1ggwh7eVte5o4g+jLNhUB\nDJjd8uw8EoqAgSzHtL2xaEXWF837QSB/Fs1svlUY1ky7p1mNGALcaIc0MPzsAOONsk0EGiQS46tT\n7Mg8aOXnNoJYAT98UgwdCCNh+jeyJscReabc4Ts2o2zD9y9Cg26zJF6AmSlE33dThqzTMUde6znO\nFWgT57YA3SIrNDJj3hJSkfHfyuDfI/VG53uDYZIi4Mh1hUAhBMqQ1lQR6Ii/Zf3GigEFXKrjHC0Q\nIr9utOZZKIdpIZEkCGisFcy40IXpFK1B+YFFkawnKteLlo9rCfanjO8SZeip1on8m8uoWSCMO4O4\nR5chhPzeuPWsCoOJOrI+hNgE6WOLIiuhJdU4E5yK2MRRwLZKFMY00m+N5HVCvgWfEQBcgnEegQk8\nhjPZ+cnkKVX4PnwGLXoSjFkiu/+U9mNfy7pwXBXteCC5N8gIsgKcqes3COb4+eC+xTsXrK+4JxDZ\n9dS0uby/TJ9d616f1Xs4j1OpJPBiAcnfUtiPxl1ZW4zVWw3MXdoNcz/BUba/Km10/+H8lYob7K/6\nBer6fdFFEV0gwkY4Meti5UUs1gi+t3jYjAP+olvrr5FcMYVLicpaFgbBzIiFcX3Gb6tscy89FPpi\neRSmqimLlc3RzGTy2gfAh37GvyY3XqlFGCGpsecWmtgIWL9TNDLtxoqCstlIK6Og65FB1/BaZPmC\nbg3SEqa+q6YRsKLHU6SlFmz9b+HexrdFEzvLgNk2oTDCJIWSGe2maocqb34DRWYDz0tCS5uurJDi\nudCbZ/qcfsZnBs+jFpgQjY3u+CM55mMmfT0KUKQzRgmEvZWBbH+YM/tKlofj3bNKMsl2+Fpjzpn6\nYPydqWNJlKhmdtnKD8CEGbJrZg04F1kK2DLsOmG0kNC/t1THXWQ940VHNxHtA3cGrLd/Ul63FgrV\n/7ozhneCj9bqAgQYrIcS1TkWtYXLBkG38VAJAjildud6ph85jcx+ccRXLiDlIor7Ai42ygx3O7UD\nfI26NIrvktLcmjVaf13H67is1r3bmAELBM8KKbJAiICbRGLO3/QR+aVCCxVEN+KxkTwLji7/euEC\nByk/ZJ5+RrpAhI0wDUzLEsFaz2nhf4aGghfiM6VeEbwKGBIjmMt6AuQ52nw9IaSniRhhvFsoc90A\n2s/I8wgeRPe6giwg4C1C649SBve1UJ7gM10e0Gub0TTjM+v1d6ftNnhXUG+SMTn8fpTjjoiGrFo8\nzVWPafbMH9G1IRISJB9WTJp747AhOIV+2CeJjdGmjpqDdhnt8eGWazIRbOefzEx71jRWC+oz15J5\n6pfB5/M0Qyw1QVE2BqxXachwPNfCzO9HWF7tUDTa99qO95RIxkeQxD89EBC1WjOWCVGGBdM2svPV\ngDCwJrTdG3T5NSBcDoUdYz0ogF2M1G7M5Y2ZMu+1NrtFbVxjxAx+cOXuBNcwOF457/FHgfa4PlPL\nsubk/SbvAQdmSe510X5U7t2Od7+LVHlMUQDn1jNoCaH2Nuh7JNciit9xl39+IMg65Uf1mjKdWA+R\n5VWLUInEv72UiCVt+sZX1HSqGkSo2ati1ZQBduVe4/HfbiH1Twy6aIFJB6BEK5MOSFfqIrtux240\nT2YOLvoUdIEIxBvhSlPBhUB4k2ntSrpHyA/bSo2IbTAGA6iNStlsHjOLVT0H2gsHJY0AAcP4bO+b\n73bBibWgunr5d0+090yuZniNuFzdVhlRONrYlqxbKwWzeiUAq5CJTjEzUdoY/PYAnCgmQpNpiy9t\n9WQzVko+aRNzwb5DjS2x0kiqrFETu5TO0W6a6yCU4PlWmaVtrXKDMqpQUoW4ULOJOalbbWsI1AZY\njdom6okAJyZcFmQAzNyZ7YZJE+VjWtzyDuVoxyOCCeW3s3YhRWa3CeaXvGbSAQ6MTwxSaPxykyPk\n8pEFaUdbzs8gw4jr0IxytCFLiXva83ekvrMVtggsVAEZ1nFRvx2zUCbu3WT3fgQQo1RuYy+BH98u\ntDZzDoAa8vGgeAPgOPtUgqOnFfW00OsR90UPkQ/iQTgLXQSweu+Obca5HK7RYq7g/oCjw1uL0aT+\nHe715iiCbaY/nXpD3rYIrUkd82JTPMo2RPXgd0feB+eTWsuia0GZ0k0E52LtC/39Vkui9QeDBzWl\n8nqUbgz8LKZ67c3TJRGZgIr8myUvL/6B8Zvh+ix4gO2IlgHcjyUwj+t2BJfsscr8qumKiUBEF4gQ\nkpuaSWgGiCxT0PLzjWgkloAxZydxvmhUeFHUz5rI3ZJTeCCymJZM6e4DJj2SGy1vxpEP6lBbtiMi\nrvLbetewLfUZ/T41qq1+pgeAvBpFWnEjBO80e/2a6Z7tGJ0BD0pMBDjvmSmOTlsvMCBmcCiBFRd/\nTfNoKF7HCYP+EVp5IilM6T6w99lnWveE9W3HCIBikm7fVjDTwtUI+IfMrvfIZzRvfTQv6wnKRLWv\n3lK8pkfp67w0qyX9IMjJCBJK2qWN3xaVaJxH52dpT9MSCG8ozDcrKFYYMTOP71bW2ZPe+TNTAvCg\ny/w0KAKfRp55FnF1KVkXusglIQJlJEWAm9sGXNcHOmzEci4CZi666NF0gQgbRXK11HYxhZG6wVJA\nl9NfCKxfMiCRTv2YKlC2+yOolZ0hfuZRrTmPWt8P0yiiRmGG9uA6CerXbVuP1YxSa5c9De7MRoTZ\nGSL6DN/4IwnZ4BHwDLV1h8aOd63zbHGl8q49UND7qLXNoxGBtmrN9DMFMKL6G/uyBzwksgxkRCNz\n8FI2OYz+dqzxhuo6yno8XF9xD1da1gn3I+/+UqA8fiDtceM0ZQSvUd595D0b95wBlERgoLQYmI1r\n8BFfb+p7Lc2fQwoifMeIl0pERqg39zT6FzXoaIFQlXCpgFZFeQTuC2iNJC05IqDXAr8izll3cQ7+\nPkg4Zi86iTJdlggbXSDCBHV9/IU/0qj2fUTYbgqJXA7fu2dD37HC7NFGjz7jMczIiFdtfy7nb8Hm\njsXJ8g+kRH452pOeDwODSYp8npm8jXHPuDiyFOPQPes79nVcfTpji8kwPkcscqzpaf2NptQfJTTK\neu/lqF8u6r9Wv/ZcIl6dRr/HnnXeW/fO/P7PGkofPXa9vb23hSaykdqLi1kxST/wQq7mQqNLsTXN\nPovBD6NeZzf2JXRnmKEjvdMCA1E4jeJQnE0pAmieJHGeXUt2FCIRoauI6QKw/FL1TGwxZi9GV+EG\nYOApNNdq0WpQjiFfAXnRRY+iC0QIyMutXq6BBrBEanYWld5kdhmS8F59fQUrtKRs2ga/dUEIM2/M\nDKycnikm/p7RghYzzjDOQvxsbOabG/f0yw/9D502RFv8jJl3FLzG26BskDM97vbQiLB9hJeIIo9/\nFkT8M2DMM4xCP8hphmN8L/bNK2ivrWfnSqMRrlv0TPcdK0is1PJ1RsL4J0do5ts+R/T5OJJ9neAY\n7QXyGRMLgcvo+D6nJADbrgAd7O2TZLSt8IKe+brNCMXWbvHImGplKOzGpXTTSc/Uv9HXoHBwyTBO\nyftzvXXIsnY99lLCSm153adiIV4+o8/5N0+5FwwBA53rTr29cSgVMkZZ81nAvW+K8le8EMzRBSJs\nFO3RqSGchmWlln5XU8sSATdqNI9f3Rn0ht1vXKMiPH1yTvUeSXDEBhTTZE3X0pD/mqkzQKRNfc75\nmXqsawqi5n0wJhIazTtQDvkt+57jsLph2ZY89ByWHiHs73Bvz5R7ljCidfvere5D9a3UCnBYvxnf\nrK97AbOQgStMuwmoaMG6RzMk+K3QZH9PGUheQKlH0lFT6E+Cm7l0htZfut1514hekx8zLuLbeWkN\nVC3hWGDWz0iTahMLYdlmx33Z7ml0gvWphIo42KAIOliUAnjLPPCP1R4lXovfweQ8DLh4JPz/AJ0Z\n28S7x4BMO5p69lwZAqYGGyqDJkbAU7kX9qcCGMhqO3zJSBdEyqSUqMbiyHwO+Elnz45dLLh85Fmt\n9ZEOaEa+NWfjWkRRTIoQF3rB9faiz0kXiBCQinjavdeaUY2ay0ntBPpuRenEPHfICiboe13B8wn+\nlDOCy2g6mvXe57Lkj9ac97IMPJN2CWc7VDkokBjNNp93ugb7K2KoPKFnBDzogQYjDNzMGJWMDREN\nbe4jWReG6z9xfL/nahFgvtN2tN8+0e3AHPgMli29t5NjDvsHh4W3dEfxfJ5N0XvKOTM6f4nsfD3D\n4mVkDUCqWRqsdZVNz6iflWACBkiO0r8ZAEK2+QEDfij2zcHnw3I7zxYrDRlU4oyKA2rNr48Guo7W\nH8XkCG/8ADpSc+TO4PHAJbsK8MuRG8PR9IbDMREcBiTKZtYsLrjHW0NHh9WetfOrpUxXTISNLhCB\niOQ0Qm3rHnO3kUnOmouRmAhlExMxF6J7Ym01a0EGKhqgM/wnw5zDEv3ttmM9nr3BP2sfHTH1tLwT\nM6H9l+bx0LONeQVh7KOZtBlq5efupyq0YCM/EUaGb3y/EVN965u51TuQzhBpxEoDfe6RB5PxSGPu\ngwAAIABJREFUD17BHcKjV2rXC0zPp9CePtcgzDhIUZ8fBPzJmWdogbAdjQIg5e48nbISWnaoKwOS\nffSIoKWelUEPND2rHUesiHquh69EGKz1lcjGG4ivjwKi0iqkBBcf5HFuYvxhGldzvt2MTn3ZcV3S\nR/vQRPlc5mzDJukz8WUXPZ8uEGGjCOWTflo2oMnGiG8rBTMwSZiTI/pr0jVKjT0gqZHJuTzPppUZ\nrnnli5eFxsHK5axKowyOTJuGdeO7l/NOfZH5ffTMiEUeLoYjiy+CSUuyrgK9RTZT7LPda6N3D9JM\nXAoDkrX6DX5j01KqBWDAoGgcriZ+fj0Zvrnffq3pjr6FzKVd69mAu4bQgO8cMWUeePAMWlLHyogq\nQLAnDoDnvpXKtammPpyG/HKdc8MpMgNNMdFcOt+Zbpvt4z2Y8KPAkY5cuN3jz185b4nWNuJ8xb7h\n95CgVoK92PhlO2vAqJuTlwVjD/ha+AcG8soe5/MXKeW+6bllOETmnHZ79rgBqueDckbGZkkxG/qz\nS0sEcNko/hl3fZ7q5RFFxTPJ41twXL3Dvaxoqpmv9DwhmrNOq0H9QLEE/GBakhB6T1Aa9X6f/E0k\n0EAE8xbXocAC4SgVl2DsP+PWIEB1yPnaiyGmisWsMNt5tKaSMdQil5taJjfnxRiAj6bLEoGILhCh\nUAsdxamzRxM81RYDOGxHR0tZUdgeAwQcl1sxbMIDQR+rhQNoOkcWPPO7rcH9bHQEwU3q7+dAwXWc\n6e+A8SDcjRY2vOrio5+VFGmjsJ57doSNwGzeI9z8IuFkhE863S+1aDx8QanZ5+Va8KwEBOAcrgfG\nUmHnmLNpDDfmbDuBwnfOVF7SuDoMNCHqltCs/ODSYkAruP4K7klnrp5nAA7a7e54eSOEYMIR8sbS\nXU8fMw5QcFHKCANOwfo0AvoZ0KCvwkww108RDB3QEedaT3iUdIoFQsMp/0gw4m61osY7+9yXmBm6\nRWf1weh6NjTvTnYXGY23VOXpjLL1LjLj0Cj/7Nj0Ujqq40z90A5VPu7RiLxl6lor2NSVls/qKt22\no5eGHO99L3v5x+9tF70eXSBChyQz3dvcpQZhlgmXwfB65nPKzxIDwpw40Y+YAs48a4MOjglPfC/R\nvjgxe3uqtyGfhU8+U/M7o7Etm/KOnV5+zxn+3qabHH8YXQ8e4Ws9Qs+O5zFC7M7A87UcPTeNwkxo\nKikasz1XnilCnW2DARYOzeo2Hf3WUWrEmWwn0fp+z+PMamskFUHGzJntPO03fz5DKH8GPaKdngWC\nyeYTuSp4QdbKMyc0bodWrOXKNLrvnk2n7J3bwM/3Ph/yCm58RyhyF8tw/Vm0AgEIirWPTGvAw/MU\nSaE7qDiXi5VHu21eeSNr9bAV4MHvFMkme9aWy31hhPJr+Tt+IF0gAunlCv2M2hoE+H1CSi2uU5Zb\nfbnAVCnVgIr4bIswhWMEU874WLeu28DS+xe81vv1Ht9neqp/33Mq34FJMufrPdv5rH8fJdRWx5at\ntsKpLAwnDOMZEGkmsOIR6iHpdzpHExal54t+EwmmD84bE+EkGZ1oHo13XOT6cNQSYfh+IrqJv2fo\nI6PL76Fu1olk23dEOThy72wWkpTStIDeDJ74gnwYmjYjoJ0oG5AtWjfae+jYb29c2EaLrAwn0kxp\n3XTW6t61ZORxhoL79t6xYYkQuSEtADSv7/LJEYYOJRzY5Pxu9KW8LK1PkD/ppc32gphbKwK3enVv\nmAEGjikR3cD8kH/foB4+P8ObJmi71xijgHnSUNuzPLziGn3R69AFImy0x9w18mFzMy2MCPcY+yA4\nr+r35X/rD+YxM2gCeQIDImMidIPjNPwVS18OCqMKCBrkMbzb0JcMn2nFRDgzKNWz1u22207/+dDk\nrhWTI6CRzepIdoaRe0azMyAgIbUvGFjx7k9fl9osW/BMb7xPlDVDnhYMASDuzxvtpxmhFccDjuG8\nQ4HQAsTC8Uf9b4n502csEZhSiofVWFDBMaqWJXGhI90aWRCNZFOJqp4JrDiWoSW7zzJJ8L76pvcn\nN6ZiLedn3ApG3RgEE2KUBnwL1DszLZ61P1XXC4qF3fs8gFLWpxcUkI5YYxx6nx6CeTJZd9ZzqJdO\nVvKX98ASwaPpeDUisGJotemViSHKdsQ2uujBlOmKibDRBSIQESUpPGrhR2n+MFgJCErvvCCRdWfA\nyM54XIXT7Vy2bfCOKWVagHkxQZkAyU1alekememQlhf4zrU+frS/wI0GOZL8gjF5C56VfvN9U0xr\nJVFTdXFb+Tr3Y60/egbbdIQ8UCTq4zL+xFPoN1cFFn9DWn9r8ArrN7/FjehvGwXPTOT0MVtudDQK\n6/PrTXsCK5qyigAg2gn37AmsuMdtAbN0JDgvNTMIEJYyIP+7ZHpmgm8eITM/J56NtbnOhzL16vEQ\nBp1M833QYt6iuZ6cv1Ez582ryMoI38s3t9Vj50wZoKx5DUuECDRZhW6+x5+/xhop1zn26MCKEZn9\ntvuEfbb+HtgfwSpI8QyRit4uAtv5xVzrrQGJ4rFezL/FvRHF87iWheVZHgD2Ka2Z2Y6wEw8M+AXG\n3S7rRGhzddkS/RJ8bqwupWQ+7QymFA0H77Xqti2AGfFQMv1b+zyl+3Yc4+F0vZpvbgXWjqx/yvXt\nmMX4iYBjG1+oro+32hlE4jemcvSCqSJFY5dIAHVogdAI/sCKMwWgqfo0b++1TcaZWO+dH+g4Ry+6\nyKMLRAhoD//lBiLcUVBspr7VIxcpofn3qORt/wQrgVwMI01Ba5McReE5jkSmbP27WaBtaBijZ/j8\nO/zOlMo9aC431l743TEtnCFp5YJg2CPkTdnyVh+/KkWmk0uKGY1RQKxVfov2BEgbkMvDZ6LfRNYt\nowBtMCfUM3CtNwc9wjgKrZSmuZS/rQMDaS6j9fVMTeY91/UB14sj64csn4+XDmWlVhYXJAT1icS4\nhmDItaxaD7pDpvpws42LzM5QTqJkAdp4Zc7XLN4lI8QdGOdm3UupFLgrTkwnGE83jR5JgdIHXhcB\nCFQgd713KP7JdowCLB4B+CQodwadkCXUL3c7hkK9AyYg+DvzniGg2wAt8JE9XRG1cQasZgAnN154\nJjvDI+jKzgD0imZMH0AXiLCR0Y4KgX0484FIxYNoYa1Ha2olk4GaqrqJ+fi/ErobAZ3ke7kq7h27\nyCMXq7V8fTwyX6MyWkviGRpbxbQDKNIScphCbeQO8zaj+cHrjXqRGVDDpsMNVSseXRaR6OMpYXH/\nQOhpIVuz4Ixo7y0GsqeldtuEAUkHYiSg6bSxiBLt6a0K6M6Qs51jPaZZWhDF9WCbSbXVq6/cOzBe\nRoS5Z5mSRsPrwZbFw4DNnvH/ijERWqkezb2uRvMTMdQgVGPKuBHXM8wiI4uuzyN/4vMt673rsVqo\nDFBohbH418m+W6hJH6j+m5EZygK7hKxhyN9Sf62Cr6atPAuP4Y+pGULeo/L0SYCxaz1R7INDWSJE\nMFW0QCjWvmgttKQKJARgmLVI9gCbb2WwXvTRdIEIBIsXXNPW//6m+w55fPk5VcdMsDMDPGznwURT\nbfqgKYtMnXWBoL3gFfQtqWdW3y6f0Yi0oCNBGaNUlkkh0klfg7JaG1bPJFjWHbkmoLtGa0t7XP71\nuYJXQEpv8hFo4aHyRgvVIpg4UfBRj/ZGiJc0ExOh52MtAyta8+q2Fkpqkc8k38LUByary9I2r5Zs\n7mHie/L7eKOPZNOIrHeOkjHtdOY4kR6POEZH/Nkxa0UUDPQIee4MoVWaeCbS9J1JI3N0pA/2ZFUp\nzw48Ogpy7ElX1urenrCxUDbuRqVcnM98lPwGCB91gKAFgvi9A3k6JbDsQIT9aI8JrZ08m3d0Z8Dr\nU2OtT2coNDx6drDXshcYPwocQ/dy7Qxrhd5wlPGmZvi8iOrQQb5Z7AEMjgX8/55g39qNEK552hSv\nYrJ93grYGFth+Odn6BWzSn085SsmwkYXiBCQDWo4TmdtCjPa/lMtA2CXvOdUGW3MTMDauxsyfHEn\nzKV/3J4ZfqJPZ6eQw1K4+4pbQ45rmmGqI6uWlmUCmmDixpoKEl/Thb4Dj9GkDkcVAWJre7dz3F8j\n9b0IYdrIEfIYJGt9xMJqSyvIz/pClteiO8y5ERP+HnmuChlAK/7dCkDopYiU5ZtndkxbueZE7gw1\n3WX8rCkXfst88PgUuj15fbLgvTwXoTAuI2WxRnYAtfJt8liQQtkedc8DlVx7vm2LlesFVpT18bXb\nBzHNj7bum6EjMQNm9vdDFjYnMvFWW/31UXd8HfgYLcE2ckkdGWN4CYX/mQVDxkRY6sm1DVD+DMWB\nHC1wbW+ar+/ZdMT686Kvny4QYSOjyZILALgEDAVJKuX55aI2TAZjjILJtEzDmbBlpq0te7MgTZS0\nRGBCrSfSTHrImlbOrd5v6gvu8pw+yggh6m+/4VFOd4+6iD7lcNNCJkkpeMq5viZpuDFckjMeIl94\npBmhxRMKZiiyQIjvnwcTmFq+mdV8mH9n9z71zIPnxJmmnqVM51wLcFD1p/4IfSXzzuJSBON+V1mi\nzGdYIngU9ehQVggD1DTq+fhPR0Ra6MlwLnKjaboIzKyzXiPkcYeq2PMVN2DVQN9b7a1+L9NkqoaT\n6L5l3EoXcUMUB4LBhChTRavtL8hH9Eh+Ey9DTo+6GQOYnM7Zk20pw+/oSGT5cKQKANt2IODasmq4\ngRELGmO4mXMeOVZURfrSnmCWR+5FuiwRHMp0WSJsdIEIQEW44mMLJQVz/JLqUQU+HK/bukfoemqg\n4myeuc8Ew4s24wEa8bsu5yDa9Aw9csFuoeaGqSnPiHu34yOXkCTqdN1XaK5fcWzZ67rutXx7bb2u\ngbBZMuUzYwDfQLZtFEiQ/vkzkdg/irBvPUEZj3uExiNazq6PK8yVGZppFY6bezZeXIV6TGjvHJ7n\n9XU0NZxaLxrj2jw3oaWLqLq/6TIxA4j77ET5EfA5YvY9Yxq+JwjoGYQAnrZO7K+j9lq0d/Ixw5FK\nvcMYgTH1j2ksLWX7+p3m98HVXXEt+AY+6Y2g9aJR+/mXGYrmbfOZ7fhIqzq5H47uAc3vGPl9vvce\n9ItCviUS7vesca04Sn13iXosI2ZRB3Ov5+Ya3YvVpySUbANZGWph2b0HY5nU9liFZ1SNsbiYGNuv\nzEdd9HF0gQgbRevoqrgfmzxHtF0aGNjOdSat9CHD1SA0ffd8C6PfO6jF8I0KwR4D3mM25cYaCb0j\nwQxHqMc01SwNWvBQ93TeJ9NjsxR4YxoDhPYLIRGsawOxFr2JecQ1P8sSwQsAqMofKLfXhjvlaonS\nCCgWUc/0s1VSZNmj2oepYAcjw8+Q7EcUtjlexJljesQSAcljuiM/7KSWSr/lEaggxcwzzP97Gjqv\nTa1qo3SJpYzt2HJniMr/qAB0R4KeSnoEs6xMm4PYCHivSXO4XuRC9LGFSO1pb++65I+4OgRbkL0Q\nx6Kd7rSxvLuTsnIGieL1D4GTVwqWOMp+eZYI5RqfbzwTVhyZg1AdZriPnEmJ9Lhq3juALJrYIlSP\nUTpNLHZEYXRoDO3guR/5DVp0ZWcAeqXF4wPpAhE2QvPDJDbwurCNadaTyM4gz6nyHVSxMK+wMEbu\nDCsTzUj+eo4F5SltJSxkhT95kgkwLvZLSsNotgQIIvCglqF/L8kislX7pOsZoThlYZ42CUuiDeba\njqwMNSaCFnC9aPxmvG9XIsuEkfolA1n6eBANn7FE2EMjjEKPX5UbbO9bq/FnwD6YizCGJdOO6xG6\nFnkWSxEZbShZF6ZS1nYc0bYV89MH8B+S6azn9KDag4tWk9ndTfv01GLiz7BEeASllE4BEiJmue7h\ndY+u+0TwzEB9PYu9RQRW7JLjkliDMd5VPa71YKCMqGmRG1UHoIGnDEEhLky8MFIRnm+Y4bfS/c0S\n7mMLidg28H6Y6rHU75XbAY73WCLI8uq+MfAQdFC0j0iw2wAB8D4R6CT3QznX5LNIsr44NoE9Fn7Z\n7B/6fOE7GwM/GvdEDsBflC0+z60LzOoaZnbzAoTXIs4b5xdd1KILRAC64YLTuNdsTGJFqhuLBQsk\n4WKpy9f1LJAFIlE2z90DJsrVZhizQP3yUiM3mpVhhuyi+PGU4ThCxdR5+y0DKvIR3U5mKIrJgWMz\nS6ExCGiIYExSG5IGFqy28uuUqs5ySznDqLbHEHmM30wgszPIxo0Q12DsvzJFgRRbZN1PWLhiMPO5\n5H154EELyQBZrxpY8SNpNMXjDL1yVxnFxk43zPH6xHFifetS8IH8QMP+Iy1hta7Jmv96xXmA7zEE\n/If8YP0dxcQ6Wzj1lA7q+nYcAbAxm4F0TWX3mXdQLDGZmAg0DyorN4MnBVC8wIJnUSbKV0wEogtE\nKBS6M6TsoKNtDZ0uJ1p8rdaQF50Mix9S1X5oTbzfpownDlGUXu5sQka4p3y451z6IOq3kQW2hf6v\n9dQu7C0hrZ6ZYUDQMqBH0hKmmy5UnL8xc8TnjFVLvwNbWi6k0U15zW6RzbnmM05f9erLOYfvOBQs\nrn+LIRyTUaAxpa05EBvjW6E9vFRrfGBMhF6Py0Bcz+LrTIC7iWf3jN2oDzwgKZq/MZgxD3hIkHOP\ngNfLzvCsQOreGmpSO35iWpJwZesoa2oQwGTfnSWzCWZ+dFyc3c0zAHzurDEj7gweoeIg9ssXHM5g\nR2hL3v2d1wwV4Nw3E3tCKuxqeWhpoc9KkKE3yqw3SO6CB63ro8BDiy2bGcd1b+NBpQHyKybCRR5d\nIALQkdSOpYxkBb6I8R/L9NAnNDts5Uk39KDARBH1ZFHPz5JQoPVMJCOBuVUPm7UxU6Nqc55xLUZ0\nG5Ey7WNqow1gJrglWkBY077YEmGIej6tjXm0J7jP10ByDGPvWXPi7fj5ZYfD1Bomc25HbGn12IE3\n2iQJSn4FMqJLUerSjwqa6BFaIuD+oVyKdnynI+MtP8nEZ0ZDX+9h6WOsUxYS4MH2aG99y/eBiEYD\nH6V3i7zOf0eBFQvvQPW+aE9jcNoDEww2cgB8fIX1Ay0ZZYKN9byv/fcs+o/se9UK2NaDc5oJq+uN\ngYeQMb/w18zTqw3e9crO4NBepv4rpAtEoM2viv+GBe4mtLr7GAf4HbgBLKKeexGYO0AE2dgL1QxL\ngxRJrpqhTZ/2p0zsQ7lkSg+cMLigp2TN5aqYrr9FtBn0rpV6xN9EsTbP83Nj95J35x6vjL2EMSOw\nHYUAKFBlBCaY3rDI4pxHxTJnoWHu/whTsPqAaiGk6wdJySDnPYFlxNKi2c7O9ZHSY4uoWkY0Hko9\nLe3GCYIzaoFa3VZAuY5F0QgZYS7lMFI2go2PspiKyBNG0I8ZtwK1xnTKV0Efse5SLwLLMWqH1lVn\nxERg2gWgivkbzduWRVhvfdhDraw+6EYYmZU3ywdgV2s0DfoLx8Wcr8/06rX8zQLgvXlmx64mTcOZ\n8URLhBv2G8eLWJJ4RxO2vvVzqE0zbxMBYgvZ+RNpyr29ZjjsRRqPiSBN+DHmEQZF9jYf47vv8KBn\nUj/e2PaH2E9GBfwyxhaitxIosv3Me8l6lsM1JfoESxJjcYGbo42LiMLsDI04B6P7+tA6dIEGF03Q\nBSI8iGwaFk2YxmmoLPDJW//W95oF7mGo5flMuQwYVxlf2o4R+LIeV5P3E9uyo98wy4A0fU5w7Qid\nYTcykubyVWiPO8Mr0ogmvQTmguse2PMIGomvMGI8HL1rlEFlho58+xHMq9UHrA/tKYbvuQpEj6Dy\nHk4dRzw1n2uTFtMedwZ1bXCMpNQfE1ZTnEOtex0fefv9OuRlHek+Y373H46AUK8tcWDFR1sJtctf\nxD38znuAqRlruzM8rLFtz/LalmDMLM8pg/pGlsAj6WmH66Pquskj3I4HBopWehhPdMJm7gbnHHw2\njSyApZ4LXFB0v2IiEF0gQiEW6t+2eXIT6LzN46yfrRYE9T4MrNhzX1DPOFkE1rbh+WwWvzdYUYpJ\nV0H0ncqhIszOIK0kzgQlxgCU9TiziBuNZaPsvsmi/n6yvPugGedRgaI77pz6Q4YxsFTRTBO5x6Bx\nAzdpmt0391gifBbqmlM2nsVv3Izubp4d03acTa1vHynEovtWhtUfs1F9z3ILGXlPjwWxQlu0X8Tl\n7vEXfjXyLInsPSs9yxJBaf46mvoWYTYVnHI4n5eUxaa2tI9T7bDn9qzN5e9OWbgvq5Mb3VB50DJh\nwo/8ZLfMPYQWCC2Loj1kDFTg/FrnIGomHkK+cTQ+k34mblOt2ud99xD37S3dt+NSyqz8mP8efFaC\n3ibYYtAFzSb3gj7IYDpcHvJ9LRfRyB3ypeDMi74mukCEjaK0MzcR8JCJN/8c5FhfxDMmAvJ2vN02\nAXBDs5Yf1sUBAysiIi5N+iN3hiYVtCJY0XZw2lH0Xo8WsOPFvkkyxWO5B+qD6+Qs8lGWASxDPoP5\ngbGeGewRtect8rQ3ZtPlwF+Qqgu/4rsYf1FgTR67DJatbjvrOQaibrihY1sbXE+UjshlHLYjj/uz\nUX/jUhR86yMpHr17EV/BDf2WLLiEXXrbTryJMh/BEHhzMmL6Kog2UX4DLOn1P+YEb+GgWObZ1BrH\nj6TIfUuB3Nu1so4WU9z9hBrjs4CJmfk0GjdhJMUjatPulC2TXuZa2p7BMuy9mELXfC+yKVPlfkdE\ndLtV98G1DAEejw7oaqM+PUhb2RkQbNeASq9c+wwTfv9mkxtm97rCbdxPuTXw2tLvs/rNNT8mr+Ee\n1gS8er+hvhm+QrqFGvDALOzHUSXXjWv0WaecaOxIC4/oHtuPdt+Nv8vGn/NYyqmc89Zgv411zpux\nGPXrUutBaoE/j9jvnr3HfSrK9Pk1WCfRBSJs5PkhEpGKOxCmOWxwVqa8xrHWmdw2ISWPAQoCKjYR\n/ZqI1j2tz1nNfETd3PSLfj8ptHQ1tCCoLdm5Ce71zs+CA3tNx/YsN+gj2w2oKNxdQsuXgNlVWUiI\n4FqjkfDx9qQyQjeQs4nlikgYeUWjNCsY1mu1yzvz60lMAIINRA7IB+eb5cB6EC2vcv7Kc0Sy/x4z\nqKZMmmE99wQxpmjOcX3M/OLvETqDKWwJ6oKv79Ir8l8tFxEiX0A6MrzYbaZE4w8s2lQcJSO5nCs+\noBKlJyipZwEwZqoCoX0Yxy/uPQlPqILZsf3eb1xAI5Y+CBRFn7yVuvIVCGOlJPzIBL8HxpaXbroX\nT6M5hjr37rFMtdYZVWHCe/9tO2KAbfksV3nq2tXojNRZZFp7W4/3nrFWe8W1+qLXoQtEoHXhwr3q\nTQhhrnmhfB4WUgUIBAEOvTKrNhzuheBgUvBDQeIOkoPZjImmGQ/patEj1mjeZ9SU/KxYsI0VQbCQ\neZsKPttqyWj57lofAPszNOLrZxkrPR7QnSGJsRSBTGghkET5udwL7QDhbgQwGGE+H22J8AyS79dL\nX9d63mNeiDRgYBgrjN7c+C41ZRo0tpT93M6XmvQ9EfpbZruSHu2mMQcqrHSkRSPz6QyT4EfRjCXC\nsyi0WPP2YdBCF6Fkx/tE/IX83U3x2JL2g2d43UDhcqrtMrgz7kPBM0uK5wDOZ7/S8Z02Uto8mvZk\nHjrXVZSBy+03SZ5gjwQeKCXwdtmGXhvBWnJJli+Jyqo8Xgo3jgXmbU3VbgN4MvEQZlwq9ZBFt16n\nryCIJQ5hma20/A3XsPxW3WfSK+4fH0/5iomw0QUibOQJVet56mr8/PJ0ueV8iU1ggYi6uG8bQAAe\nqMUQQ3zDuEb/yxHmgmChU/EAHrBIeRtGNaVf28Lm3AU5hk3gtpDxLe3xXbck+3h750D49gMR6o2a\nKQ+ICQh+YBMTJVrgY0aAVHWDYU1nLY2vccYPfD+54XGf18jP/obuvgi30Rkz+r2sZta7Rxa9J5CV\n5Ctm3BnQMqWVmmt9thaOGUUik2AFlsE4Nr+xbJLzfxw8YBoV1FXboE27GGSn/PI3mo6SHt/kLF3r\nczG9ggDdq9u7jNraXhkL2X1CXpNH9f2y+Hsnjc7PJUlz/20+GYs5/UzOdW5hlgZ5D5Geszhfj4AV\noZWLc22EekFLDZjQagw2agd5QP8Z8wZ5n6Ws9+v55NSDrogu3xLyK0bKKn9Waw99jMizQLAp7/R1\nvpzJ0WRvR9T4KmG7zYa5oPrw3GudQ7QREeYgk9h6K/CkyqLWX8NmYmBFYNKReC9VQSh4JePetB25\n77fjym/qDQnXNBNTKuVpy8y0dCxdHGoCysBHt6zfPqPy5qKPpwtEAMINMAlfRmlpQFQ3JAysuJBe\nVNcjwW8QBJMMXtgGD+rmLIR7iKdQ36exA+HvxorngR5EY9HcI3P81vsVP1HeLLmfAqBAbqaRIGba\nRTKYpX62xhSw9fQW3baZWXjJluMI+vJ8WAfJvt7GKJqYgjvDTfrAdzZwDyDAVFCflRBb7vlYH6UI\nMEHG683p3j1dHmtbj79navD5TC0gIDKDRcZRrqUIOBgQ2G1n+12966PgaSv7RA880/W1z/sAhL6n\nxRTujaBO+VxBfQ89eEqGQtDxcvc13H1uxJowaHhxIzRxUJwi+rUM3yvH5w3eqfioB3vPXhpOfTdw\nzyPGub8+7S+vrDFYT+ooAyI6MPhjECZSHkiXSuSP5+uv4w3KFOXeQMmCfKC/zo6v48+iiKW/6IH0\nSmZ0H0gXiLCRFWT5/DkDpcYSgHrFeS9fc49sDIT1WP3AAbQYKZwtEQaE1j2MURxFfrtOQniHa8bc\nuxRKRgTpIeApScF4+wM3PAN8iGsFaDi+0XItnhASame4ye/6e0mKwJ7IbJDIZ0D8xgfnvyLqWSK0\naOQRbxzL354V1KswCGbuOBRqT5x7Moz9iaVq6hmeC9E65AGjXgaUs0haH/Ta3/PLVuUaoLoeZ3Or\nS4C8Z8QZAWNn0R73l6gtrSwQNjCqBnMfTc8yvVd1AgiH5/mK/MbRmC39BuPvJtztuu31vHiXAAAg\nAElEQVQ5i//qKGiQvP33yDhGZUWvzmZZlIaDK8oxjHyEbUBs0dEjFc8K21CujXdgOKaQp8v2+3At\nxmJTug5v6zkrpxhM4Ge/FAVhbc+u718sj09GxygA/eDci7AKF33FdIEIG/EmiSkepXYtiq7sEQac\nWUAANJYJzu5ifTEJjjbic/HVxMXEhVTHN41+cL/w0ZAiAd0zpUaTZh8hhnL490w04+D8yH56hk+j\nNvPeyjVWEQAilCji9RvxPbkMog1xZ3AJ0PSbdGdw2jLUYHVagxR7BN9XBHrLe5wgVHqC9K1c4++y\nnS/f77FsgXRhided9YgBAldtl2a+mHBOJmecj4ZRkWVFTBOu2bqv9ZrLIBxe13X6g3EmW0d9xu8j\nIiuw4i24/q3gM17T4Ca6bI3QN4APGuqBwQpABkuvMygKWjwkSA+kejR+2ANxAqxb30BTorlf1rJ4\nPwgteZZUX6AUGARWLMfHbCDPtrw5Qh5PxRTG2SgLfP17xs1ztm1ue/l3Z+1aKHZtQPBCjr8KHqxU\nwIPtyHIA/17fM+J1gmPQLnlTwg0xC1SkvkCTLqDgAyjTGsDiogtEYDLa3gIq3A163TPlTykLYT5g\nDABMkCnVKuM7j9yixtSsP57NcYBAz/hzoVZoWTK9DzquoQnb6ve9lVOurWcqyrw9K/mFQFBpaUMr\nvwGaFiyrERNhj7akx4gksptSbyyxMKTiGwRmo8x4cV5u6U7DKH0B0rDtpV4rCfb6YsrK5gWYNZxP\n3JY7CGoeDfmAliMDOPohw08IE/4jZAWK/jPl3U/8Ht4aNzpEtFUQlqtJbvfFPzrgAc6wRLjnucwJ\nPZrp8hF3hh6hT/e3RJEVnHvvCX1dFAh3nPtZ/thuHkXa5r+cDL4XkQedjFpoSFAS5wZaIRWeYOQ1\n+F33pAYKaE/2FTlLZ8ZFr89H9kEDEDhyqPlOEUJZCllKQRP6pmmSICjG+4kUaTNUFSVbOnWy7jT1\n11pBiYUgwkNYq9F2Y1RA8rqB66Or7ePJsJ0q+GB2H1mLz+5xhHpj/TOAZRd9HF0gQkBHTRa76fhO\nIrt5aICjZekwXMcAIHAsQJfVvNT3YiF3/XXX66sKymbiJYAG39Y7L7CMxERAyjGIXSgKOPYskpqK\nMOCht3m9im39C9KubAPGx1+TYt4HNImfifaIAFE6uVbZs5YIyrLnBL1Py+S0Zxq+h86M+r6XXgEQ\nPEojoMIIvcL36FHdA2BumPt2lO08x6DV1Jr5wEEleYPRDByJxLfd0SSUM5PUTpP/uqdsvycPyFdn\nCVLKNWgr4CmovPJW3hd/vYsueipdIAKta2i1PNAL9qq499FRAoZfRsnHoIthgEVhwthK8UTkoI3J\n3kP3ldVBP8/CGC+pIveBRUI1cxP4bPAeuOlLECMKpGiiUDPqK0yPuWWssXiHNb2Yf5dNO5fo7iiI\n8T24ryfVJg1WmMDFjlndaEyEmT1amoNbJqaj6TmA0uugRtAXOEzcQF+ssYA54cReiLQmI0kgGP3P\npMcOk2KwmFGYseiB3zymMIicSWc20fnluyY5F/x2cP/J7CSjTFry5m8HTFR+o+a76yNqq71mRW4M\nco6Ouj7UKNj8O5s2edksVNkttzFY01oanx61XBVa94xck9cXyqHm3IIVdX0dBWzQl/tdXfPnxohM\nh+5U+ExKMvuCP49NLA2ayKoi2orZA/bQGfJsHIS5aiPN3l208PBb3NNT0Ks5P9jWVl+h1hj38pSs\nJQIuq+VZOaHxnbExcJzZD+V80i2K7x0a58He1rOS7JYbKB0iU3rZfbflrm4ybg2lf+9GSYAuNxj0\n2TFONF2JPJU8b9yA4ZkR4ltR2a/2hFIPry1Mmh+se4397iOA9TCpjvMLNvz0nnoaVaN7Yqc53zjl\nl0fEU0r/BRH9ASL6ARH9MyL6IznnX96u/TQR/TFat/Sfyjn/vb31XCACUN3w7uV4RNMXBSfEVHhS\n22U1YevRLNgkcjQD9bTK+ub2cjTz/q1sDaMmwVorzm3YfheG0fYRuySgAIF9cAeAR97bI73x6fcZ\nYUBmyGZl2H6zBjXr+zhdkQSkCsNgS9/KsEJjK+iioh2v6fXziPYpWq9b6/gMePBRFFnLYArT8u1z\nCsc1Uhbm0dWEf+yj3XPalxavJ/w23Bdmq3MZ1kY9EfH4w3E4oxXFW2fcGTwrJ+/aLGEslVeiGYur\n0Xn8KA9VLyvNGX0aBr1d6posf++lI667h4CV4PzNARH43i8dAa1JMEkencVjxCIxakNZc3bWPTp/\nJB91hhvcmdSy6poJfBmWYX7XMitMwrwO0/rXm+g3PqbCK60nMT23BYltiscTPW5UPT3Af2Y6IUjy\n4rLyRTH9AyL66Zzzl5TSnyWinyaiP5lS+jEi+kki+m1E9BuJ6OdTSr8157wnc+oFIjBFafTkgoOb\nupdneX3WWhUUxuC2+WXdsjpKq4Lapu0YRo+26ScJhEYWItMMpOsg+cOpkhrxIkIzeaO5qOZmBVUm\nvWKjlcFCNQgOv+oN7onqI6o+cDaycLyZ8dvMMDzRYo894wHT0fhDLfOSRR5kBkyw7Y5lCVpbRFqN\n5gtN3NbLjHGU9lginElhLA7JmASbPVog1EBPTjDVobboMVLOF20Urj3ZtKmmD9vGH9ThjdkKguhj\nuY/qu95hrI5o6UyKRzO/+n11hjWvZSDttWju8zvcnGdGqAKtGvwz8zjoI4+ie1awdv37aw8rFfaB\ns54goz3CeOMe6VkgyN97KQ6oaH/XMaQpdrOx6wSSZyiAPunvpOf+LkKteWOcR9rw8qxz730TIlH4\nbYEJM3vbnLZ9A4VD3lDfp74TH3sSupzgg8H9UgMaGAnKaPcc/zhDmP78lnKZn5V/1B8qSpW5m87M\nytAYTK+UdvKrpxdHV3LOf1/8/AUi+oPb3z9BRN/LOf9rIvqllNIvEtHvIKJ/uKeeC0QAQsFdCuoR\nmcBI2YIRlYknfRSCIZpyRaDClHl82TCcgjopfWobbXnRb78N7Y0O3/ttIXrPmrHmAIC8r2EWjfec\nyjlu0g3KZWqZGqNQ5wnSxlIE3Voa5eMzrW1RbsxEEnDiMbNeR4uEnKorCTJrWDa39S3dadk+OCPu\n0XuNDL8opWnzmcBHRvanSdEG5TeDTwGo4JlD99pmApeK8RGZRUfm5bJOOz64XqjPbdt2ROumINq7\nPBcLMn2m1luPQkECTVdFGQicoGsI34swubJYAsHZrlPjYILnzoCuV61vWp4JegMFmBmNj2emnOAa\nApMeAx65o+2hPWlQZ2LAjIKB0p0hatuIqW4I/rXqhm84JRDyXGytrAYJargx8H07gitidRGYoEEy\nUJhgHztHq9PQo9UE2JPvg8e7/upSOB4FFT3gcsTSYJSK5tvhn0wfY5vwenLcfzprzS7LjmXpPmj7\n17nW2bPL/XRO0OBaP/Bpjb5ggKju4Xo8uvvukbYNKPV4HPfiq7XaYZVifbrcF16Kfm1K6R+L3z+b\nc/7ZHeX8USL6G9vfP0IrqMD0/e3cLrpABCC7IT4HbZILRRRLYLYcl3auEM8IBiU1aZEWDQwSFBPy\nDm4KfA0FaU+DhmABlr9L+7vbUFtrDmzgSf4LGK+BNi4gPCoT3QkB6TPSIy0S7lTTRY1qJWX34jfG\nvm+BTsU0FnJzsuuCZxUUuR15cuDoOJCMbGTBs8MgaopQoD4yhGVfcH/t0ThH88lan8y30SNMD2kY\n4hbw8ZXN+R6NBKkb6ZOZcZFhD2u5AB6iu28rUlybsv5N1AZKZikS4mRMBBybEdjTpAmw5IwUuSMK\nAFPvdmzFWwmfwfPO2MoDbSproolAHQBRE6RcQwcE8NHyogCfM1TGIfM8lK07DYONd12bBypxiyLA\n8OxAx7FLDAOxLX7hPPoM7qFPo0zh+noy/R85538/uphS+nki+vXOpT+Vc/672z1/ilZD7f+KH3Pu\n3/1xLxBho8jkU8cqqOe2v4Kycg3wVNwYtCUC24RWtHEcNZdtNlYLaBLsaSNx0wh/6zL2UmFSehYJ\nonkYtBAZbbReoFQ3UhQkDEOy43VcX35sU21KSFE0+TFhpN1/hUFZcjE5zoaR0+Ohpj+SgRV1384x\ndO0X8TQvz6JHujecxXybsctHwcDgnA/Nrp3Aivj7DAHGc2MwbQkE6UR2DoyDFtloEI8AYLuyaUzU\ng3Mf17R73uciFbVlBKToudwwFXbpK+MjPa3uR1O1LBLze3RAqMnYi3XER17vrTVkuXes9mY9EtQv\nVoIw96sZPvJLKWbSiimZbrXnf94Da1+JjuwpZu6T3fPDCkRgRS6opBnsKNda/TnyPqgAsnzfQCFh\n/bVsHl9s/XMv1pdcT1LPpJS6a99Q23ouJFT7ukgZ4Z5qLREeAQJ/VMawi/qUc/49resppT9MRL+f\niH48V1PB7xPRbxa3/SYi+pd723CBCBuhACVzypZ70G94QLi22RkYVFiv34Wgnpb2Aj2CLqKAUerH\nSLztRut6Uw7jQCCyfiSwogzo97a1Ad0auAeqm4NcSDWAchMCsnof2X4AKSK/vcVZsEHx67xPfL1n\nKqkBIj7yt9weagTJ6/nTekE8uwxC48QjAgZ9JpKWCEwolLaElehL4hi6nxwtLNIWShoVsjwwAcGQ\nUk+5LysgUF7r9QmRFID8epC8ODY2oOI4J3Yk+CT2Ee0UaCPB6A5a3TOsMy7ShN+ruiRk8f/tDIwr\nthQqYIETl8Q7v13cjsGIbwAIz04Ji/PrLVV3RCbplvhIQh4kmm9ZXIu/cbuMT0MHJPOmf/527b2z\n4jyadSjroeDx0Y2mzNrtAocWkwDYbC+llIUiDhnL+T5vPWKVU6gsmq7uoh69+MRPKf2HRPQnieh3\n5Zz/X3Hp54jor6eU/hytgRV/lIj+0d56LhAByCChAzERWmSY9DDIUZxpYWS9KcHJovolI4KNCFI+\nukg+MDTIlHsaTgtoZFXWUoCb9fiWKvrJYMHb1gklevNWdgEIsjAyBPCAj57PaWW09TXjQuCcXzCq\n9hGU3NUS6v5BIIo7wcvWwOBUhHNher7bkilx5icELUp7avnNhgtaAJxbfydVnnmmA7Cs5a03RSmu\n7iRjHcB3asRGMNZAzEgGbaxl7qNq1qvLwbErg+WF6wTERCjnh+IBNJjBExkQnEdJ1L0UdyRs2/YM\nNFECbcaCDOopzzRSPNbf4+t9U/N2gvYMqWVA2QOZPdPcXoyRGUqgvZOWJb2I38bywZObUXhz5q/Q\nobpt8+I21LGz/+V7guYMNS3/QsQa4gR4z0R4g9if61o/Jny4+xZa3HD/ssKBvFg92/6Oc8YFUIKY\nCAMTDjMPWXfFqlRA83WmCuTq9UruVzgOo5gIqg2BW2KC+9Y26GewLFO2Ukrk9s21821jA6rv0B/5\noatbkuu3D4CWe7msVPvArDtBG+W+IRq1HkqGL+ZX7Nt46b6HqdvnJDY80sdyGYBzua4PWg148Sp6\nb9NLZX7Ry9FfIKJfQUT/YNvbfiHn/J/lnP9JSulvEtE/pdXN4U/szcxAdIEIhRYQNI3pl6CRoFRn\nxFI4Al5E6SLhpuZ56cM4a/68p+0KuCn7nP4eb9v3KYBD2Z2zKYevVRBhK387yu0uCmZk3CcUQ6wZ\nkpF3QzO9yL8yyTYZd5qt/VCtsj4IAuaV9jjAhBX429SyammN/8+AivcU/nsCqCHpzX+lXgC/o0G+\nMMArpn9LAth7tZRgTDriuN/GPevvnmCDzRSjWR+jtHYzEdxHCC07ImYa/26VNeL9ORNY8bPTHm9Y\nq1Bo79FybTZrbQs0KPe0P+6Mm6Ldv+pe0QuoaMvIppzi/hkJKktqv2uHvrWo9VbojtfKGTKKjKFn\ntjYM7JVLBzzwiNedCJj0ghObcwBgH3IlKfWLFI+tRXiQovm6OMVFloBH+JUrJoKgnF/eEiHn/Fsa\n136GiH7mjHouEAEIzddPK/fA5D0ngvbH1DtCRltIjhC1Xbsbn7mKCldx3Nc2oNXBPdcAjhFZP+b6\nTMsVYS/5FglB25qCOjNn442xZtFtbVR+8UX0CPUEymO+mbKcQIBwxt16f2Wzn+1BEgkJqXGPjVWQ\nzTOj9bWo9kl7TLbcGR613u0ZK2eAVGe042zqLRlNUCb4tiPf7aMADjafv1OK3RluqLk/oa0nfewz\n1hg0a0/kaJoBmJ+r4AC40PkticfmiDvDq6Q/fYU5H5GxImus3cgDHe1f/M7MV0ZGGh6dskbveBj3\n0hF6lfF40ddHF4hAyAQ7GtrAKiHSLNA9iVgBCI9qWysvjSKTYTrYhNtBXu8l4nKxy7IFri8Rc/rk\nnz4aWHGUJIDD/uXVrHs7kbUlgvRtw0Xd8zkm0mDCO3ynCFSQZdYgPBq93rOXRCaT8jMVdL4E6Vy3\nhPv7otvO2mVR2AIMKo/h9+3Z2+b8t9wX312hQZ4lwmigthYN5VgPGI7C6Mm5AUE6URjRUfihvE4b\nR94LWzqzob+CNcAoi97qigRHzwqjAITwLH8Tz6WklsfrdRVUsB4iGnJnmKERdwb8XfoC1qmcad8i\nAoTuIc/2ga/Clv4tCefvWXjkI5hlHH9ZAALvcCztaLwPZsYx+3zL2i+MgbB/4Oi0rv4cDJvjsBPh\nvdvxLVUrQV7f3nHejjQ4SPG4R538aEB2JDtDrx9b8yi04KBaX113tmdQii8LFF94L+fifV0rbFQx\nhWfDZ+J2YnnWtSMo1KFIISh5+iPZOl4JoBlVfnr8EVP05FesKzpGz8nO8PJ0gQgdOssi4VGCOA9j\nDOqGkdvdwHfIkJjc07I8/stnfEaCTGLbTHO2Im8pl8X9ZoT7bO7dSjWMifUrLy0gohUMqEwLvA/u\nq8p8k8EDtHjQwurZe0xs9roeZ5RtQ8EZx4sLd9Q4PeXH0SOyNNxJmOYW7eM4RX6OZhyeHVixAWLu\nKg8CVfUsA5QpZnBry9wfLRuOmG323IRGSLpL95gvF1QIntnz1XFMVSAnVf/hHeWeQVFMk4+g6kOt\nJTwDHog0n3d4Fu+55QznH+sKKB625wYnw0LZrDd7qFdGSpnQEmEobWLX98YyORFf8pndG3aneASe\nsEuukqANMrnxBnYQglmhNeQMz+N88zIOgng8bp1U14HRZ0obgs5hhYyy7hwsWKeH346BW0gL4Ilq\neyWw5KLXowtE2Mj6jD+XjsoGD8s1TXqRiuphM+HbbfxFDNAhTLYxWrMEC+TvamVQLRHwGm4UpYVp\nnDmXJmR3WcAAJapMMy7u6BIhEX1E4xEQQoGy3pfMeOr5jnsbUURzVgUfswOl9Dx3HKLz1otX2bCl\n3/JHU+hSQjHYcmY9RH3BDq/ehVVBFBPBo1Gtjxt48EW+12ejyliPd2DvO1WrwbjMopUernUn7VAl\nRo/gWFbZq4Ld1AQ7JWtJWIF5fuZjhPwZUK1a3GyKFfIyvZzSLEUyLhNTZIkwGt9IEQfKaYybVj89\nEpj0QEe0fEJyYyLAPcgjzlgAYjcdfv8XW8gvS4SAvqEYQC26QAQiIsqhmZkUglAginwczxpbRaMp\nNCBEQouTq1nlfc+my+Y4N7Rj0LTWM1f0DKhRg+lsAm3OhplgJqNCCVr4XXKyWlvUUpY4AdzI+cV6\nLVszQCM0q3E7KpR+FBP2CNqziX3k+l6YStZSwvwdCcYXCZzSHxdNZEuQxBdjQoiEZskRPvbSnjHu\nxUQYod561roauTXMUF37NSm3nYnuQE06E7btUQEVX8ECYZTQ2uA91xj0PXeG2s+puhze9SS4b3Gx\nR9Ikd01oT1r45uKRWCHtaPluHzxRmslk12vUQLvAofN3j3oZFh5FGFR3pNGPVFYRCSNYw4f7v1uz\noRfos0VejgluAn7/BOePUFosfDGSPvsFt/yLvhG6QISNqgU/bIiCUe3FRDiLIu3tHUyu7lQZE5sy\naSVjzqeckceW1TXNJf9iAQk2vuV431gXBaK37e8fFhcFPq+vf6Hq0rHAs29b29wASFnXbRBq4vNy\nHOhzka+zpBlfPqynuipuoAhbItyzOp/fbcXRmK1R1+szo+mB3EY+kDzNS4+ebYlwFkVuNExqHPI5\ntFA5sC49O6Cs19bomSx9BcpfejxLbae8ztRyu0J3BtmOR+TbruDmehzJvJHhSDRu7fO0YGEvTN77\nRe4MI+VEYAzjBK7p+RELBNyzo/hGaQnNc0ya6R2ulp7FwHBshCTXLt7XYR6j6b0KErTUc+qpfkN6\n6W/lOoLxijC1o9Vm1zk8M6dnaa87A9MCfES9ABvJcjfjzbhIOfsVZgTg3HG9lnmf7RT3Grcu5gn1\nt4z2DY96TVLLyAlIcpj6k4TVLSrkTgRrrxSPgiTK+I3TBSIEJDcx4yPbENr65c63JYqwL/0spxBi\nw4joTTmV41w7iSwj3rqn/tYL3pIqEsy3MmjwBfL41uvZBKwqQr1wkyA6trEnyi5K7dGjGHHMaV3P\nb/UuuWhce0yTDH9RGQS9EYXDwLmAguxsoC6PPpslwiNoT/95aWorUw7jYECQGPXxb97jnNubd9tP\nbfWcD/9odurIW2Baxpl1aAho2I7PynjwUanFaiDF7XfRTFdLhLL/wrO4H89kyUFKichIa1GKR7mX\nJ72PG/AA1gcZq6Ba+kHxjnZ3dM7JFMK7gE58gQVGOkicaXHACC5K7Hvy0RlqWSI8kkbcGYZCY+BY\nSpoPpLsEonS5yCtI3g35E1ROREETvfLOpCPgug/cbOU262yfSB5Kgvx3Z956Yzca7xdddDZdIAIQ\nbohrOtDHzUBpUtZ1lxABAZGqlcIDFt9lHDg5i6/EYIV10+KNidT1e05OcDq9yGJWBXmtRzJDx7MB\nyD25mXvkgU6HTBUfrLo8s8/3CCU9gelONrgpRkKeYTpHmKhH+p62mI4inDrXwmBqpvyzLR64k/01\nk6nlzvAomXgmJkLUBFz7qyY8maeOjIueJUKrjz5aMbPnvVuWAnhPdV3w3RWI6pfAmD4eRSkeh8hI\n832YsRlk+QEUrWGHg+9F7/rgF4uUB8qNwTk3StFIOQJWfK0WRSN0JL5GWW/Fucgdcdeyd/KHiXhE\nY6i0wyKW6aPA3Nek/PEb3ovQBSIMUE8wL2nznG3g0QjgMIPqqgADrcaE4/JIVoZu2kkua7ueKdl0\njVwW3FsXyVxSmvG1mpVBazrLszkVU7uIWhvQmf7dewi1/i0Lib5FQl87dIaQ1eorFtRR86fuQYFp\nok2t1I7r9f63jHwzb8Ji6cy95VigQBY80zC4OMNwjfij9vpzZO7E/vsiyvt2rlgfnWzO+WhfYKRI\nmJ+x9jgTTJgBD6zmXl7z569Xfo9pHVmPvHTI3u9W+RUEXDvjS84KUJBHpnd4JmcZM0kz8mhB9ygy\nsVMeTKMWe0QHZapBt8xZioRGGythO8pxDiBTGHAxiRg6EHOhRTiP0J2htRedMc7K3lKyrNS2x1Y4\nuP/Of3QDzOfc5BckRanaW4RrgNcWdHs5nU6cr3sCU150UYsuEKFDKRG9B6bhIxRtHq3l0+aN1tdl\nwMXqzrBdC8pQNLljzwD8e9INmjJIBFaMMhCIe/kvTPfGtAxohY4IGzNrPApX/KyJr5AcFBk1Se94\nfnv/XPmq3nfwzNgjM7mzALFQW83mt1nXL5kDTA3XC8Ck6i3aBUbt1/PcR3tY0Rnz7xHm8EwzTs+d\nYer5PdoKWN/O4H+OmByP0MhatU+bpRn7btDMBqMa/fbolD6f6GucpwnO62t6/jLh2jL2Tcbv9daS\nHt3xKD6ndG2Q94RlHQWhIufwyJ3BudazRFBhB8o+xSDdePv3AHhD3yV69yfla58Klsj9x+MExqqK\ntwKumyNzD+fRiDtDSCcsrDPuDOWZpoLGH0OSP1qPFb3vvYbkm6MYYuGzJADBqSc7tNcHUNDMPPMs\nEUbXxismAtCT1p1Xp5cBEVJK/zkR/ae0ju7/iYj+CBH9BiL6HhH9u0T0PxDRf5Jz/kFK6VcQ0V8l\not9ORP8nEf2hnPP/vJXz00T0x2gVsX4q5/z3jrRrxrd/hMozA+MvYiBZo36nVFDeInjNTHQToOgx\nFG0WJiiPWN8MMwPmyijoZpL9k+HZ9Xgvm038vpEPvxLucWML7pW/DwUGivrvg0wg1KYV+O9Fvqge\nYQAm9x4jqPjCSGljkuCAbkQPTPDL0wzREWuDPY9W/+zHzFUbYCyLa+PlWCFE//byjGMQsgWE77DN\nFM/1MI/5It+Lvz+DxOv5KAaOW16jibNR11OiD1cHxQDf9sfO9kWManQ+JSqWZaNmtAvZbZW/Lboj\nzYAKqHl+z8nES4iBfqe8IB3yFPCO4IEJXrDE106gKvDWoMszwgwGtus/IMGRkYnUfu3IT79V9B4g\n6hHkxURo3SuP7sWB31E8jZG6a7DJdh8/ip3xxhq6H5Xz5Tr/rvPYWlyNj+HUQ8KdmAh4b+WXbT9i\n8QuM5yNxcb5ll5iL+vQSIEJK6UeI6KeI6Mdyzv8qpfQ3iegniej3EdGfzzl/L6X0l2gFB/7idvy/\nc86/JaX0k0T0Z4noD6WUfmx77rcR0W8kop9PKf3WnHPTaj2RNi8bpT3adrREkIERc+CvWxc8zclp\n87k5huuZFLkzhPnfnbgD2DMyGnC9DovuLk2q39ZSL2XXbUW2Kfr9ihSNuWHaPlQGtR1ayDSLONaC\nUymyTtjTxj0zEef4s6Ll7wkEZxiXB7VxpO+rW0O7ETImAo7RetRleHME1x8EQj2esPyG80eZ5yLI\nXpqiUwjHG/cvW7K9kXQV4mdgzMD8zWTTJJfxt1WIsREKyLUjewJUdOz5Brmy6cNqG6Rs+aOIZqy0\njPvCC/BaCFQyoTuDsuaLlokJs6dnu3fZ+vlY2xjtlSNCvknDDPWoa4/87M0+P7+6hdrKG6KPB81e\nkqTW8hunD1/vBb0R0a9MKb0R0a8iov+NiH43Ef3t7fpfIaL/aPv7J7bftF3/8TYEPL4AACAASURB\nVLSqHH6CiL6Xc/7XOedfIqJfJKLfMdMIzuect3/yb/43WoZ69q5BgnyPfRPv27/yLCXFIDIqes+J\n3u/bv7z+k+1+ZEDIM8lDeZn47ZmWlMONn6/t0fybPiZfePGEK7639R57CN+90JIJo+sfJTmu6/j1\n36f01Q7Jekn1vfg7yRRF3zrZ8W7HciYNUKxZWuyaIteCWdqT7nPv2B+dN2fMr5EYLiPxQXptUcHW\n4F5cL+p6X89lSuofllG+eaOe+v3H++2e9T+s79Wpt5bgfGrtEzlnyjmXvuA99sud6Ete/70H/+r1\n9Rner1eeoN2XzCtI3uEQpfQQa4S91Opz5H2OkJuhgPzxweMiEVs4Hbcg/HQ08cK8Ri6U96WG3kmt\ntQybX/kMzTOurgksB+r9say5vHZu97/n+kze/qtrtf5d6m+lE15SzcyALxE9E0zj9b1jvpjIH9cV\n+E6UUnL6Tz9z0UUevYQlQs75f00p/ZdE9C+I6F8R0d8nov+eiH455/xlu+37RPQj298/QkT/y/bs\nl5TS/0NEv2Y7/wuiaPmMopTSHyeiP05E9Ov+jX+rnH94ijBmCBoRmTFoTXm0IK3VMqHcs12rmtSt\njJKwer6pSVlEbloRsGs9stF7WruIorgGI/EOHkVHBJo95sHRpiRjIaxlW63XDEVmh6ZMlxvjNvha\ntVcnL9jien69MBOQrZg/s3XGTZfBTIx8JuvpTJiJhYWR9ZlIC+UAXZ35MRVQkW9N8Nu754HEgOH6\n99gzrewMRwgDfqVkzV0xZoApg/rWBGip4t7T+daeBtXz1SYKQERnTOryP4ZGtrgR4OcG4xojtWdK\nIrCi/rZMGKNICSplb15/l8C4HwT6y7k/YtYvaQ+/hIAa0UlWNMYvUsaByHCr3+667l6KRiIaHgiy\nP2cVAmeN+tHAiu6zwe89Y+BZ87hlaRvFlJghORcucujqGCJ6ERAhpfTv0GpF8O8R0S8T0d8iot/r\n3Arsq7kWnbcnc/5ZIvpZIqIf/Td/Q7nHC5T0CI0+RkpeNQ/+vRjESb5SYVbYZ3vIhi+KrPScGAlM\nZ2i29nwbabK2Zx04Mh6i+AkY3XsouFKKpwNe6wUuGxEi9/i+nkF7fED3ru+hO8NETIQw1scOOstE\nvcfszzA+n1krMWKJMFROav8eoRaTNurGItewkBF26jkGgDKIdbwvz+TDvJgI4b3OOhH1NZoxf8ni\n221HfI0Std4BD+rvwcZKss7p+vfJkzPBGjYDMoy4fyM1x0MUB+JAdgZsCv+W2lfcm8+kZkyVZ62z\nYbDOe/hBUNHV4olm3uOIsiGO57Ipmu51nIwGRGWSGcPQrSWqb21Up+CBIBy92FdsQWPqPok+835/\n0ePpJUAEIvo9RPRLOef/nYgopfR3iOh3EtG/nVJ626wRfhMR/cvt/u8T0W8mou9v7g+/moj+L3Ge\nST6zi1rM9czieCR+QrRA33P1iSvCDU0sjpjaMaDWwrRn0Sqa8wOLU2VmNi0OpXCzT03saYxGTZfl\nb1c42I63gXKZrFZ/PWa4XgLELZnyuw8eYJmH/W07Gx3Wz+Zxn50e5v/f+RxN8MIEtdRzZL3HH0v4\nTBJa/qgN1vfUanP3kAxmRSQA14Fnp8AwY10V3D8xR1pF9awIZP9Fa0oRfhttmDE6C1PPbZSgvtXU\n/DxG9dnB6jzwJ6obQR7+zS4i8tp7sSrge7brpayDCwY2HAZa3vbwJPf0INpoFPT2LAEEAUsbdNI+\n0/3+ygdlfZHyzmzSUfqgvq9d7/yK9qznj/aRP9N9yFOYmD3b4wNh7CyFd9v2FuDDPHqWGxSukdE3\nzTkVs03k79Gy6F1845qK0683O8BhITMXY/CPxy/Wk7DvBbCH/Y+KjK+B53opYt/Di14GRPgXRPQf\npJR+Fa3uDD9ORP+YiP5bIvqDtGZo+MNE9He3+39u+/0Pt+v/Tc45p5R+joj+ekrpz9EaWPFHiegf\n7WnQHpMknuRLjgX/EkRp0b+1b2vwLFyXqWr43J5UWYVOWHG4D1iIPZtmSt1jahk94XUJMoYjtfUs\nEZJzjelMlLkG9Zr/Tk3tSWFU4ZnybKZiHUH6Xub3MvTJCHnZGpCht1YGDLjZio6kKo0EM2MeLXNc\nb0cEl9C0+tF0lvYL3+sMcAGJ42s8k3r1RW4B6p7tiExvpvHvPKJ7rSCMZkrPGktPE/wb89Teq2kE\nUOltd1wrCxi3lMvahOO8pPRrlVf2ai3IIC8wwoPk0Kowmf28rM3lqIUSSaPzao1p0xYkvbWU+RUU\n2rA/j5AUkmMhq/+eGUDNZ8sO3igYBd9G3J/OyOwxYonAd0AiJ3HfsY6dYVvRSqucL+ABAwL1fATs\nRnvaEP/p8dyomMEsrkERI3XiN/AyAl14w0Uz9BIgQs75v0sp/W1a0zh+IaL/kVZXg/+aiL6XUvoz\n27m/vD3yl4nor6WUfpFWC4Sf3Mr5J1tmh3+6lfMnepkZkHASeotj2fxJMwPk3BsyAo7w1vVbds5Z\nDYePsD6bVB7kwD9+jxZ85gnuzyYiXe6dbkqXjqTV8eiR33RX2SoKj/+8F3RptCbJ/sRacX2hWOaI\nDB9W47aVi2BCymH6x5rvm5kLvr7V55SPv6OI/h6FY/akLd60ERmVJJk9/obt+bSHiZsxRMbipQYm\nUuzMtMmATiLWSJRRoaMg3k295eju/I0ZAx5FmO60tAOA0FYzEPTzrFqieYp0L8K4vYbuSDNWFCg0\nekKkOZfie2fJ3SfLAHxMKFrkf6IMLEUIceZgwme231OMGJe/5zUbk34xGvStHgBCFkrqHddrGozD\n4wjonaBPZBt6a4m8HlmDjSw/ZTyd6AojU2PjOBh9VjbB7pk+pZRKenPsfmOt2oqJMDFPZ2LAWGuP\n/X1s+Giy/VZ+M/9C9btE1eMaGWlOehZ73xrlyxKBiF4ERCAiyjn/aSL603D6n5OTXSHn/P8R0X8c\nlPMzRPQze9shtfy1TH/ytITgRwh8wKdsflq6DegC0WzHgxmSZ9JQwDvHf29UKGuVH5Ux0iZkNm8O\no7DLKubA8DszBshIqsCIZPdFWgD7TDbXI0uE2sbs/u3deyaNuMh4vecFazuLjsQMuOd9lgajc3BP\ny4wJ74S7w8xzaUh01mSD78WmsiMUmc57MRFGx7V330yQ0bDcAIDo1a2eKYB56x4ua+a7wBpQXAVX\n4owLsm5+wrg+wHldz7YfFWt8XHtmUOgx18Rn0oyVkLc3G+q9o3N+VLuNwmpr/2yBSqMkLc96AVej\n+uXf0prJo8+QWYWo71pkzuf5RJt3IlqMBQz+XumL+F3mtEUr+nRGEJ0B+iwBrC/6euhlQIRXIQyI\ntEeA8zZCU949m/N4TwECYINlZFXGRGjVTURhOskR2tMHcqEtz3eiUEsAZFy4378Ye9q8Wm78HG44\n2BbPB7SYpW/nbuTTzBZgzFNrlM3wmZapLJ6LAraZG3ZSbx+VYhmab/bMOaWv87AlwoNM4yN3BqJs\nGVLznv43OatNJhr/gHtLSxPTM59FU+47CU3IgXc7I+4J09kMNwqSpYUn8JH3HLf3o8yvn83Gjrge\n7QkGaeIe8P5LuQgXX+Aaj8P6bN3DUUHB457bFK3Nh1M87qBRS57WdQtm1X0Tga2pmAgR3eeZnD3u\nUOiCqOKUGNByu6e3l07Wf8QSwRZ4HvDkCbEtLXhEuGfG9cWWCPUee04CgpL4twQPuB2vqnj2xnAX\n9J74FihjXLTRZ0HmHkwXiLARb+w3dGegvsktTtgl5Q9JOUhUN+5dIEiwmezR3p1n1hsADo6wgtkr\ncmKmRTN28m1mNwZv3bDaTv372UFtUsphv2FQOSaPuUFz1PAGp/xyC2xwyXnso4P+zIAHRkvJYyul\nKdP8uHwNuDF54/RIOtpofkptKAZgC81u1d895mW9HuVqn6EleeOtTz03KjtHaiUL3jNQX0ToRy/n\nbNfflo8eg3xAM/o6euxxGuHlWuBBJJCVZ7fju/NNRjW/hwCyJVurwejINCEYjuzVCY/iGbvfbesG\n9I7cCzIoSMp5rNiz+y+/F/VMarzzGVH/R9wVSgsADD4DPGAasUTwM7LsX632uJVE6bcN73FAYTdj\niYCpdoka/KUB/g8KjA9GIKJ9F91DzHUadzM6M6DuRV8PXSACkFk8cio+l3sotAyAwHaeBhCjlJeN\nSGzAJjXgCaamUVs9OtNNSvZVpOU3QAH5zIj3LFp0rObDgaa38V6oZRohvvMZTPpq1YLn7D3eeUl7\nGCDrKjCv2R6559lagSN9UM5zWbneF6WIk8EX5TNrdHycC69PQ4rEF+FRZgLbnU2jfaCEBBBYItNc\nL8tFlBaS6ch65Qk7R+gRlkKtNlbXqLU/ea9d3Rn0M1/YJYGB67I/ifI648lagmke4RVpRpN/F3s1\nCrkYYPHstaDX9604NTN7D77XEbnr3OwMx8YQW7Iyn4opHst9iocbq7OAThMxC46AMjJd4xco6L3M\ndc0zvuds5nwR0EfG7B5NScm29brz/5ulTK/DsHwwXSBCQGOCs7VAINILaxyx+HMPwF7qwJZQ33v3\nvcHjqpCmBbAzI8LvJdQQRO4MTK+0PjUFCRgIPUsEt/yB7zPqzuBlaeiWPZCloRdY0XtmhsqY7Vgg\njAi2M1ojdIkp589K9zbSBghctquezqMzVhueJQIyulGwyc/O750Jcso5ekYqRwyseAao4JmG2zln\nn6uATPuDu7EQWHFQ3NA0MD7iUlQIte9yDu1I3YyBBmdo9BlpGl4AL742XWuDVJIB3bY91pUjY9dY\nIvD5HYB8qD12xmxEU/OtWLWIxpe0mRPlcHGBJcIZpAIZb8cjqwGOQ6aRuEWH+Es0Fch5eBPZY4l4\nZH+6Aite5NEFInTons8xU0ZqCQO9hV+i3byARYGJXDQYTSMTLGRlM+HTtUElhSMwOp6JMOae30NR\nX6B/8UzgQy8A2S5TuqB8j2YtEXQk5jmNVErZLPhHUhaa8r3tGnYnDBImI3jXqNd6+68m4rqxiWIG\nwYvqjtciIcHrk1FBBft3oZjpK8/A77usO3gPnN/N8oM0Zq1MKa0yZtc9V4s3WcYMjQgtrYjnJpZI\nVE+j601Atu0oS+x9OR1YEdviP+19m+gtCkDVaYe8Z+Tbx0Beuz3rPRrsG8nOYOrnPU+MWbx3JDtD\nnPllO8JvaUGE1h6RJn1EKzsHHiBa6wz0KKXCohcdXqs9oaTsW1jUSfIE9lc4FZv+EyD8ihR5CAim\nlL1bbRdRpgggnEk9jHSGG5d8Jpp7SG6/9j7mspiOWSAt6IySADMWzgjBURNTSopPGHlGWqBG6Tu/\nwG8FfAH/EFESaX0qWA99DtYG+U72uyQowxnDt/I99KOYYQnnc0riHL/fhRWM0Stp+j6QLhAhoKPm\nX6UcEADZLIwXBC93MhNqOzxzR9xMcvLv/Wxk+oLPDzyzGGuITcNjGLv+OoCm4/ecQoawgAot9Ho7\n9iwRZqhsLo4vBm/6QwHzChp/fOzMMMSRwOIxSns0mqNMWpRCjsixSBgorwiWAb8/Ajy8Ao2CCRLU\nnKEoUOkIjTCxj6CZ74YtRFeVPUKEDgrrM8JeDJgevUpMBC8w6ggA2rsXwb+5rA3rcQ8wdih+yZKt\n8BFQZs2xer4K1URCsHY+Npr1L8nuKZKWlM0cHGlq5HIzRQweTARUHP0OEoN5NJ2i0Q7KlBS+uUFS\nCvRmbq0CrA/KpJRPDXLLdDimCBC7MXyBS9WNgX/XY+QieqbbSVoS9ZLSR2lYiR5r4XzFRLjIowtE\nAMII+zknIlgwU7Vt3s6Tvu6snSXneMP6cJTkQnEGGGYYj0bAPMyhfoRwwfOEiTh9otYStDQ9JlL2\nBwIsz2DSU7Jj9CH1LAJB72gsCtpNQiB/MpN2pL4jAsRIuZC0pXRYS8BeGuvNMDnWRlz2EcEHig9/\nE0nBZe5FZPtaPs1EYE0VuZjBmlbW6nepeYM2jDc3HIcjfuBoZu5rNI9/r5mYCI9UxKg94MR69jDC\nnkVCBNjEAe7isZ3BnWGIUPt+Aj1KAFkarxdlcChtUoEVt0CKvRSPok+6QVQbff7KisY9baug9sSG\nWAAoq8Ai6rj9Trew24zTyWRC2Y6tgIo9ay1p9WKAupkXOfDSaHnzGZQVn4rygAbyG6ELRHgytSwR\nhstwIrhjHIAztMl7Arp4i1UUcf6VaI9w6EX7Ha1nxBKha8LOgnpp/Pz32gOsFEuPO1HuSEAZkP1n\nUaIUmkrvKm/CEmFXDKXOs2eY0ro0MfAlEOTRs0ChV4w7gMq8e64m+zPUAxpa2kpcjyJT3aO8D2vz\nWQP9CF5qryVCj45YIkit+ZmvPCW89wTog7QAWIZz3pwX3YlZGVrZGZC67h4npiF0i9+OOg4K/wX3\nIlAk5izGQMDYCN5wG13PJBYzapEnwaxdYzaoAC0RJLh5xvocjQeTbSDHfRG5Tay2EtvaWOrTRwyw\nfs/7eESTWv0Bi2U6CfC/6KI9dIEIAUmGrCfwzZiMR7SXQdoVoT0VdbE+H6V4dAIUdaMdN1LFRUHc\npBnc3uCKMySj9J5BzwImCwD17p8fztkzSNHm6Voi4D1gidCikjd9O8rXQGXWkUBtZwR5O5uQIY1i\nJJxlCZFQKuDzYFVF1GcKHy3UR3zYkoTQA22IBBm1Lg3Ol7RkUQ8IWQPvPtM9PRBphl5pfEe0JxDq\nULkd4OH/Z+99Qr6Lvr2gtc/z/q7hoG5h1s0rmCBNiiAkZyFYkg26k2qqt8CJSpMosyCoCKFB3JFw\nCUMhsmjiHUhhgUOllCIIBAnRm/ZHFCdC9/d+z25wztp77c9aa++1z5/ned73PR94OM/3nP3v7LP/\nrP/7iBuDnKNoho8nOVwRnb9Bz2/d+i392R0oH+sDzUqUXW2nx4QT+S43h/rLFayIduL64Jnli6ye\n8MAT5B5ZBs/EHjkNFRsL/F3kGELmfQLKAsJrTtO0ftqz88obf7zXoJvD0fpcSwS08GilcZDHLkvu\nbeh+hPsUxkqQNXjbYBEWPwIKG9/CBvsOeIQIgCqhrBraEaPeEx7UWAigATG4gQxaYSRIMEsmzVzV\n+Alt/Wbl7Ev4dqWH/jy8M6OJtCuC9zyT6B+wymAzadwoDrfXkWJfidacF7/p9fVdDddkPGW1kY0I\nE6mVHOEIwXWlptOCd2b8StKffRfOgeaKnLl/uk1gEXUGkiBbUrsieUcIymrvEBhGjn6dmUdHhLXM\nWHIbuIQavwbT63GLbi6WJQIyubdGvKcfxzcWXZiKv3TOpY9fcAQrxuORR7iq/Ztpg07QxyF4D+9p\n6sHVrOdSaQkRe2iDE0PTnCJW8vfQS8bqzVYLnxGf0TorirIuzuRBwjeALOhpPFq5HuPa0oovMS7V\n+J7p8yPSl4FipiQLpOlVcbl144MfCo8Q4QRYq8WWCBYNMBM7QEcQthcLudhGS2/a5lkilIriC94Z\nP0pvXd2CF9rPCkPNx2kKgUvZJOBZYWiMs6i9kxtUvYIpqVqmMaNyFDNEQY0yz79z/Z/HUolBNd/W\nGZIMCVQdoOtaX8lvAZ6Grgccy4yecKRaF4znZER4kOA6MyaPCNa8PEfcSj1LBCIxXyYsdxawqPGC\n48sTR9CdAa1NrECvfMvTgvagTXJB+DguIoR0hun9BqFMmyfyyqjoR1lbc49dYA9XC+9yiYRQmY9j\n28Sowlg3yiWnUcxs+Zhpc63deuN+IDFOS3JPrEELJhXVPhnvceFwj/CUrs99oCmWOT7WrbTg1iLj\nWac6FmCLUBJ4lhueZvvIaF1o3vByzXVtxOMnsd9k8EQcoyPV21VxCDy3YismkBXbaLtyOmp+PziO\nfIf28BvEI0RwYAoEgMnnhUj60RHtTBwMMDdoVynbb0uMgGw1mowQnYcESQDD4GQTzGpPEDFzPBkC\npcw997Qr1oO7NH+IBNKkM02X5pxM8JarwyiZ4xFuumdcd8pLsNEVU+csN8sNfMfzHW/yF0K+/W3R\noIrhL2OnL/1PicrpDlzPiEbrzTYVdPSAJnxKgDlBwUWEIq71tfEcAysuDittFRkl1Homme663gRW\nhDylXK++XltGrdX1zGCOyZ3DYpQ/Y/1zxjQbvwEvC+Wox85KiAJ4GRshKgyxjnsrZYRKOIapuX/B\nHk7UYWCNtWw813Pzm8joP0ewNoUTEXt1PAejeNhH6jpfG11oDi4XlrJILJ2Z1vuBZPvP3xPW9ye6\nTpmAMVr0c81ge7SgPv775Mz2JOA9iRsc+1hvt8pFFIhZ1Y76eKFKqiPd9eBBBI8QAVCCOQm3BnQz\niEBFfR24M3SPBXQ0IP0TCTptRXcGvDrJm3tKgMJp5xegDBYCMvANAqNd8wK6imdsA4xEDEqfezER\nkBjgdF/XVPKz3xxfPen/mrVZMu4t1nGUnsbySncGGVgRj3g8Q9DNKCk9gtIsd5C3B/S7No/Bmnzn\nhli8cO/15pesU+VhFwUWlnTdrPa0S/t7ro17e3j8J7l+tihj2aDN8FQGLyjszKfR54ALplEFt7XX\nd9kn6nivibYgquk71Ee5ifcQrQeFlxnWpxeur4ZWbYTe6SRTgWVvWFN6woOaxisznjeLqxeskr/o\nCn2fO23gsZkGNEMIg728KR8sVaaqOZLHEPZU2ubIu3oD4hqRjhM25jagf/4ZWEKZQ/GzgugxskdC\nNK25Xb97iAoBs0H3DWk3qleuB4Oz3qU0Gmm65WtjLIRT9Trv+UBAbgI/OB4hwg4kNgsR12gp20Hj\nmcqZzy44ErGHyFFSojHbFS0QAoEVy70Lg63cebYt0UDYsl/PtGBkbh3R2vSOmmK4Qiw4pSGlugHU\nMWlrd+3N/0RvQGymWo/9v/X7W4DJTDl97JqvD8ojEgI2cc/VEk64M0SggjQNvlPvsWc2vOXbhXwn\npDC+6a8mrrzAriqvYYmAbg3fEs5o1474IF+NK2OX9BgPnsconDh7uoV/qok3/oQG1TNnstwY5NXK\nw1kx4LGwRsM2o3VQby1QwUxVGVLI10L1hFwwvE1FheXXjVucNdHbd7dvEpvldwUHjQCFjogal6UD\nDLBYfR/Vwq0sanEM0ZiWwabOjSVt/XHEvaoIBEGIxfdn5ro7r2VfzbgIKxNGvg/pJjahMgfLd/IX\n9Ed48GAGjxBhR3IZgPGE0nvbCSLNABLgEcnnCkKRBqh2HGgtZrSUR9wZLOioza02rWo0hSYdmTRo\nApqqXSVI9Lrnal/Ku4UtCM8fNiLwGJWJ/zflm9rq7YrjoufOcARRRmVmLiLaoJn7tTzbx6bzrXsa\nzY/GVaMz6s5wZBzOzKG7A5haMRFGGPmoE2nB6JnXwHH+ke4MjCuECTOMR00jrFngegY8599uXt8r\nczKux/VbN2iderJBX8nCaK3stgJLALt32uKUkme/fmsC7Y9ub8Sa5UzfjgTLKdFwEuK33sYfC+fb\n9nunheQsrMT4adIC/veEjLfiuo9esKZ89Bj7tHgsEYjoESIUqAB7vUXRMQFmyePr5ZsX9aSJKghK\nkRra2oHD8LQXVqMgORJwbsCllIeSUpRqY+DD5h7kVUEUqX7DotkEk3DbfD3B736bN1O4VP63cFZj\npep0zK292AgpEG3IsqrhTenlvJe6K6JPecF/NLGWXd/I0RFaVp5veRmXUaI5SBNqQpDputMklajO\nyd4aU9p0RX09P/bAq7p+sCcEDFZMBDcP1McuCtYYHmkNe+V7/tJLej9z6x8V1TWBtbpJrfGF2egI\nSUbzBferKXcGddRjuoT6r5rmtqyZMWc1Q0fHn26arqBo0utkUfTWVKDr+aYc6fHeyStXQo2/I9rx\nd8YZhUVPYKwtEeD3ifEoh5zqN6SXLAsj79mytbKntPROV6lxKYCG7AhhCnlZ+uhbprYe3IVHiLCj\nmtRuUyfiq5fQxKuz6R/RIlctJQg49uvtBzOKavkdmbAZbbA5p1uOzDtikovMdy/K9hlLrohfp8dI\nWO/lbWReELzG/JpNYfm7vbbyWdB15JSGuxAhJEf+otcJbGLpPkz7cJO20hpTyLj6pr81XTf4ZpM2\nq3sYFHYGhdkJrAtngtbX97OtJUodlFy3nc+g9TxqSROJidD7AlfM08gwGQqD83id9bCdogEC8P2K\n0zPihqTbFhgYvuoxWIumX7bI+lW7eRReID0LM/Fw7oA6AcsQ1o26uo2j5VtfEOn3O7INyyI8T45e\nEGmFiQURg/u97YztW5JjqE2rzrL9hNCBFXPz+4r4SXfiqAtq5B0eSwQDOT+WCDseIUIAs2PlvczO\nm6Me4ejD7uLgBVashe3Xmrycae0xtoGFRgUn6+ygI41rDWhXrRcwYBlKTtGNQRJr68Asr8fkH4mc\n7+GudckzAT7l/iY63QsCpCw9LvYm/5bX8dipK/6zKdN8b6yyFYvBHWrmsC/AyyQJ6vfFzHGrRwIr\nMo4EEURmwzPpzyTmp/MaWP2aa1rUomFAxcbCK9D+mXTvgY8m2me05h/W1IkBepe7zmjv3sY57gsB\nuJE1eYCv7W+rCIfmOCKcnVkL3OMOe+VPtMXbS77l/fEsPLpsJV+R1BNqjbqyp5zCREwvJdwUrEaU\n+/O76jCOUccSQbmtfZORgB7cjUeI4EASo+OJmJvr9j+pe+Zv1gIs2Ui7Xz0NoPifLW6L1jAy372A\ninDWXlpi1hZtEdqdQf0WGhB5xbN73wMjzSJj00LBvf2K/u2S6MRSrwjoWALulPr3cbiksjmVMcVp\nmclDDYy4h8dd6aBaYuMLujPU47H0G6NmtufOgGzsFT7WH4WWqWOGb8yFnzFfV4IHN2hTVuveqVgY\n+Nuw3qx193/XfFmtvcr1CwJ/EQkNrBFYrqmX061ZrFV2WxCZcgleNRqbM2MX50pDezoB3r7BqXEb\nZoKvlTz79bNrI4nIHqCOLwzOg+1/zsJrfx8p6f1bXTv5FRM3qM+E586wcwGoBgAAIABJREFUGHM9\n6M6wuQnhvmdXe2bvuUqOc8RVSqEXlDMY1G9Jkm5oizjlmgBlmWkgzklvfUcLA4tmmwV2VbOfwIKt\n3BnMgjgt32/HsHR/XmB8s4WId2Sptf96dNfjzuDg0y3+H4NHiACwJJFXWCLENPVzO4C1AZXFkBfH\nXpkjS4QTsNwZfEVCaq5EYjEvadprSclaOKrHQjIjphj3XNPKsrFuu43bdUnjmAg9RHs2Z9nOj5UA\nX1G/1VdHiAolwOkU4UXLnjGhjW6cKx1zL/L8YVGkNdVTeJys1KbcKKCTJTu057FvPpEF46L05rXX\nF1f0kTxr+05B15rfRwvZjiHu236emMY+NkejUObig/Td9cN5lkU+3J+UH3G5JiOuDyfeP+DbTUSp\n4wvGlgiR8X42BoJqEv52Xj1kaR8YLNE5HVmfZmL3MK6e+6PyLNprel0zAm7fGcCPyLdcjDD3IwGh\n9f5RoUHk7ZRLhKzvxACYsRi6y93xwQMPjxDBgXW+OOOMT20PlkWD9XzGxyxk8jwIrPjemGHOTe0Q\nbDxnjpCL+Ol7BOVVKAIhdikBc2xEEsdTjSKZRzQzrJHBc+3bRK3UXB0FVco4N7wOMdU34u4zlbXQ\nRDMjd0F+s/Y+mfePIFLGma61iKrR/PnWgXvWt2ils6Rj7b7i5AZXeCDW+yu69N22Wc9KzIqDMniz\nmSZ7adecig/9Jcq8kSkTzbuYLqKY0RoVERIeETxcgW51wwA2eoBU5VR7PxLwd4b+utrtsSm7o+Aa\nxV6agWmJ4KGx/gDayTk2uzyncRDzyKk+GEcYv/5jiVCR6T53sG8NjxABgItXphTylb20DRdqyA5p\n1ToxEY6gtKFEnZ7PWwUDtoCgjYlA5d72OzW/LR/h6PIoI+rP5sVyrKuM5zAkop1+nPnmM9+1WIFY\nWaCxZ8ZLD3duYyvl4ven4mmAoOhqjHzhJS7lfTsxEVS9LhHzcUJHr00oBI4F4/PX3dF49k5P+EhM\nBVf7ZDjS1t43Ri1l60oERHuA4D6C0bzlsXq5NtGLVwMDRDI9UyeIDNpbn3/c7PDmdlRQcBZn4mhc\nwdhG/PQj8OaGdIH094nPswBV98H2Plqz9gLJTp2mccPia61PZ+KxjUiAJybCAwuPEGHHzBGPjN5x\njSU6PvgqWb7H8ir/X0ATWO4zsUHjiR9aVNBsrRMT4QhzOLuwbZtNMu7Vu9aG5Pks9n7fGQhObv5Z\nCDuIjh3npIhkHEusYU25+ty96r3t2looyHGK0upR//Uwc5TWZ4QnTDga1T6Kas0yz1D0NOx3Hg3J\nY7unPUqpXcvsUxrqurY9i9ud1DzwvYyYCLPY5lMlkrcrl99p04Vd7lmFPJGzY0B/aSloRuLY07hh\n5HbOv5W7/+58j3Awy6vn6lRMBJw/Z6r152213gsK+QRBlnZ6RQXzBc25jNMTpUG6PvfO77t3utut\nGE58ZIw7YMa6ubDdM02NKFOOKAeGRgXyx2ijiGwgkCZCE+Bx8VikVevoROPHEkEg07cllb8RjxBh\nBxKf1U//QFm9RUYxVzUxBiR6Nxhma0R02eKPlgjD9JQUIeVZIrR52nv4GfC5ZYngSaibeA3O2MCY\nC0dgjTfsi5EZdlpqV2NATBnIk8gea2jSGgvS+Tm4mfoNNKGPqASESOtYINTnfL8VCi17KL1ePWWM\nNcIlLHe/FiZHj3f0udSnnrRlrblaU+EpKx/11awjHmeJZGtcamFw3BJBlWX4jM8Im0fBznrr0RXw\nTI+tNIgjQpeRJrVN6zDqck0e9AfPVSudjj/Qzlcso03bXi2rsRfOsT1v8TgsgjXdHve9nFgmOSfd\niNFJBda9D6J5ZyynTs0BUIZsQgae/9evdJGmesypHC91LvTpCvl7GI9koi1dMLGxIA2y0w9HynQQ\nad9MPKNePdodwy6/1wZPEfTeVu5tENANR9bvS4KcPvjh8AgRdjBx+HVtifbNB7k/I1GrS9QRBDCh\n0NHURo83TCQYWidt2TzXwpUYu1I/sOKMO8ORYxvRZUG6DHiBFYvPv9Dw86kOCTblyqQkdeXv5NFm\nltBihWevjGOGn9eyE+RB7a3liuF+0+/cp/u94VkdhPKepE3REmYtrje2JuEI7gqmaBFT7ymcl3P1\nDMGj3dV0f+E9fM2IMKGuB+26VNthMaNjYFA/FsYUgSi0+VxfGUy3054ZvNe4ORLkEveGTHp/Qnck\n02VOxaroWxsdskg4sGDcGWyVyBDoUB0zd7uJMazTiJrnxcIol/RR8+0Zt8jee17BIHtlRgQPJg74\n7qqTeAbpW9eilh7y2nxojRF5cf5iuVWAp4WPvN95Jzw0QKLwBJDe68UvwbFzhFR8yMsBHksEInqE\nCC56EfhnmDd1vIwTNEVixhIBXRxccL3iWL5Ooe3PCXeG2aMgt+rmJ+MV/nWynyOBZz4K643alB6G\nfXyQw8VAjZ/EiMHEFYHaPhop5UNjxzth4Qws88qoi0AvftqVbbRccXSg0Ba9k7rO0BreV/swC5KU\nlCChCkg3RN47gTAV+2/N8blnpYu6HS2Upk5g4bZ5OKQZLe6JgcxHFstBwA7zNClgqgOxC/3q4fcm\nVHcUCvFijYp8dwY3S6DGUSlyvKt1Yb+uzm+rnFJvp+JbTnyx+ithn9oVLjBe2v/7PTgzpJU7XKJD\ng0YZ9swXodpkvoa3qfV+DwJeqqOIyTjqONVnPSypCp1H7gwPHlh4hAjULiCorVkzmBWSrwk+Ei9A\nCnqtow65DbL+klf8npIXlxUUcvHvA5YIeFxVXqsJNb9Pjchc08jfltYGXQR6wRLxGX9NZY7KTZX9\nBxJoD2tOqjwsw/sdgdUHRVuDpuhTASrn2zJEo0LAMTOeCzMmhL2qvTJGbgwl3YRE36tD7veocca0\nUjmB7gvKtxo1Cp1u5fGScJ5lcSwpztPOnMT5Ut+vhbSm8Ew8lXbqAC/U09R5DJ4KlJuTq1xT1gZr\nvb++cD2y25aNe6qejvkyWnd4w8+672nHba24UzA8R0bmKksEdGcwXR6cckYuR1saftavJyJAKFZj\nYg7hfiGtA7c87fNmrxbz0mpzqRfmpPkCPEgtkz2PU4JgqvbRd60SxZt78uhAdAEtv0u1Ox3QuI/Z\nr4WvtyVCH5L9NwsPJtwZsE09ZLgiepYIERNxtEYrZXX2uNk9s6FxIy9SEseIjBXGC/7fa5O1LnlW\nOEesNRT9TvqbOlMkhEOWCJaPlPcMi3Rcfc/icV+Yw3M6w4ZHiOBAmthHzQqlv/krKM47YpJuMS71\nGW7oLLIOiK55M4bAihEgsRly7XAgj7FDIkZFz4X78h4232KGoq8oCaLSBqgP6383dNQbGFDR23SX\nlMmLoq0D3ZVM9v/U0VjEBe5d6BM42t/ePSKtuey5MxyxRPio0wp6Fj2jOagCwEorHUxbyrSvbb3d\naruaErSE+EiLFS/YaGRYYFDVmWCMXlLrvmaQfQyPfnUqPmqJgPfOWCLgfO1aInQCKnJZVwYMm9nO\noxZ43SC1xWcdfNelxSGqSpc2aw16KoLrOpYIprLaCcZYYjyVauf72aSPymRE++62L9KS3GOzvTbJ\nNQe7Ddc9a+/B7olYxHh9q09AqPUcsURwmU0cO00jFnlpxkrzW4yX0ucwP721zd43xvRDKXvQB8oa\nWMBTUkXqVvX0bnqWB9bH957BN8B+3u45bStp7eaI4pUlwme2FH3w8XiECDtc6XkjJb1+NvW0ASMp\neSOkt/m/EJIXE8ESTAcXbKk9qeaa+tn2nKurkmJPUIsCAiuOAgN9GtG6odmMIS8KkGUwO7QMUUHx\noIycSQTKa9uP9UmCHC0mSvlf99+wMRxBhJDV/RqnXLwowZ8JZywRLmsDj7MT/eStT6EzvC2tJ+d3\n8qDWfM3HTh25En5b/YYpC4TOunengHAl3acRqLUj28+be4P3GAUUnYW2ELl3YoVPQui0A2mA1/7u\nX3MScSfi9apgwRgwF6yCSrreotCzRCC4N+hyaWU3gmRWdKwHKLdct3RvgW9faIGSWfSsZ4lARtog\nZvanGRP4mWCBM0vn6DvxPPWCQLeFzfeXZ01jt4Xb0DYCaSzLWqc3rLc88Ta35XMb7P7pTSNvrJhN\nwZfEwi7CLH01U33tq0f1XiCZlB8cjxABoBetcWDF7wamOSBRzlodcIWv+JG8M+bcvjnxOWgT6ZMF\nBuu7QojlaWasNKhJugqeocsC17L/plQEFyMCrmpoktJyeuNBajYjWk6rvsizueOp9n/OCBWsAIGK\nkRmX433/I4Kh3tGsR6bRtFmvcLMaZfZOv9iyti/f84tlrfvIGiRyZK9uh3EvoFWbjTdQQ91oS4SS\ndr/i057FHAOFCksSzJXTVmuuVuuivZ7yHvwtoR5pwXahYOMIfekFXnwvSEsEz4ghVg78huercQ9R\ntNiRzQeZYO+0qQlEFMMRYcKMJcLouTy95kyAUF3BfH8didsVgReLrGut4RSv3bpSuXrrXkS4OTUr\nR5YIiCURWgR7x8KjxU+TpnP6lsybSFsgeKMhPaEWHxh4hAgAPCngvXAkuOAUZGDFIDgwUXuOdLzK\njNLqC96xSoOB4Dpdsg1k4BvrjwvK1Ro6KveLtgsk9ZXY3IU8diiL0zgWHTye1Guu9u3OYWJpJjaC\nXfdcJ/Zdi/q/szClfnPbs5c/1SoNrd3crh6RHom30tOaj0aONJNGIibBteTpLD6+FcagIU0Zflle\nvJpIPTPuDGfgzqfC7Hy85uRK5U0kNkJ95j8MB1Ys46NTvjNG2yMebxgAljsDwtOgDsZ2FO7xyKdK\n3dFjdL1nJxbNiIv6VUN5ZH10Zk+TbqFXKiMYfRe6UvlhWNaj7fMDZdLYwoEhBTi3rNs9VxLAHadx\nRbrvM1uRfigewwwieoQIBZ751EtILYuU9EBAO3XUIrX3c06KSazm8W3bMC5A8x6Qpj4QomuW3Hsr\nJ1sgCEuE6GLdO5tcmeXD+0rrDwzshH2Aq18WcRT4pIoVNjh0D1iNcjw0xwPBxoNHqfU2fc+H32Qw\ngbh7vbZdpAgNXkpNuF1eSbnJlDHMZai+N8afGne5eV+nM/Y2tm1v3YLIRGRaRWmGj2SYVOA8vt8h\nWNQznL77VdIRaFKK65LFFCvrhLXN+xGnUIy+O8RJrfkMQYcXdKpHOHvCAxlkUpfLbYB6yvNxR55h\nqOUw8Qjr2pa2A48IVr5XWAKEiHDC1WR2GOhLLQ28oMhyPXYl1PtPY+KNmKpSlNirfcHahdzHunbo\nFWcFuYjIV3IZlhe1P5tI92dwZs713EDLWoXxsUb04E1QgYep0havbO+dc+VzXn8PuNnLYFxw6fuO\n8O8AkP568OAuPEIEB22gvs8/EZFQPAW2QJhY0NCVIIKQP/4gyVXCQIyy3WfunbzOhrRS1TQj8xFq\nW2GE9t8nXto7gtMKrOgFvSsxEazgXVgP6cef8RjNOxD5xJ52esZ/OAIv8jt+4yPfJmKR0A2+uF9H\nsWirNnncSG+K5CyI6KmjeneBqlFeU29HgIhzH/trZlr3emAU8Z5oniiPxER4b3lDLyDqTBnR/MCD\nb/ec/rhC+NIwPcjwncEBjWbkdUaR9Rvh1pk9IOq+0HnPK+gG7BPbtWhPG+hAFDxeKcAL0RsB3zwr\n8K78HXFzuOK1WqWEQ6d0XmfWquQ0b++6L/iWCEx/ZzxyHZLa8TDj3+PBAeRclKw/Oh4hAgCZx5fQ\ninu4YrFfV6l57rfJM+m329ZbSZ0jk8ASQe743jFy+FweK4cWAiNzOhlgrNwDqfIK9Td5ioIeNT97\nGaWtipf22yT6HrWOiHokWM3j0TOe5nKzxsC6UfO8b+gYhEr8r4+t87VGp44OGiyoEUuEj8JVgRUP\n+bOzUojrc+qXUz26d8m50fPvt+rb2nKftAdPXiDyhVblubHejY7JO7LPr8acGQWPY1zlv9yJbdvc\nn/lCV9E8s+Ws+R6T2CtiGETK4DTSks4T1OAQtYTR0aB0IQa0BBeE35LRvsC/4OrPN7J4UIEVzUIc\na4zye75dMyfBnFHbjOa3BdOCjWNHRASro8p6CZxnFpM6K6OSJfSOpY3Cy3umzCPIOflaI2UFoqXs\nhf7GgJRGUWfcob3gsE8EhAcRPEIEQO+ol26U5LP1mhosR6LfcWeoeSGPeZQD/+7vtnn1hQU1TSup\nlve8mAjF5Kq8j29u5mlSMV3zPxSnmHJKtPBRkfDdkUiUbhXI1HsMoAXOi29q7TGqboig7wWIi1gq\nIKM0A9Od4cGlOBNY8YilCuaxikAhXATlKLALGL6eJcKIQJSMWykG5tFafpO6jmIiWMBjDBlegLYe\nPEuzXtbIiRLeUHkvAtJz+/iMQke5N4xOqejNHy9tLwhfERgfsUi4QILjC7OqgM0LiqcFfWloYaXW\ni5yVgIRPlXJLOjmI38tg7j2Gt8Wou5D9zBvDFQEOsBr8nfX6miGtUrZAfguWoLkqb9q8ZwRCqOi6\nC5bucOpElwfX4ImJQESPEMEFb4RfDT7JZ95aYtR6pvyWDb9b5ZM+EexxpJlruW3HiXoCnqbb6oMV\n0rhlWjERjMCGTR7jnmbMkbihIaWAAps1kxIauH6Ism6nvRECX1si7GUU6hO/gdY8R47/k8KVprwI\nk1OsV/i3rW27S+bQMyN/L0RpVhkzwRtDSgBm3FfMrzM5rG9fvtNNtIbHt1jChKJFGTSmF1iRgaWf\ncUU7SwyOGOSrjsOMuFR8JHo8bE/Q8lHvgUcDI2Sg1yub6Mb16FoTApvVHIV4na/7kaF6pta7A1vj\nWl1OgzCEnnhqUCJnkZ6AXMreT1hxXU1XBALv7ZfRdXsh7QbnHsFo0Doj8J6TOkRQyAXwvc0gSrUe\n3Tdf1mhdfPBj4hEiAHCuywB3lXnbF5a3nXEyNei8+Aw0+ILJq1HpW624x2jY7gzM7IJAovGvHJkB\nOup/si0OroIsMbrmWmainh8YSrW3/9tvW9K6Gs37Jc1E2BcgSCkBFm2uMeekmPjsaFllnvo/19um\nObP/3U4UGnK9I2bkdwDjbTCkIYfnH1+OBzwQFE8K8kYm1DPBp2qe/bpn2RjBAQNmaNSPnoiznW5h\n562C17aOtXFNYMFXX+BmBVZc8dpZr3AdT+SnRWHR1PfmMpy2fTLZQhhXHCc8A3ZfYGuDDIKOHoOD\n1jJV4ynX11YgPgq4mFchUYkGwTP2hjt8eC2LuZHFxRvptVCW51c2+e4dTaEfM+WefcoLDnt3fCA7\nKCgsLgfGxRX9NKPInVoH1Xjk+VbXeRyrnsC3rgH+znbpuhR40Svq64a/cO5feQTug+8HjxBhh3cK\nwJrpEgbIC4pnR8enck9eR5u0bLfbjlW8TXA1yiu5FgdYlNwU8T0WuO+lk/ENkFhnX2Pck2UMAY7s\ni18NXcxkwMPSFi+PdGdQzzBNW4q0eMDI/SV+glHvCxihF46PXZiw7C2SAgMUeHknYvDzV/bNUtEy\noXm3CwjTM36PvTJGzK91/z2CPlrWBpXZPV9+hMArlggONbHFNDnfFkTEreFMtVcGwbUspj7agtGi\n+704EJHvFznH/izW3NEOXuDOYLoCBtsWQU8Yg33MwkBbQGQrFLSF3L5/RbS9JSaCd0jsGGdNn/F0\nJQa6+9X05HJkapz0ooR6A6N3HOQAtx+1DdgY2hvKhd9dz8OpY7/3q9NPsqgjXjQYb+ruoOY6FtV+\n3xpu+7XQnoNjXQ/BMsE6EFhxhI9WrHwXePqQiB4hQgESXi/BSKE5OcO3KhDMW0KmDep9VWbOFRpA\nG62YCKh1Va4QEecx8Dm0zKNx3fQEAiETeHjfKijQZxq/vG/ATTfq0xHv+VqJnigRLceHEnB43Zn1\n/3z1BBwFyRcm8VGPyxtnaokmqYFG4cGKFgoNMzLSIncAnRL5/ldsZCF/clczph94dMEoYN8qBBCe\nW4tyiyI9l/H0rTI+2aySstaiwDdGNC4rA4bhTKyMjwC/OwrccM2WQerwdAZXwMZlrEnkR0Fve63a\n6h7jjL9rHoY73qDMbDAHaNWCfZI79XzvOGVNNSGc6dUXje8zZT58wWJqWdyMq9Xp1XHMJe12XcTe\nVoSnkGbmdVLHsvI9rAYlvGa7lo6ieecs/fJeHIwl8bzsQ+qY37LQOY0Ut8r+7u019v9HgeNjBmW9\nA0XKSom+Xufp49e/plsj+EtBznsIvx53hgcWHiECEcmVXDEAHQF4ZEpVJt7WABcmeU30ElphWTf+\nrm1KKhq4ZjBAiNCs8rCSOgteE4ys3NNpiNpTG5QZPqQtzVCmyLUpX4EZsCTssuy2UXabJQHjmSOv\njgCnCcozsW57R9y52nKx6b/EGCESgoAiqKp9zvd94QHXm9Q147s7AqEz2vI1j4UVEUT7kchXFCxl\nXOZuOiItbEKh3YwGZqb7Sn2C6BzRJSPzfHmvxrLQaZRLQCCgK8M/jaTocYZljLCtEzYDhhZMUkDg\nBVb0NcN6DatuFHPtJdLjo7ispBw+Z773CbzI73eckCDhfVlrblRhKvdjVnlKGkdgXeo1nnvC4WMn\nZbQCvt7O3xMo632uXWdrfa3gPGeRSLk1sCXC9saFoZbSJahgxAgSyXk6BgZGRtqjuzbD1a8k63ef\nwJ3ChKv5xCOCvcjpDPEG+C0YWSKcQU9hx1DC+6vb4K0x1r13Pqv6aoOH8v9+HR2x/EAg060Com8J\njxDBgZSMo1ZcpTWIUU2oYtr9sRFY0XNfQAn/Ip5NEYgYcGliU44e8diDp+1sAt+EW3QvyjdN9bfl\nY0fky2JWqgdT1O/lCWxqOmSIXnlp28TPXy3LJpme10uPTSJ7zGLsjytMCWc0Sz1TQi/tEdzlW33E\niLaOB5sF65XpfdMrcLcZaamHBMN3UjjF5UmcYR7aQFzXCb7OlGR1kRKsOnkfmkdDateO+Pwe2n9H\nZUIcFHMMe9r3k4ubJdD/SHRfh9/57a39beBOTe1nib3Tw5o13VBO/MggkLq9LT49jZZjHv0wM8yR\nnpEuJKNi0kRAFs81y0zLfR/OceydPfSs3h48mMEjRNjBDPrLYORdbXGHaK9xALbMaIKOpxi81qVx\noSAi+rq2v1HC/yIZ2ZzaNE6eLpRlQn3PUX5+j2WphA9qIqLmUPLYKFzsPUm06ReL2mrDugBZN7RW\niFgiuObqgUXfK0s+w1gIPJb4+vbWxkRo3RlsLWspa93LWpPSKJU+d97vbqppdIza1U04ExPBcmfA\noqwo+iqgImiRpcAwCmWFkvUzP49+5mqF9msS78tJFTMPVgxNiU4feJDaqhXW7Re0tY5dLazltZPn\nC1qNlbY3wgS+B7/xeeeZx3CaVm/KExfyGPk45RHTcFlu0w7Wxn8Ao3RnQMWe4AC/14w7Q99SxBbs\nYt5VLkbVNrtJW445xDgA6xr+WBGhsVfStlfX/61y1B5OOhbREPK4wQtOlboS6MpENF5nZxDZdrVv\nPwgMaIJZrBquSye8Z91iusSAMKGHaBMl/afoyCPfpVgoBYiGI75QgJlq9P33tZr4IfBIX4joESIQ\nUV+7c2xx0RqsUaC7l9RwO8QnmuguIv/KlgER4YFaQY+bB6JVQcSn2our0IRt4Cu6cjhlWSbyC6yo\nivDP5J4qp/w5S3vGY8IMyuN8U7cMkaa6dlSGvynTcFlwhQerTeitHWJQM07vsyGlEk/E76yP0gId\nMYe+K2qjFd9C3sf/iUi5wlyNkdCDx1gieVzefP+c4R+G2hpLGAeCyCtPHVkSKXeGK8yU73ZjuBvv\nfToD+qvz+GSB3xaV5PpOnTpaV0kkfW1y9jbPbx3gylEgfp+xQGBrwXLMn/PJ6x6UyBe3+MDxhbhq\npA0VSkvxVai/PT9MbtuF+4e0+u0ph6LwhFpYZwTW6/O4CAn4U78fzSxLq8yZqQbHKn6nb31PePB5\n8AgRdihGXfxWAQ/LorQz7kVw2yHagdErFgi7NnnNSWjT6r2tFmQI90JFFcW/u2iMeDEG7VpjxwQm\nkGCJkMXjkXBAa1mtmAi5+a3987ffX4UAXGovrHqK5Yi4h8HoOM9Xo0zcA/H7V6JeCHuoLQ/bimXl\nTIogRebXMt/DoHEvYbVCRLSureevpdl6Ga4Osgxp5VDHHbQf3scsUI0ZR4hhCCtGxyv1Nnpl/dEJ\nlqjyXuCXfwRy/qr2w7goX1IwUqNTM3ouRsqk1dGK5lzPUUDBFwrjygiTilNokxYUZPjtjzsP8vjd\nr2WutGlexjisVlPt+3jHoL7WRQn0vKusPiow7ME7VlCuFyjIyNC3Mc15mygiwNNtHSOsNRTpRk0w\nrWdi1UyhtRLbGUzoYx3UUq97WjCO+xSfurN/+zWR64LIlj0oRFiz2s9Lm8p4599izmczi0IrVK97\n4/au/B72+3rM8hCev5tDx+Q163XNc6U01lJUAA2bdXI/cemHE2W6VoRmYqMfHXMmz4pmqk1wv42J\nwGmABj7QG56QvYfC8/Me0EnrKZygEftDRSjr32L8WkXU33Ve6X19vwLvcMWe9GCDFXj+R8QjRACM\nggBGIBloVS4QqpUx1JYIvCmXSLJcFvFzzWR4DC00cL8esUDYqwPtkHUsVe3LnWgfEYPmRt7WMxOU\nz2UejftxQmFuM4rCcoXQAo2WWEMBQS0r6dgbDrNYmTDJKPUJhLIxfcJF1ArUhlJ57pOlMOPjD+r6\nme95pasOajI9bG08rhLwvm1pm7SIGsR1QUjmQN7rtidU8jzqGsPMcW2PK2AFVGtwK0hsf66cxZXW\nMp6rjPWs515V97d+o44IE3q4w3JoJrDiDKy5TbS1vbg4gDChjE2rPFdgh8/33yAEL5U3hTraeNMi\nwWjUALgnKxcPkm5wnKY/b9bAsqf2GGvAKClmHDi38ejZJWlLBFTK1z7g5qTyywlxcxlGzLTt8rBf\ni6QaBVNn6EIhpJ3N2y23bdpMeZo/F0w3KABLGqj3DHKmYwuQc0SCidQgAAAgAElEQVSpZ12wJN8i\nZHSkcqRfH4HDgx4eIcIOrdHi31kvvgAdsEbHEGCGDwMSVo3wophENJl9QdtQ/9S2uwonZNvszdjb\nTOr7RRdVS+KviSLoG+XGkbrEWFMmp5PtcwgUJenPmv7wNh4mKNYspeN2uTPQDM3+T7KEB+zO0Lo1\n4FtkwQC+VnwGggghxPIsERxlhP2wKMTsj3BkQ7KOTpbPvHK9Z555tGWuihqJ4kpUiMSWwPTKkXkl\ncFqi0AwtE9bkx2gpZaKLkTEh8NQWK9BmyT/oe4b8OaLrezyB910wGnajuSr32rZ0rVjgnV0mb5Ux\nWoBZxLaKdnh8xDWiiVq2tsYZ14DWWiXvYKHvzUV83zMCg8jpDCgETMkn/lEYgvO3RVtIESaU2/Ev\n2Fs7eV5+LQFzt/u8Dr+JFUMJAEbSsl4azMLWkSQZLaYxNHON1bmMGMwVKvf1HjqFEZMrGnRG0F13\n13ZV6X1971lZw7hdgRfnOYplbnOD+w+FWG3BRfBqKLaG2CTJ9X+6X3EgLXei0Ce+tFAWvXRsTToD\n7rfSNm26u12XFBbi2JYIsJdBb1hjaXQi0OP6YOCogOg7xCNEmMAR/y+UbPoEq3Zj0Caz7X05uada\n5pg5zgDfx6zGux/QVCitDOHvmpaofX/sn55GzoOXZA3mJzp/dA4KUlbo83plAYcU3NgCGyvQ3FZX\nEn0JQp2bN1yf8GrfT8I7YvEQw2JYJMxYKczivXy7j6C1Xhil3a4fSWR4ayVDmXNmOSfsD6Hd1+r6\n49eTVYneZ+59/jNhM7y5EDEBjloaROaX1buj+YoxBqw2R2IjYJorLBIQ0kpsZux7R+d6bg6JjDXc\nO5XhAK5iCHG+1Pvt1bLQKow6f7duRc67HziVxqPlpPCz7r84Nn3cubRbexzOm3pcrF/OmZhG3hGP\nVSse74GeINlTZHxGTBnCXPgi0hIB73lpGdYRjzyNvNERDYz+4MfCI0QI4Ih5K7pD4Ea77kfvsUb4\np6u2RMArMpXtjsVpqckza8Z8FOjOcIRRkkF1cAMfCQ9aE9M2DcFvqbXUfnn27/c88o6vKDTwYiOo\nMrI4GQOeoXBBWoGMjhQ9F+RItK/zrG0rC0f0s651BPWfac1ZHbPlhAUwdxwpAtcsAq9x/xXrlXYM\nyzyaiO4zuB8Jtf44zy3gvF0MbhljPWhmy+BCsAxmwE4IlWbQW2uigq1GGOy8Yi7XVuMolYWy7h5W\nknPaToz3I/2ISXpKcU8IYz2PxjTpxUbw3ueuuCjWyrxAXa7FkmHdpBOdlwAwQ7h0/AyPBTvt5+m+\nlhpE3oMY0qSrw5le7Z3OgAKjbhsMOqW5L+fGQBBaftPJHWWx9yWLaT1y1DFR7BP3aIGZvLiXjdqc\nUnLXyktkcQ1Xv1stc2BFWAis+aqFBBPCnP3qWsU+UMh0v1XOt4JHiLCD5wsep2fNo2IuDCuPpe1S\nZuVf27TSnYGPdPTcGr7CRrQd8di+gPKjZ5NdbnMWVOdr15F/fTW/82stSTkvMp/ollE2LfFbP6vl\nSVgMuiI64T5urFI7xEAiDP3rJOM3QiHis0/XcFHady0enNfazLg+T7hEIEzYrCVs7VAGQUQNirWI\nI0X3cvD9kCmSHEwxm8S26xfGd8QU1fRzJ6bFLERNpseorTn5GylqRXNq7ltp2ay3vB9v8BzYLKXy\nXm+srQGtEI+1yFjgb85HoTVCmDJ+27mtAgNaLkWYB4R+5fQO0oKoIvCANpJ4PppOEaFP1J1hzUSv\nIjwFoRnOdU63LvQFdn9co9El67UuVXDnCIQsTTsKiMr7OPcXoqFSlcfhDGvH47BorkjM8aDpwyKE\nFuUeZMVvO6Wlh3XqLQlBidcmZJQshqYIZdrxwXNR0uPVfYL7yX6BlOq74RzHHLIPcC3UazCvv3xf\n7LFKRbu/Ce/dTMl9/Vrvu2pdHt97O151b/fcDLxPueakXXz2a08AweMJhYnumJF7Db/z27468v5n\nHFE9S+jLvamud61kz2viNhZ4P9hvljHVltltA5CX3npBpAVOnnWYySQrUxEjeOfAatUyox91eUSh\n5QWFtd7LKw6VMGjp04P6XlnvPwtc8T5RYPxZkiEMrAgNtlxFe/GQekgkaGDY2EeWCQ8eED1CBBdo\n9k1UiYu05OZ3D4WJX9rFFv3av646DoCnbS2BCilX5gA2ERWx+4RUsTUBnodsr9WW3rGUo8A6sqyR\nFtIOdrVdPYIYy9iO4rTbgogEV+qlwX6RQRDlbxyH0v/xteI4aAnW1hKhrWdKC+Ucg7V0mB7P35at\naaTfNvoyozCpR2AhMkFZZqo9bWnL3k/MYJR5p+vgtlWhQYeYfocdupkjXnTyEGEXqAt+qyNuy/fT\npY2EgCp9TkPro+rOoNvE40vHkCCVp+a121rruwaVgegzLlfXLYViZrs6DRkJFYj68xXzVgbdfjP8\nThbTv4KQ7Ix7g+wTFB7gtSebUaenlHW+Xe8vP0ZyoG7dBP/2Mz2v633cnzCNZXk2EyB5GsiFG7jL\nMlMJkfbrsfG2lzEQEDT1zbyWGrRGh3GQv4X39+Pq15ilAdCCTjpJN6lYOWh1FGnb4Lk1lPA4xUvm\n65J0bTCee5ZDNQvTXVVw3BQlrpre2n9ftZl9j9gWsQf0CBEKqjaAmqscKypoYBGAG9JYx2yc4Gi9\nn4rfP4Vn/pXbJomatt1Yfm171qu5dTwUtVJUDDCoYjsYzKo2qbMX2RXa/DXX9/CObsvwvH1Ie1vb\n269C7Mj6cvOsMh3tfYZsG5bHSTOOoYZBt9sk024J66kc6vuv7ZUHohVoxzt7nAURHIfjp+tSgnFy\n3lo/Nb9N5hwsETCWhdQUo2UFM/Wvtc37MtwZsB9d4RLlkOBpa5O/W/rRm422MTGBYwYcqJkO2wJk\ntQKNtH/ToimFjeqVBNMBDDLGKbEYZ/1+9viQFjcoyEOLqF33SSkTvQHjIIZzk9di+OT8JyL66drO\nwVf5zeNGt6kQREB4e37b7TvrdZyvxcWC3wfGaG1jLdc7FYQtVV4GsYt9+gX8G6r2fZ9vQhT3grRe\nGy13BqXxMywPaq2yFvuZlbf37Iw7Q09Art257PeS5XF/ofvBumd6E8xWXY9amgD3hm1N5nraNREt\nEHnP5sm/mpYIfOVF2WBzDM28hB1E1RZouAoNmZfstLhXJ9EX9p4s8so2owuHOzDq+xblOgaYLm3m\ntUTP7wxpPCvIej8rGkDHxIL6k077gn3XGkuMUbyTRaypZd1GjZOyRBBX1orvmdkNdwYZNka0VDGV\n8WpcOL+p7guqXhXLoo6B0sf71Yu3grSIBAoNCr1S8h4UKqjYH/b8bdoCRAcqgry5+cp6fiIt2h9h\nD350PEKEHZ7Pc1TrjEAm7gWEAf+WBIWa6FxWKRPaJNaoBSY8WiSsuHFsN+3Gd8TZKEy4C55Zpeej\nbhG3muDhtHXzYnNK1Iqr8SA6G7/DzHnsXhlmmv2qBSo8ZsCMs5SdxLjzmMe9TOHC8EKGcuK9PLO9\nnjbX/W2VM27CaciYCIg7hM5rHrvToM+mJQO8G67wb7+WtSdXotZjPtCioylvkmhZcyXjspqLfimF\niH473pEeIyHHiafJQUuVMzBlwoPXaoVLfrkjGNvQp0UvcORdcRFmgW4B9ZjDFDfLr35J9V5QPX2U\n6VEuczAi1GlGWTM1+AVQAJFXUapHtxiDFpXrZwKX3o0rfNA9a4UsmMUj9ZSAiguX4dAVpE8mm4Ea\n+0JAI39Hyii/USBm5fkcS4CNgGXNe6BnUfkj4lOPmXfEI0QgIKrgXuNfHi4vqU0QtcbVjaFaH3iW\nB8w8foUNt9GSpzaNkujLtJ6kE38XzbBePJRvtSpCxlGw8zJ0QD+NqJnl3ch0D0OJkHWgdUk96pE3\nl84Rj46vHI4xGdiTUceb1n6WRsLYORJsxvPffInn3ti4+4hHbNPM6ylhk/Rx3p9naCP+Lk3iNos2\noE91WafgvtSkK0Jy7eSB/olE+a9p9+Kd3+jP3qSZEcaVcts1hIWDVoDZsia/4DScUn/bnzIPEqSS\nMXpPSEYNBTcjAW9KVBoeDf743uts7yhJROzUBv6WOpF3Egv+XuS8LWk2oEDIEjSrE4dwn2eaYP+d\nVlEWWh5k+VDctxjsiQmFmks/HZV0eAIKlmXhkPBqZEFptTNovFCf1zYfCab83gJehOuW2dzDRJ24\nB2CViv25wvpq1V1+D55bzyL7bXwNq2t3Weu5jEEdkoGOnmTToPTjdk3eWLZaMtMZk5gZ4Yfe+8F3\nj0eIsAMZ3p5fbMmz2kSBZKDZbLyUCCbqTDjYpzO0aSNENgoeXkAQU2NX6QkPgJhak3JXSAGHKTQl\nRlcIlY5qejQP9jQXkkhDawKEEqyI/5np0OZeLVH1WnttyE1aC64wBPrgjaR5nM34VxeZtqwtKB63\nH4Iuwv3WhQSIQOgvy6RPFewIniwTP9dElvR9b+xj38v7oz3vjDn0V8unnxl/dNPgMYbMKlXXBx3r\noRXcyL7SLgitIEDdN0gF7zQVmSdTuw4p7SDfN2RKSogKZvjWHMGghZ5Z5UusodU1pr0qay7xm9ej\nN1iPPHeGTcC7tOUVS5/2fZrx6VBoC7SRYa3rRUhRxgGvpTWPtx5hGfKbeGb9/NMjLmX66Gk4Fnru\nCyVN+WZ2QZ6rUZumX89KWZdT3BmgF8Q4f2ufqO8TQbU8sNf1an0kysS9m5kPlIAaC6DHCJ7SHAth\n48idodzvvQ6ufzIgNAb+YzjumHLYeIqMiEVgFB0e3LBs3LBk/xnO0XY/tOcvoqy62dgHXElOR6gA\nOGKR6u33UtA2ysPIOavPra3gWjpG/o97mKpX1IN5S4yvHis+YvwvljrNzuVe7dj0xxKhxXM6w4ZH\niDABFVX+QOSRqjFrCQiLAPf9mK1y22cqZkGxHIi39cwkucKkbT7fzhgFS1izJpZHa/qmeWnT3qF9\nkN/YI7R02yphFCVme+nuWiOv6K4zfX6F+bKlveR7JSje3rVecLyFfEvj6Bje6rHT1ijz2XVJiMDT\n0kRoirrebW3pBcsbEdy9enFuRFwFZhQro+8xMx5naLEjX+2G5eg0otpCM69jKXAVRpZJM+PEC6yY\nKPsBIh3hy+ikjlmMjjs8uqYeOQbyEpTJPk7qzTkMXijX0vq9DlgkBNNdxZdF5tdwHF9wbOhVMIWy\ndB9N8qnhuDNg8MTLq1W/HyHCA41HiABAs9iVRKwCSNuLdK580neT86UEudLaB7zHS4OnlZft5Anv\nuT6YzCKaRmJgxUZztf0/OtvagnfKAObtCR5cSXRgYfPcJTZpvvMNnfpbzd/8oholTFPSTJUeM7aR\n/SrGkuc6osdYqgEASzntFdEE6YRE3hGTRP0jqyRmXBWYOZUaTq+vkSnpfZOoG0Nkg1VjinQQRj5y\nsWgjORjVnu6L0Fy5ZsQoSOy0raehG1lRWmtCnVtczv4++/16Aodukxtk1Kl3JSKCcVx8Z501p+ea\npSKDi/toxeRrxrbrVcyBt0z0tJ6RUxI8nGn2TBR5nK+RNo/mrSR6ecz23BiuBAZZUwHahJYVx5l2\nX2RaYd3LSpqrQm0xmres0mRunxNogWC4Q6mx33tpspUfKpjboAyZp5TLZcn3Vje9Ru39tmbKmYMO\nO/Vi2w13hqELxAeK7aKnMawkFU2DySb7GT5u9aLBsVOTeUJgbb2jvzm2sa7rceh4EJrmQcvPGX3g\noROVZsy0boR33HAPj+jAQKYfVKKl8QgRdihNPvy2ELFE0MR0ywDKyMxfYWH7ChtcxMwbXSBKxH0p\n8PAWMHWcz+DlLoZFL6BPNYk08iqBZ0/3zH2te1ab5Gamo/7GoYjLAXFD5H/Tr05MhK3/2o2ztrXN\n+1Wk894L+8jsK9idesefjvqcAs+1GbZO7PWt58awkpa+u6alUIYMFFiONC3jjvNqggutFka0xozF\nkoUjfr6qjFA9bdpUmHr/o6IA1yuzWx8z8YE2MiImuSNfY4soxX4q5v9c3QXraya9V42EPqbZP/xO\ncD8itJihkyPuDOXZwJ2h7z7Wzlsss42H1CbS60NW/7+BMOTIXKxH9273WZj7NrMBB+IDIJh+scZ/\n5PjqKCwDiDKuBvcPWTTu+2G66Pzc0WdIarb40O5x88I/OXfUPoi/G3e1YH+UCb3oMwHVHBmXORMP\n8IrYgV6/JfFc7evwkRUd0Pm0bPWGa6XZNx8kPPAQac3navGDz4ZHiADobcG4sHiWCES+hq/+3tOJ\n3ypol8P8yqJxA9JCEJCmW9pjR7th0fsYkE0zxVULMQq0hNLmHrxt+oyZrHRnwI1gBjgKImcKK42l\n1deinUSWlN5mzKTm1NXw7L+lhlUzATNE7D5mnJgIEtFSb7dEAELZkgnWs5N3wQCXn9syLEsEJD5V\nAMmJ7sUYCVb+GWUrx094e+O5juMkkWfBMwN0L5iJF+Ix4Vi2WVaxSLDqAU2pFxOhU5fS6DCt3Rmr\nmPYueNYQvbXGaxLfl/PNG7cRSwRvvva+Lc4ttESw+hwtEfDISmsNwGCfav6KdhTXJV7X8bfx7upo\nVtDYY4yE7ozDPXt5s593gJYI8v8o894TLuE8ipycwlB7qKwI390JLpmPEAUXwbNgs+6P5hMeM71F\nf3LmjdOekD+7MinRlgi63Pk+7gbcdJrkIaVUvj+uVbpeJ38Akb3aSjIymtGBFtfQ3D2Lum6NcfN2\n9c3iiYmw4REiOBiZ8hLNBRckIDKKJYLQBKPWe6SZ29Jy/u33G5g/I6F8BGfiGxwpz4o7gF1gnTE8\n0ojVsnSHjr6kLMOXdLfEX2VAB4XTQJiw38OjHjVBXvvENecmLgMZxCp48AiD0EbKR0Ed0O6W+/vV\nOp1h1AbrCFJvDtdAhy1TYqfdy3KECbJtKnbKTdvwR9HIkXGN8xaFm2YeTjuh2dNHgfXTnbXEUIK9\nwjCN8460bEsSQTgniDwPnjBhoTq3ZmHNP/xalkDAm7fe91hSNrW2RIZQwVhrcGvmeVuExVnP3yIQ\ndBaCJOY3xjs5o/RGc+tqVVjHbB4wc2dQhAmkrdE8tDw9Cj/Ow1yzJ9/9rCXCbEwEOX/lPSKxh/N9\nLjlQtC2M8zLafbQFIBysgQf6y6LlLrEmcO4vcM3UTGEi0t+gSz+zAOKEZHekLOjmVZqFhby3n6Gt\nEN43WVK7rhEJmdwjPXgQwCNE2KHNo31C1hMeSMsEb8HWxOf2fIuOv93DKOWeRYLVbvQrVr7HPanI\nhdLmI4jQCBGTZk+YgBGNs7hHhlAi2qbCKJ0w/IqcEIDEGp4r3uQB4YFbb0dQ5TFM3fIClgiz2IQi\n+p7VJitq9axbQ5sGynfcGuS9ov0EoZW1Fngm7nUs63E5+gxWPIqolULku6EJv3TF8AR4X8sdv3x1\nskJZ//Q3JdrGrhaWjmrR0CeJtNrYzVe8TYPCEWtZZd3wCt+2jAuD2cb/Z1YUX1i2l9VpKwPZJm/e\nEYmxazzz8njz1cozmrelDCOdFVXdql+WVd2Mtn/QncDqP9w/ZuDNlSo8iGyIrH1f2t8TsOiZK5Vs\n+pv7+2xIThB03ehZIoxcmKwjOf20dX3CMaLWJ2yHsWZ6gZSbPW3g4sPo9pB7NMaES4wVIDeYd0YA\n6/WjdO8br0OVbsI9ZYH+RPcGqy2e9e+MrKtYIpTC45YIJXBygD73vkkzZp1x+MDG0z8bHiECtYSS\nRcjiAtZzY+B0aLKIwKMYJaHqLphAZMj2Mli7iu/x2omMLRieE1CRAzmxU+aqiWhvwbKOndNnt7d5\nNHPMef2NwbJAkOmse17aNdfFG79SZdBzaRPRbjHyTosHtlvFRti/DxOBzTnITkwEP0hjtYRZYBz2\nwJvg3aZdcd30gbKRkT+JDNw196Nl0u/5BHtj9yW+rWeGr9sj/0cBZZtXWgNEx7kUgLgxZYx3R0QZ\nCasMRZAWwYbuk7KWOWV4ZXvlXQkvCFl5PxAyNfsT7gWfRJM0E2DxapwJrKiyJOOZEvrZZcnvJPcS\nIqKfwlr80/35T+TcLJsl7Nnl4xu/cW0GAW+Zq8I1cXZvs+gbpF/wfiK9TtS9mffbBG0XdIuqCN89\nwFQ5rpZntjGr1rsZjdG4k+nqmuwNUujH5p6dd+SyKrIqdyErnXLpPbHzewEe1yz3uXpPAi2WrCGF\n+3oPPI7TxBj1yujBtSKFa5unfYY8xYMHPTxCBGoZSM1MVhQTtIAbg5JsQhZk8r6KRV5JsdWC6pf7\ntV3zhVVD8jMx0rUBiUbomb155rz1OJv3aSPX0mqfrm9Bz50BgcIQy3XhhUwh/FbR5klsHhMvxmNl\ndHxYD8qPuPDgzOxlNWRH5tFXuTMson+wTVtbdaYrz1PuaaQ9AWXvBIIZzC4DOZNiqsozsu8faU9k\nqGE1lYE71w9HzkWfqgvqTIPfvdZEGQwJvd7qekY+3Fh/L09lLNsEEXeGU/O2FJrcwI1eTImr3RmK\ntQ4KiZmBIfKliqUQg8EeaOojy1T0lAYJnKeRvvHWh4zEkJVIVTyuEOfxmWPy6hG+2djD2t/R0362\nNjZZCzblh97nZH2XCy9OmNIjentA1a6HmkMvkfaK9U7Hr9luSEGBJ5DEssw998RCUd0ZrGKz+dsb\n13x/SVrgv5a17YGLTPT4e2x4hAhEu1l7Kv8TtXu1CoAEg8ck2oGxQ40wah/k6Qz1Xm0ftqm2GyWl\nuzZjbcsqm5a0/yphoHdPvdd2ZUsEyzS9avFy89s7trG9V5sgy0WLhJVSOc6y9gEyyny//W0Bg6y9\nxA7OzXzldvNa4RtITTCnRcJXm8rye5K7IqPLivXMc1HhuAaJv1NpR1LCAoLf+iq/WW7q62kJ0RLh\nCPHimTVGtACaWdV5rjCL9tpkMSAYP0EfI8b9m5RLQBn3hQjgdanmeak2cLntXOwds1meFeWTHssz\nc6zk4/L3XF9z+6DHuPwU5zz0m7LQynqtLExjT/iC6w7cr/XuZa/VV9wSvsk8DBHvS5+8wUQavGfO\nsE4TEZ/i2rNEwDWkaP64qNTe3/yj9/8phggPdyTvZ3JnGJUrh3INqdDug56Jc9sGbw3mdX1L91Nh\nCahiIvCC+2Iv+7f2t3U8n1pf26sVTDUCjz6p9Ex7f0mpCEhwPnFZ0kJze51MqWhIwJLya0u/SE2K\nZzXqWSL0oNbxkrfSF14fl3oD5dc22ldZ56iMmr4noHGsWkSB+SuPoWVPep6BqmtoLQstEZA28Kxc\nrHKxTFk2rwvYXWWMDpSAEkVwYzYGChi9WNtwv1Kj/qbaie8z2ssYV8S6ePD94REi7OhJoovUjn+D\nJUL/ODsg7Pm+wcR5sRA8xtm6h+b3SgNnNRWOdqSOdvluTRyRQxR6BGV5/6yYemQoLSafX+cn8K4x\n7Um/LyIB6KpGqxRq1NMySorAAkJ2sypA4qz9zXSWFFyhIOoIjijhPUsE+XykfLIsFc5ovc9AESIs\nTLjYhiWq1FhSvoToG2ElHQdAMl5EOuCdBK5hR0yL0cRUWufI3029jgC0Z7Wg1ll4vuQ675d2GIh6\n3eKn5pFXbtEo3TQPoqdltJYcbdqeO8PwdJWACATdGbonvjjz0voWniVCUs/HkALq7er3yZQmUx27\nG886gqQv/OCYfn7nxMBrICqOWI16wLULi79/RbXrlZYIOEYilgjDdXXR8TXQOvU96MCtnr1+Xkv3\n+xio0soTgWe94K0bVp4Qc33EAmEwYfuWvB9E/PwgyETP6Qw7HiHCDu84s5zFM8wjNAXNfaFhREsE\nLgMj7EvthtKQOdvVZiXRlsNAq4YuE+H4FFqTZCY2Amr0MM3scVIj8IY6iobf86n2gzLW+0fM5tDS\nsrRBEch+28YWHPW5JzxQQRkFc6U0mAfIpFCUeugLBBLoUpvIWTwTxlUQ4KqvsR0n3BnwRReqZtGV\n8Enm+9Q8Pup7+YKwkZAExwf+b0HOTUswM8LIeqGMMVN7AvVBWut11bhmDVOAiEYf3d54PyKQeg/N\nTabsCjLQb5+RUlJHHtby2iz8e+aIR4Ys25+vXJ9mUsqzAWMk5211edjLL2kcpuCAO4PM761l9jre\nChzkyUzttU0PhbRXBsY3khsVWCKghaG0AIzirEDilIBXaXX9mAij+FU9lL2GfzuCj7vcGRg9wdcI\nbTycQSK07BCVVotD2xLhCiF1zsYJZYN3XojUiUmeTz+WHYEVU8WlW3oFuZosuC+1Hyd8UvB7KGGM\noEmYxkDhM+U27YMHFh4hAkBLJLUlQnm2MPOhJzua+SMD2Ats51o+Ef6uhBaaALta64a4cAIV3YzS\nX87Gs9JYgNJDOHJxFt80uFFnUfqd3WWbqO1XvL9fe+fbHzFTRYSOeERiOrVzx5orKBgox9zt91eD\n6fGECbXM5I4DxIxm82pcoR1UQrkLfPWWlA8RD57wlFcv7+zzLQW/x/6tJ+r9KKuTzwgUBs4AP7nD\nN4UQGT9dywAUNODakvW8vcMnHC0UIrF8rN/KbxnyaosEvt/pyLXztQeTAqO7SxPu0b47E1E/ksZy\nQyMSa9mayQ0IfRPKPs+/nfeZcWeYgbdWzljZhfaXicUTLTum1uj9iooMiUIneGUYQume26PbFoen\nr+5I8x8Oc+Q1Hfv+g7Ovke9YKJf/q5Cgndu1iD2dsKDiJJ61xwML6TLl57eOR4gA0P5U/obqWSJ0\ny+e8GGchyw21vfbaqlyqitaOF2p47hU0AL8jMoFeZPiuKbDzLLJmWS4d0bRWjCase7R5WZYIdy8l\nnhCJGTTUbqxZb9S4aX6Fq2UJ4/lozrX9nt65cn87IjyY0Q55GuGVtHn/WuZvW75cE6ICtsYqCCxP\n6nUngEHw0Ptu6KYjx4lHtKKAwOq/6Nw+whzj+xPJ+QLvfvGMPiMoOpK1ENUQk+MKHBEs9awXviVY\n7g5n3suzQChxUfaB3p7OkO3r4jwnYXkAHJ9lieBZDl2JNc8Xg7AAACAASURBVJMZ22OcyUnkWCTI\n9/Xiw7yHm9ed0FaXJya7+vj667sxJk4oKcx4UE5aS9FguTRcBWmJcOakF5xI6mjHkq5TdpnHPt9x\nxVrvKasePLDwCBEcyInkRjjtWCIwCvGPwZMgiNjXrCXOvkVClXzXAHpcD0H5sOCsYgHzFizj/hVR\neT8KlmCoPNu7BY9Us9Kqew79UczXWbKbtYQdzWCVKRlJZnH/DcKDFfJIqwNv7OB44LJlAEZvvE8E\nvxZ5/HFzJiL23RhtxprYzuoZHv0UiYngmZdbxPao/47M2db1YTq7G8+FsaSWYWrrbq+jb5ApKUGK\nR/hwX830yXtZN6D7WgSfd+bcj7s0ZDPCRGTelAWHMcUxcG2tdwMGVpwSZllaeWcAH/Hl7QWKDJex\nX6UgPsMzrMf81mHJQwVaXYyK7PJyF/SFhBd8MSSgdlpRXOs6sWDcCkyXmH47WMM94/JmVX+L0MoQ\ncGDVqBhCXHbikqOZKTR5oAOtOB8jReYZWusRKhjIx9bR7xGPEGEC1WRon/jOxDXdG5wyZyThlsmf\npzlQzMc7hQGaIoSVb3+9eq5jqgzHDHJ7ZpdxxtxXCm4SbDxnejjSbx4hZ797u3F6zJYcfygcUW4T\nE/tQj1m70ld8NC7MZyeovxktREkLBEgzfyEPBiasZdn/fyRM010lOOnDIuxGFjC9mCYeLEuEK9CN\nEr5fvcCKoTm/XzmrReyi5VBVTu9r4wmLBGutGR3XOIMIszaD6DvWvSCfmk/R0bQkzcCqfW//3WWg\nZ/AO5h8z7oZy7Lpxnq5o1CeAy5/fXG8kFsxnNcOeObmil2e0brR7zk7TA73ECoBDVgczKEHMA98E\nCKf3UuxNBZB88MPhESKcAPohSQnhHdFR8Wxgqc27wvQ8An0ucStYwWBlx+vZ/3EkxPzu3nnJRO+n\nSbwbniS4EmK5+R2wiBNl7FcjD24a1j4X2vy+IXwWBt1DNM4DAjXxHgEi59Ho06L/+VXKGh1XY7ti\nrAwrjVumYYkgzxpvygrEb8AyLGJWBWSbyesIJq33xP5AAfIZoO78M03394phcsW43gTj7V6FGm08\nneEjYrTMQmo4h8EmO8L2kDvDB2FGE+ulCcWQmGzPUai1/xsilN67qZYFwqWChRlLhM4A+ZYthb9V\nPJYIGx4hwoWQ/mKehQFqhgsTR/5GU9O0xId0E8TxzGfJo5tDls7vteF7IW0plh8hEkLqDF6R/4y/\n4YSnhXt/pNFZqVoToIZPm5VzX9RglhiU8QyQoYhE7j+DKasCjj4N7zkjQMAAi+0zap55zF3bpjYv\nQo49TwNYI7lXot07Lk8Gedx+84TSDRidznDIr9y4h9o89FeNxERA4uOIO4Npuu2UETITnhibUctm\n+f5lrVLxXfayMI6I4TYxQoTxvIoGcRkXvvaEIM56F0FEwDGqrxcYVc1bEFbp0zWyEmx5pzTI+VvG\nQWkTp2nLlxHOXQY52Xl6wONH0dVRoroiwp69vLW/13X4UdG3OmfdljuYNlkkzvlufcrnAAMttgyZ\nLPeuE6EQSBO81JjdmxopC4Wn0voIlCil2o4yZ6hJVv5kq6IJGVcE750BBv2TAmXck48M2SuOX7Zy\nuoxmhJAdTML2JLRYu80TqJxx9tkVKg8+Bx4hQgBVss7arO03TrKeJQIKD2Z88FK5ol5IowRKK4yR\nFgSoRt0MbssVflmn2gEEyxENU5aCGyYcjU3+LFaqpu1KeIRtMrYvb7zhZnPVEEhLey3334nWsIVI\n141vlxYw6kDmo4y7sib4nYJjtNQzQdRftfmrk2r42lmG0NWnjt2xAKWknW/q7Zhdu6RrB643HgOd\nc3y+9JKN/Huv0qRFS5EuENH15qq5q4+9nC/XCqhYnh0QHtRjaLerEvRPt5DMBSIrIoPrsRnPqerE\n/0esLldYHzw0bZ3VLHQweuf1WLGu8NRT9nTLCghghzEReivFCYLF8sv/UYBzPbJm59HYHQXaMttx\n/Bu8V1Dw7xWZPq9b0HvjESI4kIxb3YurxL5JWwS3Vcr9yu15ukp4QO01Z585LBolkLTKPK+1ffZa\na5qtHqbiZCNaCX6PU0HN5cjKoO+n7whSSrp+OW2ZfgKvr0vebGjr4LUsokDFROAHN0twsa2ssULG\n3QysuD/joF3VZLa9T0T0pr6HIwlfcz0/ei9gfXEb27mCR51auIJ5vMrH+sw3RL9K77lZh5imVnsy\niblcyrPXpZLXFDLt8xnyZrFeaWucTrvhflmHSl+M1w1vzN713ZQVldMXRHr9Lm0uZW0PJIGJVkWe\nMMGKd4Gm7qVMg7Hge9X6rO3rt6Tb5pX3GTH0cf4GzP4t+Gvz/h3F9qw0mmqvtrXyPXhaeiK9ZkSi\n71dBmz3Hrby8PvyUm13SQhk5E6H1haJjFNHjIiu6rP3dpIX2Hzl2uoc7haYr1bVAxURw+88IrAhr\nFVqx9GJuecKQmYCyZ44UzfDd5NHo2gKqve/t4RGYQbmZZvOsCyxLBLf8Xp93lIeyjHE1Dx508QgR\nAKbP6cASwYqJcEbrPjI7UxpB0iZJocKXpc2Mhck68bzZEpfh/IbaC9yCTbHMXrk9+AzNsnpm8iO/\n5Z7Qvpqrt7+lKW09v3e/B21iq4aegF+aVxNpIROmk1BHcJb7fn0MtIAp/uWLHoD1ZIp2rkh3BuyL\nUsR+5e8jTUD5nqfRtMZJEkRDL6+FkVl0bbNkGu2C+X4KzBUu3wuwuGbNaLplGa4JVxCsnmnuXVYn\n4bXtxjZgW8rv/boaFXsxEdRY5XRGGiwV82aZlt1ndLNdjOZTNZuu9Xnle5/HWCYKPKuMRCk8b605\n6I9RZn7Gg0m5b100uPD4XXXEY2+uzknJmoLqUY/+e2DpR6iYGQX3FAOzOJTR4u/s+kjbsTAEwa9T\n5llHa+ztEz3rLQ+embls++iIx6XQR3I9+va4xkj/jfaJQrdQUgUN43nEm9q4PZ3CCUuRQm8NvnUS\n1XBK7L/LTqb4npD76+iPhEeIALhCKhdZpGdMYQpz2nFncK2lejc8S4TXPbLxRO3C9nJODLAwZpg6\nz5zrkWizTUgJYDQ/k3VTdWe5DndF51VCCmOYnzqj2asXvt9ZSIItcr8H5Sts1ffO4+1MdZVZ9Dsb\nnyihEl87TCniTB+VddyY2N5aPAqmKIHfeMadoQe0HCquJAdYQk+YMIsoD9UTGJyJ33AG1nxGwU1k\nbVTa/Ww/X4slSX2WZgaWVfhBjGpbkmayS2wJJ8+mCbb3/u5ajPQKS0W+vtr7bB3X2fxm1gUtWBln\n9hjaXjBVDzh3rNgIqv7ITPUsUOW19OV+HVi9mW25Yd72hAplPGLaDs6sb56iKWcyiM9Bn7+luJZg\npo0sHLHa7I3RA4KvBz8eHiHCjsrgtvet+VMsDvZZtixa6heVBEbahEtbT+LK685XWIemGKXOqht9\nH9mPnlXGzJnCHiTBjEk9v0RmRNckWAFfuaDKKi4koCHwgh6fZVK99+ihjGfWdnFeJ73UMM4cB8rW\nCF5MhNqeDdY3R6bHNAMcvHTEX3SmH72zu936ZV3AtNXYGZpwVgE1eczAfS9WgoSynpg4aaGWwdqa\nPO03KdvG78zyyLf9RT3Ns4VRn6euXtxKC/cc6ypr/FctVh/yO3rWRbhuSzpz5Gps9V9dZ3bhLHRc\nhr7H/L16IogkHa3NmqHWpc64NXjCt9uPbDsAHg/snnYqNsLFmGlDYdo89zfhIoonTB2JGVArvk6a\nWudSUnxfsRDp8dyQh+G9XxP7yKMfjDaO5gtaxUl3hoKbpNBXKBtGLevu3ftVWQ0awhcvPlbPnUFZ\nmUCe5tuYXDtd0vfpAh7DWlM1zfEZVqLPh6dbNjxCBAdnhIAfeZ6q58dcfsuYCJ7E05gd1ukL0XbM\n+hCu+VoCyveVy2HNzow0/cjiEsmDRzp6WJLfzsjbMvOLliIzuMJk0iK8jlikjIa3xXzUZ5i3EsKY\nF+GZAcocFlFJREq4VfzcSRO3BGlLWQdOWngvRL7T6L7EiCYzfZ1VkFFfy+a5Dr03Ap5nBdIfmmjO\nv9c/pWaMq60IzszfUZkr5XCeq/b1ypSm5jc3AxUAZyuqWmRqrjUZj+1EOl5RMvO2Aql+Q61hpxhw\n4vIvGCATWTxGfWvLfFMwr3tyihFDBZ8hLl/Dh5YI/gkfns+9FKSooM5wH11LWpqxBY47KXhVe/J+\n7VnCqHvcxkDw4ylrkoElQj1thRst2gZ0OrojWbFMorDa/tlohAffBh4hggOLOEPGiC0SIgzTKOgQ\nkTa/QqEll2Ad+YPwNkBPU9wmukdCfSZOhF9mZazfy/pKnYDRkVpHcYVpPfevxTD1TLO3vL4f4BGh\n+Zy7jv3ljviRWlAm2RN9HTkizquvlpGa+2huKcu/glE5c7RqD6NxkNK58euV7x0LSOSvKXe5caJF\nzVVj1MPMsYlXlI+EZM+dwXvlu90OevP3inW0zNf9ajF61hw+Cm6qcm+ZEeJaDOCoXnPtcpjGeEvE\n3ID1/MQOnS1JspIu+a2MBpo7iyNjPizE6swr372q7j3hsRoYO56lrb02z/c55sB1NnIMtF92Io/W\n6B3D7MVJulRp+E6cfC/+2BMTIYbndIYNjxBhR890Fyccb471xIL2fkpZLErXta0ScnVFHS1gSqPw\nAeenXSE8wBKqdDubz4l8rXIj8QbJticPkgSex4xiWVbU9ffAZoreak5xb+IRZO0PI8aoEA7mTsRl\n7ESGUcgCxIV7+sNFfXbEHaTkhd+oJYoc8RgtW957c9L0aIwa0NNoU3nGv1sBqAqAmao7g6f9RmJD\nnhbDCpVy6ge4NVjw3H+8d55hnos7Qsqu0NdzZ1goq3gujFDU8MHzatKdS4BGpVXrWRwoLV1uysUy\nEsVp1RlLhK5rymBdreVn91lJA+9pPXtvqOCZfH9i77v8iNPgBJFjGi0R1L4Lvxu3J15LkMkKKDtQ\nm1yeS8fs0aDtaEii7qUyllAJYIzzy6E9Trstnsg7OiozNN/XsSibv0fPEqG26Tz1642dKaFWce2M\nw1IMed/3A0jqW9C12KXv5z0fXItHiLBjygcUI9138pYN5hJxQhzdCT/SWlxMifG7nxEmIF+LjIyW\nLV8Dqx8r0dBKEyKLLBJnkYBSKAgYHX0nx5qfxq/XtWKJDOGJnaYIMpzAiqW6D2IMLGCAx6UQnZr5\nYQIET2ewBV787i3himX2UIld/aH02ElNmwjun4U3DCJMMeJKzXbOydUgRN7dS2OZJ3v+tvhc4oz1\nj1duZTBqoZ51xxlLhJ5VQ7z8KliMnspw9RGPWJ7FfGCN+K3RpJtIrv3bvXKk455YxQewFwr4zWfG\nGa10Os5z4zmLKJNmtWpqbntHPE5YItzVB58V3fWk496aceM4gEq/8DeIM6WeYPlqYEws68Qwz8rp\n0JrtSaaMwA3vpfgbnW7xkW7anxHP6QwbHiHCjki8E9TeMdASgahKP8sZ3UWTlZq01WRSt6UyWW3e\nst5l3/WhO+FVYjDavth8aSQ8mDELQ2FCz51hZALXHD1m3Ovdj8DadBTxvt9fnQ3qCGTAuREh3rNE\nqOOvA2fg6WPt2nnQbYuxSR8xW/zskFYNdTzsBBYIKyyhj2/+Hx9EVx/3hZYaxW9zb+sbZrgI73VS\nBfYtmsH2MJrba7bmjZ02BdJU7W6rXe7FTJmz7tjrcZ5/xGkKV7ozeGUTdcytSxlxeHFRSllJFIgb\nfsg/MdiOTp95FimWciRCS41407JfsMvoIguGo6n592t+l/A06fJ9USD0iWTaQ2BcFCJjbKJv1oGJ\n2wTVPdFBnpDxCrexGojwSF77fwtNmz3i1iPcjYK8Kd56+NiNGr2rdTrDgwczeIQIA1xFAOHxR+5z\n417kfPRx/cYqP7IX/QSI7meSMMauvJvBQBN0xtXdGNoQuO79uoLG3DtJQvpM8tXSYCo4Y6kXvMsD\nuoX0glPV93PKCuyMqHFsCCG3jUyU2WVcjSPrz4xW7YxW/gisbzpmgm9pSsFHBZSKBJPzLDeykabM\nCbwfeD+PeO8Bi73bnaEXUBGfe317xbeeYSiwPbINvcByl6IMCGCYO5o0jPdT8sDvJFx9jiB6EkUT\nENqzRNB+PTUIHQaju0joF4U3Hq3gztG5QqT3Oa0lr/u+O1Y9S4Q1u52A+8YZvZOsYZZW+8wnB+RM\nYu5ZD6k/+dESAU5vKcko+bFMJsawmuvBMn5EZH9qfDqklP4tIvpPiegfzjn/rbSZS/4SEf1LRPT3\niOj35Zz/0tHyHyHCDk9guC2+uzTcEf7XAIucp44utAzAo/esWAxFeLD/ZrNoZJyWNL/othJ9T831\nTmq9d0JvUz4TDHHoonlSK1bHjH2/jp3cXGUetF5ZytjZx2E5jtD/7F3rFmcsnbFEQEuIJWvrEc8M\nu/4Wmhf2dWchEzcZtVBy3job6kxgxbqm2HM9pfThRJB3zKFFlEQCo42CMKECppdG9bWBYbDH/uNQ\nGb1yq8DNSJP6v+tJwfU9rf1nqw/ml5kmjtl3toS5R4S1R9wZSl6sLzB/V+j0Yukj38MZ1kpBa7iD\nXAl9pNquiRTvlbyKkWg4iKjltNUK3FMqrTOPukbu+0ZjNuiUGDGBuAB1b92uESVPtThkYQbTjP7+\n0Zsr1j63lReUykRxgBacpklPlGHtoTgMqtVvrQ/L12t1au5L+gi3bI7zo9boJCqNToKDY1ePg7Y4\n3Sf1N7s08vzFwJGljkMte/CRSCn9ZiL6F4jor4nbv4eIftv+9zuI6I/t10N4hAg3IKUcNimeWTKU\nS0ROVP3IbUroiv10EcHI8L1eB82o+vX5BCpaG/Q2co+miLTtLjrkiFQXhUcfvZh3GUAUsFnMqLOx\n9YCxCLw2fSapuQqSCPSd9S7o1oDf3oKOkD3uhDNnS39GIMPiy0f9wIqXtseoP6LZHAk18bEVaXyE\nM0ub4bJ7KP9nmqcjRAKlTh37Bmkz/C7PpaBDbWJg0h9p3ChZ8pPi5ypC6TQvxJIKbtR2dl9ndiMX\nL5NQKrxDBlKM4r2H7lh0O1leinR2rIze6QxXoNK8bfmS3kNhs+vTbyj3Ru5j0ouorF1YLuT9DLED\n7tBN3G11+W3Bj630yfCfEdG/TUR/Wtz7BSL6k3kjQP98SulnU0o/l3P+m0cqeIQIgCNK+LKgio2q\nalNzm4YXvM7ipdwf998ZrpYJ+pUIHV2JcSIMDTD+xjyWrxrWPGPiN4LMg0R7xLQUCR4vEJYklJQ1\nG9VnMm1TD7eR2voiOOMK4+VVhFYzaOcnTtSM1zoL2mOu6/Os76n3aW9c5s6QW6KGrYYXMF+WPeaN\nd8NCV0H79frfwnPNRCJ7E+TZmsTe98L+WdivE7QbljuDdmdpy7IQHXYzgpU1t2v0KrTiKLxkaC35\nuE2WifOsgFCOcxROveAq3yviHta01RrmTt4pM29jvnrlXOnOIPPiuFPtAOtBq22juAYz6PbfhVza\nEhmkDso8IMno2fu5RVPh9wmNmZFvhdVOeEd97OS4DG+fstZm74Qm730Xyso6Afc4rK9N48+Brd52\n7rsFevcH3OgRtzePFrJQ3Wr2tQxM+nPOQ5rAbINHE+Dew/R69mk13t9PKXlu92lqi29ODgPrLM8D\nI3rq1INL8RtSSv+z+P3LOedfjmRMKf3LRPR/5pz/V7B4+k1E9NfF71/d7z1ChDPwGOY1C6ZeBvnp\nIOLOgBuvnKCoqe35hocDcUUk/HDl95SWFaoc6LYqAJF90BIVRSgCZmZNe50mMizzdW0lYRQ8gGf2\nNeP3iUz4QlpavYpnRGQGVhy5M3htXojo616QEpLsv78Co/Qm+o6zhI4tU2Nlv73ANxdXJbk/Irib\nz3JJ0DVGT6Nax869m64m3vf6A2PVW+96liOMnoAq4oJglWXV46GMTyOAqHKFMTRlKMhQLh0B9wll\nFmr2hVtMk2cVA1MJeZyRXuqX1mj96rrlIHDsyj5BIRi++hFrA+nG8FHwo6/P9+yR4+Q85nFJOf5x\nywBdDE2F3beWq9mROAfKjStAm2hmuE3UDMNRgbwJwZ5kthUtNv2kQ0g6bYX1YHUmScj6DrIemVfd\nsTtyjVmz0mSlsq/v9MWy7o/rGLpCoeUdkdoLsIhvg1YMlgDYEhCOMKIjkF/oFuL5G3QK1nSZps89\nurUn2DujePoR0YspcyH+Vs75t3sPU0r/AxH9o8ajf4+I/ggR/W4rm3Hv8Fd/hAg03p+LBLIE6Rmk\n72kCkQjlNogsdUFO7bNCvNkbroQipjmPtcI7u5L1nt6xZbyIsXvDEVOfJK6VSOaNIDVNjWyo9d3t\nNs9An/1Q0TND5ecq2Bnk7VkiMNSG6hBCKeWyKXIKj9CX/FO0f6zgiBk0BOvafi+JK9wxeloaN09E\nQ3GoNRuQEMGYCD03jihh2GoQuI9T8yyiHarzc144FgG/T4nn4ixZ0r/3CM4EdWNcYZaIhOXMWtOL\ni5FhL2BI5svVXLKGCcpaczocC2ZGyzeTBoUHE8rQU0JBKy9+O3XkY+Qo0ONNcq1d2kYEPqDaiPp5\n5LruBcDFady4bpa9GRQlkGtJPqOiAjcyIxY5hYI3IRGQDo9hmwmsyPBM6e9muo7scSVvEWJ0aMWh\nacWqNFh5xT2nQ4MO6FRTAO+Wttff6YOZz6BiSXI8gPJ8a/NLvMIJwx0Nz3y1awLbZq23/W/w3kfL\nP3hf5Jz/eet+SumfIqJ/nIjYCuHniegvpZT+WdosD36zSP7zRPQ3jrbhESJQu/jghrfd2+9MWCJI\nySxR1fS+QAP8Zb++GRrALzD/X7BpNcx2cK1oAit6Uc4MSf4sAz7jCtEzNfY2bkQmi3m6btWXzIo2\ns903IA4odYC+s+BpdN7AsoN/N2MIgwmWvNv1BcF0UkrawmHcRAW0ROhBaeDcq88oIc64MazNvX5N\ntnCEieZk3n87QLj2CNQ7LBFk2SM+RQk3E4WnXGOBAPe43Mg397RMI/cDiZFVxkJpOkicEXS9Uz9K\nWjrlOnUR1f5iK6TizrA/eO31vIljZEa+6H0BR4sD1uZTwoOe+8L2XD5r178euFzPtBnnYKYshOXb\nPfyEem1LSuhXxzeX1TIyjJRyHXhfnOMNGfKYw8EEtsY97sUo/LbGC+5DXx3rICm48lyk0Gqx8d/3\nAio6SMtAGxyE61o25vdCrlmj9dqaV2iCHkFdG51Jr6Tbi7JE+Gww92F4PR5DX5baZ9x/vEaykHY3\nrCi0Nhe2LKlamUB9vTg8Z05gzYOBFhF+e0J2U2nlVFcEKx9oJfbpkK+xaL0LOef/jYh+I/9OKf1V\nIvrt++kMv0JEfzCl9KdoC6j4d4/GQyB6hAhEdMwMtIc1J1c6mEBKLwlVRmEggEjvLVZo+o77wZvc\nTC/0qzwCK34Cka81D5VJ2jpByUqovX/W/czzV1/gd84+Q+T50clowLzBvQGzWIQJnKeMrXovA6dX\nGAkm+MTpDEhkoMBLYc2qE2cW1g8ehpfDM4mcMZX8lvoEv/V27FHLCHnHn16BnkYT0fgTw7NjVlMt\ns2O1w2MwsR1WTARfU98yoGuueZggroxsSyhL/2gUsjwwBAH8jVEgkPw1HyHT4R6QIQ1CMueJNQrM\nSIPpfn2Jc9zeyIpJCedI0DIo1HQEb4mkdcyGV27Hd1XcQMX4fweWJWWlt+xOv2r95WazSCciKIwK\nypt6DtAySnj0STadJQn6eCDknrH0sZRUKHAtp1btH66u5/t4zLkoATxhQqReFyNpLh1jWj1LhO/s\nALYHc/gztB3v+FdoO+LxF88U9ggRJhBdFKQlwgJS0NerZeJ4IbLMS7mML/uMZ6GCFCRzPmUqTXgF\nSYTdcPP23dHMk3Nt03ibfk1txUnYfh9v/8z+6plsh+rZr0fMYJMQHhBt77sWq4hWSOW54C1J9/+h\nWAWOckMyXZ9UqXEZZmIhzMYQmMHMuO9aAwXcp47CEv5FIdPjuncXMGicF6gyAmQ0LMy4b5U8LDAE\nbVvRilKm6LccnYry2RHpN14b1yLYb59/hf7bVjMQ2ECmkOsUBkTtJXb91xc7nalpaBm0eoxd/Nui\nm1JbNcwN52qVV8dmizMyEStv1J0hsvdd7c6AYzVS7M1x+L4JeF3Q+4Zo7cjuDCsIaeU4R2WUdyT1\naXp58FHLGBbWUJ7w74y73ze65L8LMl3jBvleyDn/FvF/JqI/cFXZjxBhgKM+RSpCMQgVFtAIm+ey\n8ya//1bWBSlXMyxFGBBc9+cmceFwfoXo0GaB7BuHWuszqH1Qy/JKrRtu25/bvTZNY25NLePmbQRe\nl9wlwb0iundLxLGEfd9o9jRVa7TnoXaM1fxVWNWNxXChFuNu6fjIHPojoKJ139AHm2uCXfBShJv7\nb8h3FhjlOoJoHyxJzH94lhyhmUx7RJvl8TRnhIAR4PswZhgYq21Kkf2dqah0fBpDKzk5zlcRh+IK\neGUhzbD/aK8XYlsnbCuCbry3EzQAWnR0LZZmFgYHI0uEq4EuX2esIGcEiD247gyGBoDpRZNuDAJz\nRsbUCFIAC12s68cx/X0tcUR0TlEWruOxW3tg4BEi7PCC711BSLfltfX1zErr0Y68CKbm/pJ8y4Na\nRkgl0v2dsw5QVJPa9z9CSvceUvmrGU/+fuiXf0ajKpnGcmxdqa9lRjC+Qq9uk7/4hlQhnsbxqm/q\n0WRoJVQ1FjXDHURt0VRQcj8TRhjuMcG4dpmRyHObtgrs7LK2/9uxyjii6XsvHri+X3vtuWB7ce3q\nup7VvhDSiI6TNOmSCtOohQeeUGQT3AQrnMB7LyNTblfFjLladUUZEasaf8+Mt0nv2W1QQdN/hwND\nn2D2EUvKxvrWCiDKXDm7xo2CE8BVujNkePdIYMVRAP0XrHXfPIygILn0ZfzboSYec3pxNiRmBA3R\nljVWl7huG7S1vMqYUV4osUvQzNtOB6lszpry/YzOlJSzigAAIABJREFUT4dvyRLhTjxCBIAktDZk\nRdzyIomB9KqZoGWBsJfvnKX8JdkEG5FkALme/ZqrudUbu0qubdoQHLW7XGijlghRnzYiuWBHpOfb\ntWuW6qSJdIXXXwmvKdaWKLyYCGc1mskRPNXxmCC9BlrNmCiaCv69lzdlSh9OWjDaX3uBD7sRnicD\nKkq/d8/UV50VbtTlWSJU09ZqSxIlsKRWkb8hzk+2RFg5gBTk5XeLAn1/R5YIZwmxMxZC1nG0o3q8\n9vaO4fVwJH6I0uqJG3Wunydu7rKoYIyOcuzP0fb3TEBUhNTcYgwLdAE7s95v4WPa75Lh6iGlrE3z\n1YDEgIu+VLjQLyC8W9IxlmMkAMV9JDLnFR3RaEyca25/N4GhLwyweEUZZ4qy5k5k2A+73bJE2AN5\nVosEuyJ0ZZmpN6LAUOv8lBCQ2yH3Q37Wjskabyrt11qGt8dEBL5hSw4ppT1hdVSCwD/BEB/cjEeI\nAIgQTyiBqv5V9f4VG87M4lvuzVTADf9qazHQb8yCIowmjnisEmk/bS5psF6rLcMq3fQ9X0/ZjjZI\nYkuMlXPnA3VGNv2s6sH785ql6qrgE3Ze4EsTqPUpxxDF2xTpk1F3WdGqo/yENedxLF2hdYhYIqAP\n+hm/W8sSQc/PDL/bvLPwIsyrdKUef85FMDOfVF5uS2StiiuFXHhtlC4teDIFXwuraAiZ8AhHDKT4\ndZ+c6wXhLSPrbq+PeqcxuHU6o6m3V99h2YAMB5G2tInQD5cKaA686JG5PhKy94CnURyCDOIbvU4A\n3TjsNNt1Zi2eWZfeKxaCK3C1jidxKkJlWCnbsKYa4aq5qpVH7Q1LRCYtDYh8AWxzBLsQLETBlhyq\ndLD0SB1LhHKCqWHSthTFJtdX9/5wGx95wxSO0kjfGx4hAuCUGblYUJVpM2iAlXQ0ZXX+dJHu5jaP\nNIGvx/tt94pFQmkT5OlsDNh4NPmawdWWCBHMaoxmGEPszwikdjK6QB8hOu7WGiKsjQk1Ze6xeROS\n8QhzHysnlqmnxRz5VudMikLAQJsqOnvOQx90Xa//vWfGjiL+lCvBNXMSmfyZ0xoi3/ruWCVYz8ya\nMfoe6pSIqRZVuMEdPaEFZTWHcezjuGyEc8Y96/fI2sBsm6ShJ2OYWPM3UsZHEc+K94XnhwSXXVO9\nlvFDS4SzQKtLfYSzVrLUAJW74OvMPDYmqbcPofWEFLi+N2as6a6AGu8R8074poje+nvHa4SUffAt\n33Yz3SVVSwMUAuJxpG/i+ex8vJrJLAeyGNYgV9b1CBMezODTCBFSSj9LRP85Ef2TtK07/zoR/WUi\n+q+J6LcQ0V8lon8t5/x30jbzf4m2Yyr+HhH9vpzzX9rL+b1E9O/vxf7HOec/Eam/Z451BgtspFUD\n3Na3EBWfywI4Yq8scKXwQheIxU6X6+JGR9S7/YV6AgPvGfaJFRX9SI/coZ3s1gcRhC2g+wwnXWBM\n1VNCpFZ8g/cFLUEAHqeF378xWYTv4DGCkej1nwUWEXWEsfUEGTNjrEdQjIQHZyCtdK5EL+gkCim8\n+WS5iB9pwymT9kHZRMKSQ5m+a0aMaFao4TNzWM63ehrDEWBsFG3i3O6tEqWfUOjCVyE45Nzs+ocW\nJKf6fJ0f1UkETkZcQQdhFHnGu8W/EMSPpzlX9NknNP8+01+W9cwVBeNJBd20B8rvxQqLwvuWiTQN\nUt0X9iso0t4WLWiQ5VmYEc6dCVxp1fUDLd8fg5zcOHE/Gj6NEIE2ocB/l3P+V1JKP0NEv56I/ggR\n/Y855z+aUvrDRPSHiejfIaLfQ0S/bf/7HUT0x4jod6SU/iEi+g+I6LfTtmf/xZTSr+Sc/85sY5og\nLJN505Kb+AhYHpH0tRdMP0z8aubLjB7/qkRIlZju14V/d7QMSgXSJ0CWpcaF8BiUI5JQfYIFld9o\nHuqtsVVgUP2+PZcyrbFL+p5TvrzWOjsbNB3z35uBpzXZxiz3bdsIFlR9LX3Em2du8suri86wmYmN\n8V7o+VJ/NFDziwyFHMN3HmPYs6Ya5x2b/KKAyvbpt9/dLAvWPS/o1VWxF7wrBlZcSRObnlt2HvQZ\nUe2b+lv8n9o0C15B6xbB3Uc7erFFyvOJRdOKLTKs34iFgEhlbdx+v0Svc1+fOc0C68V4InWOdPZw\nD53ntcl7PUKY4AU3xd+tUNhmxNESIRITYXHWACKqdApeb8Ai2lBPMOL3S8219KNBw91OA7hjV99T\nwnovAI8cO0A8uXEBqH7rc0dqt2PoCmFCLXu7fhE0fbVI2J+xtr88r79nAyquOSnlSnVN2OvdNYLF\nneEiLeaVlnkPq/ygh08hREgp/f1E9M8R0e8jIso5/xoR/VpK6ReI6Hfuyf4EEf052oQIv0BEf3I/\n7/LPp5R+NqX0c3vaP5tz/tt7uX+WiP5FIvqvhm2Aq91OR7JpLti8AbWLIptUfdkXi59kZupyCU1Q\nzAwFQbrl5dKrRulVhAi5SYPvM8PM1SA64SzlfTHAYlPuMADTfjXuoSm4xexbxz1uads2WRu7535S\nnoura+kA195JC8pVxFZohWD5AvL3eIMe4/tfmEkwAi0qFxlv82wCV+l72CYuA4tRv43vg3TPESWK\n1jjuZZXnKcw0MWH5Eo084isZxVnXFTW+1e/cfT4L/F5eeYl0pHsk1nrMtRdvznsu70X70lrLPGHI\nS4ytePn7+hRwb9Fzp3IuUdcOeToDatu9tvE+NjPvuBbLrQHnsWUNEBUkSIHHaH2owp7tn5VyhzGq\nbSFq53oUNVZLUrEB2KKMx8wLGh2q7UJGehEB58J5kj4mGXE7E4KcmmjIlcxUxNVhKEQ1nnu8vHdf\nAueN97wR1nrSzAnJawLXmKsw6uGINakqUwm3qqXBWwlAuP8GmucL/156Fgft1cTMNL3RVKfP37TX\nT2iU82mQ6bH2YHwKIQIR/VYi+n+J6L9IKf3TRPQXiejfJKJ/JOf8N4mIcs5/M6X0G/f0v4mI/rrI\n/6v7Pe++Qkrp9xPR7yci+g0/+QdCjfRM9CODqZqVsxS7R1i1zK6KEr2nT6QZPH0+eqdxzrFQeJzP\n1RvFyKphq3P/RzHIY3DfZtUX+9Uu2m4rtCcJJnhGSn4FMYOm22xNUCxTGr9O+IaoRSnuNe3zo1AS\n9wCMYNBOuhResc8IGY4g8l3PfPsjfuV3A01Zy6fPWpvqobVAKNmhHrusq13OZjCaJ73Xx3FwhgiR\nzIhHxE4F/ip7zgd27icBEtNoZXIU1X2BhR77fY8BNAtxEpfNYdX3JtbmcDyheJHXrWAqwIpTcmdi\neadj9VAtfTwVhp/He/mzs+zIPjf8ZiW6NPwOYKY/Gb3S7xTIbzERtv+ZHmILhOrOsD8XNJ4n1NEH\n5r4v5JJdAyfbac/MxTstIB98u/gsQoQvRPTPENEfyjn/hZTSL9HmuuDBmrW5c1/fzPmXieiXiYh+\n66//x7I2yavAjcc/4rGmR1M+1jpwTIS3ohHm61rMJVkr/GIxa2kTa4Xq/Qwml57WuBEmDDaHIyZV\n3ikNkbR4rvR7IsrIShxZiGcZhpy1Xy3DowmL9UFalUCKx9SXhQVFez2p3USJ6vdgawU0MrAEU2yJ\nkGDznTFt9GnCykqfsOIdujPMmG7jcZGmNdLAf1260xzRJ17hv6vHP8/FbHz3Nq3V19iHR05PGM1B\nyRuN4nccgTm+w8E5jz2raToDyoB0/Sr3biBqe/PKnbdGn0X5vp67QW/ejtaHGuBTl+9aJJS9NZW8\nZ5icdwuIO2iktUZHXdl6ba9ryF4P1ktJ0Fl2RacEhWzZ84Fczyg2SzbuzbzzaF3FNaBbtCuFTOVe\n+sJ92tK1vf39zDdUbmIXLGmVPqpjswoP7OtPSqDyRCi4UUe/3yXwh5fXAUvj6HXjMK7QdG3fN57T\nGTZ8FiHCrxLRr+ac/8L++7+lTYjwf6eUfm63Qvg5Ivp/RPrfLPL/PBH9jf3+74T7f25UeUpzA+IK\niwRLWKHTbldctIpZXdZawaodH5df8G6Rjvq4a5GameqRrsDy3kOosNXDFgetEKsaklSLBBxneFSc\nski4aAM8YpHA6BEKCdJc4c7wUbBe84ww4Q6sgVljfQu0HkBisMcbe49QqdfjjRJc74KKdbPfXztj\n7EpLhCM4w1P15t3MnDwyf0duSEfATNZM7AULPZc1iUxCS0jtun1oHGSwIlQNW8PSCov2ORVAFAJH\n2mm2a9jS6gNolDuMciLuDDM4sqcV2vNmIcvsJ9tcRe1MGH/iLErAxLIvtQrBj7R2uxOfg9J/8D3h\nUwgRcs7/V0rpr6eU/omc818mot9FRP/7/vd7ieiP7tc/vWf5FSL6gymlP0VbYMW/uwsa/nsi+k9S\nSv/gnu53E9G/G2nDmWAwvQW8mkLuzBwEF6o+6iS0ra0AoAb2oeb6lioRVHy81pZ4r0S8YYmgVNzb\nto/uDE3+gbAlQth57gxe9Fu7DKg3W/daLXzpvyJoqUAmlSBtT0NzZL8543fGWdid4VWI0zgW+J72\ne+3jMMAARtFz43HznHRn8BiGXkwEr01FoMdlitMtkBA5gvc6kYKPifIitJuBzUZlUrzd0u1KxyOp\n5ZEoU2k0A0EgtT+syGOUIxFyu3KI25RImb/j2mjG/hgMHlyHGgEOpMFAi1hG25brqearYyJ4DFMv\nJgLOfasM5TZY/KN532gFrngUcxTWiQ3y/ikCH10TJ2DRPt6cxLm5WcLwGhjXkOIYncLEUSme7773\nfuV3yuWucocEQYAlGIi6Mxz55tKSI3haNy2psy8dcFu4Ah7NJeG5aEm6DC05hvFQqMY6+DWw5P1S\nru19q02jwNpbos4zM73fv1fEy0I0boVA50W+z4MHn0KIsOMPEdF/uZ/M8H8Q0S/SNt//m5TSv0FE\nf42I/tU97Z+h7XjHv0LbEY+/SESUc/7bKaX/iIj+pz3df8hBFkdA/3b5WzOWrSZY+1BKU+A9Lewa\nHGDxbRcHv6XcxDogIsqwKn4xdibWavwkcblt+0PCZgjOlCCzXLxKAEVFmGKfZNIMOG7k7ysXtYgA\nb4HsEVH87L1aX4VL7fUFlggSeDpD6WsI3snuNK+UjVMt7E2yjAfJAYIJKRJvrcls27ba5rb+GUGL\nxbC8t+XBtCm6kVQxSEBuWnnUSTCdDvNcsxbje/nM9Xa1iOgSb2SC8NAWV7S3xX4eKatr1QJrVb3v\nlZnFmPXK3NNSvK0WvDHUW6ewn0owRJxf3xgxeJW1QLSsImiA+2zyXJT/pPfXmbVqxANzUV/kPHgH\nSt524xnDM6++XNEdnFRIvxDp9W4Ey9rU1b1E1qX9ikLWq79qxJVJ9YHlxlD+X+BevB+PDFm0pD1T\nliq7BDfPRen2k31OcwwEdG/4YgxiHcjaxqEjAC2piIMy72i8V5c8zv1Q0+azfNe4+xj7bwWfRoiQ\nc/5faDuaEfG7jLSZiP6AU84fJ6I/Plv/jDn3kcGDBP6qpNy5ajiAIEFrgi9i2cplYdx+f1GEY2U+\nFJzdr1givLNttVwUmQA2jjbf02Bm/TrI7HtHyMm0mmlDZlxo7Sa40yulyMV3jX8X89hxJXhqw1rG\nZZ+WsH6bjRrWX/8/s6Gp6o1veqXwYOjLLccF30LmDuY8kR7HqzMOLdwhhOtpJT2tUG+ZqNH97bJk\nkVqDzgQr/Ka2TPm/Cixbyo5rSSMYaSe3dkMebwzt154VR4l5pojsJPYH6OuiQffb7+Gj3GvuEvzN\nCCLQEoH7nK0IEwmhsjMnjhDcuB6ae4YKhmwHR96C6sx34qxbWzp0ooNRzowVl8fFdxoSpdlaWism\nyLOaMnOcMO4bvM55Jzz0XEDWQrfwWOV+TZruOUCUoAuEPqb7+MRNKZM8xWkrD9PEy/OUVylZR6Jv\n15/smaowoeatwyw1v09BHbee9TMHkTE908bRmvtZXC0ffC58GiHCR4MXnHKki1gc0RRWHYemTIMz\nvS27pQHfYz/2sixuz3+yp9u0ytv/X/fF4cturcBaf7Y2aNaOnetY90Xv/4NF/kuzKcaQ9hU0idHh\nae88LCmr4y2T05Y3EHSkpIk0PO4yglIGRFWWWkOP2PPqfxOb8YgJvso0Xe0z+312Z/gK962jqNAy\nAV09pCUM5ul+8QV242K90n5TS3hwJe62RDjiy53hu6BppB2Mcc/r1L+laQktHMMYMC01fYJz0b+P\ngdFwPKi5Keet85Xxrlxf673+CJHEIaes6zUTz20flfqFVUHxZxfCS4k3kU4LhJz3ofpAaawgMRod\nRMx6tUAnG0HBcJ1L7XWGEN+vkTXMmyNyLCADdGReYdt67kieW0MtIynGC/v4DQa6ZcF2Zq1X8YzA\nAsw9kq8pJDCIyC5PHX0cgByzyhIK1p9Cg1C9esFaS/m4AoaCFbVa87SkoQXCEaa3a4nF444Tl/G3\np+mVC2m8z5EouYIET3AoLdiGlgjyfqEFuU/b/jxqvSKrTea9duzg3jkjpOO2Mi3+JRH9zNLSQTzH\nOZDiz3AASVEOC/h/WlyG20adUoZMZD4iSLkCjyVCRaaY0u5HwCNEGODsxMFYAtVHtyV2E2WlYUNN\neiWMKqG0wiLLlgiVcelo4Ipd/IoVbPV+Z6JH1yyffKbHTOsRPsCYWcyrZ7qNDGcP6M6Q4WoBfSgL\ngSz8WHGsS0EakRCa8Jhtdtg+MSZP4NDaaJsplgw1vxoSbsHquzh1QkLD3PMVmLjO0Bq5M4zSW+iV\nobQyF8REOBLfwyIc8dmZuCGqPqPfRqfulHTnq38XKH/hjiXC4TqSnoN3xLyTYVAicQ2OlO+VwUw8\nCmfYevCNsrL6mIE64hGeo/Cuf0yzw2y/UyDCCBMeipPE195YdWI4HYGOkaDf48zJL+fGZjs4I3ud\niinC9KBwSXXHauToFYcmXIGujcATqETm0hVM8Vuq1jNobcTunTj3M1EZyEiXH5pqaFp24IgOKcjx\n+u5IANsn+uKDGTxChB2eD1ZKBpELPpKqrGRtUpiKLRX2mAhrplc5fWHPU9wbdgawMCVCALG3hRnK\nL0Vb0mozZLUZNoZ0IcERCcCIAct6/sYeoXW1fCMXYY7NQFjaAWwvuhn0j8Hay53o+gxXzouWCGuu\nhKoe1+3vKok3iChk6nv7m/NQWe0Yge08VxKzvGGKMSIMxMxxj4wiuDvYrq3+/R9Dy6XSYF5pEgDw\nhAduGUYeD/1jDXnt2vuV7wfKxfG3BrhhTHHXsVsjWs8+/tJOK4+99zWzfM3N77ckLQ9ardob9NcZ\nYcLMvOgJF7xgi3cKJEYY+ZFzv/G8tiy9MK0F5O8xjgZ/L2b8vlhlYSELcnXX7IwePaT2vE5fHNHU\nhQIt8jvmAdvZERwewczboJVWoR/ANWv7/zi8edOTJakxOmEChULnSJyrynTbfd9aKYLiQikc2vvS\nTcNTMJR6hOvvz5R9jtfK7fev2yf5T6D+V6byob7eHfUY4ZkcTmQ952ZyoRT6e0F+YiIwHiGCg6oF\nEISbI0zomcx5prPsf8AuC1+WhV54xjow5G8gZHhLuZoS7xKNn6zbKiiDyHhtGwGD5LXP9sUemfwm\nsGKVlMo2ufUZ2mq2ki9dAQRYqTbTcJdX0uUkNqOBqa+MjcD5Xw6R7hEQs/DO7VXur3C/KQPYbozN\n0RPgeKdl9AixJDQfXp7RXvit71nlxBTWoILS4SpcwSCXtStiMn2ofCaa4f5+vSpGhh5v8FusLWhx\noN1BjHUc+noUXGtJvjuDPl3AbrN1D93uVlE332OTXPbvrVZpLFg8hysEeYhPcspwAw6+9gW+z2v1\nBcReDB8p2F0hbRFSwLe1BLu1QDhc0uIicYOYQE84cCW68R9IEOo5F+WHUnqUBRYKJQofY1iPR46l\nl9VEFAERLW9EgDzbNsl/XmnafgalTZ33wsDkVzZ9obpGktgXiKrw4Au4MyyiFTw/q1CkXVffy3Lt\nSD3VxVHMkeCKfugklQffPR4hggMvsIsFSyKFprJ4nFiJmbCygGAtRF4uDC0QrsXdoZZdtHT7P79u\nX/x+WhiXllncEgN3ygTJEtehHoo8G8SSfJO3Un9gY0UzdUubMtpY0cfxLeWyibwcpuBq6KPBtopZ\n6MRWJ/IatY7rSaqvOM7pvU/gqPVqgvDKaO8RRA5r8MYOfvP3Aq5bEUiNqkfwdgOLlbrhCuXzZ0uQ\nT2Jm3fasxaw+X6HECRd0o97t2rOE8YSb9Vzz/TcJzTUID77sVzRxvhpHrAjQIuG9LBEs14jRPLVi\nf4xkbjh/I1ZpP4Hv2AgdvQBsX6Fk/r2uhmBh7/P9ioLDnH3hQeS7ZGjaDELxOjxpupveN78vLoAn\nGKMzcTykZYIVv0CmUWUk8R44fzp1l3V2GSwIoUCVXtZKScx61ljVRVwCPVQyt838lnK1NACrn7/v\nrVW+1cJS2dvOmP3zeIwKtyR6eaL7dR03ok3BF4mm+1HwnXl7H8YjRKBtcS1R68En6ksyGCEwG66W\nCPtGuOT/n723B7mmefqEqudc92smCIuIq4ILvqCCJrqa+LGLobAGBmYigrD4EYgIooggipGZgYuJ\nCCIGy4sgsrAsGu2yigaKuLBoIhvIK5jp/p/7TBtMV3X1r6r6Y2bOdV/385xK5sycme6env6o+tVX\nw1gft2b3PKl6o8j50fr5SJmyWDocJX8rbdsFnGg10K8mnerRmqRF2nBqjnMCQHuec4zMbrDoY95v\nr24bB6Bet9+2Pe+1YeUzRObxBgMCcMG79wF9LpHGA7/L4972mcR4vO6kQPKb0WynoM+9/wUFHyA2\nvdz0KxSZb98t7ETzkr85CxTfdwYQ9VgEoJLXAgxumep6ZAIpciwyEzBLfxe+1jL62AV6DgojyWXw\n+zrvakCDwPIL3V825duK2mJ7VMBr4GJTAV+7PrDF2Ir1x4hHR+HUMxuNgBUtYNY9K7nnObVzvLH+\nwOBgch0aMgPawtzw3j8KuuiBCcbPOwABNViM8zaar7qsaJzViO1tGSkT/QIcJC5LZqySJbRA4JsY\nBLpiRegSBIC+VJSszbWsSODDd9d7KN8aPctCV97V2hEtvlFwlQmya1l9OLIGQkuBLVlLFAywKE1T\ngw77J0oD6Y3l0X6n+3ca0J8xiQI6l7Gs5YmPanAtLvdCM/S8igJRVv6zrIdb5bXZ0iCBle+HHNuy\n9uQF7+V65+fTEnggLiRYRlzfaK3wLBFGdMa1802/HXqDCECotXaZ/EALPzPXZHF0YhZ4mxKRZsp4\nATjoY8uNcEHkgSAO4xBpNSR4Dh/Le+1JNokrEUlXnh2hvV5fo8BiyqR2E9CC0oi0JhDTA3HFZ4Ca\nSOuwUxUkK0hQhMTSj14sBCK2ROB39DuQgYGaVdTeZ0Cf3vuByq1nqTLe6Mb/RYLKTNCp6PpGFl2+\nEiPhihbFCCW99egGqq4zPM+1m8z6vDVK0BNtQgFsxi3oiotHDkyas5pPkebSfJ+LfJeVh/y5uGfL\nYD9EGD2OT2GUuY3rg0jHpRAgEvsJ2uHNxc+yOLijXoxVIML+nmXd/D4or2eJUAGwtnz21/7mCQtm\nzw5iIuxZ7eN8bxnDsDbrvT3SHs+sYQhqy77kvEK4vvUqCPmWKM2lsjiAY/Ser3LjQIWDuCyoewyw\nEgDn+ltc0fIb8jolCKyI/KBWZET7hRW6TwAPjul9lHI78nrZUnVb0HESiOqc86xYV9fNnJUlDPcP\n84pywee922sEx9S0ra1zrY06oDtuWhVQfhHT8VNTOgWc/RrpDSIUQo0WDw8dybXe3E62xIihQj4x\nFQ4LhOzGwAPwUY7ftiTMXt3ji+Y3CJb4kXapm1v0DRb1bnaGgOR9bnbu8vL1Emnh/jh/KDcNNOft\n+aJa3+ZSLwicdTOLmZfQh5sqU1m1+vAsgEGvIi7eMyMNYyFELjLOOH/sVlNwnKsO5YJZZc6HR9Hc\nGusTW84opV+PVsxsh2WdbsUcVUGzAn8RcxdZaWjjj1puBBQ55UJgLIxh0bNE4CuYWUb+TWSY4wjY\n05pMk1VgcjgcbWyBVQQevL6KQSUe78lc99Jl3kUaeBgtud77YRo0Bg8esmjyN6/vhaDYFUZxpUe+\nWuwDneIRCXPI17GUxJVMAK5ShIBoE3Vzcbx0ct/I97vbEiFqR6f8CiT6xzPUWPPJOlD4oa3d7zMi\n5LMVAI0Y/s9K1/ZZSl0vQLTwPbCe15ucc0nd3PKE48DhlqJXRz6Q20tk44S45U52qrZEYLCgeC9I\n+ewOjKBjzkncV3E9ePUnrbHJ+Diu0etTjzLF6ULlnrclwps69AYRiIinkqaeGeId5AVjxI0VhVAt\nZBOV4C9lk5VFcef/2s24WfQHiH7ubNjMTD+Nj3ARqJ13nKUzDPqV9e2Mhjgl3aelnPKf6c6b6oxI\nWx7o43elURJzxwH435g4B3Oh23QYMzNpJ5EMkKOEPS7dpIWCzd4tNxAakTxLhBWq7h/9d9YZC67I\nByO5b+VdEPRcasfEPZ42kuhgyGazWpyx7IhcIzTNAKyRkBG1ZWUs6XFpLGGgnioIqHtwXygXvvF7\n8V6gyo2sOgT0AaH4LvpRlggrhOs6+kcnqq56kVuD12+RjzaPUQz8qwWnqoUs41m071CRRpSNdZht\nk9eeHkVuQlcJ+S0zPtT7SB9wmHzp2D14eJ12shZ+d5BnqXTHHKvKlmDvdsBnQ8I0qLH17PepZ9lh\nYzjNUwyQr3dSNEYPSwRhkJp70fqHa30km4I9qq9LYEIplgkP5x6wRGBCS6J2LyjPSN/7jVr5Jgww\nv2MAVMr0ecDjV6c3iACEG7rWdm2gxZNnQPu67akGTkTLg62d5ML4PXYRAmVsgoYCTdQf2hJhbxnH\n5wXNWZpYDTGdnKfVw6wMVfvJi2P7PppBGQEqZwgZcq9rok1sV1YgWM4tbYM29cCrLMfOiwTlYzwK\n3hqelIz7wjeF3BNZQCptdaxk0VSUfuIARWX90/wmAAAgAElEQVT862wQRvNczqfAiklK6n2sDzpv\niu37etYsvHGOfK17UwataWYsEdCl6anGRV0eWsEf/Uh1P2M2DgQNvJgJxnIoeD8Zj44wnHtSFbQT\n6zECM64xlA2jWOOdYB31feXdua257RuTSQd+a7KuD9SU4d0bp3rMhNkscE4gkHz8LnsLrJk6+KLX\nxrsIvywX741tnC8G7FRWaThvTWwEYJg1cDOKaaLbg6DfBmPIWiJk+l2piAX971yvlBFTcvY7XY+1\nROgUdoEq3sDrYTVFv8PiYIZkvK+4zjEZnx+ITHmCPgvc8lq4wTiXdRXmSnaeidpd+5fMvutaHhAR\nbZu9xm0Bd4YVwmrFQrTjSinPwrjQ71KF+7IeBPXruGcIFgiIAHsp8+S/7FnNx3a97SowoqAO+L/X\nmOCeBC4XxyN+f0X8f91jY3cGprclwpt69AYRChm0UpnJYrAXM6kn0FJMpSZrCpuMKzPbhwg//F87\nyR+pPR6/C2hRGof3uBrGyZgIM4TCaZ5gwE0ZVBdHFIQwVkXEYDZt4XuhLDSh1Nci0kKKYezrCzTE\nbXoSdZlKj3RMhFq830j0Pc05LQEMRO34q2Pf32ilr5R6YwZ4MuWoYrzytR9p3fRahiHKDf0qZjAS\nTvZsUzjeaXXSdnnAGAQBA7vlBgNT1zF6jaZt/Hw57oEE1Fi+RN8fjlMZWYJn6/8VHEFNQpRJp8cw\nGzmmM+1mQMeRlgv7V/8XuTUgovEkJbSjkF2OM4JrJMCsrDwjMOEqjWKaaLACCftRt5WBm+9BO2e2\nTjTZtkc1B3FgXEmFcIJ6taxaI7hxa7gsrFfPPUThonfv9AlmZ6gASky4liQZS9cX+CkLAXyG4rnX\ne2aYzlfMw5xrA7ojZpbXDyuljZqq13ejGCkj/Nvmj4SPjYj/qqDHuHUYE2HKEuEHE+5T75gIPr1j\nIhz0BhEKGR89tZGjlg53OuOzlLJYLTwM4tme11SPmwABuRRU760CrC7zsWXagDn6EF+v3J4/1pmN\n22MigDa0RpEv/0s/ZwFOUFsdBZ3smyu3z2KAxV55WOyWPM18+Y95m7gpIdXAdvZatFdxNq+nPGsZ\nolGgKD228fvIPeaZQHLvtHWFPGZglN3LxtS6xlzHsTdYAI2fjcbiXfy+LEOT8U60pse4UUnE9gLO\nqPUqNNWfEIZtG/plrZCOoWJiIsg97b0eoDLbf0kDbLAe1Ta1orPWiqMsj+OjGmvYzohACg1kYqDX\nb5kB5OP8CWXcFaslCqw4us/7rzdfzdxfENyvBETFbBcarMG1f2a56bm+6P+xvm3CB1qosSv3lQEz\nXcL7RuSGdJVGgWPR6u3sxiJB6H5Chj9yp8jONSQDOqZ4DbYVr6f81jSbPtNnHwaKiwkyoCb0xWGJ\n0N7Dc84EM93r/2dj93hUAyxCozuBFe+kKlnYmAjWuu5zgMo3/Zz0BhGAvMVX0nsJw40PlU2/rLnb\no4IIiPoiE59KYSll5epQBBUxr22ZGW7Pt22nJ2+S8B/7xS65MwRa5bRlG0inHHfsC5X2Ek2lw2oV\n483HV2z5M2bzQ01m83wRvNAMunRVzQWtQQnoWzQn5z/O8I3ONdSOY73apBBNShmAqsFGHc4vMB+o\nLj4tmHb4FgKTDOW7zAUw6yN3giNf9fnNL1Didika57Ud10e17nLrglBrPO7VgACsQxEQ2rNcctqi\nKZPjEx4IC/rZ0LJngtAVamTVcMxFXJPbencAF7QAshTfLTo3qNxxeD6db2r85XNzbEAEMLNFIVib\n/es89V5bsc2SxjZX6xLM0oCvxV2lvzX2X53H7dN67obuDChwkJ2vCMysMMRo4SHgwnZuJkfCDbpN\nfMC3Ph1YUfbz9UdHfMNdYIIoB/j8yhJpN5Rq+h30IQu6o6wNn0HeXCOy7gyJ7P43osaCEvvCLJax\nOwPTHZYHPcK9IMHxVJlqXWd4BOOeYPyTXc1FAffY3YnLcGSGWwjnbxTUcoLPMWB08zvYrN/Upa8c\n1+cz6Q0iFEIT7kjj1CNBYPdEe5BOiQtcCmbEzBr4arYasnazrAtchxExgYr8wIq9dH13EvqKfkXS\nPGk1bxzce5f2Rph2ZIyP41OO2re1FSDqM8yI284ebUpdzW0QBAj9b++iV63jy0HxUmw5gjERZsgI\noM6zM8zDHXRGGxTJasikP1IMeCFzY7Xw8fvfHRDXasODehkQmPg0PaBq1Nf6b3RxiMzjdVrCK1ZT\nPxOd0aJtpv/a8fdI6dScsIA073cI/rSgepdMike1p/N+XgI2IM/R40FQixyBPzPv7z1rwbIWzOqC\nGGFgaDjmuv88n0fJT9j3EIAXUIE+3WNkmlaao9fMMMgs9ltSNlSDIH+fTUvvHtzduAmVIytM2J1B\nXputguncPjiknrYH+7wTj2KksOuN4btcx97026Q3iFAINVoamdRC+3FsnzX/b7ElQn2m/f+x7bTt\nW/MfBmGsOW332mYBJVokFbXKDbFgyeCB20J8ZH3lNCa/iKB2zIlXo/J6MRGG7VMCTE1X5z+s3yUq\nHgUIj39d1SBoQisGARWIy6yMUZZ7Wo1Bz0UCxzGPsy64Aztr+kjNM5hS8K5o3mfcGeKAduP6RsLI\noRUNtDYA/sxkZ+j66MK5aNvKcV8A/aK17LAGGryz8w1sfI76rqMyRp/BY+pHWiCvr6JYB7I+uUza\noHFk2za8d+KewNCnOa+px3jeHhc4vtx3ABl7bYkCi85QVLzXJ9ZEO27cGXeGO0xwLZhwHJ/Jaiyv\nUNW68vfj+pw6cBIIQjTfnj540BaPbnb4v/9teZ3zwdM923KjWBxVMeNUFk02VeGVNR+p7i3xWmYy\nEyBIAeceexi57mXn2qcBHNKn0dy7VzmAyq+e9SjPdRybSOI63MQSa/nmDwmEDs8qS4SqoCvHcn4p\ndMAMYjWBKool4MAFyvsX5+QrspP8WijnczLRr5HeIAKQl3ccswtEk1mbBCcQkHljjQRp/d8mfIHP\ngDem4cAQb7goiiAYvTFNLWAzQcaIlEDTWXiwLDGf18ANuHDg9mGifJNlVrCl7DPMyptnskw6a+7x\nUyfVNtQcMROPucJngqytUOS7hkxGpmqJgJUjUKBNJiPNtjEp7MVEmCBkCLCUGmHf4Z6gjDiwonVn\n8IJwRtetH3sLAJj2qLdAdxdzXZmQR12IfvIVJNRg5tzuPgPcnDGZxrbPaN+R0dMKmNFomvFFrWMU\nn7WNiwKN3W3FwBQxZXoNs8FU2yMyrsd6xL9boQ1BhermYts2dGcI/vfaij3tuTOYGDSdgIqz7gzt\nM/352iPce9hPml/jW6rWA/hddBaViFDowICYNihypzAjce7+9UnCqkbCYXcuTq07fnmm3D2r9JbR\nO49TPBprjIHFhUcVXB3vfyZeEpzrYLT4TOS6p68x4Tyy60QFFYeBFfX/k2jFilUczhW9rptMXdQe\nPeK5zgEvDR8Ina/rqQHJW35ZLFUavo/bWepZAE7q2MVVslPGCeld1soL1sPh+HtbLLzJoTeIAIR+\nkA8VqyCKiZBKLzLDkrY0RCXt5pmNwIobEAITj20nQuuFgUtA3utem3CDOBFHJ4p03twzMo8H4KZH\nPWUE/hfFA7hKs0LGnIY7OmYBj0bloGDmaURWCP3LI0pbIvGfjGIiyIZ77wb0aksEFJpmLBGiKMZ3\nmD8Ko0TJaqNRa+P4TlprKQqOFqBARs7h781vDECJOKUGvESTtNhPHgBb2+wDLToLiQilsK4+Adzc\nKCvTc78tBuBbeI+VOYoC5pYsmMnnCEDozCazrlZ3WC+fsURoLFRwrrPVGI8pXc4LLRAeanzYtI/l\nPCqTqvCJPAZnMmKwgtPMfWi+4xTq3PbFjCk69l6klZzb29bbvPJEaEnp9JXV7vfBgz2nEEBZAR4i\nSwT9f2QFFJWfO3VG8Xe0O0NzsUfaVSawROi5RY5oJl7XzLCftUSorr41/hO7L9Q4UCXldT6+xi5z\ntsZywibFLgRpPE/EZaHsOTdlaYiAIm/c20CKbhPfBHS39c3PSm8QgYi8retH+ucLMwsaWQyM41k8\n6IXyuKc84y0qxt8Nz+utI4ZgBkyYJR08zvtPNfESHbrqtfZuZDWiojkPNkVXSJ1iwkqflgrxGR0D\n4ThWJrdea4/VLDV+7/QiwX+VvEwVK0JCxPCiEFKve23whRsug48PSkZQxjlx11rirQMjWpWtvPke\nZavy6kGwIGKiNeCVMtxrGNa43jO0Yn6KPtSvoug7GWFV1p4sGrEKMBz/cXBd1kC263lbHo59rSmN\n2uUJN73//WfiDp11Y6j32/9HFu/H+IsBDCKtpaznkRYyktO961wCghWiMdZAWOT3byqy/5vsDBin\n5mnB6igrQy91cLT3W+DQGW98jOakdmeIfC2gwrxnEwBwB6H3O/eFWLe0bcXfRHOWCKP1dgQc6Hui\ndhBZ0HzGcED2CzOm2JJDKQR2jqvBe2bbjz2qxbfrE1Iz7oJyw6DFnfcMXVOVawK6/0o2tfLeT7W2\nXtq/xViG+fMy7iKFHpHd8KSMdqzulKrbT27vCZvjrc3BvTJv31ka3uTQG0QIaCrAz4totEDXDTeL\nFgMtESS1Y3KWhoghiRatThdMbSa8EFN/I2qQYr5WjrxJPgmfaZusr0X3aM2dcV8YvI4GODBVZGTO\n7W2AUT1a4zO7adXPVQUd3MD5+D2z5coOZSQVxd3v4ztI918FvnwhW2tLTXaLL7ah5c74i2gnOhUT\n4Qo1Psb6OjAoMzQD6KFlAoEw/iqMdgYgwGCfUcBSfT1D+0danF69XhsxS4vxu5Vjlv8FTCrtFGG3\nPMTpfr8LKG1NVkfkuvzcAOj23BheQTNzEy0RMIL7R0p2PVpof/127ZxAwaYbd2EPxFA1MFnwq8JH\nOS7s5xFw2GYCagXzSCBvLOWgDdiflwIrqsZXwASPfpE6S8PsFuMFU+2BbxHdEYi5N76HY9/rR3Ot\nX0imNNy7LCAVVztDq+tP487A7rcwJ7PwJHWd1c8Txa44bePgo/IcZIBQOssOmJHl0Kt98r8Yi/Xl\n6N0/B71BBCCToznVgCzVF/w4iAnwL+VyMUXaN2sWbHLMShC0LNdrQEWfQdjg/yN9HkeTLYwIgAeo\ntVwiMYuuz1sBsy1XMyGRRtv2ie3zBAIm+prORDSPzrk1D2djQB/7JIwjP5Ppm4mmXdoEXIA+xTgA\nsiVjG/n/DvAQmjKqfaoycuvfHa1bwowlLSIAx3bOJCjr+N2WFwE5W7qW234lFsIdhH7fSNX8ch6i\n1L6tNnhqO97QTF//h+4M8r/jzjC0dv0Cm6iMzXL+AWNUA67mWQNmHcdnhzmL0pPOUAQ49EDGyH9e\na6u/4UQqi+PvlUKeHAOGXYx+7SkZOjSam5psbIl6RHeGMJ1np1xugsRegKO4M5yVFYKXxHWizTj0\nYyY1xoWQvVoLYaMFZ9a3RFGWYwt87Pp39u8l+P8sjeKRPIP/NSEYh4KuTq0cN+QKArFO3ew6wdzb\nnMmAvFsESEq66bSLGwPyyR+wOD7YzYB0isdSHvltOpNW3SPekyMwwY/zw88iUHme0PryTW/S9AYR\nAqr5ueOJcyXdzUwE9Rp48PzkNc9qs0C0PPjO3CamhjqHekbPRJYI1ecsm411BqVHBjE615t+9FZG\nM+FUHMnPKwJvZFbcY0xG9eScTPtrPmy/3ss0sKPUY2F2kz3Tn37da9evlEmkhYT5OWNjMEyUP1gX\nGg06joeJtWuVOW7cT6AM1GAyo3cEAT2uzfoEu/esNPQEoRvQrHX5Utk5G4kxChCpwQxZf0o5GvAk\nInqUG9giIdGagKLbeDehGbZHuPbOtOXM9zAgYzkyYKMFmtDdrlM+7hMfMI8lJgIIOERqvpoBt/vX\n91xTPOLcL+eS9pDNo1VqYK2Rd6tVhOXaZ2APUt/TgGRBB2ZlvpDLeyW+GfkXuc+zNsJz/z3zBGbR\ns0L6ilpK2TcEbAz4P5EKtnqN3RlKDC40qZ+ywDLndhLh+hpRawnTHk2ZDq9tXFJhL/X2VtzD0MWt\nKqnqHKoWfqVcLpYXXu5Xv+lNxWhJlB2FHVPe2/H9pnupDV7+26Y3iEDtBOb19ZuTAQGDkDEJss+a\nnod6JmD0vXRsYkolVgUta4yWCoc7Q2qetQEW+XppowqsiBLrHVNC/MAXSvOEcdTWRM/0BMyRJULO\ntQK0cMDNRbcHo57zOZsLewymKAsB0FghFEqjIJqeJcJ4U7bjEDdatBxp/iy20zXFY3vvFSDs10yz\nwq9msj/LxcrMgcH9XY36i/dbIzhLvZY5vCMV5hmK1qw6V5KyymnXdaMFU+8rr8H7Tyn/W/nje/n/\nl0/6Fp9F3ty5wzoGxyzGRPjYbPDKYZnqN8/fmvUBQYT2mzc0Ams7MRHQtN+00alP9spA+96aoCf3\n3h7x2P8GQI1Za3ofe/dXUc2nGXcGtDwQkJCrSy2fMElfwTpLk+ZbovXbBKhEgGqBGldKLv/Es4Yn\nhHvPZNBJal5JVgawmOTz/Hw0189QI2RiTIQttefo1rBAnpJv1hJhz/Pf501v8ugNIgQULV6vpNlY\nCN17AlPnyQYQ0UULCzcgWxG2B8uVNk2ezVE/449tfO27Jbcki7MS2NHkEgECgnqvatKjoFNcrNdX\nRksiqPmNCLVuUG7HjoeWR4/bQJXOveXIAP5dfXsX9Uz9ZoS2MKAeHI/I0ktNA4uE9mHUlNxNobty\nOX8ky8S8khHPOU2DB54lh5zf2agFMvFY1DUlNhJRFUZ/V74tBwM8AIpWWAuDan2R+dWjVwX8wrhI\njSUCmDLPgEwYWwGP3/C6l2ovIrAuzHu2ygKgUcYC95le1aCZnQEe0GoL97KmjVFkVQQTFB+D6x1q\nj83/N2sXzyyrrwD5tIvokBTjlNkqNRh/d/DHWoGBliGvolWA/CxVy78WLJCYCLxwdExQR/PYrRcs\nEVYDiL9pTO/sDAe9QQQg9AM/GIbo5vao1+iqXTqO4qcMWRJ0rvKRTy76Prcp3FrQABH9MDfwSQot\nLMoxp7Qc5V8DHyb4nkm7VuopR2/TQSAI1+CUyEQht24UOB60BcJxD2uonnJviyboMiNLhBVmI8kR\nUAsuK1uGLWTsJhbCKJBQ26jyfbb2Xi/eBX4XYcjBkkMrWJ/UPjNjhi19Xc5lDjIjKZY/E4WdoAi8\nilJB9kgDLSjUjIrrpUKMrKt6bXjV1hlFhO8RalowHV/tc7W2wFpY49K0x17GmZk+wC5dmePeHDjO\njzZpywssV/pgZzChrFcqG6vJBR60EcfWXXPlswIpXiEENx9qLzBWWsEaqdeAuh8eF9Hi4G94HL3/\ne9uzXC9a0rMpHoFEBgcQ7e4AbSZAKbZD/daxXoiqRQLyOkFFZ5toqCdkRfPWA7JNbKVBGaPyzhJ2\nzUZ2PVouRBHyk3o+nB2qR9QG/+E7Ldo2ZV1s43LNdz66hi4BRnwzpHTM+9xeTLQGePG+8fVX3Tf9\nbPQGEQrhhJQAXWrBiUgCoIiksz5VV6Kiz1DXjDySMO/clLPyq2ThUKphdLZ9Zy1cjtwZzpCszUpz\nh+4Low38aBszfwBs4LE8M+t3TFS1aroZ3EYRKEDzaIRl0v6nLSLNnxiBqj0n2rf23vrfwgu8mFY2\nagz9UcsYgwej1I71vrht1leyLXtPqc4JeNYEYlXz4Q5LBLRAmMohL0DUTJ1z110fazx2KuR3w4CH\nTGcCS2HMFi1kodlzj+4w7ojirjT38A94V9Zs/w7XK6ccM3a5bO/78Pg98Y1nwYOc47kW9avXHixD\nAERnPkfWRBic8yNZUEfuDUBi3d/opiCBFMXEOjfHtsHBXu39H1gWVjAhllb4EQ7KCeEGFHhf08vV\ndIl+k55O06O9E9tKub6HBHkW7W7UJxUwQSC5Zivy2/jM9d1xz7TAvKrSNqGtV84zv0z4bET+mtnO\nyUcwDt2C2NpA1tLN3jPMFFBvj6w8TJEohGf93+BZqsdovGH5FVCet9TV7i/T8RrU+6MVAc5Frl5b\nKgiQErksdcCDMP4TcNK9lL2Bt/M7sCLQz2Cl9xn0BhGAUHN1BFEqE9xENOcFxo4m8UnaxgKLeVZW\nltSeTxCavhsm2gs7LMxGOeeATJI/+lW6x5a0hjWMgn7DxNXagdUAWdqdwcZGOK7rzYqPVxB0/Kbf\nRPKsQgG2OWJ0eu4MsznqXQJ3hh5d8ek/A8ycIbYWYGavjr9U6s9wv/oNFhUIiHHZK5ohnX0A451E\ndCoYqgNmIqBxZij3xhCP0dlyNTAWBb49M996/XXGzHnWEmFlb7CxWrIS+Nv9guPOfSs3aDcsA1IB\nA4n/6zYm7+JJ+iyAcos0nJQMc1zX07ofEbUWCaFLGxSircUQjKjxl45e/4DAir35jX7srrn5wLXs\nLtc2k9oxiDvgEe5pmFaTSQdWrBu4LzXmve5F+O6ReferA7P+KNIWMmY8Be4hnDac9qx4wZaPnVF6\nVb4VBNjOSl+VHz7d5eqBPPUZsBmF7Yfzv0mrWoKVi+LxO89jNfDxe+xt3+8Q20QHRF01csy2uje9\naYneIAKQaBvKuQ6sWG8qR+ActNBoUtuJ1hqFj3J9y4Koo+8ktk2nYROwQoDtshlzhGdMT7lCup5F\ngUX3wcidAU3JNu3OwPdwk8Qsa4JBUW3x6MN5HoVTEd4kEHRNqcapHjl1Gmsx+F6Oi3mYoLPAz+84\nv9pHMQNmTPwixq63kZtgdIGWVzcuYWDFwK1B+/TbueG/15m89vr5V7oznAm411giwDV0dZC1YKtH\nY4K5teuCgEsn5rwOyHQlnSFTFNzUu7ZqzrspgBdNzk2q3vKMXsvsmhVrp16Z+k4L8jUlGx7r/CEi\n+oD3PP5sBctfWLMNAWAfaj6ZWCODNuq5ciVI7J1lXKGedg1TgGrwrn6PFjBkMm5xqhy+VWIhbAz6\ntFkZHp3xuEKz7k56PkV0txtK7Yvj+E215XSZW92DRu+uI+kTtfqV1cCAS22cSFUY0ZbW58vBg0yS\nYyUhfcp78gV3hqpEsEAOAsq4nmNK3xWq4F1W+yoGL18oD44rJFY1E/cm6dB2v2/aEoLpbb+Zsuk+\nYOa3RAf48u44ojeIIIS+4VPaPv7LkWQxGnBYhIPs7rChSZu854NULj3Go0ZwLhuDQfKp+b9vPuX/\n57ozMAAg5bZleH7fEZr9WYRGG41PP2iUImDAVRINlAKNCbBsrK1g9KHiNBC1G+CKya+9Z6GvVSCv\n6QoKXdmEr9CMO4N5Jrj3LpO2KE4Cav+PmBxzleL8I1JgEqRlQ1oZA2e6QD+DjOO8Wa9NswS4rss8\njddk+38U8GtqPg3+X/Gp9YBEazrfCqcipJ4Ag/quJPPljMrouxZF1+OHEBzYRfiwLz8KasrUxEky\nwG4L3AlgmfTzB7HFQc3KsLfHR6sAKC9wlMsWCGj5xRVKSr69ajDZohD285U0cMLqwDKfKdm9C+7F\n/3PWoJ8FuIic3V5JmJx6Oj34/YqiZN+bc22JYIoL2qxdtl7g5SnkuTPMkjbK6N2DFPKyYWFZ0mmy\nxtykQV0AeyILldr3dT1H15EzFAWTnlGKITVuGtBudP3S7yNzjccsfG6+Lg9/p5B4rnuBgfdgPx8F\nVtTjfEQ2+s6b3vQGEYTQdJHpkbL4JpqFBzlWFaTMBOkCzawUwZvpY6dcckRmYUR8YKAJlAaWCGRS\n1HhvCxRFPZ6gSKvnURTEDy0WvAj01YeNVWLLTTUWEdonvbYleFaYm7ocV8aRz+s93rOjaxHZAF/l\nnPC81jsSzHs+uxt8D6TmW4slzZyE0gPl7kbEZwSU5TLZ93RiAM5o4dFHNrLK0Mw2ZmBhEqHAYTIQ\nrERz1BXXhwxHXccoOOIVprATwHoqdgATrllnNL0GBIQ24m/9TBT/wqO6JlI5tt8+UVZWUsexpiRs\n9zStPTdBP3lZPfF9okd63/rMOJgBRkfz8gyYIP1ZNotnzkboxXFn49jUeVufbQMp/t7jWeoBK0LP\nT23UaN0IuHUEIHpFoACl/cONlVsgAHpWDBhQEVOz6nVJtLfozjBBOwCqNmbQcZ8WXrH0FVABQYnR\nfWdpZBmiLTmFh2FTetSGe0zBCxCUKGaCjm+gm0C0pkKK3TJ57aRwD72b7D7b/l/7vhw9TWFAdT9J\n4f59JVCkXH/HQnDpnfHioDeIUCgScGcmoSzKzjVkzljo58WFTZOeyo6+GxRxknTWh2W6YeO4I686\n0Wu11Btl2tM8Q0WElghcTnv+KtLaRyKFgKNAcKLs23kFdumYzFf81ehVaeOm6+1MoCgSPMZhmaLA\nt3Xle/XGzgyQcif1LBCQIisnXHdnNLUeWIKm+ncMKQ8skUjwRjvent9FnzE3vmIQr+SAtCbeCVz3\nAqJaN6HsHj+LtAByau8wwSpH91eye2j77qd4IMgUNEMeIFr/i7S4BVDuvPeN4UNeRzssID+QPttE\nHOtjgK9aGVSwKQpS/WujM66jb/rt0htEAMKNXlsm1M22heW9YHKjAHPov0zkmRr7C6qYZeUUBrjp\nMiSRSs8EdAmbP6Qz5qkNUgz/CXPG5/ApPLNRKVdcI5w6lX96U19nL7P+16lpWw89H/k9ikYzW0ZU\nglCVI1u+of+0RzOfcnkDV51u3BnA9E6XPeLtrgRe/IqEvapdF0SpFsVCgG/7TcUqQEJLBM/EccTM\nrpg4u88H5Z9JazkrlPTIRnu3WpvovMnKEMQSuWOkrrgx9EhcwBxrheNYyxKhF9bRkZVEr62hy8/J\nXloVvO4CHqJ1t9VkHte4+9gaBKP96zLQfeEBsRDQAmFjc/1dra9MWIEXkh74EwwuaF0gsSfWCIUr\nnitomr6putBK5hv0ucsD9fwkiGq2ge/e3G4fwWwAjSXRguXBjyYDVDrg7XBf9cYYuzPAxEe+cjaN\nd1M8VKvjUMxSzlmNt2BfdNwZ4vLaZ7la63sAACAASURBVNysE9Qed+hzXV+1AOSboT68/swqBgIQ\nBmlUFKVEPZNp60sDXl+F8s+xLnwGvUGEQhswYGy6+NgyPR5BcEJmJNC5eyPaSs+mX3L7F2Rr0FYH\nD/nP14QhMKADK7Lf4wZIarVIoKZeTWLWBqZU1Zoih0JALDT41z3aYAF8pN0JkMbvV57J7XVPKNeB\nLol84XWH8h6BMOeBSh+BP+cD20qW6YxIM/qopTFB1qD+MwHw9NiKtEDdtm8cULG0UqJKPsvfMZgV\naU6lfrlybrVeDdR3F4Xv40yKyJ0BibtVx0RI4GZ1yuoI2+h8rxVQB90wmHCJdMc5M2HzzXVMxHn9\n5nqgjxx/WHQTM5ZgOZn9QZ5daGv4DuX4JGdOwBqA61GimikA964sQmt7fDh9jnntf+00ExdFgBYA\nofX+9AF9r9No6usbqTEKWRg4BsI3dmf4gGBvPXeGGznZjewegALamepc8B7A0d/jTCKbP8+aykcb\nHG6cFAMoxs+dhUaygOGZd49SO1bXI6f569UIRe6ymge5QhgoGQN3JxW0MHqPFaAA59mZd/CCjdd2\nH/egAeDVYKbT5IALCBhGoELPLcnbx49zr5y5pr7pTR69QQRqGcHKlBZtwAJL62nuxf/WmMy2xxla\n0Q4uBYTUKgJ1XWswVheanvYTQREm6fP0WpPOZiHlTX6FL0GBBf3Yneex+Ggz1MyMESSA8cJIxTOj\nA03yNF0yJVywRPgsujPw2x00Ago8sulE4wjqUZwD3fdonZBxrjvf64zvnwYJiBxAL9l77yCM4t2j\nKOXdFUuEV2snENjbUlayVbt38XD4KFKotpRCgO7O1Kmv7oMVdwobCM7eM2vB0OMFIuCwjv86bz8k\n+0JrgcCWByjA5J2s5BV0cpPekH+XWEs7xEO5K3WzGAAEQfF0sEImrpmFwyiritSxO79Z+WHNCuR/\njM+AKQSj+aw1z1H8E6Q93yOQjWJ/HPEagu/Plx0wgdfEDHwfB08U0haGz9qXTflS3/wYiromqyPG\nqbljLekHBvfPPdApGmYeAMVlyF7y9BUiGXju5Fo1t99tps8jC+Uo+Omb1ijTj+FpvyK9QQRqpzUy\nvY9tPpKraO6bwIp8rWyOResgi6XyY/ZcHI42+aii2wazeayvEl7OaRNVdqHYkV+g0QyqrR2VCqLh\n4euN5qB9ZtgufS+0LWIYH6m2zWg/AUwQrZR6v6i+2fbqMqxWtxUIVgk1sbXeicYGgSLQEmFLXvl+\nUd75z+yvtwIeRMDRR4ozx9i0W+c7SVumRN9/xte/WssQHMvcIDueR4Ksx/hg6tSZ7DoYE+FMEKpX\nkQEIYW63fvWt4CV+vWFgxbjPV3y4z3TBV2ZaIzAB3RkeKTt9mpp7mWRtJvsdjAVCOdpYJ7qRIMFE\n7gyqozFXfTXRtnxGaEltni3nZDOkyDN+UU2zH2CB0AUBpUD478Sg4jaz+wm6oTyzFRKxut76N7JA\noOb6eWHk0nyKHnYsPsRadYG/jL4/AjvapYS/w0cwn3rNrfX2AQjXIjUAlHcFOkVpxSOrkj3HwjwT\n9quriAwYuhqLpIIVmO65Bv1u94gZHtFYRP+MTNebXk5vEIGYqWo3L9YW3GXWFJnQtgJmWfwYjBBN\ngr8Q9RBJXETc5/fKVPboaGOCa9yGwcMLpJk1zP8+Q0YYBUbcBhzLyiqivceWrYSS3AoqkeuFtCN1\nyo2YTnUd24YZRLyi7zBdHAbFu1jJKIuFBlzQ7FqyGGR/nOw5GdceSbvGmy9bCXlCqcS56DMk+vtF\nG3Nk2r/r30FcDZsCzWaLOePLfEYLGT2h14Kaf7sFD9Aclcv62LSgXI7Aw4KyxgWVcG6cce1ZoVEW\nFz1e5Bqfw1jSgGg4hqSsFhw5Mtkk+a3/e4BgJh5HyYKxCM5FoPFGCnBoH3HmIN9X/5A5ObFvRHsM\nz01kcjdKhtGdmRubEhR0+RvzAODOoIVtHN9P2AO0pl1iIDwiC4Ryb/n/+SzZmryw9TO06GCutdU4\nDlG5ogmFq5HlUkp1XfsG5upTqbUjMtkF7uPfmmJ5XHbuMUqOYD9JKSlBrzwDZWC9x/M8RrE8/xnP\nVUUVZivg68FERRcwzbsh4HkHVXcJPq//WZestm+isnpkYyLYMT1KH9rcK4s/tMU8bO8ZxSbTfb5K\nvf0xwabgZbT57VIarnO/FXqDCIWiIEN6IRLGG83/ga4EJDye5wWsIo1ERAnON3XvuMx6FPAgte8j\nOWvBbKrnzjBlWgULcc1f39KVDV8/ucPGLcJqgBivUh0TLQCRyD/2yKbTOUi7M0i95Thqf1c7wF0B\n3MbBL9hrvXN3t/zKqkagfvDPuffQt81O+9596BLDX0S7NdRAof02yvxVI3EUVFDauGKmyvPN+c8A\nBAsaphVC8OVOBlavf5H20f3fART88uP/rvTTBtonLQxHwQN737J3nSh+zx8ZWHEi2Yl5rmqN2/mj\n24OaPdaoi9CYa1/zfRuAPBXsKe4NEnupPOPFOLG+geHRuCoB//BcmOMzVkfGdQD2eT0+0E2LLRE+\nVsZ75G/guDMY7Te0ubpilOsK4h4p7L10jisCZkS9T33GncHcO0rxSET5e/uSV5RGpr/4qNizCkiN\n9rbz7Wjb5PPa1SKluAJRtVZ5wriuLjKFj5Y2Onwz8uvMe2ukHBZZjGc2A3DMkv7kuLa/LRHeNENv\nEKGQSbOkGPWQWQ/mbtpIuTaIRCv/NfcqhmFn4Z41jft5RDdGnamuFiWQosm/fGKtcP2v14s52pE8\nxjfYHS8S91PEUPWC/1ntU/xMJNzMaMoQfUcT5zkgpw8QuAGeznT1q1S/ASGj50VqNszYwgD/LEwk\nGhdae8znjxMBFHdgOASoNIKG0zZkSIM6tJZahATI/47Cw+He0tYzGkKuOwNrqjKc38T4rFp7eJoy\n1BaaYF5kn8HzBOd+TIT2nXWsGSLWSjLAytcOenVMBGvODf8732vE3HoUgTwrYAKSttqIgGNcR/WY\nNkFA2RIBTY+BZ8g5id+6KCjKOQddw+w4Oo4CCtJ3xELQ1UV+1jP7vxfzhUiBWix0aeUHoHNyfR/X\nGCkyvKwNuJckWPm80WJM3aV8AKrUdfkeJz7Lyv5U+xQefga+CorutDjFvUhfj1wDZsob0ZoFAoIJ\nyRHe2yM2eadk5xw0di8L7gYp4Zs2yc1+p2RVD9NSiubBuZT51rw39BPpy15KbxCBiLztYMokizcZ\nNxjKWgv23S4E8p+yPCAi2jlIy8OikchAeu0S0MBIYHwPb85J2vYZhADOVyBjIan61/hU8z03twFN\ntZHREh/AifqjcZIpVf+/IBiVlOEXDMdy+KSxw4SmjXeVN+POgM9UE+B2fPSet6437Tf/SLtJWYqx\nEEba5LM0FO5Vm7hJGANBknc4ANsdI2XGEgGDdzFFfrHHM/e1LTI9buueK3PP2qyyfQjBGW2JEIEr\nXqyZiKImjubMXXR3+RGT7PWVdS+BOQ6gWaKs4iy1bgwbxEuSImaEnshBf6JzvHkwiwGvYMV2D7UZ\nQ77B3iZjdQUwRSAlK83yCwWgq+PwjDvadNnlOMWTeIucBqWoBdLaY8uT4O8eOQkKQg+LKyRxAxzr\nYkzx+cTrWcXN4GdNW9tnmro9XzxSawvz3s6HSsKXc322HnSPxjZM8XBYLwDNb3qTR28QAQjTMD22\n3SyUQsLEH0cNHOj0iEQkq7ixROB6Hntdw0tQBF7sMiwQvuDSbrqyqHubMIAFCbSS+A7blun5XFtK\nvIjwOhAMkRKG+T5lDYLmokyyAdygTUnO78gX1Dv/iAKXJXuv1AMM/RlCEEGqUfEdMGc8+jB6hGby\nKHx0WzwIrHiGGlM74JEjbaT3zLAe9dumV+V7KmNKzf1xG+qYmpAaqb2F72Qh5JuySOC1abZvtasK\nalOuul5FVIOL4pHH5UHHWK2/iZSlzUQ9GPcEM6esaGRemRGmrce/nrMn+POxgEiQAu9oM6xDfI+k\nrS0++Kp/LdDFjTj3Tpo8a6BVCwQ/WF0w5ztWR7aM+NmRJUIda9U60YxvCOBRXdCyfAdMOYeWCEz6\n3GiPJ6SsKONKZP68NUb8PvWiuoeB7PC9yK5vNW7HeN5W4KQIOQtSPMZvgOQDjWCIaS3vWB+8EiIX\nhB7NuJcgjb6tuxcM9gcvleAIsMhwbP/zFyIDrjt9hXu1aaviow1PH8UdOyFCy/vlCSUK896wL67Q\nnq11kawtwAf2yPI2zPeVefCFlHtfgd4xEQ56gwgBeRuGMOAsfN/MiM+aGVawwUZGlhQxGJwFhIfj\n+fKfgAnl/DtfL7d1rCQQyZ2N0aDJ9aVG4R3/L0cdjO2zlri6IFehvUdn0PRj4WYkmLVcrXCP5fY2\nZfxOtk152hKhSwOGTv89W+5XMhsbBaAjii0RsAwdiBCfZc39BszFYyGIUj+1Veqer1Bv/qIFAtei\nfZ/viGMwCy4e7xkBUP6ze/D7M+nMGhI9o4Ebk+qxnPYseabNh5Wv8GdZJ3wWodVZZdYLQC5uPLVf\na/yEFqyNtO0V6EtWeg+O7MOev+e6v+tyyNkLdJ0nGOOh1hNe77BEOH6zBcI3jguxIqhjH3zfm/PD\n6tLhe5pHE5zzO7S/p5oz3/LbaBTguusiBhpuNybCim/KgMI4KwoQkd+w0WITe253Enx5SnD290Eb\nG8HGyMDx4a1tI7BeqmdF5Hf1JywyGXjsnnXNXelbNb3dGd7k0RKIkFL6C0T0vxLRv5pz/h3893cT\n0X+Uc/6TN7bvh5GXPWGFVnK6jsi4M5TjjNm/h4SaPMvUnpv7TpJdoNvrUd9omesun+az1GN6Yf1v\nfI71/z2KmJseoYVANaNj5LizuQTXDzR7XPd04879/eUJ06S1/7Waqzo+OogDkM3OwMcsx5FGzMa/\nqCbv1r/8mqYlIvserZDKlNI18MDUu2CBELqPleNDXwt8qXvB1aJpiOt489/k55hLXcnnx9FN8QjH\nu9yAiFpLhJ+JUDjw1lNMh1szOrRl6Dg2YoHw4ECKbRmY/pkpZ21VUMqdsUQw+21pG7XXSY2XaL+N\n9426tsgaA0IWtidRzZxjMxy1wSWb2C0X+BEUCmubCY71PhQOZT1H8N7ZEzAWAvZF5Ec/Q714P0i+\nYMt9Wvq6G8RkuXlDwm9Rq0qxNQsfBZjnsuJ66rdse7mnIIzK0KlMvbFCVL+lF/MhiomQywuJ8u9h\nB9HKKhpZTff2FTtP/RrflgiVNMj4W6dVS4R/nIj+USL6+1NK/1TO+f9W//2NRPSP3dWwH0XVL7+e\nz5oN40Z/NxnNQcrO4geLx8aoPC9iyXK+T37SR53bqMNWQNHlI+NyFDe3VWphIvTZnSopKD/F53Vj\n7teQlFYNGUl0Z6jPpKEPMrZJb0AoUKKfvDA7jk3yGRDmSrTfcdnn/nsl9YS6iDw8AC0O8DoGxqTk\nmK8b8OA4SvTyLatxBgzJghUQgouopTxLGK3+m2hk26Oeez0z7qaNE4Ae37ICVp1JoRu2g4Uf1dYo\naCZuK3eHD+H16UMCK2qA5SdH8z6RPJcw7j0JeMogDMzxNsVj685QwYNyLguRs49EqtgwMuD4vSSI\nHb/nJ7rzfIN1DS0RugoS2fD4yDzO+fZb7XJcVgSSrNSzQghmrFAbe8ZI7d2CdWpR5GkjnrjHbwhv\niCBM87tViIhgDk3tuRHOEMYSq+XzuQXE8DvgWEGg/kwcDk92QBdoj6IU8hHYfHfcrjf9dumMO8O/\nQET/FhH9pZTSP5lz/is3t+lLke+XyOfxhm20CTuyuf37Z+issFc1Alhg+d+xoniFeVREmoGIzPHk\neubFMtU8wcLItYBQfXa826xsAGMfwGvMWdWA8LtSc9xlR60bn0Rilo2NNSLH+XcYsx+b1baatFgO\nQEQcEXsQWNFF5fnceecfRVEO+lcRmvKjkI1Cyow7g3ExUhqeeF3yy9BtYerNDHyPqmFsr/vP+kDe\nir/+aNbmnGRMXonXEZd/Tzk45+v1eyrAuBOzq93ZefEzam2M1rqzB8r34nUWs184AXlHhkkakK8u\njOWarN/tuivuDM8sptEciPlZYi3Z9f2evX30jTVAiqkdp2KYoMbUBso5DuLWoLGWuhbqtl4RzO+y\n2unFUHoFyZofAARCe65BtgPhHRUp+tqIrFWc+h3ERujRGXcGpCh94hFXiOC/9igt1u+Bbr7oZsz9\nWxcQQxhYEb9FE2DxBXvam3x6pbLtZ6IzIML/QkR/nIj+gIj+Ykrpn845/4V7m/X5ZLVhZ2DmTvmD\nya1TSY4E9tlMDB7p7AwZwJA0kVfH+D8GPofdMsox3TwJR6V5/19JbYYWCTNMwAqjUBnQ9hwDUtIN\nTMiBtLcFIONlcx6/ZsN6lcARmeOh6ekMzbgzCJADbiYBP9GQjqRPZKOWX6VXYSQ1MGS7RrFFgvfO\nuI6NUj16TR8J296aaqwxrsSFcJR8D/WbKLZImPkWUV+kVJ9HVw4UVlcBgxFNBy5tmOqF8hfrdbWT\nJkCbfXsTUAzq77u0YZ8XgCrDdVLADX8PiI0Q0f5Mdq+O7ONVp0XCYY/5HQmAV4RufR7FRMB2aPAE\nLQ0iy68eITBkAiyqY/SuM9b/uBdEW6fHcp3J1rCLwgQAWInbtMflfjLC9yprxDtfw4vzgVkksjmW\nb674JQQlBGiAgIrGrUHXzffAf715jNkz5Hr4xJvedI5OBVbMOf9hSulPENF/QkT/TUrpXySi//nW\nlv1gwmwHRFb4RoRQqNnIUej2V7pD2wBCXBD0RYMN9h5oiudmgAwHcLm5SNSswXDrCTSYXlaGEaFv\n5tl0TKM9xPs/+nQPvFHKSErzX555ASKpAysymej1C5kq5JMHAuyeEyGyfsJCtmrEDGputV6jTX/G\n9zPSKOnzEXjQLXdBaEfzxgr2xc+gYIECNMYS+NjGMRGYZoTiaL1orgVCVo+M+0K57gainChvRDVg\n6P0McXZiSkRmz00QRgCTluqUMvoPN2nsOgHzkCKBombKgYY4bfssutMqaCYLhFFwy7ev/WtBq4MQ\n2K1AcHayMSzMY9yr0be6x4MEFgcYSFffg4ISkzeWPQBNP+ut8wYQh75Y2VNNnAi1B1XrurbcyCxe\nn5r/4JtKW+H4GVQtLHD94fO4/2RcF6uV9M2/N+/VmiV/b8cKWhh6Y6iec9vKfsjm/8Hera89YYwi\nwHdcW9sPPatIPj6ZXy71PtV4ecLYiSwR6js4gGUAXBuLBE0QWNEDODyLkDe9lt49fdDp7Aw551+I\n6J9NKf0VIvqPiejP3daqH0Dog7cyGb0Uj/W/7N4r53ud/FgnR3F+8ibZS8+HWifenDGHfMNcwLUd\ny6hlcfmvEJjRR/SRdhObQlKcJV7c2zZuSuaOBDPUxOlP8XSuuW0lHWmc25uhjVhvajRS+r9Qw0jJ\nCpLyXlxPBZN0/Xo7E2ZJzPSPcx0EmMvyGAKPumOAEXVJcdq2eUXI05HjI5N27D8tuMlvcOmQZ/kZ\np24pN/vPShtV/dNB8Tr1oQZfp4g7/o/dGWZkrdH89Uz8Z90ZdOpAzsYgqSm39n10n2P5D+gLXNva\ntuWmfCzzjhzsKamUs1g+mN3q97Og33Hk90OG+IOcNQrWFm+M4ZxChrJmdbFljNYhj3ANYwqDoqm5\nuGR9weWCi9GVTA+oqd113xlh2O+UJp1dAP4x6b1gNlizcTfYE+28QeGejc8qATrqY6MdVWC03XfH\nFGT3Dfe6R8pNjBe+RlT7fBNBs21ruakUBA1BSwVnoV2xGsSx2lv3iI5PcwZIwLXE8HK9Z2Fv26QM\nLPsaYcpy3CfOuDMgrQSabeNntf1m3FpxPVS8zitoKe3mCj8U3Kut7mSPKUFaeR4hWHfGiudNb/Lo\ncorHnPO/n1L634joP7uhPT+cbFTTa3iT1diDUD+xmN0hwDfxDTArg7nXXltN4bikSQBLBE0p2PSF\nGVio51V54JExsYJA7JrAhAzDwXS2DIEBE+RZrr8FWDyK+S+tbW0Rb2TWpR8vOnF+dqaGIZigNtaR\n9vMe4dR+d9TcYzDNqXgeUxYIM+sO1A3/e+kuo1gIHzi+pa2OOwMwwkgoYH8mRUIC+uM2TG4gaKKl\nwjOPmX90cyGq6/VKf0RCL37TK+5evRSPKKDh3NRuGrVtLZhg6vP65EUGvNGa/IC9Wgfd7YFhs2Tc\nGbBjtVqctcWDoKkzawHeoQU0dB0yezWUkaj2Ewf9ZIWJxNJJbf/5DS/HQDX8qgDXM5RW0LJCG8y9\nfvlt8dE41/yEAWbYWvC7s2gRlTFEzb13UNcCkI+lSaL9Xygj6ou9xATZldXvMKAi1XZUyyQ+cn+W\nC061VjET8P88Zp1NTyyeu+4LZV3ogDsebWnMh6UXraE/M2kLwN86rYIIfycR/TW8mHP+syml/4mI\n/o5bWvUFSKOXZiJi9gLPjynUFATXbxK6kSSImEqVZC0Q4LhAXnCXVTpjgnWmPjR53snfN4mIgKcR\nOgTtzxVeLAPnC8GaIh6zlpWaZ/eUQxNPLDO+EJPrk/75MuBtVLV49Rryso/knzPpDRw1+JhnXgcg\n+wzh2ZuTUQAwTysk7QarGaas7o8ANa/8qE2oqb87NSxqaM9QFaJgHVJjCS0bav0XKoYyNrJrirGo\nAFCkiXXxSUFHZykCB68Smlv3ctOjJh2t0pKypuJUjpiVIQWITc5EoX8JSjvqb3QpQwHtDia4ybIy\nOWYPgfYgsUQorh57ZrNOB/hAd1K5Pv/dERhHoXGGatDi86TXfQ2u6GOPjBtaEBOhS8bvxKkHBFh0\nZ6jt+ToClXHxcHmP9n2igIo9viVy86vdGvcJAjlJpXZEGQGbUF07HMABgMqRddCb3nSVhiBCSunf\ndq5Ft2ci+u8utumnITPZUTh3/rNljGdztKB5iCr6oHcFdESZwyiwtd4R/+gtutHCnOEZPNe/I798\nzweZV0pknjB94iNlg0RH5DEZyEygydjmzBOjze3UabNKtM9U871k7osEWox6XEETZ7MUTeIKY9Jq\ngQyzk5P9hoDwM/2seeaRIm2vFuYeEs2dwYL2WZ1ydlaTqcdA9A1xnehpLVcCAGJMhA8oro6BfJqh\n2ZV2aHiveoYBwqrNCxhiJ/bMCs6Krg/WEqEFE3Ln2VeR5wL1I8kDBCK3oytuDT2aiQEjFiEAuvDY\nsjFNchhc2bg4TuzZYbTOQj3NceUZYgHagufwv15b2EJkcgxtpC2VjprQ4nAm88EopaMObLcDjxEK\ngBfGUuOnHyxMvdg9SDOA5Sxw5pU1tC7ING2JMKMIQk2+zZhRU5bXJRkBAdvEGoMoqhfGgBcDBHlU\natd7ZZQR8lBeF0gAxXLUYIHXxt6YDjMpeWDChSwNV2L5/JboBxo6fSmasUT4d5xrmXyuIxPRv3ul\nQV+F0Je7S10E178u57x47Taw4h0KH0wHcwRp4oXawNntUZczEUixrde+zwqtakl2chgd1opGgfWy\nXSgtEBEj0aNFVqO/K5HmTTkCHiBIQc15TyDA/MvmnpQFjPhetEEcZIitHZ+w0R4FM2jQvokNqFjb\nMWLScZM+mMH2mSi4kcdQjBitCsDV+6LAir3AbHvKzbUIyNFkgaFyJH4mN8cegGDSSfXuiQTnC6S1\navyuNQ98+11qbcmCZSKg9dukAZXI3amWeZ7uClbF74N9xPNOx1uxz7Zzf6leeMZ7HwQ4ZoS4lcCo\nhvk3W09nXg3q18+OyjVt9Bh/WEe9vcjGCfHnpwYTorhFtk2lXgXoxWn4yjMC3taFspbTpnbU0eNN\ncSZom0+tJn1SkJX3rhZXGlA9zoM+2WNBtprlo+lFskIhnEfB/fTpHa5rZ8CJKLhlPztEO3Y3NdYE\nrOT9AcYOU9qqQGv51/XOCPf5DngV7+/Ix8RU5yQCEfO8qa7ftmX8DBLu0cKDRzw5kbg4RMFBic7t\nC0hvofhNZ2gGRPjmPPP/EtE/RET/4+0t+kEkvotsXldMDh+PbMwOHa73oBOOo7KJbtmYiFUG+agf\nNc663bOUd8WQQDaGFYoyR3wW8Vv3oms/2r1SHtIM4GhDmCH0Ge/1RBTssXev0UoDqJCAYfBepgIf\n7Sb8Km3eCuMVBBy/3KY4sFhb75Wyus8EoE4PfOK/uP9Yg18DkO2yNkVpaV+VK3r0TRNV4eBDxq4P\nIjxzZYyqKTg/gwzwQht/AuuVaM41ps0gXNngddxncedYq6da4Vkt09lMCavrjBcT4bMpamtSgnOd\nn8cRBV1tibBxdgaevxCsjmkrAWs4eJ1WMBiwQBrbHnO2bZkB5qOsEzNkrDMYNHOAldp/HBPhOPK6\nIOPbE1qNGyYAUOiTqG4xQmrnfcz4OzFnVobwKEDlCnllxSkeqd5ELRDFJGb3HCB3q+N6lkRjD2/k\n8WCv1IJvSmES0Rnew1ha6DgKcrEFBDBWgmsBuNCYrUh06TvLM76lD5M+vRL/5rdIX8mF50fSEETI\nuRUxlSvDE//7tZOJIUD+eZsf1he2MwQ9ej5jSwSbmukgbYI+H/G5/q4pKsvm/+DzuJxXBBPBIFQ7\n2ZRqFYGOyrAWApHSvWYssBt0hnu8+nsp+3T9TeR+vGdw3i0XTWg7396Y3gGYwBrHR6oMHKY56vng\n1YqYuW1O1d/97/cKqpk7eCxluE7luqUoEByX9XTYQ0y79RBzzbh9zFBFwndkNt2jnrYoihDfz/wy\nrpPvq+4YBTwAS4qq3eXr6vlBvaP/e7QCGPma+vMDl5vZ8xEnWtP+a21ylOJxBWDuac+4njtpFFjx\nVeV62Rmsy1Upg9qjX187P3Fv0PNBLBA2/zgVLyniQbjNThlRGmg07z5jcXNYz+B+1H/mkTwLq0Hd\nyp48jOXElggymK9ZQ56IjfjlqLdvoPut4YV2khSPZ+jKXs/Wjy33UukUqK/SUlbrw3YOICib1R7+\nhDUSj14fDwMrQs5t1xVaudU1/0oP3gAAIABJREFUbVU8lVUotOcrbrRvetMKXc7O8GunKf/EQk36\nRPCFwutnCBc+nZ5qg4UFF5xUEANtGmn21yAWQm4QVb/9d2SO0EBHbM4G1zuCGveXoM6OWRsGNxvR\n8Qz/nhfEmGoq0c9dxqNAi0yJ1NgJABs3sOLQLzV+z3gswTmdM7WLcmnPWCKEYNWEkNPLf63Ji4w8\n0kD36x3fNOvOoNMaSnuFIU1Nm3Q/YkwEBL7EOkiBWNYVoX/+a6UzUbC9rCp2PR2Xe0cf/wyBUrtu\nEwyElmtPkUnbvVW7JuA8xS6oKR6zaG8xBoJxceR6Fa+QUYAebCOe+f9oHLha0O4TB6HmnAlTjFbH\npeq2M1Z+lKN+HxPDaX7g2aj83CLe+7K61y+jb67e5ydsnJ97Fjcv0O9Rn93Lo8Dapsmanw2UX704\nA1if8CC2ePk/iuEUZYqaYEEavpLPn5KpgdsC90C/9fhb5T3TPKOVLhLg3GiLeG60ZXntnyG0RjRW\nTp1n3+4M85Tp3V9MbxABCHPKeoR5g83E7/okw/kg/ZL+7wqqXjcOBSKARJlldbcAiLGGGJmDkV2A\ncUNIIMAnxayh1ntg/HGUD8IhaoWijVY/EwnbGsTo+bgT+QJgZErYY97jNH94npr7UxiyJEbNPSuD\nqWByAdqTv8Pmr4IoGSuT3B57LibMpCGY9GoaaT52ymJ5EBECBM1/JzSwaCJ5hiTg09YKUNmZgzPE\nT2BgORamvoMFgtf0JMfzH3d3GEeisv6B3w8KiV72m2i9QwGK36c3XnDuzVggILXC7+QzmqkdAYTd\nckb/2zuuxESo1+YEzl65M7TyDMajwVGio6VHVkDD9jgxEcR6UPmvHzeTHI3gF+zHWJe+d0RnwCcd\nWNHE9YEsF90ArwgqFNSHUxbuz6pxfhbmBhUxZ2jFcohppj9HcZOaGCNi/t4vU/MMJsVjsTLI3/he\nqPc70V5sjcOgfggm6DWm37R6nwY4+AjWg7jf9/i/uJ7Kd0RZGXicfAdrzGeu37u20a9H8zEm6wP0\nI4MK3M/bw/Y1KwD3Z8s3PTvz+A76GUDhN/14eoMIQCsbvDE9UtoC4ws1Qava/GYjvGBuG7ppONQL\npLhcb2Dq1fPzZbrbf8ukelzoTuPD2PkWNahWv6zsXIsCLM7wvAaUcQbmExhIi8Z3Kgh29ww+gJ7m\nYAdQwRSZx/MIBRdfCOmXoesc3ueYR+8yfv36DMg1UY+XsjAyQ96hr7UbymcwBImqZQ+aK6M7A595\njHMvu0n0zFeJhdAbYzMrpJnrjvVUU58qFUG4BPeu9NHd4+WO2CvsShmBCXfHUbiiaTJZVWicVSW0\nEtIxEXjDE+0xg7bUHne79kZZGfh8U+Mj6kYEoRM5FkuDve2RsqR8xZR0EeVMDX/VPJPb6wJk6+CS\nMDfQoCOyfGzaQP5/ZyzaNFk/dXixBcLxj2CuS5Elwk2E1qIzgRZr/IRyHrA6vf4NQRltNQGKLSSv\n/J5Lrb0W8ctB2/Zq9YvuND1lYgIrJ2OB8AlpoX9r9AZZDppJ8fjH4BLzvn80pfT/4P055//9job9\naPI0CBENU+XoewNTLyI70WeE6VH5eL2J18CbLS9ay7XdS61JXLk22apEStN74kXCjU2OdbPh4nFj\njoJSeWbrM2QiVwfbfE84mLU80KDCbITuq6voKxZhHcMAN+oZH9crwk6sXQXtQ6eMEWDkrUUzgtNn\nuAQc2q6DMLUjBk9MMi4dhmhQz13j5qsFRpr5Rh4zOLYKe63G6gyNYhecBQTu8GO389hS5HJTZ7yd\nt8joR3zDkqVCGEdBg0oxzzEsPhCqvTmI8SEwsKJuRd0bB7wVt31PQ0uUmYVhCRifpLsUGlF2pbtm\nbQw2l/8xwGImGlm59TIsvJJOxURQFmc7vDsCawasoBfxK+DmoOf+yjvKPJI15ii3xlZqy59xk/yt\nuBG+6RrNWCL8VfLliD8I7p9RsH05umPC1KBySnOwELQI84ZfvW+Z0O/SoVnGW98X+9i3mpGkfFKX\nrTKaco/jKACiboOUAyiwuZ/sALe+45a4uA9YvCXtmzCbtS8ik/CPKN948pkQovEG+Eg9S4BWk9De\n1AazqsBUy6isfM8ro/pV2SZmKBwzN7bliGlS5k05Ph4tGIjzaqpcYBb1WECNZY8eZfBjikoeszUe\ny1HW0+GUMHNJZYDa/2fIuirYNRldylYCE2LbvDEQpQNcEQ/EXQLaqMeWjYdDzZHpcFUpvzGQ2MRY\nHbU6CWgx0X8DMOG4RuVaS9UrxT5Tn43/G1FkMbXlbP6rbWyZdA0kj1I6av7hOJIca4wlao4JOqfn\nU41aVxuwORG6HMr7pei43q8pxaBob98wPvyYTYDv+17nNfu+zwRm1rSleXeFntAcxyBK8j9aHlzh\nRRGwYR7ItUSQMSWT73hWW9SaOFnl0SAmQht7Ab9l2za5r/M+UQwLr8/RMgUtQ3Vbxb0lGG+4vuas\nFUotII6Ewbj1e3ApkVyg9yd81vS5sxJj8NYVisCwalX1RhUqnXP3/DXSDIjwz728FV+Y0jY2Q5yh\nKDqrpjtBAWQC9CYS5ailR1z/K7V2GMzmDOknbwGEzKai/hu0IdImz9yrKQpUVcvwmQ59PitUNxve\nDYtjBER58S5GgQjPaM5e7c7gUWW0BkiUQ5HgbAMv5ukUjltnrVlxS8K0gtw6bGMizbxm9yjBp+S6\nbYP1l8a2u03/VDrBo4XzVGu/jPBpyrAvb+PHlO8Tmv1fm+Gj7p8BD+ReI6jbZ0NmfWY+n4qJcJAI\nDegWkux3YjJuDAtxEMQUmeMdTHykEPB3MhMYMEniDpCpbwsAaa/PoyCToVsD2X7CQHAmQGDXZ8Bv\nnGfZKP91imO6w6plFGBRr8NRkF3zrIcHcBmdts7yRSbmBI35Pw88WLVIOLT9vLesAyqRBRG2/TP3\nj1EAYwRltk3/bkFuJNcaCCwaNjyW+/RcjfayO6113vTrpZkUj//pZzTkRxNGjp3i/zuxBEaBaFAQ\nyDlNWxjMgA2bg77qY3NN+RC291JThiawfDPXsa4e6ajXWF9svdBS1u0t1yJLBBH2UmWR8Fldbvts\noivxJ1aYdx6DEuleymg3Bib9LaLgT9HGvpHHaE20NnA2lQjjjla8Fzix+d9jll6woQ3NZCdozzn0\n4WcyaZgoHg/m26obTcaXyJ+z8/2upSz0n91StZb5VtY3tkB4cHCowuUwiPCRkhmTyOic0dTdAYRF\nGvDmnuQf96y1gnNtmdpyOmulBedSc0+dV/YLrgj+X42upoVEiiLse8sEggScJcmaDStlhOSWnR+j\nNngzl9V5ZsfvX/Z1Y9Jf+A4n7gqSdbPSFkK5+S+KlXBo3/vfTAeCro3ia/65vZ7MO6KlRW/pD/3W\nB//fTVeq0cKi0XpzP33Hm+v/HMwvCgBuBfSYV9R8V0QZjjaIYOFVJcCyTdFarZqidiTF7wVzQ9pR\n+ZdVodoDVmIqa46KifB8tmuJpIOHeX2sLcFLv+kllOkNrjC9AysWMloihYyjL2O9CY6K20zAKGDq\nFbmPN+WUHc1z/Y+oz2RGkZ9nNCGR6RMyB025QVnaJMq2pS3PM6dkGs1Pz/TqjMVI3azmkXbTFkB7\nq08o/2/fnQVO4SvhqLvGajBhDKH/LWWaE0kqtWbR7X85ur7Holo0pnQRCAj1vnnkatGjKIL1jGYT\nn43LyuZ3BIKc8vH2rFguWCKMNKJncsVLfclaHnwU8ODb1vZ6jXptx1DNHW/Lb9pKWaWdbNeUK4EW\nPXAONTnoWoHv4AeMbI+euTRq4NClyYJLWRhsfGerjbL1rVK6O3rhzTTbtOzN9WDMuKbTgQvbjuNE\nYjxc67Mze9tonZjVfHfrUHNQ9jIE1nrPB/2ypMSRcxj/k+ukJj0377BEYMqwN/Tm4syrj9rkrpU8\nNpEHnRA8hQcuj57NNOKR/mwhqL7gAnZmHEe8m64fUxtjRp6Z9VVc6G607NV8tFgilOOj7LszMRDe\n9KYz9AYRgIzJeG/SIfIt6HlsiYB0Bgk/Q9qvCgMpin/lA5+x5URawxkK/RGVrynRIWAgMlwjzbft\n0G1Es0y0LtnhY+4q7kDURi8S82q8Bt0GAxp0ikIBJRauxgNllNpqT7n2deA/6jLZEAuBbxENhmPV\nMupj9DnsaYKROVuhOywQNI18Bj2/ec93ukc6JgKaQqK1kQeMzeaKX8pNLcdshOsNxqwbMHLS/xr/\nJ4rBPxzLn0UaTz7DuBkz7wEY0gQJA/P0UY716JpH6G/8ayHXfQL6r0dxJoIY/BPhdK6JhwsYbnzU\nnqM2vs3O0K4HkUb1iEXUtq2OIb+1Zy2aRpHz3TgeUSBo5MMKOrc/k+Ub4P2ivcVr3ggAuLqfnFmp\nRi4DXhwZs1+w+4wTX6OOJ3+P8fYLE79gslv2bOcEP4uZo7pZNIL6OD7GTom+l5gIaG2Llgg6HtAZ\nHqOWU3jc4Fy13uy9zye31eeFEzlgztaC6ittnYdrftv0jolw0BtECOgOhHWFriKToXA46SJxlFGO\nsDPtytViRGfcGUwZE+AFuh/suf7eJlfBnUhWzNH+7+U/jhaRmp6tNmOEjnv/V8ESNIqBmagWRFHb\niZqylW8ztXliYMXAlFZTxDB4VM0X+4SWA59Jq3V6sSsQbCI5v0uj6T+PaaSIzgEz1uWGr2f3+vG7\nP56x7LtotGZiRommLQYMgf+dZz4rDWUNDFnOKZ6Dd2im7s1k4v9/XOtX5FkX9MqbJTSJ96im2y19\nL9fLkRwFRZUoShvvZUqjd7YC0xjVMPvJiaZG85rIKl3Q3aDhSTCmE5Jyy7TBJJeb/XKa7csq0NqX\nEBccYCR6468+yxVghTpA+Fwbe4KVuJnOFVXK65+35cP8WtgrUXHSiydyZQzJuGb+CAIR+3W3gACO\naZe3X4ij8KY3XaE3iFAITT8FwX3sstlvj/Y/5BR1ZFRr/tXWU58pC8G2m8WD63uUHTQ/4+W3mi21\nwoZJQzhh4leDs5CUuU0KnzPuDGcIhStpm2Jq0BJhVJ8O8DQU8tUGFQlKaMpdTa2T/MaUd2gip/2o\nIy31yJ1hU9eSuqtHlwU06Gwe/+/8xNdoZs7wnN7BdQoFd02RxZW+vmru/Eg1fsc3iIXw4DZSu6Z9\n26yGB7ORRIDKlrIB1FYoYjJ7sUbQtSzKspJzPONkDSO7Bpj1Deb81HiYfC+ic0ylAXcYrFgo60yK\nR94rIzBBP3MlKwOTjdhf5xWaP3OvRK5th1tkuVNS6LFUCPO2DPzHo86diOe4g7RLUE/Q9yilOrcl\n/kkGABEBtpRlXeB+4ncVvgWsNnpUteXjbz3K0lDviynKEJDSRBpKoJ7b0x1U15PqLhvxgMg/aeCm\nfoevsZ/rVozm+FyWnXbMYkwTz3owOr9C2VHYrUx52ccf/jrU43dH9aR3wIU3OfQGEYCu5Gi+ou2Y\n0UK82jrCRESeqC5K0aSv8wKWgdFGM2attQ6sNl+2hc1aIuyZQg4rEro29dukcgx8a49qjnsQeKjl\nthuFBjEQnJBahG+9uScnJYidrLYCn0RTxc8KsPizEFoN7J6qPCADQA0iQPfLsudh7ADxNbXCsOe/\n26tnhnrjw2qEW+CVvDVssQ36/jM85hVwBC0p8LqX8xwFo66b3emWvYZmAIMV//YzwAN/Y3wSQYXj\npBxLQB8BFVbD2euyzjwrj9ZNIgp6a1MUHvSRdmtlJPf4YLeeD5h+j8lLT3qn9xmaq99R9FV3hlvB\nA7RIIIdXk05oNTK9zEZRIEXtKmNdYgieKdXJsPPAzRaUi1wkel0eibxHGkW4FoBLvXqilJIrhBYJ\n7j3cx8VFVAIryg1pqNh80/30W+ZBNb1BBCBB7lQwRdQg1Jv9Ms4wAyllVwD32qYX2MjEMgrgktI9\nKSsjigCCHlWFjH3mDlPZVxGaNFsTbnVvdATNj3aBQFScy2ctDpNNiZeNlrP6tJ7/+Kd8AjvjIM4G\n8fVX5z23/ZupoktVCPHfvSdAj+iVqVYjmhXqN7J5yUXAiDS0zreOtCWzFkZn6UzfCu8GbfNT4fll\neONh9K5X/DH1ujSa035QwfOE/XNn8LpeeXfuCXoPtQBYe13/PwpgJ2ACgwsLHd0rewYYukJeJgp9\n7vXJMFjwmUFm4kLoKPzlGPQBVqf3Xy8AqlvGhCWCN59fuaLrb4JWqjMBFSWbmDTyCrh5HKOsWUSv\n7YsejdJl98ajBcyvkcm+FFQu+5Ubf4WPOBctsPcGGt50hd4gQqEeA2mDlvTL8hbnMCuDuh5lVkA0\ndlP3b/CsZbx72pn+ZhK5YMzSSMOIpAOCXRGWTkWZHjzjbTLGjQDdGVig2ixTWV0g+Ngi7znX/z4U\nI4Bt0Ne1poefeRphtxAwVx4Zszpoxwy9yp0hYvCqm0sKNYoYaDPn2q+zQAmmc/TS+I2CkM48g0He\nDk0Pt3sedDGAVKCN92gksGpT/gqOlbmwtcfqU13nCpZfgbZ27HoM+JWsKkgzWXAQ/DMgoPp/FBiS\nm8Z90lsfrZAzDwp62UlGAiW6i+m95+k90LQtbtMolaS2KojaIC6AxKD6oEF0DqzoZuQxwLFlztv6\n87Twhpmc3LkZ7dlK4XGXUENk19sZ4WomBgimIX0V9XzcNWE62VXCsVnntgab9ZpZ2xWtLa8iUXax\nl6yxSKgNQEsEe7Tln4lDgavanbEs9Fgzli8L8AV/O+TLPbrTAcBYfZTrMzEmohhFXlrqN6YwJh2E\n9rdObxChEArhesOXTT9itHnjvmBS2G9b+SHaGws8zAprZ1HHEZBgrCR695YjM6Mm1WO+ZJ35UvLc\nGYz/Ml9XR4yXUDW1yX12V0JItUAIBEAGGxh13rMaF8efVlAZfyem7rf4IiuppwEWgUQBMx71fK01\nKKHLWuExI22le+98sUPSGkJjagzrXBdENWbKfLQgE8ZisS43xc9bgWZRTIQHjH8U1FOq5TPdmZVh\nDSybLzeKMK5jp4yyM8y856s0z8ZFCmhmSRhZJGxkQcCR5b7/TAUlZuuJ2trVRsL72MCb2cQaWsnS\nEKWZFusF55lXfH9rUZfDfQpB56T2nLsCxTbERansAjaNNB8BVJ8p/kRTI8uknvURUoL7ck70hHVi\nT6k5x+NDgVhDUprw0TvfzaeNltGaTaFTBoy7mXU8cittrgX7eOjGurAn5E6f2+wM7f87UU1Jjx9+\ngmbjgo2yT73pt0lvEAFIzH8eapODID9TeXXR9x1BCgi8+HhkCYxWA98cS7T4uDr1YDAcTCPlti0A\nQyqTA5oQz1wqWKD5/Kk275VAX0QtYxwx3DPZGWSjAY3WVfOtKFsCC0g2P3syG44WhLzzwzT8eP6D\nA3uKdhfcGdjkUDFxNvhji+ivBEMLh/uep3fKMxu5XE9UATTzTKvhuYtGfta4oXr3GcsDBJtetCf3\ntKIyNs06cV5gbhji4JmeyXMdkzhvxvV9FmEsh8gt6UyQwSuUlBtNRJ6WF2PMYHORUUXgt0eRQK3b\nkqE/r/SXV8as5YGetx4o1pzz+rplCR7IwO3z2a6zaKGQEtUNKAqwSO31Tax4rKg2x4P0z++glLK0\nj/vie/uaQnfN24wmmRfICOhUjwK8T46ljcZCtRlj7j05/G+WEKjS8WpW+FgsL9ondMaPOwHcOyxU\nPP4V90jJaBPE8djUOotjpQcQjQj5d69Nj6AvZtxDoj317cJwnd4pHg96gwiFItRSmwXO+jRqn0kU\n6ntmwxsI7WIax4uIVz8LkBANHyO2bz3TyAWK0OwZjaYpI0yxZs2476SV8ACRG0J7T+nrUuAHaFJ1\nFgiMPB+5N+jo7tZ6wW/jQywRaps+xBKhZXK9VF3LKehW7P+Dx2f+f+Y6F2bVQX5093ERZ4UazyxQ\n6l0oxwp3LfiTcyI0AY7MGVtt1+ul2kSOxc3WjlkDplIWkCy0OChHsV74gTEzqgaV2iOYKR9frmU6\nkXprm113ImBofnTd0WseoMfl9sCDpfKpnaPRvPUsiFazMniWCDPazoisG4P/e7ncwF0RzTN6ddxh\nmeAJp8YyzghiWEb9X7SrnLYx4AnyThSlrauxEAoP8r2WjabfK26SZz4XWgaQ7LvluvMNXgkqa7eb\niAeNYnjp6yaYL7gz7LBPEak9LLfnSHrNjBVLVOppqRtMNfxHWczeuC/67nYHmTgHUK0+fwKj/1Qp\nS4mInrlYJrACZeEVTqVtfsvKb+rQG0QA2rZWm0xbpoS9FJkU7u25LifW6ncYSQECfEY850T0QKal\nrWc7AWcbiwSFYs9oovhZZHwsEwib2UXAIBKuI43wWULtRTV5b4UgbTourghgxvkABkKXWVPctQKZ\ndWfQaPlxP9f3HdwaKnpextAJX0CpX1sibAxmtfeYOB/Ttf1ctOccAgkz+7a1uOmAEhHg2bH4MabF\nsC7lJ3xbtxz/XM+HUOgNrHe0O4MAXwiIvkhtMjLvbdNd4jieF+JRYxQz04rRV9eO+v1ntlRjSiyD\ngB3qAW6rgJ5b/ossiFbpTCYGnVoUvw+OZaYZ8B67VfMMo6DOPbcGLF/OqZ2LM9Tbw704EETxPuy3\nEfaym6b+SvYRJhSCozLvpjuENhPsL11TIK1YrA3TZ+K3GKxxRJanWlk3PKAgsqDtuUBYcLsFIpKz\nDst3CLIg9QNPFyWBKKkmCKycrAVge/vMUPsiHqtfjt79ctAbRAhI+y+GfoiA/mcNHohNfZ859zZJ\nw0x0tP+Y0cFqLOYEjbMUCbS97AyeywPSFUAh9C30+hrOR5poPRSQCePX+QBhX7sXiAUClPeAjWhT\n1iw2GA6UD6h6IzRCW8/pV15Do+wMr16kRz7Wd9GVHvdAhVltWs8NycR+uYFb1xY3GMjRgBcaoETt\nPlgkmEwmMB80IRhz9j2m7w1AwOzcs1Lez0TtrP31UFeoCd35oIxOr0QaYDs3mwLbe0uF2dhUj7/G\nzB4b7oPq0RF435uLVaNd2nRjgMVdZWeo9ZVjOV8Zs3fuE59tVp7Iyc4w4AXzHvvhm3udfQr7ekS9\nccJ/YVnd1Iud8u+wRKi8YgcIKMdZ8CB7QR/R6gP2uKZozFByY2DKN73JozeIUMjGLKjHyIQwZJ42\nFcQGkEFTb44XdMvgW6bC+FNK+70Vpi13RMKsK4bkyqI7u2HqQHCjssTNNM2nYtL1yG8Qsrt+3wFw\nwmbl3HYNGKBQhWbfaPr8IMuMybPgI4tAxCPpFI98LGBT4Nbgp9obdKj2O2GC+eNRpF2NUgl633UU\nsMoNsAjzxzOPjlJ0YYDFp2lrqkEyL8AG2RxTcxxlI9BtfRVFQkNS89b6hOfmWX7mI+30vVw1cQeA\n0U7wrC4X29IbuaMUuj1wE92OrHaKj2lZ6+OtMRi0Dvs1U1LpRn3B1tQzaEfTZlwH87w1mlv3AKRt\n7g1cE86AfytuDuadzf+fw5Hr2AiYZjpFCMdNpl7eXCNy+kZZHIql3I7jMa4nys5gM1RMNFoFVPwq\nFCkp2nuye2+33HAPa486W07E4zKdSU1uMzg5fEQ54rpR17axQI+AsnvPoAPdvg/60bQx2X3JBlHF\ncxWbKrBEYPLAs+oq0pKOP3Gc13hqEc1YebxpnjK9Xvn0s9AbRAioAQEi9J/UPUQSJLGxXtjbTdDE\nDnByQm+PElCxRGXdOloFG4zRaX9zXb8HFAZZKNr0k2ETjkfY5GpBkzBl3hgI9x4TajX37fVarweK\n+O2uQkEVhjAGgaSvK6sKui5sycYzMFpVI5Sk0L/cBswCQS1lu7FBvTNp5aYI3BgQNMNgTq8mb1xE\nPs9IvRzf1QTzPg61if0B43oUUHSGNBNvhHpgztMFznsuGn8LgLH1TNo3cQPCVKVn5KGRJcLKONRr\nWhRxe8WfedRNrr900CYRBHKeqvur0KypM1E817ppacNneN/t1B3cI3H81BpuAa4K6hD54yG0aHz6\n19sYS9GA5sZ59bX7gn10fc57/beqWMj5nuB7tiHHwZvjd9RnLOeW1mK/jLM0W7cHuEZuDWjV2jwj\n8Uf8Z/YADFql0dM6kDZSFKRwZs23rj4x4dxGMOEqjhdZ40SBFb3GoryBpNs4OyTf2Rne5NEbRKBj\nDoqQhcL45v8elmmE9/O7BwIP3MacSWIeRGn/jDvD5vhXTtZ/F1ntodUAjlKYIUCQsiOIy6Lu900i\nu/5GTLveICLmC/3BOWDcQwMPAAxEUd6zuvZQ4ACRZQJEMNtq2ZwpQiwQ+FnZ8OyGhFrPKYz6Rju5\nnjsDCvh3VOsJI9UE83oFM5qRVwqAVxi6I5f23L2tBn29rlmgCee3JtTORJSzzyzrMqLzGZqxhOhR\ngiOW26sTtZChL/fJtkXE1azlg5+/+RWg3y5rjP1/xhIBffcr4OS3RwvaljeIrtd5YVK3zYBWg2CF\nSDslte+Wa4PPNBP5vt5bn7ExCm5YCMESQad4rIGar1MvKN6lcu8phohi7TiR/WZogTDzLUKNOtk1\nOFpv6jep7YnAljN9E/FL+j97PSiL9NTjOd/e3LNejQj7unEH4XLAnQH719vz0J0B6a1Fv053ul79\nzPQGEYAki8FHOT7IBlaUTZ+1sO2OmD6I0i8tPFmZgFIu+C6lzZqbsUVCjWBc7+Vm4AaQ0IpgYObU\ntAmQ/JrmUpULq3sUoCan6oMX+YX2ojpb893Sj4j6KvN8iwhDf0L9rXBPzb21HW179DMfnPN+a7+T\nCaLYvAeAElCvTudjwIPAnSGXQjSY8NhbsIIzRjwDt4YtxQh6V9s6CKzIYwiZbU3Yx1ifl53hijtD\nvV7u5fpTqmM1+898FqHGpZouzm9cbl8rRp5Izfkd5kpa13B7Fj5xDAYenzs9wZ0BY4r0ggqa+iZS\nr8yCov5YhTFK7bG9t31mXN/4HgOMbtUCSuYYC8gBKvOq4KYr2tYosOLV7AymTeHct4jUWGAuz+q9\nzYxR3LfUWA4s/xKe8/FUg10tAAAgAElEQVQXPl9fg5o9O9qj0Yw8t3vWfF3+Pi8CbOfZiBFHQP4M\n6YDQV8BaDMYYCsV0bW7dKZIY4It0dga+ib91mUdiFct7Q1LPtPykyfDgtN6a4UtjjuplCpZx6IAJ\n1WLyOmlLzd2p86gnmteVsG3G5awD2LyKBDhDeSDgsdvYXm9603l6gwiFbp3sJ2G+SEPG5DEFEpnb\npIdkECSPyxagoRUsVuiGgN21LNLR5MuR+LwK2breh7qnCuRtGbhYNm4GSpjWxHENakrGquVHwZ9f\nXVsE8LMP2JRM8Dh836SZ1rYeszFAGr2NcrgJRm4Ne45970Lm+qQ5wCu0755QcueYXKFqOh1oARRj\npH8fz8Cx/PN9Z2EoEZqORiker9LIJQDH7nENmMuJwFwV7PNBnmiOtG3l798HW8641TRBLQcslydI\no4XNqyjKIFHdRF5Dn/N2azS2xhi3FuPY6HEapVyMhN+e1srL6nSVco61xUjJ+YD8M4qJ0AMIjLm3\natNxdATOICZCl8TSAvpaWSREe9jIbcwL9zOijdSeXZ6N4of0+u9WMEEDrZEbQ2CJ4MVIqMLqgDc4\nSQjsI+C1VNYEEBW54SKfpvkxnhxRDKczKYg9CwRxFQErp+joEc61blrh+eb+5inT25qD6Q0iFBKh\n69EKiGmjOMXjDuesQfggSkU6Y4uDBKkYs2j/q3AfB0UEoVGtA9xeJJtBogMQ4OZigjhZzYvXllnS\n1gpNGZ3FsJrjt9oTMfWiTE9Al61JX1uBzppQ3Qx8ZkZrRXGzkI2I2usMPHjuDB9wzvVy7Y+U7T1s\nafBo2yQWEOX/j8dO3ySn8F6OvOm3bZX3JEdRZoCPCQpiIniCzM+EgGNgxR0Zk6y1xOffTCwQRBiW\n4o/jCaZNR+aWayAg8dfYFBhprGVG9agbIiFe+5Vz2SjQRRYpV+J33JUPHME/dCFo62yfYVrJICHr\nj2FY1cAAC7LYte01dKZnI3eGlfE9487wKtKALVE8NvU3MXvviAvVioEL6fmkOJhX3ADMLkRk5zqe\n69bEpuHtXPfWh5FllQcmiEIk6vMJacgD7YnUOks2oO9MZoCoHiyLT3fn2pUvzXuPBXqz4QHle0Bs\njsYSgQN/s+B8YTEZKQ9SUnyWBDAu/02UH+2/1oLTwu6WT7G8DyulMKhu1A6979YU6T+W64mAD49e\nvIS+6VdCbxAhoFPa+CBQ0tSzegMXm/1yATQKvUiv0Rp/p5ajR1cYVi8OQrTIJfj/qYQ4bwPV51I2\nkRGQsJswJePhNdoK8ZhxwUSkT46LA7o1wPtk1aYa3wDrpeacN0mdHjKK6i7CsGwVts+H2S40F2VM\nHnxB5oyZfFMstO1MwCrUUvaivc9GdT8LHFQXnBbkQdNZzXRf8cWLTKNX1ofo++Vs5/BKnIHRuJgZ\nN69IZbWlbLRLM9WE3xYAIn3/bPO1W0OkRTsTjPOzaMWdISzDcWeQ+ZraeYTl2/WvkghiYPqrzaG9\nYLZE1kLOJfSBuaLS6vTTGTeIWfJeDwUwudcDAvj7m/R159c2sUCY6M8flfKuB8ga4KbTFdEehvXM\nlHWFbNrBcUWR9Q6RZnkZvIC1zXlm9G4eqMpusFEQRmuJkKu1qtzs14dWs2/6ddI7beZBbxChEPpw\n640e0ylhdgar9VeLfJSiCCwEjnvg3t3fIbSrAmdwCN9rRjgILB7cOheYvFdQJDTqjaHe24IHXuAb\nE3MBNxXHR87GNWjrxaCJOtWP0cSq9h/P1vczQRjL2Hx8tFxSCd9B34tk/fheXS4eJfImxkgQEzll\njByly4vOpaHOTZFWtL217fuvSCsxEUZAQnVR4GOFikyWhnLPUyxKLMCG5a6Qzc5QjhPfC7mnGiQt\nGS37GeHAmuVfJ52PfuQ2hs8Q6XnSUhj0rynnOFYwwd5znCfnaktekFiJC4MAJflr2gxFwnePXhVY\ncYVGWRh6ARfRpQ3Xdx2/xrtGZL9P6wLhtylM/wxlty8C5zseU+jOgHseu9+N0sT1ql8hvXthgMUo\nffJdSpAwwj22J8f3fBbvc2pdB5DiQ43LDSwYhSBOl5S1kYqVU9aSCWDqDuEKwYJQmdQDWiBGQeXL\nsuyzuGZmubdYdSq+TKxWYc80bf+R7AyuAzfQq9bqN/066A0i0LHIPDCmgDbLZusncF8QbQovrA3w\nwPeUI/Y0gwjFakG7JVjAATZWnTEiymsPwIZH0X+YHsZjtu+Q+1ZST/Ers5GHMG+q6/fU3ovggRds\nyAZI8wVpbUkgmxJr/jnuBAcdAuH/Y4uBBxvl+7jhI9l7uT50e2FNXHVneBp3hu8FTHiyOwO4YBAl\nCb6I2RkiEAZeqLSJ2qN5P//7huXT8W2u5KZHilK4/QgyskAOjvC/plcAe2d4dm2JEPkiW2uarIRd\nWOeiceLVPYiF4LfXv9e3SAGh0ZRVnu0IHwgeeP9b9xW/jXqd4ltQK/40FgrnB4i2jMliUeGTm6py\n8rPcLaCNQMA9Vw2jl6mBSO3hvA4/dpVOrl3fdtFWep1QnolAA3RLUe6EryBjFUfrVmItIBADnc0z\nWYGiN0Q4n7E8GJGXDcDEpxnsG1P6GgEUdV2tUupOcq1nYBzOWM5Ggbp3XO8vtFW7iso1YK1Plbu1\n62JKWXj3R2gxSXIv18/83HdxqfXr6/JLAzo7H8xzL7A8/lFBpr8qvXvjoDeIcCPJokzkWA/AzRAh\nN7SNGtUJfvFhmybAhFcEeFohLTRscE20RIFQkinJrI6CMnqadtws0OcPrQE+tmzQazFllTgAbdt0\nVmwTUFHaRoYwXkO1lilgQrlhLxYIerOs7d7hWMAFcGuglNXmV+qb4egDB+8rjB1Ga74TQCCyQvcd\nVsW6XNRORrRnJaAQP9sylChwekLy6DPNaLhN25buXiftK4payMjEdGWFXHnbmQB0GKOCCbXF065A\npCzZnDdbedeI8Y2i5q+UiXRGnl1hpvXcnHUluouqNRqCp+063z4D/+X2+kyAwIzaQ2fPHq0lOpgg\nn2MgQ7Sm8d7LjO8Lfb8DUOCtU9wmtFjqpX2Vd8X/oB9z1ikr+UjN0ZT9orF2RbDslhsAyJb3sc/W\ncecDOl2e0YAutgK0tpzZx+14a8utewFf1zwjjm+/ji21LlDNf1GcjZRlXRi5UF51YzDfIQiOiGO6\nofLtkF84E6DyTW/q0RtEAPKCzqD7Aq4i8r+cW0HcWCJ8L0U9ar0SjI4121wNLqSq7DPCGuaQlfV0\n72uYjrrLPVGqH4chjyPgtkyuBEZMWkBnhi4QMCTIktUSGl9W0y4FUojgau/Rx0RZ0OuofBPvIFmG\nzVgm8LPl+NhsjAUOqLh9tPWwe8NHyfX2fO703MGdQYEgRNYigXJyrCX4WMEQTc3YMy4/1J5f3FhX\nGJER/WhLBGY+HqrLsHcQNLiy+XcFATBlTTAe/fJa0tYSmJJSqgGhAK119LX6DLcF1oJk7xm1scfY\nzWh6bVC6ltASwbNIiJjPKrg4YEKwbjQaNMc1Tt/rEa43a6BFILkEtOf7hafPILP28zfYdtrK5E3f\n23GNaYWZumbXxnoLz+N+zhfA216bItclc58qxwal84GUTNrdya/XjaMQZBGIpLkre46XrQjpB+la\nulT5lFbg3ZQF5R1BOl/tgWgsQGEuyn2UhiAjxoxqgpijIigzv8TuDIVvStW14TnYI+uaOu5nBNru\nJuMe1GmTZIXg88/Bbn9KOtawn3BTewG9QYRCccCxZH6Ldt/YzddjaHkQnPe0/5FAlnMy8RPQ31fO\nWWv9/Z4F64yJ5Qih1UzIvCXCccxUA4yZWAKhoJHNPSYgEXFZLJRbS4QoyFZjWSGbFpyTX79mvKWN\nDF5I3I5yzt/4l8rkSiaHcvy2tVka2CJBXHF226YwDSV1CMGEHvPMj/TKGzx7hl4d1yOKYD3D3yNz\n/ZSjBRN62rqIouCc1dS6/m8CpC20PyIunz3Enns2sbKN68AUsDH3Md0AthMUWSJ45YZlIHgF4EKP\nsC+aWDq8TvCcZ3cGeRb7M3eY8tK2cZOm6W4A4RVt9Mrvbdk2tg2Dsqk5P2OFgQ3wlBJhGScW08a1\nKGjvioVNRDpI7CjgKu55TXYLyCJwhVCb681vk/o4KGul618tfpi9PGW1tpf/Bu4MjbIq6HMvO4kF\n38oR1jvsA60IstakLajVBmP0eY7YbTLLx6oZG4I2S61158WU3tbCR7dldl9q+XXvv1dT5AZ8Zc6/\n6ddPbxAhIj2jot1BVouykMqKl03PGksEvi4xERRTiMEdv8MzCjhAjd/KgsNWA6zNiNwZdOqdV1BN\nkXi056NJKdluGnUBL8IwM28dTToK6kw69SIKzLVt7fEj7dUSITS/Bqbd2cy8FEJELYNsfFbZjYED\nJAGAVC0SEu3FEuHbzjERjnu+ScrH42HRZCnLhwdYK/QiSgtF0gj8reNQIH0WrvsK8MB3RwHmAttB\nsRbaxEmbaPOl94KYME1+8RPFRWb/zLQ9S6mPbQ9NmZGi4HWaTFBGV+g+AYAGa0jE3G5pXZOj7599\nVDPEm75GGlDmFvb6bb6daAo8Sll5t0brDHhwLUidBd5CADlTc+4S+qRPtMVo4Q0i1d6XVRaXWOht\ngZDPokxaaC88yCDYac52QlWBq+VfNF1xxzhDsiXL2PER61e3ygD/F3k4dPeMlEi9sTSz7yOft8t5\ne9TC/mhuy77Bgam/1/gQaD2aOa4UWyKU9/xQ/JGky+Y28fgDtn3FrWFFseeN6Z7L0F30jonQ0rs3\nDnqDCIVEIETTQh3h7gw3JOUh9+kLoB71AjHhOmWAgNLm/Vk3awEPcvuMBIvqcGmRa4JpW8982Ajd\npWxOu6MtBPgesEggatvxkSqzNGuJsCW94POxbbdNzRi+Vi3XuVbdJnwhZ4NNeqNj4yKqQr1EVy6z\nll1hmKHk/7dHpg0sEeRYvj1bVlTvk8200QxZngZ8oRdFjp95YZqxr0boEhNpe5kSKSZzkq4KZDhv\nURvVugoE3xTeSwuRXprWox4fpGhiIkA9mGLPWAm9CHV6tVCFftfyTRVDjKCinZu1P5ERjmIiaEsi\nC7QmeAba9hsinLe4Rh+BFbf2GgOve/tMdYHo7IdoecDuajO+W5jWUJ3vga+7qd/ZJ1EI7T4P7zYj\nPNVAfH4FvTloAZVhdcuUc8fnvRxx3fqRSYYwVkDkiqMp6scmcHcQU2sl5seKRtumpG7fp/vsZP+n\nlMV6Ey0R0H1C85KRO4Nev7n8Ec0E9RVQHZ9FhcMZsaTTVxXgWy/3Tb89eoMIhUwmgqucJIARxmYX\ndyC1ESfYparJeWrvdeIPIODgLVYYcKn6FvLKOb96zIIK3TIYyXUEeYyNgC1rfKrL8QM2gGjB1M9G\n2nZElQ/fQn8D1RHMz5L0BaXqSgFZICSOBjCbOgXkR9np2CJB4iVAykeJiUB7CKSEU2HPViOGt+ys\nZe7etkwzxY1QefxOOWfl3+9/224dk1NA5l+qAqXkl+e25fZejLQ/0zYdT2HoZmAEdG8OYvmlfqrH\nkVYay0ypjvld/mvv7YEHn2XqGbkzRELQAaj4bcN+a2FR+1uTBQjqHMa4CU98xgEHMRML0hX8/Gcl\nyRZSzn1LBGquifWHxO1orxPZvRndqqL/G3cGByzwzj3BOoo/0Eat73/oGWHOBHNz0iqK//XkOnE3\nReO57oaaT6rX3LLKccs03ANWXJiiZ2fIuEJqdxCgGRCmpgL2eZ9mnEdWnfJ/v8369wPKErBTrWWh\npY0oBls+6rHt9CxRsG1MhFbJokGNCigc5deVs+VNuwBYxnPbGxEv7c0j3Z6rFI5v2a9+ZB6rL0Yd\nkPErUUrpXyaif4kOe/b/Ouf8r5fr/wYR/fN0sAn/Ss75z52t4w0iBITagS5h1LeNDEhgLBEkoGIV\nDDM+w/eKih0Emy1XqwEJ7gjvAeb/OvBhdWcInlV+0oZpam+ti7Cy50O/a5N7HNNqijZMBQJkhjhi\nJhSXy8zfrCXCR6qY7u/QFQLeS2dIGJtb+030ruGGq33xTNBF1FSxRUJxd9k/yjs8a07oyCLh2waa\nICcSuGykwTefoZoxwvlPxlT/ekpkpCrUlNlUgjGjWi1f2ut7StVSRDRl7RgWYsbfYXxstPz24RWN\nFQqpMwEWT5luQ0yEIyXYcQ2XQrQMYA2TF4wMGZ/67orB21njktsjAHsPaI8m4/ePGi15z7hzotSI\nXpuMTzx81MOdgZnLuQ+Sgt9NfZ5wAFo1EyMB3a8oG7NgPKLgpK2QxKQ5+3Pbm4tIUZBd+V//J+bD\npT5oW7XeynXeyr3teW9uyP5RPiqD0WLS/MFg7i5bMfetANKg2WxAH55j0vkgbKGbw9aWoclkdODr\n2f6OhBIPCLHziI8e1OWXZ4K5ee0HF6YZgcgqPeCbLsg41tWwBY4OcI7aa0PAY6XeTjlQHs7NnkYf\n14ca08mCCCEw3rFISLsaz6TXFq4/mzWS4y+hzsvGPbDtZ/om86z8X25Mux1vSG7MKlgbmXDN5Ln/\nbcuKJ2XeoJQvip/2fdb2+TFFgYdnKHLpbazS5N62/Ltj2rzpcyil9CeI6E8R0d+Xc/7rKaW/uVz/\ne4jonyGiv5eI/lYi+vMppd/PeSbZq6U3iLBCIyhaUYrAAyRvoUZfyUC4p109jxA3WCtolwWbQoaP\nfC+AFRMp0M4QlquFiChWgPHfkIeT5PnmDedDFnNfCNYxEVgzj24UGCegawZ2AZn0fK0jS4RIqmML\nhX2rwjtndEBmN8mGeJSdFccQpzlqz7NW16AKuoy3uy0Rosjwnx0EaCX9HPuQc9A1LaDVDZsZERY8\nqb3XEdTR3BEZ86wYdLHkGczlGc3fTDrDSHDhccnjYku5AR7dZ6RN/rp1F/VynaMlgg0MZ5+pViZ4\nvX1GBPeJNnrfB2OzPErsFDS599auFBylbG6rcy3iOM4wnVWbV9tqwAj+BgGYsEISrySp39AWBFNb\nC7lyNEA41hMTmopHiovDBTG39/J/vM7yx+D19rkZoTuckx3TdGMW3xmkI9CCaadr1nq2QH7Pto9m\nCEFZjUe80r/8LsKxa/4HHohIgy7t+MBxmHcKrReuUG99QNBXBHN4Vp/PgrU6NgIr33itVK07rkuQ\nWo6RkMW99CkMc8uk8nrlWfOMAoky9SwT7rRE0EAVurK9aUyZbl7DXkN/moj+g5zzXyciyjn/X+X6\nnyKi/6Jc/z9SSn+ViP44Ef3FM5W8QQQ6JpQwAZG6rUc9rspIwe35jMVD5JfWJdwg1NHERIBNBGMl\neNo7a8o/7idjMg2C+S4MZC0bGZwNF1JB2jUjjIJyy+Bx6RrtRvDAouTzCyx+pp4AHcUj3JPDADDD\nypYInGasWCBotwYOwrix+0I5/yjc5qNIblXA1QxyK5SsTIWfgVaYw1mwYKOkNKLlu8jm3Ar78oz+\nxguxEaLATRGT4VE0X3Wa2Q8QntDH3hPqZS3pvQAQWjGh+X20hHqaHpvtBNquLCywfgxI2NwTlNvX\nKbY00yeGpYW5aK+reYtxJziGyndeIzlYmA1QZn2oS5sBt7yLcYosiDSYgDFY7hDqeplZEBwzFm0N\nmOtbeFVErKXtkR3eotRrzsu6MRNPJnJnyOM9GdNRPlK271zurWBnXF5kiYCvreMNnEldK0CodHUM\nemOmJAua8fX5dkQa5k39t8n7lWMHcF2llCwfJG2Qb8lHve6dr1zWlKKZkXTTnsWD4smIYgAA29y2\nvy0fx2WC9ySyYIIx/i080L4n43aEffMoa+Y3lfEG3RmEAEzQ9do9GflX/z59DdsWZfnx6E5g4B1Y\n8aej3yeifySl9O8R0f9HRP9azvm/J6I/SkR/Sd33f5Zrp+gNItxJvX0IuCZmFDz0FFM9dcEDsDiY\nC+rCRxSrg/tfZInAVIUTfgctDLQC2A7MDSkhj1vJFgjfYCMym4rqqw/YpPAevdl0I0ir41Xtu4nH\nIC4w7W6M+cVpy3JPBRNYIGyRdm7rU3HVUUBFdxTMOsFPkLE+URVCPM1QC44azaZ80GTeASasWCQg\n7dlaIqB5r2e1jJYICRgQn3EZvLMj+2CaKyPEO2DCyD9VzsUiIYfCTiTYtkwnCvdBAy5SFPvgVFnB\nN+iCjU5ARX3e+w8Z76a88l4IZtWMOQdlmHf69xP+896j53bkXT8iwtzHtK7MUxYSPmRMlX581P5N\nIITUmAjdj3g8E4AEKVhoU8rGZF+EU6hOzyVcSyKBnYWr7WkXATPnXixH9EzTIz4ovN5pK/6F5ytx\nG3oUrYe6yOk4MhMuJUwI3DQ8C1qnCvCEPOqwGkfAtWMMUzzOEO6HnutD2Ca0LHLmk9SDcxDmswew\nfRjXYZ5g8R6BPHQP4LuSgl1A0sG309nPoj3ztVz/z0+fZKn0R1JK/4M6/zM55z/DJymlP09Ef4vz\n3L9Jh3z/NxHRP0xE/yAR/ZcppT9G/qc9/TZvEKGQFsBOk340sjDA3Ri1ER0ygZc2qlHVEXDg9+Cs\nDCr+gQi5DDxwEL5yfIAVw6tJGIdyfO5JfNHYjDPSjJA6x5gIH+Jz6oMI35T/6u+KBukD+1hcCvi4\nn4oNMNK4GG2/Gksmf7gEVizf6Zd2LG0PovyATVBlbiAiehTOP6usDSwoocY56j8vO4NlTNpHzmie\nvjJ5Qsmro3RH468KDe381YEVDZPnrClEPjN/xtdTyhVtbgtmNKDczub3bdPqEQEcFeQUxmqtd72t\nHq1YIkV0BmdDkClicokqUPiQ2DmtJQm/wyPpGDdcjwWEmnaodQkBvZFo4wEPTFGguQNg8wGNMEaC\nimmy0tfV4goBlYMMkLyRCjBHcJyoGAd2da7271OEGZTQnaGeb8risAUTIqHhse1dIX6VesDeaB+Q\nWE5gJXlcKz+MOX4MlKKbGF5HQf6MgLAThS42d7jzzYBq3KuYXcALrDji73SfJ+Y5As09WnOdoSPI\n7kEYz6rGeKj38v8eAHTcC21k3idn4qfQ6pJ54o/vHDuqHlkptfPkK1aev7ALUcQnKbKuxO2e7b1H\nBUDbeyVUWlzdLbSaQepNt9If5pz/gejPnPM/Ef2XUvrTRPRn82Fu/JdTSjsR/RE6LA/+dnXr30ZE\nf+1sA98gQiHcmE4BM525ZhZwcRWogpu0QYLYlHtDqUEhj+Y/QJvV5rgHlgVRgMUZkk1lkOu996w2\n37KpfhCZRuk0CQjhBRXynmm1eNQ8g/d0NSTSt+0i/3SEuCcwdDOmaGKmjHE2eOw4bg3pyaABuDWA\n+S23+bFlFSgNj6U6r5GT3FGrIWuP6Pef4b6VaiM/dKK6ySOD2BvukebyK5j23cnwV2uWylyh9ntE\nXj8is5mM5ZS9Nz6WZ6Q+u45ZU+r4HbQ1xCvJCC7R+OvtH8hMCzi4V4sUEGS5vySmiloXQ7ctLgME\nzsrQ3ks964XPphpElcFoCEypgNgsckS7RjNDb4O5xi+YPvwFtqdYGAXF65Gx+lBti4ID30nPnML9\nz6wXN61xo6wTTG5gSrjnitBm4qBk2wejluasBNYgpgOSB6YawJ/X5InsXDhOtFBvQWBeg+2aT9R+\nG+xry8NRc0wpTSM+XrpVdAHjVrN1zsNxZ+DAimy9+ZA1jPcn9T4C6Ldt6fIc0dzGccJlT8j4V3iF\nOy3Cfj2UbrVOfBH9ARH9SSL6b1NKv09Ev0dEf0hE/xUR/ecppf+QjsCKfxcR/eWzlbxBhBkSLWvL\nANf/yzHD+en6SnEGYi1HtcNj/AITuRiuP59bvBjx64n1QtCOi6QjwBOp1/n/2Xt3mFu2ZT2oRvec\na629z7mXyyVA6JoAiYcEIRIJCSIECycgWzzkAMmJJZAQAt2MgBuQgAMkkCVbAiR0ZUhwhoSQMyPE\nI8EmQYDEhQAJY/DZZ6/1/7N7OOhRNaq+quoePf/5773O3rOSnt1z9OjRo8ej6qsXAwVT7Xm3a7yJ\nREyBbAMF77H3yuO0AJOgyBiXIGKudN8SbZYURNac9GwKzMhk21kk7JBOD7Yd7WaJms1NaCzm2hmS\nudF8CaukmNwaoAPTjVoj7CH6P3QgRff8AfPoEdPL7B6kKuDZeF26z9GPM3NR0mACpnbEoFfueQOA\nWH+OZ+iydcaHqeF2VHdtRMOJJqxZG+X5wXXUiCGFgRZPjFWMveDcGdQ7TMAcC0MP5xGjz83vPtTb\nkXOho9CzVC04FNO2PU139lX6mp0UIA8cj8z5I9el7rte3D3ozpBpX83zuG3KJS96nrkGL43nBtzK\nlBsr/t9KVS0E2/0oy56g060yOaEN7E7u2SuivniIG9IA3zX6mB8jaNro+rAXEwHn80WBXMgLuvNq\nz4mo85FK2cX1ESmAUo0bdKGQdYLXB14vIhCYj7jnOGCiH0e/KQZDJSK3F6D7pw6szX35CuAB7zkj\nY9gHPbbn+Juo8xg95sN5GuE/c7eGr15YflJMf5GI/mIp5X8iohci+tPNKuGvlVL+EhH9ddpSP/7Z\nezMzED1BhJ8MiTvDiaHQ3RreoUEnKDKNmwCB7kyt3VSUCBL4z+0DD2bjS9BxlyLuHgH7B16EDTiC\n2q3iy4zUE96z0rhD5wl6RG9F0d0fSQgeaAbwLdHp0/+NtvD+MTjqonQmXZmmzOc9M/feLLCs4OXA\nxbSNuk/ajx8LVArAx0cAXAhiZiCgKcOCQ/tLABu1lgkemQBdZ/yvj2hvKGVP2Zu/CABIUNhHg92J\nFVqZyFnu9P/uaETGvEfuDOvBuRJKUi1oGlTVp3h8D9pbK7OgsUTRux4/a9SdSSzY1LXfgOjrb6IO\nJgAAxRYJUUDtwGKNyFo5PYLQArUHyyZz1DRq1RQFoxUCCznt2slt6GnHW1l2bYJ2mGoH990YfI7v\n7bGR1EX+Prz23/F9sn78Gqwvvyb62rO31FpfiOhfTP77AyL6g0c85wkiALn8yyanGhT+oWww37Cb\n4UZhIqjLsW2gTXxgLzIAACAASURBVJO+Avd7b2wENGc7Mv/RFgTeEmHrBBS2GA0u1Be/zGohcmfA\nxf1okY3uQcII9Zv2nX/zf2/g0gKLlCM60rJOpQ4Ps92gQGABg4ys7rvR2fMogSytvx1H3t9b8ezU\n6wRoe9QaYaZj4a6GAuRbKYoJs2f1k5HTcLOmCrTiUl6Zhve2HGlDfdkOOrYI3He4VZ2hve/Dv7zW\ntp0Jg2frMvVDfQiMRtpxtEDobe3aNL6nRxq3TPMMDLJew7gcRqBH3PqelQ3vqeT7pa8dyVoWtMWX\nacDDngURHGU/kRS71bV4z1KNCIQV5zMCDxyhBEx4SxDke+bKDxU3abcNycI9AiA8JFaBqiPrfnzM\nW557RnjRa7cojW6tDYttLGYDqGuRMSn7ugNL7do2FT8Xjob1iMXhWwLn4npbigJWwXVD4gygO8NU\nXVyGkaxVWQwEPI/dL9seBvzzWavWPSqUr9fvHaz4ST8N+qpAhFLKTET/HRH9n7XWP15K+fuI6A+J\n6HeJ6H8gon+p1vpSSvlIRP8xEf2jRPT/ENGfrLX+762O3yeif5k2fuJfqbX+l2fasJuxADkq/FsJ\nUIeBEt8S7jjYNDONRD/v1xdIQ1VA0DvDiKQoaS0Ke0k0H8LcWp9dIuWPyv5nUgUs+syHlSJWClk8\nhSi91yhCayL6ArPF/cluDBz34KY2CP6NMREksNPgs7cG7DZ1uyfRlKEPb+FIzKWOOdcpqpufxnYC\n6QQQvLq1wB7WHzZ+97fwdXvZGd6buuDXmDG4PsIsMfFplGYzzQ7i0rq269TnhtNOJtGZpslnIcmY\nikgD4wIBCtNmv3atk9OeuDpkPuP/XkDmeC8jgRDvMsUGyyQENkKg4/RTOnlLhPicqPctWiKwaa5m\n7jsIwmskgy62zRjccK/HRrIzHFEPiuZdHdBdAgMtLtSzJqCLxV5qR6S5fdwoMw/XhRlxHgLo7XQS\nKjd8rCM7r1cdQPkAuNbvgPGE+jjo4Ji9t7r9cIRGQXRteo/KD1d2ZxM9KwjZ2Aj83W0f74EU/bs8\nfh/aCwOQCd36G2X9KPuH/p7MC3KgZgnebIVwHYQ5BdJOfAN2Heh8IJ/z+/Q6M9dG5Pu0S2d38yS5\nFrV1Vu3gNl1a57Nbg6yz8IJb7Ar+bXkd5hlXmL9bGZjLMO7QAuFRydMORZanW4NQpZ++pdIofVUg\nAhH9q0T0PxPRb7fzf4eI/r1a6x+WUv5D2sCB/6Ad/99a699fSvlTrdyfLKX8w0T0p4joH6EtYMR/\nVUr5B9/i73GvXbQETozqI7LcEtGYGkXqaEcVWFEQ46SOow3YlmlNC4pGQRCjejeXBG5a3H9oajWp\nqOKyeLMlQo0tEXp3VsfwYmyE/mCS66u7xxbFurT5NVKGMo8wTNEC7q4lgbfqFJzDNcwZ74InUmce\nsoQi0XesCCIIENWOwac/TmXlidskIwRMCSMBJhM2VhgPkr5O1Svviv6J3EdBXTxfOMPH3BrQhRJ7\nnIrSBJO9F/u8M1EroYAuc3HAlPpIcxgJRZklQAgetKPL680gQttxJDCdskRgJtZpfIAR1s9DS4QL\nWyKAb/qeX3sWzG0y3zYu0/3nfb9mzK0PLNbLY/8hECoastm3LQus2BliHySMxx+OzYvaY7Z34HFa\nJVZAH0qWQcZ1opyQHsTPWC0cPKe5TTcGito7dBysS1c8jy9QB8/XmTrw0GMhbMdre861jdnrvG2q\nPHbLhWiCwLWc0QhdA00WEvYr576FgIoSYJGB3QuUjygJhrwF7IO1C0AYJhNoDuZYGngzaIoIknfI\nGqhQmAH42qNd8CBTKBz4sZdCKWI2FO9C+snuU9KunT7CdQ8Dyu5ZDRY3n4/7UVupbkfL29mGW16N\nv9OlzYOLcolxwRAho4mcB6MJAypeYb3VR3QrwAxbUie3R0k91rpIgcOyznZLhItkstpKsVtDbc+/\nyTf3/TbszkDl0NpxxPrnaA6aPUfGGR89L/+kJ2X01YAIpZQ/RkT/NG1+Gv9a2UbyP0lE/3wr8h8R\n0b9FG4jwJ9pvIqL/nIj+/Vb+TxDRH9ZavxDR/1ZK+V+I6B8jor862g6MWEtr7YISU6Y6jdweMhcI\nF4pePVNMyOxxJA0kUhXmph1r8T5wxZbZs8Y4Ms/SlG10PrCTvV5LUcItCCPwuM5sTtJeFGAyS4RS\nag/2Y/m5IUJtO28UrHXXiDFqhY42lTv4sFMUCR4F/svAH2m7jonQOrVb49j3lGCT1EEVGfp37FEj\nGp6jes8oidD8OTKHlsCUcg7/O0a8eIbRxeDw92YMwiMsiGx7LQPu/4dzioSQdo75uPkFF30NGe39\nDxTGAwAT0GgMn9UaG20/rBPYi/p7LrC24HgfM+PF9c+DIU7TxkAUWUZYZNepKrDCHtGNgkDYGum5\nCDQYXVd5zSylpHM8A2fO0N7c5764gsA0gTY2bBuMYUmjHEWAQ/AgGRAmvSFaIDjLhL6Hd+0nr7e8\nJldzXbd9VGP/KBPnbI12aWoV35Ktcz7D1v20uX2eG2C1eh6D6zhTE64T2I6R/bJbGG3ner2QvTlx\nZ7B8aLXXgBBwnYu3O02G/dBn8soOXudRrRC1LW+zzGF0s0OliwK3EJDy77nDLyfKNpyjRDlviJab\n0ZtjqnfnPnhiamR73JM2+hoyCn0N9NWACET054jo3yCi32rnfxcR/c1aa/Pgoj8iot9rv3+PiP4P\nIqJa662U8v+18r9HRP+NqlPfY6iU8meI6M8QEf3dH37bL6Chy0COnP4QlFo37JR1KObqkU7xH669\nzHbB15tZIjB1BVY5ZBxFQwYRcYk608wIt1gM4IYqGsdVBFWxYoCAYv3BJP8LoJBEm3YBdkoVrRwT\n1yEpHQEnWkkv/OfBg2GhR1kf+E3SgwZb2f5ePQMA9MEAC5TNmzOgE9JeyYLc2h30gCpCqx1E9nXc\nju3YBbNU0wdTUIMMBRifLH2Uzg7CppYyDg+yM0xz9SAcaPP2zBtFk8QaRZdKS70ncJUutSj0nyZ0\nZ2BVcJV1IQYS9W8EMSNjLhcdPPte6ngPk1HUdybaN6mXe3COw8KLWkNtiYBBLMUdAN5Hv4uL8cHP\nUevdKOEY1k1HqyCXDhCsyBYlxL3Fm4nrnQuM4Vn1vct8kQAeYBHWGtyO9lwEgGCkY/wicq5LuYDt\neIDAJYGpuxbaJmKtHQgL3J6csGX7SmPPGY2kVO5jByWlNqaDQJFfi0D0VgEkyzaye0/iAiNt4vV3\nwKItc+fZ3Asa7yZWdfzffiNtoGu7/qESSa9PAie0axm4KJZEE/Uxwm58Mj8tYHi5bJ12nVa6Tv03\nkXbR5DGWv5/ra1krY14yrIOwDstvmvfgvs9iEQX8ClbRn/ukJ+X0VYAIpZQ/TkT/d631vy+l/BN8\nOShaD/7bu8derPXPE9GfJyL6h37591S/Gbdyt9q5SkH9bZUYTM6gtrxg32TXDeuqVV+DI76B1kxU\nW9a/p11oIjPHAn7Re4j+kVvEPUFfBO017gxbo1gwZ7M8zwBtx6lW4djYpFmsGJJNUZsFIjOdmeZq\nkrzA0Cfog1pVHAAmeVNgvKMBPix4D3Dvd0UP53ujZoBlTZWgTezzt90ksSD8LfLO2ZHv03RGS5Tm\nVE+Eb922vSwMR9czgTP2m6/m2khQo8wfmslqN2xZqSPVbBbX51lbIneGSGgn8pqSt1JkxUR0Tksd\nBf1Eyph+dNmKgJUeI8MKNHuUuVWNCAsi1LFwisIwVTcGsyCP3vuu0BFbGYHHh+a1CSD2YxC/M5sr\nT2DhQVMwrpP2Pyr4aQdpgT8BVyC9JiCYiG4gZ/o6K7oqiwe5BpYPZ2gv3sthUFvgV1Z1Piq0P1q4\nz+rX86xzPY9/bmhaz6mol/j7GP6P1+sTfF0aMwf+9wa+fs95F5qqszzoLkb2XIO3ZzMdrLVnSOF7\no5SO27m6J5k3O0bM70pfC/D2tdFXsFV9FfRVgAhE9I8T0T9TSvmniOgTbTER/hwR/U4p5dKsEf4Y\nEf1frfwfEdHfS0R/VEq5ENHfQUR/Q11n0vecI6VZRZCg4KxFLawxP2wLDuR5di4StMNYi2VAPmyP\nUjxGeWhxw0aAwJjAvcOMYeZMtFAqOFoBBFpSPKKZXrt5oYkuxP5/238zaOhQu6FjJaBmbi/IYGRq\nqa8vgeDcTUltHXs0vDmg9n8ETADhS2+SGTkNhpHyAUhr/y1B3+h+Ubd+1eZhGQO7BsIj+qKLoAbu\nDkS5QFnccR8Qs23zGgsc+yPzOQ2QxcdAkHJASWKBcA+N1ICa+qh/MwFwzxLB1QHaVdSybYI6C1Mb\nudgIZNtYyPefW8MgMKrWPGOwMJ5QaI5/UZHGwS0/HXf6XbCNoBw/tVcgaGsseqReW/FeAMdHUHfx\naHOOA1YG3BKCsrtgibM8CCTKgCIB7igujxbuvftYfG8p5+dpZIkg9Z1gs0f8rjP+xKcoHH6s0JHH\n6lAdlK+ZPzT5/f18HZtiC9Y1We/s3NBgKlqgZBQFHEY3PuQDeb26R7A1gVHbXJ4goDC6M3QrrqqC\nLNp1yFvq5W3YAw+IKIyJwITKqWj9K2CJ8Eh6BlZ8UkRfBYhQa/19Ivp9IqJmifCv11r/hVLKf0ZE\n/yxtGRr+NBH9F+2Wv9zO/2r7/7+utdZSyl8mov+0lPLv0hZY8R8gov/2VFsA0TdhOBNnJNQKrNrP\nt2lm65UXGpiI6t5UyyluDK1tiYlS3CYvUEgZNJH8gQhNc+e2kEswm9qZ51r5WmMcwORezmt3Z3D1\nT3ajE8OLaSVqQXL6RkDmHI/6NwrIPu4ByTHLxuCSGyi+0ll9wDisMB61SwFqrt5C3owuO1FtQ6BF\nbXzcNHT/+E2gkVzJmQUCRpY29+z8Z/4nHw0d42ygmWMN/suoC6J6vO+3STNP3QyfA1K1ucc7Da9d\nDKhMOfB5RFPprh1o9o9c1H3B3tpR+Ypz/RewqGDmloNobs3itrS+F0EcBE/l3oICbPdtzsEY58YA\nmvPyauuYy+r6i4MKdi18ez+yx6UeM/BRXx9H/ra0qnrEza70Nui28rkOhheE3DgkP1+tINHHAzmX\nkfcmb3mwHdmvXWdl2P4vbh+SutoR14JpXoOYGOfpKDNKFPw2A/pX5MfUtQm+waOsm95CRyGwfkw6\ncmeQcuZ6AhCBO4POsHUUlBNJ901m/Yb82VvIunvCf2KCakHbeV4dL5jFRtC8Xma5i+kadUaGbI92\niih4niGwpOiWcuN0z575c6GNp/qxW/F10FcBIuzQv0lEf1hK+beJ6H8kor/Qrv8FIvpPWuDEv0Fb\nRgaqtf61UspfIqK/TkQ3Ivqzo5kZHOPNZtkvXerpG3gCW0d+4U7wU5y9es5m5x0j6l2ItAx4nWpu\n3gjvwyllqjKx8trJtkiBMB6VOSKd4vGIvL++EmIWW2ai+NwwnbDxIL2V/0OLA+4RTPGoP7W7BsK1\nf4Z/Xjc5b/3FAFVzleGxFLrGgM9sJLhjGiI0q3P+e1vESNsG3uAWu0lq64xF+oDrbec7CDvSI2Ii\nIE1E6ZjtAk17j8ACIcvCgALaqeBGO6aTaTaQAFTI5rqPmZK3JdO0aJBEMlOA5ty1PXL9uoNcKkn5\nPkn5N7jzEJETsrgrsmwHRJ0Nl8wDMM4j/94sPW1EOA4yF5Iw44ac2/EsazEL6PK+xd2LhnJOEDho\nv32Xfg/WIxY+MGg7MN8zLfD8PEr5ONXi2uYC806qUfykBKTfTf+XWIxxml3ZC27NdY/X1LW4+erd\nGOD/Gq8DR5RbFVh678CKTFrgdQqRnb3sLEV+4UeMIyolvmbS42Fhd4Y15oQm9VHYxdTF2sBU0VrL\nD5YI+JQzY+nIMuaeQNgZMKIrjDNunBtoWnlUHP/XypAfw0c84a6b0MGgjNZm+a34b4qufzV2Nk/6\nmuirAxFqrX+FiP5K+/2/0pZdAct8JqJ/Lrn/D2jL8HDuubgZ7wECyXkUnwC1xf16Nf/XlRxD7aPl\nxmBCRP59OiOxgLCB/lqT2rj1/xGNmeVbRg7JRxdXaYI4NgLn1UXwQJ2zP3QW7DFK0+bNn7dzDJ4Y\nWXDgOfqCasEZ3RgQReaW9VgMSrjGNF4ASEU5xB0AlVDmoxeR02Cs8bN1mQqb51rzPnDY3A+M9O4x\ngyOMqgRkS8EEK4TvvV8mqL813dKpwJZnTZtJWSKAJmcoxVhiNTMUjZzXMDh/C/Wgq8Ga0prKoElp\nEodRcMnrtLYVOxdmeN1C1QGhmCLzDHOb5UKfi0q/KwwilwmrEpqKvE4vC49/C6upsUEXxR2fA/NI\nZ8S479kWAOK88Gwh926mwgcDfFvPeY4wWIugggcQM12HDn6sSQfFw/Vnr4VZ+tQR0NQFcFTf3zx/\nLT3DFCg59tww99yafm7k4mZk663q32y/cO4GYhG2pmPo6BPU6qeCTxfp6x4NptpjxVirorAsWORN\n0+rGqLdW3a7rd/DgngX0ong82XKA4LO2NOzWaIKOxm2Nq37SWaoP1V/9RtNXByL82ITmgXWlLiCB\npPcobRrXnQY9g/oL+nGdeo5arOCabDJTviofgQZn0swxyUItqHeVTA2lreaoacTztVQBHKTeU36W\n27nPre0ZFDHHBySfLRE4gJUWktEv9U2ElQTj82iB24uJcEoAW/s3I6JuwcNWGWCdsdSuU883y693\ndc7cGXQ8ALRA6JpNe49hhMjeO8G51o66WCZvcVkB4cTUi+vRgaVIKYEZPgalO9M0Byq1ORh8g8xS\nKYpAnlkj7AFqTtsPlggX/E5TkXkp7lMyv+J+3CwRLNPsgnkBKKO1Ull2hggo7SkxbZsmPGehrtW1\nuTPY/QFiBY/F24AudpkXSl4PujFEKR9zgIPX5ryRHUQ4Bg+05n+Yog8/SHkA5Z17nEXZOB2V1YJm\nGoEevpP+jVmRJNaHSz/onz1ijn+W0T8DNryF7XsLqKGWlrxMO2pQ8CgQby+neJ0Da4+e9rSvBdm7\ncRX496OUBaesE3EuJxr8KI3wkbsOkw6SyNZT4sYA7gzG3TMZ1871lZJFTtFI0OAnPekt9AQRgGSB\nvQWwYkZOC3v+ue/lf4SbwEq5BcIendFgjpIEr3EgwipmdGtL2TaDpsWlmqzFmR8614cdf2Kk1C9t\nBzEWCw84X0lvAFaA6EDDAKMHFgiMOu+aoBe7dftAYL1vKgouYJZ4ZoymwYHIW19gURRStrZsdI/7\nfB453V7fc2cYIQQRrmCRcIH+u6n2pP7Y/H87zpMHEdD1Z4TWA+DhDDDBJScV9X8Gc9csH7cuM5o5\nRPtR49xGbeud4RYc4XMuIKV2QZ2Bjv6uF1OSaE1SghXyIBL6jLt27fUZMMo63ZeL28H1iXBnr6Mx\nnP4t8wrABPNsBNCwQDDcwD25r6tB/VLNMV+dEgJ3kuVHBKVW9VuVBhhY8QH0KP7BgUtJOX09s0SQ\nsgF46tLFwrEGL7RmPIAL/tf5ih/Cr/stGskz7YvAMldm5/6zGbVqLTvrTnsepo+dVjd2+pi6/2Oc\niYmAZXa/D1hr1eS6ttLpbRpozBtI0hQPLGbynXj9bsyGDgypy5n5C4C4cz8RgPkJRGj6TXBj+iHo\nCSI0coGJBK3tE9hZBoyMokTwi1whnDtDEhOBLQUK1cDn3b6PNENpC8RtgZ9D9p7uO7cdZ2X5MCpc\n1Or9ONdkxxQh4tIWuNq1hZNsThzTASVBrnwKfIMtYxJpJw/N/QExJrLxJUzZxPe0VgUW8LVkQdY+\ntYf+oi7VaFRf/BydCYOfl/VX/nzqjVxs+9HF46bHX7s/c1+ILBHesmD/EGZnk2KR0AIBg+4JqZeS\nAFXuWM2xlKoAtrdv6s4dZaCvsiJaOD0SLKzLVzFHJOfyA2NMU2ZFY3xO1RzD/zLK1pZL++qY5UAz\nmCz0ijWtLOeeKUW3lXusq5DQnUEH53SB7VSQx+16qyQAvEYF9Sj6+tdM3VWlWSJcFMpIY4JMGBsB\nBzA+kJL/Tzyvn/vUi1lk+L09MHM501aMb1EwoFl8ul7sWAc5N9LWn29ZHzff/rH73wJcRYTm6nj9\nHtIxJZh/yWIicMyEeV6F38K+xp6RAISlOv7hVNyCdxRU92IiHAGD01TTMZpbXvRMCz3dN9kjBktU\n7sadLF+JdT3pST8mPUGERiIAov95WNieopvDEO2srKP+7CMakZEAemiRIGbD0ifjlgiPQOWnufZM\nDeIH2WIjLHHH7aUoPMN446dERkvX5QINulgIvdyR6eWpbkN16xtIm5GyYswHqMzvx2CjbMEjQBT6\n6pLPyoBCItJ7xUZwTNob68ssEdhvHi0RtNk533tt3+M64XGVY9e0jbcNLWDSgIongpWJ5kIJ0HOx\n7cXI9nLvGywR5L7A99n9J/OW0rJnnuW0NaC5RRBIkwolYurit5jUNXRnQJcEqfOOuVFKZ9W71tCC\nB85SgYW9WqWVWTeG2UcO2vQ1BamTbwjWM2L5RfUx2RnEIsFergMqTh9Q0R6JNADO55aQ5zlDWZwh\nUwbnpLpXZ5vZyu6DB6ty0WMeQFwfQIFi79+OR3uIZEjZ2YnfGwB7G0jwlufascPA5VqL8IA+sGI7\ngDXpxofFz5mAz/yhaIR3RSsjly43uicZKxoIWWH/8ZmU7PUtQWbcXuabbjCfTX+CCd4jUis/yVOl\n9+NLf9PoCSK8ge4ya7xj/ZQFXBY0ZrqP2xAt6OKjSAkj4p63pyHYe86+4CzCEAsaMhpr35wWy0Rz\nXmJ8xlRJzPGRXNqosNT9lDEqOngOxp/ISIJQvhFm9hoePOcjCw+1B6Y8CIYn4Inx04AyYIkgcSSq\n6i+5hhvqdoy6oPcjfFMBIh67sve21vCcaaYiFgg9Q8F27G4NOED6WMgsERBEmKdV5gankn1LEEHU\nzuytJ9mmqc3Ae0wAjmnS1yrz3Ef5GTQ6AiD2LBGQ9tYHMbeG6/zNdQArYQZl7rUyfLMwlttxnrzl\nyZyAB5qy/1zKRwUIZMHP7qFHamLfG0wYSdHqxjDvSxpMOEizvAtUOekakJoGmGuTasxIcUQmEPBB\nLBPbtGxd7QAKkf0+XjOL5/Y4l5pmH8HYCJqcLz8EWnQWm8H7Zl2wt28cuXRke9Le887Q3nc7ihui\nQZE961SiQChdyLtcyRywR7FEmFaXTrBbXtm6ulWmPY/aeiZA5lGf6xSPLn5Mkp2hFG+9Jf8lT9zS\nWVt+DoNvY/aqSkViarn62hGDVYd0j5yRXX+aPDxph54gQqOuOW2m6lFQwyyokXNzKIpTjKmIFiLf\nLNO28vOCYlmQI6YoCmwWp3EoJc4AdfeJWDh1C/pEPmCPmN/busUlo3T/vZGsEkfk0mPx8yI3DSjL\nSHG0Ob4HYf9V9VAfZM0eJ9HmrKoMMHjw/fe0NQ6IaqQRd+6fzLcTL9fqmYqsrH6etzSImUvLvFRT\ndpQ2d5Dtd9fG23O0RNCgF4II10SYRPN224YdRviBQqN/7nacS5WI9jMGpXsDOSFIvcNRMNBIg3+Y\ngSC6hmsWXEdLhFKIZh5DvP4p7I3IgwmFrKAVPZdJR1jPwNM9QAgD22VZGsQFI6/qIfSWNdJGQ8dj\ndWX0/ytVCc7L1EGxGADTDc6D021HcZnRrksuqNsxmsXraZn31yWbRYivtfPEcu4e6gJib8/o2mKD\n0OagAZHmZ3ymAPetd/rIv/s+TQNlzgQSPaO1lPUOWiAAzs5+ODKP3N7M15F33NlPemwb4NOMsB2D\nS4+0RNhifG2/UdhFfjPi6dHyQK7f8b1225lYX2rwgK/nwrzlRas6OmupEwOut595n42yNb9sjtTD\n9f9U6dkDGz1BhCNaKZ9ND5QOLZNrheERchkcVHAhIjIL+3Kw6J1ZQD1i23/jZrJXlogk60RdPcLd\nhV2so29MmKccn/sWQFUW8J2N1UXBVhuGD6QYn8fPhgt3cPSySbKZG2/+wuwW8lYKVsDYBQ8ygA0Y\n2EoKXHFMrq0/qjITCvYoAwQeDe74jArb8QoMs7Rm6mnYvPBozyVl4qzddsbXh8OsKsKI7YOQezQV\nrzl3zBkwclH+91PuR1nMj1aH9y/1dI97A4IyUSBMfq1ZmDOnwtoOagwgeIDreET+m8XC75GF0Qj9\nUKny9PwenadvNS/1blytv9q+xMHK6mtN12Af+PfEA9+ZoiwJRLaNzl0G7o36OLV6g8C8em5kQY9H\n5qIoJe4Yx19LlPpzoML99YvmeydGRhbbqdTihF+k6NvLHsBl5A0yxdbh69xFLoXpCb7pzJ4w4taA\n5LOA9etpdgZXtv8n+wNEYpYl5iBQ6gg9Ays+KaIniNBIFkv0NVz90veIlI6PJhQS3f878z9PKdM2\n63eG3CLLBDRrRPN7pKnUbjrm6uNVt/2vFn3P+MRt2qMsNsJ7k6DOUeR7tkqo1ZSd5hhnjkzWUiRa\n900SDDSjMwyDmIsWzZDYb4iMsWYwuSkzBCJiIIgtcPSrc/DPCcpOACL1VKNbuUspEjiRLRDQmuAq\nQJgW9oopg6kCuQ+0O8M9dBfDPVx3O5ISHFLNIh/teqt/j8dfOQGy3rGGYRrU7TeUSRjIqZBw/+Id\nBry0B5CC7w9gAlKtfW6cCfzrLRD2O0i7LMgyU+SSa1N47w7hXIzS2EmASo7JUO07EBVaINK483UP\n5jG7IU0wF3etaVxcpPdb8+/hN3QA5aOUcfe0feSbun1YYSYOHOUYKjsWCZn5/VHKwhGSMaX4gewV\nXXxci90NkV0zsS3Qb9BGvbdlbduNY5S0E/s3AniR0Py/qACEo3tO1NYzYE/n3ey6wLQXMyOj97Lg\nfySIpa3HZH+AOCvIP+N+so1zu2Z2gO9hTf1J0jMmwkZPEOGAtnzFMFrQlBEXp/eWut9Inmlggawx\nUfDvXs7uR5KY4y/nUGMiMgF9OJif+C+/IUoz+q45v3ZFaQRryvmL3MjlRJsHNscOynAnRf+3fkvS\nAe1uKifAwTzMGgAAIABJREFUA2dafFDlnjsD1lkBXOD7IzoTWPGMewN3E8Y1YAGR67rVPP43akMj\nVyB0uUldmIgo9H06oCOr6w7ckLTNWx8d99votx3hAd8rkBSmvmNygQelXHFZDA5jIpTqhCsfkLKt\naYsHX0bf4R5AaSyDRX79iCHddzE6fjaRt2SKKHJpwrktzDSbxYN2zzwTNYq89yQWONsDks64tULs\n06/NrhF843OMC8Dn+tly5PXicXMkepUJACq0ZNPjPIuJwKT3XRznmSbdpmE+t+7pNr8tWOFgOXqM\nWfQ9bcUYCC7gdi1u3AmhxlvHRMDvroTdsB07vEHa9mB/l0wS0rT7ezYbj5qcu0Y7atYKM5N1i8zt\nuMAevtQoOwOZsiJ2CM+jQRwyZXpb09dIyYPBT1ThSZ6eIEIj5+e+KPTyrA3QXkyEnXXtKCuDaOp4\n8TKpF6HszubpNOdQluNClJYnexPi9tH+yGUANSHZov6W2At6k/PpBSl8rvUbBabMtQnLFdKmZ/Ze\nvIfL5e1HwUj70rr6BpH0kXLozkBUHHiQ1q+Q/QoML6YYxbRE2ocxC6i479phQYK9lj4iJoLLYiAC\nbWOa1DfyEe0tCNMBqOPNGPsg+iZZVPXMBzoil5WB5Zi1uLF5xODpqOspwXP02sLvg8Gm0Pe4M1Hd\nRBfT1jrGWM1V568+JCDbcezjhOQk44HHljwY/icvcKFFRxyVH+Ygvx9+2509IVu79romm68OUw/q\nHaEsjgEKC/fEROhtrWYOEwXWJg4QUKmVXXA/Mue9XYXqCh+I6WavVwi/btIlu30+Pm6327HfLV+O\nwUefeo6vx88/Q4VIYqegu04mp+j93ZuCt7YuyLdoMMG2/x4t4pGveFRv6qo3NBftOB8ByNHkXfdZ\nNCb1Ufz0OfXjtNIMa7OAl4DsDoHFeIR9SoNbqLzx8T36eWbmL64cPEel7X0eSY8cuCdFlAWK3CPP\n6/i9Dt8HwXrM/hXSewex+ZlTpTH+6udATxAhIQm0+Fok8jaBX34YfPENpDXx8f/VlHs0jQTUQTqK\nc7D3nF1f/wOBNmJecFFHMAGvR3WfWRbQ73rXtPkdyAnwA59NzNxW7l/uCyLemtGM21skGE7VHo/a\nfAfzpqmckfyA2Fx52RGNJFsFb9jZN0V/y1JccMR+rObIdCk9QFE2RPD6ZhUE4BUI3+9F2TjWcQHm\nwmbJ1hTcCT8HgOkIaRPnt9DImoWWCOgGwP9f1NxB320GDzIf4c2dgd1WqrmXKdJAzwfB9oZARdTG\nD2wF6M7ATO3e9vSIFJUjhCbO2YP2/HydxYZa6zLhfRcQd+4mbew0LqyDB7Cu32FJp4XutEwiqBH5\ncd6v5+RMpSEmwixzI8o+kuzzElhECZi4z7/B0rC3fTsWNYZXGDqPYLu6S8IDKjtJOQjD//uxe+gq\nEmRpyKy2htoI4JX71mfqSgqHqUAhwKJXHozvNTYWFoPbsI6rGFFEGigvCiix4Mqe0CpgM5i/uThX\n7d9uSFJdBo4nPekMPUEEomYOtMctxQxWbuaoyssiK1zNIbm2DOxeWUwERJ/XgLlYZKM+fs4jCOMQ\n9EwMZK6fIZt1AjRLSdmoW482qb3nIO29xwgT4Rh7FygNNwx9hmXbD2Zcwa2hTFW4Jm2aOExJFoiI\nnLYENS6A1ut77kk3dCawYpadIbNqMJYICWjQUz5aZqCUSuhmkK1D3Xe4uvlTQOAc8XN3gQ/Rxv4O\nigIryvN2ANLMTBmpW1D198KI31n/jZjwZy4Y+txnNQCATQSnojI3bCRClNTWxkPl/6uKibCaZ2NW\nFWnPCdc5zVBOri33U2aJsFf3e4AHeybOeF3Pb7REcILtjjtDr7eYI5MZS5m2M4u2+86UAUdEXpjr\n16GOcjwGR1I8TgNZJzBTEtJ9VhF9vprrRVk1Qf0jOLYIh67/xtfZe6wlRmIipM8jO4aXdZJYPBlF\nqR6zFJ8jTcrAq4zGFCf7QNVW5qCO4t8ro722Z1Y03Oe36oMBd8shMkdsn3k4ZH9DN8Mz4+Pp+x/T\ns182eoIIjZzZqzYBhchYI5YIWR7a/sDxNmVUplzL5BlzXwb9/LUvXEaoXbtn4/aaBPyfnAmu075G\nJphgGpY9T6O+6JOGhAv3RMqEGjU5e0gx8f0bLXB+D2Ean+hbILAg45IZIuXWwKmxUGC5wMYTbkCg\nWU6DN1E5vfjeYya4Ny5zJtTfhGDCHrjA3XIp9ugyLjCjRMUJlngPpkw8IzRqOoxRMLBeuDrbkcfJ\ndaoCdswcwPOgvWe0iKjNORX89A6LhSg4ZI9f0NokR/uNLyUSpi1YxoJLVf3XA2h20ChrC5G1RJB1\nDt3eoncDTVXmgkMCeJlXMCR4JMjc91CUrSabr9E6kgOGeV/kLnpWqGdLgbqS2598nbjHlcOFrPMT\nHkzAQMNsVv4WJaJoQ9f9NTuizN2GyI8lJh08FgPFvi0dc34ugnECiiDhWNbX8PPtzYl7KKsmEh7z\n/TWpey1UE8nRp6zejnMZXzc1QIlrijwnuTecxxWPKHzr9tt1NSMzJ3muwbmUde6ZOlAp3xvzffH7\nxOMQDTkr+ZgICEhl7hsRiXti0n/38GNPepKmJ4jQKIv0qzc3pw1CDYXingpe4zRRmMdVgQ1O0wy+\nroL2SsCn2hF0MU/nssCE7qGjgECfcWeQtgb1jyK32FelkHNnwLR2uwFvXNuAyY7uGYwDcFffhNfi\n9wrvh7+yXMB6XLrNETJUyEYfWJ/w+LpcNqijM38Hgijp79XqQjPwAfO5npZoo1rVRpqogdC0Wsde\nQJPlLJVkKcUBCXyvy9KArh+qDZiNAbM0MF2nKg/P7hXzdvleq3wfFtQllkCrZAZB9FI6myNCIjL/\nYImgNXFolsx1Yfoo7c6Qac6RyuQDpuH4QrBClx5lcnUAt6M10keVr2m8i0L22+ojbhM4x28wDq9F\nB1a0oJHPYJN8xwGaVPsxXscM3+0C86qQ0iyCG1emoS1FCWKVTFkmZzJeNHC7ERqxYJ1bMLzSysbz\nOHJPctYdrkROe1Yr0bl9UOs/RBB5jb70Od/9/bmv+d54f9eBho+0jyH4nIhkbu4roVGUEbgHwL1z\n6WDj5dLGOQNhEBQ5SkedpSSM9ncEHo9csnhMRwGU0TKht6fdW8ph1iAmvTYUuIba+Ai8z9pwZuxm\nWvGltlrWVfjWowwH2or0cN+Ae/V7jWrIdTmZC2+KhHnw96rikpwApLMYOj5mD8kxE+ozJdVk9jS+\n2A5NwpP9BPiMuXR+rAcHbs+DMfwkS0/wZaMniAD0aL/iQzOpdw6AghoMzSBLSkQJPmUXNq31H+2X\nKLDicFt7BDK3KB4JJZqZSevn/4N2ZUFyugll36gksA1rcAa1HHttiBbqlOlLHmQsZE6axBqwbLLX\nPDNTe7nBhVRvgEf9tBeQ8r3dGY7alNGWKokZUGrHWMDk586ldiOndkTgAS0RNiE4YfAfuHRF74t+\nnPhcDaSIxlSjOmQ1O9v5Y9fbR6ba2wMWM22rnivITDPx97/wuqHuxdSeCIDKuYqJwJkARKMMJhD3\nML97lLkhjdyDtBfkdO/amWdsdeR/HgYLZhA/iP+ylxkAn5HGpkBpGxb+MnUBqVuS8SKJAJyv3gdW\nJHOOgQmJcoHlEXzz5rZzzgKhKiGOyQligfUiBpHGMYLgsz6v2T18fajlXB8L0gEo4s75eyX71u44\nx7Kdl8vWAbGoBH6wkhec+5HXITLHEcLm72Zuchp8ELp1W6AOZ1W86r7YyvCcdl3KGvyl33PEz/qg\nmr28i/VgH2OsGrxlgwWmfIDh3WYN04gV55OehPQEERr1xcpSmcib5CY26RoQQGsFEZCbtkEWr9cO\nIQsaL0hgcfXq81KI6hRvTqixMOABmq+hJUJAyCw/wq3BkQIO/Ds35jo16+0+a8iYsACWuTuYepwp\nme2rhSa6NaQeXSEw0u5ehPO70F0YSwwmoL+5dnM5Dtbpf3dNtxV+Ee+6J6CoZureY696y0Z4jzuD\nJmdNAOABj09edOdSu8aAQQSxRNg694Lm7fMaAGu2TXeZBqMASqdxqN1noxuSZujuBT+iPOYrDlK+\nfuBmc0RHfYqxEuZSndDmzP3FmoHkHrRESL/xznoo+wYCN0H6P2z/e1D0jY++w1p9mcyMV1sWHaVi\nDd2RCpaBNnL/KRv3LBvSUTweTQV8YuROtMybSALhZiT708oA9yS/vWDZ7oF9vwZ9PpKlY5RMTAR+\ndVnXqml/RLK/wiR3WZLuACYxNkKh4iwCsB/BuG+3k/Jkvp2y2/ezFR1W2+rIn9/HjHwUIiIqZd3l\nlYgUL2p437FG7aWxRuVNHlvimFzmkrV03gktMZM1U2dIwTb5tvX3yv5DMIT7+bZucRE0iTWkNNH3\nWwFLQqQM0B6hp8bdkwYZf+70BBFofyEuU2AqxP8hUKDOC4IHfN5AhHqz/5epyq6ELgqOdJYGQFKd\nywNhgK4ubGcbxMgm4E1+Wzsewm2oel2fn2+bBF/z1Q+TyVedbAz3vLp3vfD/Zf7QAiaEjsrtmHA+\nzg1mVmN2tgIKmmx365aoTXGbtTsDCaMWEyrmtH/qUXYGzfBl7gyLtKWXNXVTZxA739HucUJCkSP/\nk8Y1AB/r61TpAq/B4IFYJDCY0FxLJrVioymzCJbSti6kusjpb/BBRtJacwfkYTwZsUTw9ThBmeuH\n8dDNLvN3yIS6PcBC+nPN++iICTOWCCX+z93TjnPQf9k3Rg00kRai2rHAebRMJK4je2tk5s7AFLu2\ntWZXWwbbZNwZ+BrMRXkv4jq7FJe5LUywRqM7UtgGrpUBWXUt25dG9paCA5kjr3aJYivX5nwpVfEJ\nrY7ElU0HUBt1J9QafRRuRgiBru4qY8eydtVityd2Z8j2jd3YNiIcHitBRmMhRJYITIgVID8xEYm7\nHb97H6O2fqmz9Hqx9dimRdWRzSM3do1Aa5+wZzWjjyMUKRQyK60zjJLntR5LaJGQPldbFQw2QheL\nLCi2Mva6tv6Qe8Ea7dGWArjPPt0ZnnSGniBCoyy694i2VZiME9kNRENsGlHiMm+I1owbvGUUiimD\nm3KEXmPaxMwSwWQx4GWq+v9s5XJDv5RofPa0r/4/qD+gzOwRcw7Tqi0OJiiLG0XOkGXMpo4ALRvN\nkWYFQKzdAIv8X2TBkqQQzZhR/W18sFFgWJTJpAgD7Yh9zczSwiaF1Pti4fRn2b1yT29zptEMLQ+k\nDdXUsyQ7N7/lngYUfUPFB5EUOAH1SapEFzsj0pLYc+cvS2cYSM+Q35MP2fnQgqWDfs5ZQEMPT0xb\nJjI2tAPL30uYw52fe2Nt3h1CmCYXjAyDJIJprs6+I2szB91L3BmiPYAJLfZR+1/NbzsXs3mmsG5l\n/RaTtiTCe3gO8vpwW+31WvW8tfXhfDZud8X+59rGY7YB/3XtfYwm9GhC3d16iq9YgAELcOxR5g7U\nLREmOfL+hH7XCOhodwBnPk627Fu0kj30Q4+J4CPnx2vNqjXB8k3ZItBaGuo1AcfkosaXrustFAX5\ny6xlugVnb0e2H8pehnUFbcax6/fFiebVtgG14At8+1LVeGquLs59ITD7z/jH7D1Ct0XQ2COvtahj\nuh5gLCS1PhZW9/MaiQwZrK9rLd7FFee8s1AoQbu3Mq9rfFxqoVfojxnrJVuX4XWcJYW9B4NBmnhT\n+F3cde7XB0ya33Sqj1k7fgr0BBEa8QIzpKXe0ewIoVSQhbbX6F+mcXauCuoZBwCD02RpYUQWkh9n\nNnjBs8q5Xwztoj7Bh7JIMW4e1VzXXZYx0XIvuDOMyFPuHjpmEL0vYFQIzvmbwkZYVuqboy3q6qhq\nzMkYaavC1AL37WVlyOIzZFRrwEyo/7J7cIzumTTr++L64rqyZ99LGNCMzzk7w1wq+dgYyRqwM+6O\nUyLmZVFrrcud9aE3wn0SvR6Fn3U9DyLoupxfNDzHPVcJFtnbodBtAMpBBmqtfr6gEId1TSWvH3O4\nR9pC9P1dJZuAZ4hRSETwAxn8aC3LBEtnPk8e3JH/knVvhd8R+QCpam8D0MDX369jiscsI1C2hm7v\nYfte6lrj62fJgekIIDrBxgsd6GuPKRNH/L7l+XdMWZ3qbzQrg7GSaNc6OGLLuJhOqs+PxihSoc53\n3SM04Rzp1+2OvFI+j5jOuOj5vS1eh+Pn2DVmWYt7NoIHQ0q2QUvNSnqM8mNiAXqEECQjsz5woe2A\nvSOgCK+ZSxFABTN+ZOuh/rYIimRZGm7hHLQ9t8BztngryWYzQFmchvjpT3qSpSeIcEB1VQso+5z/\nWL12Z3o3JK8hZ0TfIvvzSSECyZlfMfqO2pu2YHOD6kKSwoqDPd1ubQEHhpiZkNttptdlbu2PASGt\npUnbyNcDVHl73uFrC+myo7e9xeVilxhgSB44wqB0lwR1L4I9gTZoO443dY9h+KE3tHvSePlo1BZM\nWHbqclqOAJDKtKAoUHwN9BYrqrdQNu501PqMdt0kQBBjqxK+Q2vzehkyRyY81+4MqfXPjnUYAgs+\n4Fz6Wo4yf+UfU/uS+iDfI9CO+KhjX6u1El1EUKj3lj/qNwsuTXUqqfdYlQoLYATo8TddZH+0e99S\nJ6cF5SOHYuAmWYBtbO3IYnVE17S7DtHmotVd4+L6ffT6LsRxX3Jsosu6dZRfFwOhLTAfPyIGE8Qt\nEl750ebe7z3Hqhoj9mj7imhVYwh5Ni7Cwnav+xFLPipi8By140N16rby7wTdFA2+Bl4db0Pyn2mj\nijWCLsNo9fEKlgmRJcIFxmhqJWsvmvdAKx4pvjP+H2mt81Okp0XGRk8QgciYaMo1WSyn/uegEG8C\nAwaBZ0Ka8g21on/5CQnz0dHPz9CRlgGjieujW8TbkZkleUbrm9sy0S0ACYg6GNJBBAtAEJ1D7OXZ\naJ4ugdKAiSrerzuJc9jbo36P7pPaRaZkaASe3/oDs0wYKATrdnnNxH7/raQ3W8uU3YQxsMdIW+PN\nRLlslXuPTKZ926r77d10kEHu75tlscBxUcxzLPU4EDEwsM0NOyd+aOKnTjAuogwpznec4w2owIDe\nBzP+QO/lm5lnuwgEpFOWCBaBitYFfV2neHSBCFHDHaxXTtAEbVpEyFx2wdKejxCavxqyOLGfV65d\n/VoefZ3v9XPeM8s1PZ9RQJE67P4kbdOWcjBPce/p71PUWmnfR8CE13Z8aUflPjG6j+v2OC1oKzMC\noGRr5J6/PMZawvVPB1a8zvs74N77ukCKzhJB1YOgwYlxjW4feXvi39tz7P7kXUl6mS7EtzJQhzxj\nwOrOWZ8EZbDNCJAWKsH+0463eD0y1w7GWW/jThlYnyKh17lXHXwvPX/F2gRjceCcr0WtOwi2JG03\nbWz8K/M6sH50cCGKVQZtu2Ntdm0L54jtP29R9hSan+TpCSIAIeO4rsUtODx9R7RsBSWLO5wL35K6\nLVpQvbbELh7CCKmN/p7Ul1kqIWyHbFCNaVpflVZhseDBAtpXlsaXdaLXxSLrTD1KdTHn81RdHumM\nCTXBokRYbwAGmMRhlP5CRQWFq+Y5qZZS/XbfP/sUQTDFo7FTg3syCoW4xKwxM9uzZdq9CQOkhQgU\nIJA5i4AHpkxbsceModlzlm7L1AdTG7N39KBdSuuAwiHnvG7nN/RrXooD1lgbKeaWgTXIaJA1awIc\nf7uspkJ9CGJ3oc/zXoDHbK3ZWzKlj+X5dp3YAwlHgEOfasy26cZMovjlFhk7WHtkgUC0BeBEX3Hf\njvbcwF0kuqbvsTER2j18L45ZuG4Z4lYftimZz6WcAw/4OvqXH5G+B+vrZex8nnYWSO+a0B+0wpyL\nrNw0LUvpa+XNfmPpRwEPLH+h57y8B2jdl9WO81uddtdeU1fgMjDiLnZE2LV6nPfAzyTPJvJ9rtuG\n+zhmQ5L1T32LyFxcv5cDm0JwxLZF4kDB/0f16OtsDbLulM3G7ltJu69sbbLjRFtXeVcRvjdZo8NU\nnPCckTYme6jbnwMA56iftvbZOSZgN46/AfAumzOm3Qf36nNvFbt/zx5r8girxKclgqdtbvzYrfg6\n6AkiJCS+91EU7GjmExGNBFZc7eKlYWfxvYRHZtf3CF0GTpmyRsADMCkoe3ZTvxGGnI/AOAiTVWh5\ntQF9mIG4LXEnv6pAUshsIFAgmpJaJZryIarc7pkHhLHRqOw/Cp0ADY4oAtFGTOoz/9Q9Tck9C/Yo\nePCIkCCR9sufe8AKy95aRTPMW+1zXUVwsOa9SJppO+secwY0NEwT/Hcm6KwTfodboNtyLDgdxUTA\n9kRARxa0SwvhksljEMDZs3LwQED/T9YmvCcBFYj2xijXSeH5fUE2/d51hhH2bajmnujeM3PcWyDA\nPZElApeBfTFbVnUsDuQBRHQXySl+bkSYEYFpgxD4v/jeob0a78H/1XvtuXBoKnScOSLaR/y+ykBk\nXMdafcwUqR8Alnv26MgHPqMzPNwIsDF6b39+/uBRgDmqJ+IBjtZg7w4w8FyuG46RMOfAEYmjVVUZ\nWNsTSy8m484wCM69F+32m6wt/CesTztzNLNAeNKT9ugJIhxQrWpByVaNiEMf5drVnMYNpjxA4ENk\nfyLrm0ikAr6d8MN9BKFGlf3stOZFfD4bePAKmh5h3tci/92yZPH8XPWas4Af/j9N0UbLTBpn6LqI\nGWC73rptKUrzmtQhz+HrZXwIoUvBm3cBSLeVuWnoZx+ZSprqD4ZTZyB/mF36oelJFR1Fp8bfRF0L\n1DWmFmjb1iMy1zLq1jP30ei81+4MR89ClxnzX5LiMaNVrc1ZIEVv/fTYtSwDxNZK7gXQ6kinvOPz\nGXON4fOSbADbtXbEiP0L3uPb/8h4A4+me5qAqR7PxDbpsj7PPb7Q/q923yHy2vBdEusty7V3CwQA\nSdQ8F9CgIUZzK8SpEq/NFOam4g6IBQBjWg5gGZ8TZ9aSzBJhnirNsx3nR/vIVp/lW8SisM0ZDtZo\n6nVg2Ub5Pr///w9BmRJCZ5a4xzo1S3fr1yHmCz3fgy6o7rpek138iZj0+zqrBXe0957pBj2fZO4l\nHzwKXOqCPDprN/9MVK7xHGSe8crWVvIixblNdxfH43cTOnAv3dtlUOx4+v4/aY+eIMIjScVB6G4M\nB/cE83MkfsIRpULd8a2n6pN6EyZ+r2y28K1LEXNNsUQApg1pUeaOtwPhSrdjPmFBsTUxL4eaHy45\nUZXNgzcVnnhYVvJ9U/cvF9NmiLMxAhqcsmKB+B0FND0jVhhZeifNUGRMxcjYzNwYMMWVBiBGzUXf\ni9CE9R7KzNu3+s9XvAIzWHeQHcd8DtRfa1z/nrDwFgG/f3cLHoxYxtz1PBnDbc2B5+jXQ0uUzOJg\nKtXF0xhpvzCKM5eFtgQuHZllwYifso9DYp8bzeMsO0N2T631tCBn5vwbrI0ybV23JNDATQmPTDq1\nsn9QOyb7ucSkmaoYs/R1nNdmAN6Um9AZDTNRrG0doaM+YOopHlfRCu+ta28l4+rDx8HHTcXvUyjM\nuxg45GMdHbk1bK56KJxmZfu10fGsBd4s68jItx61aLWxA8bqDy1f5cjreXyPWWcRAE32gFo9CILI\njYu3sdP+jDZeJ15fR0jWRsY5IBtEBZ6HSL0XjBncl/R75ZahT/Bgj569s9ETREiIN7lp1sLcHRVl\nixXP3L31NYmob9ohucB5SG+lNQOCVWbMBS9SV4wLscfAglmY2bgBsUW3AleXQk9TRiTRFGgh+Yh5\nWg1zMQ44EG2C9Nm1dU+Ad0H41D1nh9tQJPykzF4w0IvSTGxte5/lczTo5Ol6D8bMo/fKDibtz6OJ\nuvZHXyPqc5C1bj0lmnoOr1GtCgxoFtE9gAPSSHd16yKLePE5H7V/6hFF4y+K4r6dQ3tUeQQ4Hkmy\nV9QeByUDDbqG2IKPZ54zlUpLlkkhyYKzUiFM6Zh1hfO6+4o5p1KK7INvsURg6haIrR9VrALnxpBp\nI9X/mMoYQeFysd+xXDogUN4SGOkEHZmid9x6B0w/CFQ6l2r4K30ceU0nLCZrwF68gSPtuGk3P0fO\nxwfTSEYeJixyZnl6xFLWWdL+ftl+4QMPbsdlnVLebTS2TnSPF4L7/z7w5D6ZYLQQE8EHTNWAIT/T\ntiXzbjbP5P8AYMH1ternsDsuBjxMjvqkWzPtz+cRGo018aSfJz1BhEYozPGGd7kuspkzuYjjxV6P\nhHx8EKeJrIqRwNSROtq+qV+t0Xx/gcVwauaCbBFxaQzkPK1d232w2esNJNvczwiUh6nVlBm9MBzt\nPS5gqsj+v5LicSFaJl507YPE2iAIrMgC8mXaHt6D38W05/su7wFC5FRL4J9aTVm+3C0R1P1gwlpE\nqwvMqOoiz2jZ+p3grLKD8Dhkxg7NYveEVPTRxQj0OlPFPWzxEQPX4yMVh6RL3wuT+b6b4tH7RZYd\nfO1jG/ficiRM9ypxWkRbXfrcJiIqzaQ6mufyXd6gAXSgpvrttNKitZ3Muf5/FgECx048RyJwLfN9\ndsBNkEEio7FUj/Z6D6Ca349GajL3KW8bBqY0/x18yyw42r30HkDCA0O13E0+C4QFX6LsTDhWeS7G\n/srbAa0UETxgs7WybHDqfK2EPYOp9rLYCOoxaYwEEdR2wHusa6I+Z12Q1ANLhHmqMma3dyPpW+Zb\nBFRQ0reLgZCMw7dkpIpM65mydW8E7D8Vz+orFNZwXmZCN9HxuseftMD1vS46a0miy8pcaZXM6tro\nXnCPJdueBYZrmxL20YqO43Z1wMFPgKx9Lp36wHu8lzLnp0ZfM6D+Q9ITRADqPod9k5tmLJPcrDUL\nmdA9WxSTGQrNCDqwIDufqMfsAhP06WIXmuXWN/rMIoCvR76F6B/PlC3GK/mFLYraHbZjrkozEbcJ\nwR4iog/tJwdY5Pe5zNaH8laskGXqbUdcQPV7u7RDYAK6t3n4tJBkj9TPRWjnd0d3BuReBjjwTICY\n5g5zm52JAAAgAElEQVQe8BhFt4ZL0Oc/NB0xWNoUL9emMUqf/3f0fAYzovKZRhnHxWWqdIH7+Zt/\nmrdUJR8u20hkn+cykWPaZe04wTw/Ij3kHhiJ2m/vp99BhZnBMWYmMUgcPCfKaIIalzzDQznNQO6R\nz0Pf2kbB9Kz2iMtEpQEhrn1r/n5FxaHoAGHCULbrtzq5dme0p/VymjG4zlSKX5r23Bjk90EbIhcm\n/5+d65LGTLtkJEK1tENiFsRAVUQjZcqHtg9dGfln8GB7IGdrmK7Vg2OQ4eFRhN/yXPDA/XcWy5t5\n6WsX7/O893zJ63ZZZ1wwUOQ3ivfLP9FdGdhyxroge25VoGDubtd4t2rH+V7ZM4R8TOdfpFYVnHqf\nauDiM+wiqpo+Gi9Jj0+JRyoa+/N94dOM+3c4WjO7+0TvV8x2s0AdN2l7Py4w5zAmQs8A1I8VraU4\nPSzMlaX657o5L+9r66jPkItPCugJIhBRqN1hhvVau9XAkQ9jqCKD8xZRhSMyG0uEJOhYBB7gfxX+\nE+0dgyGvW8F5OtbEhXEiD6Mp56t/Fp2eyQkNczd3ZOFpaTDyvFrmKRZg2PR7++9DS1XZgzN6BPel\n2Hu42hETY2nDThd5wad9l4JHBhe6f3RqBSJWLXbjIOqWKeLuksDKYt1wUYxcA6CmK5vS2zYKgBOM\nWYmfwFpx0H7txSDlJkpdPG7uVJ0eBcmKrDLQDNrdA2uFzrk+2ko9BpzVSvvvA1jgdMsiL2xLfvaE\n4dMpHvPYJb71qW+u3OvfDc1AbzcL2GX++tu72feZoU+4pKxtO+CFtJn8c+6hozXTGQWp+cvEDFzf\ndPM60bLCrZGcHrAG75wF09rxEc/SskV0NM7jeWWfm11ns/1a+66RzeNJhB4e/55wPk+BpcCEwijU\ncSZuSGfIYZ6pVNFMBaKslQ/bYlxflvY/HyuVV/7edlzspUTM3ie7fipuxF12ZBtNpNYw3nOAfxlx\nyUIB6S2ZqDBezbbGHAB6GZ92gka0mUd70vZs5hv4HrLngcWId7drdXGd5MeQzG1n9n/8HhlF0+pM\nV559ts5wVOaxmx/hBmjra23B6wGodBT0m0j1wTvK+U93BkvPkBEbPUEEIDSZMwL7GfAgG2CTZRzC\nFXTUGV6ru5iDmmz7pw/bcX5pjPm8psJptslEG9AjApVlQcPKpMwam5vBpQEBzMiJeXegieH6WJC9\nXptZKMOvr9uw19YSIrC0Os74J2dR+EfIGReICbcSwCUIFTaOr1swgagDCocZPnQDknGHQt1b3XOP\nUo/9VCh1F1KLwwXGr0TGTuIqRMLsSPAmFC6cZgwCHhrN0gFLx//qlGrSJnGtsA+05q8Ulun15+PF\nWSCIRcBjB5e3dGjX+X+wRNiiefO/oAVqN2Mg/5F1I1p/s37Lfcf9+6T3yLGYc6Lc8iC28IlpKIxL\n0i+PYmqzerzADuvwAHVf8aLmFsxp4AXwfOw5AXiAgKFo5fN+OwqOeKYt2A4d30UAw5G02IfPs+dZ\nOjtzD5yjlcG9qUyxvjP3pYEVobW1+hgZb7NEiMcJkY//5AIOQgDsupbTa+9IX73FdLyPacUfIe8J\nMQR8ppvz71VFVajqhX2C+z6yRPDvwfX2snyU9+Ayjf/DFOlR4FzBH6RPntLxk8bpCSI0QjcG0fxd\nqOc4h7gD+xW2I8ZPYH92Oe/HNMUj007MBd6MRXhkv/Yr/99BAHlXMfm0D44EFwQWcHG8B1xwwgO/\n31zFHWNqtlvlZoUREawVuCHtxm8JkaDFNWKdaHWm07ySArAhCL/aiNDCAhiRXqeqh3zf6jJa++YC\nyeH3FxVdux7stDiGMJCQLucyioA7g9QhG6x7nNA+A2eZWTSjk82RN3YKhDcRGqs55w1w8y3cF66i\n/122BzB/Rrq1TljqFJhdW4AKybrIyNX2/NXU0du3068Jw3dGOZEFZNXUA5fB+Ndl2I2B4zXMeSsK\nAJ/dTSIub+bTO7jWjES15z64tePrao/tjcw9jGHOzoz4PPV1r0gNvM5xSsczhAHz9oJ4pcHBsvFW\nc0sEZFh1n3jABuf6dlyCOe/+Y2uFYNHi+m8QwIwJAyvvWcCgEGLAu9Wu17IWcyUDoEEW0E4HE9yO\n3pT/EeSD0wZ7TrKniv5kXmVvxoGRKTKWYN1zQS3bdf0tcI45CxwA+hBMOEtVjvE4lDVOCY8r3oNt\nhP2QyPIhuqz8L/xE70+2KJwWLoN1FHNdAynoMoUUZdvA90DaG5bHlq9cR1Vzu68DmjDL1BZzy/43\nNX6Z3YSEX1Z85lFg8Liddmx2VwQED/r4y0AEdNswa7JkW7KLMFrrIG+yrNoNBJ/D99o19Eltf/qx\nG/GV0BNEICKiShNsWjpwDJpn3rW/oD077laRxcOIFjkQBk0dbyAtsGfg5D1M/AiTfmQu1012eTGc\nghzdTcBrnSGo+Tqpf+GOREjr8SKqRMsVxoessMgbdzeRrGlQQh/0qsj1WVwsWhkHHlhGrBibTPsc\nCdqJJrVZfIWAIkuE0Qj3e0CKlOE6+dju0ZvqGX/USVD/8TF6TxT37b5j0AQrXauPks/vNzcNwq2N\n1aWBaPNt9S4B4L/56HSGTFkmEbyu28LxSFzwNV0vBFVjwAEtEJzrz7QKIHg0LvRzs1gSHSC1wGgp\nHuxD6oxXBxFwnKMgI+2h/n65VYFt0x7xUES3BmSmRwgDzWpwU/7jd8/qCH4fLRuF/DL3COK1OgIF\n0a3B3RsA5ejGsDjB1p4TEdU2SDnmQW2WcrJKNHcGQZ1WBcox/h1ogHXbltWn8UTTfZy/epzncUn4\nXj03bP/wwi1liJ/b5q0CEdjNLgrQt7W5C2FH69qIL74HD/jc09FcP0Op8P2gpRrrkfgTvLY+5jGO\nXNwrZXFzRHynHlu4Zkbxb4ji/izIqMv1zsdyGzFIqgPndmIGZfxLvx4BXvF5pEDJxhfGSkDLBF1R\nZuXLdM+SerQ+PunnSU8QoVFfaOxqUm/UUwHwtSOLhLXfw36PIuANODg5DcUeHXBjEmBFlavA4HS0\nnE2ftuPH63bzPK/i2/wIQp9GtxEtpTNJ7bkczyBb3G/LRC+tjGiAWcBg0y7WGjbGS29MGADHI/ss\nwKzyYZyfd/uD0/b1VJnF+XdjvS5i+wg4g1G+P3DjyXPrEivDEprWnqKVgk1r/5b3zlSWMRKjdK8l\nnw0I1wXJsKwyb2fN9Q3mAI9HNgF+fd3G9nxZJT0iz9Osze/lx5ldjwId8viWwJARiKDiPZjrAMpF\nhllRgFVb5n20JwJ0wbrxqoTJFoePrgHIYtoooEh1ZRgI6FYGkznfbSOATPt+5nwPmfd5hAAfLUdH\nVINnP6Ite4FZu8bNflMmUSws/bswyMfHVwaog/ksQMALP2cx9RIHVOTgaG0wra/FBSjtKVL5Vg9e\nHJnk49yJrI/cfhXUE6WR1vUyiavWtMo7ry9k3mO90SEJ3wKuSz7dq7dWcHUBsBKNsa/F7W4EVOP9\nr2e06d9YwFkJsh3XEcWJOMoa85YsXQImUA4apHVRT6WLMSM88PDYvUC3e5RwTqL2v9ZjvkGCwgb1\nYIDIo+c/6X56JLj9m0xPEAFohkArdSk0itsZcAFh/ubnWNmeaSRaClPi1jBCnAKqaygmzzCCUM8C\njGw6ZjNpPx7B0GFwKKVlYfCAhSc+ohWBfq+XxTJwmbkeMx2XsopwLwCKmJnZxZbf+zqvshmJub2Y\nNrcYDO1/BhPWVbJ25Vp40OboDbUXgsLcNmbi2FXmVrtrQraZsH+vCN3qzwNOXxjWhVxa0iPaNsl4\nECEqH02Ro+mihflRC4TQhxujuCf3iktQVWVbfQwMzGzKys9rv74sE31e7bjjexlc+NDsLL+8bMfr\ndXHzZgHBxWULqUXG1TlfXdsmpowhj8a2pGht2lbRQCowcMLUtgdaf1u21QEuWveAB3tBJ7PsD7gO\n3ditoRJd2apIApO2tsJzZYtQ61EGJvjUmZ16WlwLOOD/E3mLBz4bsRAYJZ6LpWjfYFyT4Z6oHrdO\nxN92papAkP3vr9+TdQRZDAkh1mS+Fun/BcCDFERYJxGQl5aBoLy2IysuPtveXxlsWCYBEVaV1WQ7\nWkBxUePkiMUQIUiNuSz9qLRJjv05Lrhj/Dgbi4n3xld+LwsAROT5lu24yLdo621r/FL7KsBH7Uce\n1a0F9VFLGL1veVcf5hG2c8S4I/eg9DnBPnjk8hXFtRqxBB1pT0SbBcz+KpHFXdHjBkGQPXeK3sfV\nnI8EIhQLrwcwtM79lPxc8O41Bc51Gdu2NGZG7esAMlGpJW/txZxbGrZ1cE190s+TniACEPo/rkvP\nNy8gAccfGImRgNCqOEWtpg5DoD1251iOgoWZBfIvbZMWi4RCaPZXAckXIVxHhn+1D8+ivWshWPpS\nmT6aNjpTuO24vBZ6fdk6+aWBB9+/bsEdeoAYuzje6qS0QlAvsELcnutU6GML2Jgt0AWEkrnUbuHQ\nyvBn+Nie+7EJTlfFqXQTbMtUoAsEm4xFpn3SJuVqo482VsY+2iNmvQyEGA4FjhmtRfngWSYwYwaL\neq8kBINzZ6gUMHl8D49Z6cfWf1S7OwNuoDxG+QFSZy/YTffaRp7ERijqe0n93H6cT7IEsKBZ6DO7\nLQBTw6DC52Zdw1Y2WjBE7SPTHiOeMZ3dDeqYUehWObYyPTckLWizQLh8aK4KV7uW1loEWGBBAtcN\nZ0qtmDWJc5L4UkubVdvR/NrHe4F2DIEZvt9kjDIAyRZKcPzQnJQ/zKvrP7Q4iMEDOCbf0Fg8QNuy\nV+yCFPdRETCE3RdWqKN7iSigiOy1Wu235TkarVp9jvHa2eaI7CtFnotz252r9YHrZheyPAsOmf/r\nSgpEaHNZwEAGEWwdy9qB8fWLnQP8thy/SDLqNC39eiNnebAmcz+ibP74gLla0LRlea73AMR9bmSW\nCP35/JzursQxnF6ZPwFLi5GYCBntBZdEEkEJ+BnM1rC1xd7j/iffbxXGIZOO+4L3IMCxFyMG3ehw\nL9XZkjBddha8N34288V2zSwHcydqN77PrI5+zcc1Gt6z9LHpML/kuUftjd/BuzxnbYsIedAsGPem\njNjnXx9Buq1Z5qyvxQLnq6QaK59+jvQEERrJohSkfMEUi3I9AQ/qmjNlaLKoYUCHVmcgRSDcYapH\nrdXfjp0JceaA0gQQCiQYY/YynrR571G+cn99Oy63iV5vVnh6EWELNC7qHV5Bq8vE53xV/ARrlfqO\nmA1JcxhsxqzJWtinm5klZkxKHlyPyQlIio2WjfvASbN2aZiEDcexIgAEc08UlyMr6Jnr/I2XQtOB\numIvT3fmFzhiifDIwIqPsES41araVsw9XL0GD4iIXtaJvmfmWZ5r730FTeO6FiewnknPlwed4j/y\neTDCzGhhnWhzvyAimj8yINna0STQknVsUCeTnhtHjFy0dh35i/ZyXqQdZazW6nuS3wMzwegYD6Pm\nwZE7g0S8n+I6dF/gHENLmD3taBZQEV0hjFUQgAdHFghaQyspHHlPgzmpNZDZ3GYrMT+fqzz8yCVL\n6l6m1ALh1cXlac9fJ9mDb1+2pzOowCmJ5wa0cUYlvf52ywM4stufgI9j+xmR15wWDQImLkT79VmB\n3wMRip9IKsYgq0y1euUHgrNDVgwQ1BetGligrdSFeay1r9VwJKcjkqB1SLqOozmXaZGJ+v6DJDER\nVFwl5OfOuSDYsmw9hpZFb43Hg/xPJuCauEzIR7g9rh2jNTNz04B0w7qcjw8SU7h2cpvbkcdYtwLu\nYwgJ79FBGUUhCPfugRV8dIEU5Xx8fDzp50tPEKERMm93+U9pi4FEEhJ/RzyuagFgzQczEdxGsv+b\ne4BQSz2yHuCGpH0lMyBhJOBXN6u2ZXiBw8V9XYrEYOBYCKjpYdJWB2hRgc+JBPkMjY+0nkeEmh0N\nIkywqTNgg5YIevOcURjAb8Bjqpm9dhUgeTMJaaS9LmDWDjlNbbBh9fH2PvB1ZtKcRYTXAIJjwty9\nSthJwIPclI/Htsdj0K2B6UUEjh5YERlTxDKjlIhHdI/rgrkfwMZebwySaBrJ8iDPHgASRume4IFn\nGN+jPo00jIJBJ0KVZlRHTY378xRzCwEqEWiIhOSzWq49xtgJ9bosChsH9UbuQRlgqLMqHIEHNzB9\n1prcFHSUtbIL8Lw/IXiAsXWYbnWSe6Zmb88gQmH3BoxNIPu82uPk3e1e54Be0ulWw9fqAYCnLmiO\nklY4YGDXTJjT2mwMAI2ZhaLsS8NtUybc2dKSmdT3MdffDy0EEH/H8Ri2Cc6Lek4YIE+dO1ZSlwQg\nBdsslgjzGmZQGKWj2DOPkDd1HS4ejgPOt6MeNmfcGQ7bgtasd4IjKLRnqYLFElFB5Gh9iVkZ+jpb\nApdg+x7MN7tUxLQzzoC3WtPZ9POjSvna8nOjJ4gAJMzvhRkycpHtDzMfrOSlAoyFsEPoNpH9r9vC\ntZYK52CKWYo25eQF2i6QV3Fj8Awqb0B1ecwim1H387bX0cT/or/F2pgh2FEvKgaCpuu0dguD9iA2\nMe5aCC9A9zhYjQlMzKIvrJkpJdjkuWxrIx/5e1E1JqOGevh1IiKJ9t3ti8nD4wBQccBNfT1K+6hu\nce+wB2IJQAQaBf0uWdAujPI+Fc3Utfp4MxRzZXvvRGXYh09nceC5gCj8SKYHr13luuz/WusrcTNk\nwm6Hj+06u8ZcmttNKbX72PNYhdgcZ4NTcb2mATuUpUGNqDM3tv9EINtJR+hSzULf6/9x/cnS1+6R\niymhzaKxLJzz/OV4KLUUByb2rC12neh+0iV49pFw1f/rFkvbOcej6MH3upY6W6+dOTa/7wOEBF0f\nUwQeuHuwzF79kaB1kty3Fiu+Nt9u3RIBg6iiK5NuV7cemEwZfD/mNwSQmlcqhfeaY9AeKRMw+3kb\nj5GbSwaEBf17xANEGvBp9nOA26LbNkJ7cz0DNvj6DP9H7gxM6Cm456d/RBtoMbZGjdTZvxfvk/xt\n1579BjLaRNl1+DryIGgli1lCdts22HbbBl47bR1HaYDfSgi0FO0G5/hnOA/eFIV3b02wHW+r5z2y\nrAwazHIAMcTQYdqzCBW3bRhne+DYk570BBGIKFre2Ox2+qhABIwcnGh760rO0oCmA9xqDeo5skgI\nCNMBTte2cbQ6Lpel5wsWwXj7j6+zwGLrhXse4Ke1h26jkH2F/kOrgpWKi5cgdREDBNYK4KpSxPE6\nyUIAf9oLMO1L7dpjZiS5Dgxw15+fk46ejO+FfohYUdeQ2eN2j314xbELFirT9aChqq3y/F3f+xNM\nbjsuyfl7U2SJsFcmo2yvzUzF59IDmaHW4Zs2Bz+1I4/dy2V1Wv4+J++ne0BAr80rXgDjKPbN95kB\nPu0DLe8RuJIR6bWHzPFroB6AjteY/i0u0F507WHSQj5bXl0aQMjuQgwIMEWWHj23OZzLGGNQqxB6\n0x2RtlhAYCFlVHV7KS6TnVeqaT+lddwBHNRapYOQORdQiRnyZjmwLD41K4I/aOC11Em5JFlLEae4\nuNp7p0tuJTCyzmZ9PRK9/p45h3Fx9sZY4THKcabYQgT6RsdYumdvycCRTClfqUosDqTdgH3OYq5d\nd5Y4OUAZadnxf5nT4ovTwJdWxruqqHdWrplEHuhnil0qG18rIALPiXHHl90QYq79fJ7vAUfzPtqX\nHxFY8Qiciwhdh7sVSlc4uJgYxGX4Xjivav0BC2S0RsLnL7XHfPNWE7YddcT38GdET2xloyeIACQM\nbdvI598qXeA68v9Wdp0i2L3YqV8+NI0Cr5Y3XCKCettfu+ABWCRw+6ePXKIzLmi+2IMGbtc/XL34\n1hnS/T7QzNQKTHO2KSPKPV9Wul454OF28TLbTZKBDm0h0FPeWW3NdbaR4cWstNTOWLd7BaxggIDT\nUrXnav+zG2iUvKbZos8RTQBa6A3dBYBLdikMtEiTsmZplzAf9x4VVLUARQInatUwaGdEaC4n14Ny\no+4M2uQz00pm1zWAkLkxOJccxcxl5oByL/TFdaod2GplWfD8xeXWjlsI948fWrrVS++dI2Za9+8E\njL0PgMnMoRIWnVDFx/ibLmYObtdevrS0q4nlUilV3ikDEZgiH9QsS0JGI77ie3Ucmf+zBvNaPNDJ\nGTeuE4ONDXxsaPHLMslc/8AgC1ijae00t3UCCwQmtB7TfvOoGcsoil3g45JsJBYxQR0IlkWgAd6D\n89S5Szj3BlU2cUvCe4kCcBTbD9rWdZ2cOwGSdwHq+87HFvOAx/2lxQu5fLtdn74R1Gk7DywCMbBi\n38f6XsR3IXiFWvY9N4YzFiijIkYpfR+aP9r/1pax4ozpPY5H/W3Q1eYM9TE5hqDc01e77kHyPrjX\nVVnPs2+HgZy3YJYIXh03OAsiyIT7/V6dLmbGznPRkgIpWkcy4dellFRWBQi86jL6OKm2oOUBfgKT\n6hhjQrXrYnnAx5WvV4mnge13sWdqv0f2c5Y7YH/32cd6HTdom1t3n8Lyk3boCSI0cgG6PrXr385U\nX5rQ/cqM9n5d69IXSM71LHEOPrXFlgW/nZUUn4PZ+EwqSXS1aF92+mi5t02T2X43AflGrFFvQncE\nIpzYeKT9B0XRB5QtPq6fVvp027gJBgs4hQ1njLheV3PvuhSXQ52Plw/2fW4t80NVjB1rAD+Cxg+j\nvpMO8ISR+3fAg6OFuAuEfQc6SlNXmsTZj2qsBdYxrlGkrGwmXTZ+rvNLXMvhNx6h97ZEGHFFGL0X\no2Gfoa6t3s4/TCt9FBChgWVtzP7iunEDH9uRNdFWoIgXIqdJrUrQA9CMQQP85iOxLWT8K2aDgTUJ\nPPe6DbDbYhkwJs3QCdCKWiguS/7e4XRl6ndPkdn+kz64/9sy6WCJDAgxk8YBNa8QYJP96QvNPeUs\nAKJi5u0sEvz794C8LEiMi1CouWXSTHsWh2SPRhnRkXJnLBAeoTuTdT3IiIBCVpZFQLuQcD1z28Mu\nn5q14C/afPrUvj2nfFSCdE/1GR+7hnGSWCzOtxmFrCSY4fZeUBb+rzXf5zOLwDL1Bal8lD+382rb\nFM1vn1XKXs8sEkeoxzHp9yKkLmWqPd8yKu0D8BEdWR6EsRAScpkPlGsqZ8aZX61iJFtDdSYb3mu4\nDgSFbZpQK1x3d65i2tbv1e0H8EPGAUGb/b29jvB1DDCFWdgk9TDsPRpMQBcynPsu05ZqR7QnE2mg\nrx9xzdKhrsxR1YHgPVoiZBSBMFnA6WeKR0tPu4yNniBCI1xURDC7TsoloRU+EtDW/rM0ZLA0ywAR\n8ltwpcKaxT1Yli0hAveGLD4DC4fTt21xeWVt/GqjJBPRVGExvPjpcTYYz4jGz6G9Tet2+Xaljy0n\n5RVSP4lf39V+r3UpksZSfIJ50/zGgj/zr9tGeCMqX7aOYrCiZ1ZojB4w4rUWItAeP5L0ZoljEknG\n6EdA9gv1OAk8vG7mtNcxc115m1BQ6Vq9fg0zOYyYx4+ayO7FRFhgY+tGFEXiJYjLhoujYAGCqRTR\nYOJUz4AISck5FEtgO/L8u5ZKH9gVprVF/mOmTfkrE+2DeGnWE206G/hqE+nvR2nZjLqWuZt5vyau\nPd0fl+d8pdIGpzB0zDiC5gdjDJwNQkgUW1qkQlCgMcvMXrOAekQ9sGbj3SUjxzczXxd2m66rBZX2\nUqXK72RtxjSbmsnF6Pu9b/ley/D/mOzjW4DKZMs+RVFazYxkzRYGvwu8OsOKaSPzBp+YJ2j3SOOL\nG6sLgHUsOMtRgRYLAg4iKNt5pIWro6CgI5QFajYWR8zTuNhN8b2auluGfc9ZB7sdjdOwW8qWQTAh\nokm+ewOXBurPUjxK38N+tVeHWyt1MEvgu9DXX+8Xs8ruQKS+E/f97OuSzBCQfpdBVe6TGccYqZgc\nYImA7zOr9amnxeZJEoMVTFtqYNt+ltQF6JjBWle5HrLybYG0p7ObOzpMYtwYb+UX8JUDg1PWNwHE\nt1MXyBGeO0Jfk/vgk74+eoIIjSbY4MqVV4yJypRsAQAe9BRQXdAnQNoZPJAIehdmHJT5QsLxuOwN\n+tlwz9RWaHGfUCbDb4kAnqG8R0wvkdYc2DIduNmO8wcifjExz+Ic8vx9LnDvS+1Bp5pGnk0l529a\nG1vebY4TQTTR3GzH5kQbg4LMZV5oTt7xlS0hwEWh0vFCjH/HGkbhmsxdUzODXdlNZSIXk4OjX08v\n8mLboZnWlrk4SSHN/KG/NTDEZxhuJOl7eE1kqqJ7MLDij0lZczGw3mWqRsggUoGWOJYACwlL7/MM\nSECT/sj0XnwxE42mvMMJMEGPc0xJWYFhZTchBuIuZVVZBSxgMgMT6nOHK80Va4IdQOrbK5pgcJ9A\n09yRd37lOvlcUs/2b/mlXXth7WurnrN0fOG5WVblK3v/PMLUwNyfVxVfgxn63rfFtA2FSKZdwUnA\npNaOu1rf7n0n1EIsifYi6cMcxKL3gFdRLJ0sqKis3c2KcV2U+wSCBjU+auujzG3MWV9OWovsBaKw\nrXeAxUW52yH/Iq6bIPCaZwauItvRfi89j4/G03sLSmjBZoBJx3PcTw4UFAuClSZWqjCoyIAugj3q\n2wsowUI1rNEX5s/UfoJrMh4ZVHVrTdHtxj2AgVB7z1w08LQ/t8W65aJAD3BnkP1q4j2i95X0Je8f\nEJT7EoAJo+AbunOdIZOhwlkvw95591OepKlSfQacbPQEEY7odemWCAcbXw9wV4gusDDDalJgVpdN\n3Wrq5XXH5VQ3TsG2DUgub+xS3GYr/4mZr1/xMp93BA+0IINlmK1MtdUKTGAAgGWO9cUu9vh+dSnC\nlIlQ0zYIBg/Y31Iiw9+0eSjZI5pitrqu09L9uV/t+2AqSUnxSDkTJu+B53vMmTjQC5y+HfSuzGrP\nJrlMDSypGHX40p/DIAWj8RVykGP8iFX1uRyBub2JCTC/lwaTYiEOX3OP7jGtvocy7U/3166OmaQh\nrfYAACAASURBVMV86fiVX9dCr60vML9891nfjh8bt3a9rsIEskCBgnsmWBAF4zxJZbX5E3eBWNdT\npSz3wUa3WqQtL8096INY+FgwTqcvFRP9A2un7tagrrk0hrgeIVii+2BfYJfUdZMHZlBAe2llP7Or\nwto1b5/b+v1FBun2x68XjsPS1pZSXZ9icL+J1ystXIFLirS1PXcCV5h5qgrI2srMYoFzLE0defRw\ny0J/b1lfa3xdv1YSj2TP3PYoRWvE+Em9zt/bjg8JrrtOao43dzjU+oOp/W0tAjJ//rKZHly+a6BO\nc2eYvrMQ6PJdu/fLRK+v23x6aUdJfbzAGqB8n9E6BqO8CwuyM+/QfDwy1/eBFO3c28u4sXyBPxKl\nSFWWFXKN4vObSmfXWbe8Lfp6t7zpBXEd777o7bj26/cIgy72TNK2M4SuCocZxc7W3ywYu3tDa/UX\nLzD7LBC2jWY9F96JLQFqeC/fU0pxSptMkRABUhiAusB17VqHFhxskXBpMW4YTIhSiSPJHnrC/WU3\noGfi3pRZIjzpSY+iJ4hAREQqfQsjkm3Wrb9elFaX/2tHDlbHpuJ8XosS+FngszvQXpDGnqaFj5Z5\nl183EpNHjL7P5uz11y2mwOfGAN0m0W7yZstajWtjSF5azIAPKpbAusSLE/qA6kXL55m3jB36JjOV\nqThhVxj/V3sPt+v2MknebWaWL+zC8Xkre/sySR8QbYw5M+cvt20q+HzfzEBU6RMxj2/INDN0PVuD\nFZimWhQDYutlpg995UxwHq9C2vpJQIRW+MPMD1G5L2FgvNjKGMyqaxW1qggjqK3mNrOW/DbR0r4H\n9+mCmmiy42RV74jDnLLzO5kzpCOfviwzA1EXrkb8AlNmHZirL+tEnxfWRtu+/sxztF3/toEIn15f\ne6C8xKSZ5zUCONtvy+gjmDAUC6Hd06P+83sXBWhsf7LfN4MJbFp/UefimoTM50Bfu0jjEFtkrw70\nL0dAdCSgLQI1DBi8rP2+F/gOX9oAeQHA7QxZgYoZ+fgbcr9eL91lC/13j2xmR8odCWhbS4/BAyKC\nwKj79T+aqhrP23kbSxKZvmcCeoVjBiIstQiwJnvnd5uJ3EVcGtlMrN3T9qsvny/05cXuT7zncJ24\nb90UiOCFe/vtI1/xLMXjPeQEQOVrv3wPYxWUL1o5gUAAgrY3MS/frt/W0i294B631MNaFmmOXSwO\nGJ/VXHs7mMA0YpGH30tAW+1uAK4j6NOPtNZY8CYilUGEwbnWC99p6zAbewFTIEb7Il4T7T+DCsTv\nx9+6ym/vimPHN5N2Z8A+qarMdr0fuzFx238rt4Vd9FiZo96HzlEUY2RE8MfsDIfPgWc+6Tw9A05u\n9AQRiCjaItmUsH5RortEPm1HtEi4qYnMvua8SH2A5QSsDqJdGp8jpN0elCZel2XQoLawr8v32/XX\n11m0FzcQVJgRYa0Hgwi1lp7KB3ydUTugr/tNEYQeyG7A77K+VKqNn2Im4/WzNQFloZUDI76+XiSo\n26zS4WnistrMkTeEV9Dq3hwj3oCJD0vfJFt9l9bH3Lbr67bDXmXzWg8tEToj0hk9pyHNNgi0TCBl\n6cIclVgcTPYeppsHosS6AKwKxN99nbwlAn8fYKp3ff4OXu/RdM+mmTGFWrPpotWz8OFSKLHAOdH/\nf9vm2hfpr63Mrxbbb7/1so2pX75cxAxfQIMFBIjAIoHHnwusiGCCHPX8hW8I76u/MVpQMHjw6eOG\nUHFAVK0dnyC+Cfr475mCYtq3LIo4n+sAdz7SePygM8AKY3Sfl66z5W+K8QVwHlyUhQBabogAOwBs\n6GCzRApUbevhdV5VzI0GvB6+oX8uav5GhB2mfA0Yn5yZRcK9xCCiREwHgJcTZdyWDsR/acfPMAdR\na/1lLfSyzq1sq6ntEzwOeX9CN5svXy70+cYBSu1zcN/SoAZHfPfR17mNdq5Mc3UuROjugnNRz5kM\nhEPa/m/v/GJH3oXdGAPlRM88EYNvOvvI9r4lFPRHSI/P7uLBAJEdd3uBEYcEwME2SXuG4u/AenhR\nMRFAy46k3U77WmnvFXdIzgLWLBEmbfafxQoAoDeiI5cIcWtQ9XK/ZO/V3Warv4ZZcMAVTLsz8PcS\nt4YkNoKdG9sR1353jJtuyKULrV4hd7RnnQEFn8Lyk/boCSLQNrEdMMBC7JduuoWmd91iADZPtRJI\n8Lu26tXX7rdORD23i56o6GeOkXDVD9TIMy3ft4WMNfUtT/vr6+zAA2RImGH5BXXNCDM4qJ1OwQRS\nbhNgvo6+pl0L2s5fO3jw5bvGeH1/be1oGpib1cTclkneo6PxDUBhpoIZ8Pb/dVpFyEHmDBmUnulh\n7RtMY8pLGxcfWhq+Dy/d97iVdGj/AtpJNDvTT8c0fAJACZfYjtoSQSSWfYld+9+yu4domAEQQKuC\nZZlcnmg0qRdtuHqDbCNF2tu7fuxIwdFGjuCBBPoS4cQy+r+6TfQ3X9o4bzfzfx/bp7w27uZ325x8\nuV3o0taQTAvprGkqEVE8X1Ebz7TWPn+PiIXGSkUF0dra+M2nbVB9+rZlW/kA699UJS5HBf/ajKIv\nL4JyY2Z5HO7WAyAJE7oSTNRTweJ8leeD0LjUnmee//vELlGA73FwzQ/TImtGBoZI21sfacBFhMGL\nLYNlZxMkzLZf6oL30q24x39c3AvgdfbSsHawqpoye6BB5saAFF0X4bCd8z4pbi3ssnK70K/bfPy+\nzcHPMue2e7GLrusk4MEXdmsAF4QvLZMJZ2ThvenL7UJf2n6H1oMMTCCYoN0Z3Hob9sg2J8VvvF3D\nI77XWksaB2dv/dABkTVlSgkT38DFRMDzfoxA7Iiiy9j6EWu4o2Ctj6Ijl6K9rAWoZb/r+WKxa6/P\nc00ByVNBORP3N2/VclzXKuvf8T3SR7PtI52dAS0SJnFjYMuLlta4BIqgB1CPr9G/X7auZnTmyz8D\nK8b0xFY2eoIIjZC5XpoFwvJ9IfpoBfLIX4+IJDvAJlgtWGg7NFWVDEAVAI/dIdzGKnEP7PVSA2sI\nFt6a5p6Rftbcv9wuTsjAI5tK9ud3RmFBoRA2af26aNJJIoSCyTtvvO39b98V+vyrDTT4/vN2/HXz\nI0XwgJmotXq/8h7IZ2pPb0w8M+0qXRr6/We0pdVkSaEJCRDJF03wbqTcGVwgPRSyO+N3mKKquWus\nv9qO5dvWrtsqli8rpwm72Q8kQbteeFySxI5ABg9zDGuT9RUY7IiZNe9ZtSC2/3q/SaTNrzEHNAfi\nXMQ3fjv/bin0t27cb229AW1oM0CwwgGmUUz6+ibt6cGu3HhDIG+A6UGLi1f1bXmOXdoc+PipxXL4\ntpnSf+TnqfoSP+jRdmg6Cnqnfatd1hGnSe19haApkgtQqOZuT+lpz6+B1hf9bqVtHBNBljj+CMUF\nB+PAsaW5GkUB/M7GaBmhzNw7Er5yLXW7d69eABN6PvO81QhERIQgIAOgt8XuU9+/XgQQ4Ewbnxc7\nr5A+roW+Z/CgHf/Wre9d+rm/bGjub33YFuSX2+zWVdTGR3Pe7+9knheNZWedAMKa28cC3gBdHdGt\nalUWb6lVUOBehfshplLuoG3fY7Mgn/id9pYN/gtFt97XHSA7slhjAVCvv31sFrm2PeftG6TJwJBI\n9/dkLRYXXogzpZ854i6hj9H07YI7gFtqPBYpy43jA6+ZtmKdGl1AA5aE2ocpolBpa7Oy0mHXDcyo\nhIF/t7hCti03eNcFxucGfNk+ACMJp8Aw+xNY9zq+Ei18aJzWZ0SFJwX0BBEa9bzp23l3XSi0tlnN\n/t9MPmhhZzYc0CAWDvCHjqsAGnm5t9oNlYNqGUYcTftem3bj8/aJdRA2FAoxSNQSaLmOArbEmsz+\n275PayOaVLc+f/l+pl//elNP/urLdvyumX7eEvNN/T5MfCb52WGxrztSS7rxLUXAg+XVfhcknR4I\nN8rOWAGDxYJn8QKeEABSy3cNAWcXnLXSxMAXXwMQwQebJFpf+bvzu1rmmdvMJtDLOknWAIyFgGNs\nUZvmI5ijLMXje9FITARmJpF5f4Vvy4LHr28aPCBzZIvmiMHL3BgWiIWgBYsJQCuce3t05EWjhTxO\n6/XpwkHjWuyDT+19WEuu4shgBhZ0k0DXIh3gkwEVJhTCUbDRFhYF11Xom0W0YKuyxmltaEf0GmKg\nQOOwn7hP2rWP7ZyPV3mOX2+RUjCBNIjQjuz2wm5cStBFMOmMOe2ReesZ89c964IfK/p1dwNowDt/\nzHb89e1Cv2IwWywC9kGEL2sR8KAfeUxudaEVz7eXPr8xcKIO2Kifq4F7/215DFdTlklrW+VaO2Zx\nXWr1a4l3KyDz/7pMVFcbwwRTBe67V2Eb7F7qlReeePogmBrRqOik9zW0oiE472BCJYL2ppYiwrcM\nNuiA+rpnrwuvUjoPJ7yg8AbbkZVVzAvFqTiR/8Mxu9GieEYEIpj2UhwzIVYilgji2rFTWFwe2iln\nASu1WyVAAEWpdw+gRP4PxnIcWLY9O2mqJlnPeT2AGGZn6Kek3HkvqnRun/sp0xNEaJQF+dM5jTOL\nAFyM9f+17/bbkQ0UeENgS4R1XBOn6880V7yxs1WBZpRRuNcoaPy8/vtIUy/Bj4w7gyXxNcXncBfd\nJvp1U8F+30w8XyAKNaaLnEqU0G4jTr3zsVkMaEsEiZ/QGsn/iW8rtJ6DMxIR3V7tsj6y+Gp/ze1I\n5pxpC2qUVFIYdGlCQot3ser4HWzxwu4ujKyzkNNcMLQGoWe3sIwcfkctJDM4ha4PyBBpsCTzrXev\naX6DmoGvM3PLgmdcVXuv1gZgVOX/Upw2E5nNXoev3zEE7XoHCBhU6P15bVw5x03geFWfmlT6bRuz\nn1SWA2SsnKk98VF9W/yW7ujfhyljXqJb2PqGTbLnjwHjpp+3dvDqKFuCrBcaEIAPMZ+Ip+AyziTP\nK7VnqnDpackCAt9yCrTSxy//941keGFQwa5H95LMAX52G0Tzx63e1y8Q0G+dUkEr+9aRRvc3SS/F\nQhtacEegIGrsMYbQ52WW9JwMYmPcAezXDQiwwlOPIWGF70mBV0REJXDNcfuHWwOCeACwBiCVSbnt\noU99sruutch+kc0Rl61BzVnONHPhdYLBhM/4nP7bZUiR67ZsbGkB5/g+7g4/ZqQdA/s9jzsED/YI\n24SpC/eqyFJybq4q/fd2tPVFMU2c9Su7MTTgFwMrl+IF/0whc5SVgohMRhki5UoArgUR4RzU8Q9c\nYEXYn8rNPn+LF9J4qonX0b7Wb0eeK3kbMtJ7EAJQFXiOyOJrL7PamXaYe87f8qSfIT1BhEaC5DWG\nobBv6ocqWlu0CGAKwQMu28zF2awcUxVqs7AMyEBUkddkbaLW/dxot4276Hy7Rcy2uA61Uh/FQogo\nY1qchQULW8skbgtovtk3ycZ8zNz2/mL4PNaOftMi3LOg8+GyOAYe0/OgZuTz9xdpNweg5I2GvxO3\nXQeCcnEhoB8jS4RDAoCAAYFyqS6TyApWNAsIbtNcpf0yhpD5E81w0BRnoRILthGhGSIPN/6M+l4l\ne25l+TnMeGuwAf4juIfsgWrt5uhoIo0mhV6BURRDvx278YcVNLhProVovlRzjX3Uf9GY699pwvgv\n2E/6cjttflqJHASTMdqZf7MmfL5eU3j+XK/MhbXnQlBaDWKxy5UEPwQrHSbsc+2aEJns67YVvTbz\nO87xqIw0nUeZAvi9f9G+53Xtfc7/iQWCxEawTOiyFmFQRylaf3n+suuIWGXsaKfQooKPGDTR3ENx\nGexV/R3F1JfPYY5K5hsiWlnwh3gKCAbq+dzLVFuW28JbmqoLBTvWKGOg0s9Ly5CggPj+XvyuFFKl\nLgzwHP9mtgspAobsEjSSpWSPMmH3BhY4e0qMPj64X/l7aZ5nO2IWhZ4lov2/FLE6YvCALeeQRuKy\neKVIB1j4N9ciR6g208brm7xwD+dUehkEqpNFWwdJRCFeYqrAWI6Ix/DI6jEafO9MHcI73FHluVgJ\n9nwDLex/grmAewhPeg0YdGDBVtwtL1rfT7UHWWzzVAIrSmYgbgczPb3ODnj1sbkdz8/tMHMIusIA\nH4bt0OTGMayRfR3eg2x+ZlTvA2Z+ivQEERphPm5eaOZfkE+fCBM1EthZSGMBj75rmwrXhWa9rwQx\nFVTbwKxcNoypOs0b5gMW9HRFMSgniULLfaGQTvE/FK0KLNSNavUms0wSuR9iIlBgXscLMgMBDB58\nnK3OeS8374dmWv3th1dz/XJZ+mLbAk8KqAAmmqxx//7LVZhKBgsuwAwys9mDXnWrDH4PiaLtTEBb\nOdKm2K1ikFIxTWi3JCBaYMy+fm7+t0mwtbpW9w1vkrbRtm0SBqm/lwuoKPnT+Ujtfy/IOgYO/sff\nb6VHm4UyidERMM8kDPd21n3iu2ApwEI7/60GIvydHxhE4OwGS8+QAvE10DonAgp6PnuwIGlrzKq+\ndRq3g9+P/UcVEyfztbWf17dbm3prs95hi551LdIG1kqiMJJ9pqUWNUbtwicuH3K9WRhNPco7iwWp\nKw4HMC01SKHXgA9oHX/PudSeEAUIzWBF471O9KWtGd+s+F7W/HtRTHuf0/Y5bJEggVJVLBOXfYYF\nlSRyutEEA6AyQllgxR+a0JIocplY1Pcg6us5x0HQcwPBFwFA2zF6Xw6k+QvQrv5Oi4Hwy4/bkfet\nL7fLYeaLyPca0xT32AF85LnfwQQeSzcQQnwU+b7uz20huEEA4wXWftkrlp7VZ26BVnmsMr+0Ao+w\n1O6Gie5a6DY2qXfoQAb3zzg54LAdj2IW30uZRv4tGmENEKElbV/H4/1iUWOICbM0oDVDVbxiRihQ\n6290lO72lKsU8OmkeR5pf4IQiXKO5B4GEVaxQNhvTA32UB+XpB3lHr8mdcDV3qNJeDSQFfayZPHx\n6b7wpLfQE0QgnrhWuJqaFmf6xUzluz0j6UiALh2htamfeyoZMKcyZQ6i5gqYYO5pR/ExbKay194m\nImb043qZkURGdVb4g0+9ZOsIoynjPbh5AGhyuawimH8jAeG2MmxFwD7XEvhGWRT04FDbOWdN4CBv\nOksDm+FxG3oOYPtiLKx8/3pxQR0vq9UYfX9jppOZKPX+4m+LG6hl9CJtPxIHT7x84oic7b3n6oKA\nai2QqSOoF33EMShQqNUlboJ9LyknTJx3GXgPKqXIQ0fiGWQklgkHbV6pOoZVUvu1MuI3z9r6qdIn\nBvmoyDUiot9uVjO/uLTsBu38clmpvjJYBMwGMr0B49xN2i2THlkgZL7H/Z03ugaDSPLAc2BXMHt9\nfWET+37PDClZ+f24+qLAq619xQEA2NbIfaP/rmEZVwf5cY3BYrsFUW8zZ1zluYyAoVg0sWk8dZDx\niJnWGVvcfG0TdWpxKOarBSCKcolxWrxW65Fbw1nqmSoeDyYEwcoJ0/GhW9IeCagD36dbEFWVUSMB\nW3j/F5Chp+9kN5bfanOaAfHf/Waz4f/200t7r7a3cXTV4Dk4Lm9KUMR1CI+vAJSfDWx6lrRFAq8H\nEisFBpyPU9KBL+5i5wbCfaCuj76S077qtlRb5hHUMyX4/xJ5dtdVb4jEeqCdJnwZ9+9tLR0YAoUG\nK9k4245OvY38l6zfGBzRhazM12IX6NP8ZxeA1GJDxXXwlgdw3izKJDbC3EGECYATtM7RFAntW0vt\n+hSth2hVtSYDUAcxdwpO3AfVPU96Gz0ittdPgZ4gQiPUivLiUS4lMH2zgANe1/XIka17WTsE0WDP\nkEv5R0pYZB9r8eXath4WknXshEkEdPsevMhzPIVS+vaFQRi9uVQXPDNLBESIewDB7Xi5rqKNwcBo\nDBZ8/Lh1aF/Q+3t1H+HG6H3T/Mm/aYuxMkh4/XV7x8/xRqA1LkSbZpOZry/iK2sZZL7+RWkvRWPJ\nMQmcxr61p9V1mb2woeNnEJGkD51/CeNhIlpf7btmJmu63/B7MHCCWtiOiHczb6f1QqFLCVv3bGDd\nXNj29V5OejQxRuYCzaG128NUscPsqfcl7wU6c2uZmg/gC//N3IURvucqgoZNE9pNJvuDs2jlCP7o\ntt7ge2BQNG1ZgtZHmQaJW7FWFe+ELW048BaPpeYCxKlaiTaLoD1C81DTByBIMHkBQ71XYm3UgZU2\nr3gdoUJo7fEKa38cvLWa/z4vKMpO5oyI6CO4b/Ees7SyqP3atMdtLjBQ01xFSkudKXuBSpOGCrh7\nUqdlJECEqiM1/+dzmIO1KsEf4hk4N4ZGVT88ey4KLupFxYoA1rRugbVdn0sVsI+/t1g2wHtpwL+7\ntTQQoVnGsZXRb/9yAxEYTGOgbU+zixYI+jqCic6KAKzI6uotylCD34WVzjugRaF3ZbM8Q61F1oPa\nIvRhtP81sDboe6b/j6iPj+ieoz0nsvRAvoVXrAysJdJghJV2EcDW+4XE6wjaELUx/A/OnVXaaxHl\n1IrBkLlfwQrlUrp1Ilo7SdyVxlNxat3b63zaEkGuV92ndv3L3GZ1nzBw2C284F5Zs2sf0KjUS/hx\nk/6UeU4Xfwd5Rz8vXb3wHqX090DrJrH2CNZqz1NbfmyE+p5g12Lt+vWkJyE9QQSgM9FMo1gIRKDV\nS/xvGfmsJ3L1DqVfExNjXui2885AVmeCiyQLOWuzZw+Y+HvsZr2HrGbRepmmeRWf6gssilNjwK4f\nrCWCUjz3YDzXdmwbHfsI6xcVBjsJVhcFo8KNwZusWSZqrV2j7YIJ4eJP9jpR3vcMIpSPrW9usto7\nyU/SUHIAJB4PMwMTJbUq8O89Pmb3NI73MHZIyLTpjQ99qrM26TqY2UOXB7RmmEDK0qdOW/232Xt7\nWFu2LT1ozKr1t/c+59z77mu7G4ElJ0iEICwhkYDAAThx5hQT4ACQMCKwJSwhJAKESDoCtSBwJ4CQ\nEwcgZJAICABhpwQQIGG5k6Zfv3fO2XuvtapqEtT4xhjzm3Outfa5576+/e4a0jm1q1bVrDlnzZ8x\nvvFnm34peGzSYoJFr59awcpu8ROuyymp9vEvmbbiWapbHZDS/zbTWAgBOt7Y7WAO7+FNqPItxXuo\nLa31cCYhvD6WFgbxyOT35eqbch3mxjhRo6nK3Bq+tHB3iEHrKuCwAmoa34dclGCFZJZJtAeksAdw\nZPFrft/xW1em+xf8hBgEvKbFiev5pXvi61IK60BnnlbaPanbDIJWn61MtkM2YMgzKpRjCt8WXmUR\nuPGUnojNo3vd9u26ZhMwGlrda2RjuCGotYK3NctojMee4NTa09xCDjeV68db1rqe1rdXh/j+ClO6\nfYsr5wTGOZXfE8AuAgNUJ7OuyfmmAI0i5beF++Ot6XxjJhu2VLM1BTGpOvFl1na0f2tZIli9bwR/\n1nLwHn1WymM1hi5NeiK2kCne2wlqHuvV47XdfWw9B2AQu5ktYBxMSMX7b6EvMTJiMCHle0wEUJbL\nvO1Pie4ggpIxgxCcEQjsdbENzoTqLwlIA3cD1Q4BAY2LsS1YWOxvAg3AlEHi0uLVhJVTJ5VBrorX\nuTBsPv/r8NhslsrHirU1oMi097SELHRHraSIyOZhkUdZLRE4HgTaAzM6KzMnR8kBIuxL8MBM06D1\nkHqTYD9zbsOKFJcbALskgME0K4MlMARkrsz5vZfABFdCPKs+9muDhietm2p08yIWGFQ+aX9pXyyq\nMUA9ALRMR7cq4FR3lxjK2lxcy5A2NRk7tO9GxjXS1zDLu6WMW1whIBhNWuBZG4YYCGAU9iFKf6ax\nAusF+F9vVZJ5gD928Cdmf0djmvQY41CAOP2aWdhMpaZ7XlIlDJg/Z6f958VT0Z2nMgbHRMFGY374\ngQCtnrkoUi5KY13EOGSrmcoSIQ8y60TCqsMxJvg45Cj8luUitR/S9cEdYZBklidI6flZA5+eRpSx\n/r7XxWE75JD6tWwX1vWW4AwrM8sW87weBrXWSpUlQg7CLwTacp+4xOB/TbPuHyN57IByD4B10JKT\nA4FmWVaOzY2BMzqGpBYoMAe2Ch5wSk7MoWkeqjgAbCV0SeNpQhWtB26JoGXNHp+kskQgwdzWliVV\nwJ2/t80biASQUWOjWKYhWNMgfa21+3YBJloNzVRfS295ZTkfUg20Vu+5AFaAerhaaw7dKpTcAiCw\nZe0ab6u0Cqv2AtZip+x8ENZtoGLMU23fvhGzljzG0arc7aiv49t62SUqa4bozgGA1QLG4Ld+O25J\nLxnr0brGxzF5X68/SBX7gMubsReEsnuBrb+EP/qhYkbd6TeT7iCCkqcf0kXLoocvFnSPBVoPuqeM\nApk7rSdgkNdT+GK1LBEqv8COYqI0QZeibiCACC1iM2dHbNfjZO1c79vPQxV0bOq4M0QmmzXyoCqA\nD7ssbLNsE4Ksqc/duXTHqIT/s1TZBTg30/Lq94qs2g8Es+SANHVk6fW4CwEdhxnCIuIqjMWzJTiT\nw9/1N6iZtmBCzdIh7S7pAAdF7aNpcTPhaS7qCrPDKptHliq43kQCmbWnwcS0YmEU7W1sSHUU4PLc\nrBBzvZHiPYhhYV0SGCD7/B2rAf/d38Mtwy2jCZbtnXWQZAJDi9ERCZrM4Nv/rH2OYz0eVIBRgOjh\nNBm4dzYXGwARBCpEpp3GnQklNPdaq0YvYCO3b87JUt8dT2sdERyuZqJVeB2yWRUx4GlRyQlMuEQs\ndPC4bAX+qgAwZsBTquarB0Ncj69YFkLAQ6TvxG/PCiIg9IN9a90bDlJ/O4v1AFCQuyCLQDiAq4gJ\npy/ar7DIQjq9YTGwY1zKPu5RS9tqII9eT3SDpbVrVBt345lZ7xjDesHmtCi3CjCW/NCHPrQImscR\nvrbMOZ0YFt4HHlOiMm3vvDeaNmPefp5Wm/D3Ole2x/V7nfT8+bj+/jqPAZBuz3FWBLTcxnruDSao\nhX3+mhm2BxdMFZDRswSIdbY9xjKzoDy9dy75jSVfr1PLEqFOyYr5mel62a4IvLKbyyXiVDdlYwAA\nIABJREFU2B/VC6r7ak26WTWRoHnJPGIQHqMr2fo3u3kiW4UZcIlnUGZOYZ/QcWFKNhd6vy+13J7Y\nAm+mtOApHFEF1+bz+q7Xg4UWwJCupQHFj/i+VFk/0rH1jdmNQexeLRPrYfiN44tdy6I2JJERSg5T\neqDPS8bsnp2hpDvIstIdRJB12nJ00/Mn9xPE4nM+tzc8j36tky0CA2Bw1AIBJuiwd0xIvTdkDxzW\n2ehaBPAAGwPqtNlpGRfmvaXsg1Yw5MEWEdlh04nMBTPaFePgwkpPS8L+88bEhIUdgS0tfoG+wKxB\nYB0CEGAagp9laYWBZ+cjMV6To/LstsAaH9DT7iRbFeK2igy9UjrKeiOvmdrKLFrK8zKwk9a7t6EB\nTNiNVlbaKQOvgoMJEjuAM3iR94kxbnPJZHCfjMgOkVN3c3qLGSoL9bNdx+bl5uQ9JolTx41B71f5\noxK44B7q2YUMBhgg0LLlTXB/MC0Xl0EE/mvKg/yR+j0/mwZw/e0z1iH9Pk+bVaB4tztZYM+e1p1j\nkSwSUhTSvGXNhTPMdRo7EF+OgehQJ9RxO8LtaL3HNN4QYofFhFsPDosjhNC2aHhJc1cHsPJ2Vu4M\n4XvgnnhsBczCFfT1UQuDZUISD5Lp1go6hvReMIMwhd8N/QZV36kAkiH8agfqmoiMLHt1DYNLU8ul\njd2qbnFP67kbYQxFDJyFNKZqTIk0XZTWc12HbB9G5VMj1SvuwbPteby+s1xDziRcoc+WPNSZAXpW\nQVi3st/zrD10Wlam4EGjC840d466rxzn0evSsWDj8yxxfy3rgrrxGtBiit/iU1092wE4RJxHwv4b\n3epiXd7CqHNgwO9jbjzYfxfK4XFfdNVt/daaDxyQ0O+pb2YeNHXeWwQPv7IX+P6R/e+Zjuey8dnA\n01wBKGzFxWS8UIpAU/PWyu1zfSeObV6gZdFZB/JsL2KX+OceRd6OxyRTE7QynqNNzC+lG/qtV0aS\nCMLo96cMPbZmfo+14E6/uXQHEZRsE0ZQvM+q7TsPMuoGh0CDtS+UCxKgKhUOeppdFho7lGmHEd8A\n5r20YYiEDYHMhncTTNu17iFdH0c5tijheo6UVmNar5yXoWJie2nkYpCes2m0y/ZVJmsFWi6Sp8VG\nJlxJzMzxXJrkWQC382jC7+Y8F79ZoKpjqalblmTMzDmk74rtAVlQrP1k5qcb1RiltAp4yNYAYeGE\nxf7C2ltpksIGb4HrOtYX6NiMDsaLzrP/RuPLxpb1p/bfaZQTaTL5+4BBHUOd2Zqk66aB9oa/Wfhg\n81FLsSe1lomjGvuz2c7dTaK9sy6NZ+y3jtkrAxKmvUxJTjr+XlWIQ+T281IKk58nAAeD/H8nXNM2\n5/JZoP/fKXBVZgfRtYq/01KWdQ7zrwc4VJpNqbXvJjizJt3ek9yVxwK5rr8ht3aitXMcs7nUgCq3\nms7a06JuYM/sv7tffFuIMrAMTFNuADQ0vv3b+rjcq5ob43iisQo3hoeGP3Hvu/DvKWXPlqJrJdL5\nHjVY7Ga/VGX03LXYBYaF1Dln+/4zjbPWvEVfCP19bf6W18pyrSyao4vUaWr5XszXVkyGSa+dYGFG\nbQdA9jKP8jyX4N8ruQH4e1GGz2mk8bRgqppGA1l9OP3myzxakN7K9fDCfK6/oR4pVkdhIdDZj9zd\njsrKqTI5twCKUtZ1CkCIp8vTdxOP8CWxEFrumXVmilyctwAvkfW72TqHdtCQ4bI4o9NtdU/urkWg\n1ZnmWW9PWi+uh8nqROt5sERYTCHUm/vo+2hNqkek7H0tFT/cptgeXgd4XwKfOKQc6kIA+dKu45yz\n7XcT1llYEVAfuDuouLuyuc61x1t0gahin3Eft4DJij+WztHH0jU3mvqZ+jtx5p+637ysicqz/rvB\nhfOnTF+S7es3ke4ggqyLHPsIPz+vWoLjeSOHvQrTKmQh/WDUpol0LAcM0cQOp+9UDiVrCsg81Ysd\nZ4GIfsQiKyo8WeAyFSz0uHlVf3kIyWcwKENYqHWhQblafUQR3w2DlckbDvvTtZgbZnRAVXRlSjM3\nvQ7WRpg7nrQ9E0V5x7Ov08Y2mi2i35/P2l/re49nCP1r2UPK9i0nctfgL4lndvvJwI6BNIfQHL1q\nTsyztfuHMQPLav66PKu2V61b8tHrtah/tLlwKGgwqVXG+bj2yfG4keNULges6fbNMtt5/VvJCDFI\nEsGRPym6qMHubAw98CAKQ8xUAjwAswSXhaNe/3RO8osjfluPEJTUqEQ+bCF4gBEfDKw6GoNw2RUi\nh9/MCgLgG6dIRLaIJVVzmsvA9RPaGb4thHlkXgDwVgXqG5diPRMRd6thbbKgbLRzqBg7WA3w2jPa\nWpNkHsBElww3u0AYqCCpilXgApIU10+wkArP91yYeaS1wEZbd9tFrK2kb4c+gFn87hWpbX297Y2V\nFpMZ27fkoOGjY7Y5UT9j7bkBPMD1Hgh4UZgiusbolRZfLBSWfQILvU/TWLkhwWWFgVG08zAm21fd\n2ggffOU1PiIGkbryPeje9DIPNseZTICi7zXllqCCfb/8BuaqOKeqzV33jCAc5Q4vgH3ehRJ9Zk5m\nFZMzLBHab/oSMAFPTHEMmUaYx9JKbAQUx7m7GPIe0H6/SA1o9GhVSPGeefmZ4p0oh68Tb5WzGN9i\n1rbkztByP614NJShQvjpWPKZ67vQ1yWfWbmI4v7wLh+T5XuZF4nrxyUXotgXESzGGDFFHSqR6OFW\nuRTINlr8xfetPEG5nvb21OZ79DfeF1rBuV0JOhZ1uhTse61Hrsrr0d0S4U4tuoMISsxUiwqcr9No\nIAEWNNOi6bP5Bp81EMCD5aQMC2IvzKkM/BKILRGK8jpaNPgkW/t0cZkappgReRZx01zXIPgWVfsa\n872+sPYYEWY6DDVF7vjFza/BCL+of6hpYWE5sECQGe3d8Pd9VaYMTDWYQI+yvZip73nmTYqEk5AF\nApYN5jqi5ztlhMAEjqr2H1PuLtDXfGnLSpSn+VUBkD9G3XxMweIALhywOEBfA5TBOHk5bw2AQjmM\nYuO4NaYnmobftsHEKOXXEPe3UCtLA5s/Wx1IkIlRiCt3hZ75c4NJZBcVZ+ghhJScyscpyTOsVuay\nTmNbZpAlp7BWtRmDlu8za/dd0GMG6+1Me2DJZK+djtghh4cVvaoCoTY+uoOndCTmLK55xkQHYLBF\n0ZSWI7L31rKW6wATSjXXBMy77N8QgTXhtgBB5jCWx/2QLaUnu3RccmfgtsM0HIArGH3QOaSp5bHC\n2mo2x80iV5nNW6ib4rHhE8wACkcNj0JXL6uK36Bl6g2FP7GUv7Grwmfd8T9Oo1kgwILoZCBf+TpU\nbUhZXk1YW689mxYXQMT6+3sFg+H5mOWSa1E5J8rYH+U9lUURa4xz3z2N2xPprePhPI8hmr/umXCz\nM6O6stAhRbemy9Qym7dsJHT9Fnifx2F0sxMJVg2pdie4FkE/3t8b78xexu1saFwTqfmKeR7MGqwX\nkJeB1yS5UvhY1gy4+HJQ7HFuCPolqFDtVw1h2MFt5lXpGekTj8sYYNH662swH0SxP2vLnbJu7gKp\n52FPu5U/yrlWzFWxgBioapRzLS7OnUq6x0RY6Q4iCCwRys04BlPqaVezIfp6LyZ9EIIt/7GCBrA8\nmCzIny6WZ4+MzIyQxQEgwGAJkZE53zu0yhCOTXicnYE8kzDiVCLURxltM2REmE0vIzDByDOoYlxR\nD/iAHjcGAMB64FnPTQuLdmlZ52UwIRfM12GC+wnuWf+Ar/JhnIPfaA2CxLobsj8FQIWDWaoA4BHa\nnTg9YrXB2YZRChqRPGCk3qMq7tOvoCXwOrp2F5YqZeyHVwVlXs44blxr2/vWpMmKi2g3RkbR6pVB\nr36rzsuNNVovsMloy40BZfn8LB656KrQc19Y+L0NjdY5w6qFhRDcVfbNKVQMQigEzp0eH4OAKbIy\npb3gnJVAgboGxsQBoXYZKczVyiVASmIGaRCRPayAtit4sD0ooEaxOLDuLZNbG1k6SIr5wP7mMfsJ\nC08Wn8aYNfzu36S6t+MCUQSpQ5up7VhbkHFjH1w9/FuuN+Fb4hscEFARwMvgKT/NoqISDstvG4NN\nmuuIrkOTrkBHaAvNLW+oBGQPIihFHd01RvtvaWi4yX2BzWELS4QL8zVSLtaJ/nxtlbm+s83hWQaV\npjsDhCxqH/pKA2O+zskEfoAHR7NEqNcukTVY2aFTJ1gxbClGi1k25j6I0Ftnl2DK3wMPKhPnZbBx\nVrlAUFnuwnJd8mi5zpgiZqNHuNxM7fLWOdj5rX7hesip2peqMalFtsAEV8yUzzAIXb6a9oXOd3Mr\npSwsIDuIxcdWOVmbgW+IMvybikD4L3lFjonVcv3icnqZyabIF1VBuNfrZwLRzrS2DDlVwUw9c0QJ\nekaw09zFqLxbYn6A4PaJwOdGS7ynLKdyu2vELblm4cWg7ZTjuFuP3OPnpRwPc258b1vHyz2UrU7O\nS+5+j7uQfKdb6A4iiIhkqZhppGjabyYToJmhG7kYY049dRsCzswvOvFfdPJq0KsY2I/dFbjceU7V\ndV7UUTdo6l8JKT4vtSXCRIshUHsDUhqLIcdVYKAlCn68kToCjme0TO2LT8edfDqvJp6wHnhRYfjU\nMWuLKDYYe5iAM8K6LYS3pah/z/cZ5y+vW0+DR2moetYLsZ4OJbCAdn2jYwIwBZeE0xEpwcaqjrAy\nwDd+UXAG/rmnebCNejesXC1vQNhkIBTFNJ5X6xq+E2/CDB60NBTMnF0TRlpCCD9rdQtlXHNbqNoV\nymCfQvQXwIJWX0GQBIoAHuZJkbAP6gbwhFzyw3JVI+fZDer34clM8xjffkA2lPBsXwsq+uz613bI\n8rRZwYOHg1ogPML1S8uC+xaE7Xmw1ITumlUyjgYm8BxdkoGkVicWjMIaJrK6NVjb2PKhA86IJAdd\naJ3D2wH6PAQmFGDlkwpKABFcsMT1tbTDuJglwmi+ui5Ilu0s6yPicSdgGTXpwo65P5h7zVABhNcs\nilpAUs+8u+eysD7fnq9c5iXgga+XdWgPVqtT533rPRj7ZR0caNHznGyO9zSKZ3pR3A8BCD5uSsEP\n4PODAYcKauQkA6maK1NnanbR5431FOWKBHeoOVXZWur4CWXfzEuSfEWFWYPGbvEAC4Rhq/dwvwUA\ngjXb1TkeCoH1lmout+v2Fi3sJTeGHvX29WgxwgBlLazWhVTAhl6v4k4tHhOhF2+l5cpigj94HAoe\nvkHa09l5uF58JK6b7UV2PQq0bTcGf9bb6+XQ2tIYdyKyug5j4YY7g5SVYavgluVcL0ZPwQM3rjWP\nVsf6mWpuc1lS88Mzgwd6vQaH6zndW2/TPTuDUZYGePkTpTuIIFKYaHIqv/1usngDt5i3rmU4agnf\nc2RhOD4jYGPp05+XZG4LG4pozoinv6fe+aCFOp/LYH+gqLGvGcg2LdnjGzB4MHXqlENgtl5vsSUC\nNJCfz1v5xQn1h6lnuShaGXocpF50wRzBMgFMO4SwKeS1r7MySHF+mlxA5/q7pQP5Goay2PS7Z6Xh\nZV8Q0Gnn8ewhGjdido0Sgwbm7kLa3im7nzQ2C9ZSOkMWGG/aSHsmtJfI9vNfU4LiS6/hFHD2TOWf\nD0Fd9H4nNocGI44ArTBrH1OSd5vyPXst8EkFwe92K3jwfrcK5bvNLBuVZqCF3gzld/F1KrSXGV9r\nRwleRUYid+6xMuiZw5DlQcGOh6cVLRg1y0oVOC1YzcAqBtRLPcbvXQOnDfRbm4EdwjnWG3y8ypcb\nAVkV+UiSqzWS4x1s7bvh2/i19/otHy07QtmOg17fDxFEWGIVJVPEcVAEnAdYQinwtIOr11TuNS2g\ngNNq3hpdPpK3qyPZFu/TZzpgwmoByPeWc/Mty4Wl1CNhKwZUS+ZeV5ZbB5yLadHKOY02s8J2TNnG\nA0ACHFHue40f8kHn0EH5gPMyyLky78d+jO/29u9lVifYt+bRhQ9qO1szxNqwoN6ziLL7g/LDAk/r\n0cDFG7THPeE7Zth561aSyqXhInHRS+6DEb2xWgbJzs1ymW7ZU1mYnKbBwB629OJvHPvTlUYlwLs/\nrGN0t0cQ6/X68+uuirXQs05s17tct6fKGq2sa4t6MWg8s1cKlgf4UbSu/Upe48Nr16J6j7yWpvRL\nqbLc6KR9blkWMRDao3tMhDu16A4iiIhIqhav3dZ9ehHlejbNdsnE1NkagkbMLA3Wm8EwA0RYCsYE\nTKYyBkO5krF/bErZgztCg0gLHAupMeBhbxO2NgS9eU/orSLWhrKummCScHo2wGC0CPbYPF4J3Yal\nCMnm1I6ScTRT4fDd2GeMGUYHMTR2wLSpLDX2FBTqSFYTp2WwdlgkZkLjW6aKTFWsDJ29m61qezWg\nYlqyZELwLfXe0k4PGMGZiTTA9QZ0fTNBH92i4em5MRT3EGP/luBqTH0rhn5h1ywR1jri22K9WI+T\ndoJmeXUf+NFN2TEHcA6B4ht1C3jaAkSYZKPrwhaCZSrN1w086LampRG5nUHwMUsAyJjlQWOMbGGB\noGPUAsgG8EBkzX6DuBxj0Lyu76F1io7T4oBA5ZZEVlZjKNOZvVyU10sRN6RUrZFn6i8YIGhMVdmm\nbCkb3ymI8KBCIdYuzC8DDlK29WGkPQVvY+FmiPdgXdPxtd2t7xtgBXfLvLW18eqtFV1iRntWBDz3\nY1nX5udb5v4lSwSOzM6uP+4jvtJhyA4ejiVPMNg6WlZuTG6B8EHX68MAy4eVvtG58357Kp49LWM1\n3my/QAYYMmvvCVIiNYAdTZy5Txk0eItQ1LOoFBHTaNtvcPsk180iZTQDeV1A3sd7TwNcjR0a9znX\nsQgY/LtV+Gq+L1zva6fbYzaSzQnmywj4jZYIXb4Mx9CfzD9AoXbQzF2ID7XT7/b8il2upt4YknDd\nLBFobFZpGrtv6VMRuJzU/RZgUcrzFnDQix9UWRVcsBlkq4nL9a7XRi6j5o/KOs70+6X337MO3Ea9\nrF8/NbqDCEpsvg7T0O1hkVltf8bz5YnfWmhmyiYAhhnuBvEZWCBUpqwXyKwilHkFmMC5zeMCd6s5\nnl1PtUlaT8sQNYCsDfQ9uY02RzM49oOuXQXK925DX5Gi0RjyHTR1FljRcxqfCTXnzRPpt34RAlbi\nnsNYlov0X7CeeAlRr6GN6qXfinwLI9vVhqeR+3fvVHOlZuHnYZSMgIpzaYnCUeZBS2C48MfZ+oA2\nIrsthXHVZmJaY4vN9S65Maxl5UqQuMUcejFmUhl8sjLgMlum0D3hw9uCdyymHWS0H8VCW/mo2uqn\nMdvYyTSWACI8qlYSAUDHcQmBO7VdWm4yQaJPDJqxS1Fk3uuYCOU5egsC9GFYZK+WE7BAAGX1+4Zl\nFlxvTidPWbk1y43SMsDKoLm5rhPs3sRjtvwm05IsmQFWCPMNJobVx3ANorK5OhabbVhb9iHWQfkb\ngcMoItWAdOVK19gT2DLO/c31vQqII4fvIL7uGaBalXo7dQXMML9qFyLcU859/70/5+M9xXnOVwU6\nL8vvc/BSQSyAfzZ28B39246pnDfoR56TaNd2cFDpSff59wAGMed3K3gAkBDzYjw7uOT7bticG1QI\nFriGtks5hgEaT/PYjYLPftIRgJg7GueegmFI2S2R1ELTrOmObZC7xU9wfBcGfZbQxp4vOgi7ZLIx\nVxP3Z2u81/sRldEYn/59uP9wxHi8IPgBUG7s6yIKECG4ds9FoKG19ngGGCNwfVErT7ijwFWrUa6b\nzmOccHt9LaozibQVGUv4jr11p2pXGHNJ92BLvY6Uj6gb0uVOPj4taxDtNezOGuvDqR05/bK5eND1\ntd69b1qfc3+ZBUdnzpSuEOW1S9Yyd7oT0x1E6BD8Socx2wKZzPYyledK0VLAkXbdHM+0gJPv4SIe\nbAi/pQWaRV1kh3prMy0UFswBwioE21JLeYnACG3o1s2Q5WTIbAkeXAIgqg21814uY0i11QDTgbT/\nu9A3HBsBv71XgQz9uRsXWzDPS7t/OCjQ52msFuSTaRTXCy8cdCsE2mST357m5xZKO/3WH9anDmcV\n4F4XZ+BUqfU6aHA1s+CIcMVKLauV9ajnb3ACu2SJgJ7upa37MdCX5Eg2QEEHtPkaCubkeg7z9veb\npbJMwT2wbjHNNNLKpvy9NvXrAl8pEERyEKlk/vZhzbF0t7qzIAYCstAgfsfZst94alaYiFfmoVSX\nOKZcILrsQwsGfCsRkCzngvUNjjZnY7pabccixTMWXHKMjGQ5hsyKqgLcyvdF6gHJw4XfweCPqvFm\nv+UheY/yPEW5drxhrEUQRKTuky+lVsYVER+rPdejr0X8PR4sm8Yix7kcX/Y9aF11EMEtETC3nxQY\n/LBfJ8fjwzpZwDvML3stM1g+ULwTAIdfYmpssYiC3zsHw3MwwYXESFlSBS56+XoP9dFm8P0JY3I5\n6Z55LN0GrT5LDSLUsRH0vcnrzppX1hb3uKJB4hzDwFZeq/PMl1D8btfcFDgrSajS1e+fcwpAA/Uj\nWWHGdZAtQmZyaxhO7o7r7Sh5xGsWZS1iKxkbjw1hG1RlfKEu8TE32MvNrYHvncpniiCdDd491rnI\nBGTvLs+/NvEc4ACKvUCpLUCq53pzd2cIlK/P158K3UEEItsQMQnP9cQBeNByY7ByOGtBR0gF5Vwj\n9z1qCxGlsLFBsC7VaCKF3HlJlcnshgocqT1jWmRIpUa7R03NcyVA61F/Z7/m3TDL42Ys7kUwP5Rx\nINePbQB0+H3wLUXQN2vXkD0zhH4fy0xAC2ZMiWYBtha+x0EDETHgJZqibitGq9xgW0y75yUuG5g0\nmtv4fr28OznwNU+T3ro+u5swDvQZ077hhWNgGMv2MGruvqc5CB+XQR9Q/L0XC6GVY7snUPR8qot3\nfo/N7w24SXimZFhBHq1fQaxhqRhjswKxsaTMNL5bAL561IpF0jNDrlJBhYfYYoTL8nbVcxBMmIEH\nz7A8UIssi98xVkIGkxuF1t+RLQR6gVdje69lSmlRvWZpuyh4K+ZBSsm01VsEYDXXlbLOLoBGgENr\neMOeYN8Q81UZfOxTWwUTlsWBKbZEeIv7UU+4ukTXbuU5P0j6quDAW+Zxb/4CjD4Mi4EFrzTeLC2j\ndhLKGFO9r6IvYCkC9xMI0pe+fTWuUaa1oQ8YolTW+s45VcLINe37l9AYAP9J14MzrOgQu6eThrCo\ng/BR51PQ2F/77j1ANiUHNWdk3qB7GDRbpB7HvZSjrbHde9aAqcbk4frzfL6Fet8y9h9boiLjS9yX\nRMo1PJMA66BS+V5rVmpZwLSFYX8213tbZ4wWqYGRCU0LxHztBVRc046Xe+Tc2DMjLZ2/Y90uWmq+\nYY4xL923AkGdy72oRR4f5A4e3KlPdxBBiRcEWA6k58AYc1A/BFe64PvHtCFrAk8dOHYXjcrnNbg7\nZGIgce+BtO4IrHdaRtOieeA1ZSDxPtqAUupvSqwljNpD3uy5CDafAx3G2awGuFzUA8CAgwj1cojv\nAlNw+GvHRf+sGg8IazA55kBWoG3KMsNsXavNGnuABwATpsUZkh5YwH7szRFUmVBrnyiYMKgf+jBn\n2WrAI2gMECh0NyLIWgmexHbg3bU2qlWpNlWazcAQVX7e2PytP8tn1jly+eVvsW6oNDrfgyFGWbP4\nxgxyxrE8RtcbuLy8Lvzl1/kKwQVC9y5PVbaC2vVnLSFqHyKjG+/BdZ7Hl8BAHsP7wDnCZ3Z61rq9\naiyOV7U80JgwpxDcCxlSelr3nt919JNGnxw7fRFdVVyYKhmrKo1isFiofIwNtMh6Xl6fcpaMQH1a\nymj9VbprYJ16t6ktKXprpINoztwCqD6p9QdABAO9G2skUyWgXWByvw8xgPgW/9JLgMRbAqD2qJdS\nbxuUB5wtAXTJnJ3BWaQtBq9xPrmLj0gI5puHRkyEtpAQhSz2na7qWq3vbongFknlva0+d6HtNmFj\ns1mMh7FnGy6N8b2Fux3VqapHSJXZEzCv0ZD83lstv1oAXBc0C+OUx+zV8kM/A4zo7bfXgoCL9IEi\n/lvE1yOk4J7VEgH8ZnRnqNM1lmOUlROpAVrUR6mO18Y3A+XLPEhWQBUxevJUlmFjCZYyS73OmlVG\n5XLha3flPnAFcLi0Pl36knW2pXa/WVaZC2X90BZevwmU5d4/oDuIIBgQJSF2wTQNst/XwqfIbb7H\nbK0A/8fBLAOgAR+qhb/yjx3KYxqyLCo1DRBSdRGBb/KGbNBf540H+dPjhvw3W5shWy9cYxiWILhE\npLm4J9wr4rEgnsaz/Q3iDR2bFgMgazmlL7D5aasZeQzetFFE5aib4qdRA1+SlhAgxfutiBp3mNtC\ntk0T7SqFh0Xc1xJkAvQNWtZMx160qBTyfTHwtFUQAe3IZP0xZ09b5r797U2/aAeNVQiEbG4dWxeD\nV4nUgv8PjXt/SVDGaxvGLLN9d3djwFGKo42tZZCPCvI8YyyhPFiQqBvKdwoirH6+MN0vvxNn04gM\nhDM2mL9apwazfo24JwCQTUsywef4WQUgFZBeX2vwQGQVGnbbcgyBeuav8ZiDwLCWexnwiqthBZw0\n7lnLqmN/YC686uA96oUTwg9sgrWCzjUNYWKp/DBHdmbmHnLGA9xD8D36LjZ7YywYS7O2jhXMPURS\nt0caqWdZ08iCRSsqek/wv8my40oZvy5aJFdMMwcMZQFtFbbLOQfXNXx/Ng3fLN7HzzQHno6l1Rj2\nIqQ3Ps4emNezJK3l9oDEaYnXyjkv1s6yrjHGjYNl5b2t6O7XKBHvMA6L7cWwmgHVQavD9c7aVLkE\nxvXhevXs3rWO9W9dl4eEZ/Ft+m/r7R+DpPBcu31fw/0vhaCtQ2NPjhQtOziOBgjrPAJOI1bCOORK\nG94bOygbLOow1GOSFRmtfax2ySvr3FLq9SwOkk3yFj9GYATq1gO+Qp2MFybeoz7TLYDPAAAgAElE\nQVT6ODF2j8c3jaUsdT/1YptwmdGS4053+hK6gwgdAtKac7L4CAwMsJB/CbEezbRUhd9B3QPUwn4a\nclcTZ2ZteE+wRIBJ6UwCLczLdipAY6HbDEsFCIydTSUyrtxmTrd1OUpz+zoLLij7YXs2zXkdUHG9\nB+4aaGe8Dz7AYJ63BxWcacNY5sEAmb0ycrtBn4WWX8uERvhxM8uD7novlIXhE4JoQjsJASc5c+Jp\nJtE35XtgDrtqu6RJ8OPLz2tds6IXy+v6+/ySjDlblnLjA7Ff5DknF26rzR7Hevz3mD4Gd9CuMfRF\nrR50ECS+N/42Szn+8AjG4RjLwBhl9xw292/wcNFlo/qxQa0cypn6EYKGj5ssf6zuUs9TyXDBWuhJ\nLUegtVyfcw3lem8pAF6iSzEPelRbk6w0pvJ4zskFoJcVNJgpIBe7dQ0pG+hn8RSqLCrr8ZKPPWvs\nW77b8b5IXXNePcYn2FTWwYT1j3MQ7tjlYY/YOoLzsox3S8gStJSTxDMDoVJ1pfGsBe191TV/A+Cw\n3wfcvh4DG6nnzsDfK7omVKkdK1c6FFnPX5u39GEujWSuP8sIY3h6oH4Bs46rYNSPy1BZEAFMeiUQ\ny2IipOxWMoiPhN+Gg4iIfAZQ2Fqb2T3yioY2ujPcSjkHq5zOPZXvuNSpiBkMRJ+bEDtk2R5073pZ\nfwPgj7m/PS7FM+seWvIrcU+JdY7xh2wW2b6k5zY2y9/jGpf4GWp77aZZ80vmn9+Zc6uVZ8kDeJDO\ncs/jNKVrY/XZDpPVuuygR5sugRZsrWWpH/V4GKcKyO2nf6755p4bwzXXylsIlsTRqgBKOARalIpH\n1PfOyf+mPqhdA71u7K7ac8X5PpSkVj742oHrOJYgxqX+s7grNg9u5xl+CvQnjH//aOgOIhBhnhwn\nT8EIv69rz0Qy1wfkhlf1NfxTbRHTHSP6CTJo4O4LUpwX78MioXXFpmwpeLauieZNeLJNsDzawrSk\nm9LG9ahnidCjzWaR3aDaGYvU3mZULOBc2BjANKPtA3yCz+V3TDnLgCwcpKnnwI57/f3D/uTaVhXm\nwPwlceCpqKsk+3ZgeFi4ZianFFyYe9GDpnScPq7nMC18/bQxE1k2H59Nc1YKp8c5mZALjalrRfV9\nNOxSYOzQbye1RNh0gKrNkKBcrQJhmXyEzSvESKgYNinLYEopXV3lv4Y5WiwD0d1dI7ISAi1C0Pg4\ngWlM8lFBBGiyJ2unCif0vbbL4hYHpAEBcdCkpraG6vgWMiaXQJ/zkizmBiy5jJk2ZhfgklYg+dhB\nANtbTHBByYTT259hJtauExPo918AGrDuakeelPtcv4laJFH8Ee81zI32e2OdLhG33YGbdczsT6Wm\nO0a6Z6Gx1lyVTGfsslutCL50nrH59veZrz0tcTPFY6ddrwE0huXQZzXy+DwBTGg/ux2iy9JKsGRD\n8tcP29KFCW5Pp6V2Z+DUba3jQmPTKKEMPQYh6Jr1Ty9QYYt6pvXDkGV80P1gprmvLh072o+XPHT3\nFBO2oZ02cKtRJ9pnua64PCbXwrNQb8BAA+z+Eq1uz7XxS8j5hxrIuXVdLXz5eT2AkgqpxXW/PyIj\nlWyuA1zEX0Y+gIH3S7EQ1jLqLC5ed37Gf2P+HExINjeb+iNU7m4EEFjZrKQorrXnTQsUueoCEfqR\nsxPVFhxUZrvIi3SPjXCnFt1BhA5FX/G+oMJM6Hqc56HSJI1jKWCwX9WSo8+VLtRYGKCFugAeQNiG\ngLudNSbC0BbCReqFy6P0QsMpegx9Qc9WvrphkVpose3HVdCyQl8wbOMRcaWo4waI63mszM3AmIDg\nl92iuQNWJGP01+Pj7ix7daV4QGo6uAhQ/03mX1prY+IbJPweqSu46I4wf17Pn3+xMqEIWvf5Ze8B\nkBTgAOABjcEnvf5Rx8vneZBX+P9pZVyrWp5HLb1b4eAYW/U2hohN+mys5XrzrUwXbdP0+66lhvOx\nhO+Xwz18b/tjmAl00NugPPNR10p/VsAgBgk9kgbb51WbITovg6U06zEErejYPQ0I+/9zqs5W+Uxu\naTHYWgHQCsIAU0voN01RQ6NTHFGvHIMkUlnVupTtWQekuO36LGmWinLsHvo+BqT4dawdW33Pg17v\nmYI3g6oS824afTDzFwSDV53bLwokejpbH0Os6auZz1xcXxr1Zy2XR1Cv5xNTL41ZbGtPSODrrRSP\n/N5Z56a7GmXTEk9SrgMs7CCI4ucpGSAA8OCzdhDcGVzQXOkwJouVA8KzuAsg7jeK4j7o3JkWaYA7\nK1WpTK3vk2UkIXfvKo1hK42i7cmdbxz32t4cdFe2cg8VERm2egR4QHu1WSdZOttUAfvfR9hmANvq\nFc65eAMeLgh1PHZ4HW+5xJpVBIGJPVP3qbEX1daDJb+0lluu8ZN9694aGsfZUBw9xhKBCPMoR4sV\nUNapByZgHKZcZ8Pydalcj2IZ19I+c/vnOZkrb0KARXiPoe3BWlVk5a/rTBV0Xu1bqW4rfdOZvm38\nsgzk9uJ6TEvoN6oLfwNOMbm6OqJPy37kYNZ3csqS7zERlO4ggpIHP9MJi8jawxKilJYbXjcQWA6m\nTjTjEehumspFeW4Ebll0JdtSgCwcY6BHWCBYfthzmQAX75tDqiRe2IzZsFgJ6+lpGapYCD30lZne\nS8RMgG1UZ88EgXrDTHoO/SXiiPhpHkxoR6pDPAvLBGjlox8/3CJMU0+LsGkhgjvKQb8/ygfDM9PG\nt2TVxs5DYdYq4v1lriQJYELJKImEsQQNvmq/Jg1a9/HTmgrs5by27/N5axuBCXUL/HDXsj4BPDDf\nxmTmtugf3pCYQU9FlPf1iJSiG9NU4Ch2buanxJRxNOoU5g6nTuvRWyLG/1Bkvp4ZQtt6fNGdWy15\nZTckiyfAJrNPOn2fdHwiLdyQcqXhG42JKsfUEMC7wcaXFEemaCrL9/J7W5oS1vDBAmomDe08YH30\nQJu5s3Zwqsf4u2UV0HNOmQkqNTyY27eNkXgf9xvG8m6ADypcMryfkJUDKQJRmsZDlYPOlcdxMYsn\njgljfsM2TnwPGmlf2KmN7mddD7B22jqVh8J3PtbJtoDGtxUhbZ58PWqZinMAVHahqzK2NGp0LaBi\n1K75fCnXfvQBQNbXJZlVEQBCB9xLIQfj45IrDsrakhD5FiGZwcEv0Yivlgid/Z2FIEEds89BFvLt\nnvUYQQQIbTAjN0s9fdFYWQTmqlx+7yVTR94/ulkZbF/2Nlb7ldLMJh0/MH3JN43t5OwCb3kn+9o/\nbVc/XIAJuP7HR8/y1NPY94Rhkb6SimOMeJuugweXgkyyEuQSsSXCl9C1un7fctmtj4+sFLktpsl6\nvGyPfaefKt1BBCVeRPbqG/+wncwVARO0ly1hnn1xwYIz0vkMzTAiM5PwL1IzwFzHRILoWjd9FlHK\nkY1hKjXQc2AUesz5ZEKQbxwLMef8LFszrH+XdG0Rgin059NWtirUewCfMhgVhGIwEqdlsHbtRxem\nRdxSAKb7EHA3wyKPalXw2nnPmPDttU05SYKgrODEXqX6B02reJiUeV/ctNlABIwVYzJZ8PO+6jKR\nQJNVsw0ABO19ncZq87B26fkz+fRGH+4qyn/HnWFIPhZHmhNsclr4mhJDd83nPboz/BA0kDnsF5fT\nYWKryMg2FkQOlDkVriQfNNjgb+1XZu3ddg25n3Oy8Qyz5wQrHbx+KcfUOsZozcL34Fgn9L3Ke6Uo\n1yProz1ZDqPOAZ1XCEpr2WNO680OagYND6pvzGab+WyRgVg6gVjr27q3uo733yAeYwxjPh825XqY\nJMlOpY8H/e2bbVkpCCfvdR15v53kQfsNzLmlv+yk4R2HxfYntlTbqF+5pae1cZia63WLLgmy11jp\niOfx2m/ax052hktzvhc9fEipFn4r4FP705h5D6xox+TfML4nrou9WAu9tSxJMoAO+8+7TXkvwOlH\nHQ9IY3weUjDVxzOpOOf4JGPyL3vNXD4KilUskao/y2duCcSK920alpSXUiyuz/p6xK5LVUajclu5\nSNeW+iG5u9ZM7p8cNySCDDGji0h/rMZ235qd4RaqAJab1rIShLEyQrUs0GFIdS3iWbLAL4vUFga9\n4IKXyK0Ey/NLwDWne+Y9rkUGZnWY09QYs92yWntndU95/S3BMi/xSX23j/K8dlnON4NKXxv4+NNO\n95gIK91BBCWe7EgH+P7p1VwRODYCM23RkqC2KljvBXjw+aSBx0zYG2wx36naaZk5qnZZx7jA8W8Q\nii1SLvLOz2PX5Mn8sWlTi8wFL1ITrSylO8P6d8900J+BoLuxYwQHRDyi9cnM6koBYzXfXP8GY/+g\nYEIiJtAY/2GR101pgeCRswEYla4Jr8dtd1OCcLcln9btkK2fxgYAdDNR0B938dDvGFIOsRkgQANY\nG7zS+Xm57F8bj6BoiQDqMS2t1tYB2PS8WcJt9CXR3ns+0G8up2PijpgIeYxC/aqZftqUDCq00t9q\nQNQ/c1ijZX7zcBSRFRzcnUoLJdBM8wzv2aSgOQQjThp8q3PTF7TXYrRzpcdxlqfdCno8Pq6gx/5J\nrYKOMAul8if33U8GVDrgGd/P2tYWGcDRq2uuLRFMMNJjZsY/mGxzuQAtHvV80B5NyQEiAELf7drx\nVp6UEX+/Pdm+s1NgwNzi5hJt8mCUuYoBg/OH17Us7DU5eb+2TG9voYBH/cZSa/8T8X1sTEEwNotF\njLtSiBztd8/C8TiWR8zbb9Vq5zudQ9hHzo3vZYAXCSURbGLNPVMriF3lQ219kItnIvX2sjoUg4MA\niwaUXs7ls1gn2FR8yX3t6iUf/NoNo1231nqR6GjXCbxozYeeux3/nlIUqss3cXYffrZV2arPg+Kp\nsvC6wZ2BQStT4kylK+cmWMqhPM604GM4F9djzKx6TLbPl9C/Pe1+1322sdblpX3ugRWH6jkOUtyK\nqdP7dg6w3L6Ydt1bJdfuaR13Bg6WHcu8C8V3+hK6gwiifmmkiXs8rEzw0zcnWVSWPx/b3cWmREVO\nY0JuwdC9zqWQv+RgituJqG/5vrUay5TNtQJABzITuGl7WecpD83FrkUxiN1AG84XCcFX6GwC7miL\nn4MIpd8ob0w51ws2mDbWEuH6eaw1LxCuGXCwWALHnd3LYIJp18jMckzZtLaGjueybhAi0atjyhWD\nn0mKQlBIaC3df3SQMzMknc24dc8lc8PYTpGgnQ5CTayLR9CGsByCdHbAA/NLbCDvHFix5wrxlh0x\n+qL2tCQcfC3b90vFsV3+etzqH3BV+G63mOCA/nnQb/qz/br+/Pz983pdhfLxeSePOgaxhkBwdV9Z\nWNGsZ+MgshiIVdapMkGOpvuVeXIpGM32bdfj++0k755WsOPh/SolbJ6ciRURyxoSAVmMSRO/mNG6\nwKSB4ryJxAJUS7Pe+3JDcQ+Va/3lQqJIHP+rH7yIyHe79Rv/XIXDvWWUWZ+BNdT7/Uke1PJkgJUJ\ngQcgvGezmQ082O41wj2Ajee1LDD8YHqHVAMZvlYp8KRlYJ2NWlj0BOanM6T6Hdn9oAG6soKPszSI\nBECyUw6XP+TkwlQGWIb5WQpqluUlfP0UACCReqyYBVsoh8GCzYL9onx4N2SzNHivc343lLvPd7t1\njn/Yu9WRyCq4ZRIKYrwdkXpd3w6+V2KsYLz1xnsMrHjNavCW5ZW14jY3Nou55MGaDr7n09ktlER8\nzLZcLa4FnGsCHra3YV1q98aQIsiN9a7csx1UqscnW0Vc8rLrWSIMNFarsi8Qx40Yh6Vyd/OsXDRX\nsJemFsi8HqHwGc64d/1hO+RqrWTq/bquLdqXAF/w3oslrnTNdcnuC5nQ2K0GqIldR180sqcxIF9n\nFQpWTqFPY117lliR/Lvkon0t1zLeK69N0yH5mvEj8AT9U0X3mAgr3UEEEWmJxEiNuH23yPyiizmp\n3W2iIjhLg1kyZFA3yWfKAe01cIEVaC8jn1UQuyGZNQRABCDDn4JAzvVhawJQ1+dQghbwygYuctvv\nLUJffZxGi1wNhBX+qMeFn/E6s9/cK/mBQzPogaaGYBKZtfyyz89mwQELiL27OpDAHJm+WPfozvBF\nvqpzOc5MgNXZe1DB4+GEmA8imNqo94Z2WM+HrWMuJWQbbWhmdUMnBnNI2a1hyHygNpfHefATpo2V\nNTwxNkLPlI/NRQsA4i3Ch74Y36ctugVK5XtTdnZrVA7EUyStRwRUfK9Bxb7bzfKt+paCoTuoBvq3\nHlfw4On9KpRvHzXl6TzYPfsJgeC0SsY4OEMnor7WEHJN8O8wkmE++Hcof+P1AQL0u+1J9g+qRX2n\nzyjmlo7tgZ9zsrUR8wkC0jWwM4uv3KypBbUYyre6M1yKiYA+2lj/AlRwoRFuDO/1W8OfGAAyXD8e\nDyfLqtMjTis8DNn3ALV4GPbrEdYgAD6RZnONkYH6hjEibj0F0ACa9tm+TXt+rnUre6VKxxoIc4/X\nFPtdgusBgwk8HsN85tSvVp69BxwzhFRn9BcCBkF4Zm/zKWbVKfsNQWiPc1nG4yabe8J7/d5PcPlR\nEPjbh9XqCOs5Yvh8Pm9sHUewZaCC+wH7Euaz6DFVLg6o0UgSboxzwBY3LOxcEkt4L+2CkJvFLBAm\njX901qDAM4H4twg0JkC1QANp1zsRb8AUBWH0VwVA0p46p2DxRXPBrTFZEPVC8VflfqLHubjGc6Hd\nnsJdzVygyrW/Sm9p4Eg/zfQrucnCjW1My9VYHr2f2+koyyNiw1xyiWCgvFX+D5mtMIIynC2jl2oU\nIGqMA8UxWRhMkOTX2TKYefwv4TsZALnTnVp0BxGkXNRMs2rpAUWyzkho/T2gYS5KiHm42Z3hxOb4\nTdMy96GPz1YmwHjr4NrorWq79sjK8AoGoXy2zGWsRxK+TfgImvw6xSLKa1atQPKvBWbhNHDHJcln\nYybWezxwVfl+AxFSfW0uP08jv7RXvgqoqNdZSPkc4g2A4BfILhjmUrDUFhw9S44osHCUeGhtICQg\ndeVBBbd3p1Vo2AawKwmNu6FsX4zqi8e+ZM+oAC4S6nGMpsC8KeK6xffAs4E5Y1N0Y3bRR4GpYuED\nVAVqC+cDgQN+cMYgnqO3Bkm26YLpxLiHgAYQy3zgN5M8bUuXJTBjewUxNztfh0TWdYkjl0OD2gL/\nUA+z+mj4bcbrLarARWLSYJb9bn+S3Qet23vtJ/KxMF/XEFgWjOhgYJw+0q1RTWy10GtDJPYFvkS9\nFKwsOCFY4n70QIqIsg/wBy4fWN/3cGHYzbaeg3xP0W/NsUfGxZ4ZFEQY91oHdSV5+ryuC7BO206L\nCb0AB2DuDWsZAEMeuVvnV1yfWGKqNgOte7CqArGwz8DNKFHwwhwrhXxjkMP8xd+jlONNqIpcloiD\nfxWYqX/A1Wg/ZhmhONBZgVgmAKG3tD7thiz7EWNkvQow6Z1aHnz4sIIIAIWQcWk3LqYcgGUjwB0k\nePA9TduXIkDYXmdBriCoY0ow9VIkXqLKEmGb3Uxc14HTCYGTtV2zp9gWWee1gQVX5msLVLgmQ7G1\n4tp/5dPYK6u3A0DMyYCoCqjRs7FR956QxuNwxN4dG0P8So9SEgP8LaVuJxBmdLnkdQ5H8BOfESh8\n0/8mvEZW16nsSL6uU3vE290DZnhPM0vewVN7V4o/C1LL/K67bnbjCFG7SosvrBflPQwmRFalt7z2\neHGRAL6hjM7At7VNPLAx80M8x++ad6csDjr/1OkOIogUu4KZKEGgWUSS9lIroGGkmCqMswggEGBP\nWJ2yGIPAPsF11HJfzAZdvDcqcu10c96Qf74Jr4svaHWqpBI82Adzyxmm03pvFN4j2cIX5lfPT96F\nnpVKoX49MlNjGrKhfN8u7KIAGvi395uyfbthCdYflzdji9uwDDKdy9/wLOpfxW8Ii37Pz7v9Tn0G\nYBK0W+bOsB63BwUTXtUUOmV7BmRpO82ksRyHpyWb5cY1ilYGvJGyW0O98UZUXjdWY+y1vdI+j+/m\nAFYtP9VKk2m/adsbZqL9TTc1z93E3/sbTAwYfWRg2On3OoTxh+c5ojUfMRhaKbu+D/UY2KH4ttI8\n4lG057A/G9iRdjrOPyoDftRxdkLAV7WUOW9CEFNluDtzpMdQikSf3fLZnlaP29oiG7uNcvy9+Ktc\nA1LjXe4HXc6VmHWninvD4By+wVCeF++BtZECULCqO4eUtFvL1KD9ZgBrCSYwaNtyjWGsjntzySkA\nxWiX3mtzH3tn/S1M4XuD6S8TWyswmJCDqOSAZ9mpFq8EmVIGf8YBZd/7RWrGf5scWOB5ZYAhWaHY\nmhksR3g9ZVNq1CO2gNfM3qqxyHUB/Rbi9YEtEYZtlvOz9h8sDpFKj5UrBBi1iGscz6+BIhgftT+9\nk1vtlAOeBbWUav6oMkVnmTXV6yqvXZcye9yqJU5DLQSzFZrHk9G1LMxF166jHev3QtrTRdfz/bBU\nwm4dxPXtwtctmnSet3X2jposWLprI9brNCCiO02VFvmGfbieC+VxsTmT3NUGdaRnK2u7XAPv9TzK\ndH6nO30duoMIShbdeyRt2NG1gKkl1XQI4IGn0iondcVgSjIGaqKYCL2UMmmTAxOhgovaeyFA15Na\nJpxskx4rU2aO8LwzAMI3DmsHzCpZaCOakt8zWQYCvIcFy7I++yEbw9V7wYHySu8GT33HVh4wQ/12\nC5M7MMq+U7x2Ujyyj/WSRU4hjoWIb464tw5amISBGiZu5tKoiwVShMWAzl5YJOz2PjAfqojspXXE\nOZWgwvOc+maboU5cV/uGyPetinX3F8T57dRya0gdwaG3sUYXnGvviSniekIHUwuFdveF9dxN23Vu\npnpMcWwUHB9eVxP0/WdYKmiAwvPoACWND86ccilYGK8BfoSVQwrMM9+Ddq2/P6mGfbtdbI2E9db8\neT0/vqyL6IuaaL9orJbnaWP1hkVPV2NKS0L8mfsAxNqhlHJlxmviF/YAEsRiGruRhDXOWw5g7LRk\n++4W10UZ7Qc9GjNvgXRTFayXyfalkI7VmFqd/glHXR/2Bx07OtZ2503IEqNrfcYYFW0n2lOeJ6kZ\nX/MQaJjkgnrCVA9MWMuvgbP4nlbMBHaduKY9a/mjs1AHYAUgwiZlA2Urk3AtwwQmK8t9qrGvY0/2\n71daHnJcgPgsB8W7lHbukrVgrHNcoyuro86zmyEXsXjWI/iH9R7MSQu+txMZzyUIVmf5KYXWFXyW\n6lqk2t+8BPWKexr7RbxvSGGc69GyMBBvwMEtY916LqNW5zAC2YINgq2PKbzPC+kBavV7s8VZGc0S\nQdpHEkhFfF1gpRRAhNcwlittONWpOg91vRZP4RK5S2N7Lti+MuQQ80DHB/GTlsY9KEOuWSJU75PG\n/mM8Qjn+ozXwwoti1Y71GMGma/qfKsVpqzycfwXlxE+Bbsky8lOgO4gg5YSyXNows/s0mIkuU6U1\nDJu/Zz4oGX5jQimo0jQP1cLfK9/Q0yD0CKK87xVEUL9KCI9g2gtElVXASnuyYhjT4ppsWFV2TIFx\ndZPEfOxvFSARcOxpM5uwC2Jm7cEEDq8z8bSuKdV7v9HAVVbmkE0L+pGyZUC43lFf7IYlWBPgKMV5\nS7i7NSd9JJQH5h9jkmMjLBqMisdH0dbk9Y9lM+BStqd9/CnSW0zXekwMSkCfv4ZMKRjvbmmj3+tz\nmSLx9XVrwseZLF04eGZk0r7k07H2yRhsPYKphnCVBo+6Li/rM6dPuv4oiPCs8wwC9WkZvxfjCEJb\ned14C70BIzbCeuiWUwoED+5O80v1+94NZcrZHYQqLWs3Tc68wt3ABMtyFTWruDw4gHcsJ6q5NyBr\nAwKwDtkj/1fpQNuAURQ0ekHjviZP9esynY2WCKBEbbb4B/r7lFO1xlvsHKzB9J4luDgCVPrlaQUK\nH17WOT6bILY+A2ud8+LZdqqMSuwDbe26blVQm19fD4rXop7fdxV3A8LrVmR80GvPmoWEMl8BQDEX\niLwYQMfuiGZNaFUHqNQXlFuAQ4+4HRDyzJo07O3pigB4qXwWKG+xMugFhmzfq+XinIDROvZNCs+W\nAjPc7jAuf7moZdmSqjX4a/IR7PqQklSTbaFx6PFjfJ/qpXYE8CoUMPJSmkjQRZdAu6d9vGRt8gMs\nr3e601ejO4igxKi85TH/vJONBjyyAHe8aJG/by5Mn8ryIcyx1vC8XNecXtqXGNGHn7z/rhttADhM\n2CZBEpuyaxQW2djfYGIub16TuFaOTTErDYie7zTX8DfbqbIA2BBz+6jaz+i24a4oei9SParv6cOh\n7JOcRc4KrrBZOTTEADZw/CCzBbk6Uvt6AswapXclNuXvASw5p2Capkf4ix4xtlSIPKr7hJqKH08b\ni8FheZ07WupzsJawmAjgg/QeSwtEmoSckzF7+QuEt18X3n1LBORrNHSYtRjNHP6uPb9hBD970fHz\nq2ljAUQZRNgOq4ABZs3ihUwbi4zNqVo5uJJpfC6065LJZ62RXY8uYK7n+wC8Tp/Xiwik+Pxpbcen\n4+qoH8EDtPtA/qncbz0taCt+yETN6MXoiNf4yzLDXLyT7sXceNEXI+bIafBUZ5uTxnwQTbWo3wuB\n9WC1thnnItaBSNBKk4BZRA0vsVGZTgoo78A0o0xvFwsQPY269Yn1VYNrV/o+8+vXTTEji12jI/cR\n5tlxSaZ5fdb5i+NLB4F6GEPaNQSl0/XbgPGTujWkcsa+TmMFGF5Nc7iULhsl6Rwl4X+9t/zNLFBS\nfLK2Cljb0f7+7Oomg8ftgAvHvhMzxTTfOVprldYzozZ0S2jWnFKop95L1gNeRzqGNkOo54DAzj/p\nMUwNFF+73+HZ2+dKFYel8WgPS4gKBTZ57/ry0z4fCe1ARhkQ+KXneaj2m57gzHUfpL/+8NISy+pa\n6tKazzzy+qOuawwmDPUzrX2h1Z7S3bP8kedP7c4gzfgIIreBL8zbfwn1YjtgzlIAACAASURBVFRc\nykD1U6S3xGz6TaY7iCDrxB1po5tCVoM8YWMFk9sGE5plm1CgfuuG4Jbmy9Pi2o2N+bvycS3LNE+j\nhFVI36cWCftHNd3flJrn43lj77Q6QhDUczAxeN9uXGSvtrJgfHozCAvdZkgyUpotN4ltdxz66Gf7\nV3nYrEMTfexWEdo+BCMLJtDoF2jckC/d+mIPMwplIOck51eY+sIFoYz9ACAF3+1hM5km+DiXzCCE\nw9qPM1XBKjkA09hYny04J9wnrN7KUGpE68/Pq6AG4GD9xgBDyiwNEFZPZIZ4WpJpcjDy3U9f66zX\n35pbPlJkFH5d9OsQbtZ2YZ0AQFQ29KQd+HECYDDIK2kYAWY9qrD9rR4BiJ3mMawd5Ti7pHlkptYZ\nx3JtsVgWS1/QNNcpAhXO51FOL2Veixd1y0A07zO52Sw5uUZRBedpKed6j2J8jUoLqvfUwEd0Z1iP\n6DdjDk3D6O/qBQVDO44zjroGDR5JXKx8mKeXIBDo4TzZmgXi2DrMMI95kUUrA0slXydU2NqXDH+M\nZfI1iKdXq2QzxeZ76TxaIPSmra1HJhTl6v5rlgyXLIuYicYRANXrPFjKYQYPnicw8eX6flo8YwMg\n5WfL4KAWCTpHkOYVFnRTHrpgAccJeUs2A1CMYdCL2N8H8nzNAvGc9FSzPraHJ11DPulcV6AfihqA\nCLvTbO0CeMDWMxwk1CzyUg4uZHW9yzrX1+1vzHWLBYLxh7KxHmbBTLtmzRTTKXJmhaVTV3N7Sflm\nQweLuxIBUfxWmeeX75tzrYE3YBRKFVXmGJ+xbOVW9UAVPyIFIZvGHeIKcSrsGBjQ6pjL8s19A3vb\nGAAB3a7gsowXejB154WvxZTwOgG8CK4qQ1mnnkVMzlLER1ivXd8Hb6VbrYJbdA+seKcW3UEEWSf/\nlvzFIrkFwuXZWmY+wEKiRwQrhAZ9AcPspsm+OS5FGb7gAcnX6xupAsCAxj3uUaRfheXNuIR3a7so\njzTXPfoR95B8tH1jG4OnzjLGRO/19FjlohQtBw4KWrAbCL4PUqFtN75dQ3u30RgB24Pe8w4Ns8qu\nB7d/tOBWe5UGJk2dBUuHvUVWP5mZqWXcQJyI88oM+jhRTdPibgTQ2sKSw32Tyw5NKXeRzmjaLiLy\ny9fDej4hoKMLcq9k+g5zWzDBn2aADcGSgsYD6jHT+ZfQEsr9TduSLCo0XYdlwKsO1c8qaOyGoQoC\nCm0annGXFv+ObwEPrD4NYToebZ0KoAJrqorywrN4/8txayajML9/DSbZLdoM2VLcbQgoZA0Zvz9J\nNsA1ZpJZ61+2L645HIPFAb22MNQKflYx+HovrE1Oi1jwMYvur9PSfcfXew/KyU7zYHsNgIHoIidS\n70ExJoIHqSvT5cGvF7+v7nYl4NkL+JppjOULQn7PbLmldf2hcL3vw+iahpZiYoAMeF2SgX+vBB4A\nRHI/eowLB43wvbAW//JcAryIfwIwf1rqtMzuqvQGCYKoHsu5Evx7z4DWdKEshHZAuuB3njTa8YBg\nknDjUWNBWM2AL5vS0Ii94IDdWkQ515eUKuGt3JnrdkWQi7uA1yML7hws+BiAQnGXtMisKYcm+tKX\nvRRLJJKtpTEVLAU/hpVnJQynup943EFh87RZP9wvzxsZriAovX4ViaBVOaYqcKEB9rTiIomE9m4A\nWGVTtlnQdJKE2DIhvpupb4ETgQYHjcrzEgBdktigcVAJfAXmU/td8Zne763rl1wp7tSmLHdQBXQH\nEZRG0r57EJZaZAJTVknS+D2FAG060OD/ejATVtUA64K7m2eBDrjW/OG9WuYofp02MtQpIQ0gNthN\n7ZqwGWCKXm4eoCUsdM54q5AArRoHGdJnh5S6C5ebGLdpu51ln0o/0RjgZm2XbggWCNNz8nLKM+Sq\nz1ATBLtVs+rgjZViIeC7vf/w6pYAyvwhn3cVWX2CL3QybQliOYAhPQ3QKpeCeyR3k1mPEDSO6oqB\neA4vs2t7XfAHs1syqgAPINC+LilEYieBwt5fbnhfQtESwRg6QuUvrc08pngDtCjvKVc5mP0eNMjv\nFZEioFDrWpMCA8OBsUAQogAMuH9z0KxA0ESmA1svNOuKHs+nwZg9PFsJadpJwBzH5H7flWZ+KI+t\niPA18CDFEePjNI+yO5ep2rJp9TGv9Bg00wDotuazvymeoWYVAIG5XOk1gHUc7DQet7Smo07uCkEA\nSwNE9SwG6Iv1fScLtJjlpOWcxlJQPy0QLMvrc3APGigbRybNs9W0MFcuB95R3Zuwtp3Dt3HXlzZ4\nALrF5fpLQMVbXMdvdS8v53xZ4R6j52uc/14JczS+Afyel2RWRZN9u3IMefpLP+fvg/dZKmACwqIw\nzkIpBNgzWfu5+XUtsGQWEu3oAhsLI3UguFRc34SMItfiKZjANLV+xLFdRuSpqt+C5hftwBGPcIwP\nVpy061tWDYYjwUZ1LSNYO/gY0n7KpTDcekclGOMc4AR9g9Y+xX1j6zzxSSJuRbAxUIZBID3mGli1\nWEqIWWFpSDWN7bDI51Rao8W2Fke9HlM599xnahcI31c4UxgDeNa/wRLBeGgcVRJqjs3wbKw3W0Aw\nOL0CbO19lzNTRd6n6hc9LjSmQDcs0Xe60w9GdxBBiRfLwTTeHnE8GWNXLur2TGEyxkx6aemwUBlR\nC1Axz+y3FY+60gBE6FkmRNcI3vTZTx9URM3lDYDAFrQnagmrVH6VhrF8v4TrLfDmEi0B0FnMf1gF\nCt0YMqKW49bwii7KLOX32+wWyWrJMYyldvAwrS+CRcB+8A0XggsElkyCCkd9bxEH2mSgIPrNcpA9\nDvwF4QHAwbREk+Nfz7aEFreiNPfo1uBMl8piM+hbiCM/87OtmAm4dCmw1M7AsfUc4MGjHhHPIwYn\nq6yCqF3GeIV6DLmcay1ro7Lu9XpUaRrtvT4uWehlV6yRRM4xBXPTsZxrVhcp50ZcP9x3GyAF6tSu\n89gAeJeqb0rgI76TzaI540YLCHNz1MvzatVkXh6Tvb0nXuM1eTErBi/DY6T03nOpDp3rF+p9zY3h\nrXUoyv7K7gx9v+zr6+KlQGm8/21trLYFjZYLjtdf9JlyrPrcSNV4tj36QjN6QErX71ty7c5QgTCN\nNaa3gJNihk3tizpx3YPwu9btclubrw/V6vVFHVvAj98nyKitp53fvwS857VVxBUyDB70+MBYNxBA\n4jMFxNwMdXBOBqt6FN/as35rfU8GyewZrMkDHUeX1Js8dThGi4TEQDsBHq058n3cB74GXQOBb4mz\nwEqkO90p0h1EEKD25UKDdHmHd1NI/6Lad1NZ6aY81IsXxzPYEGPMJn9jctNcr1duH8MCB8EY83s+\nK1OrdTRwIWgEedNn8iwDKpTO/aXQF84c/pfCEqFanxuMgUhIizkPBXKOa2s77M0iIjLBfHRO4V4C\nQyZ1jdC+UUWnLJP3i0VBp66x7wdLjsfFGpKncoO2ssh0+7SMVUwMTD1oUM/G+GvZYUut8hOTlpdd\nFc5LHT0c/rcnc2eQ4nzKjuizu0Gm6zHlmAksX2G3/D4MGOiS8HDLJsgCCZd3qfzKAoFu5fzfhyHL\nt3DL0bn/TrXyv/P4LCIi3314Lgv56N/bArNRSlh8xzOA0GU0Do1jc7AbV2QsRwI43DJBintjMz22\nAlny6LhvZw4pwYOepZLNzfB+L7+08MFcqCwIhlzFfME3RYA2vCYKblwOBMC9arIeNuVcFFncj1c7\nDlYmD7pePFo2mrVvDhuPiYC+yOqa1OuTFADX0TI7lO5w8C8/q6XSohCvSFhbpFxTbiF3eWgLuJeC\nx/WsDCJId6slwtcm1uozjcnnACxSdkO5eGGV9zHgqYZhLfMoJcD7Xuf+d/ujiLgVkpxaKUzhjqLj\nEXunWSgErS6e6AADUYiMlkjl0yXh6jjksE6Uz46Wo1BdA3Vsp0HM53wpYx3bPm6uN8HNpt6H3k61\noFmWGYe/xbPSds3kwG7Lw4L2JhsPHBuhZ3IfiqvdGTobYmsP6s0RA2Y3i31buIDCIoFdvmBVM6bg\nKkKWZAikiCMCLW7SElKDt4ktKyKxlRvH4eEyh9QXhH2Mlnxa2ogF9oSVahrLvkaMBLdUzSE1JoEJ\nlTLO61bHTyjbwaDjkHxcW41uWP8MqKH3sNXnLcQgWY8X+mlTvoMqSncQQYmDbSEY3+67LItGv86m\nXtCNreP7lVKuLBBQruV+ts2xnt4sNNbl19cQ/BHBtaZXva4rgQXdysmEQPaldiEHddM658EE/Kou\nlbZDy5CI1JaLKyPTuI6ghi/njS1cZ8oyMIcYEut7UEev3+6oTNpx/XBgXsCgDDFKudYN+esRIAjv\nywOAIjBEvgFl3Wh2yirM08oRPWpKN/TZuOTgQqLHXG7gJpDp+6YlV9YEEAYGErYsdZba5m2G8N1p\nQ0AYiAosEddc9Yh/LaPX08ZKx0vU2kjjeeteUM+dYf4RbngQPA86/t5vFvktTcUKweJbFSB++2ef\nRETk3Z9dxzCsaeZ58FgcC9yfSgAMc2M/Ajjy+Bp7Ag/ASG5pTI3B7cmZTLgOlAI6Psl+M8lBM6AA\n6DLB4VhmJgAtUoMHvBYzYQxsh8XqjbgKBwNY2q5hm2GpAF1w8YiDYjESzLzcwQp3m9D6AxDQnRSg\n3DAP9r2f9Ld36l71jfbJzzQOy7f79Rs/HU4Wm4XJ1l9C64aUDTxApHvsDwBGT+e2eXGL/BuUTGhk\ngm9Jd8bUE6IugQk9ptUD0ZWS31sCzjXLNRP99bwOxudjKebbEXEw4Wjrbtl/j+NioNF7DQps/v76\nbZGC+NvHdfO2DB25tjbj3XjCeAS4nj1TCITC2sVHivOW5rQS2nA0EGWpAEibNySNwKUybUTyESAC\nXCrXe2Y9XygGyJyHLuDViwmzfq/yNw91d32gcD9h7mOPsZmK9SOLvBrPgzpouy4IupXlRlms32sg\ng7cJcyTRe+M6LiIybj3w9PasLnJwH0vMi6xl5MF5Ak9xjUCKGtR58tThIJ4v/A1q1wS/3kvfCYB3\nsL1nve9S+AUAHtGNQWQFCBg8SDstUD9qQmDFkCZ30Elm4AsCADPYbq32uGBo44a+dbJ1Anxs3Q4G\nl7jNsd+4/yowoVrTbo+JcAcR7tSiO4ggZEYFZlGD8Y0/20j6tE7bRTc+C6RTWQ7UZWcCC3rC8JyT\nMRNg4MxcnSwBjFFaaksDmPKfXnCuzAcE25yMIWUh1YNsaXv0/DQP1rapAyYwXWI0e5YI6JtPx52c\nphI8sLR21m9lv+bwNxbQd5qHe6SUWTHTA3zN8T64IqBPdkPJzORJRPbUVp1FYOJ3etyor8AiyX23\ndQM6zSxsa2HgiyVVjCNbOKAd0AJgY1+fIzNDxMrQcxfElJnLyX5lxueSxsfz1ZebIVPbDPEyoQVZ\nXEPEG16PKUzp16/B5NgVpjHXhuyUYXmv4+Xb3SQ/P6ygAdwWPqgA8f631+u731m/aX5R94bnkzxo\nQM2jjtUk5ZgFbXW8bAcHpKIwvdatPEb3AHZ7qv06RctSQfpwksPT2g4GL0FYy8zqaBm6QQNBHtSv\npAgCMtPZM7+OsR5s7M4oo2Tfo8UCu0tAoADo96ByuoYdkN2QrL8+KNj4Mw34+vPd2kfQOH/3+CIi\nIu/eHS2eC2daGG2vUQsFc2sIAoMKaZuHpXjW+9z7wPsFzGb5jdnqhNcN76WgMSUXEl+br0/ES1YH\nzER/iQb6ErlrWSmgb2j870cfa94/6x9HWJvAGsxcZFZ62ixmcfJBwYJ3esQ3ePekFgg6hyBQx5S9\nNYiairoBMNikZCCWB2/tgAfdnrkuahfjj1JDm7UL3gMN9TbJ9Kv17/OrjvO5HO9uPeN8Eu/9vWCT\noJaChrOEcKyJ2C53YcLaonMO3xblL36fAU9WzoWBLWUdeK7x73HvY4Gun8kE60Q2i1qsE/2AmN5O\nBhF3ZvGlmaBIKcbxZi5RBSYEgHJD/TiEe7RlVTk1b0DjLljwGnhAC54HWiyfGcbFQD12B3EQpgTD\nRWpr3F7bLxFbBrSocsdugAW9914D1sw6857UsKA7qLLSHURQso0QaOWjXn/aWpCr9CvV9Jzr50XK\nhZz91iEMvyiXOVlqRxyTmeKaGSrMT0NKQhGxQIjxBWDabRPW9H8AD0yjX6SIg0lkCSoY2eI8VMFc\nak02C8PBJ9NMuMp7WPONNITP0xiiWiuIgECEHUYi51Qh+AftaxZ6oPV9GBc5qKsDwJGPUzkl9mDq\n8Z1eB0mdjZIj+kbzztoqoy3sRHJQpwScDtiwFax42pZpQ8/LIGkutdTorzM2xcSAUTYtKqewYmr5\n0dc+9f129Yh9Tltahl6xzEi8BUC4LRbD5ZuiHylrhcB8Qlv9Tpm4b7Zn+QDTZbVIePqwChbb7xSU\n+UYzfmj06927SfYf1UrqBE2l3svp/4KAjV/MAgGgFpl6mlA5udsTW5lsaJxDO/X47iT7n2EhWg/T\ns46lWceoDkCMz3xOXZDMrbXKcxFvF0cat8w2eqcLAn5fFXPB2qf3SgmorPMXzC0YRgRNVQBlg/nk\n8wpCwbe79ZnvFDz4Mw8rUATw4Nufry4ruw+LWZyc1YsFaRrnuVzdoiml1Vu1Zhvduw7LWtjxtQx2\nOQ4ekDIZYIJ+QjvRn4l+D8IO8Z69uZnCLwwyXrJM6MUf+ZrUAjhYcAIw9TTC9SjGJdFxEFzJRGpA\n791msXUac/79u3UcbNV1cv+NaoYVpD5r+sPD81kOZ0WiyFCFs2ugrpsl27cDmIC10V0x1qObQN/e\nz1GA4gwvmItsBj0qiJYOgyx/COs93VcnsjwgHmVe+i44PXP21XWz/A4sMPGYjWDZQP1k6yCsjdBf\neuNpCWMHAM61XI9SC8hu8dK+/5b5UGVxGVxA5tgzvhZo3bH/hz7wANNIubmuZR+Vx3oOCgwe+7fS\naglT7jW9YL7RIqanSecUloZCDhE8WA/g3TCmkoEKDiawq55bGUt5DHWreF7ifTnA4iA1WHCLmyfH\nBuJMUVWcihBLpTd/LqXfvdOPn1JK/7SI/OcicpB15/g3c87/e1o//u+KyF8SkWcR+as553/wpe+5\ngwgiIhLcD4DSPiizuxvN8RXpiOZjuTgxExpZYdO46aR+ViHVNsfAKFvEW3N9KDdUz8Ag/iJaBIG6\n4hmkWPPN+foCzxvHpXtqcia0NiXWuuIeipCMvvg0jbaYgylDdgHz+6dnROpFbzOXDDB8kuG/OocA\nhGBMTiTITATgHJ83kpeSkwPzfimoJQfV4s2Ecw6L1MERmTFAeqV3ypRasKNlsPJe5lJLDfBKqxwi\n0qeuvyhrSCJAwOCBbayddqXUYtxSdU88juJxGHppjmKuadSVx8MlM2iRUnBhdwgONnUxMJuZDev4\nM231egSI8LSdDAiC2b/5baq9PJiZbEyNVH7zI1KwQH6vGDCPEn3dEsEZzJE0LhsqF+MTljCHn82y\n+bmq5BGTRSfFRnPhGcipzPWSk1kBIQNKj7jHU8oBLKDx1gHrxrRUc3Exwcsth0TK9W9LDCMHQsXa\nMgfPAax3sED4oNYmP3tYwYP3H1Yh8vBzLfspmZk3PuYyl/2WbG+o9cdgeMfHkgE+fC5R73kZZGf7\nULloYT0A8LXXcQ7T+G3OvpboALAQNOSz0HJhYGCyZ7kUazXQPOWsK3E+c1YVNvd2uQ97QP3+keYK\nXIDeKQiwGaLgvNK2spDD6zA+FosLApeV3QHzRufgN7S+68fYbmfTAJsVIdwoFoxVfB8HE7bIAkJr\nl2cUKef1ZshdoY2BIxeWHZQzM2/E8yAQEPvkcBiFIeJW6lIR/7atccKCmN+x/jXlVNW3p5F1qypv\nLwvVW36mnKoaE6EcO2x233qvg81aHCwqOzFpYl9V45vIeNMxF5p4kbCPGFim3w38ZijUslaB59B7\nP+g68gKLkVA3/LXhMSTl+SZc52sck8HcG9CWnGxsMMhs7gxj2UdpI843wy8N+yvi4lD2hjWjg67T\nut9yn9RuIdn2fs/mAx6t7IsIMkAoqwJ46pFxqRRicXA/bWwPx7gsy0rh3RjOzEv1+NqfMmX5UwGq\n/Cci8h/mnP/7lNJf0vN/UUT+VRH5J/XfPyci/5kev4juIILo4oWNcEub2+kGKBnlNNITsRb5NaTh\nE4nBSzwXtGuPYepXCpE5LEAGHiijutlpfdXk2awZbEGKiH67HdC2wc94yoPnI7bNvP1wMgEqdzeC\n2gxs/R19dVoG+TSVIAtSap2JMYnaFdvTTUAGQ4V26XtDkCrOX4/3JRNW9V5YkrzsTGsC2m7BNK3n\nJ7P+cG3KQCsxCz28CbS0Qhwrw4I96ph90OwQm4aA4e40ZTvPoS+g7JzsW7ePoDUafyncgOrMJbHd\nqbjGIyrTM3OuN9BabikZiEFSJXSAKp/CYHaLb8j+p9eyMQySKvAD4x58CmIhHCyg1SLZTM71qME/\n4b6QNcZAViE8T1JkIhHpW1JEAbrOVqBH+NNvyvEZhQMGE5hBfoBw9SHJ8F41pqqCS78AY1q2E3Po\nNI9mqg1rKfd1XsmwU2pnHI+9OC/OsDoIwKafrpFT4CaV11tt75nQbgJPCpeHA8Wd2O9ViHy3Hsf3\n+t7DIIuOzuFV3wef3Kl0UYAlwhIyYnCjUe7+/foemIxP0+z++JYtaH0GQigEZ6SjBPN7WoJgiXUd\nArPL8kWZcW2uqb0XRaHRmOgrYII0rDN4/rJ1QwrgqYN/om1er8NyDSBAjKkBUNavwLwb5y6gbU0I\nIUsY+GfrhpmnsjOiy0BPuMY4j24pLJCVNYwAAQSOxQWvztpfgQsBbOQUdzZ/Y1R8EZH9Rga1yoHS\nBi43rgQp15601IC7Z1FBy8q+2A5ivvSWfpfaLnZeCv+DlOvnWl75XegzyXZIzusYsKBHKC4W/rap\ndi8xcKwsYzL/ei/jagriC8RuKG4h6r8zSIs+2SoQ9vNlBUIRG+HjtAmZQ8p2AWBBH2EviBZu285e\nw0BEPDJAg96xNR9jCK4KY7K5ljwXplZqKa6bJcLGY0rArcGOE49LH0NV+kyqays2AgvxvVgIkVoZ\nXVrva4GBPfDgTn/qKYvIB/37GxH5R/r3XxaR388rE/G/ppS+TSn9YznnP/iSl9xBBCXzk4dWGWkB\nP55sBrolAAn1Jtz77ItaYRH3tT+SWb7dHzYDaEfMNLYCE/w5Y3jhp4/N9xP5Z+X6WWaE2QIB+dvH\nOTugYQxCKWwzxbRUdSpJMET6XmMOFmv3ywxmD/3YrmtsC3rU8h/oPWCIEdgK/qO7EJiNwQMuH0Lq\ny3ljmlN89/221KAedUM9hWjoHJeBNaUsFBcCEnWxReEncMnSh0owW6dAegcLtjcUZbSo52vq1jOp\n0iBdLetqJAQn0xQncZPp7xGy/YcG1DlPOVrK/p0Gci2DfDquEsRWzUIRUGzzh2rirsE6Edz1/DzI\neSpBKggy5gZCkdyX3BCuefyxSf/oGvsqn7iWgfNHFQiGx2G13BKxzCWIvn5W96pXDbD4csZxY8Dq\nE4LGkWYpugjE/ovMNNZbjtnCa80q9JQjIcP1B8ymRSf3vumZ4VsmDAI+1uelfIa+AXKVx0AEyRYA\n7eux/D5MeUluCj6VXPTwqIFWHxXEeNGAfmdPOYsMHug3BjNdc+XCGDOktaluKp5Zcgv0K9vB1wvh\nnvapW+j7xEOBPAHNM1zadmO9grC12CVTbozns87144vuQ5+PuENEnPdAcOQlZNtxN0lfgyM1fZ5x\njYUTvRwDp7IQ4oJ7WX58tvIRZ0sE1MP8zQcZn9a/t8anrI1GWRaYFS4kyyCzvhzr3Zi93iKuObex\ntfg3NECFBFhQy9rOwQjqE5zTN9kNOQi7LhTG/uLhMYR7HXxBP6Iu9AED9Swt/HfUudYoD9YuuDOQ\nEJxTJRiDF31Q97p3GsPnW93HjssgSy7XccusQKACB29N4jEl6mw4JZgQx2FvfbAyVMmDjAtpl0Jw\nG40rtCnX0LQDeAALQV+LPWMDW/OVdZ3zYvt5LeSX3xyZP1Ku56fNHynbbryw1IDh3LEo4vmbQvCo\nS/Gl7lTTrylGxG+llP6PcP57Oeffu/HZvy4i/0NK6T+V9ZP/83r9HxeR/zfc9w/12h1E+FJKyU3x\nEI11WS1OZfk8y/Ckm5MyxBbMEKaFxLgu4pu8xTwwRr/c6LLdF55X5hKa+Z5vekquxYBFM9B+mLAe\nlGk/BS0fNg0g22NYxEXcAgHB3k7D6BHDrI2dlSWYVLNmokamwUCs13cCjV29WZo1gf60o3viBg4N\nAc6fFAxBNHT4cEeNZIwnsNYpF/eiLad5NETYTUtXwsIMFxIEHxJxc3SmKqgRXY/kwTOVGV00vsZc\n1v00jYUA2XofCHWfc4gvgd86jHgr3zzHUbgELlwrv0W1ObLX+1bqmQN+bepFREZfwzXn43knn9Qv\nB2DPk84zMCiPL5qdARY5rxsTxDmTiAs0WHOuCzZW5wbzyUIGx/WwYFvIKDAkAw+yon6nT7DgWev8\nrMFO4db1Mm08XsdcmomyBUIlhEcQ4Upbo68tAwLmymEMH10PgCjb+AA8gMFaxJkt6J7O188QHo/q\nSnDUufLqiz9roXtkAMuSLL7EdNJxoFYrWH3g3rD5pN/tJaQr62i0a2bTr7/Fd75HNUhbXl+BB+0f\nMtmG9rV2OYoA03rsgQmX3JFqS4RyxTgvg825o1kYlu52Vic9HkfPqgLg8KjjwbLsfCQrSC3reNqE\nGAFYX/Ue6yO0q25Pr6mtzCXsH+8Cnq5p/C0a88nMy3GuxxgzaHjSWBLv1Z3rQMCetv1wXNeWNQAr\n9j3lE0jaMvPv8Ak8la3OU7JMQM1Ziy3SyBSAdtk41PcpQ7hdxuAqUh4ZYAOl5O/G+yqhsVHHW/fO\nxIUEMhCBLEns98a3tdhQyFSgQvYHzTDz8by19dytGFa6FKQV5+jjbOjYkQAAIABJREFUnkVCavRr\nIsCmcgeB0A+Ln93grh1mLoggxUqwRLAAjLlI9ygiFj+N4/H4MVVjp+cmhOOSHDzlAM1uJVm2txUE\nlNcwBy3KvplnqTh5/i5v4bHu9NXpD3POf6H3Y0rpfxSR32n89O+LyL8sIv9uzvnvpJT+ioj8lyLy\nF6X+5CKXjAWv0I8CREgp/TkR+X1ZO2ORFW353ZTSdyLy34jInxeR/0dE/krO+ReXAkOklP41Eflb\nWvR/lHP+21ffLyIbFTSBls8vOCYTWM064QpTPkjY0PR4Jp9WTqOYW6t8r3z4a+1EBk1NkxRyT3sF\nAp7XyiLNYVL3BpFSk7y+W58FiKB9Ad9N+AqLiCTLXlDW1xY8ZDOQHNLySNF2No/2oJbre57GWR5G\nL2etW0mwKnCT8cUWahDKR+qsbzQSfvR1huANzShnqgCgEtP6THPZBxNJpRUgIbkhAIn9VpxHM14b\nQyUgwJk9rO4LGKXR7n02QKO0gAHT+6wCzuvs6elAqAk2Ede6oh7JmL3cgaudyS2Z30g9i4einK+w\nkb0FN+7lRmbhI7o11Fqgss2v2tcfdQ7tTz4nMVafkXFBz7+NTvayMm+vlLmk55ITjxhndSA7ag8i\nUKfhQtDC9f2W9nAHV4ssouDlogLR86fVROpXr+vxMywQFAA5hswzmE+A6XLVjvU+Y7KTC8O8lrFG\nPYJ0YAadSo0SKGasYEYbJcDN6tNUz2+4HPxKF+ytfu9vXx5EROTxo6agfVqP43l2gBqgBLuyQXgM\n1nBg6BFMd/qsa5ZWDnsDXN6GIcRoIYDoGkWrlp4g7q4Wt5V57f3sqgRqKWjfGowxxoFZeC02jbAy\n3IjPM402TxFzBu53r7SGmjXcPMqLrsWYvx73Z30WMUGw1wCcm6bBgOLJYimVwGEr2CD3AM7dNRFH\nb6cHXkUflPfWMRGWSiNr1jMYy7lUFsiSze1pVADNVjm0B2kI1XrmPI+VdacBhlj/aG6KDF3hDXzD\ndGFTMJDU+oSEVFs7sbd6MEtza1riHfU3iVpkcw+y95c8Y/Ecmg7B0ng4aoNlFAjP6jowcmwdWjPj\n3wyEH08QHTSuhwYG/uZ0MsuyV7ZmIrBkojGWwvu2VBd8A4A0MQhlL+6ECfPKE6c9eOTRbwJ4sNfY\nYdSxScGt4WW2cjCePY2xWsuQ29qalnR9xgwfLP4O6i/VEd+/Aqvay2DhNuGWG/o+Pd8TmMDg8J3e\nSvlHERMh5/wXe7+llH5fRP4dPf1vReS/0L//oYj8uXDrPyHu6vBm+lGACLKuRP9ezvkfpJTei8jf\nTyn9PRH5qyLyP+Wc/+OU0t8Ukb8pIn9DOoEhFHT4D0TkL8g61f5+Sunv5px/cfn1uVqoZ02ReHoZ\nZdSNLFt2hPUe90+V4hiJrQgsNRih2jHA061wQhrEVhzkucXiuv2gkfvPp+KZ/JLcPYJMI2EZgCBO\n5nOf5ip6MjZHtqjANjNLnd6G/esYVMDi+83uLM+U1pK1oe904Y7xG2BuivKRvhFp8x7faUotpMM6\nD2ZmPaqWziPFK4iADSK4LLxISWgHGD0GkNh//hIVQZOsb8vfUMdnFUp+qdpdMFXHIFQyaABNGcCD\nT+qD/zwlmcisDQw2hDeLp6DHc9AO4euyxowBgkVqodCQd6nvXdttzblZQFkkByCAfusABDn3hY9r\n2RkWyeF74d61nVAuv2qDPyr3tB0cIMC6gL55PK/fdHcsEao5aEErZlrJgoGGvu+NQQZELwGk1VpG\nwRiXj7NN8rOuuL96PoiIyKczLBBKt67zkozB4TrY97f3l/WJK4RbdJXMdMu8t3JNuOJik4LQzXfC\nzeqIIIML3hPmAMrR7fb9y9on7xREQHT+3Wk2Zn/Rz44YGRbF3rLs+BhAP5ywln1c37PVLB7QpsV9\ni1MPM/XmYM71urTk8h7+/ddJ1xg7T1fWv683do4LgIONRaN/1u/yecY6Wz4DAedpTCZcgRCMDkAa\nApS+U/egd3rfNI+VBQLvu5cA0mvgKYMJrd+4T0pN8JUXEOVpMQ1wOuiR4kEMFHB2O85mycEuiFX5\nAeTqmZFzUEYXxp04XlGi62bZFt7BaUFNQKZ+jLF3uI8NmnhDv/oeSmtniKNl2nf7drTuNtZBzryB\n8qC4wDd5VBBhv5nN/WeYyvHOfC0rUIYUhe0S2OA4T62+YetES4uLdscXdYJ+JCA5m3Jcpp1YVja2\nSBg6VhNjWkJgRbSH3RvK8VhmsinbU1mHhba7NZF+p6W8zuDfHTz4SdA/EpF/QUT+ZxH5l0Tk/9Lr\nf1dE/u2U0n8tq/z8yy+NhyDyIwERtAF/oH9/TCn9n7L6aPxlWaNJioj8bVk7429IJzCE3vv3cs5/\nJCKiQMS/IiL/1aX3F/MJjBZ88udBlmOia1iYsbGXDNkS/maTfiCqAwkNMVMA5+6uyEyxgg8tFj2s\ngT/DzeBqYBZdM44LLbpmgaAb+bhZ5EAgwpl85EzGWrwsD2qEzYKPZXuBZn8ntcDAm8qTMloIcrXb\nzKa5AfpeRb9+T+1+mWT6XMYzOBGTDpeO3R5gwiLjUU21NYAi57mHBoY1WiL9jZuZ9mnxsTEReDAa\nA7tO3z/WDR1m05G5grk1tOCwNvikzX4xSwQXum0j0jIQDApAVxmMEVtaydjV/uwOHHhwx/I91ifE\nKF8ivueSrJ+7mtNGuaa5vyx0XAKK8L7ZvsF6/ZOBCIMJ0JZggYUEthoKLiTXqOcnG8l9ZnNxHt/Z\nC3qHOYmAfac/9nte/ngFDX51XC0QPp1LixgAK3NOMnTzbJdkzLUeY3wDD4Sqv9EaGtegXjrSiskN\n6xOvXehS9A2wHlgm5JzNxQHXoCV/HNUi4XUFE/a/Wifj03yUjaaDBBNYpeqlNWdeBlvh4eYC2v2R\nxkD4AAFgvT7PSRhArgDLal2Ke1vZdrdUKr9BHDdvEYhwfzduAi7csj6waXD1u9NIv5n5uD5rll/z\n0LTkEvFvHYNKiqzg7ZGA8RcLsqxzW/sYYPgtSom3kPWnAQEQPGq3Hc5gUoEJKGrIHriO5ogZCNCH\nzMfZhTbcsy33EYufEISeyjLKFt8SJrGxPaxrrEgdG8HjlZRrdKSB+sljFpRzI2rNe/7+Pfe76B5U\nAZ5VjWIb2+dVjI45TBoTpvVYva8sdExumQKFDBRMcMmBZVmxJnf4O7SIBVrQIEGRRTGdToj11RiH\nPaWbW8bohVbsGXs5VSpGyJUViLXAoOYmoXWirCRxfKI9m4SU2+3xYdYUSWQkSy/gGks5zI0iEGVW\nJGT5sKXf37oe36mkLLdbu/0J0r8hIr+bUtqIyKuI/DW9/t/JasX/f8tqyf+vf5+X/ChAhEgppT8v\nIv+MiPxvIvLbQEhyzn+QUvqzelsvMETveus9f020U397/6H63aKW7+bqN1D0DS+elRo8wGRGnt0N\n0i8ZU+3Bkzh6uL+vsctw6GUgm0/r4r4xzktNI4+TabNY42emjLpRWJT5h0W2Kjifz6X5MDZwF3YG\n7YNcB1Isq1illcN7PzzOVVCZLZlMPjyU0Z3HzWIM+Pig5b3X+v9cmet9OdyHz2cZDus7D69reQ/P\nIQ6EOKACbeG4zTI+60anOe/B2A9HACsq/A++vXFgxR5FDROeqARxDtpJDO05mNSCaXk2EEHPVZB9\nmVHnwLDZuEZdUFbJcEXfYHsfaccnO+L3KKiUbf7TQPgmbp4KsCECD+UzzDjGIKEMLsLCBjnlAWJF\nF5atpXWDxEJsFJnSJskNxUsNGqznjUYTcUowWCkdP27s+efnlcmE6faZ1hqravK1sRcfpEcphYjZ\nQ7nGMHDJ0e1voZhth+NAWOYZEjQnW9c9yjbavtcGftT++qQM+LMK/9vNbAHmrDxksQCIgP0CLlVh\nrp+UUV1e9X0KTgw6hhA0LOdkz3kwTrJOY1AhdBtf+xJXo1t42F5wW3MpMRN+XZfEgZoqG0OiBsVy\nG7EVWnQOYHEPvGQhrq3dxxgi9xmA6WqRYLFGRGQzIcsS9vNSo2mWTBcEWgwVTylY1mMMYBkHra+y\nHJgV4VL71tO6ZH2ACT0tFkQElgcIZMcda+Dm0EjnanbexSNBYM/VOsAZHXxvK58dwpppqT5H8D6o\najlQtsMQMkHh2VTU2fiaAFyyIAmK6SbLdvk9nE2Ig+sar7eEca1skAnB1EeR/zQQQXkzKHpgifCq\nIOentNX7PK6GA7llHRmQMleMYMkBN1K8H1Y8GOfga8fBeQuOFWBAlwX0BHCV6kkOXg2plFTTkTS9\ne9rNMqgf56AWCZaVYQLfXILh4zDY2mSuf2aJIMUxjjV3lwHfR+1prE/swoE+3ZuVbzl/4/uvAV32\njptW7Tv9WCjn/L+IyD/buJ5F5N/6Wu/5UYEIKaV3IvJ3ROSv55x/lfocbeuHfOF6fXGNcPl7IiL/\n1LvfqVy6IYiOewcRPLpteTMHk1skCsrKGChziDRRE9KJqf7j/2fv3ZVtS5ItIY+Yc7324zzyWVX3\n0ta3Jf4BETP+ABFD4CtABDMMiT+gNRQEzEBDQ0fBDAERs7ai6bpZmaf22Xuv13wEQvhw9/CYsfY6\nmXnLqm+uEM48a+255jMe7sOHD99ELTfoJ/WrFPAFlecrRK4Xbzv2HtefJ1qhZjuYFXx8UAexFRXi\nDdGKy5L159J4hbI5PE+Uc+pS0hq1ThvBpzOgQahmvR2lbKKvjw6nYb1jwUPk+XYk6rvdA0+UH1m4\n6n2O+IUVFlQ9Lybm1V1Zwzud3DPh3Lj+kSiygwdhtNW5ppwTWUc6Sr6cz7tu5bSOaSmKz4a+s5qw\niCJVYUqh0jFApAyMBIAHVhBOAHs4MOIY5W1yn6cU5V61fn15rf4e8n0pcPG31L4EWfZgAlHtTOmQ\nLC09jOZ1TPSe++87dhy+2ebUm68fcnWGh4es4zEyYHU+93JOr4WAFnzteGMw+Wi/GHbGWLff5/sq\njTMfmRukWomOF4jGiTPFxxKHwhgsEq1hw1GNJWeEyjH0WBhPK7eto2F8/3GBibDAwij+HowD4xwL\npd/mLYhNuW+Xx/NlVQH2WTaXB6Znt4+vDFOwjlyk+3TM72DD6XhIjRjHzozP5XFaa2fQm+0abRN/\nmMtaCMv7+FJkhTPyK4inaH45r2leOyikysFbOxoDUsMs2CRVHliocduV7+vjJo/99/c5YW53P/D5\niLbjZVPNgz5TFwQwFq0gzAcOeChZOngG5dhbcnbytaUqIuvp8qKRYG5hfsU6C7uBgxF80dCfsuxP\nTQ+CvVU+AxXW02v0Dqtvfk6xDq9nCOC9+fOjXxTADZzcoMezWzs16DN285K7tmsa1iXMLZKGOoWK\niRfc8uHHeG80MmAXbZjduTuxJ81aN8+crrZLo4yXtxgWS/flAWqwZBTowjGSfPY0f70fB17ZE7Z4\n/WAeYICbtAaAEOjPc+/6twfDTSDNrxd1lYb8/WTuB28L29YcbNksft1rlWW2mhK++odPZ40yH74F\n6/+2mrfDf6vtbwZECCGsKAMI/2NK6X/mr/+E+pWcrvCP/H1LGOKPpOkP+P5/f+vcicyChLmDo9ih\nCzS98qQxXH8/cBykAgEmD4lucRQPYmIhabQEe7jonaRRQOBxShTY0/Omk8w3knvI0fLNIEJoqM2M\nrRjxTngsBKII9NpFHUB1945GyUTANV028CS6sUrUrUrDF82X2VlUH5ZVuaSkCXgA7zUni+efCH2y\ndCiiAVKIiLr7qGV/UMuducxprqPGRETdVEdErmk+quWNc4mQ8DUesPikRJOjXOIYUKdecuCvXSJw\nGacp0tk5LlKNxAAaeUuy9QJ5b7Vr9vPpBlnfAP934+oCxVkjihhX6eI1KJhQC+34w2MB33LffegS\nfc2inx9Y3RrgwYevsyOxfs9pIizE0T/PMi+gf0WeAzCXwAjAZ1vtpKojXYEH5fdLzRt/wsQJqXrW\nq3j57SUKEnXy4EHvxoxPGQlBr9ODCLJPA7C8eE0XdCK8sYaxt+4A2OT9hlnfA6JmeO/eeQMQ0vez\nMKsmlz7mS/xZgDI25lVJgTiWHu40K2CNcSo6GrhnmT9qy/ULfJpmazlGKkaqDmAFaFTZ4/Vxr2U3\n2THrdU88fR2fd90s7+FOwsclbR5AkY75mbbczx9WLKTpxDq/esfA4dcZOJSyzZTBw6X7jI2w4ZiC\nlPPFPICXu3JjpjNjP7o12zNufLT8S5p1WucDBwm4jGUcsYby36EFAhtljlXq5JKYZL52fSZf6vZY\nh9RrBAhN3a0fE6ozxEQV3d6BL/66lqozVMANld8vNc+EkQAAykxPgaLLmcSzbtkkgZLeM4SsOcX1\nbpf78CODCZ84be04dvLcvHPvyxl63z6Gen3yYoU+oh4oVPOff06SvhFx30vqD+5iHIhAfSQCSCZM\nDj6um8dtWk/ngIVKB8LpJwXzt19SFcGzQfz4vQRMXdKLubVb8+1vAkTgagv/AxH93yml/9786X8l\nov+ciP473v4v5vtKGCKE8L8R0X8bQoAiwH9CRP/lm+cnjYJjYujecxR71xMljgbuvaPSHokysfBn\nKSGJidRNY0uDGlOdRLYh3Acw4ZwEDQu86OKSAjMHwpbvA/70qnaUffRxifrbci58Oadg9m9pO7QM\nerm/majbcEQCIpCVHgWfHxS1IWkOJhDiQ6l34BXA5uMs34kqujPW5dkAZNjGqpxmZCrmemK2iUtz\nGGKkNUeafd13T+G2ok0t8AULBIS4Hvt8cRLZjIFQNe4U4HDmY5ydVWXFBzWvkb8TIwPnLTvplEIV\nDZcykyiBJjoNfD4KYqy3Io2+RaJmWUZ1GhyaHsioGqtjko/HfUmYPpfP37qm+rvSeMIVwYm85776\nFafdfLsZ6Hf32XFA9PHdt9mq3v6eAYKHTK+ZX9jRXo8V1R0NVVTAcoKjuTEPGA675Is68EDzZY1z\n5e4Lox3fi7p8SGJkApBEWoYAHgvR+bVj6TQZCPJZDVsYtxseC1uO1KO8aqVlEDXa+kuC1pKeBkCI\n3y2YPiFo3IYzy+gDlxj7wM/oHeu6PO7y+rJ9GIVZlfb8zKUUY9mU/abvUCKmLh3N36dNZ9BqNDhu\nua+PYHVBBXOV6s6/dR68NY+raKSbS6r7s1VPnN6F3Ie5n/w5qUI71s43DGJL0Y0uKoh3jP62wxxO\nibpQ6k9suB9IBNid9v1qpHcADME0uGNhTWa57X7Pz/pjPjai8vM00Q5VlnBNZzguYILhHvTEvpx0\nD/Yj0ibAjJA5IVXrko+srxzDIpeZLwEnzLvePhI6+aaj9CNH9VE2m1+caIGclkCEEhTxruCXAPS+\n+X6+qMnh0ijkuSZEy9OC01YeVyoTyDXbsVXOe72kjpTXEShUdpdvPlV1Hk0QDIDhVKYwLTXJ88cc\nzSXQd1xR5uMp9+VX0bzpatBPngm/P/mez2G2YK/2rm9WQovmN/44kIEQ1qc3bOy1/QriAJ7RUZRe\nTOUc0mJN/JzLsL+5AIss/savqfZvvj+oPsovf1b/fFqidGWK8j/39jcBIhDRf0RE/xkR/V8hhP+T\nv/uvKIMH/1MI4b8gon9DRP8p/21RGCKl9FMI4b8hov+D9/uvIbL4VhPDFSjjY7b4wuOGEpcti5+m\nct8Gc6CIXDmU0usR2JxWHM2nNYyOMYDofDcozXb2uYRMOwP6LLmHC95Pcvmx1d+TccwdMq2CiqXj\nEoM1bJaPK9cu98DPZIhKGUOe/8npOKBEzkLe8nbCMsWO1xYUSTwL3Le+byywo8s9TbO7+BgoIG9O\nAAZGzZnnj7JUmzMDOUOnKSJV/iEWRzhZxJ+TRLPMqfN5gM53pTOHYw5zlOoWR2EKOMaAMzAHMx8K\nEu0ou34NzmkTbJgmfFf2AwHCzPmatP8r1qjwhge4RBf9azVENREpheG94ef2ng2wbzhF6vvdQaKP\n9x+yUbb5nn/7fS4DCB2Pbgdp6CPtxtyvzqeSGjWKUBvPG/IuZjV4TdSbiISKLEwjaAz0KlqIPorf\nTm5MoFtsdwPtPjCDaDwtXhsauts0RxnTtqQikRqOnnmqn1UTYce5uqLRcca+qbj2Ls5m7sJcUo5J\nbxqEoM4VjFwwEB75OR5XABHy+ddRy73hvX/LlODvt/nivrnL7/7dVxk42nyTxIkKgdliqMfObKdO\nysviWrUWuQAp/CyiB4cX0jZajAMYvTD8e3kn6lyDLo95YYIjuDCOg4s+6vfl56WoqxrIy+utBZ2E\npZDKe9cpDc5Ve6KQedZRq62Y75pLEHYh2wkArRREKO/3cTXSwyaPiYd3+X3vvuVx9S2P8T8w/fEu\nHzM9ZQdttX+mLZds9mABtDJUs0PXL18dhNn4FT0fAPdqNdKanUEtqYf+ln8DYqA4IUZY0Y9fL84o\nlaS2PckABQDl8H7flsz1FkPFMjwqsL5x/GvcIxwLji0a5hFbZrp3EXOvJQHDuzMgwso9N58yg/Vk\nSunNKLWy8NQmtZootvkUS9t82hva+iH/5gPlOQwaCT8etmK/+rSZs7uv0diKRFSUKhTmAQOuWPOk\nVGFNEDD9rvE2JTUhWsS1+Bt1/FkACH5v0QAOruoDWsVipSRz4VIaUP7MxyfdL7gqWUTlMZTFUs+p\nfq7UfliOxSKzgy63mwjjrV1qfxMgAgtAtLrqf7ywf6KGMERK6V8T0b/+0muo8vbM5KJOY1tkkahE\nwt8SZ4Ihbo2PweWX96mkxSPyOHGkezrNhUNcXAvXafchkTRaAKO8lsAG6jpN1W8uGaL28zX0wRa1\nDw786ZgEJEAJxtOpL655KR8c39yds4HyMGZjDQ7S7BbREBL1XPsXkQ+pxw0GBAAWMBXOswIxlQ5F\n3gKtxwI4p6BiU9wu5V/7+/GiObYiRf5eFy2i3KdgDO5F3BEdG45l4m3+9jgZirQrSCz5ne6Sx1S/\nBysUmj8H2ZeIWICQj55wz/q3v2b7kki0B7x8s997oSxMJfcMNn1gobvHzZk2DA70d/wOOe0I4AE0\nTYRFcddRZJYO0pIGlyePa4Ehdg5zndPcMPhVedpQWaW2NQyr8p2L2OmHkVZf5QPuHMDhqwrIXBaS\nVETx9dffNPyNk4CxthnyhHjkHHKlZ9fzVsXIwt8Wldph2JVGGZytHVu1jysAeZqO8TW/r++2+Zl8\nu+Pc9/fZSdx8x8/361VmRxFRYnp3v2dHj+/vBMEvMDuSvifMB1vuUyoOXPbavp+Vwj6VzwfReNjU\nmCcsE8H+n8hEaOWxOeeV2mCB/ML/3YzNSfbhefuKgfslaQ3+WrwjA6fxnsGfvpsqvaITWEBSPrk8\n5q4fRShxdceA1kfWKwJ48Iev+ILYDgC4dfdKPQsATwxezB7c5obr2cyTzMVicziHQsTrTDlFH/Fd\nYqIQecZDee4m2AMkareiuMW6ymCYSxWNLr0wUr1m+nfsmQgxmDWUlht+gftbqgxUpWW6QEBvKPci\n6u/Oa51EopKq7h3MVgqEbcEFDlplVtHSHCT45AMxVfqWZefgfDG5fXmMcF8Gk+48dlJyWgFcvj+e\nEOoUGe1rsHEE2HJVITSdAc9hQTS4vHVx/hdZB0IrbTxsi2Bj18ZW2Mw4b0iylng26SU7udaQaAOe\nuLRrbadfUurxxkTQloiq9NXfavubABH+FpoyEcqVKR0GddAd5d03VbZWuqivQQ7aFxb2vUSWglDA\nZdHi35wZHT2zYQzHOuyTOKzi5Mo1sjHAuYccoKDxqL/3hn21CMP5NphCbXjzH3xUIGh+pW8tJgcc\n+PN+Qx0b03Aw9ueMdHvDqLhevpZ7fsZwVDyrwQpJImrn6x+LlgB+w0bO/DrJYgQDCHXYWx7mEsVU\nxRdLauZS32qV2Ot5gcUCj9Ofx84YPn6Icx/iY57EGA10YstGqMTVecvPk4l2QcxvcFst5adbX84S\nDkOLZDCbfVtlGkn+vnyM8njXT/7XEtaWjokeuuYHt+uQhoIIoA4s6V9c+SO8cqRu8IXnajZRxZbx\n12GMjLe0ASyoEFyEsVP0rPgNxtDqm0Dd1zk3dn3IjvI0uBAj7hPK06RjHOeBCO1bhlEIhjnB8x2c\nbZRhRbOgie9ntXNSAw81gwiOZv7Njq8DQBGRGslfs/P4kSPRXz2+5n2/ZbHa7/IzC++3FPm9d/z8\nus983sq5Y7AhRKOpwIY2RGDvwDYp73f1l6lQ5C/uB05JKFNjNKKaqFL4lshi3qI32p6rhjUtNj+3\nzEQVyNiaj/D1L8khztcIxyx/1moJnAfO6QdERDOHztF3wdH2ax7W/3U3GcFid+Itp0asVzj4z74H\nuy77KKTf9i7au9pM1B/K9BlN7eDPiPr+nIuDM7ftKT4ib5TZgliQYL9A8R7Cxt1EHSLcqWRB+nSA\nThze9r3HBaDLfrb79i5wIqlg7rMVVmyyp6j83ub0V3nzVP72mibrJG+nIhhSBkbAcpJyzFWKU6hs\nNTBGICod2f58YCbd+XyUSgpnx6itASlsuV+EmoEAoHx9nprHEEDFpDIuNvsgxQgBML5a3ldKlEX1\nDRoMBDTtH90XOen+0tDe0ihIxqaSAFCMxecWyGS1o1rnVdvhBiLcWt1uIAIt5xMlLvWXhpmSVDPg\nv2GylRz+0gGcZnWuvNP7zE4qqOpHI0wHh643BtvSMUTILCZKzuCQSeKFJ/BTmcs2DaHIM7THDY5y\njPxc2yqVYezbAAaIFlBYZ5Cj4Xpeh1VVxtA/N1/X2UYqUI+7VTLTGnbzpAsYEdVCgQB5DgATlEIN\nwKbbuOMDeJAJPGi6hzx7drIbTrct8egpx60cRmtESRRNIqU4fv58cIDKkdrGChx3r76e9Q3y/0dy\nrJlK9Z14mypH3xEfKoPOAgJehVw/1/3OAw/VQrooxpiax1s69uLf3E+9YYm/n8eOXp+zAzkO0NPg\n8m6spBh3oGDyHHNONHGmAIxAgG+t8n+jARnEUHQiZUp71Ytu/vI0AAAgAElEQVSvSmU1IvWIfHdf\nbyhyJZR4ny+yZyd4OJXnkWoDU0cHxxrwgnYeiCqihA1GVBcvv7+8b/lZ9GqqnND2b+R7vvaNiZTB\nIUfZTpTrhOp+98hzD6rHPGyUhs+AQ5A0qPL+lq5HtBF43rbiwEREiR/gaj2pAwlVfFkDOWUl5T4k\nUUSjJ+Ijf/ilOPWlP1gwEd5KbdMbq0FG3DlejwcNIgWy5R793/L3V/QL/AZsE46KWtHLuQKD4ZSW\nN2jHF/r+eOS1mdMju+cMGIXdS96ZHej0kvtAOicVGgSDB1ozbi3XcdwG4QQgAMMI/WU9KxBVgVb5\nNz69xTavieCBN2l9R/EjKiZl5zO5wZ2Yvt5/ViaOv0c0BRNqEMEDKVo1Cxdd3we+9oCdt1sEwJz0\nvL6qxTXNV8T4kiixX9N8icfJAgZOtFXYYC710DZxiB0N8XxgG5S1OVZ3CrRtD/ndvo6r8r5wTAci\nWNaGgJlgxwhLhvulAzt7w4wK7nitYF8aZ2UloNSUB+7qyM3isWxbsn1/lt7Sz/DVJQiFNRNgnPu7\nBwwyWOvso1uE/ap2q86Q2w1E4CaLL9Trf8yL2/CXJCrJ04knXSC4MNIn7zBFOgka2xV/ewZl3zmP\nREoBX8vCl48LpxhRj7OACNqJgzOaURIOrANMxvMU5fdKI+b7Q6QAiyff93yuJ8M6r/36ma/KHYPx\nDsDgvKJXsC4c2DLM5WSItgpadksrReTPagSUv5nmUIEfx6kcEidWxT7t83ae1BjE+9/elfRh7AtF\n7fPYVfcIxwmo/QHvGIKEc1BggW9WFdXz9sj15c9TySg5jp1SWB3woIAOFh1+Fql20lpbi1D7yhG+\nfB0CTJeqM3h/D0OiqE1/5Wp8Dcvgn0I3wV4fno9H7vFM0Lc/Hbf0wtRP5DzvnnNfemAHYsOlR7ud\nRjHPn7kPHfL7B3umlSp1NqwdqZ4xlnMZal3HK+TX0ZdWPK429xxNfP8gUVWAHgBecT6Mp1dmFh3G\nnp6ZOSSpAtwhBhcZs+KcRFTooXgg9xqRtV8irIifnt040/zmJGJ7APLEiGZAN2wZIEK+Sxdrz8Hp\n1Swzlcp90CKLceA80ITpV5OwYM6TZ7pgvcrXjPFso/S4gpZYmIob8n7hAtW4BSokkhNhntDzlu/Y\naiNU+2DecVFK3E9KibROPRX3g4ZoOPrY+dRJP95jHh/Ldd63LiQ6HnOfBwBwPuQn9X73nPfZg6bD\nTjBr64xPM515TUHZTpwf70/1UGAz6BrggXdfKahjEKHbJLlXuXe+HWQb+Jxu26Jz1FtMHyKi8PEu\nbzltSyoncbpGfMlsHaTidKeZVsxaaDmHXph1Tqr7sGJaJXQHzoIU5Q2qFVmH1tPte+dQeyZCi3lp\nm2fP5JSLchz55iPtS6KPvgF4tamw8lyk/GPZd3ylFupsHylPeHjl9FK2Wx67DIT1q1nTLM/lbypJ\nAQfodGEB2OIAjTBkHCDfRXNcP3U6m96E6/U7KYXOdh+MyCvYQC0x7sV9HUDjyM1FUKT1bpvfkwXa\ny3VodvaZD8Jc036Fqrm39s+43UAE4vwWVz5xfM4jZ//jirbvuHTf4OhgYrT7bTDsATjBJXggTnHh\nKOUtFg3Y/teMYV81AYbcJJF2RfG9qCMmHtAEBWFnbbcQSKKf0dWClvPDSTafK+TeL8pssHhhn0SB\nXsUoyj/Cc1OlafcADJVQnoGbUGH0Kiob5J1hgcUCin1gpB3hsJ1WJu817/PAGgwrVqIHeCDO3RSr\nKLSvYjCmsr9YZ9vXcEc9eGwBSCA14jRFuX4AUB60Oks/xPc2IkHF1rII7HXYZ0CyLxsijWtPKRlR\nvdKa0AhCccgvwnuXIo4qQFQi7j7Hbw6JoosoXmMY5pNEoWWuoGTuPCYI0X3i/jGasYjyb0h1eM/g\nwuM+D7wd59P360lERpHedHZMBPQDnXOiPNuKrQCFbmFV1bovGBvJPRvkAkPPgbYrQ7fIm5GBV2ia\nADx45bHxOvb0wsasVDyYVUuEqD3/hZAk5SpxqTivq6D7Lv2+tXUgZzSluqQPebDMGWvmfFJeFc8c\n6nRSh40f1jSrN1Olp5U3sJRbLe+H1ynJ4d0xSAOK+O4sOcbYVqwwPEe+IUtJRjRamQjqxBOZKC+u\nlZbWC7rcAolYqwcePI0dO6TZGPSY6+U8pfcmRjsF0qoM5biVaHxXRnCPpxUdGPhCeuLerVf+PmMg\n2p3ymO74N6xJR/H/yQyEu+fMPoK2joyhlyDgAYDj41iCCJ65d5w6Gf8+xcy/L3GKNxps8JUplB1J\n/JnkGGBoRPe8FGynur3PIAJtEK3mdshraXxiJhPmvcNME4+NmTWblGnG81Es7YlIREf+DRhCUt5S\nQANBlYrryOUaS1ATznHvqp90PHd2Mclz8Roj1VgxjAWfjoHWuWMUrCMHRvhHrGwg/ZGAZM5W9GWg\nrUMruipbh7I85c2B++N6r2wdqfYBDSdnf/lqChYUlN+wjky34/fF2jCoKNLLfKTCsrhTBbHKsViA\nCXhAnCahnRRzJ9uFZgAnN2n5Ska10HptH/0auk9Lw8lXYgluXw9WlNfYOI/0oRuKULdE6cZEIKIb\niCBNUhOQiszpAMfDqqrdjaia0Nb5GLOZuOHEDXPpxKWGYfxz0L4QlIGAaIJQ7eV4rhrEVE5qSw2o\nM6jURLOACF96fUS1wejBBVDXVLF2ruj9PpdxKyUz89933SQ558j33YihzNR+/gzmSAhJDA6hSsIJ\nhTMMJ5wdv+fTml7YARJHnZ2gTV8e/zQD4Y+yOOKZiIHXcEaGOVQLgHdGEGl+YsdMQAazcHkQBuDB\nK/fhlxHXE0ykt3S2PWUSrRRJdPdhwJD8DHibalaB0OkaCu4/t7UYq60Sj5GCfCf7XDkuO6oNbRHr\n4mOxHUSrsWYIrNloeXDsIDTMNavzVKQCEJGwngbXh+27wDipUqP4Wnp+QR0MdZPWkxwQBIdFIo9Y\nRY4DJf79+JS3+9dMbf18zLSml2HNW3bCpq5iGQko4gEp+NcwlMy8Mrq5WZ4b1U1EwpzD15qDrYjd\n7OYHXPt+KvtuIjWewTzZMDD08SVv4TTGJ6azDxOlz3minV75OTKTTKrGuGuLlNSBBMOMqcbbAzOk\n3vPOUCcP6hgp9bv8LIKLOI8Y/O22BGy09kH7kuN5mrc4ZEbNvC4PivfCc4w7rwUSMX4Rre4MiESk\nQNj+vC5AMCKil7Hss8mBWauQBHiQPsTvbfUJ9kXuB+tdWQ74fOjk3ACmwXzwjDMLTuucX9og0QQU\niKgSiLOtFv0r7+sayr13Wmmc9GTbVf23hWsKsa1LgqOLNoGcr9b+8JR6/Bos0N70cz/WpMyhK9OM\n7yMlY8OQ25bPD1cYQzuSjqZ9tfx8TbPpawngy1z2v9H1oVHm+6i2GrNSIwNc0CoY2U5+es4Rp7vt\nWdNaDNBEpEF+AKNgt9hn7n8DLS+xcx0wYatbtJ4jAoOSJmRLUQFEOHL1Ewgtcj/EepbOk5Rc9WLm\nnolgq7TNzo7w2leVRoHdh9zf3DDSNIRQBW3QPJvP23RLrfW3a9mgt/bbajcQgfLglImVneXzQWmD\n3X6W/YjUoEMkUOlglolQDl589jmGWBIsI8FHhfyiEc3iBYCjA3LLk31AHuehBEDmua+QUxBaZaFj\nQCKXYuJI0qvSqYtrw4LtHYtrtBGw6Pfl9n41CkgwyeJeggaPuD/kHa8GceIRQULEYANVbAYrwBSw\nDgciOz6nEYuACDyOPX1mQw4TN6L9iCZ7FsCUAm260pgBiHB0TIGzARN8fqONMhGpTsSfzxDrLI0A\ne41ncdDyZzg9B7bQh1nLhcIwxFqr5eRKcMFem+/nYyrPN5pqED5tQozARj7z0r6/ZiWHN6pGLrbo\nrOdIgXw5r+ieo6ed73qNomyZPQBDCwCRiI2OOlV7LRPvSNTGoAJEgwMgMAYGjl7HTh2Mabp8HjHi\n2aiaPx1ofs0fDn/Ox//pJRuXn04ZTADrQJ3vaAAofz5nAPH9LwEDmINPGMdu/ilSY6oUAXL71uCC\njEUHbh4FlCvfeTcHKbXpAcLd5wciIrr7x4xY36+5iszuTDPP18PnfJwz6Ouow15V4ghyP3AwA6fW\nb39i7YX3bCBziD1Nobpn79i26o4nqkFzDzr6ZtMZ5Du3T01FLn8vJyd1pi7XSrrcojPU83nKfo21\nDGPk5Zg9qNehr8CD10a6HYCJ7RQl9QEN7LMnBtjQZ++hjYT16tQ3WUe+tCTGymmOFbsNW9WOhtel\nD7aVn9+qIHCpIWDhUyTScaTgBVfRuKoLHDavQ2Wv21ejQYNNEtMSI6l05tGkYgDo9KEGTdGkdOpC\nparothptL7eyf7B/Ayjy9sON/h0628rbDPOk87ln0r417xIRxS1v7xmgZHbu+im/oBdm2djfKIul\nBH3w5nvHsOhDPW/7aH9VIYOSMjUagKGACAIIzHIgaM7QiXfiBRjCnjBg0jBT4vQMBBpxXDDLBpcm\nPMyxYvu2mJoWTBCZBm/z4H6q9ap+3yOe9QLDNR8zyW9xuJYWwq0qQ90SkYgP/9bbDUTg5oXGsED0\n3VyVwvHCUYrutQ0wqT0t1H0Y5Ppb/KVGVh0Ka5xu5Az2zA7s7tgQYhoYaGjjUTs8FpP1hMg5RyNB\nbeXgAIzO0AfqntmpP5TouyxIfD9Slop0MvfggSL4fI3Ie2Qg5P3TkT7wooRnuXUUuXebPJODXbDd\nDFVpMzAq8AyApo8veb/hGLUOOxvvWAzhqHs6ewwLzACJAOc2iyFX9we8/7rvlNvFffizZ7dAT0FS\nE6yTzz+Cs8Pl5qUSwxFsPjL53BH3V9x6tXhNSYUVPQsCjvPF6gwtp4O3NgWk5d9XEXuzZ2Vc/hy0\nwDVvfJbHz1svKzCZiAER0Wie70ao0wwmiBBmtlDuuDY9gLAYklhhWvKTDQLpb/6alyIhfA2i3l1G\nJ4mo0lnx1ExE/lBZYvrxTCMLKX7+S3aU/3LKg+5ZaN+1Y7NyxrifR1tly+xvcO+q11AakkutJRKL\nZkvBthr6+cExvOZEhGqdAOwwBu+6bJG//ylP2v06e/3dTkv2nl+Yvn4sdU8AVOt5NNoFIBTPYPtT\nfvabb5gizkKLadZ9NFLpAJvGGvdL21vgwaV9f07zgMMlgUXv+IHBhnYW3YNYjYXZObR4jnHBMRSQ\n2wmJCjsE6QFIM7hCJLS6jlS/QzRX9VnHQa80ci+sCD/M0/GvaXp8M/8eTrjgYpu4Ogmq1MwmhRTB\nm1aZZ1yj18qwzdO+0TxTgah2/CTC3i2/n76bF6pAlKCFOMHWQReRQH4UVH5eqvTwViUSpa/rtbd0\nVWZ3nz4gQEQizhp3zLr8hm21z5lNdfgzz1NjV7Gcqgowsv7Vf6+0bHhf2HLQuOjNM/FsKTS5TzAG\nfMcvHwLvI/SC4nsaZxH/9OCzX3ssc68CDyQwU4IJFlTAVUr6qAMVluzCyR0H85wHDyrdK6qGoNEy\nwT6p2N7ardl2AxG4iQHOESUs5NvtIIi6X8R8mT5PXSKyE2fpJChVE86XGibVQuRBBRPBR4kd0MwC\npyCAlRXv2UBnevF0mrViAyZsOOjeWMEJ+44COzOKDGOLayy3X9JwzJ7R7seHE317ztE5PMutlMXL\npsL9PdfsRgmg+4n6ez4eakxveOHbQjwnn6j7zMrPzxNNhzKetduXEZK1q1O860e6gzgmX7jQ5huL\n8ZQCrRDl8oYJ/7b+XCPRmgqzjGqfZv2tXyyODjQAQwDR0kQk7zu6ddSDZtYH9waHj7rK4oVrm5Nx\nqnGUcvVfokW3gAcfBfXXmr9zzrBbDL8EU5ihUh9C9RkLd6WNx8eH8QQDaB0TPfI888j97GtW5f/m\nLhtnHz/kxGkYqvOs+dEr9mAhigibD4Y+Ij0DpUoXRO/dGUDIm461pgmailoBoGQA4s8zHZ6yMfnj\na2YggLVzdCwGeyzJV17IKSUqx4S95hBTQXf+ue3nYEpWV4VIwbkzhHmTjjVoZMCAvO/yM/mWVcx3\nf2Gg6DjKtZwcA8EL99k+ht/4iOKKKcaPnF++XiG6Gyr2nIpwLtPk0WbDatH5rTSundRJ/h7/5+Pg\nqJfACZ33yn2/JP7j9/Vjf6ZURdok778r1wZZDuOspei4321M9JtI+yrW2HWctVQkr2E4/hZr2kN+\nT4jyok2jlvGsAIeEsc82iDikgUbYC+4ZCFgCWwS2QxeagFllg2A+seKmC0673ceWz06fWBACkV5Q\nzSEmyWAkGKHH40pAHLCNlso8E1FRZaoCAhZ/YR0m3Xr9IjBS9D5LEIHoy+2fQG3eQcu5swCRjSgX\n11/9Vsc8UuN8GkOVWjlHCTjJu2Mhwu5jPvDDd7mvPrIQ8PNxUzM3sF5AN8sBKksggAIA3Hc8A/YK\nh1YAcrBZRvuQ3DrI/S84jz1J/0yaxgDmndNIE1af8Qum5L/Ds+ZrFOcfz9yABxXAwOd3f0/J7ouc\nEeLjeXusnLOtnenn8c6D+DcQoWi36gy53UAEyuNtcmwDlKzp1zMdnpm+ziN1Hst9LxmhQlfmBRvC\naVFo5BxVjkGcQI9At1qIZnL1OYQQ05JwLjvdr7OkZ0DtmHhxkVxhTJbspMRtTwGJog1j/VK0zi+T\nvrqBpFewMbN7N9C380uxD3LwQPHcfCjZBXEXKN7xfYBBwekYtC27ecdlpUJ/psgshTSxIffMUTu+\nJpRlA/vjwSD6yEVfykcl0gk9Uagosq2yl1ACi2QNgtIAwqSv+bb4zIdINdVXFgqske7vnUH0ldJa\nftbSXXqM5IAzD16o8fbzF6BL4j/XNDAQsPhqjXB+F9bZeaNdYiLoPnnrnaktR67u+7z9uJrp+23u\nb++4T377kI3rD1/n7fbb8k1Nr0TxiecOpk9CYLODkShUbb1WidA7ZwTNU/wD1WPa58+jIQc/HCPt\n93kQP7P2gRcclAoMZo5D6pJEaOGQNZygokkUEEAoG4NuPC21VoUZv12KGnqgV9LSwMCZdayNEGbj\nGwEbA/R25LtbZ2QYSkfJVv7J11QDPD4V4TOzqk5PzDTjKhrT0Fdzlqcy+/d2iWLt/1KlLrw9ZKr2\n1zJXLYCgTKLy3WK9WougnpapxVzvgwIAjPD9XTfR45rH+l0GyHdc1We1ZaD6Kz7vPa8bA9bjkbZH\nFneGEPCIuawrrtU+e505yhHk70/yztdBUhl9FHlujMU0hwo8aKrUr9S5nz/lZ5BYKGY+gWqe/w5N\nKoBp57FTLSCX0tGqTkKka3CL1eejrpfWAO+ER1fNKotJE/8/b6tyhgufK4o+bAAP2JjPuExbmcQ2\nfCrGORhjsFMMs8bua4MTMqeIA859Zpdt4tX3+Ul+eMrrVfoz0Quzz9BESBvjibeDC7AtAQPJGSqd\nWxtyCgTx73nr1l/VRODzz1qRRRp2BmjgDKY0Juk0ACVmgAkot+qqI422wpazhzRV1V2rSSp4yx4p\nx3o574gukgcrXICoOJ7Tirq1W7um3UAE1zBprd7JNzRx/h6Mdp/3r06WTnA+FQF/Ax0LDfPAKkaN\nMjVMqCVHSsRd4Phz3lZ4LB3pwKGyuJ4rGq9HzxMqVUAJ7j4ZMGLx0qqIZqZYlYao3sey0QEQY/Uu\n0ePqVNwfoiUADTq5PwUO5F55gaM7/hHkwmHVGwG/wDTxnoV1drsyCrQWPQV2dFaTRmCdoB3EtqKj\nFcc0V85by0FacpjUYCi/R/TrTvQj2LiKgcDEhVMj0VAs2OJj6bvAY/LXgBx/vDZf35mojODYa15q\nvkQbWrOGvF0s31jfPOBhr8mnM1yqziA/f8MBugQq4LrX/J9HBg++ZkDs++2Zfv+QS5nBsXj/Xd5u\n/p6dg68zvQaRku7TiUDcHc6clsP9EAaWjwQR9fLcQNFWyik73Q4cDMGKhMEIRCpOeXxb8lZKok4t\nx6X8nCgIwArdENUlufyyY0zyvmV8IsWiQdm1+gZob5Xosga6dzQB4G3YPzp49M5eb6Or2C40OzDH\nX5PmqtfXBOq0rwgEXYXdESXyahad19G4BjxA+zVMTg+8BXPcuv573vpHbZ0rX6VBRFthtMsEaH4v\n81L+DJAdzL87BvyItJ/h2u6n8nn6Kg3v1oOO8W94jP8+/617z1oWHzIzJbCzPX/KbKT18SgimbJW\nsio+xvEKQKJU04gUq/KdvA/6Lu6PGYChD8LiExo+ftkAWC4xEapqJyint+poZkXfiatgzchuAEOO\n2U2wuU5jXwFeJ3d/AvBNap/5NB29VrrY5lSv1cKIwrNG6c+FeaM1d/kSy0TmGfO2tEAWjhGCARH5\nmtzpJln/OaBhnpUwOpyeRk21jzJPyGVzCU4Rab3P/XD3fe7Tw+kkaVWRz6PAMcai60O4/2Bt6jfm\nfgMctFgyPsiXTJ4nQAKAIwDSJJ0BzBjDXhBAA+kLGPMQZV9goA4uoIRLqJiaZivgs6wB5fYye2sZ\ntFAthLq9uS7xj27aCLalGxOB2w1EoNJQQiS/e68U+PVrntbPbITBUL5EXfPCRGI8Y9EnOH75D6uY\n6NSYHSwljYg0f3k2EwsvwhCKkajyBo41X/Nm0DKNWkS7aBCKmVgHIT6OZqXjyRfnraIBuvURPa9M\nWzV59pH6rx0CDqo91zwn3BdYBjGI8SXgwT1bRx1//8oq6D0v04ah0HGUbr1lOiU7RuKcbBhs2CRh\nRcB5OrOC+gq1jN1UfZqi1opvRDI9Mh6MFe0NeqHI9mXqRRe04sNBojX8eHBcKheVpQbDG7oxK2dH\nAJDogpbBEgO8fdiqBWe0t9qXMBGW0hn0b+VBltIafP7f3LA2KxGiEKvj4f7umIHwkfvNd1y27Hf3\ne/r2q8y42X2V3+XmX7Bz8C8+5IM8Zkp6ODJ7ZvtKqzH/ZsPaHjuAm2c4kc6oicHMMxztd5F7X+M9\ndqkqwYoSapK+5cZx181mX+6jqTS0VRALLRkGQjl+WgrwAgrFJOAiFO13Q35OKIVHEil+uwO12Ash\nkJY640GB1IsHiMH2cNxJ7g+gHNJKwEBB6sojs5x2O2aJrVR/B1UzPI3dXhMarsnbeHhPWk1I/3ZJ\ni4WoZhh9CRPIM3C+5Dd6fvN/f60XjuHLkmnEuRzXlyi6MqfxO9c1gFlqPdGGBUT7FxY/nErBy8E5\nFrvVSPePeZEGeLD6D7/K//mGy2c8srARaxXFP/45n+N1oC2fz4+jFcTc2HGDAx3JRP19ChG2qDLA\nSFjYdNTtGqmNOJYcU79bKolafs87QjX2wUSqEd0d4JiVNoLVeFBAQBl+9lo0rZTHzFJk230WkVjp\nL+o5qdji8hj0zTq+mu7kz+9BwZLJQKRMhFabZl19fKoD+rnQ4x3jiMgAhw5g8Q7oOJu/IYovirJs\ne8AW+Jj7393zQDsGiCD0+rNSXHuAVPyFK7GLlqg9l8k9ezZFEf248trMb7QqAx/CianatNaWFkIr\nJayseEXFvj5AszQfegaor2w0Sf/AOVLzEVyypW7t1tBuIAK3CkXnFSSsolLmIaTjF00e1pNFlwUp\nLX8jx68cDlXHT2YhI7LRfeeUpyAaDl4oquPcwnR//RQASvPEuV4jV2ToDpOZIXmfqXQkakpXrMqh\noXlKlyK8eRP6QOExeweobS4NCLiJauRjXPA0J6gJcjSH0fR0npSex+/biyUBcOk37ETcJYorjqKc\n8m/6c4nCCM1SRKg6cZRURAn9gha39nX6Nyj0eKTGuL6VNRjYoRSjk5+boPTlMQfz+FDJYZL8WzYU\n+O+SMxxrsAzNRheIyoiWjzr65h/Bz2UifOniF4IacEvCa0tNHNqUqmeK5wSBPTicSF24355pw+CV\n6Hkw2Ec79o65jrqoSR/OAqShrGtVbcXnTV94GEviY63mo15CrYZDs5low6wtCEMGKlN+/LyYKFR9\n50uMTmEGQBCOn8kAKviFkGMTzLyiYTwjFWPHiMGOX/o66n1t+T184Gv7itlN73cZ1Lx7z4Kwq0TD\nnsHLc6nFco4MFC1cc+90dvD+Bz9YDBGrVQ5NwUaM6/K9xZAq8M9f0VVpKFe0L01husREuFTJwQOF\nOlfx+OFxu37Hz3lFFDswA/K+AtRg/ZsQAQYYPdHqjtfT9zy2AR784bt8rB0zEZ65vMYul+gIm466\nzVRcS++i4BPXuYfmzipqFBSAXufvE/OGesvCRNCSxLzPgv/1VsNaKg2o2m4jqYcz2ynhBFuKfyu0\ndV1ffCqg76PV+Rd/s9w8u4qoZmAJ4PoF+iv+eS0xEVqtpYlQfFeB3qWTasvmip1qNA+IFHAQx5LP\nMaWgguPCdGWm174cUaI3tVP2JiqDtZqfg+Z0YU6u2HXtps5v+RtJazC5osLcXQPNKg0kAR4mogRt\nBbF5HVi/UCbcMwJcVsjiO2479eUfrpkfvwQIUNspFJ9vTIS6JcpchFu7gQhEhIHrJxyMvlHR8gVH\nmcg49wvCimiYKM/O+ba0R+mSFUqJ85YO+3juqlzmuGeDgWn5ocuUyHRC7iHROLjybo5NMHBkPbzy\nIvo0CSI8npyRNJbPwl6rF+5B84rwuB+WbaB4TlLlQQRuEFLnLQSYAkfzaE4yyQamfoZ9PqCINv2U\n8/bmFxXLwSo/c9WJkVkmApKAlh35fD1Rh1EjpZ6Yjj3mfbZcLgjRqSkGk0+Oy/VRlOJ2yZbeQfN5\n5RLBdeUvhzkKKwEVHGAnrgLeCR+Tj32cAp0FrcZ5+DZ56/M6LRBW5Zq6722rncbyfGgLeMoC7RkO\nTSqu3V63XONb6QzmTF434ZrmbVkE3qCFcCdCasoCGBmIijzWOtbkIM4xRb1qMWpOoxg+whiqhF7L\n+WKaQwXcyb783Eae7zo29GM3L0YDieoykXAWNo8TzVMee/c8LlfCXlg2QKYUaXRz2EilMSZgo5tf\nbdk3lLYFYyhwVQPvPaakOdy+6s7kGBx2bk3OiFWAIIe4L2UAACAASURBVN8fBDJHlOZMmh+Nv32/\nYQbKHetefJW3iExnA5bBEJ6vex6UEHj1Ee6ZdG4B4ICxcGyUu1wSoWyNSURorTp/q9xfSzvFlrH7\nkuZBq0KokfTVtijdtgWXzrAEEvpUFTRULOi5ukWIgeahBBjQgFcjBQImVgypEofTXD022vHjQwaX\nwJxLp0kqoIgNIlsH5huboRovb4FmMWjaIr6qdym2S5oIvlX9bbOi+D4P2O4I2jg7p/xcI2skCFvC\nsN4kbcsJ9AL4kKpQIVVzsu+r/sptn/YuAoAbZVqUf8/sS1psrWBBDPqMK+2j5UMtH987zKLRooCB\nVoaCQ8vzuBf9k3LkRhPBXRTSUKZsXoreyjyQVO5Cq7Rm5PtyW7A05Lz8jift10RlGURdH8omthbY\nLaY6g2hhMNAR1nxuLNqS1sDnPyexT2EDw/Y9w552Wh1jqqszfElqwlvvvxSiLH9TMx3K79FCCLJe\nJPfbXwsMvrV/3u0GIhCjSqmcLKcnRKuJRl7TK4fZIbqWbqf6BrmhnNOry5e3quU+j1JyyDiSqbW8\ndRLzkRD57Q9sWJ6ZBs1/Hl6ilA0D3QyTHxZn/B2L5fQ6SYQCFH6cb/TigmYiHR1dDk3AEGesw1Aa\nn2bqiQEANiqmfTn7ARWWXLZJ3x0AlLhh0IABgtMnvmZeBEJMUl4SxtPxwM+G6dAwwDcDEPl5wbJK\nxfNSCjIiGBoFGJzQU13JgZ+BQaSXqj0Q1WwCnG+kIPnlszhk/BmOIB/jbEEst9BUi3K1nzoUnoJX\nIe3067YWm8GKA7WC0G8xIX6tVovv5Yb54vmwEdr97iX390cufbbd/yX/9gNCg/weT5OkGZ25bj2O\ncXRCWQAsz3OntF3JFy6vFfMfDOVpjOKoaK5nOc+NLjd49VWgxGpT75/zfSD/dvRAB0qOzkSnCToK\nnBbkgAcfvSn6PzA+fkz9jsccP6N5gVPvdQc8gFzV7jb1vkXIjEcDxhl0Sc697of3/g0DG7/jihvf\nf8yR5ru/Y+f073I5zHSeKE3Ig2fQ4MzpVVBJB+gDMdyk6SAAGlbMlOpRvQMRYaSLrZKks/iorqw5\n7pn1/Bz7WcFEPDUP5P3aY91HxP6pG/wIYfZgjWDafxqSrlUQN+Xt5LRA8N6mOUgVk+mJ16f/L49x\nWiH1hp/cnzMDYf5T7ifjp4nOLDSI9QkplSI2OJY16s9zJ5oYJ1cSWEAXd62hj3KPrXQG35YANjme\nz2/HgOo7Ct/mPh/3+Vl0/EAjr/cz993VK/fpqKAmUkGV7l2y7KzeCwD2fvkSi/sgKh0zqw2Q/8br\nvJR4BFujdrM8Q0/HCl9jldZ14dqu2EfBbgccGfaqH0d+PvWiqt2sc78IdrOzDfvr+JlBslc8m9QE\nlXCFvsqUtSsmF1hq3b1G+xdACf4swTERQKTiXoio1hJz/V60E84kKTewgafJrWkLdlpLo6BOc6HF\n71vfEZX2i9pfy4DNpXYNCEtENN4i76Ylmi/y23477QYicJNBCBDhgG3QyL9zmFu5ZUvOyShGcyz2\nGWb9jf+ZGrPLTmM2hktnHgv66RV3xPXlmUo7nmJh2ORrgGMLAxXRLj7PEIQZMPvIB67FXetMoVjA\niuvG4uGMD0zo06jRfRhrUGuWY/C+WBCSWfA6Bhxwz8M+P5vDazbAoHzedTNt2MCHIwRjEMbYGo4Z\ncjYHUvbCqQSeWk5JShoF9+UZ67rsurDW6vFUHMOXuLIiaa3o01K6BD5WNYTfAACKUlMu5ebnlM37\n97FhzHSkJR49cwOPHLTRsxjvK+JpRt6lRG9XGblcDcyq2Shag7nJ99VRIiBlRGQwTISeB8yKHRYt\nt8X90YhFpabB48BOLjMbtlFyquHIokk1GjiaiVkMlCqQEXRKVZrmW7/QpzAPMOu/GS1caskxEtB8\nBK24RqF55y0UxteGcYTvwEABO2PDIGf3yEDAPdPb+5ECv3dEYDsRwuT3NcfiM81RnV1UuVi5uV8Y\nU/nbEFJF2a+FgEsD37KOonNYxFFqvJ+lV/DXAvJ+TqtSDZ2VlB2K5Wjk5OZkjMkuJF1DeG2en/hd\n//QZO+fj//jKf+eKDK9EA1fw8GPeg3RWfNCX3a1E1vyzN2Hxa0Vvr2mVjx2jpmlxWmLkChXQM0Dp\natv/pTyyVHXKh+ioZOTVuivL3+XPPB+5iSJSDSZ6jYelctdvpvXxVkbQwnP9a48JtSt4az5XaR6x\nfPYiLgiJhC4J+HyN1lGreebDlzS1X5bn9TSXdiORshRg5/rzZ0HeBjjSYOwV9lHjGpceQct2uqRP\n09KUadl0S6kxrfZzquvc2m+n3UAEbj7Paf9jXtz2+zVtOMcL6P/gaEsVqJCCMTz5b7wAPQ8ow0Z8\nDJ1wPRMByt+jmxSVidAJcirl3vC357ztuZzjlsXcxjEKzfU4IZrBhg7PJrtVSZkdjlGMWkTxKgq1\nN1TmmsqF5idJKS3Ji8/xpSd64ufDqRUog+afgTV2pBqCi4Dsz9lIR0k1GFx9nKXsFko5fj5uimeD\ntt6zDsKoRjuiUPIZBqVz6qYUZVb3pdR8DWBkbUzzwt/4/g4C5KyKY6KdTD86u/PhGEd+1ntsR/1u\nrOoQw/ErrycZc7tiIuAztZuP0rSMjjldY5DAuDFOkPjdcPT5+kWgEtcMAzMYKmn+rqcSYLPXlP+O\naw+S8outF6Q8cL/4yZTAwvsALf4D/+077u8PTzmiv2bnPHaJznsev46BcAaVHnmw/O6PUyd9yT9G\n1S0Be0aN9ypCb0pXERkthAf+7cc7oW3dPeRxdQILiOfO+VwDigBW0Ys90HZJdE8MeWiaQLsEjIoJ\nDJzrLaEKBJw1N9gb1b6E76w6r6JL8vU2v8P3jxn92XFZtPg9lwD6Nm/D057iNjuQcbWcAz9zCDAY\nPQphPgFEEGBUGVdEytoKUUEIZX2g5wu5On8SIEmd4eB0Et4avzmdYfmPMgYb48seV+YWOGTyWed9\nPw/ItWHOUixO7885eBIlBsMMRAHuy8PnkNcoymwiImX1+coo6C+rONP9C4NFzLLbDgwUPjHrjnUB\nRqGK59+eXnt6fc2/Rfk8X+bwJAwE/f4o498xEXAVvB7qwwgyjjyLyleOkrH6BeNKXuo4Eb1nJsL7\n3N8TnNN1XodnFrPuTVWkqiHokMprlkpIca7KC+rnEiD1pWdDUHBzcLYOGAgAT7tBx5JeQ3k+VDjq\n3OPqwhWCjdiafqrA6vJxfbPAr1TecECeDxrYVAEAaajG0L3n+enPee/nz6znsZgqVY5F/b68vxiM\njTGAkfDlKIICNQwiiLAiny+Sn+YoTR48KL38NGrgqhUsqjTLKJAHNH6NWP7SPIunLqKY7p2qDb70\nfrBP3rZAg5sGQNluzyO3G4hAeVgJMMBO64Fpg5+PG3oY8yKvdYqX0f9SUMU51QlOGxxLKrYhWOM8\nfzeIM6eTEpFORNMcxKLyTj0iFJggRkNdxPXD+UDksrWYTWMUWtfkctMmF8UbDZAyOkcZrVJ158UY\njI/9fi0Oks+/9kaarXZQCenweQEenF1Jo86UgML7R5lG7ItjrPfZeEuvCo4MLg0E1/LMoIU6d7HI\nVSVSw+6IcmwSNSLez9IMEx8HIEI+7isff+9oqRaM8gAEjg8VeQAHpznRxOfxpYW0r6ZiOyaSCg6T\nW7xaCLhtXsW99Xmp/ZJojbMfxCmywkVgFVwrsGhbcFu8j89sGB0m+35KEAFnW8Vygdowrb3vZxr4\nOAoGlgAijmlpzF7YEE3mLC49i5SYfug0V7IxlwltmEUhabci6rPDDNHH+ZX7nSnVRkR04O1+7KUf\nr5wBij7bznkNGkmCQCqAHHa6w7n0HrMmQnlf2s/LuUyBysl8VxuKeZ98kB0cjJCkIsu2LxkBkVkl\nqJyjgjOTqqA7+8QruCf3bpbaajs196nKd0ZvEIFu1Tz8X629NdYviWf+kiYCevwMBiYM7J9W9PyS\nnaYnBp2xxijwVT7zbTfRPQMOEgTgEq0bVrMfT7weI3Uu6dh5bQDhJ0lZcqDCHKo1xoMIWJ+k9J15\n0L6/tdo8B5Pn7ddf1+9ALTqctBLFltMGJQLM45jBBMwjfTdp2iPGYoxyDUR1CoYtU9tqLWaeXVF9\nlRO5LwgtWrZE0PFPpGkUHkxYSp/4NZvgNebVtpiNnqFiwQTpxwBr7xhE+JrB058yEPbywjbBGKsg\njs4xpf2wJMosgTgIlTIT1c+H1zQZi7BRTYpE9diFvFX2Qzsf+1LA0h/doRTgMUCG+W7pc8FewHFk\nXL09v/njtt7pktDi2/MrfvNPM8/e2r/f7QYicIOTiogZFu3XYVUI1l3aKhoYZFE/8cSFzype5yag\nVEc3vaE6esDARuFxGKECl/RoYufYXu/oa1rHYiNG1DwFnTArETcsrHxfJkUCTgDOg0XDO/vBGcSn\nc0+f2Djzzjda54ycuXgWywa//N0YekdXa/og+dmlQwbe+XHqK8Nt7aJ64tSZa/epCHD84cTDqV9K\nb+lD+bf9WEaWnsdywUhmIVJjwoMIDExMeCfavJPdaikFiew1Fy3Cu61//1Yk81JVhpbxJYuz+a5z\n/Q3AAN68XFsweaPeiVs+nVxXF4JEWzsTGSUy/QDAjTHmNfqJsVL23QG57yzqNE1zpfw+ufSFKsd1\nDnIN0XGLvTEjJWjHWRxLFYEtwVKpOLLhYw4TJRaqGs/M6DrkefQzR1Cfz6w5MgEA6+iF+/OdOOBl\nX2q1eQpqZEJ/0r03ZZjhQROh7COe4yAA5TKriqaumuv93InvLfiD9w9Ad7/Pz+LhM5d0ZN2IsM65\n7/MPrzQ9IQWL5xhmpIx8jDr6palsAztp3TH/RsALaCIgA2IKlaHvQatRgMj6fNf67Dq+3/aUghjb\n1xuqwR0/GDFLHEXev0RD82essVNIqkbeuM6Jyycf/pLf3/PLVvszr6t7l+q4xJ55NWswkTohAAWR\nZldVzpk6E8Ao+6HYGf7zFGSe2ct6RXyfuYFtNx+xSMziNLXAEDRZX+aglHaXBqnieHy/XBYwPB9I\n9B8YHE2IOJ8hesyHcLos9v/eMZJxG3Xc+nK0rTVtae2R9AhJ8+yKa1qqGODTFjzzAWt5MrZWC9j1\n/aBcK4BC8G/m5fuw+gOjs9W8baXBKpL9ZA5E32GaXfiYSw+vf5cn4IdPeZDsX9diQ+t1l2DCpa3X\n+JpOYCRc7o/23rHCydzMgcEeYrUbA1ZBU8ulNYhuxFmfhdrA5fvxYPRcPHO+HwFssA9OU893uH5w\nb4T5BfvZAVAl4FWunX671P81aFPaLTKvSirQ2/P4b6UlSjSHtyzk30a7gQjETAQYiS7n8Dh1tHJl\nBr2R7gGBKQUBD/YuGjC0nC07l0Qq9qlqzJrFMpY/EZoq6K6+rM9MWjVBmQI8WWChwCSifFFNY3Dq\n4DLpGwYCUZ5A/WLvSzEJzbbHQfRvoGdiQfWlMqu69jbigIkTBqPcBzs4Qd+bMgOYgTKVzsGUSor4\n89jJO8U+GzhegrSX/WNpqhEGgmMEgHVguwOcqrMzFPAbLiEu50tUL1IADQax1XCt9jy8dZZIqxzR\nvPBdraRfLpI2TxDtGiaCX2r9MS4xHuQY3rD/FYB1C5K0KNl6TaUh2ZkcWq2eUTp1UnVCDNZYjGV7\nfH87GgWxY7Hsoxj7yDcWdtUUK3DPiwpuudoALj69nGn4lP+2Z+r2j4dsbH4+l84WgLD9FGUsrKKb\nT6+ggHpnA3nnlaEsWjRJgUdvRFcpWTyHGlE3/A3zBMAQzPebTlldLbD57k8MInzIwq8di8uN/3im\n4498XKavI40LrBMf3Z3mKO9fotBixHP6xGNZjtACLZoqsDwY/DNKKTT7XeuzLQuJ1gIL7DFa0TOv\ncC7MEmqPf7/vxXnCg44MiNl3cRYQGHZCuf75kvSbmMy45eNivpY0SbDfSuN9nKMBCD2YVb4f2ApD\nCgbgomKLa5JKUQDixlkuzovFVcJwxoG6eh5loCA9H4lQOYmBNFRbQuWk8Tn/ZDyrcOXwBhN0xGvj\nOaHvZh17/jm596NpNbkFSrKee4BNhPX4gXqdKNs8mO+bNYn8vktlJ/V3MnDL84k9lv+DQMNpitQH\nsFNLG8MF4fGaaI6alivONJzvx8zE6f6Q01Ienjn/9I+1yLeCfaXtJpVFHeBib0vSGtyad6nhfDI2\nALqzbR/7iQhVQDr3Y/RrMBAATo963tbaMjnR7DnVAI2vmoD12M5pv8Q19Smnel7YEeU9THO6CGjY\nFihe/Put/TbbDUQgIko1bd42/M0bn97ItYamRuHhAJaL7+BmisKZc9/Vqvz1RCrgQYJBzrmubvJd\nqpogVGc5LzsWyMOdgkRJbNm4fH/L6Pac6rwstEoTAbfT6yLjy1P5nD8BD0jBBEVql51gNLuI+ncp\ndZV9CbwEozEaoIH4b/y8kPLhDJWU9HqxYAIQOApTpXTybSogFteTgDwlAHEWY1Hva5JrK883ynnK\nRSUEEo8iOkNbF6bS+JiSof2L8YLzUPG93U6V4cPnDeW+JYhw2elAm9yivPgbHPNC3eWBPS1P5RMn\nXFg13P/SvHAteasRpPLvIWiurlDfWYRPlfbLXOCirKGjznYSQaDqeyEbOYNO733JOSi/Q8MxoBWD\nlz79NNDrj9n5/fSS6cp/OTEN2zvdJo3Hz0MK4OHaiD9jLNprzP8fjqCIl/P3LOCcOvfJgwiVw8QM\nI+4DFiybUjk/PA0KhhARrUbMYSqyuOHSEajMs/uUn9vmj1mdf8058cdPUcCXAypvIBVLHMx8HZhP\npjlUmiiegr7acKoK62osUYM9e0vexYLz5ec9mUucc4+WcZX2WLPNAgYtEEHmEnfeKaWqr3hdl9HN\nD/k3qfiNb8iFttUM3ixX5xgQRLomoxSnL/vrhUzjwjqPJu/4wj4yz/lr5M/i9LCDWDARZv/el53x\nOV1T4pGvAyfeD5RY82D8lJ/F9MrXxiDg6ZXTnkwlKaQP2gAPUTm2iYgY96dVCpKycXTMP6yZeKNr\nSUnU696gdDMqmQDQBWDEY38ylao8G8y/U5/amVI9t/j5bynNoLV22bU532fenuZA3VSCCCcBYUoA\nCtc4zPpsATQRl8+m9xkcDh9zLlv/97kT3R0PdGRACHNXdOBBi4mwxC4U8GAq56dLQIvqS5W2naRI\njBPhzacN2Ca5CXgA/QPRQdBAGti4IrTutILse/RaV37r/z5TPWe1NIHK/qD/z9dUHtfbY3bOFrvR\nnUf6u/StW+Tdtlt1htxuIAKx0+UMShjom26ujDKf5+QXCotAtiKkPuo6paB0fzdB6nFrNFYEslZl\njXBsIfg0G+e/VTIQCyomR1uj2ecJV3XnASYYcRkbCc3flcY7GkR7OMWRujgb1DrvCzYBvvfRgVWc\nVbEc0UlV1svHde9xTLESjsIhWhRD+70XoKkXf31/6trASLOf9PNkFhM0b5x7mndlQMwLugbQO5jL\n36DFYBxMR5+TfYQVYs4tWzcmysNftfz8Ep0D3y4qCosjVu4USZ0Qr4kgVD7eqBGHfhFMGgP2Ka9l\nJUYTf46JdjzGHhk0+LDJkbnHXd7u7rJxJtGuOQhbCgwpGLl6e+W7mJOmMQCs8IJjXqX/UhPwAuKF\nrDY//CXQp6cMHvxwyJGqVxep94rxowFF5G+hdGBrZ5XfzRQkQjRwPvmZo7qR79OnKpBhFfiI8Oir\n7YhGjVaqEL0JxzR7hpFtQLUNP0wWoBfg5H6fDfCHH/K7veeynvv9mvasBXNi0PY0l1FXv26Ms6Zk\nqe5FOc/u+OJW28xMmKcoz0XB8zKy7gVZbaUMb8TqOsjf8+do9mvpnLylRG6P9yXMoShjgJ8Fxiau\ncUGA1QNsnonT8xhdj5OMOTiaU1eucXhuKBe57Sa64zz/h/v8vrG+gm7t5yww9U7nXta7MZZPVyKZ\neOfCYkyELCOMMfytYmQhZWBK8jJFByDhGMTn499cjJI3vhee+UTjj/n5vf477ufHMpUDNgjGw2Ho\nKxFJnzbogyCbbjbpHuWcMrh1vnPjKlHQiiucZgXQFAKmaLNxHt9aw64pp+cDKNUxiJTqztvOPXRx\nIoVpGSv6O4AVSGJ4yv04mzmRRT5nFvqN28yiCvc5rSc+5m33/kjrf2RbdO+uO/jPbw9ogOaS3lAF\n7urf4P68sCL0vOYpyvrdg/0K8VR8Rn/nBz0NQUCIsxMxb6a4GTaQZxNjXvL9wN5Pyw67lM7wc9iV\nvky3/17Oe9NEuLWFdgMRiIhINQwwQLc9nPJzlYfYmtwtotxcAJzBUkwAkgu3/GNvrEVSEEEWOAiK\nOUOSENEyOdGStpDI/YY/R916rQWluZbPZOkZ+HQGWQimcpaCCvZ6PdIdz+5wTjexjN7ccVUFLESr\n1STXD9YEDHFRlhZqOJDkKMcXaqd5tvY3aFMKErXoqtdUgggWVHpLPVnLRPH5U9vx1mvjzzi2dVoX\nQAIiNWpFdT3p96gFr9TO/B8VvMPf65tJ7l23rjmfojz3paoMb7VWDujFJs6B/76tiWBLOfKZ+VAA\nBkKl8YBDgH2y5Q6zks8zfcWOxXe77OD97qvM473/iinvj3wszsseXqLU5AZtfS31yvM+VbQmBeo5\nDAhnRO7iCvAgOefUg3EQnHv+aSNaJk8DhBNbtGi+NrJzRt7C4EcUrRW1GadO0hckDY23XUTKlo51\n3EvntB5apXpl3jDAqzCWnDPiNUemlCTaueU+suWHDEbCMz8r9MOX06YSzvPVXHze6pSCMKNgxKLh\nt/cvGbRAOdthiHQYQM0vHbK9gAt4B3UE+prUId+uBg+u2Mc3m9MrAAr/Tfo5nF+ZK3Wu844Yxqsw\nxgEI8Nq62wzyfu5HXnfdeju4eeiun+iegUEZ2yxIOrzkOQCliNFw3via5HxovQQ7mCUJ7RSzvqOi\nxtSV87dfV0R34DzTfC7nRi/qXAFIJtVRrtuBp76lMdGQZUBoz2k7e2be2BQOIpJ++jKsKhaQ7/d+\nXkoUqmi7n0vkPvliV2bhVJ0Ynjv7smKK7GfGZgsAaBHBQ6hBg1Z6WjT9Uteh5flbGIiiwxMpusCp\namWUdouykJI+tyODmT+yzsoxr1PdOxaLYpHYEINqafF5YGMBzBKNL2eDZEFygOX8bpGqOSyLY49p\nmblo7wPzegfbdQ4Eat4IPRAvLAvQlEHq8dzJeusF1n0q7NE8V2GJujXuEogk4CtvvfCzB2QXy4S2\nD18cg49g/lWAI7g+dgMRbEs3Zga3G4hAeYiMbtF/uMuqs12X6Ok5G2EvnNfracNodmDKYuv2WUnE\noFyUw5wqlLXOnyrP2MVZGAirNUdJ7pZLg6HaRGZJlIZ9pHIRFjQeaH2XJLL3c5qnfKKJE8zgQfc+\nX8fDhzN9x/xGGFIoUdnz/W4ex/K3G5LZNzE9k6vNyUIgIugnnthPvSrdc8RjfeQI6lAODTHezXe+\nTKNQ0lz5KCLzbPEZAA1/9uDSTGr4okldbD7WtoNhVE76iYyTIcyGcuWpS02pAy0RHd7iMjSdoTa0\nlDobin2tU0WUEflrUg5su2bxWlIdrvcpQbKl41uas/2b13aQCCd/jubvHiAE6HTPzv4j9+HHfqTf\nP+R+/vVXefv4Dyz+9HtWL9/lfpm4pnz/45kiR7DRdwGKwSGEarltS8J/ti1FYbUueip+iy3G5pnL\n3e0Pa3odUd2kjAD6nFDvhNvv8FBPkq5T9iWAC8mKulUUU/4NwEEjvoeUr0pNnsp5dinHObpx3Lvn\nVgKJ6ujnayj7jET/GTh4Hfqmyn8txKvf+wiY5EXzM/l0ynPau9eTHBPVMSAk6w1gXxLWOmEKnLgx\nvsCiIirnmkoh3u27NI7xLr0DO7nxPKVU/b6VxoB3Mcx6JhxPSgRiDWXKMyoFbGmQ9RBjA+KZXrMA\n53tYD/TwgUs7/sv8zLvf5XzyFXQBnlkngB356ZUDGX/Sa+w5pw0OjOa55797R7FsJbsAfVbSDMZU\nvRB1+Ijvr+yP9h7RZB1xEXsseiEk8qKEcjz0N5SlhP5BitIHTy7yC1aQaPoggrvIuqRia2+dyADA\nyaQ0ArDh++nX/O5hT/jcVNNmv3UO75RKJ9puW+PsPOkKrBHu0naDw34UMDDQytklqsNEvC2f0Zw0\nVUrYFowZADiOf2a77FGoWCSpAs6JV92Ock5R8UYFywAGb9z4Gsz95K2+f9WBKJ+N1/QhMuwEBqEj\nX753yEXQcQ7ChhinZSZCPWcqeKDXzdc4lddo5zJv7bRAW2uHyTld35Hzuc/KLEtm3i7nSIwnSRsL\nRrTs1m6N2w1E4ObV/zdbzlu9nwSBBCruUwbQyig8DNXyPKgdr4i7LoAtdNI7anYylLJhvMBFLpe4\nAbgAUOGz0ntFmAg58M45BfIOhfX1bqon1wad0ZahVGZFuW+VzoDo+F2+rt0fRurvuF56h7/x9p6N\nJuTkbbkLd5ECgJmBAZUj8hrKWXhmJcL59SwCTqcnLin1l7zPmnO5dQFUx6yVUwiWhxi7YlsE42yU\nWzADRD/CPJpWf8C7uINTx1+8GgNy72po96jG4HJB7Xv1Bjiu3wMdwSDXv4RF0GoeNLgGbPBOw885\nzy9pkYIsujKehMqcz/Oex+RXnLLw1e5I336bO+Dd37GB+g/viIgo/OFjcbCw5Y5KL7Ri+vv6M/fz\nM1g7uY0Qg+KxY+e2pWjd0merieB/KyVoB0SLEDVciTN6ckbsJdVooZ/iO9yHGKGp+I3NlfdRUDQV\njy2ZUzEG8maaZ9HoHKbPws9ZyuwBKFc6Mn3BTCmBBz/24KScpk4cF9+8m2Lzbn0us9czeEY0lysK\ndHEW58xXmqnSGBYcnFb51hbF2H5sgQb+7ylZwa/G+Uw/aLUWYLj0G8xrYF5JecEtgwg73jESdas8\nBgHS+/J/YMbg3W7WI20+8nH+/kM+zj/8Ph9u4vCFyAAAIABJREFUYA/mE4fnn5gq/u/y5/XrSJtT\nacB37CVcooRrCg7uGeuWW4/BRBhmFSp1UeKWPgpROw0D6RpJDZe8XXdE8cy/xfgpATa5BxOl99ck\nKRa8r+rzqNN47Tq0tJtUvHBi0pLm2Zf3mUs8ls58szqDXHMNwHstKd/PE9Xvwa/dCCwo8BJoHcvn\nZx3xfN5yniVSbS9xpkWzAuVIObXuCZUPZilR6quL1VUg3PsidcgPrpLJ2TvuxllWjZTyWXggVqor\nTLq2QUMH7zA6einuexxjBR5Uwp6L6Qwk17l0jX5oFHPlG+CB/U0l1CgaN+U7teCBP3YF4LpAynjT\nAJCWx+DteRDdQAQiKiflaqHokubaN9rSIuAXJYAHiEpKQQIY5ClQS9gJ3/pJeE5KJcRk3p3y3qt3\nfJ41LjJbB7vDQHtmVPiIInKdYfi8vrLR2R/0Xh04osBJdJ9r4xbN08zQwn2+2P7jThZdAAOoJ007\nvqH7HF2jtVls2OsN7EWFAcJvPNgPbLg856hu/HyiyArzgUM403gq7m9yTsi6m5TG5qjAoClDAQEO\nxTBrBQf0Fbk/Rx0T0cekzpSne6PdgR7Pxu69KYf10pUGAmiNQKS98z/MQVBq7Fs5xReFBspr/Ws3\noQBeuEYPMPiSRRZUkMPwV76yiB+rIdTR/C2/8wd2ND5wCs5Xu9z/3j0caXXHzgAnMIcVe/4dEAC3\nUPWxyY1tpeBcalWOszGMIBRa13/PW1BMkSs+zaFyQlulP9G6oHOjBzjevvagLAm+BgC+sxu35fWX\nxnQllOuM9pm0IgGOBm2JOx4kx6502OYQBCBEbjrG6x1y6zmvHvNwHxOFhl0C7QrPmFvKTfcGKQxu\nOENrWlpLyt/+Gu3SdHEJPPg1r6Oq/AKndKFsmXf8AG4jpaj7eiXfh54df3aGUYoODjMYMnCoYpco\n3vMJsHa9fyxP3EM8Yyi/j+qYBxfA8E64rifJ7EvFvuSdOgjOHScpZ1n1Cyq3XnMnP5fymrymBHYO\n2556LN/MoBx4rfZip7BJYuhM8AZrJZ+44XRPJr3greb3ikGPI2KJE2wS3gdTNc/vXUiV2K2vPKCs\nnCDfy9rlxq1srxgLfqypzQgwoT6+MijLuUvElqOmM0BMMohOFv+W7c4jC2B23WzeIdumXuDwArsK\noOZByp0CLCjBaWU4BnGIR9dXlfmAlJ8k1yypuwiqcMAMLBOMY6nEMccKJPUMEqsbg7/rMy/tv5ZH\nEczv0Vp6MrZ5G7EGLwAu/Pz59Ubfv7WldgMRXJMceRb6mcYoNbp18ivTAfxkYo1uTLagZSGdwSdO\nr2OgAYuTv6aG0TulINdGx/I3/T0MET4dkNY414aIm7ZgbL5ynuJuO9QK0g3Du4xYlYsFWrPKBCuQ\nhe/eET3elX8DRXvFXRbgAb4/D0SI6OA7oXUjv4EtdDuD8iof5XC8+LNhAJo6ntVDd5KFBw7L/pyf\n0+aMvM58MEsNtgKaRNaoKA0i1afQS2wJKkpaA5wQcw7kykpp0QhQoXzmCvCoweCjdcjJ85T+/N3y\n9po1qlGlSg19odbba1k+1nWGFj/rllARBVVTd06Hb8rE0WP5aDQYCDuIsHWl+Ok4Rjo8wTFhMIsZ\nB3Eo+Y6JywCmw6j6CBxFOTsF/0ooMGmJuORyZDRPle+Lr/08dwIi1M+rNBJFMDKmKhLnxSR9y30V\n5+Hj8zaY92//rqk/SQz4DVMtpZzXIco+vokztQAwvNVwvC0zv+CkaFRP+wXu+Z4R4w+sW/NhnV/g\ne06ZAzXeVgYa3ThVfYZydQiURMsEHRnTXhVxXrjf4BwzHxH2AoXBMCx+jXbJLLXGuN2+VYpsqXmh\n1EtNyqtizXzkaOVH9nzPE8UNFPvLfROYQ9DdsO8AN/vKi/Wff8rbDQPjP2aO+PxDZiBMP7JWwkuU\nsY713guGLkV3vXPTLDMH5ftTex6touELbMjOPTepygBmFADsTU/9Rwa0nka+r2VkVCPQE6HEnMw/\nAOav6A4egNDvyy3aKmqJR12nyp0gCN0x+3PdT5ryJSlg/GwM45SPVhzb3kfF1HTXFhau9y0Wa6L2\nmuwj+WgWSEEDG2fD6tUQxBS9gFHnsDpd7HKbkwKe+9GlkzqRbjs31OKEDBbIfbEdhncyRxMY5D40\nlauPlDAHyGDAHv8+LukK+Tms1ewUHha+s80HnJZanWb6drN6XLaJ7XUr8WjaTRMB7QYiEBElSw/N\nA+Wnz9mJnYzRhontKJTdZQrokNQ509xZRnlhDLoJIFKqI6POIfPXeB47naiZXdAfkc/JVEgOK48o\ngTZ1TRrWLMZGmY94t9d8t7cUafFMTlMw+XjE90zFPni2oFCKtUOkhhUisWfwLHmfV2VH5M9HYRpI\nY9AgvXK06E+ZJpqYrTEfkxg2IysJj46irboN+Vi7ez3HhqMn60NZAgoOAPJVT6aWO/pO0xnGNtVR\nH28UHr0YpAERfOqLj7IN7linKVS5576ygyoK830mld6paOpz+XmJNtdqlyjH1wiy6b7q+NjP12gi\n+Nzp6tgSWaj/jmctZcP4+yPnnwPwezpuKHBu6cfn3J/f83b7Mf9BqcB6/OMT09P3mSn0mVNvfHkx\niFAdJs0nluojfCzPEiqqjxAM4bk4PtooTi+nAsVZy6KhxnrD0FHabajmt4od4Qxua2zDUVmzUzdz\nLbIDa5x4sckQ6hSlVrUaFVxMVb/DfeKJDIzgHSVVTEG9rzna+gcWz/zuXU7Vev91/my08KjjSheI\nxGF+9cJ6STQukoA8o5tTILanwED5fG3z1XBUSxVj5suRAxlDwY4nv085JpeM7iqa1xijds70x/Ua\nJxpNTO3oHMbvNhYXMj+fafyUz3R6zu9pcKVF0RCpJSK6+yn3zfhvnoiIKPzIiw4PuulPeWI4/Sl/\nfXzJfXi/X4tmz9FpL5yddgD633GO9DpCLBN9E2t02VdxjfMpKG29MSa0YgqvBXOUCL1vmLvgiCU2\nBNI4U3zMz23F1WfuCFVo+Pz8mzWDqecpyjVJ+WoBE5b79SUTH/sK2w7XTPg+0Q5VGZzQhN5X3grz\nIiYjdszf+VQmzGH4XPy/dJB/SbsGzPdO6tLzkjkZ6webZZHxtN0+vzdUxRknBay94/9WWVQim0bF\nQRApS5n/XlcJqaPwPqDlRbNXcaa4xppSPiFf/rasloB32QYN3mp1Gkpj7rnQlkBU/wx8idtrmGZv\n6dXEG4hwawvtBiIQUNpywvmBy3Adp04qBezHUoSqLR4WCgPKNjjWcL8GmcB1R48etoR3jlNPZ1C0\nQP8D8v1TPsqW6zEDbNifVuLMYIKGU499TnxClCh7Omxo1SFa5oGTMkfNqnl7oRnckKc6o4xOYg2D\n8LQ3DAMGDxC9gUOLesX4/Hqm+YVBA9T65WczZpuN9p+yITaZqAcimTB09nuu0z6UIpqgbCdDoRYq\nNQMMW+4n6C/oU6F4PlQ0daDKxcSqDqNhAUWfeZI8XFA/S6DK7usN76MYkkm2SGPwVP0WMDAmY3x5\nQ7/6vvx73ufXMJeWm01daOkkfMn5wcLwkaylpnnxeYv38YmBvpTY6Tfv6Zn/9i33u/vPJSAmlRG6\nWQy2ZwYPnvk3wjbg32BcHw2I4JkC3mG3rCRE0XBuPX45foVt1Y90z30ftHvPLkjOGTlOkV4gWOX6\naKtJXzIgQrfL364ZdFzzXBAhUif6BkSTCH8R34dnlpVOidW48WDctmPHsCofqwDK3zPj4D/4Jk9E\n7//A+fTfsoMplt1Jnk93yACRT51aaj4NBO9tMy6PxULfhbeSq+3CULLmXGEwt4ACW2nm6trnqTaW\nL4EHOK8/vopZ+n35s4knvUX1nT/l93j+tyO9/pDH3NMT2wnjsimFqiB9N9P6z0zZZ8ZcYkoRlO+f\nP+dyDUg3RJ8bp6hrtSvn6dffoxHIhPr+QUAE4n3z9ojfQr9hCErjdg6fB4lHc/7tGwCTrAEc4Eiv\nZ2EddlyhIvA6PPO0N5zKVJ8uJNEfwfqkbD447LlZ5+7NCDBv/bSeQQROAV3lLdiJGmEvDx5Dot6l\nM/hUkk7m3XI+sdf6JZofvnmqvd3KfI3rveJ48v4diNm9z/19h/IJlAGxw+tawG042wpQ8tbdu12L\nfKUKTZOtbRv5jXtOeFxK6S8DN9NsACnRQuBUWMeeQQshNSP/vt9dGg2+xOcSO/KtPqsC2vWOzbnL\nz7fm87V20HyLvBct3TQiiOgGIkgbHDpvDXCdlJaj74qe4rOZ7LBg8zFex3ICtVFk7/Bh2gbTyhsO\n1rAUNgHP6SllJsUazARe3I5TTy8ov+YAAZy3d+f7fF5LGTkPQNjSX0SqlHueQ6UU6yn9Et0Css+A\nxzw8E31ipgELSglAwA9p2gMo4GMeAp25RBZAArAJsKi9nEuxxBgSbfrSWHl1DhmMAmEZjJ3kfkqE\nRZzsmmqM1o524llgkSTZivMrpTH5kaBsk2yxbNURGV+PWBkR+T8AoRIpSOEX91YUbykfsUK+6a/T\nKir8YhlKZ/S5tAnb3tJEEEqhOZZWz8A++cdHw84hKkFHqUUe87jach/1kV9JHehmUS4HqLl3joUV\n3SNiEAFdSaiQxOcp71si0RPRJiLaXc57vqEyTIyJPg4n/g2ihSXYiJzX2YyVs3Nc0N4yooc5iro2\nqq51nNPadeW4nU00LDqD1LOrlCVR3y9YRmueN7ZO12Bt9HM2fA3/4mMGDz7+K342/yqr8geurQ5A\ndHN6prsjK/TD4D+VAmO0IJANhwXXcL/Kx9v1WvUhPwviY9dgiEROxdHAmlauDV1IVR9Ca9FhL7Vr\ndv019BG+JJ1BT8x9htfQ8Yf8rl9/WNGnv+T19RNX8/Egjwfadt1I25e8L94t8shR6vPzuWQUiUaR\nqUzg2UZDte6ybTAHYSBAZBfrBOZoARdQVvQcjRijZ+nk3wBIlvl+jrLueSerElQ+cB97OlPcceoi\nW6AYNukXCMCrA4rrqFMqW2wF1TDg8UBa5vtum8fkeouKUO1VzVdQwhoAkA6cziWHs5UvX9PnS7vR\nbj0gJrT8pHZYcPteahKw4nlozCQq6r/jteEPDBhsuGzpD0ea/sRzPfcrzEujAwQ8CJRnnQZwSOXc\nvCiM6p6pn98FREhBbDdhFzhBxYqhkGpx3er8HiwJtdgymme+zIYtueQbtM5I1E4VLM5XuiPFu5dy\n354dXZqft3Zri+0GIhA7UDxgJFXApCicnJNdCao4ZzmLJPI+AuXmfZ5QUqZCvhdyu3i7FvS/PO/Z\nIKqDLBZwVHhh52PY0m4AD0B39LmzO0GQ8/fPw4q2TBfw7AvPKsD3p7lWpvUgguad5e9npvJOP0wS\nrWF2stTQnpATyvRRyYEeo7AHzk7wEJFaX00hBqI7dgJg/J+dkYYF7uSUeYnUaMGzxSKCsmmnSZ/V\n0UWF4DhpGbvyWY1zUrRaFlJ2/F25oP1YAgVLtF5fahHqzSNvrdONag+oLuAVhS1goMZyua9+Ls83\nzRaUuNwuVVrwKQrXtEtpDPW5/W/VMFi+npqBgGezZ+Bw74z4EIg2/HsFI8oTe1Xq85TEIa7TF8p5\nqhiLDphsgwjYL9KWO8DOCWQhItgj/5dTCfrVRA/sBMOQej2XoJyyqHQ8PDsePoQW38rzPY+dqGuv\nTmVvqo1A/DYIK8GDLYMzErX0WKzma29QYg54z+KZXUgSwXz3FZfn/JZTLL7LFTggFhsiq/FvXkTY\nC+wmAKHoB2CaBegfBH3WAmSw8yMR1ACtFr1eOKgrnc7y98IgAYWfU1lQSpCub18CIC7pHrRApCUG\nQv6cDHjp97l+nvDvOh0YQP/E4N1+Lekmr0MJ5KF5QIxI36G8U6QbAAx02kvIQU5kUgAboP1J1gQe\nX3MQ8ACBC6wXCiLw+jSo/hNaFck2VZfs+ccpanUHzMleMBnrPmu50NMkqQ3zvvzbmVX/D4fcZ+38\nV5XUc+NXnzmeX6oCGV4PosO8zr9cGXFIjKfNhit1PTJYClwP85TLrCTSPuRLwGL9wPRkgRfr8BPp\n+uHXuByx1//bVqn+83ZMyj6U0n3VGld+npI+W/T346e8XX+Xn0n3dxkQ7R+Q5/BCOy5VumdNrRUr\nUJ5lzioBFutQJ3GMdX4j0n7uGTIFkyjpcXDP+b7K52qbliPla3ITnAUXRA+swTXwaRtLTQKDzT3e\nbpUdk4ztR27rmVluTrXzIo7RmuNvGgC2pRszg9sNRODmkX0LFFin0/7NdyGbcwpnyteJPU1YpKg4\n5hKa2Llr0fPotc3OIZco2lQaHSjvE0OZckCkIIguwXNxbVMKVfrCW5H1tDCxtSJKMqEx9fj0KdJp\nz4YN2BIm585ex2jE5CQfVNgSzERwxhkMrkj6LNaS913eB54Bjv00dJUhBWHDldAta+dE6wTjeHlb\n1Vo3k/3SYmH3aTlZ+XmUBuNxmovP+LssIkk1OVbdcr+rynwmi3Djj6Xxfqm95ZBcqrSABjHDa6Zz\njLEkhuPCfbpT4iP2VZE/9CE4cLGqMmDLaxHV72sVtN8hag3Ffgg/Je67NifepyC0+omNBJrgXLFP\nNYdhvlrof2i4vx1XNkEJvOkchaWDBl0GjMXXCXna+BwlQqoARnkML6yINqUoZSbja1mqyzeb4/1W\n6TE9vr2utPg3OIC9MEr4/QVVxxeQlCPaEer7M+jd2YOaX2ea+H6QZy66MRcMYY1c5z9iTlwzoAEw\nQfafYgEq6z0uCTqWugoZtMh/W6ooQyQB/CKSJewld+0yvhZAGhy3To/gfi/0aJzXRP5c/8bhwUTA\nMShECtBOWUjpIVLW24Bo7BirSD3GepXqY1IkWlUL0N99OtqSSHFd9aRcw63TLCVSPcvNsQm0+kAN\nkKszQottpqCVFDBnwRlxYxEsg/GZKH3mtZ41JSDQh4j3C6dqgRl4NOVPLUvUbuscbgVPlTG5fB9e\nCDaSiQTz3AxRwbjlZzPWjqen8ONdg90J0KJRmfaqZpkIPj0Cb8wU9pBvJaDlggOXGh6XBGQ+ZzbN\n+v/Nmlt39ywO+3Vm5nTvV7RhUe/+qRQSBnAJcKxmPJb3mPddtqkWdV3cM1WHOrj9ao0b+U3jmUxT\n1DHnrqHW8jH3gXM6+wgBGnRa/avqWUUzdxC1GQnlnJwb+oUKd6fi2oSBQ8HYBpeNtjH8AprQrf2z\nbTcQgVuLZTCkQKtULqit39qGBVpphqn4XiZ3Y1x5YEGj0viMY7FhaQa9IM8OtNAJTifuwUUtPM3N\nU13HRITSb61a5FJaxizak7uWykhyKymMjPOhpxcuLzlJBLZUnvc0aQsi4PkcBHAon8VgzivfRbdI\nUdkO/HA+D7FyCkH7hiNhS8NhPw8AHIVKmvj+SkPP5gTrglcuVlUUGfdkvtMa4fzZgQdFblwo/ybG\nepXGkLeJtD/4cp4+l3ZpjHwJjutFElvHsFGbpZSG4reL13QF+tFoVdlMNyb0uvI25/nm//dSysxf\nY200TSK2d70l2qKw+r4q1z4r/dQ7FDAG1+vSqDi99vR8QOpQNv5/gm4DgyHQP3jl/v86amoNDB5c\nyeCAMI0+Yex0dOBoF0BGOC6Ijp6d4JwFEYQV4dJNfDRsTqmeuyTtrfyNAoozPYI98AOuPHOB78cf\n832yYN/4Y36Or/+2p5eX/PzgTEkE0OXEjyJ+G00+fM2WIiLqOycMtxApa+nuCF3erBVevMsDUj4a\najURfBOj1s0Tlomg143j+nkWf6/H7iWRVjTPLpL+DmCXI80Ql7PPrwVIYT7szYAWh0KcpvI3rUjm\nbPbxz2l0WwtGj+b/xW9xn94JmrXa08mtnT5dDb89T8oABAAqJSO528EJn5mFORw7Oh4gDpudUt/P\nj47Nd55jlbpxFDBhec229wbQXsd4eT+D+/FsrgHls9O47ESJOPMYq3fZarY7+pQRL3rsWQVluiK2\n5dqNtKTRvHssF9CmFvvSgUxyXXMNNCH1ZvpjPth3cwYTdv+QqwrZBSzJNQBwWwberD2lwTak0s3F\nM1EtJ8zvqWBv5q1evz2f6FCY/wOE7vpyzvQpq9McJDDXYsScFsaK6PzI+ymvbWnOfEtsdokx4u1L\nP9Zbv/0SvY1b5F1bohszA+0GInDzkWcbmV75JE/eCagyIpBS3SAEM7mX296tLUU3dAt015UTz+gm\nX4qWJrd4iZVLNF8w6NAkxxYRVbMgeoTYh26tsM+bAjESmXHXOAcDGoBxUC5AXrV8nE1JK2eELSHd\nRPnZWLofmc/VgmqobJ4JACa1Z7HYhcEvCFV0qGGY2+ZLCAot0TmI9u4Dlb+Bf+EjdTMlE11/wwAS\nQMIg6v8Ebckp+JL0haagovtaQJOF+3ayFBdzq/FrOOToFzKeeQfMJ7su0T0b3qDBP2xyVNpH8Vag\nHKcgjqRcI2/FmHJgYAiBYqPcH9xLH/FZapgTIRyKHGE4B5+ft/SJjcwndiw+sQH+yo4FjEBQrfej\nVgXxTJ4WbAsj8Tx3ks+tOid8rXBovFM8RzOWib8rHebk5tkYS9oxkRqMn4XOHop7CET00HPO+wBA\ngMUz99nwhqjrYZ+jeE/7rcx7Z4mylqyqynCdVHsGQ/HZMa8+cL6yVbVXwbLS6fEGso/2DiYq7kHO\n5OYwtDmEqw1jK27YSkW4BB40hcUa6Q22bG1d/YHvc0lkTRhIDBoh7xpOHGwE7jfrONOWmTubbVnV\nx+eGQ2cDn49mvAv7o1qvuJ9H3Iv2xaoCy4UptCWOWb0vOW9UYB9VJiAmCbFEYThwis4Q6TODB59P\neb44jDq/ERkQw4xFH0TxZVWXQQTi35ef0VRLoJw/+pDEtoB2xcOJ5+at74+X10uitr2Ux18y/2+P\nkeKc7m/e5phcfyfS+cHPe1J9yb3bLO5cOuBSvYyFx6c/5s/fnjKIsPkw0Xgq55Zp1ndIVKeh2Kpm\nK8w3zrAYDNBgt1aA2ttQo3ue0TCBBOCAncmLihfatiVak5srWzobtrXeUwtwtSlZ18yRRDnYI8Ei\nuTa801T85pr0Lm82fQnQcGu/vXYDEbhhwd44gaxdN1dRKNVIWPagUqqjauL4sT2ARa0zv5FrEVo0\njMPlURxIaxn3zsjFYnie62sEci6RNuec4phQWj/Y+uX8DCp6XiqP0QejTu+Vij1dmXshaIHTFN4E\nD5YoZV5rAa1zYAiuazZ/s7Q//M02q5GwEhBJ79X+Rlwg9SqVLgynVOjx7lk4inDep3y2WygKIwcV\nDqC5aFyjHoePgUty9OiZkvS3lUOkvOElwoGhpiPrO8/bdVcaZ+Nsr4EWm9LrYBy2V7FL4oitfepF\nUe9XylJB/KkBSIlOBf99FYIZr2XvWXPnQtnDLUfm3q9G+h2X/fvdV9kIu/9QVmV4YC0Q0H2HsaPX\nIyqIQLiK/+ZF1xjVPEyx0kvwkWZxmIVardcgzAO+/rs1l3Tk+uhIPfrxsBPw4Hko0xg8Y8kbfEvN\np3p5KvwwBzqNZYS+MznN+fjumaTQjLp7oxDPZBVTVW0C8xDAA9V10HH1ajRRbANQoGKuyInX5div\nNccGq+o0ayldNAWqcz/Bc7zvB/ntOC/fu9e8ORkD3z4b27ygmRcdJdI1xlN0vfAY5qVAyrTrHAML\nlyDzCP82r7vltYlzCAaWSyWwYmJ+3vMNDsZmPYrzcT+X6R4KxpTz3uN6oPv77ITuvmbwbc5jH2ud\npjLxfXP/2J9X9AK9HwfyrPk8mFs2cMLmUAHIXkvHU+FT0nVX7jksb9HmBUfTg0pooddnL7pFDvB6\nK/BwqS3RyVuUfU//9mX7VjGpsCUizFwmu9sxLd+ZViFYllnepw8ldb8WWNSr9beOa/NrahntL9f3\n1nQag9psY+OZyLXXp1GxQL7KM89/Twwa0w958/B6kt8AhGk53Z7hNs6BTnxO6HX9/+y92ZYkOXIl\nKICq2uZb7JG1dBY5w+75gPn/7+gzw8NiDZmVW2QsvtiqC+YB9woAUVVzj6ok+7DT8eDqZqYrFBCI\nXBG5QgvFpu7lqRApZWB835PP54c0/01J0Sl9nM9fM62lZ9Rg3Ls277Y2Yyu/J+tE5JqWSuomgmaN\nvjTnsLp25eadiEmnK+8pjZpsLNk0LhOhXIdnczG1IMGiy7/R9jwqJE4oG4Hwdh1zvSo/ZKF2YLnG\n54QQMr0Ailcm2FRwm/E2JotKx4wWbgUVxgsdaxkzF1cXR3OPuRCm2GjUvVoqFQRSLhsudTlpGwUY\nwQssBGahyxfUEVGVLnhQtEBURDAhBDeRvlAqKmz9DJBTXMeEJ7NVE/dmvdLJaOD10gE+e1aerzgX\nFWWf/ueEmxP63C/yFJf3y7G0wUlWoXxvJ+2rVK5R+S74fowCkUEVE4tV+m2qhZDe+1yOvT1DzOek\ngl0+nz57ZhSIxHdhQYLHoiV+7ZZ79UXSok+Pj3Pj8UCFYaOgQXwp15hXbzd7+d37yNx/8S3e5XsU\n4EZnrO5h+N1GedTeiaw+x+/uwfa+aBk1VQJs5CNofKVcLCPQwBgNlhQtf/ZlVZYy5fxlmbuPh6WC\nBzsFD3Be9pcJMe1DCkdVT9nMlE4esniyQ1+NqsVUJO/CezmOQlDdSCFNIbtWtpSyJ/ZF3DlFQ7Cv\ny3MMId1n4wg4gKvgVFZcuAd4cBr8SEapUQ/BasGYSNpa3ndSIBESbK7nJGh/8WoaeaCpYPEkPHeX\neQLnQmLTtgSn8zZl6OXfW29b8d1ozZwDBaejFB5r1kDRSDmAtqvrOO8W616JLxcIqWnZn8Zjy7l4\nvTrK5g0I+v4UwZ36RTzf6ocoA1hphMYpKy093K1kjTQh6iIpUqQM+6cHd9f59P4998XcUA4SAm14\nx12qtJC8rmXf8HMCARO5sxrbvV0JY9N1sk5GnP5mwMvB3Fu89nmZb1MtygjA6WNrnSvl96uqlzXk\nnPYTQt+HYymw8jz6OYfPXBtCcqmMUkbwBiLLAAAgAElEQVS+6kw436zDaUyi+jWNckkBZNwsgU9W\nvuoGr4S7DP+n7OiMPO3MnO9CkqNMe7MOJzse88ha++QptH/87gnQWRGlaQxWplZBjxmVFjWfk54+\nP17/Hu/+FCnyKNLB6GNTcnXqsz3vc3tuj7VnEAGNofskOHt9HfNXV5tW7r5EJfkLQvDG5IIQPAxx\nHFzKdVZDDwoCrjeM6nHnQEb8hx5nejIXSt6FsOKqlwuQZrGsF71btQdCjJzkKYWY90u9lX2whrFw\niQXDuVTH3oIIjFqwnqXGibTGg26bltchse8aSk/TK5Lv6fU3SgB/XyLxcsgiEaxiZWUiF7MQXJaz\nBgAIi4dFjLnfIaR0Bjab66prdSbsldTPKC1c2NU7kC304+gOLORUatH3N7ARaLiFILJjTXCcV3MI\nZ6z8kC3GPEaN+JmcybxZIicb2cHnzk9hF/cRqJDd22Oggf09T8+w+yRvZHkO5+RRzU2fi+9W7z29\nS44dAnwvwB3wfhWBgDcXkZL85ZudXP4PvONvX8SDXl+V1/sYIxQ8Sp5Wn4/iqzJaoQZ7/NEYGA0s\n9mg2g3hQq7aUwa0EQvsz3ZyUpvj5tAfZKLxRuyw/X9/7I+DSVBsZLuad5LnDVFA1dxvvmIzgqSwv\nz+3GBqsZh8lQSjJT08ZmYsG/RvGynrkcKGAOPa83yos2inHeN/YW8hKf+bbxIQMjyv5TsMKED3/N\n+3uMi+S/WiOhXnWVjPzFLUgr7wDytQaAYplhgGqLVSfNO8zB//YC27hv/buoawRFfuEBv4XB9te9\n+M9Y78CVQZB91cZjCAotsfY1rlIdhHdGHURTtHivmPunrp7Nv7dzMgcDE/cPjGwdQ3C6MDoI97O6\n7GTxqcf99ti39NjbSk7epTmYIl9c8dlGLJ3j4uCz10a3SiklnVyvEDmybovnYPqWMylnVTUknUbv\nkfeGe9eIhzEoNxfBYZuXp8/HHNBmtAol/xJYz57cFebYXG/T8rHr2CfLPq5p/UOcHFoxqM9AJcOp\nM/UctqWxFO+VcsrqY3acTDUb6ZADPEwXTGBCKL4fRsBs4sXRSCFWuHFJrsbvRbfVaKzyHPrAcZNd\nLieKtfctMh/Flf8/76Rin3A8ju0Bm/6rDrUzDrvfYnvmiIjtGUSQKOiT9waCAbXPm00vqwPYZo8s\nWUNEEuFtxqCuXJAl5ltCI7lP/GTLHp4yKbKGIOM5Lqqh+H6T5VFfId/1chOF+wLliFbbeM+bXVnH\netfVmp7QhcT7EK8X9LzxnNHoWZy6EQmTghF+wvrF0y6Ngc5mlXeHFcJfxeF48eokb3soVhSYLMHD\nvl6WJE55ntvpiLziUzm8uUC0LfOOU071fqbMFtsu89wlIqcSUMmfXSQPt3UpjBfHJEAI+1Rjo4A9\ny3HAsUPj9GVT1qjPy4ARyVdDwuSP6jUIjvRZeTBD8mjDEKl8TKYzmHVmKn3C5gOm5+U+vwY6np7T\nIvfnPFpzHtGUZlL+TjKnde0V1EngTnw/b8Bz8M1NzIV/8TYCAsv3oqzWcoEIBOY70b1Vo576CsSB\nF71UF6jJfQvAEIaEdhvGsqZa+GE0bzuT5jLuB5c9Y6kA0eO4BQngfQtyw4xv4LGWZGYe6lmCZlo7\nG/1Jfzqv0J7hQTmaNKg8+sCmM8x5sjTyYRCpKhr3gvuOe5NMVdOHsrHLiKEE+mFtITfBjMdWpIw2\ny2/Gc/0oxnIpW5JHTPSZRbKopGE+tNiqRcmQoEbpVHbpu645LopbLdMZuPWlnDsnC6ZK2+Vtbl2Z\n+m7Md8DrpINWFfuvDFevNjBk3gNNqL04AILVBeaeYeYLBAL2CCfwIv4CwP4aqPkCRvYSpT4ZroiQ\n8NBHeVFftLI6lKR+VVsahFP8QhYIEAIbmmJWvkfqCMV1OA51PPJ66dyJIDmBEcU5PLkR4uf6MsjN\nBUBR3ANBET7HUe8FfdUlGVwHY4GZgHaNEgvJQWItLxrz1HkYLUZHyqIaZLOJcnZ1iYiEZtp7zeZc\nkIaRoQBHllXpyBgo3rNIRyXe1RK68SOdSOpMyBw2lhC31uFXpq1pxSA/Tq2179S2hXeamsdrr9ax\nL5xHCW46JyZSsUa8IZhQPb39QqAg6Rs2elW5C4x05j0vsnvvHfuvlIN2bej6Svk67Lzhsjv1jm2V\nCY3Gpd4/lGPq4MLIIUh7gKTBHMoFWaaRjXNrdN6SkxL35Mrr0qGX+mt8Tqt/MSJQSZefo/ef20R7\nBhHQqmzxEMk8Cfskpayn1BvUOdOzkvDGhPQwlC8gvMZGagIWVlhoaIwQPCAJ2xWiDm5WR7lEnuXm\nGuRZlxBkV4hQuI+/73dxMb7dreQOYEjy0iG/0pf1xRcw1BfLXo3toxrTFCxYtCBYB88wZic2LWPO\nEHRYzfzbi3h9EWluDpP7uAX2vdDcB+6hC0BArfpwPErReB97CNaHVGLq4T4acbcIGz0ZBf+Cecxu\nkQx08w5tvnLSX8IoYqOtrFFfGu75oy1wKwQTVPFBPXgSca01bNDLAu/hlIVxi4zLYaXrJ3IetrSQ\nS3FM/rvluXgkrbg4H9scnvtrhdX9Z4TnVS5X/hLngYjINYC+FTxaHuha6EWGzyiRRZczXzY+D7cw\nKE7JQhswrCmjCIpxjnaGnO80VJraYKOorPGYvEjj8UzP0hHXYbgqgbc8tF6rkBjukrGR6lSxGZX1\nUs2uPCa3C2xptpPJw32Kr2AuBLQuwIZSId5g/l5CNttIH5/d00Kjw8oHUc9q5p2sNZdad8JvvEfs\nqxElSTG0DPN2vdKICxdGQAqHnw1jH6d7jUPA9VZ5r7/SfHPqOf/6Ez5O6ot/wlgeKShMzy3AbXcV\n14bQDeKwwDsSsZmQDeX54TI1ZEDD7W7ynhiJEJC6NNzB23tMc30waRKWByjnCgojoKi4RW0JLEzp\nNI8dY50K+XetSYlQJZN551ciN+/iM67u4zN2bWnJ7qCviHbVQipNkeK8KY+hgaYs+YMThV4UdyjX\nKc6dS7xHrql11aujYnGDqEjgvKwiFRAQNrQ0RMfe6iYj6BbJ5w4MXCcprA3Net1tm5oOGjVojrUR\nEfl3qTIQxs4Er1aKrkS/YW1bvoCcWkRnD3lx2lMluz30y55ONgOeKh8JwQWH35NffGkiQzj+bNfk\nnAgagWL21ejI7Fz8vwEwRL4Tr/xcmNec1oNTTgQCRYyC1ci/CaciK7vRHlD9jiSkhvdARAourfzZ\nbctHv41AeIwX4ikiVW/1Pzl19L9GCxKeURUReQYRtFmD6fY+eh1qLmYiSgZEoXE0BloeAspplzzO\ncUvvJJVcKm+V8xqO3rhSgNIAZaoFjcbVslWG9GoNIQ/H5hKhl4sXAAR+SQO+U8Iv1qAnolqis0SZ\nl5tO86AVDcdCmrx4pVITCZdE+4Pf5fuM2ssIIviXF7L4AywllryA10YabNfL8tgwZNpQGRaaymZg\nYbiPCkzz5SBL5Jcvf4qLYY1+2oG8LtW+jvf8uj/IPfL/6Lmh4cJohZ0BGfrg9J2qcWXQ8qlqGuzb\nVJWhXE5sCcu8dJ0th2W9rinqIG63ncgD3unBvFuOD8uR0A6iK1kKiw7pt+x5ea5+CKPxYJvN0/u1\nQYA5hmKfASnJQ0oFke8gfp9qrgPgG5wqsVp9gXOGBi4iZNwnvPPbIP4HKDHL0rAYoFQzZcCzjOhy\nkBYki3f3JcP5yeT/EzjY917Bo3G1glLxptEfQvpOS6Z2ZbqEVhDA522XSP7olaaXbUr5i32VZCMb\nxw7H0hHTeVxdxemcoMclBxjic1ggJEVYaCk19oVJEdAqFyF3ZOJ9490edO6XoIyTjFBT09LIug+F\n1YTBigz6f2MUemeMRa+KeepZW45vFHWEbR+cAsd27bLla23rQ3qnWrYYJ9aUkQnAaK6iwji6QEbf\nz0UT2HPH84fZe5i67iCpZvyIhJgROLDqwhFcILcH6T7GdaP9HHcl6Z56MnGq7sRIOREP8D/svoiI\nSL8trYQeS163w7s5JFLVvZKpMp2BKTBcg0oi033vNeKQoHfiuYjXIRA26DzwClKl8YG+6dlHHN/c\nz2WyBEZUSxkav4dKUnA+LL+BUX3RFf1GrjL/ATKzkDmIxjKlNqfyurXNjGdrWKpOVTGqy6n+w3fJ\ndMtw4vONQTpbvrobbB+jLzL5Oy7xKPqbSJpn+ZpqxzdLRFNmVsaV3ocEcNpyvrqPMVqdhNG7bY/x\nHawbpPP8CTriPo7t0y+dDL9gnOHd2egCS/Ys2SflXqitrmP6aEjb1qw1Wm1CowdLfTpvBA8qjTLB\n2oywtwDdseoGTWex3AcEh61TMaYz4DsTyThVKUykjDKZK6vKlr/i2rx3TQehbDY6XKFnGn1sRLCo\nHDdPgeSf22+tPYMIUooyLsrHffK4ryqQJxnQYI7VWyQphgxhpXfyuinRK2UA76qU4zR7jngsyW0W\ni14Z0in5iZJXN/BoQmotwQe83p9kDYXEQUqdpGQL1/BG5F8uN50SSc3Vs7fta+y+QOmP0G159yrF\n7Z5A7sjP3KcyoZdtm17AKOYcnXIfDTVHIMI5rQ+86COwcNlGTc6Gu9VYZKIRBwUOxhwVPBpzdwQZ\nFKxJGeiW7fxk4v85HvL+S/ma8TPfD8vLWfb3fIFSgEF/i58ZZUvjZ98HQQZMQsddOa6f8k6/xmk4\nRRAkksJWbY7er9UUnJlQpio1AgH6GIJNb+4tcVwkoIjzdenLMoOfH6BOxyhlCcEpSKUlCdVALwFL\nGp4Xi0R2asfbVFk0kTgOTyNuACnuLVfK+HtnFEjmXbusdnt+jinllIZ0XrWlbEHHtwJb+OXA8FSj\nnCVPU1CZRdm47KcjLhQwwJF5G4e4l9/3hVynx7IrPjuJ7+JLm5bUK3g1XyM97M1mX1yX+ewLn8rb\nJVCRSh8Niaq4pzYzeJO3s3wvLK9p51krbmT4a2C4qTIwAn+y72yerw0yL5jOHY+R8vyO+xjQRMbR\nEHnlhniOEqEaQpq/yUwpQQVeUBXwQZQjJeUYG+MQ1tfwQwSa218G2X9EBBtSeo6nMoUoVQchsDhI\n3yEF4ucBx66LYy2ZcC73CFgfDGiQwJ/y3e97p+vP1oAHWhLR9HkIoilEI5lsBkLOWWDnWm3GKisU\ntABRh30r9duGP8bzM3R6B3n4gPkMZHuVzSvyu2hJRHxvq2UNwWk0SQrVxmWNXLLAr0jisxhagMEE\niBAN6Xrbfy67p6ctWj4f6FO/yXj986LYiEb92H0tH4bIWE+w8+tcI4Hil7s4ZpefEen6Gu/8mwho\nu+Yo611co7aI6kwVf5gGUI7vHFzg+rDypcHaDqUs4y0X0RLmgcaRUqWcypvq0QQEyuIQ0neDVFgc\nlWDR2+eC3qTPGzTKQsnRR6SzpUzrJSS+JY0Ow+eJcaD/m75MFXKmB1d+qlG02Qw498wBkFoQkRCe\n+0PkGUQQkXJCHSaU0M5ovraer22VS0KQiOplbY1wCpx4nVXlRmBEo1EMWFhhlCxwLl8NiuC38F4w\ntM6D08EtIRC4ALokBFmiJoV5waCEt4Nh0atlmylHOM+Mt7jwIEn5PHMG5gBkX7YwH7pe5MJEGhBM\nIJwOhUwfbHcUwWKfVlBs93DxfAbPAlDzsD0VYeJ5UwIcvL8F8iKba5EFNPA1PFObB4Srg0l/sY0L\n7T4r3aYVIrrSY6ShyLoilEq8yDhnUb3GjCLox/1sDSEahDQejvjhQCBpSCz5bJWJntA7nHiPtjKB\nLfvGBT64sbdxTomZYlV+rE0RBo3vdR7pUGPKEhA9ciuVyz3PJQC1NyX8cgNwaaqrpDrp5C2BJxP3\ncehrNRoTz0lKJ8jPkddVt2kF9nmtNyyEzOjEb7wOn8sSEm6qQZZ4mTROVxrWCzDOGLT5kKs01QaG\nl4lA6M148S6ln92gms6G3tcTCWXL6Izep7Qnq4Brn0zcGxsrVFySiwZbfn99SnKL1W3eX0a58+od\neV7wXgBUH/ZR3va9TyHhfP80Dg1XC8eFlyCrmuSyUhzj9lEOUdZMzTMdicZjZtOTeG7n3GzorKk2\nl5rL5rpRiBVosF5JN44asNez63DlsmgFPp+mcOAYPlcmj/jMKeIL45tLAyIGTh/j99tPC62MoqSi\n3XlVapMZp2wf8X62hhBVQ60zI8UCeRYotKU5T4NTgJjgwcGsE2z0pBZ8CjoHzgu+IaR3l5ws5Xvj\nWFWuoi+tuIY5AdhgIAxHHNuV1x3EPboejMh9XRilCtjKOdbwY8Rl7QdNE2sf8F6W0JuWOpiK1vde\nASC7Rs6vOI+33GAWmY4SSiZpaZQmgz0dpADyE2ygYN4hx7v/EWNzcSciIqtvcY8rL80KuueZdVZk\nWmdks95+Vhh5SrN7KmeBKZ0qkr0nOweoQpLLoApKqpt4FMpjRnJR8iiI8r3MOVC8ywkNsY8FSdCe\nwl+bSEe581hvt/eUfps+5rk9t7w9gwgSp0gimAP6jN/awUll6nrbfGK2XCbbBY1tC2WjMp6KXCFP\n5y0nrwIPRNd7Ly0K63KB5nkuwAdAhDUwn/lQq8fDhkSy0cvBtrzvkodKFfpSiZmquT5VcqncYt8t\nPv8QFyQ/BJErkFiB1DIBDEgvIBDAPNJ9JwNKEjjT+T0I6No7XA9hlUPvtH96lqZ7QD4fPjMCQ3Pm\nmmFUH7pGjvuqi/d00ZbgjHdBK0Z4e/ATmjVq2kxRFElKYl5eLpWJAkig4Y6CY+NnhooHCapUEDX3\no0iEEmyausentLlF69dp45PaBfucMprnTYqMoxUsOJIzhNuwSRpzrPF+bwgPKxfGPADqeS5TpvJR\nQ+Dh2FvDwXjfsxB1vnf77uYI7rpsDOm4UoUkbq3XaLEcRt7olQKWNCxwb9lzMtyarVHFsbz+WB4m\nT8sCFTA2dTTqe8x1Ai0VANPYz664xyF75vwqObBiPedLXG8JItv1Kl73ah+3lR/kAsRsN38E6e0/\nrNKNi8gAhv8eOfLDUaTblgADo50YFUZgt8/G0GrZ6jXjPQKwweePh1VxTDt4NVDH/AXlONRoDMnG\nrP4ff1ODhYr3FMiILV+l3cce4mQ+WmGOnTx+XyrrweT4E1TQ6ANxKXxbbcO0PoiIdPdxj/1tfAcP\n26VGAd0CrNrNkGQW87ZjtFE8L8ED6gQcf5xXfUgpK0eTOmRLfto14TS4UQqCBYmtDVm7QY1Fq9vM\nOQD64LLyn+W92GM5dvdfFtIfyzQGLotch/e72Nc7VIXad/WoXOvJbNknh0zu2WefqzaiURSMIlsk\n0EdTyr5gXm2MLgR9oh+cynyCl51uyz7KQ9UtYHPOuBbBWmPAOLYRsKegehpXnZF3CSAUHqSN/dSp\nrhH74oeHmHra/iU+3/ttrCK0ftVrKUybSka98jiUfaOpl4PT5+GaRlJalz2HbY9xLFmHV51V0Rj6\ncu1xMxaRr4JUVbmWPdYGedzhODrmK/SoYN9b1uaiWL6GZ8Y6hvxkDMdvtYXnyAy0ZxABLeUxQbnC\n9624hGQaI8GW60kBC8k44DBj/jpD0EeCzY8XmGbGgGEt9zYjIzqY0k/M6afAIylM1/uRZ9SCBkf1\nCMZ2e1gq2SIF/zADpPwtjSWT+p9AKPXxqJ0ZDgBu7in04zHMG+2O2LZeTlDo9N7QT6qItFTW4jG1\nG/S5+E65D9/Fsi7DzKv7YVTmjZ97KnYalpr6ytZKfkp7jKzQlraiZtGH5G1NxqPgt/IcuXeDRgDz\nrK2xP2V8230S0365X8iOmAthti0vMTWF2E+1qUV4KgRyrtmQ6d68AxvhwGfwLrFdM7zRKrvWc9/4\nQYFJG0Y+d49T4cNT6VRPbVZxHJUplVwhpZwDaGbyiFdVPwIL+Dl5KeNWZY8kTzlTfObYw230YATL\nyo5i2tHKpBvk3CNJ9k53sk1jyCs6ELSwkUrNsiSjbZa9LEHItvynmMbi/vgyngT8Lv5zzGupSKR3\nf5L6FvII4cLuFneKW21JuMl8bZcMHq0oBE8gScOaLzCCM7nvHWXhdB9YcJhjeBlEThUN2BJwmCIJ\nE8HQMuCBBZvylASRKMrmohXOgQp2CtgyuZzPBAd7CSkixRyrhi0C2doTokP6SoEAm+Jo18PKzIep\nZkun6vX1GaZB+qltDtRbkIzNOjhyUmmmPevao+PdFd9PPU263rTeQpCrbb1st3FO9EPZ64N5ni3W\n7l1XjTioThqdYcFU0c+MvGtNHwwz75z3uF61qeQiz7uDo2agsyL+TtLLXL6P8szPvDeNmjFyya4B\nxXrIY/gcKqNxBo2qidvGB40KY18cRmUMZbbZfH+CCT9tI5jA8sJvHrYqG63Mt/wrdtsNTh+I75SV\nqGwkG4NNj9maMAaGyufiMywW3WypXuVCUOdKbM6LVvey5SFrk86Qcy/Yq/CzTRHV9Mjst8dM1Fxe\nUC9RB4ZJw3yM3Dxv4/QZnOu5xONzm2jPIIJEkc3JRy8fJ9sxYyxWg5whuom6NW7Uy5zIu05qSMbP\n9yxJaO5h6cMEa/L0jLfIvkhajDslUyo9Vgz7FRH1itvUjTmhtetqDQWz7ZxCrr1BIa7K3vS5ujss\nPg9OOkRYDKg1TY8cnzMv08jv6XXUCAeDnutiFpKAXZ1Yiqn07rI10EJ4nX1XpzxbXEcJ05jb3dvF\n02e5rOU96BAyXZKDTN5uDdClIYt6REi5rabWcFJE+Pv4/bFEkjXyLWfH1P0mQAPH4COjHFzIc/zs\nfZctH4/nSIXkzH75vnNka+XxNIziZ6/GMM6F/Wqj6EWCQCo8jFgqATctT5qx9tPzxffzGAFYPB+3\n5T2kxR+GS3ZvSuQayrHDZseFD1mFGQOa8jlJLsjqE4uqz4jFoNgbMlrOA5LIPnRe7rvyOVYador7\nV2ORhlpqel6AqDSck6I3rzV9jUpkSWEpf/wB7xQGPJXTajkoyW2quAHNlCSxDNElaFc5nTBUZmuE\nUPeMwNK5M3/3DmUlLl6fimMettF7Xh1SykUao/FzAoriNpWN5fxO3B/M96XIdDSkzdzMZRuNeE4k\nq1RX2Vy1RrCVVJoiRgVZ0vxVMWQV4inATY1c7EMDuiECy7UonWzEm2BT90xaiIhkgKGVHdQ5+D36\nN6vo48wczJ85u0W9bu/G+f7WOE3VkwB21Z0MMAYtZ4Dd0piLFXpsX+RXS0YWeYa6zssWgH9nUpj0\nHKo/JT1mLurREtDl1ZHmZL03fWN1ksW6UxmSIhehYylZJvSACYBols/ArKEu+59sWamvOQ5KC9C7\nHJzgmSGXzDwi38zKB+XlIjFl7abHA2+5comjRStAmbQcprh9QmROf+uUs0vfrc45vhc7V/B4kt6d\nRtwY/TmtRemeOW8H87LT85TvmLJaZJxyoWJ1YuAocGyA6fSeyu8bF+SktkMpq/rylRYggB1NuUyc\nai6f6zw/nsOW3HY6bjiH0m9zc4VrqK2G8ptuQSSE/vH9fgPtGUQQEXFJMbYkiqvMW8jFtldPNhYR\nU8986LPcZvUI83MpInxmkFoBqfuo0WgW68EltNwsZFx8KeSbPgk6KvI2v5LNhiB3wRd53Plvc23I\nlMDZEoH0apBZHTvs7xu5Q84pn0u9r4aZOffKKhhilIw5z20bRPpAQCUUv/FeqTArsVBbj8gKWYKT\nytJU/XIb6qlbowDx+7x8ohjF0Y6PKUK4ZPSE8jeztUp8PF8ovrNvOvfQ8re5FJwpVN2OC4piCwyU\nrOux+YnfiutNfOfNPZyLgLAepMd4G/IcVGXWJ4iguej4HscQsNrUne7LlsLUfXEuGylVnNe6d+2z\nyBgksE0V2exnqyRZhfICOf/0+p/6Shm5Ceh90XBvX2z3CiI4eQCIkAhESyVzfhw6BURvEbKvsrKa\nfsd5DrclFeQRCUBKn9MxuH+kqPB5PVKylohs2nQniXEWIq6KEQf+A4hdlySYA5fBFtuDyIDsrQEg\nqhowashClvX0fqb/GQnFfVnffrlB6DiNrr7KomRSv4jkfB3lO8ijXZ6SJ2+bJemakjt8HhF40sP4\nu+nPSV7ZS88xj0/x9CjQaRja8xJ+3KY86NK4t/0W1FALKd0EfZnAA8qJeEyaZ0kXqVlGzoJiRjBy\nDW2cSK9l5LCriXZiU6On6hUst5GSthXyPNj5WoIhBEppvOVgTHJg4BiTMjc1lsbgQfmc+v0wHr9s\nvM5IZjPisAnSvEB/4YTdA3QEzEkbGVX5YQS4slljNZc5KcUigR/5s39diHtptBIIXvogG4IIGCxq\nYBpbKK3pQdcWcnrcrFDZiiDQAPAg4/JxJGieic6xLX9OW/2ITpc5x1Opt8z/JhLLdoqIlu4USaAB\niRQdi7ERGGW1kD7omkIwrKnIUUbAI55kSc4i74U4ZDXTBXlf857nqjHMAmITcu+xZvXAeL3zZ+nd\nmNfluT23ZxABjcKSSOsKQnFV9cqcHgyimhYmamJQ5nzKQWbj9JxjS40EJ/F8rJE7Yly1iP+ZOW8X\nzz4r9WdzqW0O42rCAzl3LYsq54r5XK6xZbD2ENxclLvOawoCm1U2EjdDQqot0v3Y4tWHtNTb3FJL\nbsl38NAlkjoNuexo/JRcCGz5XfAXDbk0pFd9SNerTWy5RssYNvv0POm5etPnVmkeAwXpnq3H1yoz\neSTGiKjPKu3mc18skraf3OT3pScztjkyvKlm8eI5Ayb38PTmHpiOQsVr3G8ZCGg8IMnbVYb/Xy5P\naoCzLWGUkrnfKtciY68+W6PKNYENHJsBgDbSwRroyeuREjfSuGOqQF9seT8f9yvN72aO+G1LwDKe\n7aRgquD7NAc4Uxa4KetZHL2TkOYrK1SwXS9jDLqGnWfz23o0O5WDvF7cEt/pnVMZxkaiw20X5RRl\nqqZ27Hq5eYgK98WnCCYoMRfTjpgL36V7t2RdBAjI4M++tmuRiEgFL7JHtdCLA7gYFvMeEwseWC4O\nGyrehbS2pVJ0uNdHwEcRGZG5zQT9yqUAACAASURBVIXc55EIj5WHzOfzY2CBLQGZNxvy7svppakq\nw9Bq7vuqKt9LMmTLub+oBuXN4LvlOZhmwnfJebWEbNhnlQnIz9TC+jkylVKJNrGfS/014rfQNabc\nTkV32TQ4u66ca5pKwj7YUI8SqbZzJlHZcjk/8mBPRCYV15d5WW+dBEur4/VOPAJ2HMplO1ZsYmol\nwISOwF9wGRAwfa92fYzcM6VTQsvj6pwLxfdTAJudi1PVJzQSAd+tugTkTt1bLFEY/2d0wYsXscLM\nckfgGOMw4w3rjXydi7KcitKw+jHTUcSX50zRJmFUmrLXCxowi7xWVVDwgA4sC8CTG0HTG7oEIlCO\n83wVFoeptIaUHs3ttE6a60e2xCOblYM5BrTQ0qzl+XT8c18zj/shnNWH8u+fOQDyFmQcO/7bbM8g\ngtCLiBBdCEsu+E0zSMc6ywdIFBYGUC9kKYG6IEVqg0jy8JHB3S58TuY9f3k+r0ipONpmBcEo53UY\nG8z8bBmLF35+kljvwxQRE29lbpFXkEQFNY8d531b4MZ+zq9vPSJtmF6AcmOb7WD4IChilbE7vyYF\nMfZN5yr7wrk8LJ37lt4TKnZcNCs/9hlTIWXFj3QuKPx4n5GwjwYk+6t80MrmCoc8j7J8HtYYVk9Z\nxplgQy/pRR6xpGObj4sUgWD7qwQTcuN+LiJgju34XDuXA2rLTKbvy2PzvMs0f2hsx88rPOkanvsN\niPAuLo6yfoHcd+w7nHDeUylTFGA7eWXzv9tF7zvzhu2cYTTSvg/SmLxUtjlPnUgWsozPNlqLBu/t\nPt7HT4elbFl9hHwkpr63Ksiq9LrM4DsPXo0NzcTYvlNyxmiQE/jNw6G5teHPc+HQms+eXTOlncR9\nHmDg3RnC3MoF+XKM97JCuTrLF2FlWeMHNSBTyU8CHQilJvHdxDi3IOodrs8KEgSs2sFrv9iotIMZ\nJ3sD/rQhyzNXY6E02KfY40f3OvP915SIPdecMSBUDrHvZfxu2RS0B7ZDg2yDMJHlppPqS3kkwSMa\nkVohA9d5uTrI1csI6jSX8burXfx83BowcFWm5OxuG1ncxdyYB7xTJamzZIM+gT6MZmKJxUZTVHAd\nPie2ed9rWoRd61ROBH0+pndiWcoiGAkiIJ1hQ2HZyeqOAEmUXT6keZM3JY+T3PjE+qNzLe7D9Dgl\nppxYNywXAvU+ciNpPv/BywrVnvwG3vCrMm6+36MP9ume59IT51JzptJ25qIE8/0eA9bYcuLepdHn\nmDZWmz4vj4fOgTVr8wZOth5VLPDSb+/Xej/kR+hnyEbZbGpO44JGTui9GdB+CnS0vD5zqSQchyE4\n8QBUKmZ2EVSgboPJ4Xx6oQGCre7LiJoagH/lyjWgdnmkC+8BW1PqccgeYuSbLD9qhNyTqjOUjzeK\niAhn5oju8wwiPLcz7RlEQNOQPrDxby6R53s9aIkfTqYjFEaGL9GTRYHRDiK9EcxpoYtbLsYpHHIi\n8iBbqKda7vF2BmgY7Tv9ddGS53Qotl9DnpgzuvIoI+PHJXIwCs+VXU3IfqkoW8S/3AfHzngB8nZu\nkSqeS7KQS1tz3N5zdg6bUz/ad+b7/PyWDZ9jlso8Q+8W3knVh+IYi8qzJRTfjQ11/BbM4sKxVLvx\nc+lnc67JslRPWQWf2L4GPPhb2mOVJPL8UfW8ebDm4/uLdTQaKFtWLwdp3rMgNXqVxHkHMxlY7vCh\nk+pzGXqrHj9TZ37uPkUmvERqWOB3l8sUKnTl83FeHdUQ9eqxPhrv/lTKjcjXh2HmzbmQiBsNMNoP\nT5jzX3EtVcIYmaTROLHRsCahVe2dGuZJ1pf3YkGEZcZbY41p9vGULLagqU3jSveM6w5jRn1lbB8B\nBLjH7L5mAYCZ7/Pnscf+R8/buZbz9FigU0sgL0qDogHXRHUKchHiHKYhkUCfEshju1gfZYHw+Pp1\nfJc1On2xLaOReL3UWjmdyG+Bua7Rb6UnOEUV+AwIKA1MAh3J2PnbjYOcqNRluoxIbrhg/KE4Se2T\nnrU4lWBZU5X3kutJNt2jzmSViGTVY9g3TteuPGIs3mu5L98f3/3QexngLPJrHIvFlOASw/bVQz1h\njD9WljJfdy1o8Pe0KX3P3kvOazHX+JOm4uDZG5S5vOzimsZ5cDrVaV0YOCZxDvPeLOFh5ZwCGmOu\nisd1BaUzMFxLNpI31zOpe2pVBk1r4M3h8ymIZ/l0bkelI8txUE2M2co6asw7CPI0ENY2N9Kyn3hc\nrKX79Rd8bs8N7RlEkCieGM62XsFL+N8w6d+tpPkAeubv4kJ+YmipIeHTMnreCYudpbxaGLYqC+eN\n/rlwL1U+GZ7sh4mQxPJYizJPiWIuJsnTjbJlWa6zZVm3bL0pbCsJcAuKzHkB/HrMZjMY0MBGPGg4\noObdZfviHMEoyFNs9pZ5PuX7Q2GYUJmTAmoN9fI5c1suLSLxcyJAKhcVLYGWfcctwxFfLBAlg/57\ntWBodQqt3Zkw5L3mpJc3y3s9DXn5RygE+PFovMlE1WufwkGpGKjSocZqacAMTr7aciwBovP7Pl3l\n+NuaBUUSIVIyAhlxwBJ/yzWim94DnHsP79u7G5G31+WJO4ZIsgwJtsd4jvr+KNVfYwK++7c9DsV7\nMiHvTUu+j0G9JKNQfvW6m3EhfhSZxAgEjjvyHtyRH2BwmqYzKqlmFOV8Hs+902C2tuXSl3P9kBGg\nxvvw5fUmzveU4WiNDVvOcxSS3CcDb/TbKB0utuPgRgCD6DEpbSt/HpG0XljwIAE2ZapHO3jZK8Fl\nAoB4DyLjsoD5MzweISKPtseOGWQMPDzG1fL3NgVraTDBUKpeR+vXXcR+DEOQ+sfIc9H8GOdgvz/g\nN9wz+SmwXV710nwL3o4/vog7XYF506LnJ4AKnzHPV3fyQuJ1qk9x3+MR1U0MB8kpiyyp1ahnmVMC\nlXG7rMoxLJKtmTNpJ7aVIduxpUoz2Ifr/AUiI95WcnUbdapU2QiAV0VvcTzWIdrq0NcJLDVGaJLB\n/D7NDf2/574wUs38takmbetl/yn22woEavV1OSctBj4Ep5FCfSjn/vw2T+8T/S5uQ/k580zbuWFL\nOovRk4K4EdCaIk4Fn11xjrwSkeXcqt5GF/7md/HgxQ9xfJ5+OciXn2JUAvXjzgBrDANn+h0xs8Gl\nVM2rmt79+HlLkAzXL5w6M4t9pXoK1lSM96FPXGJ+Bb1lWSqrDp1C0CR0aaEa8CKqlufFdoJwMaU4\nkNtBzBbn1MGUFCTqgpbT6WuaAlP8HOw2zf3HODieSzymFkQknPN6/obaM4ggIiIhkScy743hTLUX\nfx27qdlERV5RdNZ9NiGmsZZ2bMzBTMKC1xxLPjskNQRcc8XLBaiSDAWvyrxX5lEuvFGiQ27El4s9\nBTjBg+tVXOgfjsuRt8umWkx5AVTgzzyyotsgYXAMm/dDIil09v7/fjNxKtzNnjd5X+O3vJ/GuxEg\nREI4NgtEeBd0n1QDPG6XVam085a8S0oejXZlxYeRyjBlNkbItL1XI4oeqr1uy/6kQrHrvWyRG3kP\nHbZiGTk1UqS4n9plHp0MWBDJ9WL0VbYSst8ee4N9ZqA/tU2RA83VRp6KNsn7P+5T3kMytstxH3NO\nSyDy8jVy0t/Eneo/xHJY7nXcytVaZI14SoIFc9ZVDcKzi4VU1/G8Na7jfanE8J5Z1rUavKZYWFZ/\nW+HhXFMFG0rhnSFNjOlB0yBVMJ+nuDhsVIu9pamZb+9bIyFMFMBUmyPismCnlzSuLYfFOPyaDxES\n0Inf5gwJDeutXPZbGQ5vI0dyr+I4RaoELbQUXpeiGWy5vPG2PGferPy0IHFldM18SPuplyhjJdfL\nhBJtKs3Y81dufC92/gYa1llaA4OubSSCo+f57WX84dVV/Nx24mFINKdo6Ff7cvUOuAEELIhfibhL\nWCQrbDeY+xcAEygD7sHSuYWhfVFLvUEqxMOYnFBkrDv0wWXVYmC8M1XOrNV0PPSDnyXDs8ZbPu+s\nI8MSArOxP/2bC9l8eyciIguUNyXROWiFlGC0/jnedNdXagwyD19TOrIUDpEEiDnxUpl1iCnwCw0z\njzuQ76KGbrffLmS/jeCoAkFHlF/Fa2PqGX/vBz9K+5jb5rnrFmhNc30eJrMVr9jl6pSgnymbD4dM\nTueN67ktpZuvuwSoDx+Y2hEfvvpjnBPNP6Gk+PVWrtv4TllmnOS3NaPD1KAOZptF7ZkSvbzn2qQH\nxDWn1NVCJg9EkrxIkQhOBpZH55i9IosqBwjWW3SgH0QEKRz+SJ0b4JgFDzQVIyivTl6xQUSkJfGl\nKhwq5ETfppbsxj5DtoukOZlXZ7BNTy/mn2xeqEoz2Pn73J7b4+0ZRECzeYEtEP9hv1OUcmDtWM0T\ndMUxOfqsIZJmQmrZJuYPiugxMnOMmH00pNEHrRFO8IM1jTXU2eRotoOXdigFMRd7Kh00Tq9v4mLg\nH4LsUEKtn2GS7tWjnhQKrS1d2l3aN6qsXcRzV7ih1bqT+q5Ui5hDZj2mxyzvzuZxapqJlC3nidDQ\nOxyrVb3wuypieK6TD9p/bI0xJBiNMWTfL014XgsFqJnpx2wpmfD0yGSjkhWfC7WsVenjOy9zaXnW\nagiz6QV8Cstan3tE6CWhB8uSeCWyqExpmn6M2fzOc/d2fqfz4AFbUe5oZORCmbChwdkxNNQXyzgn\nF68xJ15AzFLL2Z10G9AxYRe15rDF9lQORIZXuoWXHvnE3QHGIeYm84s7kye96+pRaP0ojB3zOvGH\n5AZlaYRSibeVF9ph7BlLHrLSCLa/5y1xFfD6nDPx+9xGtalevM5pxKmC3yeM4rkop3x8Krnk4jyI\nwGOc5PKIz1X2/bmWxlUpyxIYM/UcJXgwjPoxAYi2WpCtEqORYLP3NX6XluxN95s4fq7iQn7MY5EH\no7zzUIJS09cLo+vbsq6jtiY5Ataa262EhziH+3sYudvyOhSlJN+r2iD15+itlRPzzr7EfS9KIDHc\nI0T8HikTd520D3hfKHXMOc/IAxJ9HpXros74LuJ7J7/FiECSINTgR3LB8oZQvjs12Mbj0HIXsLHK\ngSwqqf8hRmBV+3Z0vIjIgEiF0MU+uNofpYJMTM8KeQsQodGUjuLpiufg2jwXyr+4ZDpDJ4d97Ov9\nLr7/HhEcObu/iEjXMq3Vqz5iyasZzWcjffIIwBRJhPPORHVNeY8tkbdtfXCjcuO2KtdU45W4ttx+\nBvfBP0fd8LKLYFD93yLQ5q8W0lzGd7pANEFegSxe364FSS5yH4IHjIrlWOZ7y+3eYMamlX+TaSbk\n30KnOhIYzRADuMqpY5GOOyVn5D1NprPgOjZKlr9jm69TcxEoSlCe4w0SRzjPl9YHnrc89hyxoo0+\n0q7gfH6ORMhakDCi7P5ttmcQAU0FERaEux9QhmtwcvkiLmgnLCpEZU+mBjq3XXCZt7+cmSS3oUeY\nQvE4JC8Uw9bp2bT1Z2ksrlatrK8gsG/oPYnnW3xAqbEvMRyQqPC2bcTBrKbhwLZGuDLDsDfvQJ6z\nHEQ+on8gzBceDNIji5aLdhh5960RoFEUV1CiYGRdfPNJXm0RHsd67EZAk9Cnz1JKSIJDIszOEPsQ\ntFASqq5ScOW+jf2TeC3iPV9iIZzKG6WgThEdVPjLzyIJjNBIBLzjRc937kbPucLtrwwAQSOuRVk7\nfs5zoufyo9UrqQYmP7tRtQebgsGf6wwVsuXe8ty+2EpU3bnHFR674P7a7Unh1mZfgle27jJBp4ta\n5ALkXMsLADhI0yEgMCANYYDXst+LdFsok3so/CBN7CBbGCq5WKRyffSO3GNuf9pFxS4BBaWX+Th4\nNSRGhrJRKHOPNOcTFV+my3BM2coLbUjM/epR1uGB9y/8nv85BTNZKnWJzwQPKgNQqofJZZ5Ezu0Z\n/oEc9Ew54VJsNfzbi/k9lTpbAiBi31ySLLOO8oPGQiTaHIprqxfeDOzcSzWn1lvwgKeoXSK2U4DL\nlGlky0lox6ldZh6blDqNCg8JtuFcSJFZ82CdVW71+wnAhvuNFO8z4ET8Pcg4jNue1xowQa/D59Fw\nfGree4B+t7HsRf/9vRz/Lb732x/iHCTpsjWqeb3N6iQvBoAIEo8lCOh8TI2gYTPQk64y08n2Pq6R\nnx9i1AJLDp8ssWJWXYNz/iGT8XGfaRkwZPdbm7mRPL+h+OyydAa7Ze8rh8oJ20Mn7hopIhsANCad\nyzGtC/OtaTqpO/LH4NqK+pRqrL7jYvkvwQSSE1OPUZJGBImt607c5/gdIxII3FC/sBVU+iHxUCRj\n8XFD3crIwUQT0AmiqmQGziSHDM5g3o91UkxeX51IOCfTDHxI6ZeMPiOZL/TJa1SgefnpPh7zwqmz\njeN3kFLWUEZT/8yB51TJi30AuVtRf4IOnJWwVGyKfYLPtZFdGjXZDCrjrRBxyziWAqJOwgHbPqg8\nUGeiWessCWk3uNn3r+sgtvp+vFNFi/swDaMy8zWP3LPvmztb7rVRJQuXHJ4Lo9tYgMMbe+G5PTeR\nZxBBREpV6wBlgAyzp74qDFWRrEZ4n1B/kZwp2annmWFZa0zEG+SzH8sVTh7aRo+nwOQCx1xkrUGO\n/L3N9UmWbyBU30URypDJ5n0EPtYfo+Jz/DkqMHefVrLYRqPjiEWZi4ZWpgAwUb+El/oiSHcEk/Sp\nzMG0FRw0SqJQLvCbKxdYNZipSLy5iec89fJucRv3BbmRJcBRHgU9WQqXVGWFqwsVHkhdGnHtrcjx\nPp7wy5fYJ+vdpni+K/QJw5ivulo28MBaL6ey43sukqlf1ninHGv8bVWVHuDc+MlrPOf9xfG2wz3e\nG+MuzzO3C/dJQz65TfdjlUvePo25uVzN/HnsPhYRLxjAn2DMP7XN6ATFb2wEQ6zXcOqebDSN5b+g\nzdC4kMi51lSa4aVESbD9L0gp2SLP99ioJ5EyZUtmayzYNJIpAy4XrazAlH2/j4ZFigiYjjZoB6de\nyLkuHxPspQe1YbAEGu6NcbLLnPQWW+THZWZ8iIisK5FNVSqxvEeCF3Ph806CLDReuYwQqE36Rs4z\nQ2N+jsWbLRm4iTRzsWZIczz/i7sooAhCPnRJrtsIpZS+MA28VTkgYEAQCx5wTC/8oN46jhmSqu5M\nHnGewpS4MaTYWjvFev7i2zlvGI2Agol9HiNaPEfgmECFx0EL+9tUGo1tGpWIyRA+RCO/+ymuoccf\nRL58iOvE97cxnPsB89e+L8rsV1g/RVKUIA2xVucXovxo1BHA9oOWPL7FXGd62lxaymnwGR+Ow764\nvjHUplIT5smcsc2+myM9tucYEAYePu2mha+ISMtojKjjdFj/T6daZWWnXv4yMmqqEsu4JKAU96bG\nVVfqE/ULp1V1GN253+E5h3JF6RXEn/A8WwOTfZGNx8ci7s79nuY2H4wgUNxSP1tWYZQadWRpRzMO\n8q1dO5nucn+Kaw8rwBBceHW906jYti2JfjszRlsDarUhOTKo26zrsfwu7ifXdSwgYNZ53ldzmUAE\n6owJecAPnK4cj4deAkN4FDxwxbY3zsTozCkOSVwEUn6fj4cEwZUvXoEHc8t5n9io37+nJSga4+Tv\nIGD937E9cyLE9gwiiIi4LJycgo3EU10tFZT12niyuT3qIpa8fSRqvIKnigDAzQVyAKms4zpftit5\ngCJamXqzVJRppCxXQOcvg1Q3yN16AWT/JhrD7hsY5N8CEPhrNMrrf92L/yuMGgAmFH5rGCfVolRV\nq9cLWd+BWR6h2ORcsGXlUrREhpyj2Smn4V9LYO3fvInfv7qRxR8/xe/2kOYMJaWQX6/MyQcRb6FU\nhj748vM2voPFhzsFWdb/X0TSV9/FPthDwdus4/OuL0C85EUO8ExwkSSwwlJ7lo9AJNX+Vg+tAlEY\nO75ckIZsTFqmYoJXBA/u6RHWutJpwaZRSLDAkiZqzfdh7GViY/QtwYQBC++xT/smcMIADkZxHUSy\nOs7n27m95syY8BX7TC3CYn5L0SbTZ83Dv1PVEfx2Gz8//Bzf9afP0c21bVNJxl4V/RIYUg+TeqlJ\nkljLRct945aG69Yc22fAEd/zKHLE9HKbKb+1+a6dKPeX94FIbhDHrfWQ0EhO6T0iN00ZFrjT+uWQ\nbTLdap/CXa8gszZtuaTZCKMuJK4Ca8yzJe8RjJ6QpQMh3HnxJt7ju+EB+8RjPqPcZR/cyPvH98H3\nxuukiIUwGoudAinUPsvPq6qXm9WxOIYAuByXxXU0lSqji7WpFdZooOeP99X2STHWihQTdezzlocc\n25SBc4DAlMEVn2caPMhPYdMW5q6XiyJdv3k+GA0dSOP238dO2N4u5NNDXGc/HGIfUwaP882T7L6E\nHsF74HphI4j02C45EzhmKPMPRudI5ZrjsccssszKflvCmUSwlR9UH5kD1vRduPF3o7GkkT14F8D5\nuo+tyAeWNuBJsGGJWwRt7D7H+Xu7X8m2K0vZWr2L8ojRQIfBJ7DcRNm9MPeq0YtIS1neOGnAZeMA\n4MrPcdOeUpRqfP4cYivBvpRShGNNqkKXGZpsnCNHcuqaNVVkLBP5W8qNj/9w/C38kPLxKYf6crxP\nEaY61UFN6Da65B5r2U4JPmsdT+qIA7hjIxBaHZ+pz7RkL8bhCucYzFpDQOw0hDS+8aMa4VYnBfDb\nvHLqUCJKSg4T7T7qYwQSu3C2ethcs6W8U8SfFNuTgrphpDux2TGl4IgfO2vS2h+/UB1Oj03yz8rZ\n8TP8CojEc/vftj2DCBIFB1H/VK4FIceD07QF9tZjc6pyQS7qKEhfbJA7dhW3y6vSY9btvV6v2lLx\nweJlBPiiKcl/XP72KCUOWJyvEZd3E7ceQnGx/0UukM/JUGkuoA1iswOJgpDv6a9E6qv43QpM86t9\nvJ5l3lUwYfAj5n4tZ4NbVhBBrTksat+8F3n3Nu6zxaqO2rwjoECfv00gwaKZ3ncbAQNpEkuCX8X/\nlxJBlhdwfaxuUQ/5Bvnt38BL9HIpV+jrAO9SjzDX0ycsgLfIVwW40HVeDUuOJX4+jkCY1I+1GgpY\n/AyINectyr141tNo8yvzrSoiZ4zrvHk37yW2eXsKp4S0kzUc5ggQRc4b/FNtCI8rwucIG+3zVJ7v\nx+wnPFeQxihax1uEgN5Fw/ILjLpD5q2m0qlRTNaDpaQW8cUd+krfu+U5SAbS+MHmwANNVeFzZM9F\nJw23VIR5Jg3xhxy6rhM4kCINKAPgETPhqQvfa9oWlc1bGleqWMW+qQ3R57rq5QoGNOXrCaz1u31Z\nkaAPS2yd5ClXIkmxao2LJ5GFhsSNcoNxAJLMzVW8/u+WMTf46ud4H13nNQzV+3I8k1mfHsymSWsC\njTgClAcCRegTApMEY16sjvL6JsqfegHSPfTT+tMlzgFCRYyLbddoOt1cBA+/b8y9D8FLh346mZBZ\nGosWKPCSGZ0GaOB4s8ZXDm7xUEt2audxyMgsKxK66mXxLlQuOb2Oc9NzmzfT76CII53xdKozjiEL\nqJUnqTJZpiHz+jwJYIjHSnEOp51WZaz/fK7zgtBLljaIbSqfFz9vMO8IlNf1oA4Frjmcr5b/KREO\nj4EvC7xWxpvQ3YvsP8E4pBffGPk9xvB2T5CmUUPVpl6NgZRknCpo3vNeynutzb2dtuAq2vdSv45z\nrkFeIXW69gt0nyPGEFLQmsOg0aONYyQZ5B06jvwk2n8hiBXXNqWkm3Avj/iLVGYRPIhfMxXyqu5G\ncpZAFI34ZVVep3YiG4yDK5Qn5ru01XA4HvddrcD4HAeMEsma8e+yiC+OoYNJSWXLwWpNOzN6BWUk\nCYbrDZxzNwslTuSF3Ix73y2hr50GcSjx6qE+1gCumVprS6NXLmQgYjzGEismYmY8WF6+yoxVZ77O\nORFshJCN3LBEnJJFWLK/rESxWlgVns3FvD1HIsT2PCrQaKhToaszRd8SplTGO1Or8gSj3wWtcLAC\ngzrzpANCyCiQ9PqLXlbHVFIxv46WSDILXn8UcbdQHHdRkXSrqMRWWDWZe6jgQu3FA1m3uWJcyPd3\nMIJ3WECyKgBKKjOTY3euLrLNs1Vjh9EGn6Mh77yXsARPwhHXvn/gBcrvtQTeKZXGWtTllt/D2Kcb\nILS9no8EO5TCRK2ZI6llvt5fiVQYGy1CmxGdQeKsxc/xeToSY7Ui/RELNqIYqIQyaoGKEMtv9SEp\nICsNaS/LHnGBTV5WdJFLC9FgFGSsieI17y4t2slwkKIlckazlSxvb44/Ab/TTHIyVuTZkrO/NCji\nb9OAg21cEMsQv3lwori+ezy0dIZ3CdfBb5hqNDp2DEHWsoPp5jhflODOpJTYvPN2cMKSbbZ8YboP\nuhvS9+P+K58nvXLIMhnX7OZL9Saa4Aqg5pvlSdMueH5bf90CiN6FJO8wgOl931SI6KmnX8rSDypf\nL96DzwWJ5c3PrD9PryX7zGVGDhTuoZwj7LYq6xtVxkCy696AqR8RX+uXMZJp8T3kVNepFeDXFTsj\nnn9fkmeynJh0g3SfAYYQkLyLY2fxEOUPK7Cw/24u9nL1DeQP0s9Ylmz9fSTu232EBxce1PttiuJ6\naBkVUTYrx3ODgN6tJstLjgeVRkgy4DPllWHEHKIzYGPIoiV8JqNEzoGDLr1DHsNzaITXNJiQ3Zo2\nLdeI+ZxY+M8b8FOtcmFkTFvS2xFZa3aZKSLXuAvXY3zO0uJs5Rx2BlOKNnCcbMi0vxzUobBUrhED\nItHDrYbfuFneFcoLOj2Gnch2C0BVCZs5B0v9Yp95s7lGcp1L/A8WVEhbeqw1Et3o/ZoywhD8I1Ik\nPvXiLyCzLlBd4C1K85LM+p4GNdJNd93IkGxUbpcGMx0rU2uONfy+plnwjxWeLppOrpfg9uoYZcsy\nr9MAtncJTLq6hhPsBnqyyleuX0ydSpwzrUn7sPeW+gTPK0FBZyUgn9Enk96R1inqGJzTaf2CLrfG\nsZtGy7Wq/ncsnXvkRpBLSW3JtQAAIABJREFUyIshpCtgEFUYVA3A2wV0/kUFx1Q1aJ82WpGilJkp\nQitkv5dy1Mq9KQLYJwZ3jlI84ncYizMRXmrnCCMD3dl0sOf222rPIAIa0UqmCtAjtDr1GopeG0+j\n1uPGfEqG1KDHcAGlArK9XRTfE3HPmy2jyKa5V1joT3ci/b48P71Biw/RIK8uo4dMK0xsBznt6FEp\nvV72+hrC+8NWmsvpexkRcmXocgqbTEizSFogqOCTjdp9/0s8yY+fxHG1v4+L1wADPcCVPjxAoLMy\n3iloOS1VVKm0AKPo9zAmcWrnRfyyfC56SEiw6Sso6AAE3HCXmHwZk2isa/I11NDahkMKi3NZ/8S+\nAEDA8nx4FXmJLoIHHFMN+kY9ChqZwMXTq6KVyjeVyoyNRMhJFRe+XLxY+jGVeIyf13UinCNRHs9i\nF7qSfVi+qoUn5GGzTZW+S61UkmzLFTq7S20NJjQ+y03dq0FLT4U39aMTyWqKJLEAgOVc0KoAPJdL\nua0sm8lxYsPzU5SDk6MFbNRQLp80GYtJobvA+CPXR4oyiNf9/WU0nN+/vVfvjG19W8oubtu2kv0D\nSenivhznrBWuRr9LABufm1FZ1QXuDeVi10eU2TxG+cEUklPGRaNEqPrO6dHE9TyvEzTFTHNoEcEk\n19Hb765ijnz9GuUAvUuRUBcw2hkBRQF0KhVX2e7F/xjltv/32KfOA4jE/Fx2KDPGd3DRJu4alhBF\nStv6G5QF/HNcA7o7ANofO6nhTSUXR8rrTWCBSAJf2G9D1l8D090IdGmINh4Tj5XPt7kSoGxTx9jv\nxoBHtq/+XwKRNgTYcreIiFwi54YGpV+UiCEB9LoeZEkDnNF8iBSwpLo0wjZ1p1wmGpWmnBXTxIBM\n1XEuyBBKHh6mkATKdeOdbweXZBZBWQx9phap1xwe2vpKZA0SSXI5XdVVcd4ac5DToPGDzo0pFnyR\nZGT5NdbHfQJUVN5QlzKOE7bKpWigSvUTXreMqsmXY1uat9Znx3vBO1ldxudtQXZ5eqil+hmA5Cu8\n/6v4nvwNQAWH35F3sHzoZIXY+qQbqgUmIjnAQn3ApZQ4bGuzpqq+lM0du7QlECZ+xq2q7L5anOQa\nUbFtxvclkkCYAZ7mJgM4SCy9fgND+R+iLFu8i+Nk+eeYdsqqDV3nFehkug77wJEgkOBCXd77ICIX\nuN7LRVm1g/1J/hxWZIylleP/jKjgnFZCai3Zmp2QDiZyLljGZMh3xzTaIShxLXU5D+6tChG8LP3e\nHFOU3ZolvCFTNAILwA3x49WQ5vWIp8bIPcvFlfcL+0KJNjFSlvq5bOd4ZHj9e6zdq2BSiH/DLUiQ\n4T+M+vu/VnsGESQK5BrCa7GGwtzBw3VslchQ68xywcZMVfZZemj8oPu2qEfbATz4eHdRnIttUfXq\nne4MkWNex1kkKynUViLIHSQQoADAJwg6GqJrsoo7eXiIXgBL7MSWkHAYMF86uYCFrkaAKi1+cpuT\nGs15T0hYxPJ28nP05vUf9tJ9hnKG4AESIPLZ2zYtWnxuW42BjYulvY+mGmQJZYmKI/tEPcRISXjl\nY1pF6EogSSQR6dF4JGihLL6dk8NDmeJgAahROLErFTWR5NVlFAvR/1WXEGKRuC4S37BpEq3x8vP3\nxZDCUm3upIZ9D+n88ZyJvblRUATjz/Q1w3r7IFLPGPNzYbEi47zR2X2fgjUQjZ/4mnraaKwoGFP+\nQA9n44MSN3mstZQlGyhElnjJS0j9701qgp63BCC8C/qb5poO5Tu2IeqV81IpsSLBHiqqUlw39YpL\nkTAYd8kwgqKHqKdv3kUjdfO7IZGbMqrgHvfCvFfmMWMe7A4L+QJyrhTZVT7zsirTD5Qv1SVmfZK2\nVQsYeoggYoqW1grPYBvtA/2MrSs/e0nvg6StsjvyJrAzzrJmpZkqKaqMqiIwikoOQi6ILm3pAfMb\nGJhNKZ8sH13VBM3n1Yb+cu9jlATnZAX+F1edxFdRnp0OZWoFt5bnBQUFZOm9LAGOnIxxQ7V/LspA\nJMmBORwxKcwu+86Z3+aOCaPv2CwQkfKOU8RDXnFARLS6StVAtqG036pvdTxv6vhuVVb68l4JtK2b\nTtYXABmh8HMOsDGVkte/WKQIwJQ2WK4b7Hv1eGMctt6JN+u6ZWrXLUHPCy/12oZmlx25nIj0GozM\nSqXikHpDoO+azPetGlwavm7AgxSFmXSq0XMMpbzj+ucLD3i53lEO8LnoGGJ1K76bw0Mt+49IuQDY\nt2gBAi3LBcQz27Ue1BnFqColSsUNWJ6jPuTh6eXiVTOy1Tvd1zYeYTkREngFgKPuVIbQo04i7Q3S\n7LZmPkfgBu9pg759HyOw/P8Rj7n5NoKdmz9H8LP9JcjDLyD5vovAKsfZUSMn0ddGL+uDU9Di1ZqV\nTGIjsSj5gEgW6sXpupeII9kX5XxiykLoBnGUuVcITyAvF8BnaTA3GXl70evA9uRJYCQquRYwpjWq\n2VfSQuarfkRd3kT3afWq4FR3qrRf4jaY58rlYa6TiSSbhIBUlbAQHDPWwaxDkJ/oVGrctH793H7b\n7RlEEIIImOwMX2riAr5Ydaofdics5FikWJc4BAAPWSkyCmIS9NGQvUNoc6cGGReKXhdMeoNsHnNF\nIYbJ3Pd+RARJQ/pkFIgNDPXGD+leoLzbsDMNm8f9POyWo8iJ1pSW0m3mEbE5cZYVWp1AcGGxNvTh\n34N8/DF69I4GNedzaY6o1k/PmHBN3uhcXfbKhVH4NfOH9f2RQBLgxfaUGPXZtKpFUyqJbN4FLVXJ\nsfM1IbFchEnOyXJ/Sp7Tl+OxD4PmXqqSaepWs+VAj/VO77NqI7GNtZjkfTr/PEG3blSPmO1cSN4c\nSj7XnsKJcK7ZcD1VrMyxUyRUVDIXL+LnmxbknQcAcejXqhpGqUTcau4x5BL36zqvOfUPUP7mniuV\nehxUAejMPsrQzuegN0fSOLDy4ArGzeubaIjSk9ndp9DvHuDpFuH4DFuml4rz6va0kFv8r/m3JHqz\nObM0ejI2eIbo73+CAofKKz7RnsR9JcmEfCzG39hf3Jbj3YdsnuD84RekLfx4V16IUUrOiVuUcoIh\ns84kZisI0PYaldWDk+X0gHl7TPwqIpkhuq+k/gTjBkCnBwmuf4+oCFS/cbhOfd/JAuEWziPyDmsb\nOSWsJ5jNyXheWcbxEXli9tka87ZNK7fTx04RLM4BDGzWuzdk95+ABfQx01CgoS9vI2hWr05SA5x6\njUgOkh/bSA5+/+JiL5tvSo98tYxjiAA5ATGCFfUK8+rgRRCkV+0NcGPAhZx0MOWa492adABdJ/HZ\n1U4NYk3ZlPMtdxZYXgiCfp5T4mU02GrnZP0L+AXasuqTAikUSMBRFr4fVReotPIKG9O7gj5nnpIk\nMp8iQCOZAH3f9ikdDeSOHcr9Ud7xpEObZHcwuoclOLa60CBjPe8pzR5h5ySNR4IAIkmH0fLBVr7D\nVZ9HlOh8PPB9IHrq96+xjdxVze9B3P3dR6n+Z/w//AU3BSCZ4f9W30xjOJUZf3UNwBOnaO4jMs/q\nJCTfDdkIVb4QpiHhey3Zykl/6jWlzL3GBW4iOCIoLa5KivJs1ZqORqDcsSw3QEbK5CoD/G2z8i3J\nzDQuRhEI2ViZOjZeK27nqjPMgQdTxIp2LKlzycyv33p75kSI7RlEQKORXL9GmBHipTaLSvrPyCX7\nEcYbvd9MITARCkNwKVTfGKMjJmOG1otX8idt9CaTbI9KAFaktq9SeCMNSGW8La/XZSXjKLQT23EC\nP0SS4sPwrX1bS7Urico0asIQPhVlBrGvFTk2j5ONOcLHbSUPxxJ8aY3xbT22OYhgQ8StcNSFXZz0\nobQ2jqacXTI04vbu1ChrPM/Hko9cjBda0zgLQScSXZWCJ5EElwZTkPH72GxQKeIaYclIvVkDXNhl\n4YOn0Xgow5Jt3+QoNJ/9VqNbqHSUCtAyqyNttyOeIj17UFDuKTW083N8zb5PIU08f55pVD6vzRw/\nQ254SZEI9CJfxr0ur0gK2hUn8etK3KYpvhu1hvwbCO2/PUr7V5QV/BHjAQpWP6Ocdb3X9380ZIy2\nvnzuzUupFAhp1QozUdFabuLnwx2Y4+9WcupK0I8lK3ldy8y96ysl+GLkjS09N0cgKpK8udyuoBxe\nvDjh+1J+tIMbAWxjYsq47SWNd5UDZI//KSq57S8wHvelQimSwmd7BC2QRJeNHm4tN1aFVLUH+z6A\nlPMWJdQYpUZjq20rBVJWt6jEw7K0nz7Hfd8BbMoYx8mUT7CH4AHBilTGuGRYD/L4fLSRMKXXevxd\n3gbNDX5cjk+l0j0WsaTAtcs+z8xpzk3mT+cr4OIjUkVWkXfiiBRBRtcp2EPg7f1RFv+j5NFomDpw\nzzrG0CcIRDH17Pt7qf45AkTLT9BBGNFDw9Csk6e+Ug6WB1jxTHujAaZ9grEQhhQ9Z6MivCvnJNsQ\n3Dg6wpK40ptLHpGbtaxuY6kD5xFijzQCXo8RSxV4mU59pUB4SunAPkyxwBh1fQJPagM08PU3Rmcj\nGUf9Mv6zPPUSwK/CaB2+4w56SqXRQQlEUH1rhlxwau7YXPTapF705h3kTaM6TYRZ4kRgVSinJJU2\nMjNfw0REHJcrl/Y5fYGO+BeABdz5T9/E7es4pp130gBs23xCOfNTCZKRWkAdHAQsB5/WGpQZr5Bu\nyvm0QR3hVZXKWlMOtHbus484vzPW5wBycUeusDeMFsNJ7hECS9Cky/izcLshR4IkA+Az3diuLfb9\nn5OlKuf42ciuXB6miFDc20xkKOUroSXv0pid03HO6VLP7bk9gwgShQyZrf3LKEz8P72LP757JfW/\n/FVERMLhg4iILO7gvclC6UWS8Dj1VTJ2M69Z3lSeZSQ0iVwlFMdSyJ+MAZCH71twIlea88+VC7r4\nPhivOxfWaynz0Q59rXVzed9qFIyM+nQflLGaI2uMfFaHUENJmEqSIiyCOTYtyqVCEXPtp/vatlyw\n5+zZIqn+tuW5qB0ZjZPRw6Zcj4xQYc6cegNSLXcqZ9ZAStfBOSWM0hiWFyBw+l3cZwUl5nIfPVo9\nClkMJ3ivJBkJNDSOJoSWC9+pqzUKg9EyynJtokzIc9e4eSWTeeXBjIEhN8geMUbO5es91vJj51If\nziHq43sr79me00lIRuEFCLjgeUv584ix30BhWa9ELjbliZhHP6qfDqXq0xfx/+/3cZcaCh1IrroT\nPU2QSyS9OtWyoHHfMQ+W7P8GVMoqF9hIAEbaMDqCSvXPn6Nx8ONuPSr5eswihYrrZPNZy59pHn4p\nu04KdIzntz4PS+Ch5F6PyZAU5+SpzUkq4z3Ec2kdc859XKOI3iCwC1K1h59QJx1AzpAZDZQSlNu2\nr3V+M++4adXgojFKYJDVGTQVBl2w62pNOVhtSxLLS0QkXEGpb17g3u6DAj8PuG9eh+dKDO5lyswx\n679kzKFPDCdC3qy3K30/PS7y/+2xSpo4OtfYe6fnsuco9f/iOkpgzDSUt9fx+2+j11WaRvzPAGje\nxu1m3xVnCaeSPLO6WYj771Fwh//+j3HXNeRDl1ltkjym7lPMN6/+57/K6vRT3KVB9Q/IdxrfOceI\nCOY8gCByFtQdQWY8Bpn2KatPgxI/a5+YdX2qz+14sCVF1WGHSlHy6oXm3VevIwgz3GsyDD5jvfyJ\nER5e1y6r/3gpPeskns1Xaeo8fB4lw6azB5PesSLD75w4rNn+M8CEvZGVRg8IGaBio5zGUU9ln+X3\nb5elqfXS6o+2UY/Qsq6D1znOKheafmJKi/Iy0SsO4AkRZcOf4cD4/FFERBYfEP30hxtcsNIILAIA\nNqpJ03+tDpfdE4FVkiHSYTIqSiFj3UA5stkH0DM1DaWpJLB+Jsp9C7hmZAmokBEJAO/DvpVwIKBQ\nhjowEqU30bn9ZDSu0ZfNPQ/h6REI+eexvCv1Zxtldy4SYU4reo5AyFoIGoH+W2/PIIIgRJNoOb0A\nzG292IjcILfrEjl+y5JAZQB8zwiBU19NllkTyb0oJYIcxCVmdpOzqIg76wWrge1GRinbKOIBLYgb\n1Vdm05JtCIGjgdj1XiMPnFm8VABNPu10U0OMhDfoc3dMk/IcA3d+jtyTPhjBPPcOcqHszyixIplx\nn9X7JghvIx9S7tr4uisDCDnNOS0rLPTQuLqQyh0puzBI66preMiu4hitGKaMlJXQDjLs0JcojTlg\nAexRCYMepwEgw3Fby/1D6akg2SNZ+JkDTSMhL2GUmJbRFxZFF/ZVGvtTnhWRaUP9qdEIagg8AT23\nRIR5s6GINsLCHlm5oF5oZX7+5mXcMlQS20CCvbpKoAHDJudQilV8N857cfCSVKgE0DyU89VXpWER\nghNLhKqKnC8VSZu7m7c8pUJE5A7e8R93UdP7dGpG8sYalBwHU+9nHHJpAcpS5tQ+nZwykQpyjXtj\nOlSusI4VqVJuWM9MCFl/GDe79oUp39kHlwGuFvCMW5JlruHx7AefSMCo/OuxpYKqhtqQAFcroxV0\nxmS8PnLuewUPbgGyPLQMEzaRXyNl141kr21TFUzczG/Wk3qu+slTrqPX4zo1/drSObLveI8szalk\nay8wb9+9wUFp1fDIi9bqR2iBhgYiY2RRJQMF4EG4huFVGzUM70lACuqu1uJv4rH1PXPFzTg5lKcI\nWTTkouI7Za42PPdVybMRjkEN41QCtpTV0++21EFGKSNa2xlj94+/V/DUfxMdM55GG0s5f4hpQn7N\nik17OW7LlJ62Y9RAGf20xPdNV2ch+oI+iP+sTNWYAY5nzXt/uZIGKa0eZa0rpGAEfR6AWVhDq8OQ\n5cMzFx73SiAHzgitKJDJQY3EUj4IzHEbPiPjPrfLhpYWpH4oScYTIKRcsmudnasiqc9393Ec3n5G\nX38Xx//l6whyLd65BLSiBCbTJyjLCOgeNcUyRbJoOg5Kbfolubz4HGN91y4lnOs6dplegCobbtOk\nCl1MMeP4u7ooT8ZIhEMnozxMXczmhdXI2TCT/jknn6bak2SjlNc5d8zU+86PmQJcn9tzY3sGEUQk\nD7HWgsI/R4Rc9kcRLNwkC1Pk3qJ/GpHgRnlug5nM49wop54wavLch7dkSbVERBpM7VQGq1zsuWtu\nfNtSPmzJ41iyhvfBJ0RTFdYnWGmm2T5Qoh8y5MJSy5/PkjbloEv+fR/cCDx4TOjVLhfqM/soeECj\nf1B24bmIB3vdPrjs3Z2/3lR1AXsMx6GQkJJhdnD/0/tVNDq4mZ/KMaypf24UEmsRapuaULlExjhn\ntAdzbB6JwGYVoK8xJP5Xtzz/W8PSmQt/ATcKSZp2UY64Fkmix2NSUlrWhWTKA07GzqAB4p16T/ie\nWT60NXnzOUnewaQZnPpSobQ11tvBaSgkoxaYkkWP1geABw9dOscINKJnSQmf+IPMNguA2nHA0VP7\nYeTlouf8wfC9lN4uKe7FGj2WpOxcY7QH+3OfpZFZw6Uz8oLEcE3GK6MRUDOK6dgrmeWkW6AX78sB\nUEnEaql/WLWC4MFB006mr5eXXrTpanMhu/nHuZQz+/tT5v5XpTk94ftR6gMNDBi2TudoK3IXAbzw\nOVqfSg5sbm7Y49iFlwrVh3gZtwYD68oQb7J88S3kxM9fZLiN33WINmt3nPOYe4hCYlrPsU2RZUxr\nIMCmEQOaUol3fAgauWbBI/NYZ/vNpjXwHjVEXETC738f/7kCwEpPMAAUd/WDiIhUeAfL7b3yVFHe\nkceD5IiN8ioktTaR0FKexk1twLpuB4P9M6KtLhfi34IE+xoRCZt4/wNSLAJeebeFbrDvFUQgF8Gq\nKoHQ5CRI/WzNSit3dLxkM2luvU3nCMXzORdGpVITP5LRyzK9g2BILjtEEjD0+R5rAEp2Xn48ajWO\nw75cLzgOU4rU2JnFfmIJ0HQ96FwTxrcVA7xTdQCRVyhPT9JoAhx9i4m1MGQ6xcVwbeqrJO2F86Ay\n1ZgqH9TBYyNNU9oq5mIGLlh5ah/wKfqR6tp6Curt5X5PEaF2TX9usYVnWEVEnkEEEYkTjMYU+Q/k\nIxX1IH4DAXY/HTbMrZIbDj4z5uM0Tbn84zD8uE3KoFdlEwtAlvIgUjIXK+u4iV5IuXHlQM9JbSyR\nnpYbRNkjLWm5Sx42LUtlDFvrYfQuQzj1aQzizcUKntNA4ex77a9x9YdyUc7zm+cAGps6kBvn9YxR\nbz1lOQkRFW0+mA37nopEcKavvenzSvkTcNLg0rUJKmHh7j5GpSZA8WIFC4aixnJ6paLI8GgtD2rS\nG45drUSbNIToIVDDkuMz8x4OBkmzwJp+r9txpQW2x/Kl/1c2C6iw5SG8I54dRH3IFxgDH+OW5UqH\nz0cNi2d50sFEyCnRGfgV/E2tN9H+ErcPtwhJP5C0leGUyfNDxc0a1d1onqV33RoDmd52fv6iefPl\nOIn9gefhcxgwoXhGbs0cseVQbXRE4wdZgBG7JoBmZOV0+KZRRM14m1KWRrwMZqep9DHLldOZ8W3f\nQSju7bxcSmWA06Dj2sJDacSR0Gy/T1n9BISUK8PM9cf4ZZ7Szu1qIxD+o9ucp29KXjFyQ/OmUS5Z\nDY37vQx/jd8d/hXcG3dluLyeH+92selkdYLX/bvooAj7EqwPec5X/v0pyAlzffsJMhrv8mTW5Tx1\nhu92S+ONudrWkNCc7nFfPNacpDFozWGN0CMHA+Sf+/5HkW+QLkrgREFTLqrgN0C1Elfnue0z92KN\nbzdOI0iGMtZbRJ108Jo7cJz466NUKJXqXkYwobqKctaDw0LHxy8g4d71sngoyzHPh7NTNkyYIgQX\nKSeeAK4nbiXBsaV+sV62ui5YnYpggo1icBJkjZSO1YUBydBOIAUlSD08ONVX0lgs1x6bYmsrZYuk\ntJz9jiXRy17K14xEAupGv4mIkqAKxpK8vBTHyjmMIGJVhm1ZFSKVgmy140lQS4JFRjErsWLW96eM\nFyvfkvdCU7MyRsTHiDaneJ/s2LeRCPr9mTE0Bn/Zr7zeM4zw3MbtGURAU1KUz6jzexc/H7eVrK4Z\nUhX35aKolRBMvnGbkZLZyU2hTmSVZaX6ILrSJUNTsJ1Wxxo/aD4tEXDLfJtyASX9jvu1DMysDX1x\nQdIohjs6EYS9anlL5v+rx4yaCJR3H0b1wn0oFyttE1bjXJ7lnPffZ6fplFuiPL193ljjulRmbfim\nBVgGcVpj2jEsWdl40QVG0a990BQRvi+G5y3g5WJlBS1/FFwCGBg2Sf6CmCqreYp3D1G5yckUbZfO\n1X/Pja3E3m0VHim2HNRDmGe/5pAdfZZExmgNCGuozaU7nGtfEwZtj8mJpJwqwlSoyjZl/KSwYMiL\nH+OLGn6IyvPp36KyufsFIM1hoSG5ITMkRXKFGeMP42a1aaXZwNNzF414phUwn31Mmlhp6Ohcqs+Y\nPTyBmoxW4HZv0qHyFIbH1Ayr4OUee6v40kPPqPLGWHyNH7RSSXMolTUFb81z1i69UyrpJ0NClc4v\nOGcGzjKSR4swlLKaLXr+YkskVmUfsKmXKHhxLpO52XYcnQHZ4+bHM0ctI0mY2jFITrQ6DbbM8ZZ8\nDYgwNXvH91qeMMnscdpEOtYV58/B6REEY2QyFZ4u+9kCCVzXB+ZL/yXmf9PoH3aDGvUfvosVMD7v\no8HZq0EGYwFj+fXVTiqUrfPQMfYfyggiRrUoeEai1irIYRfn9u02znUSX7YZUChShqrv8N1Bw8Zh\nnBrSxL/HNqh95q3m+kvZZeQ5wVP///xF3M+xT9OkwE2AS0K+xEiPATn37edE4Nq1BgDPgHCR1Be7\nrs4ibOw4x3vyJdDHShn+u1aWyyi3/R9wbygH6FAO0C0RoYo0zOpjp6XCR6UqzTalL47JQCkgGFBY\nM+XM5t1kTcc3jqWOwopOm4uTesprY5Dft+RB4emTnkYenNVb6DzEegCc0IHG6jsiuV5c6hiPcVWJ\nJBJp9l9veCdsmk0sM13qapoGwr5eQedClRp5cZWiBG9RZecWnhjOeaYzs/RjcxLHFAgT32/lB8fS\nVAUuq4t2RiceJHHxfE0b9wv7oLxeuqOxfJ8iTY2tBGmem4hIeK7OgPYMIgg8QDSyyKcCwqL7u5U4\nh9JOSwIArtgmRDUJSwrDhbLjxvMmj3QZVdAOXms8k6HWNls7ft20crWOBv8KeXsUYDsguBrajHvb\nt3VxTZGk8FyR1RugyeIdkdaDlpjitEnGJ++Vom/Qv+oRNXVnMpLc2ID2khuhbk660C20mgHTCQxI\nYpS2/N4sMKA1j1mJw6USexr6WZVoOQkRmeJR9UGVFHr+eN5kuHA8ZCCCKc/IxudsjNJRfMfcVXQF\nQ1e3eMf3iCCgt7kb3MgIsJ7ZKdZgy/BsDReSJVLJ6YPTfM2vEadz3se/xSs5Z9Scs3XORULMkQcF\n3Zb9Wni4oT0HENoNH6JicvhLfOdffoqKS86SbUE/G1nE+cwxu9j2slmVChzBAyqD9h23gx+V9rTR\nOXNlUEXG5KnK3WK6aopHgVLBhnGyOUkKta1uwtDfumfKVlkVpfKDLEC4tYSBp3Oc6RPGyM+vTz4I\nOqoUUGT+typm6X49yLnoharU+8R5XCqYRZvp4xRePk7/sYBQNwEujIy1UMp1e52cUb97InjA5p08\nGgP7FJxh7PVyZ3//z2gqK1mO97Yvth0CikLvND+f4MFHEHra+Uxg/np1TFUQ8KjHPUgzt9PHJqMo\nL8tccm/QSXA0QMFpyEEEzt/yebUUHQjwfCXiq3IdsviCGhrZuRTwNFGQOgcJkG6jftH/8y8SDj+b\nE5cfGZXRfYnbuw8rediVnD1HBQhYAaYEN/e9V/Bgiy1vn31NQu0afEMki91+aCQMUe+jbKm+KUum\nWnQrB2NG3DMzvCtDmE8Z0b545Pd8H81+w3tsoHesbjpZvYQucweuBwBhso38FIxYGSSRS68wfpvf\ng5PnJoJY1csI7rj1XARqAAAgAElEQVR/gW78JV6vbausGgO34/sVmQZg1dli9KRgdN+kL+UOuxJc\n1PmD8a2AgCUzFhFBpRTZnexNxk3tJSjxKe7JpDerIzKT2aN0QZM2OCKnDYmQfDQOZkHVx5vdNQfx\nnzK+nttzm2vPIAJaqpWMz5zsfSVdawxXY5iz7FaXKW9EcDdIDbiAgFmCKKbVMoHxwvtjoyGm9FYn\nRJPXc8XvNxcHuXqDhe4thN0ibq/uo5AfEFHNEmTbLwv1XHdGaSEgsXgD4/dPMV8x5gLG6/Q/l8/O\nlhDQhKP20L7zus35vooyozqDex3DBjd/eJC3222xD8PZlF0ZXhoqKFWVAIFOCeWk2JcGh2YMDCmq\nhDl41V1UFKikvdpEVOnq8qjXWyAPkAuANfhIIJQTnV3C8FttAPZwfBl2+RVAmW7wCkBprh1y7zqW\nmZsJT2wHN/K42EXLGg3dkIczxu0YvZbi2CIvVrdUDErFNSfdOleyL2+5YTEXhjf3/Tlb59fkXJji\nhKDHsv0Q3x9DkBkxwHneBT+ag2w0Sm1a1K6rE0hGwJA5z33pw1DvWjYesl9xnfL+NQ3KJYO4Noax\nJVnLPew2ZSiF2ZZGdp5GtMY4v1mgZCUUX44lehNJ7MlzLqpeFpfxvFd9lE9XhzKX1vclYCrVmM+F\n0dZLym8pW/R24drXADyX8Z7WVyjT9wVeasqnzKII1pAwc6IsBVtee8QFY95jk1V+YWPkAdcLnt/N\nGIZ5c4+MizwdiZEc5PSzKQP59JqwPX+1ZqOGptqoXBq21rAWyQDXbfn9aZutbV0pc5kOQqNVZWme\nPoihqRGNjCwzYd9ct/K0RQLXmlY4AwrnQJ81WJRkkqA61xc4ZV0tUiOih6SLNj3Sjg8nKaXSjqva\njGW2/raT7Xd4jkOpgmr0BQl7AZh/ut+MKpQ8Fhl17J2CKkedC1LsQ/Bg8YprOKJE7hvZfUQ1C/Iy\nPMQUluplWZY35yCyXujukfc0ZMc8ypfEa5zZh+9FORnW8d7rG5HqCtGON4wqQFWnH7Ge7Eu9pgtO\nGqSL+d/FCiXyj7HCSPVtnByb5Xfx87+iDPqdlwrki7159rlIhDZbPCn7L1+Uxjydemusrc0J65QP\notRartzqeLQDs+8TxxD5irANLLcKrhMH3TT0gwSSkzEiAWliQ8vTQiZkUUF2bB4VkJdim1chS7pZ\n2Zx9ruzx9LeZre6b6WH8PHc920Yl6H/DLYg8RyKgPYMIaJrXxPWhSgOEwkGNVJN/aJW2xg9qNN68\njkYo0dDmDWdx3LCc0+mTyP5LXol6zEJMpJMo7fXbgyx/j4iGP0Tj1yGPz77YcIva7n++l+W/R6nH\nMEoKMNZ9V0X5RURsq6uVrA4xFOFydyzujQugN9pYH5w0eLZejZBSotlQNXkX2ewX/7fI+zexdFYg\nqRUtWyozK/OEdTNrHXIh0FJ7bIdWhnuUQfs+Loqrf4l9w0iON7/D93/AQr/y8vIzylIxj52LCIAa\nejOOmYJ09RIpIjB6WDt+eSLDNBnaUx/R+0wQgQQ+HKtsQ6Y4xq0fIdxzYct5eLv1DFi+CF3oChQ7\nKUPlPU1/zo2Q+Qoc098/9ls8/9fsO95h7hj3yO8iWQg6FBxGNTHU0+aGDsFl/8d9dQibvilBgHIc\n29B02/qM38AqF3ycKXBm5FHEMSmyBwp4BjrVLkzuw+gqjTbI0rA2a+QUL0tjWD5FmaYlybLnERFp\nml7lafMynu893MVHyLYH8kSQmbwPWT5qbExjYESC8ttm80FZzq/i+dzbeG8X2ygX/9hFebW9h1e5\nzQzOEUdFWUa2yaLWbEUKRgxYjhuOhoumk9dXUeEl0EpyPYa8c17Tq9gPPgtBJ0iLZzcGIT2avH4c\nr/H+dz0BIdyrUXL/ozxaSZZYOTg/ntmsNy/3kvJfpn2QvJDylgSBzqW1q7ceRjNxV1nknKbA4Cvq\nExwXtgSojrkhZClFJXgx5cnkdpSGJuWzL6FHVFcYY7WT+lCmR1pCOIKAeZTfXLolGwEBNbo7kd1D\nnEefH0qvcG2uy7ny+bBUT7mC5XhW5WQZxn1hy7dqRQXqLVhTm/coy0sZ9H2rhisrBchPSD3cs2pD\nKUTDINn8LaMR50CEuQpSU+0c6ahdS3V+I3rWVU4cBDVpVFav4/NcwXAmSPOA8R+NUxVS8X7fvIqf\n//FPcZ93r0VEZP2vsQz66rvPsvpzlEfN99DdvsR3XBM8p0FtQG8RkctNvJfNt+X3p58RUYFolgUI\nS5fey8mXUb1M6eC4ZASQsJLKh8+pzDIbuQ8AEAy3IPjMllSCRcOB2/g9q3O0hp/kkEXCHBRMKMeo\nphlnepkFFmylmZFulf1/DiCePPYJMpOtfzaan9tEewYRJE5Senn9BRDqOyjBdZ/qzGrZHBvyx0Uy\nbtZNJ1cvooRZ/yME3PsoSGnkawOxS/15L4sf4e2HB4RGqa0FvVhjMbuRVLaGpDHM5UJZKuZ+sYRN\ns/xBLptoBHefERYNYVjh0EDX0haW7ttrqX4X73/9KaLXR9x3ikgoaw+fhpB5simdygX0REWb6O/v\n8Qz/5x/F/wE1uUlOZ1ttFqBhkBGjPVcA7mtSIeR4FA/jffE65q+/rOL28lPsm+W34I/4v0AE9e6l\nVHvcLxclACsEai4+xUW0/4L9goi/4L3Au3FLckQwTvelUlH1IZWLWpYeowZ5BVQCl8jJpKI5ZGRN\nSjZkEOhzjZ7LpYaZ08gp+zw3NHkdi4jbSAQXwt/EdfC3tPlc8cePeWxf66GNJR4hJ1CdwWtBhVJO\n5CSbrK5ieTRS+P144eZ5lIjVGO42ysS78f0+1pyELM0A3h/MH4KDvLcrRF1dLk86Jql8sr43x3AN\nnhX2TbXO5gYetd8ybSzOIyplNcAZhi2vlq1Ub0F29jrKp1dX0Vt4/C4eu4Dy6WPFONm3WSSHIWFk\npIPtcS+ZN38NAOdP8Mi9iWX6XnwbwYTrn5DLvT+N61uKeT6Itix4S7oHGEYPUe7c3cXnowJJxZsG\n5uvLnbz+Nj5rfU1tM574iIjx0w7GL727xyr1qS+BazaVAXWZWrdtGxGkTx0rynpONHq+8ZxZR9ow\n7se4EaZkxAhoMwaYd2Fin9FpRs2ZfRVo7cvz5x5jr7pAaWTXZolRHaEK4hc6CeN3Z0rDiaR5Xvmg\nZG42TUe7eMIYTfnQ5rz0ViOU379EqPqiknqIaxhTpja7vjjGGW6B2o+jZ4IZB3xOOgL8MpWfvDc8\nLjatT9n6u1ojrSxgczCG+v/P3pvGWpZlaWFrn3PHN0ZkZGRGVWVlVdNU4wZkY6vdSEayMDKiwcgN\nFrZBxj8QdksW2FjIMh7+4H+W/AfL4KGFkeVJLQRItG0wBgtk2aib7qbbNHRBubqquiorM2N6453P\nsP1jf9/ae69zznsvsjIyOzLukiLOu/eeYZ89rL3Wt6YUILcgS6nzI+97dz9sruO3wLsPrqR6micu\nJrpIAwABiVTRtLz+Nmqlx7LMvh7YJm9yYy8M2EgArN16kXPKHLm8Su/I+YJWfqKphbTklZBt3LMg\nH3lUMfCffxTOvR/4oHv3TKYPvh1u/4uBJxbfCgLtagm+scuTMRa6bzmZI4Fj+UUYxcBv3STIrAeQ\nWWdIYLlpSgWqWU7Tgt3KWphE8f2z2InIc2E71WPeN1v2RfIbxD7Og5DIOkmwriEMXWOOBfs6oGba\nXj6vB+C311iyU8Sec6MxRL2O8rvUe0+EjPbVGQLtQQQJC44KQHEQumSMvAAHVzsZa63acD5d0Wtk\nx5+bcIOj6U6mcBkr4aLv3jrJH2qYVnHqpVznWffppVA2VD7yevDtRqQ5Z+1iJAGCZd1p1mOj1R3P\npThFPBtAggK8lcxx+z7ctXaBcY9HhUpHJcrodkr+9FpCaPHLGSm5PF34mw9D28v7wZonb92PtbML\nmPtZ9ooPWjb556pOTCwQ9C3QUOOaSTLt6c6GzURdFVG/yR3i833EQwJ5Dw3H/Tboc4AL7lnotwLJ\netQNTkSkyl3iSgBCE2xaE3ok+JjlWL1kYPkYoSNZRWO+gbDjicgXnSoga2M1JKUhA9x0j2Gx5OeN\nuo9i3BhC4rwKzcw2rVZeCmmYd6m83AwESfZlHbbtvC0O8KbNsXT2nO7NvDnXXmuTnjqJ37OSAi0+\nBRRnuoTSVXPURlfhdsAiZautkFLFiYrgpLFrsWv1sgJBN0dAt3+Z6HBu3OWpODH86Y1H8Nb5XCHF\ncb6lOPX+yV2Ao7tLEd1DsU7cDPP6IhyPVzmQuIRFqxy14g5QJu/dAPKVp4FBzaaPcXa4NvUMcOoS\nniczZZ6aCIjFvu8I9PcCP/ffB5PZ9zNpXgAxiu0ulq0b5X0yIgjJIyfkrhb/fuAdk2+HPi3fQ988\nh8IEnkmA8fT+WqZfQgbzLwRBXubh8/gcIWEfAthAabrmutGM5Ser3KvFulQz5wNBznI1U0siY+4n\nJmkn+bvulyKaWNWGPOhzJZ7LvyIg0L/o7TWtd13l0FyjSS5xLF0X+NQ1qdoI9lu6xI8bcTh5qqX8\n+vMY8fvxqBFn8mmMxrnVf1rm6uQ0SdKnJZZteAuBN5tczsUEtmPTCQruUwk+hHfN6VxL0k0BIti1\nT6p0D2gVTLShD8rPWWJvhuck8e42eavN+5S6wnfy0Jh7DGB2ItJVotQTi0ARsxY+uhfaPBmJmyJ8\nATJWc51PYneD9DzEv/tIAf9bvBLuUp1B9ykDUDXrmJCZSb2tR6NN/tg4Hz1u3g88pKy+ISIiDuVK\n5csBTJUjCIbzmcibgTeWb4T+mz6HsYrlQ3HPss0Bo5QUrH2AkNp1GIPpLwdZMfWUse3urGPmKsI9\n2vONVlor74f3Kt485EXhXCBgmgellk4C0gYlRrVam0lWXSUysAUNhvJEiAyDRySbdic93XqTliZP\nhN4j+WIocW3nufvEinvqoT2IICIiXq3wVBpL7EgHy11ns/AtrNdAHmcUosAoJpM65lagYEyF8joX\niMnYRERaop/wRKjhgVBvc0+EGgxuuxJNjuPovjYJz5l9F9apz4Wdwx2jukLVSHuNcIYLKIVw12tM\npt3ZWTjvvpxpiANduFgikDWAl3Veb3zVlLKqc2GTSugEXJAJ4Zh4blp/KCIixemZWnPZXy2QZ41D\n24DZU4haJzGf4/yohSMg53Gsi7mT8gEscdCGa2YdRlUvQVLN4gGySe/qriZrPRxMDS03KTVjvypM\nTMpDVJsoNl02m0JGuK+6v8KSVcLJZL6AkrULfZQmzKxNqMjGbHCkNOZeQQQk2OS5a1y7KvJ53uc6\n180ij88cJ9+1lA9RKizd1TX6Lqfd5V7dUAf2E4WC8G1a1lO9/ZgzAErDFElPT/l8KiOjNgubEokC\nXqfNClwWUtf52tMkYXgxLRmolnYnzuXhR5aoAqVjw1wIhxOWfA1tPThAqNaXw3H862CFevs0AngE\n2HZEJsHnYA1SYK1q1HXUkoOQO5TxPNzfgInwwCo+B8+r50HYHT8BH974TsUDm1ywz7qrYSeX4AdL\nmCcfBPde/2bwnPIn6IumjqCl5RfMQF+x0DxA6uVKldPRCm67sLxNr/OcC+qKPm2j+fsQjO3NoAjJ\nowB4lp+HAoCM9+UHV1KiAs8B7qvCLXllxSP40hqA1bZJlEbppWhtE7239UTw5jMpTexof7NeVN4o\nq+nPg0nJ8LlK+FGp30X+mV0DRZMW9dGk1X5iwtzDmok98/V8BC+d6ayW4jgH0iZMigwwmFdyftMb\nQCR6/KknCrO7Dwn8qZJgfuM+zD2Hc05OD8XBK9A5GBh6QkYs+UTRF+nyfrrUy4zlGp0CNK3dJ/A+\nI1ONqc/m18nvo2McFTZ6Q3C8o1KF/kNpx/Y5wk7fRJ+/eSIF1lMBMK54HyV6V6ywRCWVe0BUum05\nxa2OX+TJ6VEkAg4RWOE5+Tt4ieWfSbqecLRgYLt1sr6GvLXNgUM+V6s7JYkBKUfsPsQ7PwEg+fPh\nOHnzAxERGX0RxrI3j9RQwqoVrbHUM1xoZRICe3EaMuTBZ91hAIljqU/73jFUzyb+ZegP168HT62f\n13L9XngmQ3jnXwquavTspQGP3sD1ruj0qS2XvTGVQDZNISs8e40jHRssPyKl6yuH97venZqTS3xv\nTpRwDOdyj6vb/B7hOXcTrso9iJDQvjoDaQ8iCJgyPd5Pc/fY8uE2KrIrFbXDdT6vnUtBfzKtNR7a\nIUTBPYeL6WMIPhDOWhqr5q1acDYLuPgxgSMYkJaeaqJVyiZdJAJ9+Dhshke/HJ57+DAIveVhRFev\nnod35abCTWQBd1WivfK1azl6C273jPunS5rGf+XHXVt0kvlZ4rmL58g4fQW3/K2XBlrnehvGYdup\nNZy/d/B8gLu1Kht0Fc+fzxrOR5Od3L8H0OUovB/7nvkMpnABPF6zJNXziEgzeuIQLpBzJuGhdkL3\n9kLj6VRIX8PSAjSbltIY61rEGHtcoxbu09C2+Si0uZyGdzhebfR8rc0NYlksbuTWlbYofKe0GJNN\n2lJFl7QEu+jyTks3xzqWccTzk40vZh/22TlD1Pqbkfvea5K/rVp+F9bfzRFAawc/S/Z5VjYRiDwA\nEImTjkZw95cqa1BxUIqj4kdFsK/sg0SwsbnaacbyxeOwTqdwQ62NEBhj8ItOSU+Sze7OxjU+Juc6\nPgrzanaEuNS3Ed7ygyGHibwNeGSc5CUhiID4YbrDauWKJTxurlvZPgcIglCHEUAyrg0LfHAs6qqU\n5mm47+gbAYCUB0fZuc5kd0vvZXN/DJWSbLzTxHY1+Pnka8Fl1y3g1XXvNL9p60VaM9Ps59iocNxs\nI+hyC2li1lUpzRN4Qh0E5NMR1CSYcIo+gQdWUTfRQwiAEPN4tJByCWQTTODzUrCRnirTon8dW+ub\nSNdabK9RnpACiPpb/7U3gZJ2OfEaekM1Pk1GF99RJJY4psV2fBD6efq2U9TtkQTl4/46zEMblkYv\npMPP11J8DusFa/6wDvEmE+TjYV8zASNByGbpZfxdhBVcBmVtY8oZTjsVCnwMPzJtImkWffAWVxQi\nk5j3IRy5NnJvHZJzXat7VHbQnwzzolL+oJVDJCq+h3BFVlgYa1Wm8L6swODF6TrdKmgqaFOuOFEp\narwTYrTcn2jAsBWwapTddO/Dk+hoFtfP/cCQSlRlKJ6H8fLwAKRRxrkmend09omcx3D+jYuuJThN\nbouL9VzR3siv4U9HnKvMnZJ4GxDg4LgT6LBhcGmZXAK3nJsVQqPOz4JctvtW+HzyS4Evnjz8UCZI\nm0A5c41Ei2vkp1lWzL1AA1RUQyiL1jSCpR5rkvYr9+NWZRAeJ4ZPaFhSQ4+3mPNqgwoprgjrd/YF\neh1DQQdo4TcxBMcngL5IUs3F50aWUDlHsnarh+MN+vgQOGu9uMgrCycyYx9wLBmqUuY8jcacvp1o\nyLiyJLD3vdSC3dNnlvYgAki9DRgj9U5wj3XTibjvBAHVvR/c7cdboLFEXImqJ8rW9hpC+wqLF6DB\nNWJcWUOXG/tkVGuIAHMFKNOyKCPLFlXjTgIu0iVKQR0hW/kbEHLmBztVKJnUaGvq+VLhoHeBnIk8\nNKmqCTTwHGah3SSIuyLpxlJAYps3G2wcUFrP1zNNpkYlJyZNygWiVMC0JQqpP1gEeYwGreuRbqQH\nsOoTHaeQNoeAtUXIwmY7VrCF92UFjvmMwhifS4tTrYk1mdeAmzK9TGLFj67gTSGWXjLFO0EYLb4M\n5m6svNL66PkAosCjeRyMlOOrVjySajXXEJ4/DM9dEWQyLqdpPKeNQ6TAw40putP7mBndlnWTnNLw\nhrvmn9JrbjiHv9n56FzizeK6v7EtKanqnX4Pq0nxFqzicOOV08TlU0RkOhV/fNT/QFixXWKlFhEp\nzi5l/B5iTX8x8KMS4UfqqWQSslZVmSgdeRJYAnm1uifHTtGxRFgGwYPRI7SfAMg1AILz5+oZ0F4D\ndAQIV8Gzh3XYK6yz9Xosy13on1Mk1WI+mc0S3k0QPvkO5E+bzVh2UKCbyxAGUN5HWBcAPc7lmNyy\n7Hjl2OSWfQIWr9k+AY/5+0/Dc74ewEWn2SWTiU+FmABinU+uYmauKZyWwaufI+b3CkkS0X5W9tBQ\nsDMnNTyRDs/Du49/JexPoy+F+aGhdGnyMIJTaBNBzRpsvlqAN2MMqHjs6lGnXB1pKPt66p7LbXYI\nyFMukVxjQyH0eTjGMKWuTc2GMEVA2+n/NsJGK2wARJi8BWWLeY3efSCyCfP75BEntuG3BvkoHhyL\nfOnt8B2S0xWfD94r0+tldq4SQvhG75/LKZN6gNZrxJdXjC8Pz6cyvqlLGavXQn8uAY5pew4Plctl\nVIx1H+ruR9l7+riPp9WB0iMNJvRScu/M5fQr3xERkfE0zFFaoC24vVigatLCq8V6opUwsA9jZlQE\nE9SSL9I6KkDhfjGMBXsqlXoYfeRb8GCSx1L8GgziMZI/3kOcPic08wRs6ZnQqCzYTeDpss+kvsR2\n1uii8z6ZyxY8sC79GgqJrce5GIJKhVKrCCSeByI5GKehlNg0+X4r8Oznm7AXsPTovdVMjp4G/s18\nCkxuu9r1gweLxOChxpQLdhy8QJA3h965jfJs1+lb7U8ZoCIBouktewngH0l+R8eYNxh6XzfqjaXy\nDw1YxnOp/5FU+AfGNqHBXBgmV4EaNGQ4uWksUwx+hwemZ98URhra3P/96057T4RAexAB5E15WC35\ncv9UHDZzB9S8QP33EnFVBQSwlhmUt6NO5QEKgddQvslISdOy0frocQOisAYFWhV0hgmU3ZJBRgla\nmIy48/VUmd4F2hKVQ8nuFV3wDjpW/itsIlcVyyyxUgU3cKf1qbdmrZFJKjCg5auQTKya6H2H3q+v\nrrgtuThKNt2U0lh//kbhnONCAeWeyax+tZ2oMEPGfYhcFodwXbXxiEfTnZzcA9LN8p1EhJNSoiJ5\n5mJarplBWitSPIBScEhEAs9jDHbrxekDcC1dq3nk7/RvW2/Fo6yRFMiufJXH7Fry3qkbvAJcmjGb\n4ybZ91UrYusgd62R5jlJRYe70t1CFl6cup4IAKSaImZTZh3xd5F0ivHzxzCxayr8VoQJqrC767jV\nnCd0BUbys9lUc32MzzGnlkFo2y3onkyAErequ6KKjUXeqWBe6O/KFzCWzmhk7XtBcW+eAmD7ILq9\n08Kz3YU5SqVXlWAFKmOiwwdYV29TuAUIcgEBlbkQ2Nb71Ui2lxA6qYS8H9o2Pw08mxn2CYQtq7Gu\n7ZUeIewShOkR+NXDCu/nHoe1tmMixHUeF9s2Lrp3GzCYRDf2MXjC7KBSIb2pwxy6hhJ1CTCYoC3H\nb7KdyGwV+vgQOSSmvxLadu+bYX4cvRvABYI/fttI/RRgBayFBHc2axzRXwpWJICLgji6D4UjXXY3\nZDU9C8wqTPH7Lj+3f9/OJ/zguo/PjR4IIpIlf5yDvXI+0rBQfgGu2l9Cst+33hCBB0qhXiQAcG0e\nHn4/G2tuDD9BbgDWqzcJa9WLB8mQ3b2tjB6E502Y7M+AzqVa56koxjUf9/NcuVdAkXLMs2sFEdTT\nRflC7nlIfj4uvDhXZ/dfNfnzmCT0hO/11lsy/s3hz5MvA4QxuYJagGnTb8Dq/10ngu2JBgZbOlU9\nX5JQCbaTc5ECr1Y+YqgFt8Gn4AHLtUwvQ8UBBY+OAZ5yD7VtbhJZBv1FRflawzzzMagSzzyOWKyo\nJHgvNDGRfWwpXSqJc6MJamjn3MkMhpKqimtZJBqEuhU/XKyWAVGjZF4VjjVLVCdhHOTxvB/Hi3xb\n+S7m8EVfJRt4vBLkLBHOWqnXLD1uCuU/1xo+G649HdN7gRsz1sqBk4PDsD+skRNGkyJeFei3HIQp\n517KKgfrbRiPDeepfDSkbXQ9yQtTXMn52EY7kIueQ/iNvJh9scvFwd6wMfJI3iN6FPnseXvaU0p7\nEAG0u4Zb4JOA+Ks702KpVgd/BYR1SasNFugmF7w227EyUCLCNukKKc0Qbr0JbMZ263pctS4i7KYM\nW7SQ+vy51ShhdrkFjkyD2dhLLUXmNN6rKorsWj5/oqXHiJI63dgm3NTRpoMyR82nk9yKM3KtboY2\nJtJ6IJBST4TbMnSnCiDvv21yZYpHrfOceJnwdlYRYwJMlruMsZlOZhAmx9tcIbcZwGMbY3iBxisj\nps9dBsuRCjP2xbIHcBIxGM+AB3UUhFSA3PTvdAwPYbIwCpTht3CcGgCFj6eLoS9TsMo01WySMW4w\nnvi95EZwA7/dmKk4lz86aD3n/7xsYw4OlhSFx4FnbotramxALNcbjY+34EGH0soj9FKAiydzfbBk\nK2M0aWnc1iP1NqJwWxlAsjKKc+uT7OcABOZnDEFAmddV+H19BQV9OdGcHlaQtLXdU8Gfs60xoGJt\n1qBVNOumVIHOWmaPtgjt4Rqt43PtfQozd0c67yJpMlv2F9x6aSk9XwQpe6MhJUVnXqX5R0REZhDe\nmXDzuN5mmcr5jqEtufLB56xd0Qklm6krOL0+EO50ybI7Iqtz7FVr6+0BPmieq32VrB66D9twBsWa\nbvDZ7Vrtuovwpnjhviv6wp6GcjGoopQ8hO8zslUTOEHoxbVYilxCuQXwqrx5VGTXaO6P660UY3g0\nXpIP5OGQ+hzyAIYCLbYabuLNvIjHfJ2F+WfHLie9BvmMiw+WSfgPQDmTLNFWTUjHxCab5fOuF4EP\nvvkB4s4fvSHyRgBWHXOomEpHxSVzmgSQYfK0lgm9nLivqnEllwlim4rYXjSOlYYOJigrey9v7A5b\n6+L5VNaX8EQBkDGll9PMAF4s6bstEgt5dkoSAkQBLTIZ9hN/olDO0rPdOe071/D+R/A2oEzFZMzl\n/bHM1CgR+MDoDD2mlWtyw9bIFVotYfQwtGom4b6nz8I9LmFMSr1A05wKIlFutR4WsfoPeV6UlzWM\ngKG8yIFlw0rCiBQAACAASURBVDRL5+OYwqPLhoUoeIsfyremcoTkXsyVw7LcNcNLF/C6m8Vn2dKs\nQ55XabgXxW7OzUnRz08/ioKeRuox1MfKX7zvrNPWeJ4aGwbkoEXdPw9fb/Jyg6/La0V7EAFEtHz+\nHbgWIju2lO9rGTG6LFaXsGQvaC0KvzNR4DJhxrTct9LPWLW4gJSDTCm65+Xugo13yohthluqIg7X\nFLBgpQl5Vk0u0E/R1qNxnktg3ZSKqPN5tEJZ60a0OKeZaSXrA1qDFERg9Qt6ECy9tHU/eKD1dXss\nV/a7ofrYqSC5M+j7AkJ0beo8k1K3sTpRhMK5+QZXJ66N94C2q2sniO57FPhTJU+VJ/YFYi/l68GV\nmomLVOmPyFEnFtx2ggqlTApVeXVlrmG93a2ZAAnz3HhppJsO+3GtyHf/2N+UZE3s96k1sv9tbgYA\ncBzePm+/h6UhEGHbFLEeNYR/+S6UhhWUAQCU7TlKuV7W0sK6RiDAm5B4tYbSEnRaSomSbA3cRtcX\ncC29DBYzCoO01qzqUXTHN0moOG6pB5FI6JMDzMmLZXi4fz9/+bWxVq+S8CCCExbY09AB3CO1zlvh\nk55J9KbaGAHdJUAbAYgrKObWK4k8eVWPoteFWsryPuB06HPzZL4QlgTm+qUwTT7ZlweG78xlSmU/\nBZbVDRmfqdSv1aJJPgFgSrzsylyBjHlpcvdbLbVXeDk7D9Z11obfmJh6GxqWxkmTN9q5Q++jemBd\nh7b0fCn9AupHAhEGgAsLXDbGIyFQrpTSSNB8gLwX8EB001Jzemy+E8aQa5CtZsJUuoNPjxuZXLLC\nUMiFsPku481zi6l6nrFA0Vi09OfVRVjjZ/A+oXcOrb0bnQNJjXpTVceWiKWi1i5b3TfqOp8Xa+O9\nw/1+UhRJEsGch1AWoBdN/V7gf+PZe1oRwhLzMxCU0cTJTaH8wL7z0njGrHUeOrX8cv/puJOzvCwV\nTMg+28uRVEg4LXCWmAJEZZ6LMUtkYqzXy4muJ+6V1gPB8t+qHd6nTH7m3jw/fB0CDpWRV5iM2d2f\ny+hekFNLeEUW30YeKFr3awJHVMa9jA/wjg8D6DOeBpDn/vOwFhiKlsq8reHj28by1/yYygEjXTe4\nF16aoC1DXzn2eQJvM//afl5Q3J/HXAsoado+zsGE1Tkq3Ew5xr5j8LEhBB1vzMQbV8uQMkeH4hq3\nowdDZ6QhLYymY4vY11wLQ7kQCunKY9YWFZMz7pXmPXVpDyJIEGB2jPlEdn7Gou62I7n/DpguvA+p\nZK3B0BgPRhf/TVN0YtSsgNxXliiW6IvIbLimX+D3EhMFpVni0/uOHK1TdHOM99X74JpjbI4PNft2\nFE7Xer9wpLByxezdRmmskg08ZhUOxFIxtPiwhCZd+7dNIRcQFGycctUR9Lss1ioBJOuCPitiZl+C\nI1cM/8C1b4A779T9eiznu1xRqEZUBih4xz4QgcsdLH0H2zxuhtZiCkbXiQX3EAIJ0fEWZS3rp+G4\neALQCrktUm8Jumva0BjNr2EAjzRvRGkyjDPs5Snrw6swGvtyCUHhYkdhSbI+icBN1+X4RUCEvt/6\n6C7b3UdB1i2IwNwPFwcjqVmxDwKWPA5mrd17YcyvvovY0BUSmtajmAxRrWm5oM9xmTAZ6Gwn9x4i\ngBdjTJf3J8swD6yiGbJE0+Mgb3/d5uNFt0cnIjO4WT9fh/YOeRfEUKZCrGtxrWvfKJiJkj/SdRnm\n8zGqFnBNXClIkStbZdGqUs/7XVU5iECiUH9VjxK3+1zpsG74afLMt2F9HM/o3puPD/tgmShZzihr\nFtiYqnAd94QY0+zRf3DVRV+cMxM4+ZYLSfRERLas7FBYhS/cYzaKShBDRLi2N2Zfsnll0v3M8v4L\nZF+/rsjv+hT0QENZyUlZdnILAg/cK/19KE7VApasxJA+72Ri5jMUCofwkB0UmcnBThWKxx+EhJqP\nsfbUA9FUunl071pOC4CHcNV+772Q2+aa1ly0heASKz8cJVUaCB48xZqkkro0ympQYMI1G3WhD59R\nxTpaPzHX2p2Iw+RnOCYBPCbTpct4um9SmWI40JIKM56vIYIaKnCtMpQmDaYShM8MM6DyeLGcyxN9\n5zyWnm3aGXmjalODS/juGAybQKubQXE+DethAi+/8UWjIVD0bqKRaAxZao7wxQms/pvtWK7Bf86w\nr59VHJ/wfBvm13iv3pvWfXxn+FE63zWNCj7TAYb5LzSEjR61R1ORU4RlvIGKL+NQuev0aq3tF4mA\nQOtdLFv8BvJBvBPyeZychGu/8rVwvP4OQMjNSO9TYLyioYbGhxw2SXk1+3J8H/shPRBYclH3tBhG\nyzVwBf7DNXAy5hyDDMKJUTgFscoHqKoC8Krahucw8SL1grJspSzzvYYUc5bF/VZEZFkXcgm7z5re\ngoY93eQ8ym7iWPNUy1adiBwjCycTKXLtXzFdFiNdu48bJM4teoJWe8t7JD+817xutAcRBI4pVAix\nuS2uAwM8W80VcWZ28u0yD1+IyHi07JcQBCLaSiUhJ43bl4i6kllY4TNaC8PvQ4lQUlJX4cQrgJuS\nRWop+NC9lrRpYjKy25ZN6q1nE1bZc5jxuaDFJXHFsuCBJnjS3/PNOH3OUII0Re9xHBfdGsPRowMC\nOQAVm+egj4aGo/UueqAYT4SdEfS3iVVH49VZKeISYQSX4fMzWBPP1og7T6yI3RJQVOr60fRQaQFu\ngVA2OD5E/a2Xwbjw6o0R0epwbDrj1ds1NxLnSZ+ybwH8j9vVbmjuxPkYjgzoqFon9RrCEpL97Z6H\nk84/DMLbk6swXuzPqi1i2IxZ62r5xf217NuqlrcASDGm/gLC2pWxfqUW4o0Rpq1A0l82Kny3Nh5L\nFhDdJiBnp7SnUZz7SkxaazfXmnVLtQlSS+eVdxD4iknd6LWAzzd6SOVH2ydZ26a0Fufv0Brlu3Sx\n/ZqeZKBcXhoWRX7D1qQ1x0XSxLLhrCLhYZZ03zCu7mXTKmhlK+jY6ira5iQUw1qsOhVv+d69bcI5\n2Vt2r239zetfpPt7IaKJ9CxF6zuulfg++re5pgJg015COYFiMd3UqlAsAABc4Eiwju/BffNkupVD\neCRRfjhHUrozxqQzzwU9AgEcrquxhpKprGHyUWx0DeLYRJ5swZy4/+VWX9+ItKi2yuTOln/bfbdq\nXQaChe/y53Lv4XsvLgp5//wE7WXyxzZr0+ksL/t6sZ10wIMlPPTWrCJrAMuqje2m4sq2cd/VPnkz\nKMkTXHByvcwSZYskIVGGtzCBYNN2Q5hehGwlEUt3cXnnWtA8LPRS3FQi9zDDZ1DyH4b96OCd0NfH\nKO+5Tjw9OnoS8vs4HCffH6558GGIifHnK6m+HcI+Tr4VfjuAnEJjG3nPGl4uGnYgTubIVTB6J+yZ\nXt0xkP8HWvkB1sa2LWQLZrUDkmIBFo5jiypG7vEiVnuYAhh8BK8ghBdy7TM5sWudFLdkGLT7WEoW\nGLjLWHZkHHOvlBTU0/BlrFOCpQPPsDwvfa7OJT3uleY9dWkPIoggQ3O+Mol4LquRLK7B/LB50aUq\ndZEVSSy0TpIwAy48bMrGrSiNgW20XF7eloYJYTTzPRVcr0xDhS9cW/cI63o/IzAWRmFhIj1ukpOq\n7Qjlt22WrQxvilHo61cOsvexgr4RYlIBySpC1qLoXf7FUOnJtE02p8S6KTpu1VNmp/Z5P6b31/jT\nKhdeNJGQiRtsEuCB3gqzFStFMO48Dy8giFX1vFdfDHB4v3AcF75T45yJPvm+OyOotsm7Wnf4nbH0\nZXWJB+bOTe7LQxZMuynfZunMrx2exHbOMjyo6+pHZSzmJKjgtrxGxmeGA9DlPQUO1LuoyeekehYZ\nt/LrpLoAE3pSGCN4sDCWudQq2S0nhvdTpSAcx0VMDKi8ZEAxT5MyWlf21iilNqt4+h09k0pTorXv\nGp6nlUs675NbTFNwo+vaLvpbeiS1PsacsvyeWk5v4CFDxGsYEU/LVem8xkzbcBOeU+v8jvNkbECX\nOm4u4TkEE6AcFNL1iLPvHt+KHRv3lQ4IY8a8L2nhXT2J0nV7uydCPyjTR1YAp7XX+whaNWa+0xpP\nJYSu2613MoHX3s64alOpJzns+8vdWE6gRNODcWEAga0qAl1gh/yAPH5tXPgjYCj4nAJq5CV5X9h9\nt92J7JZ5TgwLbto9tmqdtqHrCcA5mo/cbjeSMyiU1+pCH36bYe0zjILXXlfjjts6gRObtC4dY7vG\n6QnA8KD2EvmfkBDTfflNERE5KJyMvxW8Eo4fByV7gZAVggYMa2A/1nWhIMiUYSx48K7IxyKCjk5s\nTRGtEH3DWtG1ly9P9TTT9b0Eb/hwIQUTQZrNsjiAp9IB8h9c0yIQE64efIjysXR5YMUKVhr6/IPw\n+1v3ZPIgnHvvMFSumX4zfD45R3LYNcYe4FmdgNAEhR1KrTtUSxtLuNfJRQAmWG0sTai9NaAPabdl\nAlGUSb6Onj2jB/REATD/LkIPfXgOwxrqutDyrSStgmR4aRpSFUM3jDJ/w9jeJuN0+K6XpMxlfg7n\nUN3jeSUiUhauExpTmDVDIKJRKWhPXkT83jNDRPYggpIqjaP8c+udZs4fYZeKiHS/FadIrLrcBHXT\nMApsqix0rDIqnFGAy78fJ0llbG1mlSNxHCcARct8DEawV5BinIMI07KJORyMpYWeFLVR+vsoCpk5\nM9aENcoIY+1fbSSZsF7a3TAiXOOzc2xSPC3vJD4q0XQxxuZPQfwm8NkKpjdRmmRRRKSgFcgkrnJJ\n23WToDseLS1mA+oCLelclOx9bN+rZdClCkX/S/P+nIfORwHI9oVV1O6i3A+BTel1N5Uas/e3SgZL\nc30U5eO2c0OpKVxD10GNR+wKF5as9dbGi3L+NI2TcZEDUds2VzCtoN+0XRCJsqB1ue9TpK0HjwKf\nbX5N7VNBauA9ea8EuNQa6uCV9ICJPNRnR71X8jnlHel7WT5RuARAcX1n9I8Tv7GlsvsA0CGySWGL\nAcUsnJR7qFjlO5bu6noiMM42XmOAFOmLR875hb6fxHGK97/lRQ31AQO3hSak59x1vfobfrPXpklb\nnfaP5RcEGsw67g2hy/szrmfeu4jrxSgjnXHC91qKsSkimG3nA861XjVeYtb/Id7ceQffbdsQpR6O\nVv7pJtDDmqQMkvxswQl6hRAsGRfRE8cq1RrnresnfzGfnBv7C/1IxQ8luMfMYzNHFZwHhzJCPMEc\nYSjOBTCh2kDxNO7t4ypW2CIYMkH7x2oIQjuS8I2+sJ8+6ts7rcKnfUHAl1WfL+tYvxXEsrTMj2Qt\n3413arBongalvWR4xCk8Re6jbDErjBSFlvIsjhH+cRL6bwrQmyF89HggeFx5L01lBEmUpS2Ow7iM\nj1CqHN6yB6O6k68rNXKkz6OXTduI5iEpmNfiGH2AEi3jI+S9WEXF2YKKNkTUGtj6xquz9m6Qm3U6\n07NiQD5qpWfPT0DS9P72Md579d7SucS22rYP7up7ep1pDyKANOmUFRy8i2WuKIibxFWVCs4ReT8a\nI/sv3a4Y40+hgig9rSCt0xjkuCnSSgmkuMgl2FnZaPxkaSzmdP3je0wSpZVKyJSlrMAcThG/eQym\nf1AnCCvjvX1eYoyhdy04naOg5SJzolxiN0sKF6MjKBHb+C5UKAi6jDW8gO3IlZ+UKsM4KYCNDYgw\nLb0coP80yRktLKwvrYnOojCto2DuN7LKThIfq66jFKhUkcG1zAzOvkoUA90IaI00IRB95S+twDiU\nkZ6UWmj1nB4FItwLbfQijc7n/LeO8p3dd/i3lFKDibomJt/1UXrvIddmZ74vbtgch/Jq9D1PhQwI\nQvQ62ZhkZLURPm4iqzSIiBR1fr/UKhg+o+0Sj1aIiCBZfo1PlO/CzGd+thaX1NW+m5U8HG0m/+hV\nFdfgPSTtOpxvs+ccMSu7ufdo1Ior87ZNy7b33BSIIB8YmRryPLIP0nXF9cnM7K3Jlt8dAxeT+ife\nKuF+VNix5yQCIOeTN/tQmp8h/XxQtnLAd8a1aZnOlFKh1+Y8sKtwpOOWAzlpm8Z6Tn60VtLC3wwe\n9tFHtfH08bU+ilY3l/Qt50N+ES2OdeK2bks425J7lprWqSXTgrQE9OjJxnfXShwJcmUTGKtnijnW\nbTKPBzpTc9/w9pWTmqWVTc6codCVVpLkykah5alzhsfRcl/4DuAQx4nyC2Wp8MOqLmLonHl364Gg\nbUvmnfVI0DLZT6A0fiPE9peMKT2eS/FuiP8vHgZZrnwUPBPa88CfPOLna1ju612jla0ob2nFFwU5\nsQbR2PoGYPkulPu5xvfTMEmU/a0WIvWOIFb4bjKHFwYSea6XQVHfap6NkVyg6szkH6Jy01e3uEfo\nk4P7Icnz9G2snbfnIixFXXG8w0d6jdEoYpPwbppCVkhWfop8QsWIHrzkv+FezJ0w2USDk5Ur1LsO\nc7rewJv0eiyX1+G97i1C/qJ7EHBHD4N8Wx6Hc6dMXn3uIq9n2OgdvXJTehEAVnmU/WzAhZRZ3tYW\n+3jnXKffOh4J+pg9iBDJ73MigPYggoRFwxjHVpMQRVcluiy2hkFvjbDG3+dlKw+OA3M6PIZArEnB\nwjlEMwle1FWhSVwaVRbBXAEI8DOBh+PZVg6Pwv2ZRZbtJzOmMKClJutSLuFORpdB0qOTwLiP3oWi\ni/jf2Xcv5PhJYLpPrkLs4BiunWNHQMLjnnT7dwmyTaUjkM29QJeyeRHe4a1nq05iwKH4WCuQi0Tw\nxVqFJrh/kTz/AMAJrSTPkaSQWdHfPFiJJWv5O8J7UIAg1VoGs5WTg7BJTcw46bkGPU+JY8h8Cgxv\nsOX6UqDAhoNEIddln1Oy5UJvo3TDYrvZgpvydXSsnRwne389IRnLqOP2tyn5u+w/RSnmdxpu7F1L\nL3mJ8ZO7NYQwrLMlMp2z8kc6TjYuvk8Q5v1JlVpCuiEwfdfeJFgM/Va4VElss3bzmrSUVfii1THU\n5KVafgvHEddKo/c+Rvzz/TfCWpseh99Gz8I1BGAnBQFMCHjTWqtWUKgkeGtjnklN6TRhLK011tuD\nUpN6aUjkHW4OCxZmGrOJR5CWazFeT+Wa3RR5Wg6sHJRNJ6SIRIssy6Gxz9+YVHKKcnW2LjsTK06N\nZ4dzPlFq0H48h9/zfWlZHSUedZzPWt2C7uUElNVVO1DjIzRl5d7WrOc010hc/y7/jbxNutTxPjK/\nKwiTAUThu+idE4jKx1ITJiM3TdtIafJMkKynjc3zIRJBYH5jPRFi4+P8jHH+d1NcChcf0MkdYQEi\nhOj4Om1jrih17o9j4+N4W88APof7PJVVkTxHiUgylh1AAHOrLZJKUPHZnXcWsy+ZNWf57fVV0EqL\nfxh4z+xpcJufvDMRdz8wFzdBqAOT8REIYCWJOsoQzUDlktoCvAlftzzeyjgd5VFif9k9k6SVea4h\nBzaFhtXtkvApkZjAk3z2GXJ1nO9Gcg8hByPkNWAIwsUOiSg/DHzi5JcDD7p3uJHT+4u8LWtWMUMy\nV+TweYrnPGZ1iNZpG09+KeRYmJ09C++JKhp0pqCsvKlLWZu8IORHUwWZsFbBoBbLqXywDO/DkOSm\nCXkc3kB25PIUHiSnnFS1uGusRzUAYv1oOFk+cIWkeRJwmzvIE3ZMO4kV8YfKTckFdn6pF+4AelFI\nV8axRrKW4dODs21PrzPtQQQJa0Utw1gnzGR9b7pTRdMKBF00PRzfmq/lwZeD29X01yJ2jIlcbGkj\nbkjXW2mfI85rBYENJRHIOBtk6S8nEPzecgH5FRF3/wTPCRve/R19qqGMw/Toz1by6IPA5Cvwerp2\nTR9AYPz+U9wzMNqjX7OR2TcuRETk8OtB4L88D++1YMZ+Zodm2aV6pEIs470pOFBZZWK48u1wr/Jz\n4YcvnS7k3S1qaTM7sAmMHixh2EfsewvpjgoVEPwybIJvocTn7hpC+8M2e97nV9dabotEayjvT0t0\nChRMjnOrT3UVfpuvo1ueSAQeqtapokWy1q+YCBFVG0wlhJSs9avPNZzPuw+ljrkxtA79QBlHtldE\n5ADjNVTm7Sa3vY77XI+gpdfcUsrtRX/jc+56DdUiut/OEuWPlp4IrOTKIhH9Qm4XBvt+71R8wfFQ\nhSaOTxSutkbw7vZn/v2s9HIPivkxspC3ps+tsFs6r3OGHlhUIObzsL6YnHZ8BAHsUKS8T/fXWXa/\n0bfCWhxPg0C5Xobz1kgsOT+pZPx24Df3Zrx/OHdr4s+vAeisq1jucqmJ2uhZlgv+u0RpOcR7MHZW\nAouUh5e5wHy9yZOHpZSWORWJbEjX8WQno1EOZi8YO77L85/Q4+Kde1dy7wH2DSaYW6MSxSLvzwP0\nkUtCIE4buo1jTwEfUkvfNI/73m1Hcr2cZdeMHCrPlCwzmCt7VeKhclt4U5YH5Ybfwu89fTzg7t89\nj+2JZxyAx7NvrTWeXmmTstGQP64NKo9MhkiaYz2cTLfalxPszYfoawVb8PzoKRfBn2itzb0fbU6V\ntJxjmmRRJPb18QgAH/bfYh7OG4+8HMLCfLwKe8AbAIzoJTkv82oQ2btCmmQSQ27ZRwcwdJzgudeV\neh8143wMxwZ84XsWSbdOi3yvsbwtPVrvLIJw3Ou4TinPXJzhXd6r5PAeSlLeQ5sO8/lA0KVBsRzf\nOvVqGxtPhLnmbsnXxrT1nYo5lqw3Yd+exL4+HPE56AMauppoDCMYRnlhVLMaA5+T3zP8TUArfEnF\n/arK5b5FNZErVB+y5XfTClfpPdJwOMqR58/CeMyQx+DgFAkPEUrCkOJWoiWdU4lj3OkjfD8qWw0z\nZp/Q46L8Tvj+pIb3yRHW5FxkhIk2QvKPBqjZuM5BWnpGzEqvPH9axHcUuZm3WX3fGmT69m6XfRJB\n0RHlabd5VPYRvRUXaHQJYbwvj8frSfscESJ7EAHkY11n1Ak+OAhM5H5TysnRJjt7DSGtVk8EIrvh\n2gcnSwUP3G94J1x0jNixMdJ6j0x24PVGymdBAC6fhs3LX2PzhYLbItNugey67v5cS+/IfRynEHJH\n+dA6uOm5y4VM3gho++hZQN/bKwgz5DxWO3jrnowQm3ZUhGuLb4Rry7Nw38UmJp1in8R4XljvBhQY\nLUOEdxmlykQ5oF51XRK6JpAh4j0nI+0vtw59PT0MYMkYyXeKByhtdC+M51hE3fSU1ISF524RiEjg\npm71mvY8zKV2C+tMmYvRuRBNCw+tQmw+4i5LCqHYrPHe6etHa3TeJ5rEjtUnnFeF797hGq8TzjkA\nUHSooEbM1t+YLrfVLazFsa9t1tKiinNiWeqzMt1EH0eeg3Cu7z3Hm78qH900STHJFi35+bxJc3LY\nJIJqwdAwlzwMRiQKQBTK6g54gBPrIlpXjSVO34J9T8XWeVWI7s9Rmg731dJzx+H7w7cBDDwsNabU\nHYDPjSF4zI7DZ8QcywH41HQSeSJpAfAAnX40AiCLtTNDMrTxPS/lo7A+y18Ly9gC7rbPwj2qD8Jx\n9p2wJq8Xs5glXAG73DOBwmirRxet+Hgv9+heeI23Q5vefR6e4zdEZm+Q9El2URROPOOGn4bj9fvh\nfQ5gMaUVm4DAw6+sZPIDoW/dFCFs4DsPzwKPrp/TYhoe06xFTqp8TxuB5bKMcQGpl3XmGTe9e7aR\n4nH4m95aCy2LiwnHGDfmpPHRfd3GcFvvDOnhD6Ru9+UnpGFcFhSzZHO5pOfaa8aG304ntUzp+TKF\nssG4bgM8EFQ7OtzKZA4QYZuDc2MT4kZA+QAeJpNxo/vr5Sb3IlS3fCDYRUNBP6VckeZzJogHJ4gn\nhRMHT54Z5swM89Fa8Al2rxvX4SWWmLCvPIbSOo4u6OrBw3NNeOFGPYpGPc/J34vDdlPFpqho4t3R\nDlrhWc62uixk+jRvC41Jc4AvBJJIy9VEeTENKBFwl+z4InHznfw4N+xXHZAu6TNNlKtJOGFA0VKS\nBDgS4wc9kcrc6u4NiBXbOup46NqwSwJDTJS5ToxM6k0F7wRWQKsq5KMAaMHKJle7sZbVXeA+Sw2F\nyftGvYPKNimjHk5imdX2An1UB955dA9y4NgrsOuKGwZAci9PO8638aX0t7vKPOlr2vsPXXvT70PV\ndUr1stsDCHuKtAcRJDDp8QyCwufCQpl/HwCBdhErKiyxqXwABP8cFgMIBRQYTh5uxJ2GeDpV6iko\nN0YBTT9bgGFCsy6SyzicS6W1bkWuAYNXkBDHGNJZFAxEJCa+8W3MsEsvBWgWLeK/2mUAMcpTAAXv\nnGibmCynGAchlPGi26QskEiw7qV16kUSjw287pLAw9PgdVCOE2DFBmEaruetIp+WHRgZ4CENFE1+\nd9ORCD0EOA50XZwaS0sK+tB/jPGTOl7sewI5eE7digAYYluaLSxGu7zfNpoVWzR3BfttOoPgio3t\nDbio0PLd1PG9LcZivRho8RwxsVDp1d20nIdjvcSmDCsu633TUls6J0NJGEmdBGDtzR4H/d/35Xi4\n7XndUnS3Pa/vnKGkVzbOeJN6nSDW9I1JGJ/jIybmCr+zz0eTVvuaJQMLTB31tDGeOL720sCtcvEk\nXMRSn1rPnOETTFzlirgWNUwr3JevV5v3DJ4IQXB78GZQjEfwD528CWX7ywDY3oIX1PE8zn3ymyFN\nkCBn4URqFtGu8nOxFunKWsKkOtrEzmesrDucxTaISIGa6OMSGcKhFK1WiccI2YJRkGw5xcq7mFQP\nFVKUh74BBZ412G3Be5FuSRSSnZh1I7IMfe7GIaP5wXaXncI1Pj+GIvP2WNwjuEUgY7oDf3LLsDdM\nLhGSBQu4X+4ijySAOzY8jMRrAGiPtisZnTXppUq2P2NmcNeT9DO/xgq/fSE/w0Be/N2Cfp37movS\neW+d27huRzAslDjOP9cqyHJ/m5ci1LZhO9Z48HkhxRGqqqCM3JvXwVXbY4iZb0NDZuZU8rxsvx3G\n8Py7mVnpggAAIABJREFUYX7Ts2a141pneVcq54WMzf5LBZY7gfYF5kJxGsF77jXWYy0qouFz1bqk\ngkPeB/w8OcS6hcfhUbWSzwF0ozs5LfhU1JkXZQGr9rP1XAoE3TCUpMCbaF4ITcKBQyuiMwCTlfYD\nAjVj48rPSjeLupQCbdOwrU0eujQDyDqFm0TVFnKO8bhkKIwCveyvvI+8uA57sPPahl2lv3PKxsTa\n+bU0OLjSdzwLSbaMbArW0CN3NIrhZyJRISfgwDCubRvnyMZ4yVj5b5d4zdi2E6RYa/4f3Aufn29i\ndQ/29VWVgwj0SNC8MmBt43EjU/QFwTCuhQXGr74Me9tyHYEj5rNidY46zRkmXUONSByrGIKTA0J3\nSdxt8630bam8DX+rjFdql3cOSz+lgnNm3n3cdbRfadrnRCDtQQQJDISuTsUDxMh9DoJxWcaQg+dB\nmHYlFELWrqVgSbl/LuIvoTh884PwJVZi+zh3fyW52UgtSC1KxNH648FdKZjosYmyqmbhRWgCv+d7\nTeiSd1pIuw4/bh5DyFjEMjYiEf2lC9u9Ny7k8Is5A9lchXPO10GoOYd1j+5t66bsuAXb7MpE/a9/\nKQjMo2+e6721IgEFUbSNDJzKd/R8GOlmYQUfzRnAcApaFqY7Ob0fnj09bbPnsY8JlpSnAehgiElK\ndActT7CcYBF0s6gotU+DEFjBurFGrCLDQZamBrZI4v7O5JiwZM2/D0IUAB1nQBNvd4weciMCVrAM\nt148/V4BihWP4Up4BusU0P8xsyE7L57xyhTeXS4ocK9KEfmuApELppZ8dm6+sfWdy9+HajJbV+qb\nvCSsZUd/x7HQz069Sqb34dYIV3s3hXLA+cA+L1xU3jQwu9Tfwk1wTaLcjQEcjr8eFOTyq2FuMr63\nRMZxrb1ejxSQore1FexieVoIzM7LFCfP8D6jh6jpDh7pHsC7il4FRaFKp7TQjOiVszGf6aWzrZVX\nxheEqypLcl3C9ZjxsMg54c68lKhJXpDfniC7Otaggo4YsE09Ugv6RhPkDocx8LhFEt36/dD3I3kc\nnmMC6t3YgI8i4m2wODQZZxT54ImA/qFLuCY95/oCaEJL2qoR9yTsR459qwAOPQNy8NmdzjSDerex\naGMKOIhIe01vuAhk2OpENnEoLZ6Vj6Cb9YS5KQfIbYJvH6jQiYG39zXfe5+4ftMTheEl98H3vsh5\nj9DBR6dxvfLGXJ/jfN4JQaBd3QGfS8tUOCZ6L3yuKpkfP8W18NJ5BqUOISs2+enYjZKEv2iKUdbW\niFVvATK5SantjqVT8z2oMsfGu859B6sNzMP7TH7dPfk1c3hbsjLAhDwSaxtm5N17wTPw4Js7mV0h\nLr/C3ol1PGECWwVIY3uiokpwhU2BVwnAkt2uC5rEPQz3a3JQX70yyujRFA0nVIIl+2z75ibgKz2n\n71qRuP9Yh00FrGEsGE8aOYU1n94EEzC4ZZUbMNJkvnN4y7Cf5uAxc+x1a86TniTMtkIO+9MmBO7b\nY3Xe4VobLhtLmhYawhP5driWjrWavBqGwrlUWiKS+cYIIilYAX4vWL51W2g4E0n5njXQuPSt8W6d\naji8R/dcUpRLckDA/u4l8Ub1di32L8a+b505apnIva68pxtoDyJIYG6bReiKOWvInuI4G4vM4fJO\nKzU2vMLEXlVQ4FdPRtJuESrQhOMO918tc4WdNBq1iew37W2nzQ67q8uoBFT9Fm2NfYVr5Ok8CuxX\nQHNpDag05j2vEX3/+lgeAUBhHOXZddjQv7sM1oVzbOTXddxEbd1oKzi+DxDh3gf3wzXYKJ5uZj2l\nrMzG3ebft76r2A0ht+yTg1Erb5yHfjmZ5G6pNqGUxk7uJopek+jueDiC0g1rCl2OJ5NGWlbygADE\nBEIfAoR5CuBmkVi01bpg3OS1JCYFWSqnTJqYSsaGnPXwIEC2a4LHhIi0jPmDkwsBm6VauqOVJW7m\n+bhszZjHOdCt3c06xKlgn1IrEQW/qydCKpwNnXMTsM68BbeB7xMKu22hgrbjcMCbRV37bdiLRNdz\nZ71lSCOasHDTslRFpThF2atZGCh/wb6mBSgqy2nC0/AdrSiC9uciRFP6yBeQA6Q4oPcPFHaEF1DJ\nry5F84GwVFe1hXAG3kh3fPK/XVNK3QTAlu7bJyf03ABvA3jFZFrkW/NxLYfIlM7fDpDA9PhRuFcD\nQ/HzZ+EZT5YHclHl1sJr41a77bj3inwIXvX8a+Ho/1HouOU6r9yjJXsT/lG1OMdU5KFlkK7x81kl\n4ykAPAz3FvvFEsc12j6FafNktZHR1wFuF8ge3+T70/gAisR9zM95ET1dCLJAmWuxcFtsE8z/wqRk\n1XYiF1eB558BOD5D35+xP4FlpGAM4+SVDwys+fg5UeZuUa7Sz4PhR+azWtkkuj17n1s9Gc+iuXTo\nGTgqkmxmROvJTwkqGf57F0mcAJx6zCV5jYzJkjKAVXp2bQTGOmveKG9PkUT49OtIKngeSwBu4AGw\nwH51BgvtBfjQVUXrtcgG62VVc/1AaUNX7JbIpwBvFnc6k/IhMqJa8M2AqRMfQISj5xv1viBfGzGE\ng12PtqflMK0HjA0JnMJLYkdvUk2+MEqsuXnfx4oY+e/bplCecgH+d4W1sKyo5OFa3Ktpu7vUMLDW\n3YxYUYTJWw/Rf6x8wIoYB2/VcgCPsgercM3yIozts8sgy11u6XEYedrhYeCjR2/B82kavS5ERCar\nMI4r9Zb1yVTNw8RoGKKI0xr5MLxPDuTtmLugzdfmro3zj3Im+Xb8nI8bvf1mp628OQ59sb0O7SYA\nf2XChWJlpSImUCSP0WSn+VqM+UqiV8R1lfO/IeqTNxQQMiwllXdj8lTDZ818i88ZFmzIDzluK0z4\nhesmGX+9aY+uiOxBBBEJTPoMLsG06o2/GTYvKbzMvpBbjHZPwuRZXATGw6QsrHsrFyKjx0BqNdEg\nYuXqHO0l9db7tu3Esc+KQ4GB7nNU7hgDeISg18PloV5HsGBlSk9ZxPtsN5JLCBGM76bHwYdIXEZX\nMt5r3fjMkhfuSwE7HN+HtXB2fZS9w9muTBRNWrf4WXCPvI21F4N7d4ULElH7sRN5CiXneJQnIeNz\nifByvJZ1kTBm9jGtHOE41+RNsGj1ZF2n58FjPP/5lu7m8bkjVL64oJfHWWhjA4vCaBqUx2LcsyFQ\nX7Uvbyj1ZGnQhhoJPJfIYPw+xucxwk+oLCyqmLBvowqY3cR8dmx91xOhU9O4R4G3ysVgrF/vtQNo\nvL/59/Cc/t9GmuGfCnuhcZxrePj4HUqBecTpA5ekol3vCqm2sG5pNvRwjno1Mfs/LEHTe62M38C5\nWBQEQM8g0D2FwnuVeLdwfDSTPgQuLYNlgKqDUVScT74b3OUPngVBkgAAkwhqtv6mTLKQ0wLI9Ztb\nCTtZ2UXkCFazt64wvwsKMUjQyvK1mH+n40Zm1w3eCwkCz8I1byNJLWN5n6BvPtxM5RIKEMvIUdDb\noDOiqzbXvsh7yINz70kIUyPvPGeWcNZl75ku9iv29LTI+cTxqNFKL6wyQaIyd409hvc4WsSKMJWx\nxJIIchIonY/rTmlKJiqzMe9NjyJFJYNZ1Z9gDp9t2Z/sx7j24zwzYODAmk/nxdCat+vW+/7v+qhV\nsMHrWmb5PYJMF0/DnPEtPH8eB+t5cXCV3igjG4bENCjtxqt3W81yyZiHtqw0iZbT0XHkHZePw5p8\nchF4MoEclnTm2lg1hSy55o01nPSdVQARJu8HEP/0fKsJUJk889KABxdo88UuAkQ7DAzXD/eACfrz\n8dMQ8jP5apCpJm/GEBBn6qsqQI7cKu0CSv5mJEu05VpBwBGO9ESIyltoRw4EBgptY5K/AiFa999B\n6MooZFY8fH4szwFerlSRdGlTk8Si4Vi5aHuPbuU4Eqxt8v0whPflkzTKOPm879unmO2Gc/dozDFH\nKAxd+SexfOEEAtAMQOTRe+GdLx7nFbg2dSmzI4AHXxjjGJ77/e8GD87vb8KxVRAylpVcAKRgSApD\nBQg4nLHCVxG9C5h/5+0vwPOTCWZxr6cIM/D63iOVWwkiFAqs5Ouqxe/l2Mn07fD35B6qBSFBLr0u\nCZSuE0CFvIRlrW0oBCnNiVAbGZhz0yrxfUDpUCRg1yjW/c3y265hhoBIn7Epn6O8x5W76Dl3T687\n7UEECcrzt6EoPYNlOHVxfoh4RFqWmWDsAhvts024ZmEEMZG4qS/UUpsrxamiO9Ikann7+JF8II3j\nVMbGZDWKxuaWsQu0Y1qUMSaNocg9TCk9Vr5M7he+o0ByBmGCsixRy3UdQYRUmBSJCtLTTZh+h+U4\na8e6cV0kVZlsF0CxnwfBBBxp9fXiNHzgEhurFQIsc940XSHdbloEbkr4Is+Kkcbnsf/YnxTGLqtc\nCXcuZqF+ipCH4nlI5tY8y2NdW6MQhOu5SaD97BuCIwawGiUg1liThIVzPwB48HxnYw99gv5DkDQK\nRJ9yYDfQ+k4ggt10B4CBHkGrG3rQf88+dH4IYChxt7KlQCvyHngI45SrbzMeNgcQU71jqDyjVoLR\nMoDhqsNRLQ8gaB2CHzEb9hMo/U+2BPb4fBfLX2F8KMw0Buxh2w5qkffGzNodQASuBc4LeqSk2fht\nBQJ1XycvMEKOR67n8G5F1u7CrBXyhFjKq5ApBFDN4o72r7A2yEuv0dazXaHgAa2EVH4IrHDu1knf\nfIgQigPUlLTrd2uUybT9lvg1rYfTgpnvR3IAXng8Zgldn73P0syh2W7UAWw2hj+RH7Ht09InSk4O\n5gyFGaT7FMeUCuVz6IQXO/J+KFWJAJtaXsPzbl/zpFThF7nBw0iG1ytJFbNEiK7Qugne5wPsS7/8\nPCjXDnyXSsOkaLQ/LGhmKU2cqrHixm3c8uSpqbpzMtmp5fwCwN1TgAcXALEsILaonazNvN5iEXIP\neh9eNKULfOt4M5NThK/QEst1c2XAgyta1tu4ljcKIOd73fuLcP/6l/He/18hV1AgufZtadE3DpDP\nAx4KT64O5T0AgRbQuNZ1TBCB7YjjHT2uwvEJAJRHlwEQOniEBJhvh/d/d3oujzb0ogKIuWOpbXiY\nmSo5l5upyoCxLcYarwIG1pnzHZSRba617cNrgxeT75I/EAi7goV9+qyWAuGQBXJwO8R2TFCV62gT\nFjJzIFVtoaFjMwh4DNksjgBmgocRM/OtyBidPEWI2clVONLqv7hGWCS8WRtP+blQ0Hd0gPWJYznJ\n8wrRE+twMxUnSIbpwzuPGNqLNhEI2JwDmNo2en96DY4QmXdUIJEi5LXVCtXHdiP17uA6LnW+Y6/R\nsrlx/lvZ085Ha0hJv7sNACUV4tQwRs8U3s/K3vYZN5Xzrsy1a7kaPPf1Iy+yz4kgInsQQUSCUPQr\nK2T3LihkY2OX6HbPck3c5IlQ050zjXsjs9sMWP6oDKdJU4jcsxwMyU7VlAFZy421/tcmg/Gu9Qnj\nygVGVZgZj+bi86iwRhf7cNTsw8aK1/hUMckVFCa3pcWKrn+8d2pBsDSUkKZwuSt73zXxc+yT2uWg\nzlDoQ6pADSWQ0rhRbhy0iLgoMCowY9z+rbuvSBAEReL8ssrCUhP7SPa7c12L9mCcKqhI3pWAB9/n\nfMd2CJ4bNyjel+BHFODyWXuX0AF77m0KQR+5BFn3qijkVCRnZ+1IPnKzJ1JvkXuL4F9XIt8GD6EA\nR3dKussrT0kuHYoj5ikaX4nj2Hk5gBvysckOfraLinJoU7ho3Xhdn1HQ53P7BdR65OTZlvMLIJaJ\nu1SlO7nWvsdtoJ+XOGacV40JF9K8KKavSleokm2VuEUDgZI8RddMVLQIqAx5z1RJo6k0PdnkbVsZ\nxSXlT67XyhOJvGBd8F4iVwAULjFnZgUVCgInOT+fFEUHsCGwx9ZH0IIhbrENqtMYwdUCb+oZ4+I1\ntHATjOYcs9bWEGqWz7Ohzyl1qy/084O7iHIdy1+yngvdI8N3nPe/AiMB759mfVcQgXPTgDF2vo+T\naWPXiO3jrmfbvBPzzPmhHoBmTq8ar4DuDryYCsWIHgJQkp0La+WgHMnRLi9BTZ5ySbf8xEhAioBU\nrriQ/31zybAXgqmFtt/uU/TOOYGCSe+kRV3IU4YzoS0ED5h3gO9p13HexvAg8uo3HweA9PMSLOpM\nLlyMYjnamUBhreFRRvCe+RY2EVw4oOdY7ryajDFlHSqa7s77XbpvWH6tqUwwuc4xbu8rsD2Re/DO\nmiJkigl+2aYVcmNdwWhxvp3Ie48DgPaoCp4B0zkqbaCfHEpK0pHTTRLvR0b6MFIFpcmZpNF63nrv\nNEfU6TkADgiafL8J2n5Qh3bs6lLnjDW+cb99Co+SEca6bgvN93PK8Ld78ESB98/0AKAJ5t9sWyqY\nxOMOHhUl9IC2zoHswg2P/61xkgnd5l3ViI/CC8vP08OU93hxUUrnW411tZX+fG57er1pDyJI2PS+\nC8T1hJsIfmslKsqzkpaIfEOPSkK4pmm7BQKY7D8u7u6qpnBnw9mpdFtFN2UmfBzvYS3fPKbKt41L\ntZbaVLgZcqWicGQS/oqIi7/dYt2yZQILJzKikGnu2inbk/xtcQcrwluBeSRORib5lBVIbZunPTWI\nh4AN0igBONinXo/sm/y+jRe1JFGJrzxdFAWf+/tVfNJvA8qbpZBGgcJ0/iK0bFI4zBIg4aixmZxv\nZb+QOPRskWFl4C5ZgT/KJnkX1+chC6kK/AxxarwqH+QXtA7Zsl52Dov0J1YSSbyEKCSKUzdlWh+5\nzixgGS1ZsW9LnaTgcwNgnZMIOFBI57VDfV242Ja4FrrKdUopEJrep9MYidauFCzcalxydqpUTQ7a\npVTq2KGFCfgmEnk053TrIzjKtTBRy6nP7pXyOluuc4g/WB4tEgVg8ovonpofMw8s8rUBXhbdcSNZ\nS5nta0vpO7C93OuYH4QlfVOAamgd3SVW97Ywhnjt8Dk3ufNynHlk/PKzXb6Jcx1PimH34SEQpm5z\nIEYkuYc2kvci34ggoOWfXOtqLDCeREVyf/IogiUEEbi/EIhovMuMJyJxvsdwlhyISHtIWZVZ6x8C\neFsleVg2Of6ptBaCZQh1ZCy5dwoaEDAhcGetunGOuuS7/NynCMH5hxchV8pjeCbMUcbzZLrTpIIT\ngLW2HDND0Fbw1LvejdVzI4aSAFAxXpl3yXPA/Xh0h/2vNBPkOWSGr12jSs1yLlO8a7SUh+OMZTbV\nazWAPWe7UoGf7yC0kTKorfZDRf7euJYHM5SlRU4P9djAXGJo1mN41RDMWjZOvnYZ2kiPYOaZYilV\nEnPDXGwn6pnC/TANqRWJnpQ0+i3qQuf5KSquPHwe7v/WQfA6PkZ1kHTM6YHc2BwILKnM5I9Jcs3K\nKPMqU0tOKeCsOVoINN0CRvfdh30+oUw3cIv+cAa0gx4ITT14zutM+1KXgfYggoRN72qXK93zRIpi\nDJRNFmcFiBT9i9aycFRly7h/kZx0lWp9vtkkszrIvJ4Cnfkc3Snj+QqGGiFmKLdb+pslrWdPQYzC\ntUTUv0fvztrOe7v0e5ef02nPwL1uIl5DRdc536tkiAzHMb8I29D3cWn/hzvQsmgVDJfMF8oO3BQ5\nd9TKYR6U9sGQQj60ZXgXf7PzQbN88/n4vcm8MvgeRhvpoU7Ss1sSIKb3uk2e6lMwhhQXbs6quLhu\n25z5o3MvKveNV48aggdWWbCf++bskKEiHRP+ZLOi1zpePEaFV5UZ8hBmfDZKD/vCOdfxlmE+/whU\n5temZN+tHZgOpUsF6kDpuum7F0Uan5xrPXxIN61bC9oSrLW4SuniO5I3cn/QPjDrIKWbyniJ3My7\nKp+PsQ3zkrbrraJVNM290pbd1sc3gX4dS7qZ3wokJfukNtco23Yf7Jsn3bXQ37g8GWN+Tqt5B8Ln\n9Fe+K3kHQTN6gs00oVqXhgCvPrpp3adUmzXZitO5SeJH9vlEAb7uKKt8UqTfRkrlihjDD0W9yc/p\n42UxEVv4gzmjeQ2V/xQsu22+afhg67LP6X3sPhhBcLSnjUn+6CnCzyy5+CEUWOZG0ucn96XSfQiF\nkjlMLFi3SrwlGPZBjw16CPTlBOm4mktOrmcxdj1rJLs/DQ8E9KZlLgOm18RxgWyi4WIxRPcMCUNb\nM6fsfvl0W8qvIAQgzhHsKTiH84RAC/tq03gZwyuG4zFywYuAHh6UQbaa46fQfRc5sjvedvTMi/mA\nnIJYzI9Djxt6qNwHcHQCIInlPEP/5ODBVvOR5Z7J13UCdPV4x4S+yY8p3VY+u6+alMqzCv5ZuewF\nSEOYEa4h/Qnf9/R60x5EkLAhk+EQ5U4taFyY05KKX3pGN5t33XaZw23WKCdd8dPmAaAAS6uDE5fc\nP5D1gIj3j8+3TeBzh+I6nXjpZChWBSPfHDXPQptm4c83Tn0/bGfTOmd4jXeDoIWl27wAUrrLWAw9\nV9Hhnt9ehD2TmXO+rdFfG01+5fU5mvG9yDeCykiUfWWjXpTSvoibPdsEgbKlkB3H047xUCKfPrqL\nFVLP7cydmx/wIlbJvvPuEn8tklqKR7KsGIcf+kuLMQzMt755c5uicVMCUc0ZYMZr10SPBmsJs0IN\nhR3nvNZhj8phDo5UA26kKVlAyvZmyvdu8tRIaZcoBBOj4Nl8ANYNfNemoR2i34nEsIa+slgTCNFb\nZvjGiw1ZnlP6KICnBZNsAlO2sXQuGZ98nvH7vr63c+eu1PoktAJ8gAqZVZjSPBtDicRexBvI0l3O\nteu4Ned571VIJl1BoTgiGsKkf7im8sN76E2kezQV2wFgoM9jz66JmKgtX+sbde1PExvn42GT8c31\n5r6zP9EQsDX35z5VuOiVwO9s+ASTCKeVBOy+PbQ3p7LW1vC1uH5xvCFpoYZE0RpO13Na/SWnfAhy\nZWrIu7NqYwgZw58Y/rFp8j5J57/lN0Neb3fZUys05rrK27pro6zYBYSiPCmS7/sWGNQ2mnBc0+Ib\nP8dqFuHzMsnTwzl5yOrYalnPPRu5dnat0+sXpgIGZVTmvWJLV3XXa488rEQy6w8L5hALgMik8LrX\nWCI/3KiHYPj+fBtzlDFPjPVEvslT87bx7gtv0WpRTc7v7uLN6dSwEM6lnrH1De5V3XqP14v2ORFE\n9iCCiIjU0so5pDQygtQrILpt5kI0iZsYY4deRInrU94s2bJVfULuUPytVYLGRffMKLz0KzuB/+XC\nWAQNKFiFd98hBW7lW6lgM6yx2Fqz6B7smAU4MGqGfFSt1/sPCblDoRF3Oacvbt5eo5aynoQ1dhO2\nPWrv6cTFylVFzqijIB76bdOEYyNeZtjI1qgbPh/lgkHcLPP5cRPdlFOCZOf3EhLldR3G87oJkP/Y\nRTviFqnHtyis3DhuPPmYF1Lod9781rphpmzvYz9bsvcO1zS3n8M23FG5KmDpOW7vy2zzQESiqydp\nyGqT9rkVmu33fV5IVohV4a/mWkQsY9tm61IkCjEqzEj+fSFOTnfBpfQEJSVtLXKuibSNd/UySYnr\nJ7pf5+/MO9SGz85HTg7HudKzNK4IlnfWrZdtS16PNadzNwhJjeu6bx4Lk4Ch8sUoF7irF2D69n37\neNeg0ggpNAURrAfCXe5/W3Nv4rvMd0KetYS76wpVSLYu8IC+dc71NbR++77vW6fh3K5PfOdczk19\nbtM5zwHWKeAX0WzfFRGRSYnqBRqKGDttaF0OrfHSxXAgy7+HytemoNrYDIjuvxgL7sMrzOld26jw\nb+d16cN6frs5wr3C53HhogJueAmVYD5vgXIRU1fKDMlNuS+sdQ/A8zahogktuOn9b5uH6TrgOzNB\nJNu0acNzyNsob1RSxzmI8R97+lMFt/nlJGdqd1G6qGxZy37jRa6r0OcLHG2fVA5jAdmoda22kaBt\nZw0o4NBdT3HuhuO8CTy7WN/He6AcZtGVF6xcy/eokrGnTMZz4j2GZd3bgMnazF0q2Nu2kU0drN3H\n4/wmcVzQxuQevP4aeRLsHnc4hpyJoV9WImvMHQumxlASfg7HkXNJKGBO6jUDdrQAs77Y1bJpuceE\n8d9Jvrf4G2QeS84Pw8+8z9Eu8CzK3nwe5TFt8wvw2bULpV8vNt++c1v39PrQHkQQkUYauagCA1qZ\nUmuVb2VsSkBprCyup2BXJdk6baxRX0bVIRryPPooCecak0F07Mqk/TlyT7LxdaFEFzdoggZgji4k\npKkgqGz5udhKg+9qv8Hzwj1KOEY3/ovh+03Y0NUK4lu9/239mNJNfSrS7xZIslm7eRypNbbQ762A\nYe9r+1wkKtxjLQ0Yzllhc7kqQuKiDRh261o58KE01hICAatYcHy4GbOvvhdKgZCRtcy1QTm4dqGN\nK7R1InM9p3LhnA2S79SC8oYUfJI22g3MUxmwCmhPPw4pH76nD4Y2xZvu7y3QMJCBl5YRB8VjPXpb\nDqB0H9V5cjIr1JAKFQEjcZ4NzeU6aQ/HidOPyp1Virduq+uygRCroIERYqhkjfxYdu2b4XoIJoM5\nU3pAOWvxtZS+X8znwrUWATuRrjWZ/XlYj+UQ7rZcC1SihizQW18r0LUpQqIxrrmtrHBubnEpZCyV\nDzXBprsAFC1g6dsSnLFzug/oJegiudDeBwAPjW2l6yncf+yKQQC5MM9LqxzYfonvatrcA5BSOWXd\n8IULSenWLmTv1rXvI5Bo17hdV71C7QBfu2ldD61XPp+/e12TbfS4KYICU46gVK/fERGRScGqS/l8\nDPeF1W5gno9o9U/23dv2X7vPp3kbSFwDVKC51tdY5xu3km0RxqcGuMP9eOTgllx/Gc8/1HZpZRKf\n85KVC2tlSz5fhDUzkbkcNOH66+ISzw57ALnbG1XYxwhWBHmiv79sJY50L+K8o0K2dgStIHO4fM+p\nXSWNz9fy1AVedrQLfbBpxtnvNhl0H0XreP658V5BgyvwlOviPDzH7otcGz6uDe4lre+3+N4EnJfF\ndx2rAAAVHElEQVQoMzBFpY0S3h/VOozN2BUd6zfl2ZFRjtVTq23UkDEucp5MIPYmmdTyHRJlH44n\n51YllRTbwF93mCvW06tp8z1g1zYdGapyef6Et1E9rQGgsti1CkB12kwgtgMUuY5crjlmTJ9cN2H8\nrmUpa7wb10sFWfg22SSck8+Luxg2Fi7IilzrXBNcB7xnOpdsW6xUQv6xrfYlHjN6geSYn2X6TIII\nzrkfEZH/XELI5Z/13v+nN53fSiPXLYs329+8lFjEIwAMY1UoA9EKS/Qvzfh8FyGa59nvuipGoD4k\numPVVeEmF8QmfqTvo0KMOac0kaqNNHofIunbgsJK2Bwrnwssu3atm2HTcuMEiABhbTQOx4IuyES5\npZGm+N6TuRQGue3rT1WmitxCxuMISyS715CVjtauHmsbBdURrEA7bHTrIgjeqzYIG7s2ZsBdFgFc\nqdEXJ80p2hTuNYQy97btlk1rlIx5SWEPlqSrImweC3kuInGsR26mfcrvKtRU59i3EHLVipII+VZJ\nuNPGOqQk3KHcztD9b7r2NhChcJGFPh+9JSIiGwjlcX1Fq5NInEvpfFRFpi2zzyO7oSfvMMZc4ntx\nPqwgsFA53vmVjg+Fi1SJ6qPSjVSjbPz97DdrOUv5VgThcquZXXtF9u4Q2Fobl5xbEbU/MS+3zYGs\n2gnaCMEU72ffi2tkW2y0X9Y+KD1Dc5fCW+FGMkb68XNY+jguVGTsGN8YG4/xL8lbqJQkPIbn8Dlq\nXQX/5f3HfjwItDIngd2Lamlu9BS6iVpplfcvJfCstQ/HbQMQAVbqqLDHdW7X4J3W7R1Lad0FXIj3\n6p5bFvAyKT8UEZGnEpTfaRP2Kc67VnwPEDqwjjDG43asYzm0r5NUKU32Zbsnr4XKPJQUwZqHsrr1\nC6karHmf77+jIszhgxL7SRPbRRmG82wNIIIA0Y5rBcdSxnJVBMV8g/VUN+F5DsD5pXwhXAtwNXgI\n9BtV7PclkwlLq2ttVYR3pOyxM7KH7j3SdvaYHeobXvg30VYqmKFvGlWyuvKYJY4Jz6uklgsAKdfY\nK1ct9kzwFh771gbpLvugpQK5BHZlmAdnI5TlbQL4Oe4R9WfqgZLPx9R6XqEyz5h5ADwNZrGf0jbf\nxcAV51boi6UL8kXjK5m1GI/dLLvGgtKpEWsB8ID8iEAN6az6HO4f+mjTtImLfgTqwjGn6NWV7HEG\noCaASHBrBXD1qjiTrcccbRb6juHarjykz9TQjTb7HJ8/HFawBmilcqzP93sLpt6FeG7TXN/5mj19\n+uSc+5dF5E+KyA+KyA977382+e0/FJE/LCKNiPw73vu/hu9fSHcW+QyCCC7sXH9GRH67iLwnIj/j\nnPtJ7/0vDV3TSi0LCtxQ7rhBeWll7KH0IrHIBIy1hlCxA9pYgzmO/Dha22+JI0rdLOlOaZVf64pJ\nKhLBwj6n9V23TRGRQ7kvU7jk8r4VLHNRqKXgynCErb6bopJgjpsaym8d+q8GGNM0G2lVeAEgQMbl\n8lrDxYigBl2uVyqUp9asPkqFXudyQcvKADeBCENWL71ncq+hc7l/9o05EwTxPlUbNppl9UxERLZV\n6McGQoZIKdNxKK/UIgB7VwYllfPDoszaZim6wnqP629+TSklBBH2E8f6qn5fREQW2yBct1ASRuWB\nbnANvqux0XhVJDCOL+A98ypS3azk4BhWalj6KMxsAQz5liW1IlBgPRrKIh+DPqWO587kKPuelnQK\nrlTqds1Sx4egjlWiWp+DdoWbSIMyV7Rock5xfitIKFHpHnTJ5X3N+zhXxnc1wpLlAaok4N5HxUPt\nA4KOsW39ANXWL1Sg28CyQmWrxlE6a6UUd8TxyYEbCq5Uqnw7LJzZsWZfcD6kwmIEaMbZ8zin2GeT\n4qADJNt3t+SlHdyXtE1GaSX/aKSWTQPPg+osHHeBh7Wc569o/Wz2/2IUwIOzSZhbBayxVFa9tB3L\nnhX4dT2Dp47dXMbYAyyIyHErJbeKk78XvpCZEJiEh4ABwjYt1nodjtv6WhruxVRcwQOKMtxrehTe\nry2irEAeUkm4Zt2E+b3CGPP+nkCbG0vhAOThed4TRAhr5cHJl7L327iF9p/dc+wcnsqB9scaZRhX\n7UXWll0D2aOBx6Pn3lN1QKMRgJMJ3v1awmfyOK7j1EOFYxn5VP6ZtPULWdRhj1xun4b71aHNnn3z\nkvZBVXbLMHcLJBWoR1Em5XziOBy38HBs5tm9KAuvi6WctiEUhc223luUC0k3hQmRaI3nPkUZqPWV\nTOZhvBcA4kkK0lJGLMK7rNtzWeweh/vtQp9zvrN06RH25XtVAI52bqsu+pYKO9Z9gB/DkSTfc6gz\nLPle68dS1QDyzNqQF+GR3BcMEJCXycKeAgNdBKkwPp398A5hhjSUAHS8Cbx4/ci/CjLt3xeRf0lE\n/pv0S+fcrxeR3y8iv0FEPi8if8M59wP4+YV0Z5HPIIggIj8sIl/33n9DRMQ59xMi8qMicmNHUKEm\n4k7LsIjIxCHOjJtgQXd8uAwJN2m4ArupKo19Cl5KFiHso8bnwjRJ3RKlizwOWZg2xVgZMS0rFI5U\n4AFooiCD36gAz02WG/e2hgtZD7P0BgWNLw1vBiic2/I6a3PlV/rOFkklRWHt9jRlHXAhbcoA2DKE\nAjspBu9n75Xew8ZZ1wARKhWAlriGSkIpdROEM3onrDHeCvK0uZuqFfxDW25RKJI2lkDq+X4EOrYQ\n1lQg4hzzW92oW/U2yTetV4DRfizU+q2CBTXdayHMcK20beibAvwjB8AooI6zz84omul1TZFbNfj8\nTU0hO6yrAOhx/hlLxADI07qxCukbeAxxLum8o1LfspRXfJ+h9dr3vnxnC0BEl18Ia20OIhSjQuoi\nt7JafqvvozznSsejqjFeuvZ4LfvGs7FxvZbheeSHVN74ewRphum2sU6JPJnvzD6gB0xbdN/XeopY\nfuV90/FIGQI4OrlIfCU15nVtBONXFTxQ0uSwUJR8GFsq/QoGSjvoaUVST6IyyA51sZEaCjGVuI53\njlFOax8BI+7FqrC0OXjAfZhrvm5WybiYPZTvh2vHyP3gpVHjAPuAQBF5QQMALlVKGsfSw/ncd8J8\nAJf4HM7btgvtP8ownKMWnKmTEAUCGn3vKiLiCZb0KVnaVnpnhfewAJGCgb7VNUFZjkaWyCrzhHO7\ndqFti2D6ywUPSLw/x5pyBS3TzpW6XscI6RgbeYJK8VURxrzyKwW1STSYsb80PCmRM3gfq4hzjagh\nCiB3pftjraBY6/pBYG0Hnr9tF8rPLVjW4pxr/yS0Bx4Xjas7IKoFPFQGxu/pXt2ot842aws9cXYq\nLy06e4tdIzdRDCWjp27uAZER98iPsRyjeiu221vO3NOvRvLef1WkN4z7R0XkJ3zYIL7pnPu6BL1Z\n5CPozu4uWTtfJXLO/T4R+RHv/b+Bz/+6iPxm7/0fNef9mIj8GD7+RgmozZ5eHr0pIs8+7UZ8xmnf\nxy+f9n38ydC+n18+7fv45dO+jz8Z2vfzy6d9H798+qz18Ze89w8/7UZ83OSc+98ljNXLppmIbJLP\nP+69//EXuYFz7m+JyL/HcAbn3J8WkZ/y3v+P+Pzfishfxem36s6WPoueCH2BbB2kBAPx4yIizrmf\n9d7/0Mtu2OtM+z5++bTv45dP+z7+ZGjfzy+f9n388mnfx58M7fv55dO+j18+7fv41SDv/Y982m0Q\nEXHO/Q0RedTz03/svf/LQ5f1fOelmxKE399In0UQ4T0R+WLy+R0Ref9Tasue9rSnPe1pT3va0572\ntKc97WlPHwt57//5j3DZTTryC+vOtweUv3r0MyLyFefc9znnJhISSPzkp9ymPe1pT3va0572tKc9\n7WlPe9rTnj4N+kkR+f3Oualz7vtE5Csi8nfkI+rOnzlPBO997Zz7oyLy1ySUqfhz3vt/cMtlLxRj\nsqePRPs+fvm07+OXT/s+/mRo388vn/Z9/PJp38efDO37+eXTvo9fPu37eE8fCznnfq+I/Bci8lBE\n/jfn3C9473+H9/4fOOf+vISEibWI/BGPLNYfQXf+7CVW3NOe9rSnPe1pT3va0572tKc97WlPL4c+\ni+EMe9rTnva0pz3taU972tOe9rSnPe3pJdAeRNjTnva0pz3taU972tOe9rSnPe1pT3ei1xpEcM79\niHPuHznnvu6c+w8+7fZ8Fugufeqc+1ecc7/knPsHzrn/+ZNu46tMzrk/55x74pz7+wO//2vOub+H\nf3/bOfdPfNJt/CzQHfr51Dn3vzjn/l/M4z/0SbfxVSfn3Bedc3/TOfdV9OEfu+Hcf9o51zjnft8n\n2cbPIjnnZs65v5PM3f/k027Tq0x37c/9vve9k3OudM79vHPuf+357Y+jf/+ec+7/dM596dNo46tO\nt/Txu+DZP49+/l2fRhtfdXLOfcs594vOuV9wzv3sDeft9709/aqm1zYngnOuFJGvichvl1Dy4mdE\n5A9473/pU23YK0x36VPn3FdE5M+LyG/z3p87597y3j/5VBr8CpJz7p8VkYWI/Pfe+9/Y8/s/IyJf\nRd/+ThH5k9773/xJt/NVpzv0838kIqfe+z/hnHsoIv9IRB5573efcFNfWXLOfU5EPue9/7vOuWMR\n+TkR+T2WB4Ov/HUR2UhI9vMXPvnWfnbIOedE5NB7v3DOjUXk/xaRP+a9/6lPuWmvJN2lP/f73sdD\nzrk/LiI/JCIn3vvfbX7750Tkp733K+fcvyUiv9V7/69+Gu18lemWPv5xEfl57/1/5Zz79SLyV7z3\nX/4UmvlKk3PuWyLyQ977Zzecs9/39vSrnl5nT4QfFpGve++/AcH/J0TkRz/lNr3qdJc+/TdF5M94\n789FRPaC1IuR9/7/EpGzG37/2+xbEfkpCbVe9/SCdFs/i4gXkWMoEEc4t/4k2vZZIe/9B977v4u/\nr0XkqyLyhZ5T/20R+YsisucVHwP5QAt8HOPf62lN+Bjojv253/e+R3LOvSMi/4KI/Nm+3733f9N7\nv8LH/d73Eei2PpYwr0/w96ncoY78nj4y7fe9Pf2qp9cZRPiCiHwn+fye9Auwe7o73aVPf0BEfsA5\n9/84537KOfcjn1jrXj/6wyLyVz/tRnxG6U+LyA9KEKJ+UYLlsf10m/TqknPuyyLyT4rIT5vvvyAi\nv1dE/utPvlWfXYLL8i9IEFD/uvf+p2+7Zk/DdIf+3O973zv9KRH590XkLnx2v/d9NLqtj/+kiPxB\n59x7IvJXJCi6e3px8iLyfzjnfs4592P2x/2+t6dXhV5nEMH1fLe3xnxvdJc+HYnIV0Tkt4rIHxCR\nP+ucu/eS2/XaEVw7/7CI/IlPuy2fUfodIvILIvJ5EflNIvKnnXMnN1+ypz5yzh1JsLj8u977K/Pz\nnxKRP8E6xnv6eMh733jvf5MEa+0PO+c6ITt7ujvdoT/3+973QM653y0iT7z3P3eHc/+gBHf8/+yl\nN+wzRHfs4z8gIv+d9/4dEfldIvI/OOdeZz3io9Jv8d7/UyLyO0XkjyB8MqX9vrenV4Je58X/noh8\nMfn8juxds75Xukufvicif9l7X3nvvykhlvwrn1D7Xgtyzv3jEtwRf9R7//zTbs9nlP6QiPwluDJ/\nXUS+KSL/2KfcpleOEEP+F0Xkf/Le/6WeU35IRH4CMaS/T0T+S+fc7/kEm/iZJu/9hYj8LRHZW8Y/\nBrqhP/f73vdGv0VE/kXwgZ8Qkd/mnPv/27u/EKuqKI7j358OoQk9mCFFiVIRESFZQRAVlfgoRUE+\nJAYRSPRSEWWhRT30IAQFgRGShRRkpAhRE9JD0R9IlDJDIiN8qLDCoCIUc/VwzoROkxz/3Tv3zvcD\nw73nzJ7LupvLbFh3r7U3jh+UZDHwBLC0qg72NsSB12WO76Xp7UFVfQrMAOb0MshhUFU/tI/7gc00\npcBHc93TQJjKSYTPgUuTLEhyFrAM2NrnmAZdlzndAtwMkGQOzTbP73oa5RBLMg94G1heVd/0O54h\ntg+4FSDJXOAy/ByfkLafxHqaRqDPTTSmqhZU1fy2eddbwP1VtaWHYQ6dJOeNfQueZCawGNjT36gG\nV8f5dN07BVW1qqoubP8PLAM+qKq7jx6T5CrgJZoEgnXkJ6jLHHPsunc5TRLh554GOuCSzGobCZNk\nFrAEOOYUKNc9DYqRfgfQL1V1OMkDwCgwnab76e4+hzXQ/m9OkzwNbK+qre3vliT5GvgbeMRvy7tL\n8gbNltg5bV3ikzSNvKiqdcAa4FyazDXA4aq6pj/RDq4O8/wMsCHJLpoynkeP12lZE7oeWA7sauvJ\nAR4H5sG/86zT73zg1bb79zTgzar6z3Fu6mzC+XTdO/PGzfFamia3m9q1b19VLe1nfMNg3Bw/DLyc\n5EGaUtV7aqoe8Xby5gKb28/oCPB6Vb2XZCW47mmwTNkjHiVJkiRJ0omZyuUMkiRJkiTpBJhEkCRJ\nkiRJnZhEkCRJkiRJnZhEkCRJkiRJnZhEkCRJkiRJnZhEkCTpDEhSHX6+b8duGHsuSZI0mXnEoyRJ\nZ0CS68bd2gx8ATx11L2DVbUzycXAOVW1s1fxSZIknYyRfgcgSdIwqqrPjr5OchD4Zfz9duzengUm\nSZJ0CixnkCSpz8aXMySZ35Y7rEzybJKfkvyeZGOSs5NckmQ0yR9Jvk2yYoLXXJhka5IDSf5K8nGS\nG3r6xiRJ0tAxiSBJ0uS1CrgAWAGsAe4C1tGURrwD3A58CbyS5IqxP0qyCPgEmA3cB9wB/ApsS3J1\nL9+AJEkaLpYzSJI0ee2tqrFdBqPtToLlwPKq2giQZDuwFLgT2N2OXQvsA26pqkPtuFHgK2A1cFvv\n3oIkSRom7kSQJGnyenfc9Z72cXTsRlUdAPYDFwEkmQncBGwCjiQZSTICBNgG3Himg5YkScPLnQiS\nJE1eB8ZdHzrO/Rnt89nAdJodB6snetEk06rqyOkKUpIkTR0mESRJGi6/AUeAF4HXJhpgAkGSJJ0s\nkwiSJA2RqvozyUfAQmCHCQNJknQ6mUSQJGn4PAR8SNOMcT3wIzAHWARMr6rH+hmcJEkaXDZWlCRp\nyFTVDuBammMdXwDeB54HrqRJLkiSJJ2UVFW/Y5AkSZIkSQPAnQiSJEmSJKkTkwiSJEmSJKkTkwiS\nJEmSJKkTkwiSJEmSJKkTkwiSJEmSJKkTkwiSJEmSJKkTkwiSJEmSJKkTkwiSJEmSJKmTfwBk0kdj\nDVKj/AAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -470,7 +25886,6 @@ "source": [ "sentence = df.iloc[120, 1].lower().replace(',','')\n", "print(sentence)\n", - "sentence = \"that he has a 5 an 8 before him unless the press work is of the best\"\n", "align = tts(model, sentence, CONFIG, use_cuda, ap)" ] }, @@ -483,9 +25898,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": { - "scrolled": false + "scrolled": true }, "outputs": [ { @@ -500,7 +25915,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " > Run-time: 18.219324588775635\n" + " > Run-time: 1.5912322998046875\n" ] }, { @@ -516,7 +25931,7 @@ "text/html": [ "\n", " \n", " " @@ -530,9 +25945,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XuYZGdV7/HfqurbXJPMTC7DTEIC\nTAghQJBAAD2A3OX4HPQREVRA5BgF4pGLyuVoElAUVEBU5JwokaAiV4UcjIIQcpADIQkhQK5kciGZ\nZDL3+0z3dNde54+qnt7vW921u6brrdpV9f08Tz+pVXvX3m/vnpn0Xnu96zV3FwAAAAAAQJFKrwcA\nAAAAAAD6A0kEAAAAAACwKCQRAAAAAADAopBEAAAAAAAAi0ISAQAAAAAALApJBAAAAAAAsCgkEQAA\nAAAAwKKQRAAAAAAAAItCEgEAAAAAACzKSK8HUAZjNu4TWtHrYQAAAADoNoti78kokrORahBny8aD\neHpleCHG98wce+2TU4s+z6QO6ahPxVe1773oJ1f4rt215Of5zvenvuTuL05+oiUgiSBpQit0oT2v\n18MAAAAAuscK7vN8QO+mIzYS3hJ51uL7ztq8iSzRNa6etDaIp550ZhBvfUaYVDjzM9uPva798O7W\nB899H9/2rx7fAEtu1+6arv/SGcnPU11/17rkJ1kikggAAADAMCpzkqASPjVv++a9herq1UHsMzNB\nbFkWxmNjx17X9u9veWwbHQtir0Xj7uD3EV8jq4QJi8kXPDmIN/7+XUF8+64DQXzGZZNBXLtz81JH\nOFBcUqascL9hQBIBAAAA6BdFT7bzypwkiFTXrgnibF94s+5u+aDlseLKgsqms8Lte8Ob58NPPj2I\nJ9eEN+cnfOKG3Iej6x+NxaePthzbUlRWhNOv88kNSdI/LwvCjeNh0mDPz00E8ck77gniOJkCLIQk\nAgAAAAAALblqTiWCRBIBAAAA6B99VF3QjtruPeEbS/g+K8uXB3FceaBKuEDd8u/8KIjHt+/o2Fg6\nKa4U2PkLTwzi1X8QVkHs+NpN4QEsug6dnFqBoUISAQAAAEBvdfBGvXYgvFkeWbUyiLP94fYs2r9M\n8lMz7r3kx4Jt1cPh1Iq1f/+DIPb4mjpJg6Wo90QoR0Kp1yrFuwAAAAAAAFCJAAAAAKCP2Xi4NKFP\nTYXxgYNBXObKg3jFhepppx57fdLt4VPwEz5xfRA78/XRJSQRAAAAAPSPaIUEP9p6RYR4ekOZ2Wh0\nezY2euzlmm9vDzbV6GnQdSzxWEcSAQAAAED/KEmjwxQqUVXFfX86t6zjI9+wI94d6AmSCAAAAAAA\ntOBy1QY4gdUOkggAAAAA+lc0vaGpUqHEN342OhbEt7/3nCB+7B8dOva6ti2cztBTRdccA40kAgAA\nAIC+ETdSrJ50YhDPPLwt+kCJbnijxol3/d3jg3jVTdHt2S2bU49oQfnrHE+ziNX27089nFJgicc6\nlngEAAAAAACLQiUCAAAAgP6RhU+DZ+Iy/5SVB20eu7p6dRBvffV5QbzyO+H+p33wm+Hh2xtde6Lv\nxUZGg7iyfPmx17U9e1KOpC+4pBqVCJJIIgAAAADoJ5UeTk9o81w/ujhMGkw/8WAQn/WLty55SMer\num5dEB985llBvPK6+7o4GvQTkggAAAAAABSgJ0IdSQQAAAAA5ZZrSOhTU70bRzwFYCxcXeENt/wg\niN9y1dOD+NFx5UFW69zYCsQrQdR27gziZV/YEW5PPiL0q1InEcxsQtLXJY2rPtbPuvulZvYxSc+W\ntK+x66+4+81mZpI+JOklkg433r+p+yMHAAAA0DH5m+0erraw5zVhUuDaP/xQEL/s3OcH8aP3X5d8\nTIvl00d7PYS+5pJqLGUpqeRJBElTkp7r7gfNbFTSN8zs3xrbfsfdPxvt/1OSNjW+LpT0kcZ/AQAA\nALQjulkfecT6Y69nHnyop2PppnyDwQNnhuP42Y1Pi/YejqUOMdxKnURwd5c0231ktPHVKv3zUkkf\nb3zuOjM70czWu/vWxEMFAAAAAAywrNcDKIlSJxEkycyqkr4j6TGSPuzu3zaz10t6j5ldIumrkt7u\n7lOSNkh6IPfxLY33mpIIZnaRpIskaULL480AAADAktlI+Ou2z8x07+S5PgL1kxfcAlklCEfWnxrE\ntXgpxQ6Kr5Oe8NgwvuWuYy8Ly/KLpjsUVDWMnLExiEc/Pne+M57zrdbnLrMeTgPBYCl9EsHda5LO\nN7MTJf2LmZ0n6R2SHpY0JulySW+T9G5J8/2LMO/fDne/vPFZrbY1/A0CAABAxy05aRDf+OVu9K0a\nJgkqyybCfcdGw/jodMux+XQYzzwUPYfr4E2njY8HcX7KgCT5nfcGcVZbfE+EeOlCP3w4jKPve+er\nfiyIp1eFx9/wsrkERplvvIsSVk3XuOnPQxiX+XvtBZerxuoMkqRK8S7l4O57JV0r6cXuvtXrpiT9\nnaTZyUhbJJ2e+9hGSV2esAUAAAAAwGAqdSWCmZ0sadrd95rZMknPl/S+2T4HjdUYfkbSLY2PXCXp\nYjP7pOoNFffRDwEAAAClVVRi3hTPPZH3aHnAWi2MrdK6bN+j/ZM+eY6nVpz3mCC0nVFDwn3R1IvJ\n3LKOReOstF6GccvrnxTEp35nMohHv31HEGfTXZyC0obKE88J39h8fxB6Fl2nSvj8mMqDNrlU4xJJ\nKnkSQdJ6SVc2+iJUJH3a3b9oZtc0Egwm6WZJv9HY/2rVl3fcrPoSj6/twZgBAADQz6Ib+3jaQHDz\nXXTjVZAkaDp20fSH3PHiz8ZTBOLt2ZHwZlmKkghLmTMfJwmiBIc/4wlBXP3hg0E8ffaGcPu2HS2P\nF4jHHZXpH35mmLA48Z7wWKM33hXEtnxZeOpduxc+dzfFfy637gripmRH1AMjO3AgybAwfEqdRHD3\n70t68jzvP3eB/V3SG1OPCwAAAAOk6EY/ujn3Q4cWf+yCG/G2eybkjlf42egJfNtPnqPEQPWE1cde\nZwfDaxA3O7SnPD787B3hU/LDT390EC+79rZoaC2aIRaMe8uvPi6IN/yv7wVxFvdIiJItiio0Krmf\nfzYZJ2K6KPq+azt2LLBjDwQ/n94NIyUXqzPM6pueCAAAAAAAoLdKXYkAAAAAJFfwZDtrp/Kgh+I5\n8J7vIyC1P+c9Koev7d276GPZD8PKg1pUSj/xlfCaFvYdaGPsGy7/QXjsgp9fU2+IohjNhqKfgqk2\n72KAw4ckAgAAAJDKUvoMzPf5Fks8xjf97fRXiI8tqXUfggJF8+99KkpwFPRUaKV6yslBXNu2Pdyh\nzeaVfvRoy+090+41WuqfPWABJBEAAAAAAGjBJcULXgwrkggAAABAh9hI+Ot10zJ73t7T46Zqg+BQ\n0bGWUDlQP2AP28a18VQ9via17QUNBtuexlHSO8V2fz5l/T7Q90giAAAAYLB0s4w7Olfbqy3EJert\nTklYiqVcl+j7rkQrWHR8FYP8qhRxYiaehhFPW48SFE2rbcRTKzqpk9NZSAr0HD0R6lidAQAAAAAA\nLAqVCAAAABgs8RPblJUJSz3WUqcg9MjIqacE8UzczLCLrNJeNUjSyoOmky2xkWZZqw/6ZZwd5KIS\nYRZJBAAAAAy2uNy9qC8BCs08vK13J4+nfAzSj7Nfbsb7ZZxIgiQCAAAABlufPu3HAriBRY9kTiWC\nRE8EAAAAAACwSFQiAAAAAADQAj0R5lCJAAAAAAAAFoVKBAAAAAAAWnCZajyDl0QSAQAAAEDZVKoL\nb6NRJtBTJBEAAAAAlAuJApQQqzPUUY8BAAAAAAAWhUoEAAAAAABaYHWGOSQRAAAAgFai+fmVifFj\nr7PDh8N9LbrJcG95LHkWfrwabvdaVNYfH69HbHQsiH36aOITtrh5K7jGlbHRIM4mJzs1qvTy3wtT\nPFASJBEAAACAVqKbt6bEQV7RTX7BjaDPzCx2VD2VPGnQdMI2kifxz2uyj2++SRyUiKnmdAOQ6IkA\nAAAAAAAWiUoEAAAAACiDoukw6BmXlPEMXhJJBAAAAADoDZIG6EMkEQAAAAAAKMDqDHUkEQAAAACg\nF6g8QB8iiQAAAACgGMsNti9e0pPr1rfcWZ1hFlcBAAAAAAAsCpUIAAAAAIrxFL1QZfnyIM4OH+7R\nSJBCRk8ESSQRAAAAAKAjSBpgGJBEAAAAAFBu+aUQaUaIHnBJNboBSKInAgAAAAAAWCQqEQAAAACU\nW1mqDyyaEx+PK94eK8v3gePA6gyzSCIAAAAAwGJYdBPpBc0mSRpgAJFEAAAAAACgBZeU0Q1AEkkE\nAAAAAPMpKt0fEjYyd8vkMzOtdx7Sa4ThQhIBAAAAvdfJG9bUN7+tVgqoVFt/tBKOzbPw81aNPu9Z\nGNZy5fNF31d8HaJS/HgssXhshaX7Cdn4+FwQjctnpsOdi/oUtHnd8omDkdM3BttmHtjS+lgYKDUv\n6HkxJEgiAAAAoPeWcqNfcOPe8ZvfVmPNWp8rygnMs72DY43HGV2HorGUSi55UlgNEGv3z1aL/f3w\n4faOBQwgkggAAAAAALTgMtXoiSCJJAIAAAD6XfxIvYvz0qtr1wRxbfeecPuqVUGcxU+yo+kLfvRo\nuL2dJQSj6QqVifEFdmwcejp6oh9Nb6iMh5/PjkzmPhuNs8Mqy5cHcdN1WYo2pzfY6Nix19nBQ50b\nB9CnSCIAAACgv3W7mV1u+kRtz76Wu+ZvvKWwSV/9WNGTzbGxIIz3D0r5454Fcb+FWjh9waJjV5Yv\nCz8fJTSyXbsXPnenRTf22eRUuD2fKIqmr1RPXhvEte07griyLPw+44RE03WKEzv5hEmrJA4GXuZU\nIkiiHgMAAAAAACwOlQgAAABAO1o0P2yqHIjK/n2m9ZPsePqDlk2Eca6cvqkyoFbQlDHeHk1/8AMH\nwzhl5UGsoAlkuCJGOH2ltm1762Nn0QoX8fcVVTa0/L5ZwnFouURPhAaSCAAAAEALTYmB/M14fCNe\ndONdcBNa278/fCOOg4GFCYm4DL8S9WtQNLZsT9i/oXDs+ZvtTq4isRhLuHnPJicLdujd0pVAPyKJ\nAAAAAABACy5TzemJIZFEAAAAQDe02RG/TFo2N4zL7ts+eJvXJbd/XHlg0WoKipo61g4caOtcTStP\nFDSRBDAcSCIAAAAgvT5KGsQKy+GXIE4ENIkTBbkVFiorwmUQFS3pmO0KpysUDyZMaDQlDSj7ByCS\nCAAAAEDPeLxMY9Q0sGkZx/yu1ajJ2/R0uL1pmcT2EjkWLxmZLbAjMCQyGitKYolHAAAAAACwSFQi\nAAAAAL0SP95vqhaIliecnuvHkNUOqZW2l2iMzu1FS0YCQ8RdqjnP4CWSCAAAAOiEPm6c2FVtXqe4\nZ0L+xt5nEl9jfoYA5kESAQAAAACAlkyZWOJRIokAAACA45V/qs5T68Vp8zq1PSUBABIjiQAAAAB0\nSiVasnGpyyIyTQQoBRc9EWZxFQAAAAAAwKJQiQAAAIDjw1PxpkqBpkaI7VYixJUM8eoNWDqqO3Cc\najyDl0QSAQAAAGhP7ibUxsaCTdU1JwVxtmdv+NlKeBOSX7JRkirLJsLtR4+Gxzs6nQuGaAnGfHKl\ncFnMFp+Vhuu6AQmQRAAAAACOU3yTX9uxM9weN0YsuKGtzUyH23lKXreUG3+SBugAlylzVmeQ6IkA\nAAAAAAAWiUoEAAAAoB0tqgMKl2QseipO5QFQWvREqOMqAAAAAACARaESAQAAAACAFlxS5jyDl6hE\nAAAAAAAAi1T6JIKZTZjZ9Wb2PTO71cze1Xj/LDP7tpndZWafMrOxxvvjjXhzY/uZvRw/AAAAAKDf\nmWpd+OoHpU8iSJqS9Fx3f5Kk8yW92MyeLul9kj7o7psk7ZH0usb+r5O0x90fI+mDjf0AAAAAAMAS\nlT6J4HUHG+Fo48slPVfSZxvvXynpZxqvX9qI1dj+PDPrj5QOAAAAAKB0ZnsipP7qB30xSjOrmtnN\nkrZL+g9Jd0va6+6za+hskbSh8XqDpAckqbF9n6S18xzzIjO70cxunNZU6m8BAAAA6G9mc18AesLM\nXmxmdzam7799nu1nmNnXzOy7ZvZ9M3tJp8fQF6szuHtN0vlmdqKkf5H0uPl2a/x3vn/VmhbcdffL\nJV0uSattDQvyAgAAAIsVJxKcX6cx+Hrds8DMqpI+LOkFqj9Iv8HMrnL323K7/Z6kT7v7R8zsXElX\nSzqzk+Poi0qEWe6+V9K1kp4u6UQzm02CbJT0UOP1FkmnS1Jj+wmSdnd3pAAAAAAAdNTTJG1293vc\n/aikT6o+nT/PJa1uvD5Bc/fJHVP6SgQzO1nStLvvNbNlkp6verPEr0l6meoX7jWSvtD4yFWN+FuN\n7de4kxoFAABAQ/QU3cbGgtinmOo6n8qyZXOvV68Kts1s2x7uzK/fGDDuVoaeBcem7jdskXRhtM9l\nkr5sZr8paYXq988dVfokgqT1kq5slG5UVC/N+KKZ3Sbpk2b2h5K+K+mjjf0/KunvzWyz6hUIr+jF\noAEAAFBS0Q0uSYPFySbnrlN2+HAPRwIMtHVmdmMuvrwxFV9a3NT9V0r6mLu/38yeofq98XnunnVq\ngKVPIrj79yU9eZ7371G9nCN+f1LSz3dhaAAAAACAIVHrTiXCTne/YIFtx6buN+Sn9c96naQXS5K7\nf8vMJiStU32Rgo7oeT0GAAAAgBKqVMMvAL12g6RNZnaWmY2pXnV/VbTP/ZKeJ0lm9jhJE5J2dHIQ\npa9EAAAAwAAalu7+8fdplSgMt3vmbW1veepKe53kbSS8NbATVgdxbXtH70OAvuKSsh6vzuDuM2Z2\nsaQvSapKusLdbzWzd0u60d2vkvRWSX9jZm9Wfdi/0ukegSQRAAAA0H0pkwbdTFC0e65oWrJnrQuD\nfWZm4fMVnMs9aiBZDasJ4oREU2+IuFkiZKNRE87poz0aCYaVu1+t+rKN+fcuyb2+TdKPpxwDSQQA\nAAAAAFqybvVEKD2SCAAAABgsJZoaUfT0v3A6QzTFINweNVsv+r7jqRRxm4NKdK6j0VP2slzXHk6F\nofIAIIkAAACAMipzz4R8k8GstvA2NU9HaEoKxNMV4s/XouO3cx3ipSz7+QY4/+chSobIo2sEJOCS\nMu9tT4SyoB4DAAAAAAAsCpUIAAAAKJ8SVR5UJiYW3JbFD/ejxomxpsqDph3anKIwLPLVB3H1R1fH\nUeIKGSRX4xm8JJIIAAAAGDYFN4LxlIPKurVBPPPQw3NBuze00bmr8TKK+/a33D8Ya7yt6VzRDU+b\nY60sXx6eOtcjoTAZ0mm9TBzkkTQASCIAAAAAANCKy+iJ0EASAQAAAMOl4GlyXIlQe3hb9PnWUxbC\ng0WVB2tOCrdHjRObn/5Ph3HcaLHVuNoZp9Q01uzIkeh4JXkKH1dgNDVaLPi+y/J9AH2KJAIAAEA/\nYU52segaVcbHgziLbszjUvlscrJzQ4mXeJycCs91pOBc3Szj79M/S/E1blqqciq85sDxyuiJIIkk\nAgAAQH/p0xu9roquURbfRHbxGsa9A7reS2AQDdLSlUAfIokAAAAAAEAL7lKNngiSSCIAAABg0BSt\nWoD+k/uZNk0RoboD6CqSCAAAABgsTPkYPLnmiS2bSwIJsTpDHZ0hAAAAAADAolCJAAAAgL6TX4bR\notUX4m78Kcvd43PHSzZSaj+/op9Z09KYa9cce13buTPZuICFuEyZ8wxeIokAAACAPpS/OU9+o95i\nyUg7YXWwrbZ9R8vPNk21GJYlO6PvsyhpEKvt2NFyO4DuIYkAAAAAAECBmuiJIJFEAAAAAFqLqgP8\ncY8+9jr73h0t92332AOr6PsclusADACSCAAAAEArUam93X73sdeesVIAMAxcrM4wiyQCAAAA0EL2\n408K3/jmD3ozEAAoAZIIAAAAAAC0xOoMs0giAAAAYLgUrIhQmZgId5+Klm1kCkOzSjWMuUbAwCKJ\nAAAAgKGSX6JRkuxRZwTx7b91QhCfe+n9QbykBSULljIsbDDY6vMWPSX1rK1z2Uh0axAdz2tziYGR\nM08PttUe3BruO9XFJMKwLJNZJkN6zTNWZ5AkUY8BAAAAAAAWhUoEAAAADLTKihVBXDt/UxBvf8ry\nIH7sxTcG8cz00eM/eVHlwVLElQdFCqscosqDmelwc3VuykL28PZw36mp9sbSSUPyFLxUhvCau0s1\nVmeQRBIBAAAAgyZeknH9KUE8syycv7/+8puCOFtK0qBpLNGN/lJ7BeRv3rzDUwai6Q/5pIEkKZ9E\nOHKks+deiiEtrQd6hSQCAAAAAAAFWJ2hjiQCAAAABkpleTg9wVeEqy2MXfu9IM5mltQqcWB40XUo\nyXWyqDGmH+1g5QiAQiQRAAAAUD7tlKhHywva2FgQZ3fcEx6qmzfDLHXYGbmfsUV/NpzpC+gClymj\nJ4IkkggAAAAogyU0IBx5xGlBXDv5xCD2m2877mOjfLJeNnEEQBIBAAAAAIAimahEkEgiAAAAoAza\nLUnPVS7UTjsp2FS5b2sQ1yh373/5lSP4eQI9RRIBAAAA5RdNd9j8/guPvT7zX6eDbSO7dndlSOgi\nEgfoMZfoidDAGhUAAAAAAGBRqEQAAABA6dkF5wXxI6+eqz4Y/87mYBvTFwAgHZIIAAAAKB0bCX9N\nvfvnVgbx2ZfP9T3waN+2locEgEXKnEJ+iekMAAAAAABgkahEAAAAQM9Vli8P4iPPfnwQb/r4riCe\nuee+1EM6PlRBAIPJjcaKDSQRAAAA0HOT/+XcIM7Gw1/Wa7f9cOEPl+nGnaQBgAFHEgEAAABdZ099\nQsvtyz5//eIPxo07gMRcUiYqESR6IgAAAAAAgEWiEgEAAADJbX3rM4P4lJsmg3jsSzd2czgA0DZ6\nItSRRJBk1aqqJ5x0LK7t2dPD0QAAAAyASjUIN/7NLUFc27+/m6MBAHQISQQAAAAAAFpwUYkwiySC\nJK/VVNtHNhwAAKBjPAtCKg8AYDCQRJAkM1l1ruTOs1oPBwMAADAAWDEBwIChEqGOJIIkuctnpns9\nCgAAAAAASo0kAgAAAAAALbiMSoQGkgizKLkDAAAAAKAlkggAAAAAABTIRCWCJFV6PQAAAAAAANAf\nqEQAAAAAABw/yz2hH9RZ4s7qDLNIIgAAAAAAjh/95YYKSQQAAAAAAFpwUYkwi54IAAAAAABgUahE\nAAAAAMrCoiedlIkDpUElQh1JBAAAAKBLqieeEMTZkcmW+/v0TPhGVuv0kAZeZfnyIM4OH+7RSIDB\nQBIBAAAAAIAWXEYlQgNJBAAAAKAdwXJ24XQDGx0L9/Us+mzYkqyp0iDen+kMdfE0j1a7VqvhG1k2\n/44AjkupGyua2elm9jUzu93MbjWz32q8f5mZPWhmNze+XpL7zDvMbLOZ3WlmL+rd6AEAADCQ3Oe+\n4k21Wsuv7MCB4EtZLfzC/PLXvODLRkaCL1Wr4RdwnNwt+Vc/KHslwoykt7r7TWa2StJ3zOw/Gts+\n6O5/lt/ZzM6V9ApJj5f0CElfMbOz3Z1/kQEAAAAAWKJSJxHcfaukrY3XB8zsdkkbWnzkpZI+6e5T\nku41s82SnibpW8kHCwAAABRMR/Asql6Iy/QtLhRmekMRGx8P4sraNUGc7drdzeFggGXqj0qB1Eqd\nRMgzszMlPVnStyX9uKSLzezVkm5UvVphj+oJhutyH9uiBZIOZnaRpIskaULL59sFAAAA/Si6MW+a\nIx/xmZmW29s69cho+EYlGstY2DMhOxStFFDQQ0EpC2z7ZHnJyooVQfzAxU8K4o1//p3wAzWKkpML\n+oT0bhjojlL3RJhlZislfU7Sm9x9v6SPSHq0pPNVr1R4/+yu83x83j/G7n65u1/g7heMany+XQAA\nAAAAkLuUuSX/6gelr0Qws1HVEwj/6O7/LEnuvi23/W8kfbERbpF0eu7jGyU91KWhAgAAoATiagAb\nC+Ps0KF0J48qCfxo+BS8aTWGomaK3WztVdLKg1jl1JOD+JEfvyeIZ6amujkcSH3zZwedUeokgpmZ\npI9Kut3dP5B7f32jX4Ik/aykWxqvr5L0CTP7gOqNFTdJur6LQwYAAEAntFNaXwmnK1ROWBUdKyq+\nTZlEaFpeMBp3PF2hTEo8naG6evWx17uecVqw7YR/uqHbw8GQ6pfVE1IrdRJB9d4Hr5L0AzO7ufHe\nOyW90szOV32qwn2Sfl2S3P1WM/u0pNtUX9nhjazMAAAA0IeKbmBzN7wjjwhvKrM9e8P4yGTHhhWr\nnnpKEPvBMEFRyd38SlJt587wAJU46dDBX13jpMBS5cfa4eUoq1EzxAd+9Zwgnlw39+dh0x/fFmyr\npV4as53vu8SJmFKPDX2l1EkEd/+G5u9zcHWLz7xH0nuSDQoAAAAAMGT6p2dBaqVOIgAAAADzyk1R\nmHno4XBbp59MR9UC1TUnzgVrTwz3PXAwHMr+/eH2aGqFRas3uFqvJNGO+NhN0zri7dEqBk2rVizh\nutpouCpF9fRHBPF9vxDGG78WXkf77p3HXtcKeh7YyEjLOGu3Z0I733eZn+6XeWzoKyQRAAAA0Hcq\nE3Ora2WHD7fYswOiPga1XbvnxnH4SLCt3bGkbJHQ0/YL8TKbUXPLbc9bH8Sn/2nYxixOYLRz++tR\nHwqfTDedBcOFngh1fbHEIwAAAAAA6D0qEQAAANB3UlYfVJYvD2JbNhHEfmju3NmRsBJhWFQmJqI3\nwmeT2WQ4ZeCBvz8ziDf83HVB7PFUi6VI3WgRQ8kleiI0kEQAAABA/8mXyy91rndUeh8nBqrj4+H2\n/Jz6YZpnnrtO7vGUgTBpsOOipwXx6a/6frh/tBRmU/8FAKVFEgEAAAAAgFZ8uHKGrZBEAAAAwHAr\nuDPIDh5qa/+BlZty4NEKB/HqC9Mro+qO1M0vAXQNSQQAAAD0n6XcyMcrB4yEKwdUTlgVxLXde4//\nXANq5PSNQTz6D9NBvOH5N4YfYPoCBkAmeiJIJBEAAAAwZJqSBieeEMQePzXv6VqJ5VFZMddw8vDj\nwyUal/1GmGjx2s7wwzQ7HCzW4mZ6SAt1hglJBAAAAAAAWnBJzuoMkkgiAAAAYMh4LXwqHlceZIei\nHgjDKnraXFl70rHXy+7dE2yfM2LYAAAgAElEQVSr3bm5K0NCSQxrXxBIIokAAACAfheXVucaANbD\n6GY4mr6go+F8ftRVoqUtdzxnw7HXaz93S7eHA/SYKaMSQZJUKd4FAAAAAACgC5UIZvYYSU+TtEHS\ng5Kud3fqnQAAANAZTaXVYSNEG18ebn3kaeHHv3NrilHVzx0tfejTR5Odq/nkBRUa0YoJ1dNOCeIf\n/dIZQfzITz907PXMgQMdGGBJxdeN0n008EehLlkSwcwmJP21pFdJyv8LVTOzKyW90d2n5v0wAAAA\nhkvBsoutbr4rK1aE+z7urPBYdz8Ybv/+XcczwkWxkfDX68qKZUGcRe0WCpMKBYmA8GCtV5GoLJsI\n4pknbwrinY8Lx/rIK+8J4mxP75a6tNzUiuq6tcG22rbtQbzk5SNT3ilWwsRNqVataLniQnRNou8j\ne+YT5oLvfrODg0IZpaxE+DNJvyTpUkmflLRN0qmSXinpEkmHJf2PhOcHAADAElSj3gG1/QfDHVrd\nALXZp8Ci+fftNDf0qKdBXFlQS3hTWF27JohtLKw8yNaeGMR+W5jAqCwPqyTipo+xysq5hIlNhEmB\n7OTwXDueGv789j42vA6r7g1/Jo+46v4gru0Il2lc8s15C/HPP66SsLG5pNKSkwbRDXBlLExYZa16\nZCz1pr/MSYN2/p5E30flGzfnjnNkCYMqN1ZnqEuZRHiFpHe5+x/l3rtH0nus/gf2zSKJAAAAAABA\n30iZRBiXdP0C274taWyBbQAAAOiF6Altbd/+cPtSnuhHTy7jyvulPOXuap+BWFQ50FTyv7917wCL\nphhYFl3jajR9IfeUPDsSnsu3h5UD624JL/La+NiRmaYfSvcmgPvR8Gfo8bnDVTjbEz9xj/4sZpMl\nqg7oJib4t8WdSoRZKZMIX5H0wsZ/Yy+UdE3CcwMAAKBdnSy1HuQblNxNaXYoLN1uN6FR27W7I0Pq\neyn/vAzyn0WgB1ImET4g6e/NbIWkz2iuJ8LLJb1E0i+b2aNmd3b3e+Y9CgAAAAAAPZZRiSApbRLh\n/zb++3pJv5F736Lts6JWpQAAAAOgTN3YWbquI/JN/3ymRRM+ABhAKZMIr014bAAAgNLKL/OXsqN9\n20gadESpfqYAuoZ/QuuSJRHc/cpUxwYAAAAAAN2XshIBAABgKHlBF3wAQP9hdYa6pEkEM3uxpJ+X\ndLqkiWizu/uzU54fAACgG2x8PIh9mnJ3AMBgSpZEMLPflfReSTskbZbUwwV8AQAAEqpFzRJ72TwR\nANBxLqMSoSFlJcLFkv63pIvdnf+TAgAAAADQ51ImEVZL+gwJBAAAMHCiZRvp1g8Ag49uN3WVhMf+\nkqSnJzw+AABAT1jFgi8AAIZF6ukM/2JmLunLkvbEO7j7PQnPDwAAAADA0nk5VmdoLF7wIUlVSX/r\n7u+dZ5+XS7pM9eKJ77n7L3ZyDCmTCC7pgKT3SPrDBfapLvA+AABAaTF9AQDQbWZWlfRhSS+QtEXS\nDWZ2lbvflttnk6R3SPpxd99jZqd0ehwpkwgfk/RMSR+UdIdYnQEAAAAAgOP1NEmbZyv6zeyTkl4q\n6bbcPr8m6cPuvkeS3H17pweRMonwHNVXZvhYwnMAAAAAAJBedzorrjOzG3Px5e5+eeP1BkkP5LZt\nkXRh9PmzJcnM/p/qlf+Xufu/d3KAKZMIOyVtS3h8AAAAoFmlYMZsxuJhAEprp7tfsMC2+ZoyxKmN\nEUmbVH+ov1HSf5rZee6+t1MDTLk6w19IeoOZpTwHAAAAAADJuVvyrwJbJJ2eizdKemiefb7g7tPu\nfq+kO1VPKnRMykqEkySdJ+k2M/sPNa/O4O5+acLzAwAAYBh5FsWs7g5gINwgaZOZnSXpQUmvkBSv\nvPB5Sa+U9DEzW6f69IaOroqYMonwP3Ovz55nu0siiQAAAAAAKL1e5yPdfcbMLpb0JdX7HVzh7rea\n2bsl3ejuVzW2vdDMbpNUk/Q77r6rk+NIlkRwd6YxAAAAoPvi2bRODwQAg8Hdr5Z0dfTeJbnXLukt\nja8kUlYiAAAAAMnZSPgrrddIGgDoLJcW07NgKFAtAAAAAAAAFiVpJYKZXSTp9ZIeK2k83u7uBevv\nAAAAAK35zEyvhwBg0LkkKhEkJUwimNmrJf2lpCslPUnSFZJGJf03STsk/WOqcwMAAACd0jRdgqQF\ngCGWcjrDmyT9seqVCJL01+7+GkmPknREUkc7RAIAAAAAkIp7+q9+kDKJsEnS1yVlja8xSXL3PZLe\nI+m3Ep4bAAAA6AifmQm+Ssus9RcAdEDKJMIRSZXGEhMPq16BMOugpEckPDcAAAAwXAbhESdQZt6F\nrz6QsrHiDyQ9RtJXJP2npHea2b2SZiRdJumOhOcGAAAAhktRtQGJBAAdkDKJcLnmqg9+X/Vkwjca\n8QFJP5Pw3AAAAAAAdIjJWZ1BUsIkgrt/Kvd6s5k9XtIzJC2X9E1335nq3AAAAMCwsbGxIPbpqH+D\n17o4GgCDKuUSj8+SdJO7H5Qkdz+kejWCzGyFmT3L3b+e6vwAAADoHRsfD2KfmurRSAZMbsqCjYy2\n3jcjaQB0FDOCJKVtrPg1SecusO2cxnYAAAAAANAnUvZEaDVhZFwSqVEAAIBBVeNXveNSqQbhyPpT\ng7h22knHXmcTYSXC6N1bg3hm2/bw2HFjxehcVgl/fS/1cpZAt7noidDQ0SSCmZ2pcCnHC8xsZbTb\nMkm/Kun+Tp4bAAAA6DfxtI/qKScHcbZ2dbh/bS4RMLp1b7Atvulvmu7gWRSGSQWSBgAWo9OVCK+R\ndKnmVrn8S4UVCd6IZyS9scPnBgAAwBLYSPirYTs3lZWJifCztWyBPQdMvKxiwTKKcdJATzw7/Pi+\nw0Fc2bU/3L+am40cX+NqWFlQWRb+TLLD4bHjpAKAAvREkNT5JMLHJF2reqLgGtUTBbdF+0xJ+qG7\n7+7wuQEAAAAAQEIdTSK4+48k/UiSzOwnJX1ndnUGAAAAJBDNa2/Vkb+yfHm465EjHTu3rVwRbjsy\nGYQ+fXRp5yqruPIgrkywqI/5uY8JwuqOfeHhlofVA4qqQXwy9/ONrqlPhitgZEeno7FGlQcFPRIG\nZnWHNqtFgIXRE0FK21jxVklrJB1LIpjZr0s6T9KX3P2LCc8NAAAwmOJmeFEJu7e48WtKGvjS5sTn\nz53t3RdtTLkIWP+onhD1NNgdTU+YihIBu/aEcdygMn9DHG1rmkJSlDSIDer0BpIGQEel/Nf9Cklv\nnw3M7PclfUTSL0r6gpn9QsJzAwAAAADQOd6Frz6QshLhAklX5uLfkPRH7v57ZvYXkt4i6VMJzw8A\nADB4okqDVpUHTTr8RHZgpygsRVzdEVV/1PaGKyos9fgdxRN7AIuQMomwRtI2STKz8ySdprmkwucl\nvTrhuQEAAAZD0Rz7Ls5bb1q9IV9OP0w3oPkpJdEUgOrZjw733Rn2Eq+OjQVx7cCBIG6enhJf19z5\nhuma5/4eNF0jlqZEtwzRX7lWUk5n2CVpY+P1cyU95O53NeLRxOcGAAAAAAAdlrIS4SuSLjOzdZLe\nqnr1waxz1FjFAQAAADlFneS9dx3zm56KD9OT8LwW1R/+wEPhrkUrYCyxueXQyFXgcI3QEy7JWZ1B\nSptE+F1J/yDpjyXdIOlduW2/JOkbCc8NAADQn8p8Y17WJf86vISfjYZTDiorlgVxbf/cCuZNpfXT\n0Q1u0RKQ8bKKsbJe8yWy8fEg9qmpBfZsaOM6NC1levjwoj8LoFiyJIK7b5P0ggU2P1/S5ALbjjGz\n0yV9XPV+Cpmky939Q2a2RvWmjGdKuk/Sy919j5mZpA9Jeomkw5J+xd1vWuK3AgAAgDJrM2lQXR0u\nu6gNpwahHYyaIW59ODrfXF8Cn2m9LGKckLBqOKPXCnokNCUdgm3RsSrhvk3LQxZdpzaSMU39MYqq\nA6JjFyYN2lCZmAjfyKKfSYeTTBhe/NGpS96XwMwqZnaemT3bzFZIkrvvd/fFtPOdkfRWd3+cpKdL\neqOZnav60pFfdfdNkr6quaUkf0rSpsbXRaovKQkAAAAAADog5XQGmdkbJV0qaZ3qs0ieKukmM/u8\npGvc/S9afd7dt0ra2nh9wMxul7RB0kslPaex25WSrpX0tsb7H3d3l3SdmZ1oZusbxwEAAMAwiqcM\njI0GoU1NB/HMlgfD/Zfy+DGuDoiOle3ff/zH9ni5z+M/VP0Ai/8+2+5LkPARbuFYeHyMTuGPkqSE\nSQQz+zXVpxZcIenLkj6d2/yfkn5OUsskQnS8MyU9WdK3JZ06mxhw961mdkpjtw2SHsh9bEvjvaYk\ngpldpHq1gia0PN4MAABQTkNaml098YQgru1rcfMdlflXlk203D5zz31LGVpL8XSF7ODBBfbEokV/\nB+KpFdlk4axpAEuQshLhLZLe7+5vM7O4Y8wdkn5nsQcys5WSPifpTe6+3xaeGzbfhnn/z+rul0u6\nXJJW25rh+L8vAAAAAOD4sDqDpLRJhLMkfWmBbYcknbiYg5jZqOoJhH90939uvL1tdpqCma2XtL3x\n/hZJp+c+vlFSuM4OAABAPylT5UEXx1JZtSqIsyPR0+VW546HeTScrpAd2rGUobUWTZ3IDkUrAwxJ\n5UhK8YoYWQebNAIoljKJsFP11RPm81hJDy6w7ZjGagsflXS7u38gt+kqSa+R9N7Gf7+Qe/9iM/uk\npAsl7aMfAgAA6GtR6X08D76bqmvXBHFt567OHTy6+a6cvDaI25pyEDUH8OnuXbOmFRLa7R2A+bVa\npYLEDLrE+KMmKW0S4f9IusTMrpX0o8Z7bmbrJL1Z0ucXcYwfl/QqST8ws5sb771T9eTBp83sdZLu\nl/TzjW1Xq76842bVl3h8bQe+DwAAAAAAoLRJhN+T9FxJt6jeDNFVb6R4jurTD95ddAB3/4bm73Mg\nSc+bZ3+X9MbjHC8AAED5ZF2sPIiqAarnPDqIbfe+jh07fmJfWbkiiGfu/ZEWy0bD5oU+M73Anp1X\nPfnk8I2otN6PhquaNzX9SzlFpNXT+06fq8PiZon5ihyfXsxK8UCHuVidoSFZEsHdd5nZBZLeJOlF\nku5unO+vJH3Q3Zewng0AAACWKr5Rs3MfE+4wGd6MtzV9IV5WMWu9HGFtb5sJitwNcrdvKm18fC44\nYWW4cXuURKhF32i8skA0v99rUdKoaTpLG+s4Fn22RP02ChNBzrQQoCxSViLI3Q9I+oPGFwAAAMok\nuoHVD+8LQo9vcNuZ35+6gqKHN7yeqzbIHnhowW2LOlbRNV1KD4we9s9oF9UFKD9jdYaGSvEuAAAA\nAAAACSsRzKwi6SLVmx6eLmki2sXd/ZGpzg8AAIDWKqtXB7GtXB7EtS3Hv8hVcXn6YEwujnseABhg\ng/HP1pKlnM7wJ5LeIum7km6QxL+wAAAAqbVoplfJz+WXmvsU7NkbxksoMW+a2z8gSYMmg/p9AcAC\nUiYRflnSH7j7pQnPAQAAAABAeuQMJaVNIoxI+nrC4wMAAKCV6Cm5R3G2e0/L/Zekm0tTAgC6JmVj\nxc+qvrQjAAAAusUquS8LvzIPvwAAi+dd+OoDKSsR3iLpH83scklfkrQn3sHdr0l4fgAAAAAA0EEp\nkwjrJT1K0ksl/ffc+y7JGv+tzvM5AAAAHK8W0wiW0igRAIaaS/KFG9cOk5RJhL+TtE7Sb0m6Q6zO\nAAAAAABAX0uZRLhA0qvd/bMJzwEAAAAAQHLWJz0LUkvZWPF+UX0AAAAAAMDASJlE+ENJbzOzlQnP\nAQAAAADopnjll0p17muQsTqDpLTTGV4kaaOk+8zsW2pencHd/TUJzw8A6HfRLyNWiRoaVcPtPjWV\nekQYFBb+WaquWxfEPjkZxNmBA8mHBAB9w6O7XV+4oSsGT8okwk9IyiQdkHTePNv7JM8CAAAAAACk\nhEkEdz8r1bEBAEMiWqrOs2j7zEz3xoKBUlm2LIhrO3eGO8RP2QAAgKS0lQgAAACllB0+3OshAAD6\nDKsz1HU0iWBmZ0ja6u7Tjdctufv9nTw/AAAAAABIp9OVCPdKeoak6yXdp+K+BwPevhMAAGBIRc0r\nmSKSQHyNi/AzAJbG2/w7N6A6nUT4VUl3517zLxUAAMAw4oa1M+JEgbVYoT1uHMPPAEACHU0iuPuV\nudcf6+SxAQAAgKHTlAjIWmwDkIyLR+QNLVKZS2Nm15jZOQtsO9vMrkl1bgAAAAAA0HkpV2d4jqTV\nC2xbJenZCc8NAADQn4rmufP0ebBEP+/KypWt95+ePvYyOzodbouWxQXQYfzzKyn9Eo8LXeZHSzqY\n+NwAAAD9hyTBcMvCvgY+NRXGtVyigD8rAHqg00s8vlbSaxuhS7rczA5Euy2TdJ6kr3by3AAAAAAA\nIK1OVyJkkmbToxbFs3ZJ+oik93X43AAAAEBfyw4fDt+g2gAoDeOvo6Q0qzNcKUlm9jVJr3f3Ozp5\nDgAAAJREpbrwNubnzy++ZlwnAH0mWU8Ed//JVMcGAAAYWnHjxR4+qa5MjB973fQEfZDlfwbx9Y+T\nBB72OLBqNdpMEgHoG1QiSEq4xCMAAAAAABgsqVdnAAAAwBJUVq0K4uxQPGe+i0+yo6fs2eTUAjsO\nuBbVH5VlE0GcHToUfnT6aJIhAegCKhEkkUQAAAAotexAvNBVD1F638RGx4J4qKZ1ABhKJBEAAAAA\nAGjBnNUZZiVJIpjZmKRPSfqgu389xTkAAADQYSVq2thLcXWBVcM2YrWnnHPsdfXWe8Nt+6ajg0XX\n1CpRGG73mZl2hgoAXZckieDuR83s+ZI+lOL4AAAApTIoN9/9Ou5Yuz+PaP/KyhXhx6fC3g9HTxyd\n++i+/dGxor7l0RQQq5I0APqWW/E+QyDl6gz/T9LTEx4fAAAAAAB0UcqeCG+V9HkzOyjp85K2Kupn\n6R4tnAsAANCPBuUJfr+KKw/aFf38alF1gY2GvzJPfPl7uY/GP/vWv94ObOXBoFTjAK3wx1pS2iTC\nDxr//ZDmn9bgic8PAACAYRBPISh6ThUtVVlZsTzcnoWfz45MRttbrFIxSDfP8TSPZcvmXp96crCt\n9sCDQey16BoN0nUBhlzKm/h3i1wNAAAAUouTBkU3rFESIDt4sL3PD4voOmRHjsy9vvdH3R4N0HOs\nzlCXLIng7pelOjYAAAAAAOi+rkwnMLOVktZKesjdp4v2BwAAAFrKT0loNb1gHjYS/go8sH0Klqjp\nOsVTFIBhQyWCpMRJBDP7adWnNTyp8dZTJd1kZn8r6Rp3/0TK8wMAAPS9oqaBJS29T36j3kbioLp6\ndTiW6GY4aRIh6r/QbsKjSas/D0v9s2AsPwmgWLIlHs3sZyR9QdJOSW+TlP9X6V5Jr0l1bgAAAAAA\nOsbrPRFSf/WDlJUIl0r6O3f/72Y2IulPcttukfSGhOcGAADoS9V1a4M4OxA2/fOpqW4O57j18il2\nZdWqID70rHOCePk1t6Q794oVQRxfh6aJvXFlQlS5YNWokiE4WNhQsnBFhKjSwEZGwzhayjI7fHjh\nc/dSp6s7ALQlZRLhcZJ+t/E6zqnsUb1HAgAAwFCrrl0TxD51NIp7mDSIS+fLOnVidCyIKyeHv2ZO\n/OsNQZx18PuIz11441107jgxMJ3uBtmnj7aMS4ukAXqlnP8Edl2y6QyS9ktat8C2MyXtSHhuAAAA\nAADQYSkrEf5D0jvM7N8kHWi852Y2LuliSf+W8NwAAGDAVCYmgjibnOzRSDqrtntP+EYvn/YXNXEs\nk1xJe2XFsmBT9vD2cN+E19Sq4TM5r0XP6Iqemnez2qOklSRA3+CvkKS0SYT/Kel6SXdKulr1S/52\nSU+UdIKkn0l4bgAAMGAGJWnQpEQ3dvEc+bi8vadLI8bz+XO9Anw6HEd25EjSoVSWL58712Q43STu\nK+BHw+kJsijJEE1fAICyS5ZEcPf7zOzHJL1L0osk1SQ9S9K/S7rE3R9KdW4AAAC0r2hOfC+bJdpY\n1Pdg2VxlSm1/2HwydWIm3/egKbFytKCvAPP5gb7VL6snpJayEkHuvkXS61KeAwAAAAAAdEfSJAIA\nAMAwyj+d7uXT+34WP+GvPOqMIK7dfldu56ivQFFvhw5WKvDzBTBsOppEMLMr2tjd3Z0qBQAAMHA8\no+Z1qaobHxHEtbvuXXjnoqRAPzWMBICS63QlwnMV9qw8UfUmijOSdkla2zjnPkl7mj4NAAAAAEAZ\nkR+W1OEkgrufOfvazH5C0j9J+nVJn3P3mplVJb1M0p9J+uVOnhsAAKA0aJ7XtngJz+n1JwWx3Xf/\n8R+8RCtgAEC/S9kT4QOS/tjdPz37hrvXJH3KzNZJ+nNJT0t4fgAAACxBZcWKIM6ORMtstkqWVKpB\nePBlTw3i7ReEUwyWbw3j9X95fRCTBgDQU87qDLMqxbsctydI2rzAtrsknZfw3AAAAAAAoMNSViI8\nLOnlkr48z7ZXSNqW8NwAAABoV9SAMDt8ONzeYlpAXLWw8xeeGMRjB8PPbvrojiCu3Rk+e+KBH4DS\n4R8mSWmTCH8u6YNmtl7SZ1RPGpyqemLhRZLelPDcAIBBEHdUZ14z0PT3onrOY4K4dkfuZrzdvzMW\nFakW9Haw0bFjr/d+9rRg28FvheM8493fCmK6RixSq5Ul+DcRQA8kSyK4+4fM7KCkSyX9VG7TA5J+\nzd3bWQ4SADCM+AUZkI1Ev6494bFB6JujhoNL+XvjWcvNleXLg3jPZ+eWYTzhXeG21dd98/jHgTn8\nOwiUB38dJaWtRJC7f9TMrpC0UdJ6SVslbXHnX0MAAAAAAPpN0iSCJDUSBg80vgAAANCGyknhUoe1\nm28L4o4+myk41rZXPymI1/zJ1Fxw3U2dGwcAlIyJ1RlmJU0imNkTVJ/O8GxJJ0naLelaSX/g7j9I\neW4AAIB+FE9fqO3YscCeHTjX+HgQV9efGsT3/tLGIB7fE36++n+/m2RcfY1eLgAGXLIlHs3sqZK+\nLeknJX1R0p9K+ldJz5V0nZk9ZZHHucLMtpvZLbn3LjOzB83s5sbXS3Lb3mFmm83sTjN7UUe/KQAA\nAADAcPIufPWBlJUIfyzpFknPc/cDs2+a2SpJX2lsf+EijvMxSX8l6ePR+x909z/Lv2Fm56q+fOTj\nJT1C0lfM7Gx3pwEwAADoCz4zk+7g0VNyf3LYpHHLM1YG8RlX7ws//4M7w8+3eso+yE/k899bvKJF\nQXNKAOh3KZMIT5f0qnwCQZLc/YCZvU/SlYs5iLt/3czOXOQ5Xyrpk+4+JeleM9ss6WmSvtX6YwAA\nAIOvsjJMEux83Iog3vCJzUHsBw4GcZYywdFP8gkRnlUBw8HL0RPBzF4s6UOSqpL+1t3fu8B+L5P0\nGUlPdfcbOzmGlEmEoku81B/BxWb2akk3Snqru++RtEHSdbl9tjTea2JmF0m6SJImtHy+XQAAAAZK\n3G9hYm/41Ly2Peq/sKTlIkvw2zYADBAzq0r6sKQXqH6ve4OZXeXut0X7rZL0P1RvL9BxyXoiqD7g\ndza+gWPMbIWktym82W/XRyQ9WtL5qi8b+f7Zw8+z77z/B3P3y939Ane/YFTj8+0CAAAAAEBd73si\nPE3SZne/x92PSvqk6tX4sT+Q9CeSJo/r+yyQshLhnaqvxPAjM/ui6jf7p0n6r5KWSXrO8R7Y3bfN\nvjazv1G9caNUz8acntt1o6SHjvc8AAAAfSfuRZAz/cQzg3jV1+4IYl+2LIizw4c7NiwAwKKsM7P8\n9IPL3f3yxusNkh7Ibdsi6cL8h83syZJOd/cvmtlvpxhgsiSCu19vZk+XdImkF0lao/oSj9doiUs8\nmtl6d9/aCH9W9QaOknSVpE+Y2QdUb6y4SdL1x3seAACAvtNiGkFlKpy/X9u7b4E9AQBNujNLa6e7\nX7DAtpaV92ZWkfRBSb+SYFzHpKxEkLt/X9LLlnIMM/sn1asW1pnZFkmXSnqOmZ2v+gW7T9KvN853\nq5l9WtJtkmYkvZGVGQAAAAAAA6Co8n6VpPMkXWv1qrTTJF1lZv+tk80VkyURzOxkSSe5+w/n2Xa2\npN3uvrPoOO7+ynne/miL/d8j6T3tjBUAAGAQVSYmgvihC8PVGU5bSocqABgyJVid4QZJm8zsLEkP\nSnqFpF+c3eju+yStm43N7FpJv91PqzP8terTF359nm1vlrRW0ssTnh8AACCNuO9AmVYiyI3t/rf8\nWLDpkR+5PYhrZf4+AAABd58xs4slfUn1JR6vaFTjv1vSje5+VTfGkTKJ8BOS3rjAti9L+quE5wYA\nAAAAoHNKkGd196slXR29d8kC+z4nxRhSJhFOkrRQt579qlciAAAAoIOqq+ZW187Gwm21PXu6PBoA\nwKBJmUSYXW7iq/Nsu1D1JR8BAAD6T5nK/qMpCfe++bxjrx/1v+4Ots1UquFnM/pPA8CiuEpRiVAG\nKZMIn5X0TjP7nrv/6+ybZvZfJb1d0kcSnhsAAHQDN6XdF13zkVNPDuLxXLHBzMPbujEiAMAQSZlE\neLekZ6m+pMTDqneP3KD6MhPXSXpXwnMDAAAAANAxJVidoRSSJRHc/bCZPVvSqyS9QPUeCJtVb6r4\nD+4+k+rcAACgS6g86DqrhNMXbrvkjCA+931bjr3mly0AQKelrESQu09LuqLxBQAA+h1LAvaeVYLw\nsVccCeKZ+x/s5mgAYHjwvzxJUqV4FwAAAAAAgISVCGY2Jukdkl4p6QxJ49Eu7u5JKyEAAECHUXnQ\ndTYartO4+WOPD+JH//LN4Qf4GQFAEvREqEt5E/+nkt4o6d8k/bOkqYTnAgAAGAg2Ev56dveV5wbx\nY393exDPdDNpwHQWABh6KZMIL5N0qbu/J+E5AAAAAABIj7yppLRJhJWSvpXw+AAAoJ8N6VPtuNKg\netqpQXzoitEgPvM94XWa2dK7xolWrQaxz7D+AwAMm5RJhP8j6VmSrkl4DgAA0KcqK1cGsY2Hc/9r\nO3d1czjJ2HjYFuqBt9Kv8QYAACAASURBVD4liH/25f8ZxDf9/KYgrt313TQDOw4kDQAMLReVCA0p\nkwh/KenjZpZJulrS7ngHd78n4fkBAECJxE/g/ejRHo0kgbiqIu/cxwRhJboP/+6LHxHE2a4tnRoV\nAAAdlzKJMDuV4TJJly6wT3WB9wEAAAAAKAVrfCFtEuFXRcEHAABo8Cz8taB69iODOPvh4BQoVnJT\nGNZ+OOxhYL9RC+KZbeFqC8PSGwIA0J+SJRHc/WOpjg0AADokdXPDSq7oMAtvnrXl4fDUfTzf3kbC\nZojTT59blnHXC+4MtmWH7ujKmAAAHUaOV5JU6cVJzaxiZmt6cW4AAAAAAHB8OlqJYGa7JT3f3W9q\nxCbpC5LeFDVRfKqkb4qeCAAA9Fbq0vm4+iCntn9/2nN3kY2Gv1LtftzcdIaTrz3U7eEAAJBMp6cz\nnBgdsyLpp1VvrggAADCQHvjN84N49GCPBgIASMaYziCpR9MZAAAAAABA/0m5OgMAAMBAqp50UhhP\nhttP+fA3uzgaAEBXUIkgiSQCAABIqdXqDP2kErZxuuNdZwfxY3/3piDOkg8IAIDeSJFE2GBmj2q8\nrube25vbZ2OC8wIAgB6rrFq14LbswIEujqTDLjg3CFfcHyYVssmoFAEAMHioRJCUJonw2Xne+3wU\nm/gRAAAAAADQVzqdRHhth48HAMCCbCT835jXonL51MsXQjILw/WnBHHth3d3czQdY6NjQXzh34TT\nFa578kQ3hwMA6DVndYZZHU0iuPuVnTweAGDIRTeoMc+i/5uTNOg+Cxd66pukQdTjYM+rnxbEb3j7\n54L4U+c/KoiVMX0BADCcaKwIAAAAAEARnlVIIokAAOi2/BNgL+hhHz3lbtq/6PPovLg6pF9WXIjG\nffSFPxbEu18QVhZ85kUXBnE2+UCacQEA0GdIIgAAuqudm07vkxvUYdJHU0ZsfPzY6x9+4Pxg2xPP\nuy+IJ376cBDP9PNKEgCAJOiJUEcSAQAADKR7L5mrNqhGOYHJ5+8JYp8+2o0hAQDQ90giAAAAAABQ\nhEoESSQRAADAgNh39WOCePruuZ4Zm37z28E2fg8EAOD4kEQAAAB9yZ/5pCCe+dzyIN700W91czgA\ngAFHT4S6SvEuAAAAAAAAVCIAAIA+UT3xhCA+fNm+IF774lu6ORwAwDBxMReugSQCAADoC6f+exbE\n2143HsS1dpYPBQAAx4UkAgAAAAAARahEkEQSAQAAlIVZEG67+BlBnP324SCu3Hpz8iEBAIAQSQQA\nAFAKI6edGsT7nzIVxKf+1fe6OZzyqlSD0Cph8sVnZro5mtxAwnHIeWQHYHCYWJ1hFkkEAADQG9HN\n8OaLzwric958RxDXuCmVpP/P3n3HSXLV997//k5Vx5ndVQ5IAgkFMgIkJLIJNpLARmBfYYJBYGxd\nMHAfjJO4+CI9mAcLMOYSDTJgg02wwA9GjxGIbHwNwgrIIAmEVkJh0UqruNow09Pd9Xv+qOqePrUT\nenZnpid83vva1/Svqrr6dKWu+tU5p2SV+PTNW61ZplxmrB8AWBdIIgAAAAAAMB9ypZJIIgAAgOVS\nqu6eHnJQFB9wTXx21r3vviUv0rIoV/MvW+AdfJ+a2ofCAACwb0giAACAkbjl7GOj+Mi/viKKF3zD\nZ5W0ybe0EsXejpMCVqnG4zvteAYr9HsBwFpnHH8lSWHUBQAAAAAAAKsDNREAAFhHrFaLYm+XevLP\nukv32aU78IdfNlEqyz5W0x/lHaJSJ5HRciyVa77vaUl8j8fb3PkCgJFz0SdCgSQCAABrXLJx43TQ\nqEfjunduW7ZynPCD+OzrxhfdFcWduS7EZ2Bp6SkFo3q04TwW2jwhm5xc6iIBALDXSCIAAAAAADAP\noyaCJJIIAACsed0HHpgOBl8vhVJtgqnnPqH/evPL7o3GZVtvid+7wKYUK6nmgVVKtSJac3wXOuYC\nAKxiJBEAAMCS2fmG7f3XtRfGSYOVlATYV6HcTKTV6r/e574eAAArAzlgSSQRAABY+wYffbjEd8Fv\nfM8To/iEV1w/HYyPReO692/XqlV6nGR3+xLX8AAAYIUgiQAAAAAAwDzoEyFHEgEAgNWmdBd83toF\nS1j7oPPsk6J40/WlO/T3378s5VhyC13mAACsUSQRAABYbUZ4AXv7nzwlip/+4qui+MZT53584YpV\nThJYiOMFdvq4rMplH7Ralj8ArAYcUiVJYf5JAAAAAAAAqIkAAADmkBz/0Cje/diJKN6j5sG+3LEv\nPR5yWe/+l+/Y+wqueVBGbQMAWHpOnwg9JBEAAEBf91lPiOIn/e8fxuMfHz/KcDEv9K0Sn5Z4axVd\nyC8n+mcAAIwQSQQAAAAAAOZDzlYSSQQAANY1O/nRUXzUX94QxVe88Lj4Ddkti/jh8R11b7UWb95r\nGTUPAAAjRBIBAIB1JNm4MYqP+siNUXzbaXFzhe59i5g0AABglTLRJ0IPSQQAANaYZP/9o/j8q77e\nf31HZ1M07mNPf3oUd++7c+kKRlt+AABWvRX/iEcz+6SZbTOzawaGHWBm3zCzG4q/+xfDzcw+YGab\nzezHZvaE2ecMAAAAAMCQ3Jf+/yqwGmoi/L2kD0n69MCwcyV9y90vMLNzi/jPJJ0h6fji/6mS/qb4\nCwBYDcp3qstWyY/rsistt/f+6CtR/EePO6P/unv/9tKbl7DmQRnrDwCAVW/FJxHc/XtmdnRp8JmS\nnlm8/pSk7ypPIpwp6dPu7pIuM7P9zOxwd9+6PKUFAOwTLjKHE5Io/OUXHx7Ff3h8JYq9XU4cAACA\nhaJPhNyKb84wi0N7iYHi7yHF8CMk3TYw3ZZi2B7M7Bwzu8LMrmiL3qABAAAAAJjPiq+JsEAz1YOd\nMV/k7hdKulCSNtoB5JQAAKtG9tTHRvHBF8Y/595pL2dxAABY+1yzXFmuP6s1iXBnr5mCmR0uaVsx\nfIukowamO1LS7cteOgAAFlOpz4NdR9SieNPPHojibMkLBAAA1qvV2pzhYklnF6/PlvTlgeGvLJ7S\n8CRJ2+kPAQAAAACwryxb+v+rwYqviWBmn1PeieJBZrZF0nmSLpB0kZm9RtKtks4qJr9E0vMkbZa0\nW9Krl73AAAAssjA+HsX3HxvfA9hw0fXxG+igEgAALJEVn0Rw95fOMuo5M0zrkl6/tCUCAGBPlpb7\nJejs/cxKT1940X/eGMVffv6BUdzJunv/WQAAYDjk6CWtgiQCAACrwbxJg8F+DSyuSZBs2hjFE6cc\nG8X/cubRUdy9KU4qAAAALBeSCAAAAAAAzMOoiSCJJAIAYF+VnhywZtvjl79nWel7l5s3DNY+uPvs\nk6JRZ//hJVF8w8TOKP75k9boMgUAAKsOSQQAwL5Zq0mDEkvifgo8KyUNkjjJMPXsx0XxsX/x0/7r\nu7bdE4275LefHMXZdTfEH06fBwAAjJZr3ZzzzGe1PuIRAAAAAAAsM2oiAAAwhHLNA3n8MOew3wFR\nfMh5N0Xx5vMe2X990NevisZl1DQAAGDFo0+EHEkEAACkPR6rOJ8HXnJqFB/7xp9F8T2nxYmB6o7L\n965cAAAAKwhJBADA+lRKGoRGPYqz3bujOH3wkVG8/zm3RvG2Pzk6im3XT/axgAAAYEWhJoIk+kQA\nAAAAAABDoiYCAGB9KvVDkE1MRvHPPxE/hvFDz/jHKP7AcQ+PYtPti1g4AACwkpjoE6GHJAIAYP2w\n6ccw3vbn8WMV/+IVcZLgzz8T93nwgeMfUZoZZxIAAGD9IYkAAAAAAMBc3PP/IIkAAFhmA7UBrFqN\nR5Xjow6P4tufc1A8vvRbfsB1rSjefVglir/7ng/2Xz/iG0+Ixn3yOc+I4gff9v1yyQEAANY9kggA\ngEWVHHdMFP/sbftH8dhPpp+CsPP4djTuoAdtj+JHHHhHFG++JX6CQmcq/hl77muuiuIbdhwcxWc+\n9Gn918e3roznJQAAAMyHJAIAAAAAAPOgY8UcSQQAwMKEJApv+stTovjVZ3w7ird+9DlR/MBTJvqv\nGz9tROMq3zogiu+5bCKKj7nt2jmLdrVbPMDvmnN6AAAALAxJBABAJH3IUVG862/jpMF3H/0vUfzQ\nLzwxiv/j+cdH8YOym6P4kI8M/yhEmhgAAIAVg5oIkkgiAMC6l+y3KYrPuvSHUfyhv/qtKD7ttMdH\n8fF+WRRz4Q8AALB2kUQAAAAAAGAe9ImQI4kAAOvQLz7/2P7r7z/1b6Jxrzz5RVF84J0/WJYyAQAA\nYOUjiQAAq5GVOxD0Ocdn3zwyiqvfGO+/fvlLnlqa+bZ9LR0AAMDa4pIyqiJIUhh1AQAAAAAAwOpA\nTQQAWA1Kj1W0ENc08G43il/38xui+ILzT43iIz7z/UUsHAAAwDpARQRJJBEAYHXwLI6TahTe8PET\no/hjL3pYFO93/VXx7BavZAAAAFhHSCIAAAAAADAPns6QI4kAAKvQ1j84KYprN8Xjs2uuXMbSAAAA\nYL0giQAAq8Dnb/2PKH7iv8fNF4592dXLWRwAAID1p/w0rHWKJAIArEBPvDruKPGlxz0rio9tkTQA\nAADA8uMRjwAAAAAAzMN86f/PWwaz083sejPbbGbnzjD+zWZ2nZn92My+ZWYPWezlQE0EAFgBJn/j\nlCj+/p/GT2OotK5YzuIAAABghTGzRNKHJf2apC2SLjezi939uoHJfiTpZHffbWavk/RuSb+9mOUg\niQAAI5Ieflj/9Ql/fm007tZTdy13cQAAADAb10p4RvYpkja7+02SZGafl3SmpH4Swd2/MzD9ZZJ+\nZ7ELQXMGAAAAAABWhoPM7IqB/+cMjDtC0m0D8ZZi2GxeI+mri11AaiIAwFIxi8KJFzwxij/+gff1\nX/+PY39lWYoEAACAhTNJtjxPZ7jb3U+eoxhlMxbKzH5H0smSFv0kkyQCACyWUtLATn50FCdvuDOK\n3/iQpw5EnaUqFbAwpe2Yx1kBALBibJF01EB8pKTbyxOZ2a9KequkX3H31mIXgiQCAAAAAADzyeaf\nZIldLul4MztG0i8lvUTSywYnMLPHS/qYpNPdfdtSFIIkAgAskokz4+YKv/3OuAnaJaedGMXUPcCK\nRM0DAABWJHfvmNkbJF0qKZH0SXe/1szeLukKd79Y0nskjUv6guW1C2919xcsZjlIIgDAXrrvK8dH\n8Qn7/zyKL370IfEbsi1LXSQAAAAskWXqE2FO7n6JpEtKw9428PpXl7oMJBEAYEjhsQ+P4vYlB0Tx\n3R/7RfyGrLvURQIAAACWFUkEAAAAAADm4prlOQjrD0kEAJiF1WpR/Oovxn0cfOKEY6KY3xUAAACs\ndSQRAGBQSPovn3/VHdGoTzz8uNLENFcAAABYH5zOhwth1AUAAAAAAACrAzURACy9/PEy01ZwFjc5\ncLqzxK+86pHxyOwny1waAAAArBS2ck9hlxVJBABLbwUnDcq2fvzA/utDziRpAAAAAAwiiQBgXUs2\nbozi5mf2G1FJAAAAsKKtohtjS4k+EQAAAAAAwFCoiQBgXSk/tlFfHo/CjWdc3X+dLUeBAAAAsPK5\nZJwcSiKJAGCNC81mFP/8HY+N4sM/FFdLG5u8fcnLBAAAAKxWJBEAAAAAAJgPfSJIIokAYI274eMn\nRLH9Mn7c5Ng/X7acxQEAAABWNZIIwHpl8cX0SDOr+1KW0ntv/MyJUbzh+3FzhkM+/IMFFQ0AAACQ\nJFERQRJPZwAAAAAAAEOiJgKwXoQkjn11di+bHHRgFF/y429F8aM++OQoPuRD31/yMmGNWEm1cwAA\nwIpjnBtIIokArF3lC6KsO5pySHuWxeJKUMnG+DGLu57+sP7rr/7Nh6Jxt3Q6UXzag54SxUeKpAH2\nEicGAAAA8yKJAKxVK+mCqJQ0KCc0rF6P4jtOna418VvHPSN+6+Tk4pYNAAAAGMZKOr8eIfpEAAAA\nAAAAQ6EmAoAlZyFuzlDujmHquMOj+IBrp7O81DwAAADAyLmk1dml2KIjiQBg+ZU6ebz1jfER+ZhX\n/qj/mkpjAAAAwMpBEgEAAAAAgDmYnKczFEgiAFh0nWefFMW1qzZH8fUffGgUP+wNW6K422otTcEA\nAAAA7BOSCAD2XekRjvVf3B3F2VQ7ivf/t/hpDN277lqacgEAAACLhZoIkng6AwAAAAAAGNKqrolg\nZjdL2iGpK6nj7ieb2QGS/knS0ZJulvRid79vVGUE1oPQbMYDSjUP7Mj46QuHfuUXUdxZklIBAAAA\ni4iaCJJWeRKh8Cx3H6w7fa6kb7n7BWZ2bhH/2WiKBqxRpacr3PnKx0bxYV/4eRRv/quDo/iYl964\nNOUCAAAAsKTWQhKh7ExJzyxef0rSd0USAVhU4ZHHR3F1R5yV/ek7444TH/6uXVGclfpQsCROSniH\nugkAAABYQVxSNu9U68Jq7xPBJX3dzK40s3OKYYe6+1ZJKv4eMtMbzewcM7vCzK5oi57gAQAAAACY\nz2qvifBUd7/dzA6R9A0z+9mwb3T3CyVdKEkb7QAatwBlA00WbnvLqdGoc19xURS//31nRfHD3vjj\nKPZuN553qT0ZNQ/WmFJNE9oPAgCAtcA4p5G0ypMI7n578XebmX1J0imS7jSzw919q5kdLmnbSAsJ\nrBLbX/6kKP73d3+4//oR3437PPjsY+LmCge1fxDFvpIuIkv9Nyjrzjwd9h7LGAAAYN1Ytc0ZzGzM\nzDb0Xkt6rqRrJF0s6exisrMlfXk0JQQAAAAArBnuS/9/FVjNNREOlfQly+94ppI+6+5fM7PLJV1k\nZq+RdKuks+aYB7ButZ97chTv95rbovg3HjLdhOHYzo+icfMe3kZ5ACzXguCu+NJjGQMAAKwbqzaJ\n4O43STpxhuH3SHrO8pcIWGFKF9Mv/2mcJLhsRz2Kb3zi5JIXaUlQlR4AAABLbvXUFFhqq7Y5AwAA\nAAAAWF6rtiYCgFh62KFR/LJ/uyKK/+Elp0ex/+jaJS/TUrA0PmzxZAcAAAAsORc1EQokEYDVqtRc\n4fFfuz2KP/PCZ0ex/3R1Jg3KSBoAAAAAo0MSAVgtSm3/b3h/3DFieOX2KPabfrHkRQIAAADWjWzU\nBVgZ6BMBAAAAAAAMhZoIwCox+byTojjdFecAs2tuiN+wmp5SUH4sow18t9X0PQAAAIA1jiQC9s5c\nF32S5NnCxtNJiSQpNJtR/Mc/+WH/9UX3NKJxjae0o9jLy3SUytvHfOu3PN5JHAAAAGBlMa5ZJNGc\nAQAAAAAADImaCNg7C71zzJ3lmZU6S7z+ow+P4vc+70H9193rNy9LkRYFWVoAAACsNZzjSiKJAIzW\nyY+MwuZ19SjuXn/VcpYGAAAAAOZEEgFYRmHDhiieODBOGhzxrh8sZ3EAAAAADMMlZdREkOgTAQAA\nAAAADImaCMAy8uMeHMV3PDneBR/yVbKbAAAAwMrj9IlQIIkALKXSow7vfMqmKD76/9sRxRyWAAAA\nAKxkJBEAAAAAAJgPNREkkUQAllT7OU+I4skD4/F+5XXLWBoAAAAA2DckEYAFCM1mFN/x6sdF8Wf/\n5K+i+B/uy6L4qic1otiz7iKWbh+FJI5XUtkAAACAUaMmgiSezgAAAAAAAIZETQRgAe54VVzzoP2c\n7VH8x087K4o7W35ZmkNrKYq1V6xSjWLvtEdUEgAAAGCFc0kZNREkkgjAvKxW67/e+bTd0bjjXnFz\nFHd27VqOIi2KPZIGVM8CAAAAMA+SCECJpfFu8awr7p0e96QbonHZKkoa7IGkAQAAADAklzybf7J1\ngD4RAAAAAADAUKiJAJTYw4+L4u/8bqX/2ndfs9zFAQAAALASUJNXEkkEIOrzQJK2/EVcQeeIF18/\nHXDgAAAAALCOkUQAAAAAAGAuPJ2hjyQC9o5ZHK+iO/TJQQdG8TsvvySK3/SGx0axt6eWvEx7ZRWv\nAwAAAACrE0kELIryEw1kcZMA73bj8VkpXsyyVKpRfMdrT47iL/3xu6P49af8ZhTX7rx8EQsTX+hb\nWonifUpQkDQAAAAAlg/n35J4OgMAAAAAABgSNRGwd0pZOO904vHLWNU+2bgxisPFY1Hcvmd7FL/u\n2GdGsXe2LUm58pmXltNKbRoBAAAAYG7URJBEEgFLZQl3sPSoI6P4v3/721H8l297ZRQ/+Ms/juKs\nnPAAAAAAAAyFJAJWhcE+Fzp/H4/72LOeFcUbt1wWxdlSFQoAAADAOuHURCjQJwIAAAAAABgKNRGw\nd8p9HpSexmAhHr/H0xkWmMW7+W1P7L8+5s33R+M6t/98QfMCAAAAgAVxSRl1nCWSCNhbeyQB4h3K\ns1IllwUmDcJY3DniMf88nTiwLXeWPnrpHhcJAAAAAJhGEgEAAAAAgPnQJ4IkkgjYWyGJw3ptzsmz\niYl4wDw74I7THx3F9x83/XlHfWTLEAUEAAAAACw2kgjYK+nhh0bxxCMOj+LG9XGTA79jWxx32nPO\nf+LAuDnEEe/5Yf91RvMFAAAAAMuNmgiSeDoDAAAAAAAYEjURsFc6W+OaBtU745oG5boCnpWydqWn\nOZSbQ2Rp6ekP1D4AAAAAMDIula9p1imSCJhVqNfjeLAJQye+qO8ccUAUbztpPIpr2+OnN9Tuj+Md\n52yP4sNe+l9RzMNUAAAAAGD0SCKgLzn44Ci+4U+Oi+JTn/bT/uubH4iTBndc24zi2t3xvLefMhXF\nGzbFHS3u97ebojjbdf38BQYAAACA5eCSO7c2JfpEAAAAAAAAQ6ImwnpWekzjDe8/IoqzO+M2P3f/\njyP7rzfdsyMat2Hr1VHsnU78WaU+ELxb6uOAPg8AAAAArGT0iSCJJMK6Yo9/VBT/3Zc/FsXPe9ep\nUXzIh78fxYO7TClFAAAAAABYB0giAAAAAAAwH6cmgkQSYXUrNUcIY3HnhvedGdc8mHrxfVH8msc+\nP4oPuT+ueQAAAAAAwCCSCKuYBYvi3c98RBTfdXorih/84Q1R3L1/gU9AMJt9HFk5AAAAAGuVu5Tx\ndAaJJMLolS7Mk/32i2KfiB+FuPtXH9t//c4PfDQa99bNR0bxw94Yr97u9Zv3uph5YUgUAAAAAMB6\nRhIBAAAAAID5cFNVEkmE0SttiO1HPSSKX/Cx70TxpXft33/9/zz59GhcsxX3eZDt3LUYJQQAAAAA\nQBJJhJG74cPxYxV//dSrovirZ8Xj/bat068n4z4PvD21yKUDAAAAAEiS0yeCJCmMugAAAAAAAGB1\noCbCMkuOOyaOd8V5nOtPibNbob5l1nlR8wAAAAAAloPTJ0KBJMJiC0kU2uMfHsV/dNHno/jdxz02\nissbZrZ79+KVbTGVvue8su7SlAMAAAAAsGxIIgAAAAAAMBeXlFETQSKJsOiS8bEoPuPT/yeK3/Pw\nk+I3+CptkkDNAgAAAABYd0giLLITvhM3P7jkpMOj2NuTy1kcAAAAAMBicJ7OIJFE2CvpYYf2X7/7\nsn+Jxr3p7D+I4jD5o2UpEwAAAAAAS40kAgAAAAAAc3BJTp8IkkgiDCV5xPFRfN4ln+2//tOnnxWN\nC7dR8wAAAAAAsDaRRBhC+tEdUXzeI57ef51Nblnu4gAAAAAAlpM7fSIUwqgLAAAAAAAAVoc1WRPB\nzE6X9H5JiaSPu/sFC3l/cvxDo3jirRujOLTu3McSrgNmcey0HwIAAACwetEnQm7NJRHMLJH0YUm/\nJmmLpMvN7GJ3v2629xz1mJ3663/9QT/ekV0ZjT/voSctTWHXkpBEoVXiTSvUavH4gw6I35/FVYM6\nN9+6eGUDAAAAgDVgvhvmZlaT9GlJJ0m6R9Jvu/vNi1mGtdic4RRJm939JnefkvR5SWeOuEwAAAAA\ngNXMs6X/P4eBG+ZnSHqkpJea2SNLk71G0n3ufpyk90l612IvhjVXE0HSEZJuG4i3SDq1PJGZnSPp\nHEmqq6k3H/3k5SndWpV1o9BbcdxtteLpH3hgqUsEAAAAAGtJ/4a5JJlZ74b5YK37MyWdX7z+oqQP\nmZm5L1778rWYRLAZhu2xwNz9QkkXSpKZ3fVN/+Itkg6SdPfSFg9zYPmPHutg9FgHo8c6GC2W/+ix\nDkaPdTB6rIO995BRF2Ap7NB9l37Tv3jQMnxU3cyuGIgvLK5dpeFumPencfeOmW2XdKAWcXtei0mE\nLZKOGoiPlHT7XG9w94MlycyucPeTl7BsmAPLf/RYB6PHOhg91sFosfxHj3UweqyD0WMdoMzdTx91\nGTTcDfOhbqrvi7XYJ8Llko43s2PMrCrpJZIuHnGZAAAAAADYF8PcMO9PY2appE2S7l3MQqy5JIK7\ndyS9QdKlkn4q6SJ3v3a0pQIAAAAAYJ8Mc8P8YklnF6//m6RvL2Z/CNLabM4gd79E0iV78dYL558E\nS4jlP3qsg9FjHYwe62C0WP6jxzoYPdbB6LEOsOIUfRz0bpgnkj7p7tea2dslXeHuF0v6hKR/MLPN\nymsgvGSxy2GLnJQAAAAAAABr1JprzgAAAAAAAJYGSQQAAAAAADAUkgiSzOx0M7vezDab2bmjLs96\nYGZHmdl3zOynZnatmf1fxfDzzeyXZnZ18f95oy7rWmZmN5vZT4plfUUx7AAz+4aZ3VD83X/U5VyL\nzOxhA9v51Wb2gJm9iX1gaZnZJ81sm5ldMzBsxm3ech8ofht+bGZPGF3J145Z1sF7zOxnxXL+kpnt\nVww/2swmBvaHj46u5GvHLOtg1mOPmb2l2A+uN7PTRlPqtWWWdfBPA8v/ZjO7uhjOfrDI5jgP5fcA\nGMK67xPBzBJJP5f0a8ofh3G5pJe6+3UjLdgaZ2aHSzrc3a8ysw2SrpT0QkkvlrTT3f9qpAVcJ8zs\nZkknu/vdA8PeLeled7+gSKrt7+5/NqoyrgfFceiXkk6V9GqxDywZM3uGpJ2SPu3ujy6GzbjNFxdR\nb5T0POXr5v3ufuqoyr5WzLIOnqu89+iOmb1Lkop1cLSkf+1Nh8Uxyzo4XzMce8zskZI+J+kUSQ+S\n9E1JJ7h7d1kLchHflQAAIABJREFUvcbMtA5K498rabu7v539YPHNcR76KvF7AMyLmgj5j+Jmd7/J\n3ackfV7SmSMu05rn7lvd/ari9Q7lj+M8YrSlQuFMSZ8qXn9K+Y8qltZzJN3o7reMuiBrnbt/T3s+\nK3m2bf5M5Sf47u6XSdqvOPHEPphpHbj714tHNEvSZcqfe40lMst+MJszJX3e3Vvu/gtJm5WfO2Ef\nzLUOzMyU31T53LIWah2Z4zyU3wNgCCQR8gPGbQPxFnExu6yKDPvjJf2wGPSGoqrYJ6lKv+Rc0tfN\n7EozO6cYdqi7b5XyH1lJh4ysdOvHSxSfLLIPLK/Ztnl+H0bjdyV9dSA+xsx+ZGb/ZmZPH1Wh1omZ\njj3sB8vv6ZLudPcbBoaxHyyR0nkovwfAEEgiSDbDsPXdxmMZmdm4pH+W9CZ3f0DS30g6VtLjJG2V\n9N4RFm89eKq7P0HSGZJeX1SvxDIys6qkF0j6QjGIfWDl4PdhmZnZWyV1JH2mGLRV0oPd/fGS3izp\ns2a2cVTlW+NmO/awHyy/lypOLLMfLJEZzkNnnXSGYewHWLdIIuSZxKMG4iMl3T6isqwrZlZRfuD+\njLv/v5Lk7ne6e9fdM0l/K6pMLil3v734u03Sl5Qv7zt7VfSKv9tGV8J14QxJV7n7nRL7wIjMts3z\n+7CMzOxsSb8u6eVedNhUVKG/p3h9paQbJZ0wulKuXXMce9gPlpGZpZJ+U9I/9YaxHyyNmc5Dxe8B\nMBSSCHlHiseb2THFHcGXSLp4xGVa84r2fp+Q9FN3/+uB4YPty14k6Zrye7E4zGys6ExIZjYm6bnK\nl/fFks4uJjtb0pdHU8J1I7rjxD4wErNt8xdLemXRK/eTlHdytnUUBVzrzOx0SX8m6QXuvntg+MFF\nx6Mys4dKOl7STaMp5do2x7HnYkkvMbOamR2jfB3853KXbx35VUk/c/ctvQHsB4tvtvNQ8XsADCUd\ndQFGregJ+g2SLpWUSPqku1874mKtB0+V9ApJP+k9wkjS/5T0UjN7nPIqYjdL+u+jKd66cKikL+W/\no0olfdbdv2Zml0u6yMxeI+lWSWeNsIxrmpk1lT8ZZnA7fzf7wNIxs89Jeqakg8xsi6TzJF2gmbf5\nS5T3xL1Z0m7lT87APpplHbxFUk3SN4pj0mXu/lpJz5D0djPrSOpKeq27D9shIGYxyzp45kzHHne/\n1swuknSd8qYmr+fJDPtupnXg7p/Qnn3kSOwHS2G281B+D4AhrPtHPAIAAAAAgOHQnAEAAAAAAAyF\nJAIAAAAAABgKSQQAAAAAADAUkggAAAAAAGAoJBEAAAAAAMBQSCIAAJaVmb3KzHzg/y4zu9nMvmRm\nLzazFfvbVJT3/GX4nDeZ2W/OMPx8M1txj1Uys8cVZTtg1GUBAABLa8WeqAEA1ryzJD1Z+bO3/5ek\nlvLno3/dzBqjLNgK8CZJeyQRJH1c+TJbaR4n6TxJJBEAAFjj0lEXAACwbl3t7psH4n8wsy9I+oKk\nd0t642iKtTzMrOburYW8x923SNqyREUCAACYFzURAAArhrv/s6QvS/p9M2v2hptZ08zeZWa/MLOp\n4u9by00fzOxgM/uImd1mZq3i7z+YWW1gmtPN7AdmNmFm283sX8zsYaX5JGb2DjPbama7zey7Zvao\nmcpsZiea2cVmdl8xz/8ws6eXpvl7M9tiZk82s++b2YTyRMlM87tZ0kMkvXygycffF+P2aM5QjH+H\nmf2Rmd1SNA/5ipkdUvy/qPiet5nZn83weceY2WfM7K5imV1tZi8qTXNC0dxkm5lNmtmtZvYFM0vN\n7FWS/q6Y9IaBMh9dvPcNxfK+18zuN7PLzOz5pfkfXbzntWb2l2Z2h5ntMLN/LNb9cWZ2qZntNLPN\nZnZ26f3nF+9/jJl9p1hnW83s7Su5eQwAAKsRP6wAgJXmEkk1SSdLkpmlki6V9HuS3i/pDOXV+v+X\npPf03mRm+0v6vqTflvTXyptJ/KmkiqRqMc3pkr4iaWcx3eskPVrS/zGzIwbKcL6k/ynpM5JeKOnr\nki4uF9TMnlB85gGSfl/Sb0m6R9I3zeyk0uSbJH1eeZONMyR9dpbv/yJJdxTf+cnF/7+YZdqeV0h6\ntqQ/UF6D4+mSPi3pS5J+XJTrEkkXmNnzBsp/lKQfSjpR0h9KeoGkqyT9s5m9YGD+/yrpCOXL6zRJ\n5ypvfhKUL893FNP1mqg8WdLWYtjRytfXWcqX+RWS/tXMzpjhe7xF0oMknS3pbcX0Hy2+x1eKZfNj\nSX83S1LnXyR9U/k6+6zybeRtsywzAACwF2jOAABYaW4t/h5e/H2ppKdJ+hV3/14x7FtmJknnmdm7\n3H2b8ovgh0o62d1/NDC/zw28foekmySd4e4dSTKzH0j6uaQ/kvTmIhnxh5IudPc/Lt73dTPrSrqg\nVNb3FOV9trtPFfO7VNI1yi9gXzgw7bik33H3L8/15d39R2bWknS3u18217QDWpLOHPhOjy6+w/9y\n93cUw76r/CL8LOUJBSlPlpjyZXtPMezSIrnwdkkXm9lBko4v5j+YSOklQe4ysxuL1+UmKhpYhipq\nBXxL0gmSXivpq6XvcaO792oZXFrU6HiFpFe4+z8W87hCebLjv0m6tvT+v3X33jr6upltlPRHZva/\n3f3+GZYbAABYIGoiAABWGiv+9qrtny7pFknfL6rPp0XthK8rr2XwpGK650q6vJRAmJ6p2ZikJ0j6\np97FtiS5+y8k/YekXykGPUbSmKSLSrP4fGl+jeI9X5CUDZTLlN8Nf0bp/R3ld/SXwjcGv5OknxV/\nL+0NKMZvlnTUwHSnK08obC8t20slnVhchN+jPPFygZn9vpkdv5CCmdlJZvavZnan8mXQlvRrkh42\nw+TlpMJM3+M+SdtK36NnpnU2rry2CQAAWAQkEQAAK03v4rBXHf4Q5X0EtEv//7MYf+DA37k6Hdxf\n+QX+1hnG3aHpJwv0akDcWZqmHB8gKVFe46BctjdI2r/UHn+bu3fnKN++uK8UT80xvD4QHyLpldqz\n/L1mIge6uyu/6L9C0l9K+rmZ3WRmr5uvUEWNhm8pX1ZvlPQUSU+U9LVSOfb1e/TMts6OKE8IAAD2\nDs0ZAAArzfMlTUq6sojvkfQLSS+eZfqbi793a+6LxfuU1244bIZxhxWfI00nGQ5VXF3+0NJ77peU\nSfqw8v4H9uDu2WA4R9lG5R5J/y7pXbOMv12S3P0mSa+0vA3JicqTJB8xs5vdvVx7YNDpyvuCeHHx\nZAlJeUeZi1H4GRyqvNbEYCxJv1yizwMAYN0hiQAAWDHM7DeVt3d/v7vvLgZ/TXnHgDvd/Wezvjlv\n3vDnZnaiu/9XeaS77zKzKyWdZWbn92oFmNlDlN8h/2Ax6Y8l7VKetPj2wCxeMsP8/l35RfVVpYTB\nvmpJaizi/GbzNeWdIF7r7hPzTVzUSrjazN4s6TXKmwl8VXl5pT3L3EsWtHsDzOwESU/V0jyq8sWK\n+614ifJONK9Zgs8CAGBdIokAABiVxxWd9lUlPVjSryvv9O8bynvp7/mMpFcr70zxvZL+q3jPscoT\nDi8sEg7vk/Qy5U9GeIekn0g6SNKZkl7r7juUNz34ivKnA3xEeXv5/1vSdknvlSR3v9/M3ifprWa2\nQ3ly4onKL5rL3izpe8o7AfyE8loMBynveyFx93P3ctlcJ+npZvbrypta3O3uN+/lvObyNuXNQr5n\nZh9SXqtjf+XJgYe6+++a2WOVPxXjn5T3qZBIepXy/g16SZbrir+vN7NPKU8a/Fh53xAdSZ8u1t3h\nypf3rVqaJpW/XzQhuVz5UyR+T9L5dKoIAMDiIYkAABiVLxR/J5V3lHeV8jvHXyzueEuS3L1tZr3H\nCp4j6RjlNQVuVJ4QmCqmu9/Mnqr8CQznKu8j4U7lF7q9ab5mZs+XdJ7yTvimJH1X0p+6++0DZTtf\nef8Jv6e86v4PJf2GSk8DcPerzOyJxfw+oLzq/l3Fd/noPiybt0j626KMDUmfUn7hvqjc/VYzO1n5\n932npIOVN3G4pvhMKU9i3Ko8YXKk8vX1E0m/7u5XFvP5LzM7X/n6+X3lCYJj3P1aM3u5iic9KF9n\n5ypv5vDMxf4+yhNGH1SeLNqufFuY7/GYAABgAWzgPA0AAGDVKRIY50mqlJ5SAQAAFhlPZwAAAAAA\nAEMhiQAAAAAAAIZCcwYAAAAAADAUaiIAAAAAAIChkEQAAAAAAABDIYkAAAAAAACGQhIBAAAAAAAM\nhSQCAAAAAAAYCkkEAAAAAAAwFJIIAAAAAABgKCQRAAAAAADAUEgiAAAAAACAoZBEAAAAAAAAQ1nW\nJIKZfdLMtpnZNQPDDjCzb5jZDcXf/YvhZmYfMLPNZvZjM3vCwHvOLqa/wczOHhh+kpn9pHjPB8zM\nlvP7AQAAAACwli13TYS/l3R6adi5kr7l7sdL+lYRS9IZko4v/p8j6W+kPOkg6TxJp0o6RdJ5vcRD\nMc05A+8rfxYAAAAAANhLy5pEcPfvSbq3NPhMSZ8qXn9K0gsHhn/ac5dJ2s/MDpd0mqRvuPu97n6f\npG9IOr0Yt9Hdf+DuLunTA/MCAAAAAAD7KB11ASQd6u5bJcndt5rZIcXwIyTdNjDdlmLYXMO3zDB8\nRmZ2jvJaC5LCScFSZd6R5PMU12SWKliiYIkyz+TeLd7bnfN9+bxNSWgo87bcs2KcD3yul96VyuUD\n8x5soTFfWWcWQl0VqysUq9+VKVNXU91dkjp7Nc99E1RJmpIs/66eFd/M5Z7J5TILMlmxrLuSshnm\n01se5VYsQdPLf/B/MdZqSkNdQYlMpkxddb2trreVhGr+ucqKz5Xk3i+TPCvW/WB5TMNsRzMrv88G\nhpffk6i3XZgSVZJxjVkjzwwWRei61FFXbbXV9Za8v0wzubfnKeOwBss407iZvtNs60rROLNUtbBR\nVVVUMZOZ5C513LVbu5V5W5l3Z/kue5bHrKKN4UCFoqXTpE9pynerm7WVL8uF7lPl8g/7/qSYdqbt\nuDzvYecZovk1kgOVKlWQKSm+r0vK3NWVq6O22j6pbtaSWVKslUzuozgGLLb821STTaqprtSC0mL7\niZaqS125dmYT6qrT3zeyrK18WU4v+yQ01bBxVYtlJeXb4ZTaavuEuj6lPH8dv2/2fX0mrkoyrooa\nShTUUUcdtdTJpuQ+tbcLY0gzbcum+NiZayYHKVUqkzSplto+Ic868qH2odm269mOm719ZbAMs88j\nWFVmidw7Mxyb52dKlSZ1JaopU1cdn1SWTQ35+Qs1fV4wbW/n2Ts3qQxsw8Ock0y/1xQks4Htv/w9\n5y5bmoypqqZSJfn+JvWP2V2X2uqqoym1swm5d4tzGy/Nd+bPCFaTJGXeK9tC9e6Zzf1es1RJqCvL\npmY4JxxcV4u13hbTfOUpr8/yPhdUScb75zydYj3NfP4Rf0YSGnLPlM14nHIFq0qygfEus4rCwHYn\nz9T1zgy/58Mu22G+/0zf3VRNNigoL0tXbXW8NbAPzTXf2c5xBu/Rlrfx2co3m+n1FqyqJNTU7u6c\ncx6mVDKVfs+T4rzVi31vtvItdFtOVE3GVFFdu7rbBkfc7e4HL3BmK95pp53i99yzfck/58orf36p\nu6/oGvUrIYkwm9mOWAsdPiN3v1DShZJUSce9UXuwdrduV5ZNDE7U39GsuMANoaFG7VA1KwdpPDlE\nHbW0u3OPdkxu0VT77nxaCxr8wZpOFkgh1HTghsdp+8Qt6maT+UlrNlFc3O158l6tHqZuNqluZ3tx\n4ZrKLMkvtL1TOhAMZ7+xR+iw9FEa903KlKltU9ptD+iWHf+hqfa2+WewyEJo6NANpyq1mjreUld5\ngqXrbbW6O9Tu7FIlHVM1GdNE+15NTt2rLNsZLdfZWHFyJEtlFor3ZMqyVn+ajc0TdGjtURrPNilR\nqt22U/f6bXqgtUX7149RRQ1N+U5NdO9X5m11vaNu1lI93U9T3V3a3bpd3e6u6DOHWS82wyZbfl+w\nimQhKm/vvZXKgep0tivzttL0AB2z8dl6UvVhqif5RWMmaXurq7vbLW2zu7XNN6uTtdTu7tJUd5cm\nJm/bq+1ntu8y1He2fL9wz/Lvb70f22Jdlva5evUIPapxhh6cHKjDGhUlJk1lrvunMl3ZvVYPdO/Q\nRPte7Zrckp94eLd/1jpTeerVI3Tahleokebl+Onk3brZr9b2iVvy/bc4sV3QOux1vTLLZ86kkh6g\nzFvFes1m3JZ728ew80ySsWg7fNSGF+sQ7acNlYoaSf59u+758mtP6W7dp1/6dbpn1/WqVjbKFNTJ\nJjXZun2oz1vJeuvvwZt+VSdkJ+jAWlUH14OqifoJlczz5bGzLf37rpu1Q9vU8p1qZxPaMXm72p3t\n8myyv/wP3PB4nWhP00PHGv3Pua/V1c2de7VFP9W9E5vV7uyc8djU2+4l5VdU+cD4tfL94tANT9Ix\n/hiNW013abu22c26d/JG7Zq8eahj3r4ob3NmQWYVeTYVbYcnjr9MB4cNqoagn2W3asvUVdo9dZc6\n3R17HKv21fS+MjHv9zdLtWnsYaolG7Wrffcex+ahPq9ykA4dP1GH+NHabTt0R/ta7Zj8pbrdnf3f\n6MFj974cQ/vzGTiG7O18g1VUrx2ujbUjNJXt1M7Jrf1zkmHeW60erHq6SWZBD0zcLM+mpCJR7oMJ\nTy+Va+B4e9iGJ+sYf4wOSsa0fy1VNTElJnUy1452pm2tSd0R7tSWqas00b5P3WxSWXdXnnzy/q2D\nGcu4sXmCMmXaNblV3e4DM07T2+/7x+Vewl+mkDRlVlG3s33O5V2tHKZDxh6l7VNbNNG6S91sV/Hb\nMn3zoLdPmKXT7+39dhQXaeXlM9d3G/b3pjft4Lx6ZZB3ZaEqs1RZ1pJ7Z8/tK7qwzWRKonPPJBnT\nkRt/pX8utnX31WpNbct/Vwc/c4byHrjhCZrqPKAHdm8ukonTv/Mu13jzeCWWavvuzf3z10btKDUq\nB6iR7KdgFbV9t3ZObSvOxVvTn+N7JsNmWl6D5xczLTeztEhCqUi2dfMyWqojNz5bm3SwKl7VfWGb\n7m3/Ijqvn02wyh7n4mZBIYzLvT193jnj+fqe5z3zadaP1kH143Xr9u/JvTXrMbFaPUxmof97nu8D\nG5QmTbl31M2mBpZXfs7tRYJuob8z+XbzLB2dHa9vb3/fwJjOLQua0Spxzz3b9cP//NiSf06aPOug\nJf+QfbQSkgh3mtnhRS2EwyX1rmK3SDpqYLojJd1eDH9mafh3i+FHzjD9vExBlaSu/I7HzAegwZOq\nYBUlxX/zoEpoKBR3rGUmUzLw41sWlFqtuLMe5Cr9QJckoSpJ6tpOyTv5HUNL5coPSnsjWEUV1VTz\nqnolrKimEAYvtJdXxZqqWlNBFXXUklum4Pnd8yy0VQkNpVZTEmoKli7oPkR+EjH7gTEJNdV9THVv\nKFVQpkxVaygNNdVsXFVvSCZNhQmZB5nnyygJNaXellllj88btlyDZkoqKEpIDQ6PM91mqSpeUz0x\n1RJTWsxqKg1qdlM1u2OqhXElIb9L1fVOfBGzTKzYx/KvGgZOiIqaJtaNypSEqmpeUz0JqidSEqQk\nM7W6QfXOuFphXN2kpYlQU9btyC3RXHeaQkhVS4LqSf65Da/l6zqpq91Jiv3KF7Zs5jlBnLkcVSmT\n3DqS53d99pjtAuaXL8ckGlbzmupponpiqhcbRDeTgkn1bqJ6t6FqGFeS1PP9SkFZceK5WMmlUat4\nTbWQL4NGaqoGV2K99SV13dR1V83rmgh1ddVR1zrFhUKIlkJqNTUsVTVY/5y8lgQ1241i36qqY3O0\nEBzYTkyl7WvgdWo11byiakjU6NZVDU2loVac8OfbyVKuoz3nG/bYH2qqqhqCqomp1q0rTYrfwCyV\ntLhJhBCq8iwr5jtfEqGiJNRUCU1VkrqC1dTVwpIIUlCiVFWvqWMdpaGhYFVlRe2GQfu8DsoXd5bt\n/THZQv+7Z8ryY8yC3ltVmjRkKi6SrSMpFBf43Vm/q/n0cghWybfd4hibJ+2ktpnaWVAzVFT3pirJ\nWFEboaPMwpzzl/LzrjTJa3AGS2etX9GbR37hWfp9Le56dwcS17NdiKaqKQ3VOPnXF4pzsF5iLStd\nBIb+epypHHOVeygD+6IV/yTJi3NDs4rMOtMX3oMJk/4pRjbwufE+lVpNFa9Jpn5NzPKZ7EzlTa2m\nbqjJQlXe3b3n+FDNb4oM3DQIlqoSGqpYU6nlv0Gt5AEFqynTRP4pC7jAnvPc1RLJUqlIIgyuG5Op\npqZqnp8XT/h4/7x+XlbUdJ1lPffKNLitzJTEGlYIFVWsWZyrzz5dmtTzfXme34rpZTZLknAoiRKr\nqGLJ/JOuBS4pW/7rpJVoJSQRLpZ0tqQLir9fHhj+BjP7vPJOFLcXiYZLJb1zoDPF50p6i7vfa2Y7\nzOxJkn4o6ZWSPjhMAUxJfjId6sqy3ZrrRMWsokpSVzWMq+7jaluruLitDpwQDIqrGIfiwjQJVWVZ\nRzbHjmsyVZMxtS2o3ankmWbrXUS35Ht5EVgJDdW8rpoqyuQKbupaR2moa8oqcl/ck8D5mFVUV36x\nnihVu7go7yhPIHiSqRLyC552mFArVGVZRfKpIX9csuK4PfMBrhIaanhDDVVVsSC5tMs2aVcypoZv\nVNWrkkntMKGOT6rrefmq1pASKQn1vWoEUj64z5RUyO8yJJImSuOS4qIl/1EMIVXN62qkll9sF9ti\nK5OanURj3boa2qR2yNetJ5nK2+Zc5ZytjAtlvR/l3l2u/mf0PiA+qUlDTQ1V1UyDmqkpDVI7k6a6\n0vjkBrXCbnWTtpJQz7Po2dScJayERv+CUpKaVlU9bFI1GdOk1STvVUUfbtlIe7dM0qSurhVJRG/L\nuntXq6jP8u2h2z9vDPlySxI10qBmsel3ginJTFPdRM2spoZtUhrqqoSGzPIE2iiSS4utf1dRDdWT\noEZqaiSuWnFR09N1V+amMW+o5Rvzi4agYt+Kk4NVa6iRJmoM/Go2U1PTKmpooyqhobbtVnembcf3\nPAkfvKM4uI+lVlc9pGomiXZnVdV9XGnSiE6AZYlsgbVmhjFTAiE/WY2/U81S1ZM8iVD3Rp7kDXV1\nbXIvLtpnZzIloVpcbO55EV8WQk3VMK6ajasVduaJjQUmxpNQVcWaqqmqrndVCc18f80mtdgJkt5x\nZnpb2JdjbFAaqqrbRilIaagP/U7rXcyFhhJVFKwqt2Jbc5uzRIPlrVpT9ZCqkQQ1UhW14vLaY103\nNdJEY1MN1ZNN6mQTyrKOOt0d85evOEfreKt/w2a+5RTtX5YqWDW/UVLc5Ml3yT23izTUVbWmEqv1\nE2PuXckyWXEeYVaJz/fM+smUvCmNNHdTkoWJv+90kqJ/YSzJvKNgtTzBYVmx/sLgTIobXaFYp17U\nap1OYgerqe7jqnpVifKEnCzIfP7lXbNxZWHPmyq98lfDeP7agrxoYlpJ8vO6hjaq4jVNWr6eQ6hK\n3V7ZF2c55smVinrnUvlNi+K3zlLVNaa611WzVA1vqhrGlYb6vNuaWa1o8jFD7YfZjj17ceOhpxIa\nqvt48V1a6u2dUU2I4trBLGi3pfm5kdl0ctxD/0amWVDW3xf2flmnXlHF5k9aYG1Z1iSCmX1OeS2C\ng8xsi/KnLFwg6SIze42kWyWdVUx+iaTnSdosabekV0tSkSz4C0mXF9O93d17nTW+TvkTIBqSvlr8\nn1dQyA8YSV2d7twnKsGqSkN+17yW1VVRVW2bzE/Ci6ph/bvHFookwfRd8GDV/glnFjpSls2+21qi\nSnEgaCdj6ngnzwxbmic0lbfTXNAdSwuq2bgaWU3NkCcRWh6UZWOqpmOabDcWvTrqMGVq+gZVvaau\n1dXWVN7MQi15yJdO78Swnewu1lNa3LUe9vI9k9yiC9eeahhXM2toLKkoMZN1TWO+STuTTRrzMdW8\nKlPQVJhQolQdtaQgVW1cZonSpL4op5Z7HHyLkxVTUFb6MbLirtFUpyLTpNJQV90bGktN9SS/25q5\n1E6lViVod7eisWyTWppUZl11k/zHfuj27wu4sJzrR6TfrjVI03fOu/3vVr7nUUnG1AyV/GItdVWC\n1OpKk6k07k21fD95yPRAUUWv49mcd7XSpKGxiqnRq4mQpGpkG1VLNioJdXXVlWfd/snWdLn2/E6D\nVWYXwiyomoypY5WiCmFe/XRvaxbl86xEd01MiZqhokZqaib5xa4rr8JfyVydLGh3N1XTN6iWblQ1\nGZPUuysxfAJlpWt4Q2OVoGYqjacqaiLk43rLI3NpzGpq+ZiCgoIl2pmMqd3Zra4l/fVSsw1qJHky\nq2cqk8bTVM3OBlWSMaXJLnW6w+1Xe2yjxbZU93HVQ5H86aaqZ83ixLrWr75qVpFLsoHmO0shT2RW\nZJpOzpmsKJ+pEkwNVVW3TWqlD6iTTarTXcTabGbFHejOULUcguUX0XXPaylVkqbanYUlxpOQJ26a\nVpFcqoU8idPpTirr7ih+cRdnefdrEPV+l2aotj3b+/Y4HllQWlxguGWqpmOzv7/ULjpYTWnSUM3G\nFVRRmtT723DXOprrTuughm/UWJpqrGIaK2r+pCZVQr6fTaRBY+2amra/2sludbIpTXWKi5y5vm+o\nFmULxQ2bZP7jZXGRb977vawrWKr24N3lGX4rKklDTd+gHaGZJ2atJrdO/vVNxY2cqrJezdVSLRKz\nmqR2cRd93/uX6deG6N01Ly7887JU8r4IlMk9KCm+o5TJs952VRzPPVO/Wac6yvurSIvX+T4bQlUN\nb6riFSVKi+RybahzrYY2qhvaClYtanuov42ZpQNJhOkkQxoaatgmNbMNqnhFqaVqhR35ftvu1bBY\nnONb0kuUZ0Vzk36zk0wh1FTPGmpaRfUkUbvTVCNsUi3dqF3zbGt5krNd2pZCfrNvjkoHe3sMyW96\nNYubnq1R7G30AAAgAElEQVRiLnENJrNUtSRPiltoyDIv6qzk5VKQvNspblJlMhXbidteLW+zoER5\nEmF9cGoiFJY1ieDuL51l1HNmmNYlvX6W+XxS0idnGH6FpEcvtFxBQQ3L70a2rKa5TlTSpK5aUQuh\n7g1lnqkVpu8U5QfmStw2q+isq/f+ho+pkozlHcjMU+uhkeyvKauolexQN5tQCFUFS/P5WirJ+3ek\nhmFWU0ObNGY1NdJE7q4kMylTvzZG19LhLy4XQbBUTW+qblV1PVO7aGbRtrrcMinkJ/B1H1Pbdud3\n/EIjL+Mw372oPpbftZPKzQMatknjIb9rm4a8AthYp6F62KjxrJlnVz1o0sfVtoqCKjJLVNe4guUd\nyuzVvbd5DtZ59cv8Tpp1e52L5T8+wWr59hqqyrJEaaipaTU1Elc9kdJ8larjpomO1EwSjXfHVPGK\nFKTM2v2LknwRDXFAnKu8xbhefyAzNR8xmZIkvztm2cz9hmTekrrTJ5S1MK6xNNFYahpL8+RIxUxT\nmWksqajVHVcWMtXSjeoWHWF1u+3iFHvPslbDuBpJnpCQpLE00fjkBu0M+6uSNuXtjlxTeY2JbKq/\nf864jRXVYq1omjFYrTVqi9rb/voJiaRIWrTk3lU3myoSCvPvc73ERXnZJsWdYCv2XQvVfLlVrJ+A\nkfLOzZKuaSrJv3uzlfc1UrP8BM9D1k8urYU7Ck1vqJGYxlLlNREGmjNIveYMUjNJNdVpKvFUIeSd\ni6XJjiipXPexIgE1/f5WYmqkQWNFk4Z2skstu1/SRH/5zdhMqWzgrmbdmxqr5LUn8lpE+bEoTZpF\nnz35vptl0wm33va+mOusl0gLliqzVFa06TVLixoupkpQXkVd45pMNqqdTGqq6AhxrvbT/fkXZm8r\nnh9fs6ytju2e9/tV0qaa2qSmj6sVNqqSNIqLuuGTCJUkP0lvJqnUzS+OqsmYOsmE2p38jnNeuBnW\n6xx3GPdoyy6bvotsFeXJ1Nk6DS7PzKJmBL151MK4xrMNCiFoV7Jxhrf1js/TTcdMphCqqoeNamiT\nElVUTcbUzaYGkorzFKdYLw1vFok2aSx11YKUmKuVWVETIU+6jXc2qRV2qJ1MaKK4ozrX905CQw1t\n7DdrmC8Bni/r3vd0JaGhajKmEFJNdfI+TbrZlNza0XI0mdLQUDPLm//1lkPewWKrKEtVlbRZ1KDI\nZP3q6vlvQV4rLlU3y28gDVZfny0pPfd2XTT76/+k1KTioj6EWj957J4qDXWloSb3TN0woV5Hevn5\nYrcf9zplzre7pEgw9M5Pa6paRW1PVU3G8u+TTUjz7HsNH1M7tPKbPJ3ihlqv+ZVV1LBNxfKrK8uC\nMiWqJ5vU9A0a9zFVLNGUp5qw/VVNx7S7uMAt106ccX0PUdsoKar3d5TIrat+fxbeURLqGlNd42mq\nagiayir5ja1krFhGs/dbFEJVwTvqeitqHmEWFJTKiwSNae4aPcPq3fSari2XSUqiRGlIxlQPG4uE\nYFOdgb4fQvG9M0sV/n/23rVLbiRHFjQA/iAZodT0//+Je85u3+4qZUaQ7tgPBncyUlL1Y+bendkS\n++hUS5kZSTrd8TAYDMpcQgE07wGs/HtsBJmx0K/rz3T9d2hn+P/8Uiju/Sv+b7u9UIKv1wgABlq/\n9A0raLx3/zIrRQDikA7a0IHD90lDTbZi8w1V7zj0Hd33nxoXVdKNTTM+7K842rdIFAxUwT0DSfkk\nfPOzy5Qo+2akHDoc1gTurKyflZv/cyCCSMJdKooamjt2N4IInoJezQB+6Sue+hXf0hsex99/GAT8\n4MNp2C/9gHPSQ/zM5l9Is8xKEEGAb61i8zdsmpGU7ITN73hQdxoAnaYhX9SM/wVGyAxy/KfBhGpF\niqT70ALv4UzdkWybDv6ARMU+YUvAog6NZ907cMvA74di2zOSK5o3HPJ1VlMc7Y/v/9JD+kffx3Ud\neiA/6PMPZg0AtHBmPQR+gM4qQXvdd4t+jUqy42YdSYCHgNV1Mzx7xdFvqPaGPb2j+xFMGmGbwKf7\nrXLHLRFoAVihv2HBDX9hotA+0Dr7SqlX8A9e5ASxXp+VyRbXw+X166JMCg9/wFNH6w88j79B8PGH\ne0ggZzsImGxMhpMWJkxhS0Qy1qQTMJntDM6g/nDgvSm2Z8UiX7Hgji4dPUAEwcc/ePD/GRfZGMBq\nwGYd1RwCno/ugENwuGJNDBzFBdoFi77hw/4KkQoB1cRXX7ElYLuACB8GMgaiLebD/hataky8xBFV\n038mMGMQdvOVwES6VG7BtpM9Wm5e6OZAJJ//tRf7q/lHtaL5DvgBUd7fltg2tSbDtn/Bu9zxtN/x\nLWyVXO7ph3bjKqr6U3CSFcyedjyP316YIT+6it2w+IbNV/Y1WwDjPxHi+9GVdCX4lJjorO2Gonw2\niQTk5boAhz8HQ04B1qELIxAkG2yBM1H3/mMxuasu00hsrmJtKglF7rj5AnTazpFcnYCWzWr0FSRN\ntqDIHZt/oR5EesPRH2j9idYz/A8mIpxaUILNV9rUJNisowSIYEIAc0txXvYN7/IXPO196k38MYNs\nw+ZfJmhPEO39u++b70CEFXsouR66INuNWlazzUMpai3tjCFkJLYVK97wu92xt3e26YRInumCYjc8\ndUXr71wX0QATyEzsMRlktEFc2V1cL3s5HwMUur7n80tRlPID8B4gxYEOi+fawGkcB0q6waSio0f7\nzcmSYBJJEMlxABishI6uBfADWVdsUpDFkKGz9faQBFzEL390bb7h6c9oDWQyOt7HiDuBU+dLnJ+/\ntRvuylbSjy5kx9lbAEU7JKaE/NHZkn+iDXewep8HCwSDESHSkG3DzegzFxM8u2Hbb1j0K21f+8n+\nj5jGvaO33zEDBtFLlZ9FxDaYD/8Z3ROcRa/BjmodYDxwPr/pgg1/ifh046QRHFBNSFpxdOpDaeir\ndQAqFDP/UVz66/rB9YuJAOAXiACAIMLmGxb7it90+Y7qdw0ASvTJr86+VQCovaLoGsa9R8sBjXd3\nhfoxHV6xGzapKNGzSYE79od9ToZNF9z7V7xLwu/pDc/2e1RWxmcfkUQEdQ79jxNq0Bnf/YZbVtyy\nwF2Qld+/tq8o6YbHvuKPVF//K6/R87oae2ybA3unhsHuFm0bHUtoFnzghiJEYU0LvNt3YnzXz37p\nHwT4d9hLVX3rN9wi4crK79ksYTtuWIshC9kJ61GhEKQYnbP5huIV/0vf/jl65cvNyffg0ajmx34z\npWCZe4deKJUCR043LPKVLQ1aUPWOzQy3qLaKONwFRwI+GjUA7inhoyl639BwzGqKOGYgBXyqlMWa\nDdrtS8D1cukZtEVggk8UVdWKmhhIHI0BTIs16/Hfz6JZi9+xJcGXxCQwKZC74KOT7v3oCb1t2JT0\n2N539P7E0f46n+VaEV7xhnsCFmO7xy2R0fClfSUQYe/o/UkxN+8Q2V+C8M/P/EcBgU99BbxULU0L\nNvwFT31HR8ehD5j+X+j9e6bHldEgsKiqNnwWbc22IenZN69SsAZ7YzPM6nlzIIlg7yDAoAmrv6GC\nrKou7VUb5n+4NsItJdwScE+OW2rISvKxxmY/XNAd2JLh0RTWM1IXrPIV7/YFH/r/xFqcrIbVTru4\nhQbJaIv50Dd8s6hSeoeLv57zf8Q+guEmFbeEABGEtqjdUdMbE2kgwMUeAFybYOp/5SVaoKHB45LQ\no/pruuCWBKsxQVxNsT3PpHCMejtvJ5KnawXf/aQ1u+BnzAWRjCp3HKPC+Q9aRZKuBGEk4ea3YHAs\n2Pd/HuRd7CvuKLhl9s1vx4ZF37DbN/wmaVZGP/vHPxQvg1+eH9NWJtvwIrK8H2hyJh7XKvYpxjmE\n/aKHedLcExbcsSnBMFbuI7kKfzPeKYD4PQ0A26vI4NhgsHje3yBiMUXq51NkeNH+r5ICtHPckiML\nmT9JFB0Es29JcZeKh3/Fh/wWehO/h2/5MZCQbMU92o3YerrhOP76/W1EMk5bST0hlYScyCxIUvEt\n3WZCfbT04v9EDIu84S4ZW//CYk/6hqN/wIP2ndON4FSABefZZlxWgmXa+8F1G22Usc9Hm+L1KQdj\nYsRwVwabaoWAgBakTZBC+hPJFmQLZoUeXBupcHQcFr3/ouidoIYGgDRixznavAMdTIhXS8iqaF1R\n/QtyumFvv/08kY7fcZeKPVi259QK7mGzBVu/zXc57mn1N2xSsZmhqMKa4P2I5D0EtMNz/Ty2FfrF\n4at/do3Y40NXHPHsDmrglHRj/JQo4PzRFNtRsWBopQVY9EnkUYSsHfeGo/0d3mPktiSCyTNGJ5DE\nc634z2gPsAhIMG1XcmDdjxctmpK+4O5fYW4o6RZg4AdUEkzrjNFssFaihZlg1MX2/Lp+Xf/g+gUi\ngAXqTSh4SHViVg/lom47qgdF7wxOhOrUCsHaKcQ0EGFOb6CxPoISOMKeRd+wacLidzz1TmcQ1SUX\nf0lEs23h1BN+i8qYaeV0B9isPvX+DDSyR1X5584+2YpFCm5R6Rr05u6K5bhNtfbWTiXw/62XCEzp\nRJYk2LsjC5kIuQu6Z7jfUCSjimHpFOLJtuLoH5E0efjcK9I/qOYhHCQUERoKzX5ROl9RQmwPyEpH\nv5jidixYTZGVTnJpBeI6mQibVOzecMNfIig8g74fUfmBM6kdmhmBo8d36cmWgCDbhqwrHA3PcEgD\nMCp2oxhlCAIWuQeK3idle1RZR6JTTSEi6EfG3vnZo5rCQGoE8f28H5wBL4D5fZ+DPZmO/GxR+FxZ\nt6jAA8Aj3o0F0ND7ziD6krA7HJvfya4wx5Z6BKSCLWjkz0YRq5v/B572Dc0feB6/vTjAeQ9iWP0W\nLR/x7lMi7b8tWPQNz/QbWn9O8IY0zh8DVKNS8kdUyyud/WQzsaqWUdGl4YnfIuj6VK3iwsbfDRLA\nWfcjWBInw6GkG7JubFHpH0i2YDHEn/N5m1PobA9q8WasIldn9aprv2jDAP9MReK/c9vDYtz7izpW\n68jqM6UfbATSrAmwpe6wlnFvX/HNvuLbpC0DiyQs5i/tDO/NsZiQ3t82/C73WaXkiLKg2vYRNAbl\n8zuwyGb1arPESm5yJmRJsR2kYw9m0giIx+X9OSvk/whI/mcugRBAiIoXMEDrB3LasCTuraxDXLLi\nm9/wIW/I6R6B6Xj2EMCVEUgPexyisdLIXLieIz+r6wvuaLrjw/760wr0uLJuKMhYNGFpy6Skv4vh\nKmL8R+tT5Y5NDZsBLQmWZ2G7hm4wXdEC5P6HFGvIT77CirXENIXzkUfbI8VWpw/5bq+MnweG4CXf\nV6J9ywZpwNa/zORq2G8bxY4AKXpjESPbnbZWKgwE0T7sbxD5hr0VSK+T8v6dbY2qv0jluht1eRY9\nmT9JQV9ksactYTtWLHJHTV9wtI94XsGP9BGK3bBKgnslGBCtW/hczYcRpAmwhKP2Cv2lfkX2OvVf\nnk1jP+EEEkJYcM2K24P+atdv2O0DvbOSW4Iq/m63GXtNxocoSnpD6w+Og+4fgAyWaKc9iHtr/Xrr\ng2lwti2MmMWisCX9ANCnb2rCe8nGVjTznaCZ0Ea0dFamD3nCvUE1Q0Hw3r1BxHifolDvbNU1RVHF\nIY5lv1FsM/rvf84WUayW8DjY1jUAwtGek3TBigIRCv4dUDQ52DakCWtSZBWYUr9pxRvbD/oT3TUS\nW8a2n8+vao0C3gPAEAP9/oyv9he4N/wexb5ZKHACU2uiGGhRYTwYYov0hzXe4SvQZbqiRtvQ8/gb\nAc4o+iRbX+Ia94PtmtHG/O/YaRHF1m9Yq6IcdzzT75BGUOg4Tj9c0xdsMW2s6B27fcT9VmRd0Zwx\n7BhzaZKCbRJxdBRA/pX743P+533P/4jL8QtkiesXiABAJYSi/A01fcE3XSFo0yBgjs1RLPKGra+4\nW8ZiChOJ/qk3lEC4LZBjEYMK+56fQSMrQiO97V/wIb9NZfkGQNDIkAnHWBJZC+aGVb/im90m0qxx\nP6oZR3ufhuQMPs7+rOuhpgO0SC5YhTOhe9v6LRL0G3b9DdLbPwy4/rOXwJBtTBUQFOXIteaCY8RQ\nh6OoIYvi1hcsuKPaG47+RGsf6D4omwHAjL7P0fsnAGIUo2mBakH3ByTaAzbNWEJ8LgnV2tckWPaE\nJQlyOPVNE7QDyTnBYbOE3RULblBdg93UL/fwfT+pYIAcKQKYT1+XkbhnlESafvcdD/t7vNeC1p8E\no4L2Z7Zgw9epQL9oh4xKawfem0xBOLauGHavKNEWcq1M8BqBGYGzUb0A8NIuAATlVgQidQY7AJHx\n3u2TwyVlFgDEjNUV3/lfPSJIUDwH1VNIj11MsFrDZg0mjl0U76H98EyC5ortecM3u+NdxqjSU6zr\nuqaLr1isY7MOR6yXKRXF8RUP+w1HIiVzBoH9PSqJpxr+oHi7K1r7cWV00Fb5uwkyORzFbrj5iqdn\nND0AIWB4NLYnjXNx7qNR2ViRbIvqM04BVG9TeNR0Qdd3nnMTLNaxxvMCTJgfInh2xZYU1RTrk5Na\n+N76TILdd85Cj+d5tQPXBIqU4X9Kn+T/8DVBBOso2lGtX0AEnvXmFNr8SIrSCcAtEQwXu2GPpKOq\noShQtM92IX6+YkmC7bFik6/4lv6D7VZDuwaIcXkAxauOS4tLvF8tE+AkGOhY1OdUklXSCXJH0jeS\nFibsz2D+9BnoAv9GkDrBK0MyCssNle/hX4rdUJWJYhaCKItyZOgmX1HTF04eir3bYC+sJCZMHaYr\nrsDZrNhdklXVggU3HLKHBsyC9gm0uibrVe5YQVbb2gnW56C/n/6cK/PDFhMRLH5HNUU1MnY2Tdj6\nF3wIbS2rdZce/s86KPE539v+sbaKMWUpRSLTwWRGfqI/cP3sMZnHvVMzyFu8rzXsm0BBLY0zueLn\nJttOgPQCdC/KuGazhKyCrX3Bu77hCcVTf0fXg17Bz+ceGkMDQDBdYhQv9+4V0H524IjWn/Ug6PbR\n8vRhz/Q7BrNm+OVzT/D+FqWg9Io31PSGd91OEPciGggwueMUB2ooLPo2Jy0t+sb1huJpf0cD9zac\nsdjNbywiCFsad/2GIz1m0r3oG1b5im/pC472fr5n4d6uekeTiu47DvuYzBm2oB4zBrn28X/vgzEB\nyGwbk33dp30eIEK2+wTmD39gxVckr4ACh50gQtL9wkQgcDDsR+uP0ORpWPQrtsS2ztaB7XGb74fF\nsGAY/qAiv5hiaWypGboQANDagZrYGioCFNz5XtDZ/mI2Y7+kg3n1hdNeEG03QsYt/IjzezJwTFfq\nGfmB1qMyjzZ9Em+QDBOXPgFY0zIT/EXfwpbTrr03tmktzzX0UD7Qe0L3B7w/MdqIcrpjkTeoKT7S\nXyej0owtL659rjXZIxoxFGKPf7/XX878J5EBkdC+SsxFnvYbABZhnpeYZ9E3bMjIqih+x5EeoPBq\nYXuY7xCxYK00HPKA6gkiNADev/1hQfJHV/uVWP/prl8gAoKJYIZ13yZVzmdP2x6qrnRQG75G0qlY\nTDlz3RTrwQp5R4dJgkVQ3izB0fAtUPENX1FNcXuu+CZ3HPKY1aXPAilFqdKtHaEWzEQhSYUhw/VU\ntac4SkcP5kPrYOXHXymPphVZFMVOSrcKE/cVZGNkWy7BR/w8f8lP1/DfSR4GvbLofTIB2M5AsbOk\nQHPF4QlV6dg+OhXlv+kbjvQIxH8J6iANuLyACJjroZKmMCUDWCa7YwTcoqyYOM7q4ma8DxEmC0CC\neSddNJF+tx2sBjQ5j9NwJuez6nRYIjrHTXX58RxiVarrVrnDpeFhf5vPIpLo7Bu1NbLdZsV+tYY1\nEiUHE6RvTaOqySq0Q7H3hM3/A8/0N+w9XUS0gJMurHGvZ3DW+pMtB/15Am3QaL04R4q1jkvgHtUI\nW1Gxnc8oho4GKNCws7Uh4RIcgtUAZfV3Sw0mHY9mWMywWsLTuEfWJytIWbcYVZomVXdURVK0Em2R\nVHcAi6UzCeoUGDzsgawbmj1w2AdHMY6gC0ODYA2huyf655nYlwTibPHIrEg516FIhrnh6Qu6NGQj\nK+T8iFPBerRIjfaW6+xyd7Ih5pgs29D6B0p645pF5fzKRFBR7J3/fsuC7aOiBtjR+4qS3pCPvzPY\nkYu45JivPYOKjtdzFu/630xg/6sviqQJqjqKdizWUK3NuEyjNtg8KqeGqSq+okQCeofp/4IIdROq\n+gRkVBwfpljUUaNytfmdQGy6QdpFXHfc0yUZv17Dx5iWC/Dh52dbQvZtVvGq3uHWZiLCwPR5AZKP\ns5o07WIK1sjJiuB1MgSuoFVOrEIOEGE8R7W3eW9ZHdUUi3Fk6MM3JN2Q03M+/xD7vF7uHcm2l/UZ\nlXhWwuh7ki1Y+opD2a+dbMEegsIna+cc3VtkQxGCY0tLqJ1sBNMbup82Dr4T4PscIIti8W0mE4eD\ntqYtWOSOEglIl4SjjWS6neBwfMb1XAwRuwHKDvtvWpBCWb/7jiO+xgp7JBiDUffybupkEwBAQ4dI\nJRgfrDqBYJEyk6u5PnaLaRc7rjoaVe6hTE8/u+wrim1w7Uha0ZS6NYwrRjwwEmCCX8mW2AtAVbbV\nVSN7TEOHhfsZHA1qhvVYkHU7p1UBl7Nx2ttRfAES1n6L56D95TvokMuaq5apH5VD72FMHSh659rp\nOQZT+gH3RJaNL1hMUNWw9hUf+gVPfUezB1Qy78Vvc7T3+N38vQT7Gnbs+i3AnpPar9OWVxxhgbiH\nlcKln/ajaprtCh4aUWcSSDtQhc+TULHghuy8p6d+g8Z9Hf5AR4dGcevwj3l29su6EUATVOU44BET\nPgJU7/5k4WOAV7HvTTlKd7OE2snKHTGQd4LyRRWmguLrND0rEoHsEGm1zni6HpUCkRg24drawPUi\n0NinPtQpgEm/P76TR7Kg+oaORi2B/oDq6WOzbCjG6T1FybIq8fzZ7ijpiaO9o/UUoChZGclWLLiz\nEKArDh0V/4IkFV061Nl6ZINB1RUue+wbxvwYooYXNuvUlzp3AwVGJaEoUBFMVe8USbQbvP0GoCPL\nhkUNSQS137HrN3TfkXSLEa4c55wC7BpYruozNCv6CdCh/VMFgoad07H+FJf/0kSI6xeIANJaqym2\n51DBXmZgxmBnmZV/JmsWzlIg8bPLvkznxDpAJC5odMTRJ7b4Rnq5lKlmex2vxoCLVYYSfe4KwdJY\nGVtwR/KKAxlNdrhGIGMd7g09ql8j6Btz6IdzKrIGAMIgqTmD4b0LFknY/A2/TeT5eP15Ab6jcM4W\ngvjrd4bm5wdNYFCpyLrNmdItmBFHD5zWWTkvoVfwaIbbvuJ3+YpDH2jpgaM/0XVH72ewxHnQZ/Wc\nwn1p9oRdA9ca1ZM1YbYBrAmzGkWdBAbLAGA9xNdMoXBsjb3+z8tos2tAMGbznu+YY6pUMrpexdEu\n3w+lIwjBu2z3+U6P/uR0kBgXWuyGzVdUZb/2YqNWJzj6qLbTMVKFV/A0RW1fUNIbpGmo/JJ+2F/A\nGAJPIxhpWtH6I/YpKXpUzF4m7Xn87AnE0RFlW1CwxrtXqBsadkCAAw8k4fMPEA8ASrBmmAQeMGHr\nynJ0LOZ4Jj7PEj3QvwlbXUg7xmSfsP94ISgRa+QYyWNUk48V1b7g0AeybOi240hP7PFez97GM0ht\n0EkDPB/+BF3GiM5BneQz3bFKwoGOh3M9qr3hYX/HSTsul+T9DDyzrvNdzDPuB5OA/gUl3XD0D2pk\nJGDRPoElADg6T8U+E1VWWosp3B0dGRV3PNMXND9wtPcLHbPgc9VkAHb8t2MGcRNw8f4HDIZ/8foE\nYv5DkEIMVRkYMqFpKHaydEw73AWtC7bQDjnUAQhp2b5FiwsBvFllNQbPBJA7K1ZDF+GoWJV6Cnal\nh45bklGJOi5rwb0popwBbgQ0Wc0dLSmKbX/Du77hEYJnrqyMujc0PybzgcH0c/5u9mX3EOU8WQHy\nEqDaBAzHPRUjiFDlDlGbPqboHTUSRZ5L+pP1SHh2+qmmjzOBGX3Xn640k6NzfcZe6533kXVFRcHu\nC2q0ijyiEuuRSI0zRu2cG5ZEZsh7U6xtCVBnQ+sXZsjcq6dNBmiXVl9QIpHag9q8SJlq7QB4Li7+\ndawh90V6ORfXdz/+O+x/1g2OhuYZAsNzMBMGQePCgjwT1YIcrMdxqRaCO5JQIy5ZdEy2OKdAJVtn\nEjqiP0dH9Q2LMa5JCqyoWP0NEODd1h9OkjptAFXek61YAowfNpYgQoeJYu8a/27T5m6tYpE3PBL1\noV4B0nOqFdmHkehGLJRt456PPTPWfdjLoR9VIm5avVLvAQEiCNme0mzGD6NtYpy52gqKryiy4rA7\nLNprVh9tlX/DaGEFgBTjQXd5oOodD/s7et8DTAa679EeEPT4YDeMr13343impOtkDwCM4ZpkqFMv\npDrBuIad7Z4g2PDQOxQE6iUElDXiUpM0QQVVxeH89+rLTKDNnS1cuONdVzR9oNuBJmWen/G+khF4\ne5pi6Tfk2DMACw9ZNjJ3FcjtLCQsQrYnGV6EOJckWB9nG9XY99KfE5CZeySKEzkEMAlEnft0xB8c\n28p246zrBITmffh9ggfj+XnuExZ5QzNW8rUnsn47bRo10m7BJrzhCHZgthVZ4734zmq/rmRdCgte\nLpcqvyCKHuf7n8KPF3+vWsLeAgUrshDoa56mJhvQOII+Cm9Lu2OXb3DlPh2aGT2AJ5cMibHl3Q/a\neXRorJ3Iqz/nur/6XpXCwuZ/Mybir+t///ULRACR1CUJNsnY8JWoODp6D6OdbgQRoEzWgr5aDDAB\nnnbSTZvvMMnQCCg6GpoeyIkUrpuv0aNrKK0ie4VphU2BuX0mLFVOx7k2irwUrMheWE2UR4xkiyAe\nDb0f0xkPJzwCVveOIndWASJIbR7Pbx4VFwaNjxBj+fzz47oGFJ8peLxeDeKPKFEiGWYLMtYw2uf9\nsBAqICYAACAASURBVGI+6MYIqlsANgcprg+5h7pz9B/qBUS4oOvtktCbViR9rf5f+6ZNHO5AUQbG\nNdBpQLAkfnJSjsVcjJMc1j0h223uGQ9q6muidS7Q6IU1Sd85xXn/UdEoTmdc5ETvVR4Eo/SsylSk\nmeAsdkAEaF0CIOnxPKSdHx6g2fEFv8sKGD/TI/kbzn+s4QDQAEB9n/1zY2+MsVt5sDvQoNGioDMB\nJSi2+ooOh4rCPMUM8mAlOFkJ1yrGYoaibNEo1mHagQPxnMCzk0WzWcK3g9XCFFRWBndlJmik+CtW\n2yeIUEclNQlujwXf/IZdPlCxoemO3d6Z+F01G2JNsi3YGwP/87KXJGIASBbUWkfHIm9Yk2Hvgr1V\nwAksFLtNtWQNeinXs08AodgNe3zmfgHJFr8z+Yn+xyr3C6W4oyg/y0ShMXKtqs59UUzQQ2Sw+h0f\ndps2yb2dFWJcKsefqn9X4HXYC3+xG+3l5//laxoXBjNDju8FmLgK4kqmzYiKaE0NOVp9VE7x0T3Y\nBFsCHk2A5GxvO5bJ9OFeFCzBaBhXUUNVtsRUVSxSsDhF3EwyOph4H/3xUrGE4rKXmIBZJAxLOnUs\nBuNtMcX2uOHveoeYofiKHhXhLj2CeyYG1su03QQVzsSK++VMmE/bpFOtm2tHQCPJMnusu+7otqPI\nNvdW0Y6qZ1vHeyQ2h31McE01Udgt7mckMFd7cb3c22R15Ujqmi+o+mVOW6BNSTOwHuu6+jqTkpH8\nL7gTfJP8kqj9DERYpMxk4vBgpWnCRwASsVpzr582/Dzv14T2+tlcj4wUIEIRxhqGHU9FTPY4WBjU\nAeyUF1DctEytHAATGOeZJ6DF/WrIdg9dpmiRjMp1k53vw4LO7UzylmCrLZKwXpOuMY72EzBCW8V9\nQ/uKWPtX5o8IsPSGqhZ7J4BbNVTfIklf5vu4fj7f6w1LIitjRUGVAZjmeAdnv/9ggyZdYZLD71BX\nKUOx+g2HHOjSkXSDwMho1B7tAQRiqmkUezY89QuaHjBQd2LxBUUpZnsmfYqkG5bQsXrGOGq/+Ad3\nsk+Snj3216/9iIlQY8/NMyHb9MMcNR7Jqhyo4GSF7o6H3+fnHMhRFScYtcsjdqxFMYcJKzWnGPew\nUGIonQnxYQ80P87zfAERcuK7/zDB8ljpgy8gQpX73FvVt2nLR0LMdgaHCn/3ognlcv8Avtt7Y3+w\nvYoCmN+1hIz2Ai1YfcGBxmfRB2xOZ9AAT4aWB8HbEmyUijt2+wYRRROewx7aRFnZQgRQj2XoUJhU\n5CiYmCQ0HJNFePQnug3bcX3fp3+djCScRaURN44C5uorfleCCOo7sl3AGb+hhp7X5/2bvaLJgYQK\nk8wzxhAXTQ+kYCl9ZqZeQb3PPn3EN3+q2vwvJgKAXyACgFFRotPd2h0lvbEiG0lpMY7yEzGsni6K\n3Ewin1GFWjppbOZ5VmE62LeYdYVqwiIFNah8t7bg6bdZ3QBOEKGjY/O36TgXSShYsfoKi6Bl0KgE\nClgky9JgfgaUrGqcwMSC+wtdlpoIgIP0/eVgsMaxWgQkxs8DrwnEuF6c/ncJwvcH7VrByCEQOOjE\newcEHqrpgmaOoxOwySMwjP7bh97xlN/QLKH5MUX6gDNgA8DpGLpPaqNFa8kI8kblrwY91zGCeP57\nMT4xgzOJ1gjuGYs2h+oUyfTRqxrvEMDcC2M/aPRpXhPFz5cIg6vqCxoOFLnPikWTyukgZidDRSwA\nj7Pa6kqqdhmBm7KHtTm1BJZ3VlNEDIekKbZkF4olANgFRHCvOORxAjSXM5LkFAk75PECxDEY3VA7\nAypzQ4LhCODAPKOHQ8rRswvgdOzWUNMBiyRwORI2C8aK8x2sjUJIVe+zteLa051tiE82LKnBg167\nGCnjiyasvmKXO6cVSJ/Bw/UMTRBBKcL6uLQhkHJY5v4a2ijp0gM7zqCJ4tkNmG1Et9mX+DnhGYKq\nWTaIvlJQqXK9UexV7tjtPSorPpkpI/Ft3iEwBvnz2RXVYuShK5b9jg+lLeO7ay8Bz7Ar3Kd6slRi\n/5zMhe+Djiub41+9flSxZix6Bjy0h0wqLKr6JUCUYg0lNYi+ggitB8OgC6nXja1KW2OLzGJfYy9G\ncpTOM7u2cx35MwlrZ4VonFf39p1S+lgrAEhapz0oQkZRHdXc+OzFSK1dcIeKYe039gkL0LGj636O\n69L9NbkKJsAJIgTT6LKHxl4dyY0I2Q6KjOIMfpsSCOCa8P6oiYCZdNVGgOMI9oKCVc4mryAcgBNE\niD15vtuGo0dlVO8Ealqe4Mx1pN0AMMe1+BL+FXgEuL+GYrz58XKmru9ApnaJUsA39ESOoY9jhqUX\nVLmH/u0pTjeV7iPRH8nsdyDCAGKjGqiSUeULW7nirD11hVtoAzgr/IO1MD4jhU0b69YmiPAFJXrL\nAU7NqHpHs8dMVousKEJa92QxekP1GoAi4wG2GlBstcodzY5IgM7q7VhHCyZC0fsJICjPSVYCv9YU\nrcsExkbbw2aGZd9QYgKHwCaDB8AEtJcovpwsoRCB/rSvBlA7zpLGdI+lr1g1sTJ7rGihn1T1Tt+n\nlesQwoKLebAqDGurePgNTXYYMpa+okYC/xEJvgj3etYNa1+QPeOp7/iwV8YIACShLR8x29gr1/04\nLov2CYDnnGtB29zkQO0LVo8x0N6wSkKOvVx9mbZ5l4TuwTxwpahvxCKGNEEFtsM4qo59oCwsKcVN\nkYDWH2j6yrQsdmPbVSKLpYb/GJoLo00iK7D5fcYW1TT2DNsIAP7uRQ21B9tqFDMu7QcDLAJOYGzX\nbzjs+fI9gxmQtGKRghbFuREPAiAw1JeTsTZBrgA5DrYdQzELKsOGV7lj9QI491JXgnNFos0BBHca\ndjTdcUiGxloPX3k9S+O6xg7TboAgwoyJfGFriJCFUtKZRwwwNQuwesW7r2hC/anq69wLyclK2OVB\nJoE0XEwx990fggijNW3l1LJf15/u+vXWQVB00teOwuqA9Bk8Z2EfkYACbKya0/CpAM80jC1H51E0\nZjARnAmU3UBRHptBYRHD4kR5h0PvqDPQGdQyBYOY2uicMhLgCEpSOyllMed19Mvx0DdSr+LwV6zz\n3hftaM4wfHdBGYq0fsO3QJ7Vd7iX6czPZOCCoP8BUPDTv0cFI9uCinVW/E2IVh89dKoDSCjG0XTF\nRo9qxdNveOpXHP5BQ+1n0jOCUlJFDSnG2li0T4jb/J5R+Rvq/90DHU+D2hZMhDCuTQgelZgUWU2R\n24Zm+2WdTgcxHOZ1nUaV749AhMU3rNG6sgiTBwA48IFlTJRACapgAAWJyfYUjetscRgtDSLRztAd\nFWU6OghgaHPf85/CyQ5KPqiorJ6nEJNdHPkAEa5MjCuoksHJIB0OcUWCwmBAJ1o/KKbZ7vMMEMhh\n0l8LQQTd+ZxFndUC92DXJCxtnT22Y53H2WNCIljswJKOAB86q2PBDlqOBTtuKF5x6DGThuZ5vlOB\nwoKKDGD2dvO96Uv7x2QiSJ1By+oUPcwqeDY+f3XqWxyeZyXNPUax+Y6kBBCq3NnTeKGgHvLA6hVr\nsFd2+8a9Y6cWwEh8WyfV+fBBLdZZueW7A5bnxiQYZDqNavrngGecs9n24v0FBJ3fd/nZz2Dkv3r5\ny+eOz3it6LBC1ihudaVWlwM5NWiMQB1T1Fqjavyj0/4QMIwEom/4XVaoWCSnHWs+wcqPw7ClPNkc\nJSjQi9yxR+LXsIcQYoMJE2rz41JJzpEQZZ6RSNAJAA02AlBjuggAFGe/LRBMhBDworZIfrF/e2PL\nwwAIho26BqdnBf2k0GbZkL1idYLoCKmPxbfJDsraJwhXx5q1G5oe8x5EDPrJNjsasoQmgryy1TpO\nejh74Y2aPR5il0Hlb3pMQHZcg4q+JcFHo18uO23+4Q/opT/d/PTxJ1uAProE6HrYADLZrrGAGjVQ\noIVw3WBZjIlMMtlIXPdx7odNmCACFMVXOOpM4gYrcSQq1E0Isdhhj8MWuJxJXJLKVo5IgFXInKtP\nskJGslrlCxa/oYGJDRkxDauXaQcGMF5axuEB/uox12f8zvG+VFIku0MENxhx6UCxBhGHiaG5YtlP\nYOwxqr3PiiobdiXra6rExzsCRnLLd8w9RgD88JNBd6Wnj7OkYmRpgTTwpIL1KDhiH1S9w5Bm/DDY\nn4NRUVVResbq64ztKnJo6NBOdu3TRxbZZrL6AWrsjHM6niljRR4TFOSY8UGS/l08oJJn+8X4nDVG\nND/xJLgiBe6OjIRFKYyJlvDRT42iMVzQnGDHHoDEGFk92m85XYMFGxuMTF8IXMg+k3pDD1FkvhS2\nYVFAs4oRFMIDooZmjxnLZgWqlwlgVDsLBZmzLcPOKpbOs2bKAp5dxCCvMVWVe0w7+4bDztHkBB5O\nUH60EC5OUMAutm6yjwbDqskEu+q+4EMrMraT9i87q/+yoYgBXlCEDAd32rYM2lvzDEfFIR8ENlS/\nA+av19lmkl7O3DxnAXDUAEi5jzKSbkBCMIvO9R5smoYdCkP1igONsVboZxgSdjwmu41T0M82zlE4\n+Fncn7RA/XumyP9vL8cvJkJcv0AEsKrM5IIOIkv0KYJKsCVABHWOoSlh+Ko6TEmBLaqoXnDAIt0S\nKAQHOiooHmSSUVWjT5dUqdwSEiq67DPo6KGYunqdwf0AOHh/CjhirnuHusGloztHtXSpUGcls6Oj\nX+bnLn2dAjI12gcA0jZZxbApRtWUgETzHXalM79Q8P6IhYCZTPzoewb9r8Zz1mivUFDssTvIRIh2\nhjxoZiqsFvmK96iSDXrfj36/gTRciUpBkXUac4CfV6K/18TRbIixaVQxPb5P0d3RBCCoQCmtaoIy\n9kzQ838EaFz/XoQgQscnKu8FeKheQ4CvY/UbRovMLhkVxvsOxgKfAS/V1t4EyYxVWGVLAyDYQzyo\nSkJGDUCHvZOOPqti3MU2AyQASOg4QGc4EHAA83kAoHsAW3YmLN139rXG+E5+ssDAvax+qSzIih6A\nBKmVjqoNOTVY9PaXZ8Nqjmfn+1ouCVyRLYADjTaALQLoe3xfR7GG7vGeY08VE6wt4eEVFQXNN3zo\nBgoQ9dnbKHHG2U/YZsIw9nTW9aWSoGCQP75n6SuqcfpIMQFgWNr2Ur02pAB0OpK3qKxtqL5BhZMt\nRtCsnjnWzhS1bXjIFpUVTiMo1pCszfsDgA+xSUUfvaAOaibwPG4Q15lkvAbCn3o3B2Dq+wsI6pck\n7Xr2rzbhZ2DC597olzNyafO4BmLj7KhTJyLpEr37XIOcGnJpE0AQdXgX5OOIteAuJ7gkE6xc5A51\ngr9rrOe4qo2zhdnXu0hBwcr1AwO8Xb6hC5MNDaB3rEOSGjYpo2KLYDbYE5HQ1pggUmLUWEX0zktH\n944mewSJOwz7tG1XMCcFsKYh3HsFgAYw9rlPOCGheJ0VXpeOtS9YjS0iWTuSDFvJ/VyOOitkAAgY\nhk8bATKf+9Ve+GWPDeG3Ctq2XQPg9xVJNybn/oBJneAIgAnylyHgp4oVXF+7ML8aXsGucSl06iEU\n7aiu8Wz08aWvOITJ06g6Dv867IBJmjaiyylmN9sZoEiywJBR+3K2uYQ42wD+mxxIoYUyAFoCBssU\n0xNVqBOUqEPLIZhzRYHiK56yTb2Z4utktzWJcyodBTb3b1KuWxXD7gnVNxx4wKXNfXVtYeJIa7Iq\nhh+l/khDsg6zHrpLyrYic2TFtLsVmW2aCLupr/6SbZj0dz3ilHoUlLDrg+1pl3B2nCXzzHUR6j2Y\n0GdmKNzLZNmo7zyHvobNwNw/VQzPXrBjgSGhijGOa7STQ2tAhSycVRJ2kN1BzYvTpzs6slckr2iy\nQ73N4kD39nIGaOMNNejyR/jSEWcOQKOK0Rd7RzFFjtip9gwRgbtDXc7PhCC5Tj8sOJPyEhT4omSA\nVhtxAoUCMzaY5glWjrNc5T7j2hItKhq+b9c1fIrMpDY6zi6xl8cULAKSxQRprxNoBM52Dj7HCZIW\n2VD7wvvTk8VIdkdoVQiZNuaC0rl3BqPXYg2Hxgt9gU4bUr2ijiRcRjEloXkO8J+FgOIrdnzAhYKF\nOViXAwAiMG8QMdqNH4wyHXtkxA4AZlwr4DSFUdiqYiidYPLhx2x7AU4w1YSxcu0Fu0Rhxc94LvtF\nd0EIak1wQH/Qynhl/eH0zUnXl/P36/rzXL/eOhjrjKrmoglFwmBEwJG9IiEqB9ErX/Ss7FYLY4MM\ngyFBIaHynd3RvaME9bkoJyPMqlVPqGBVQcBAaiZmyFiMlbGidBhFDEk0qvQMJOlI2zRWk4YcQdMQ\n3OroqCgBYNBgulPJuUXgTOdYgpL6EQI++0vi8JoE/DgJPr/+mYHwmoAkqcieSSG7aDSIU5uguWB/\nCQpHxSvh0TIq1inQd8hJnR/GGGDlPkULA6mEyzTmiHe/mqMOECHo8cO51WhxKHpqNACOJOwFKaE4\nPIIC4BQuAs4K1PXvo8o37vGapAFMqitO9Pw9AnmACSb3EYGopW8T1CrpQM7UROgqWPqBYjneNz33\nYoKPFs7FF/5uj4om2mTdDNDCnJwBgbJdR/KsJg6hpiRLVNUC2IIFwt0iyCNgkZQ65tqpnN/cqQrs\nrJTAMcXGgBFodpRIAHUAOtaQ45nIouFzDSbNSCySMoEQWMwIj5/NDd4H1T0CF1VkMVQvqJLQnIrO\nHgDCVYyKQBADnPxJUHJUDABWQCaIEOtZkdlzKghgp6Mel8QdrKRNICqSz5EA0MLoDD4VGqCSoh7s\n1a0Y77whXxJf146nGPuTj3R5dg4+3M1pZ5xA22CHjATw5SyHzZrtDBd7M874YDGMc/nZJnzuh5/r\n+Al4e/m9F1Di2lpx/T29H8i2YoxkXFJDqQcsdUSBB0NgsXeZ9kfAZotBCy8ybMwAfxtKvmgiPKk5\nUfWsxo9zNZJo84ynnMmGSZprJUKPMexBxTo1HEqMyKtT0Z62Gc7A3p2snh7AX5M8qfHXVgrVU4kb\nAMTPfXOtwF/BQgX7hBMMKyqSD2Zd4/4IkCPHs5cJxukUQhyXQn9om3MwbYb9ufoOEX5PwYqsod8R\n72IwBcWZsF8TjRKtOSMhLvE+smwQZyLMe8ohbPbazgBg+uhqjt3Hs8VntWUWF5KQEt4jAB+AmkmG\nIU0bOav3OM929jqrgv26JgFajkrnYM5dq6YJdVLaIYgTmFG9TDALQMQkBBGGLSlekD1DRVCiZQtg\n9bjGM5ucCfTqTCAHSH6+n1gvQdgj2oxlgnYdObcX5k9p7QJoj/eDeV6eciae4xprXcWm/12MeyF7\nnfukRzI+1tGQkbwiITEJNDKJRqtGc8fRX+OHLh3V10tiG+yipsg9ISPDPKGYnfFY+P1RZKpYkVQg\nbqitTB9/ba/MqMheCGSBe1+gswBxvcx5/wBmkjbjTDcK/ymB+RHDZRV0CEozFmNwjh8dcMEBCumK\nCMR1VpFn8qwOxVmwqV6xR5zKIkKGXezMmG5QO9c3HZUjS0WR9DdUzxOcqGJonqCI928sIOUozpwM\nw4VrJCNuynMtrzFV8RXFg80i7y8MLxsFkajguwtKq9O/jfYOai9FLD/jvhPkqr6gyY5dHgEQEqyt\nvqAkAjJr3wjmykFbPuxbWOkHKu2EK1kdFxH0z9ewIy92AzkYkECO2KF0ximGhCR1AoMEnyViJEXt\nGXvcT0aCwaKtJc09OAC5Lu309/IKHFz9OXDa7KQVOhzen+L6NZ1hXL9ABBAISMIeMBMhQikn2j6c\nkTrVZW1+LytapOCzxxkOiMg8UF2AFNR5k/zy8wr+GVUgXjZR2gTS5k0kengFKqQjm/N3DENtGAIp\nOyA5/t7QB2tBOgQN6uMzmQQfQHymn88Po1OMBBHCXumOHhWVqxF57fe/Bv/8+meQ4aShkeadkT3B\nhKKGwKnR0HGu83g/WYGk53qbp3g2JYX+U6IzEuNZtQ03OqpSpKFSh2HcgwmTCZv7gjTnJBz3iH5+\nzcF1G5TAkyJMocBrADHGVQkUyfP5zkDq4ACCuAsyny9GfCW3SxKWkKLtw0ToElRg0qHmMPNIkBQi\njiQ9/gs0YfKagrZq3ZCilUC8zeoZgCnCxL0w3nMGnIFwd53PxO8xAMYZ9TKq6UGkdEWK+wYAFwY0\nzp9AF4W6k3AXnz32Qop3oupQ69Au7LOd+2K0wXBPJE/R3xfBpCx8Ds9cs+jTdREkPT9jrMmATCwg\nwfFeHQQTRoUoj2rSpXpLNe0TMDhbQfIl6Zdzfyn3esLYywHKeA4H3qlbghx/2MrUQrQPQAA7QuXr\n8X2iXJcQC7UAX1rnsyqoCzBt0Uh4heKLKYKLqeR8edfnuR58kkvQL2Mvn7bCIzgRDHr3hWWA7wOo\ncV2rMtfLEa0UopBLn2a/VEcR/at8rx5aGoAmQC0MrDrQh+1ja1oadnmeLTkrVsp/V70mu8NWnK1Y\nIoB1Q0aJNTnmnjbJ0753GWFsnvbAPF1sXo/PHfYJSNAgpUrsaSYKBmogQGLfeLv8Dtr+4WOGTR4U\n5lElH/dyDdR5P4oeGiZjbynAvTX2l5z7OSCu2SM7hbuAKe7W42wCgHhDE9qOy0uGo/EsX96Fegi9\nxh4YFf1xKV79xdzPnoOtd9ri6R9xBtAKDTvANU/fxQYELpLneR/n79YJCo3z3v0E+yabK94114hv\nZ1CKDQlsZWqzwj9ACX6GMdF2BZBhOAj8SiSWIy5B+AcPQHMCWonvxzN27PNzTU+bNNf74mPH3tCZ\n0OnluXmPfDfjLNDGqvr8Q7vLE3/a7RB7de7hHpDY9aItwfS/KgiIhmfpkJ2/NxL5Lj2eM8W9M2bi\n80VsNj4j4oexD83TPOfDLl7XIUGnrdUJtecJtKsrkgg8gAG7nKdxFpKneZbaPM06z8j1MuQJLKdp\no8mIdDAepASGhB6MzOdMU4ODbIQO+tpxTiC8qxb+p8PnOo+9MEQxrXNfDl8mkWDOFh1yCsO3YJ79\nhuPFH6Xw+zZa4GScNUwbbHFf095E642edz5jU0FHvOnpH8eZni1YGPEUvRFPWZrAiSFd9q2f9kPj\nj+iMA0ZijRAiFNd5Xka0BMf4DQCAAwjtsdCpGTYQp5bG52vYET7jayxBP9Njz9vpAyLux9jnY11V\nTrAIyrX3Dp3vXZDAtuv4jhcQw+NMORrY2XsCOCdAatynfyYc4dcF4BeIACCYCIPCporaKDwydQSi\nIiOuE6UeugICTmcYPatHGHYbyZID7o4Fd5jnyQIYlK3SSFejSNJZ0QMQFD5aq7OiwpYKAPBu6H72\nIjl6jNMaglsnPX0EjhXsnR+0rVF7aqPyZoIqCdUXHLLhkB0JF3bDpSI5q5Q/6OufVcuLUfncBiGi\n0R/I58zqc0Oq0/A257zixYAUNHzSrxXPzr6/FG6mXar/8z6CqXEIR47loIQPLQlHfxlXpuKoLmf1\nT0m/dDDJLBHM8504pHPvLH1F1z4Fm66AwLyXS3I+5jlf13L2OEegUcXm6L3FC8xPqnvR0U8YNF+l\noFVODSlTEVvN0ZrOamnRDkCxe1TqorI52SzCPd/9DBRHInFF/pukGfCM6gmrAWU+5+FHINp90jRL\nJ6WQwQqD3DYYCB1wcXTPL4yGrMEWSAdS7ZEAshrMPSwn5TiqZ+UI3QsxTv7wFQqLXm5hhSw3ViU0\ntBV07H9F6YaqhtadFWUwGOpowcwhYJVR0P0c1zUqu0xsohczkonsdQaDg5rb4j0IgCJ59p7PhMLP\nnvrkFcXLC5XVcDIjalCuq8d0ALFJKR7sFACwrlBxlGO0MwwqOl/ofqk8ne+8vezP8W98Ppv254jq\n6agcDVsx//6Ttoh/9XrVXPiB3kLQwbOuJxsjN+SlQbNjsGIZSznSzraPpXcIBB2K1ZSaKJqwNu4B\nnrEDOZ/PUGKMXQkxrnrRbBnr0j1P8U11i310zDVMnrHgBvMUEzZ4z8V4X3W2cbGlAR1zf8L53Aca\nVJStDThHjI7AkGJfrNhfg9MBiI106NrXunpFDvq2Qibzgbo+DVVJVx9MvMUEH8b9vfpZmaJtCVs3\nwATvL/ZC/RV83uWBjobsrCDyrFBItuj5HEmWF0YDGSTnvPdigizUHriCzANcvlaxuSY6ffRq1Awq\nNqr0EiwLMgB2ecwWwut6mhAUGr9vnPvJ7ELihCWwou7u07Z/CyaC6dBGYW//deITdSpW9jXH+iav\nqJIijjknDK2+YA8NBIBU+NGz34Mmf64bK5cmmLb0cEc96qRCDzX3k7HCPWNO3YAZWySeOUu02aL0\nRXUyERw1/HpRDS2afdq1sXfHe+K4Ovrfemm7PCRNcbjxc2NvDeYA+93JILWIHZo73Hm2z/jhmK2V\ny6hGB0NtUUNrBSanrR1CvD0S2cEaKMqEee2ccHFlIHZ07mkkHGjwABoNVPC/xgjj31dUdPi0b1WZ\nsB/Q0O/Q+DrtTwpWWdHzLMvATQNQacH0FAGky0zRBwOzqmPvQ6+Awqa7LzhZT0zsZxuEr9OPVlMs\nzxW77FBoTDuKcbsRs/RGm1LCvw9R6w7MVpclpimMOOTqOwaw6+hkmgRbYNcvM1YdIM34/2whJLNg\nD388gLxqGqyvaAHUHnEpZjtAi3aWHY8A8Rtqr8gqcGcctoPMzuyF2mUALGDv3ReoMHbo0jCEMq+F\ntytwPs783AvRhnCOLFbUwyYjufg6fUoOn54Hm0IMuxcoBBkEutTZ2uNgu8tkg8ZefQzgKwCEqy8H\nLkB1FBv+VJoIv655/QIRwIpDFkeKvsd61OmgAfZEpcAZR8/hoF+JXOiO0XMlgbYCQBdHcUMC2Qwj\nKUoBBmRR5F5m72RHDyGWHoYA7AOMKmmOKnwWhQtwsGSDHgjnCFwGyXVU/EfwVMSQFMhBmT26oCuQ\nurwYnNorHlLn51kYzRmEXSnK8vOE4DsK9AVcYE/fFuAIDePhTvi3kcVxBFU9TcMZgUfQDGvP3nrO\nPwAAIABJREFUUcUgEX8YwfG7x/0l1JnMZbwGtKSG9VCSdjRX9m0K1ymLo8XvB9jL3uPfMZJPcAzZ\nBBHk+37ba3JenW0c4377fGfDiMfeEEEXzEAeIPU/KStFSYWBvvFeU+qw1CEKSGPCnKJvOyvH4dUA\nw7IIshj7BoX7bK4ZRv+kTjEmanzQqROkOoP/EbTxOZ39vRHcjUCwIM12hqNTT0Q74MrPHmDCUI6G\nIxwhqbFW+FzWwaRQGHjkjknxy6ooYEuSeOwvnL2AWR3JGlLucAc/WzwYLkN7g2ezOoMHCr2dZ3O8\nw+w8t4MmPiqRQ9DrmpgVrDMpr2qkSnf2HwMBEHqerCHSXY+o2CYkZ2/6oCK+VK1kULC5F7IXJBMk\niZ71xD8iQO/RDpJa9LR72AJ+1BHJRz7yfMfjf59bkzoaZhUNDHIGLfiaoM0kX86g4zt78C9cw9Z8\nR7cMwLL5DlGLaRZ8x8kIIGgBJhM7AehAf7Dqn8UBY4CdZxKqyI3Wv6ojaUcqp63L1uYeSnIGbWPM\n2njGsQdHpfTws/fUgnJtnniWY88XO+nfWS32uKLJuT+ZPCgp6uE/dtEJVgz7BzDQBzArTINpBMd8\nj9eqWJGMBPo17YKOjO4eQPaBFJoIWWgrB1OsquHZ0nz+YVvGOxv3OcWHw158eskAmPRmBY549ow0\nQUYRDXseIIJ3jL7rHL6C/1+QjjT3MzCAqIv47SUATop4lz7tfxL64hwAGxB2Suh3+B7zTKg/9wcP\n2jSX43xf9ONkDjQnRZ9naKxRnb3942cT0uxrHu+3eEEWJgdZgB5rMOyBjokYSMjBJDk8oY13OqnP\nrMhmDd8SlOfRnnNdpysokjxN+5qHL00dKWw2QG2EuWeU8VYe9lZsam+MdqgOTtDoaNG6x+p7jmJP\naadWx2AfzHcI2tPJqYx9YYpoNwCyC3JLs52AteY014J7h99PX8wq7rxvUeSeUXEWmSoIeu2deyX3\nPPf8eKaKQq5KsGNGMqsitP/w6evNOW1hnHPuTwG6QbzP9wSwNXDs/+a8xyEeix42OgpQ2nnmBgNt\nmGHaGFbj+2DfSDyLZzQUHKJh69PcA9WXWLOII3EWGrIuyBggf7z3rpAZX2Gete4IfywvZ63LZSIQ\nTpbTgYM2QnSCRpNtCt7jbG9RiVh/nD+Jzxr7o1/2b+g0qE67k4MVoqI4nCBKBjVYumN+z+EBfo5p\nWhGRD/0ByJjY8MpQup6pYUfG+brakDrOdpybY/gAnPHWtIOCc69GDFmV7Tx8N4phpuEJRwD0Xa5F\nrdOXA/jOn/Pe8tyzf4rrl7DivH6BCCAae4oKSTif60SDQeEcgkuj0kFK0Yec/ZfNaRKCiAB3Uttq\nVMwXG3PLLz2bR3lxNCMR/aHjVLZUAECHoPaIiAONDMkWfj0S2TE+j1X3E3FN2qOqfvbCzeChp+gD\nSzhwzKALeK2a8z6+r7rPr/2ApXBNUlP0yQ/jbS48nKbBRCAiPvtu9eylHEwOgcC8o4VY0DUxH7/n\niKRy9CMCmIlhCUClWoOJoykTsIH4FuUnFeUsguF4iwISAVgRKllr0MYc/QWIuj67RRBYcQURPNaY\n95+gU/EdoIq/9pOKWO38Q50MofNPHZYdkhx6CNoxgrYeIAhm0j3YLe55otADyuDvGd3/J4BhMLQr\nAh0mpDhDo/EsCjmBFI8RRJJnsqqDiSD8TRy3x/urfZlgBqsXTILPBNCRMpPgZ1fsIRo5dBGKnD39\nBesMRCoKHXDusNzhnQlmtbPqVE1QG8/ZEKfq7mhRrbpSvYfKdIkq3ahEZlledCQG4DDOd0kaDAR/\n0UaoR5lBcfaMI2oYx6jIRlW4I4AkP0GzKQYXgVdVnclzzgRNAFadACA/ef5ZFWTFxX0kTwyGzz1x\nYR6Nc/2p5QUI2j7SDPzHzwxQYf79H0x2GWf2+j1XjZPPYMRob5g/K8qJLFJnVXTsH624MBEE3h1a\nnayNZkDX2A+YNrpGMJjEUVKD5RPByZmJ/qjGD82Wq4AoA8hztGlDg0VwCwwQocBgwSDxKYZ5DWiH\njk6HnVXizt9zeEHzNkG+XTjq7MAx7VEOXZ/dn3ONr33Bn0GEKgYT6hEoHL3TVhSTCXIMEOW0zRG0\ndgUCJFWnwPC4Bhj52V5cr1F5ZFJHhsxMLLBOv5ZRXhhdxV6F2nhP+iIOeU08x/9OWraGryWwVFXm\nXkhRldydCdJDati2EeTbTHCuCe352ZfEEAOY4vszd7jnCTbt8sDQjShYkS6fl+nFMKY0DVCCehDD\nX+lZEPA6E5bBZuQ78MkuIftiJJCnoO3RyUzcY2rM8JnzmTyo3m6hlcGzlHNDKuGLjMyzfLTJ3MkB\nOE3QDToTz3QpBjQcOOSYySn9MBPpEpT0JgfXIZLxAVCNuK1Gf3gZQnNG/QB3iiayCGFw72RzDGA1\n9nO1EM/2SMJsjJwW1MakkdCuEQwxmTY99/Ty7gEm5AbBETHbOItD7PBlr4RNuMY14zxaTNRaEtsV\nmp+jsA/nWWDa7DMeHQzZFuCCyNih/Pfx3pPwXV/FJXfP6N4vrIlzT5KBMRJv+uChtfDwNXzeiKcU\nLeKAqicLlCCCzhhvnLXur/5nAD5cn0R/r9SgqLJOW5A8oQc7NXlCUU7WGiNjR9uxBdM3x5kv2lBf\n7K6idgvtgY4dgxmRgv0TzI/QUzJ0ns9ggqQAhvZgDSs02jyuNuIVUCC7KL3Y5MFWmjpRxqLM8AFX\nfSvqhg1WkUzQGeC+NSeQViPOEWds0OMdX/3ytSB59eXXd2Kh0/Hr+vNdv0AEsAgyqw5KRHGMZgQC\nhQ0kf9AFCQQ4EwEdInykyWn0pgHA6DSqjfTOwQIYQlQ5KsnHRelWhyjjRJVPgIN/SPXvIIo4Kjnu\nI2SN0N99ChPNfsxLpSZrj58fKCzi/nQiz1cq2QQncJ0Z/xoQf74+CwaOnwFoOEsvUflt4UTYy4/O\nnvXqPoUVB1sh6xkcVmUQsENeEuFxjX7c0U+WQ1jqeo21SMFEyP2k140E3OP7HMDeKVqYlT3VrPgQ\nrR4qyP2SXM17EXYlmqc5ZWOszqg0XIOIFCCThyL16AcUv6oaS1S2gWpMjq06lXUDVDirPwz/RnVt\nUH2bKOBprt2ZKEcgI+f/H0nBYC00aVAwoMuXpACOmXQDwCGKhFE14ZtJQenvJEigC9ctR8Dq0hm4\nK1s0tEY7Xgcsnc80qx+RaFQxUqUFL+87BwtnAC3ewcqyDOoiz9Y4Z9m5PoenCDSpmD6C1RpVPJVT\n78DAauIIEEYgkC/nOwsDdhWgNJk2ZKwfHBO46e5kQF2CpVFFGFWr7h2DAlojQCJjim0ffN4IwIja\nvFQER/WpC6bIYo49cVwFla5n+VIxMz/bKhqOmWgATALEX23Ej9oiPl96CUgG4+EKRPCMXaY0XKoi\nDAt3Ut0HeyB3aAW0yGy9FxWKemYPMCn2qkcFUs7EFTjthF7aGVJ6rcbny/4ZAG/3swqVoDhcX9Zz\nJJUmiqLG/RjAGcG/S9IlghbV0Oph/8WRO+2gQnCMNgqMVq5Bow4gK47gSAC53mfP7LiK6WQ7idDf\ntGgdStqRjeDMSACqCXKLszMU54E4O6ddHpOLPtuLlyvYC6O6XnWo8tsEZHZ5zvM99tusvoUWRh4C\ntCgvE2Coj/AKmI71uvrHw3X662qYFT0Pyvx1L0/dpAAIxPW10nxJDEdVMKugO2GNJie7iUtCJkLy\nNFleQDCqRHHAUQLQKEjht3nvZNOMCnKavjErW+RaH6BQVEn1jE2u2kNlPHMkc9d1Gu9yaAWUYBQW\nI3hp2S/tQ/RF2Rr3zvBBATpVNeydiecJUvsE5Qftvfugamskqm0m39ckZtxPEmWLWtg1E/rM5kA3\nFgakUyqveSfIokzS5v4JwH3vChu+IeKPLASTh5g2QRpApy9K34Fkg9XQuqN5n8ls+8T0ktABOdsV\nxrkcLQnDVgNdBHaxWwSTxu88wYQBIpgHuAAB0KcQOEdpB2uxc/LKBBKc1HmClQRDr+td1fGMc5px\nMivIkpE4lwRlxmjxNM/ayfjMM8ZT1NjfcEx7KU5/yHf+/7L3ZluO5LqyoIHuyrr//7Xdu1LkfQAM\nMNLpkiKz9uk+lcG1YkWE5AMHEINhoEfW8CjOPL4w9skzwvBPuI707G44/6dHHIIxspepqwXcKs/l\nPjL0AEV9/B6VxcgPj1ozuD5BA72bp5o87MixPKyAT/IfAFO0EqNbCJiQhjIC03wsKQOeHini80pQ\nZOBhTkN/9xEO0xYFrV2OMFKlNXO+MH5M/FjBVnUm+q7WqNU/KBIBA/aLx1T/29o3iADXqf4i8pxe\nJKTSQ6YPOINmPYH/EwW2XIlqyRwN5a3uo0KdqDT8CIOdiOsjqtUegcBTKP5oFsdnEVBgSJ4/cwxg\nNANwZE65wRH2HsrBgapYDERop5Vx3BNEcMbtilJ5Bn6OFsctzh5Jzd9fw/a17Y99LBDhgUcwaUeB\nhxmo/o6BEirBOE/zXEp6MR7N0Lsb2GFf5roNAhLwcDtDy/w5VVx/hKHxOLyQ2c+Ym/RIHF7fmIaW\nNQPAdAYJge8HzlTgyyDPcYcW4EpkyzBFfjdYLT56/QgFAWHM+JgAdIYGBip9NJwsxPYYaKFvjgYc\n/xk4zxKMPUO1Xbg8muE5SuEnmKHFQUn7bqD0pAcAqfAxTDb7L0ADFelHKGh8FtMZng3wXWgYw72P\nBMH+asOPCTu7G4AGWB84HpHr3o4EliqUvGVqwGM80lh5hIFwPDraX5468eN8hteJSncoLwcw4JEu\nP7sDJ0880SQMkgDDw/6P5LC6d5SeyApz/VHensMLOtpwOrbwhPywI/bvCCPBFVsaHQ8wpHZkVIqv\nF4+1c0/1oxMQ6WgRVkzvOUOLz9O9gg8bSeeAH/GohjPPUycYV3u4DML07I4jlas0zgRQ0FDyes5r\nEIEg5RZEWMIt2Wz8XaHubeBxPH3NfxjsYVmhzE6D9YHx/z4jKoPP95zorFsTHqWkxTpRcALp6I1X\n5c77OfDX03mOj8QPEO6DR50eafD8FYDq2by+idJnRcpVyPIPtPBCHgmkmqwVQS8AUeei9rUat1xH\nbY/mRcP+ivDs5/AIjweBvdND1B8EOYwRelFjI5bkb8x82cfsoCKNG83H5SLQ6HW5WmG5f8XRaQ2W\n+5u8lkcF/3UM/PUkbSMV+AKgrlFXbA4euYx8jmfyhgSVegPsgUeAiFO4sRjVhjbVOlJQ1vOSWxqI\nXhvGvamA75uf+Ikf4wd+jL8mQ+LAgR/twCFgIsOqsyYCRq7FYxwJbjvAY2gt1jOA7DM9wiwm6frQ\n8+Dx1W7M/R3HDFa9iyhAay10oEgXO7unDxH4BWVRl7oIVYfpx+FGqhvTFVFI8PYk0NlQaxqAGMP8\nKbM6HNT/q3kkTUZZMDol6KmDUTaeCvATBRDQYZGnjjwN/2llcBJc+9FcPpywTHX4cbijgaDXCiKc\noS/8PSJ2Jfr9c2OEEQQbw/toMR6LPv+IqIg45Aisa8GoBLZmA31YpjM8+wAQRRnRJLy9UjiRETik\ne9eL/17ASiDkvxjef7UDf48O4MT/E6kEj4g4ONuZeoC+z/cbdcGIiMtIW0zyx4G84UeoR10IHsV5\nxJ5WwPaER2taG7lurA9xGsGycCYdPSISXK9nmvPfI7ikjN8dYIg0DAeujpDTdJh41MsIvuG60XP8\nlfxHAbmqn9KSh7BAI4/r9PntGY3bQwY8np6e5PNTKVk/DgKC5Ui0gQQUGKnys0NS5M6FV3aJRFD5\nPUetzhLku/0J7RtEAOKEBc/RpsLhHj4BERqjA8oj/tdRyPhfrTZni2fSqH0OpOeBHnUCAzziqEdO\nERWKA0ToywvuVYEtPQV+3KDnzDO3yUaPAnWuWD3xnFBc5n6dEY7qDM7Sm3Zmzl+hqhrWTG+65rju\nohC0Cvf0OXqmirBon887Pf4OCNCo/ptCRRDrUwAE1odoqNBhr1zsXLID6OPIfDZ6/CIqPtZXIxE6\nfhBUCcP8bD1qRsRIO+tTjPg7aAQNz6hOrAZ5jb1SFdwr7nPv8zVCERg44AJFFYTyKiByCdVotqiJ\n4Iqb/YiicT+B9uhRF8EFY2+I8Vnmh57D0LvPCeedKD3pP/fJcOWg48j0g9wj6X30OfCc2ycwIsw3\ncpQB3xtn87DKDsvFeAZiz6iMR9DG8RhuADYvuknvsVewb2BdA98bhsfTc/p/4BRPsl93PAbaAeCI\n/F8BqBiN4+sbv1HCn4bOEfmxD0TRxBCfJ3OQxbPLKsh57GsYmg2usFuChC3BwId5ziuP6DpRtRoQ\n3iP0Az+Hf/vjIG8Kb1iz9GbTI+gT78Da4/HMPUcDEEB43yrv1kOe/R41AicQwRy4ZMg6Pb5VhXoO\nR50jEfYApOYQs2XhtAWMuIAIUbzqxF++h8+iH/thccQKYIfH9NrDAcTH0/nPc1DhpVLMdXPwpUkg\nU0XEEHC0VNqO7kp6D5rmOibIxkiOMMCoeD5spJf/TBqvvHXmOz8DSO4GHAKkGiwN5qZngodaSr5H\n4GACFkJRBRxMzhxyuKL87C14x/Acdxn/2Son+oiQWa6cylOCkKwery0js4bzwTO8x+Upjzz2mEPy\n86wN0Yp3a2TIAw0VY1URa+pJY7sYNWIcseq9F0N00/4u/cvfU5XoKxLB9zKjzQYCTI3c65wntIAk\nz8nLzsjIlrLuDHCRJ/awxoef2vN4tuQjNIpYE+AZRgN5J09NSD7Yg292T6NRuuWYXJ66Qf6wqofQ\nHkD7AefZcFl0HD1P9DiteOEj5DjnZ2Dgp4BLNDY7SvYrv0TQPWmLvJJ1pM5w2lB3OoZ7pX80T6V7\ndk8PYORB8kXRNZgeUJ+53GPaD1N/ykC2lPGsk8U14Hi7jTRm53oTBJwYrYKst/VohmbkA64DDIyI\nWPW5eh7A41k6KPJ5/vyncf0AwOvzANQnnPbRW84BIzF6D9mO5qcwJU02kaNusJorQXh0HktYaSLP\n6AjThiiLcr81p4m/m+smCKAwaQ7uUDjQcp4f1tJpBiC4ne/0IyIRCiRvHjFspU9TB6wIR4lGCBDF\nWHuHumPz2lQ9eN/ZGzD6ZDO0jnAEOb02c6DRol/c6xyb1mrg3sqoEavTqtivZ0Rx+rHUUZQ99YGK\nLPoZa0xn598dQauWrgCmyAVZAHB97ieel+gtv0Tl7p8UiQB810Tw9g0iIAorLoqCq2TFyA81ABj+\nHp5zVaBaDwAh9tOBKAqFlnngj1ZKYR6nNLiR4UdDgUfOjQoFC4F7NIThPzIsDN0FkjHEFRV6zrBo\nAKWkRr609YZ+GM7eL8LxYYW8UuEq8GAEIHDMYc7xHU9ROwaW78qgMLQsZHREnzoKva0iO45g+3ns\nLqTdEzAS7W3Dw/zH8GN8sh/ZnzONOSqUCDTb59lDLdsx8PNJUAG5zmfjEUUGRFoDvbcpZEZDGwuY\nYUPGjjQkjhAqVNh/umMAI+b6kDUHgMfTFIiPGgjdaafxWlfc7IxoieZRCe3geBxcOboocM09PwQw\nypiQ8Lm2GBi9TWCD75EKjeMxUueQgokoz6bBPQK+pyjk3Lh6DCQYw2M3WRQPZ4OdBvSO9sOPl8si\nXmEIl9FwpoeOyqkL9pFACzoyp1sV50wZCmX/Z1TBZ5+IuD/MIwV4lF8eiSmFKKkQ8Fg88hNX0lwJ\nbKOKd6FFbYLG87s95JWGA+fYaSeKpvaR49eUpyPSWdqjl+HbnBLdg/7MI62qqFXRJtDxeHrht47M\nAhDFFGm0JvAUERsEAqeaCowcGLonXgviXZblGgm1+j8sjtXzVCk3XHzNG+xHQxaVORvws8N+WKYy\nneg4QnlOg4MhwOZH1UkqsB+pSvqxOrKMyj8Lmz1iz5zG0GtXDP25LZXOBHnPjnY4qHkGQMF98hwR\nBhxRZCNokUAqxjNgvDbtaQLZCiIcYsjnXzHe8sp6ePZzhGf6QHqbj7Mn/aT8DGBzUAiG3s159Hop\nZTw576EByTSGI7xuvhZ/C30TFMSouXuO7iHddAjkT/AEI4hQ9KsgryrAaVAcHY9hwf8LXDvDsHkM\nHmPHIzOjdobsd75PQdkEvqNv5KKPwajEJzAeaWzQ059rhvAodx/XEyOAKIBF8fxYQkabOR/po+aj\nDa9UT13HPyedjaR70h11FJg/y2QtDziwQr52BIhgPzzah4h9e3j6j9f60HdZHKXnWhcL0Vmkabbs\nd/Co4NPKLykzOb/6Uw6HiigZBvxs7jhCtySKB+dNwuqP0DV4bF45NHy//j0MdSSmpY5AZ8yQ+Trg\ne4Pe/R5HbpuZFztc2iOvcxCPbAvdZSf1tR4RsKdxvUbqDuShnDsAefpVMwcn0MiLSqb6u6inEriM\nB4xeFWoRwFZ47glIDTOMMOyrWOVIcIrvO62cSM9IH8q91g1PY8pPpQlnQcDRk08dxv3TMxXEeV0Y\n4+YD5pxSxzkao4xCBohOoOOnTCYQ0EbR10DxBhttWjdrntZMekWvaEttCuiamdgMlvUrXPbT/mD6\npb//gGVUloI2ub8aj34NFIR9hPdvAHgMj0o5h0nhR+fVP0efgA86FIHSa7/bn9e+QQRQwaHSUcy9\nG42fELZpeI1kMC6Y61xqou4EEnoYBKe1vL8UTt5n0Lzzn6OHYAaY30ghywgHFqU7QiD2lnLAGUow\n3eBgsFRYiwkdbaDZMyMRCuGMiIdAVak48FRYV0zL4O+Tt72/LK9CRaqLhzYVvzbQxsAwCnrD310V\nwuiflfBMA3fAnbMoZkuW9hgVGnZYi/DBBoxnKJ4Dj6OXQdA6Dp7RnmvtyPSAu/6e0eeeSqvTSBrh\nmD223scRxmcIVfMoEhcQ81nOLcAiKkZnGznfTpOzonPGmtoJ97g2A366kcMzus9IXzmtAJEjlaai\n+TFE4beiO6etinx5jgEMPxaPucswKjseKvuTkRXDFfwzlXUa0GVMeXqO9w+xBxw0c8PNfjQn59Ng\nB/LccSp9NJ4Zjs8jjBJECLDFTqD9iKJ6R92fYFDQ1xjlDUEvz1/mUTb35NU56nZJXeC+ZjEzoxIa\nIUuPZmiDAIglGMh5olJxivIDwL08cAWVkSpni7ztZwBtB49Yq2KCgSEErVNhLBDh6CO8v64E0lvc\nZezAbNynkhOREwQd7YZPmChPzQx3jTnla+toOEbxmrXQaxAqDpy+Nw/fF669topEOBsG3NBp5mfb\nD0Pu/UdeTiPcoxrsUX0uEKELb2ogwEsZoPzhgKWhxPk7RFEn8HHEqRpnK0OdIMVpwM8wbnpEJtS0\nVnqSBZAMFJCdfcds3K45rQkINITnGun9pLf5eBDEE/lJ3kWAO4ycOQWmeIEb9PXuw3xvgqBAc7ok\nPzykzwS7y8vLn6r3cVhF1uScAxPIaxNvLRn501qE91eU0xnGEcEMzi+Vf6ZpeD5/RVxw6gkYmSHD\nyw3hWbaGDs/1Z6SFe7pbRUbGEYMsSouMjLM0xghyn42pmD2vOZqhRa2hx7CkHwVgWCH/P5080U+D\nYqQjmwXQmmB2k8ifkEU00NsxHBiLcPXUf8h3gxfSGdBtVGRW8OVns6T/o3kqIw0oGoUacVFgguhe\nzemYsgIh0xsBaOEBBUL5bxOZmWChea2EhgKg0esaiF7gzqEyekufs9QdtbHvBkStrcjGaoANAhcj\n+C4BDg9NJ2APeKQjeUc9u3RUsOBuKxroxtQWX9f/GPlMS7CSz2fEUIHSsp96nQj2SF3Ja4fR+VH3\nLvPezOVGyGPuI0Zx2GjJP5lq1HJ8lF1IXcIwki6ooxPgIIByNMrG0ut5Ugl6B5r/btZk3AIgbdaN\nqSS9O+/wlGXlxTalkCowd1iBrt04h3R++Zr3EdfDI0oLAKx1JwjmNOB0zz6O6Ojf3cGOpw0cKIcY\nnZXaZ9X7DR1/VCTCQKF6f3j7BhEg6QzBMJPBjBIaZ7Niesbcrh6GBkOhnZEr8x7mpwucLRTIiWmG\nx7BZGP2hUFgLbySF3ggvTHgRQl88hoV32XnbgIkx2ibF3r0uo4REhOY+e8PRXQk+k9mURxJosDGC\nqTC64QooVCujYzWifUKOMDA8T41hmGcbaI52uPBqzN+38AaVsVcKQYVj0eXjXomYA0ZQRGEoCwW0\ncved4ZIpH62nwU2hdlqg06M+c6W4QIRThMyzjxQaLKjD+aCxRXo6mgsL1rcgoNBRY9PcwXTgpsJX\nQMoZgIed4f1pToF2jvJoWsczQYOaR09pQdI8jPml3jLaw4pv9m5p4AJlJCH67oqt045HfTDssAyb\nR4taA6PG58qdZUSNK6UeQm4hMa0Ddj5rfXLvFuBXNUwqrDCVlweAI/Z2eHonYSu0lcoDeka5mNUa\nnsP8OERUOLN6eGlQPAJE5FoeVqBegyhMqMgEGxa5q0ilmPTgIfLAE6W4ljeGIeUD7YzIFOH0NsL4\nTYXe+2NAKk6cs5O0gcWTrAahBc1QybIGC/CIaSmMChoCKvg4VrUZ+VzlF/pOghAKSBJU4Dr8x+Cn\n7JgDRXY4/diPOA4jfqwZxtnc63z0Su1qJQ/ONhJobkf3/cV+PnpG+ky8qRmOnsEOSY/cQw50Fl3S\nO5ny4ehoJ3LfqqefBtApvO4/NEISTG0JWvbYywyh1zmm4QWUkUs+Q8PyDBDhOQyPwT3ikRIJRqWc\nGqnQk1fYKL7s70XGjxDwRW+TrGD6xyPnpHidjoPyw8zTBu8jERxsVzV3pWO2ArULpCxDofjhydNy\nCCagQBkCRhpxkbyyzfoECeMIOmGhZAde6UWVaMj435+FCMNXmeBh4RptxvklyPNEjYXz9hADpZwN\nAnK5pXGJWFMvvEfrdNg5gl9bFsN1WSSRO21ELZ8AtUOxoQ7zcwCDkTvTuhKINSA8/X0UIHNAIjxb\nRQ5otBDTAQJPdFk56VxV/PG0SnGziRbDeB7L+4xeXuQ+oE19oHQ+RpXRmKUhr3uRcoZcIgN+AAAg\nAElEQVR6AcBIhKJV5wkjAYYj9uBpBWJmVAJ5eMxZswIl+LwzjOgBnW/v93NYABgAekHJFflSNNPN\njdMzHGIFMGh/qHvFjziNCCw9h+sb3KIN9KB79AadAwQHEHI49yBK10YvUIBioOR+0OZBfbj6kdET\nrYCE5yieQJqk3D5lfZ9DABxG+I1Za1b+QYej7ivyy4xCS6cf7Y1YoyicTB2DjshH84hoswKFGQmZ\n6S4xl8/hjrdKq3IetxYu1xF0VCrRd/uz2jeIEI1FSFJYwLOQgHJeUZGsMKeOZ6cX3xmpoRBjb4HO\nm+UGVs9nMaEyyBCGnDMRD6Muz7E//4lifj0YNswZ1ggGmixg9FQmNe+xhcbZm4lHl0owMkT2Cfc4\nx9PQY34AJKCwtox82Mx1C4ufkQE+DlfYgDC4w8O9RiGUAVyKUw+hjc6piwwyc6XavYuOUJNBM191\njFIYWxuZ50vF+DAPb3t2N9SfYvzRm3wavdNIbeGId5PNHmBKSBncmesY63bA89sOUDkLhQQLiBC5\nbFoHgGOw0xJEcC8rogaACOtlHksQFc1PSq9ZKkEGZKRIpsygPKlsPZTbvGtE6oVxEOGlgdN1N49A\nOXp5KAeKTulJtrDK2g8TZXT2hHI/AU0UC4IDArR0pKdXlWd6HAecH7Sn9+lnhKGbFdjoVBwGIixD\nj5nyMBkVqRi6YPfwWT+cMD3Rhoj0sIw3JTA5p1U5LVnURTlDgUtwyswNURrQNHzbgNEreDGSgLOX\nwty5T2xkigrHafL30SqPfljxG6B4Rcs0qOIdxQuuTVMUGnhaCFMY/O1rZIOCCj+Gh5WfbaYfX9Bg\nosEg7LAEVFZFNj1KBDqPEVp39DMM/WOiHzdWfjYqjsg5UoCaI8+cXholNjINRSMRjuDLR6dsGH5U\nG2wyLLrRSI+IEImeId/LtRO6lMkXOuVeGunhPM2cfk43DJkWoyB07UFvzwCRin4knQFzJB0QMg/l\nRV6fW/UGKrQf+b3wOBugES52iNNqDXUDIgTwmqHNAg4ZI9GCRkM2ct+b9NHi2S1oqJ5f0WaA2yXc\nd6y5AGuZ+qZzeVy83ZyHFUBxY9IMEX1QICkS4DJgI2N1rtXrTvJQECHD+FvM2zEi+qlkEbpHAxF0\nKpC+jDruFeowABL4mSIkuKZNnSchc8FIBMv1yigSo0Hlcp8pMg64D4mWWwALmQfL70ovfHSfe0Pd\nT/lG+tVW6YeWhmiLewzzxZWu4Aakg4G+H20QHKFeFhGJBvykjAl6AyM28vHlKe/CjB6xhmdGZdU7\nEkSIa4d01fWZOYoAqV+10CfHdA1kXd0Z0HE0Foku+nsYouB2vYs6Oh0qBaA7cZO3MXWMujQEAAII\nIljo7z30QIlwzHWuNADti4NG1NGLV3LdBwiKYbr/CDnpsxT82Cz77WBVy2cSbEIHTnu6Y8tmJ9DJ\n50IBhD7tZZP9j1apEEkT3ffE0+YoREYkqywnoBgr7TxhlSX/2jbwXRPB2zeIAKf7ChWto+e4VVQQ\nrAVYGsqzS8+qgwi1NX8O2cBEuReD5We3CgeaUGY/ZsoVWQIUbvR3uBHhHvHavQNl9FDg94EIc4ox\nHk8cDq1O3gHq1hRsDAUrhmHl4QIAm42Ckejlnpv0CD5kgUHmpDlzY860zFeX0MdWSkQZz0APg6ub\n52ajhwfIObinHIgxR0AnQyEtKvJGHnL7eU1nUMUHIDIfxwSKAgOTuYCkAWSthFJEj4nnxl+NTNn7\neYbiwuI9JI8MuTUCCr6unjvghEJj2Zp7XhhRoYJcve8WGtsYSKXIxyrKtlW6jFl4CFDPqIU2/K2g\ngihoNKIeDXk6wzPSGhgy2gZDMCOE/IQDCPyRdIYmNJE5gGlsi9cuFF0qt6MDZh4BszOC6F05AjA5\nY+6peBAIYqoMEIYrKpw5jYpWZjHDJzlvzcrjTWCARg8wwmtokw1MDvMzDcoaOxXo1robySdAC85g\n7iU8hyv7qNxk7w8VIN9P9PhwX2tuL5srS/6/K5YRfTAiugi+6FTomngrdgDktR3Tb6eUnjymh+EA\nRjXYz/i24bAe0QNBP2K52dkwfro11ZjGNAxH1j8pw45z047hz4lmDRG9VDKABt0ZNG9hvDGs+YCD\nwNweU0SawWn68H3PZ6vXiQWAn8NlywAV/DDwzL3Y1OkyjUb4HlAA0LRt5e8EkxsiYqhShjwSwY3F\nO+PzDBp3XVkUYYSXPXjMsJHGYNGUX99MadKiP7S8q3geozAIvGodCfaHQEXWdjHnS0B5ihlhxrU+\nniP70FD7VY3qPONd1pPAATTnXcZGnkoDEY2pIhahwwcwniAAUmlgZXQT9H0OBZ2RQJjW0UD3a5M3\nAPhPL75PI/GY5o70WHOPPgMvzcrAUgDMQbsAEZz4PG1IIqAyGqFR13G6aCOideI3Br3+I726k7c7\neAJ1FvJP7qcqxFyOkj6AR0RmJlPvHPOcJlf7EkkDq+xMUEjmKb3PQl9cP0a7NSvHk17Ev/juxn0N\njb7Umggs4O3j/HtUnwDVZen8sXgPARtxjoR+UKHzmloQD+pT4ETKjDoqPIqniq5TBQsrQiNTa6mf\ndAFkZd5P4R9M7xuxYZnzT9AIveXckddlRNkomm6QfdOAM3jaIfrw6ljw9Jp5Lb1+kgBhKHAhMDoM\nzPc7j5hP7ki9O/gyo9PoTwDowKEN4mP+u9PhIg4TWUelVY7XkkZDmhqdFxHRNSydQORyzshtXnd+\nO1xerYHH3+3f375BBFAAFcNIJd2KsVIJyGJvgVoivF2Fro6MRODmp4AFSshrPhOLnaSeEF6rKZ2h\nlSJlKFT6iBcxrxzd+30op0Mh9OlZSEW1o4dHg31aPUnpgUV4wzkuIN4r77L5vWs6A71NzAEL/S/D\n0gFHxo/hiOfZmngGO5oNUeJGeSPIzKNIkEXBsR7roSFinOtB4zAiEBiee55xTnsLsCXrJIz0pJNe\nsiZCa6nIs1G58b8jVB2F6k9rntK5lFoajYB4AfLdorw3g9mYIxGOBoY1tEcobq1nxfhTAKMEpizW\nU9aec03jcYyRES0IYESN6lx38+84qjPyRg8BJB4hzM4x0Jvn5j5D8S0PfBiBJelhUWDR6TcU/pgP\njuPRGlovjxEjPhJoORuMNRECiPDnVJgjlf+jDTyfDAsfSbf05FWFZQPDj+v/q5cs+xGKbYVh03Nf\nf5OSqIhRJ08FlX247N0hHsGKRBgY4RF0A/XROgwrXV+c9dkXKl6an1pRT6JYDmQaFVNaCKIRUABc\nCWHhsRWoWJsClAkcwCELDU3vo6FZHKdoP91jnpuuFQhwNq8dcjaY9aIlVIoHvY/OayOyY0pngPOO\nRYak4h9bWvcT4IYO5zDTZ6w8ge0YaD+QqUjqDS56j8geC4OQe9QYjTAKTLAI4YWlJ42VyTVfe6p1\n0WTPwFJhzeigY2QkRslA9xKbjZKBQdNaiHVYGX19mJcmjLlJxdrKMF4Bvgaf4Nxf8BB9gmmn1PjJ\nNRyV2oHg/auXeDLEW6WBFT0UwJfzjdoLGnXQ8rP6rmRQzb/JuwlM+kY54n89gLLuRzMcQ/uF1E1Y\nCNh1FvWKkrdIP1De93kdVdY43Q1fSImqMpEBbrg4baCKmJ6eWoMDntIQ9KLrwxoH6NQnPBWQBrnv\nP00b8n49rRwdKse4/7TvChTnd2EA9gASasxOP+TF1I2aQWihYaLJhS8noEA+MK0zMjqpACbxCYsx\neFhEZAio1kNwJ7+GAm4j6hjoOyUqId5FmWgoWlbnSb8B191ZE4WGg2+zcN9ktEqkha5BA3Jek5dx\nv0Vqiz7DevFR6ivU9XryiJKBQ/bWsChuaCYRImXsc96mPX9e67ywn5SJBuonjBYuOvEIIQRA5+/4\niUWmYo7w05SnCTxpZUuQQo7Q9U6js2nIfmbh5Rk0O0KPcV07+G0joFaRoD9N94DvqZ9JlpUix0bQ\nWYGFP6INfEciRPsGEYDw2IxU+ijLKsxIFAExWNwQKK81I/d4LVDCqoTuKEYtilYq44OG3Mx0KQx5\n/WGG0QaOEZ7j6HMaNvG+KCyfDMsZcBjNEc0w1wEIxSAUL4PhBPK4JfVuaWQC2xBBCJSCykZjRE8p\nMDJmouQxR56W0dHsmJSbUiIsFSIXFiMBIANDaCMX1lTBi/nLv12xcc+ahiwGTYiyQ2H8N3h6QK05\n351zYaOMBSvUvxQ+FDCjrrBc44Fy5NDQFiNRhO0Z85cAQotVOg1gSHcoB1q8aC7QVv1XD4qCHe4V\njzmCEfRPAclGT1CGWEM8eXmNTwzDAZtZGkMj3A4cv9EtTC2iRTG8VsDSvJcQSlYBb0coXdbMjcrm\ntE8DkIqNxxEUfRkcpFEjhKHK/q4Sq/kdFQKCEjQgYv5otFM5IkjYU6kKYJCeFFFKDRXGCIzJ2FPa\nYhi/NZsM38pPdsOZSjHXpNIZhig7tZ/NZsPJ95J7k937MzJ9hzyDdKWAQnSlmKWAB5zRSUwL79CI\nBgIKU+rUKACoHSM3qCkyF/mpHonwDJ4nPyCvE7BNmXt0NIEoSFRS8jSksjmCpjxLpWpzK7BJhdpI\n6gf3jdOppcEWKQoBkDHdwqNrkDT3M4EWerhmr14Z8ghAR6YbAIuq+SkhUq2f0R2Hj8USrJ35oYUs\nqSf65z+7TXuW4wBijzSkgWUYMibZXwMVzTAAhuW7LF8NINZEqPoaXrPjgnuDhjijQIr/F5/j/DbD\nPMccM+a1Z/8BsrFKd6LzgYbDEcYRQf+GMvKKXvh30Y/qJYd5ShENkdGRoEmlCRaft5gb53u9PN+y\nlqzppPNl7HP0qdmoyJ+GBOrGocAv3yWGdwPaU728PnnP+OwIcO1px9Q38nbuLdIyn1vXFRBxmKYV\nIr2wkPlS+evrVDLG8rNJHCV/ntfmSmMKZBCQb7I/OK+6vmOZr24jo/s4HgPD8os/+NzMfZIZToOc\nJxdSjzhYhLnp+o6USwNIR5WDhJaOoIZK7yTgV/t85BwjxxNpBPB3zzS3htxf9eCVN9RYVccrfYNj\nqfeLbt+K/5/i7Kt5ZzHskc/m8yd+Jn1kFKOBcpW8YV7vCUAw1RMdjOFcqy6aOkHwwrMbM7tyPzdc\n90ME+Exg4GgjUuWKloEyEqnHAlX7QGWuOo2+25/TvkEEBPNsGsqP0mJRqCbADcYKrj1CKgMdJ/Jo\nJQ48z3tW/vyolRnhpQJCBsB+zcbs/JPvslJGnn1Moa2q1BNsOIJJtkhn0LOb1dviiouHUzdGIIRh\nQFCiGIu3dwVLW5kfPiegEB2pbB42wsMwJuWGyhznjvNHFLg3y8KGfMdAFcKrtSwwgd5ughisIG3x\nHobt2nOkseonHCCUdhqcs4D2uQgF2kRJRynXpJf0vcSXI9F7rlWgx6EYMAdeFWTSFbUCa4bxs4fi\nFkCRDYw1TK/BCxUGbXN12EfSvCpBDMd7YmRkSSnDudCTUtiGKhWh8tisiHXJDy0lKug00AQ7G8Yz\nFNJQPFYvE3NY6XWYlGGgLB0Y2vF30j4/rrUMoKUx3QIpJonTULmOIYPhx+w/51GNCPKBHqlInPv0\nrMU+HeRD3aZrDJY5mB313eoxshYhhpriArcm7KgojFKsA7SJcbNWCoEwHRP3PPkaFdpM27HiE6os\ncS8UmbxmGG37aUQ4RIfa8ogBr6BwIiJHmIKQFoIsXvffrXkEUh/mUUgm1bkb17bDjlEaMOBRHSEL\n8lgwWQOGtNJzloYFDD8lbW1aP/KczCEX0K8xPU7pIWgHpaQydZkCPvkN92nurzLmAUyV98swnfv5\nCODEGqqPNhfl09MZDEX7fA+V8ywELMYg130+srGMzUy1atXHAZQH0Ga6pqH0HM6HCOap7CJtU0aa\nweXiUWl+NPZ8+gxrKoimLNAo6FYACJ0SXC+CqpwZpiM9I1+594ry0r2ngO3RvLgcr3N+s+TuW0WD\ncByMSuDcXQASGWuClMmLZhopACHkVQsA4ahIn7TsG1LfuBS0DXp4DmREwkx7qqOQ1kufuAArDfLs\ncj5EORxJiRgpp4p+pPhjpsjNAMx8EoJN7wIsaZxznXMmRnnSgmFCTHm95r3X+rnnGa30INcbVx2u\n+GeX8bER6DqoSGLeO31Zn9Pco056SgAKFTV7NqW5oE/jfu8BNHCOSr+h4Z6ggtUxpXwf6d9Q9STQ\nim+SxXOwquMVuDA7fqjvJ++SYrHsR+kE1MFK56b+8eT6h4JInZP8jGmsTLtlTalcCys7Q/fUmTzG\nYh1jjqPWAeUBeZLzoHIM1B4zGQcZn8xv6Dfk20evNRoo5xW3PqMM2cafmM4wviMRgG8QIVsx4DJA\n2AqpFEEWoY4eAnuGEuVMlt5TABlaRL2T97IyMY9cIvotPD6MmlXYjvB+hDEcTDGbGKH+/ihcF3wj\nvRTh7WroaN2mSu2V1sAHj3wuQ5INEA+7vH76b24dQ7xNzogSEEkh4saV56pzfCXYOBcG8QIgbIEw\nwhVI4PnCzAfmuGg/0KhnNXStIJ3MumlIsQuuv0d5bSi82sJTaFylUYioYwER8KEANJnLAVVIiODD\no07SQz5EMQpPdlSOzxBtAKNFbYQYyzOAjWaL0dmKXpxOS3GlEcU2LPKdewjVUJhUiaYB7+sue4ig\nDujl8WO7xigFJcNvw2PbWNtBctrtZK2BnqCcqQET7yYtawQHPWTo9PjuvY0j9iCVN18nDUmOdRKa\nT88IZq+kehL5vAIILY3VI5+PCDsfqYypx28AUbW6cplJD8yTzUgEprgAGGcDfj79c1GW05slc9gz\nRH5cQAOlcY7HU6ng0Sld6bn2/wGbeMTl9BbdP9ic7gJMIZUdyJonI93oPAHGyquf9CPM2GITHs1T\nmZoX9ppAKfEsmiGeJSBCM99btv54gTAChYbaZ6wmnzIh1tbzaMO4OEZ6cxltU4aU8EUjiBRewi5p\nSqOUb+V71H0MlZtPcLQL4KPyBoC8b1TIevRPI8VUQW9wMGpNVZnCuK0icPh+s+EyIvo2A2RhEPQy\nXnsM2FlfyLiU2Zx/u6RU5DrKZykjmS6l6xvyemDUWfcEB6zkXwIHQ6KRkp9WpILP/xAApPZennjQ\nqn+1LtwjNR9FB5VbXsbJyHsZcn2an+pxQKMrpR5QGnJBowMkKgF5WSBSToRhyo8UcWE0VDsQ0TVX\nQODRRoVOBy0TaPZtOvDAnOfNekhxC9Y0AIZ106ii3jUM+Hsw5D+4VCetzHtZwfqVdys9kldoYUWC\niCo/tW8/h+iLrdY0r23cg1WPQIssnzKeZ4DSjzbw6A7qmVEHtXR+CNGjGVMw/YF55GLrIber3tDZ\ngHM4TfcxJhq3WJ+DJ8mETH/m/NR88phHAOEMYQpF6VlN5ug5CixSY5vrxjlywKUkDgHVp1xDcIep\nHgYEQDQSvF3rdkz1aIy6N/Ldms5wBIHwb3KbJ/V08g7Rr7jm5B+HyVHVoXvZgMyngAixR0fwvRbF\ndkpXLtCGp3X4PDhNPYyAGnnQmOadlNEbpghDYNZ7AJ6Y8yehCN8N+AYRALjQoGGlKCObG6H+d+ZO\nWYTJPv1/5vcRCUwQAaL0gEJ/ZE46FS5VMlIVDsbHULrsH4r5U1EDyqj3at2jlHoEQxtlJBFx7bAy\n4EF8sgTEAPwoMnNPJfP6WTY5Q5ZrMgHsjQM1IKo+g6VhwhSKFkYdbMBrDUQobyg5a37q0VwByMhp\nUVo5BhsVhq5z6XMzpzLQqOQ88P/8DACPVBzBeKnMFXhUOYcKaBhCr4r1DUwiPQUWkQnqRWkxVnoc\nqhCVpsX4/KRmGgO0iMdsEZZL+suxwfJzoML1afQD8xjQXZCVMmV5jdJ40hXgYcM2h3pTQQFEoZZ9\nMFDXmFWEBVqD/ewYZnPooVXuNPs2sl+VMtPiWdYisiCMIDV+mowlFaWYpy59TBCLXpKgbxZBm8Ka\nZQ4zfaARyxjTeltc49sqon5ESSnaZy6k5ukiQR9rowbEPrXhwFID2smvGQXkx60xhJe3avG5Fegk\nDTzHkDBN2YPCJ9T7m/UM0mic6ywoz2Dj9/SC9FGGJmnXL+w4cEQdjijyNjFQLsThgEqrfWtNlFVI\nuhmA0+RZ1cHJi1byAwkGGQo8oNFspjUeal8kH4wF0PSqZlXzg6Ain0+a9XoIVWOAXuOM+LLZq+f7\nPHKzc71ru7mXrgA+0popOEOjm0Yr5QfKIH7CcqxmdcQg8SbKM05tngxDWhZ65DhYjBJBw4zsIYBQ\nEWx+3XOMiA7j4tU6Ko9ucN5uNqZ0p3x39seC7mqOSUfkGbqunF/OC3kxIB5FqxD7Z9LSFbgrYKf+\np1xROZrGjPTL+YblGlWKVtFveYhnHcXPux9TX3ROjjjeEUeA2S2I9axIBAIzJvPK/aIGNCPeAOpM\n3etetJJPymuO3FfISLFKTZtBgZQtqPnlPa7j9YpOxbx+uQdkvkzmyHmF8ICFxmgkUuYxbPwS7YXa\nc5WwMJJ+WCuC40FEBCTNk2bie6U3PW6VILuPpWQqr59oLOfXEkRrCa714n0B4DaN0mjcV7XOhuJt\nLfmo0IXQIFD7g/PaUQY7U/2oux+xh0gFZ8g4rnvRB8cQEagNl344bYV+byP14uS/YZQ3lPNBeemI\nuc4YANIu58GCRzd14onuFYUs/TjRntFfdMSVk6TqLk1pYDbTJhDHgsY8Pq1oO22EIEaerDOsTqjK\nPRpjoDNOZfe/u4UH57t9gwhsNKwoENUENtkcHkpf3mmgikhx41KYAOqFLWHYyMSAvC8VOpTSnoy3\ni6GIYggpYJIzIZmN7mUqapZIZE+vGgGPmWmWoc2oAIxifCww1wcyZBMohuLvvHKTS5FFVJg3QzCt\nDRyj4+gtAYtMZWilUJNJc/5owCDspidqDhiCCKhyUYYhxw9GZ8hRVAwJz/dmCgNCuewCNhThEEwC\nkHUpUhCiBF4qeL1ojAK/chvjKMBmUem9QoepBJwGP7JTJUZwdQ8vDYS99wJFRPAlYBBzpgWh1HCk\nYUTBCBnX+hyvbYAMPa97nWATzQ+B9RTafspQ7KRR1aaxTeCOACOV82j5Xk7NYSOPHTM+A6F4o+ir\nGSMhuG9ogIxUPFLgCq0nn1AAAXPIOPN7gZYKTQII0Vct+KV7Xb1wVJJcsRLPI2IM4s3OeYsUFyrz\nLCbokQiWCk7+YI5GJv+p8TItpSJcuA+4B8gnADe4xvL/OndOS/VPHiMVHymYAHB/jZnPDQJHAehO\n+4LEbUlT1gaOY7i3JYpNrsZf7vFijrBmzi9sQGvjnA15FCNpnBFGjDzSKAEqbfQyGYtBRoQRDUKv\nYYLp79ynoJwpDyTnMvlevKOUWRNDcgY+ywvrV9NzqrQFA46ljowq9ewXrFIFEP8rkPo094j35J81\nrtmjXnPVA5Qx8lAxLmkEZk6z0K3Sb3Sl6C7JJFLbWBeB8wvyHTFu+pyuBMyG/0xDZbxrlAsjtzh/\nzH1W0DufbRJKbrWONJYL1Il+oJwbCWrJOmHo2vWQCwX6mryHOoHOV/H2iKIxTACCNXPg8rCq9UHH\nTdA/9wvXfJB/GOsXcL4LGKIHmHspjVPOr+wT/k5nDxjpAYwGjM59atMc1rxILRIUcG2oZ5MPej0n\neb7QWPHykbKf84o2XwcE4GAjQQKDe5x7hDfwWRZUp3u2aAsB8hb/qRo3rgNU7SVkdN8YVRuDMpqn\nglEukdp9H0ZRz7j+GXKM60K9mRFeiLEkaHEMtJ+1rxS4q2KwpRt1q2g5FsFc1R/yX0brUe+ggdwM\nMyh11L7nu1R8kqYyWjbn2pI31BHd/j4WVz/ayHlTvdnXoSKOcj+bgAjBJ5N2Ws0zdXYLoCNTR5tE\neSjvpKBEnezhR0uPnMufVvIcvdIZCXysMllI7bv9Ye0bRJBWaKdvitw4ogyUMlmoKVMOWghkNRiS\nocn/6elWtHXTD0CErc3PMhFN0+a2Mpj02S0VyhhjG8jQRBrK/A58R/VnDK2GXkonAGAwR/k6pyuw\nkF6bsbl4aRRMNPR1Psr4Q8457/GILptenmGmKOFBhaiAFKRxxfoMWWyn1WcVuTIy5Ev7zNZNwnhx\nDfQiguxCQ+5PGpP1FoVlVkhG0dS68EIwZuPy7lJAq98EMCZAQIZYiLPF+fNUrGdFugxwX+uRRhmN\nZjX6gsZibk3WiYb9PB7/MZtpzodaIBj77vQ6GxJlBF7v133FvbC2mma70P3d6QLJX/L1VIgt+0bl\niO+lYbgqR6tSw2dW5MWYX7xYUB6Gj6RpznXRff08hadxzPno+Ckck96YUQa9gGkX5ekjPlDXkM+0\nMac6uAlVNMX7Lmu3WnurhbZ8PBmffN8kEPjY4o0+D+Jhjd2vezzTrzDz/xmsUFmj147p77bQYPI2\noMAUMF92BlhzSghqDJ1TTO9tJvuRA0mwceVu0t9gftd9cr2ePFFlMftSnyn4fN2fu76oEby+Vpff\n+fHI9Vz5pj+/DFw+u/a25TOVv+u+Ud6qfDf3fNKeTeNXY1Tn5Eqn/P6a2kKwj6NSGVDzUQ6LHAuK\nF+xavtMqiuaiOOmF+bHK1IpAY59TRgdvVpnIxz35uriPelvKEON3ZWgi1uW04FVmGSnYbJX11d/5\neSoHZp7ZRXec6BlzQVEamOu7Sv7J+ulaoKIpOJ6UnzbLWgdhrJ4/GNmw6ADKW9oAnvWM4mv1fvY1\nx8rnqb6KmadpwVr2l30tva6AIpP7ud6pGw3pV66DZZ8V/K/5np18xj7EmOlMYgRSFRif+UzpKzOJ\nJ99Nki8gQeU5jX22HJ8BeTSpIcGrHlHEpntG5lnH1UnDmPue/FtoWPVNggyqe07zn/sRWJ2Ezxv+\n/69tA5lG9ae3bxABtTFZ1bnZXHSpNiAZo4RlTYXqGG5axEUGnh4oQ+X3C5NtRuUfGEGc9NrWs6/C\ni8wMsblPhBEyGO4c3mBReI4wONsR6QjP8natQjFPe2hjPjZx+MMYLZCexXVfCTdm3yIAACAASURB\nVK+ZUh+M81KJIzTUhxhBpSiOzA3mPGhOYh8jC/8YMIU5rkI+7yGSzIiDOPquE0iAoORGb1sHWovQ\nU/XWBfouQ+ccuWIzqmp0KzTcebPQi2FGnOP5Z5d0BqP3oZD6M0EEtzysmaehtAgrBUpIWwnOswFN\noiBYg0+PYtR8fmBEATe/8Bi8psLkaAClIDX3GFB5OK08moDluoHz2Koa8UGlNIuGyEKSbtKjpV56\nn1kNB/QxhXtEnkEjLQVo9FOFagEplnNCIcyICzP3Ps0ATBU0ohFxCh35mjJ/sYGnQLBacnp9IJ5q\no0eNNSmWdIZYi3aM8GYXHbDYJjdJHZFZ+01p2aw8xJrLDZRSRc9Gb1W5u/vposFH6zi9rKuSoOde\nEK/AQVXUL36mx2PxpBgn0Q7Eka5+YgniiMcDGc0CIE9naJXSlcYjKjKljJFxTWdoBtNQ/gSWK00L\nOfbywNmYI3mSRoA6+aBZKrYNY5EVlYc7UGksnjpAY2XEvBcNNvg6selat1Fh7yb3MMIui32Rtlrk\nuTNVSramGhB83Tp+veYn5sgMy1Bp8lgtOkYvrhbTs1C0K6JOT6FJBTvomPRL0JTNrGqMVCpJyXg1\nytUgZF/1t8n4NTKJvOaQv8HaJg1xOsNIz+RhM8mp7EgvKGknaPhYQ/Gjz3wvjddmjAxiLQnRTWLe\n6WHV2gpK16Q9/93rSNk4jlf5NqPiMnIM4kkV3YnpXNl/hGd1dDDa4WghRzCD0ZQj1F+O2JenzTWV\n3KNrvmfkegMkXJy8l3vgqns0kcOU24AWYiy64HtpIOr4IPyCy53FGQ1yxCMyXbV0AeS8PWzgb/Pj\nEknjT0NGnJCfacQj++c0yMhP0W2bVYHhqF1xSF8bENf3jBKl9z1TsKZ9ZLW/W9UfaVa8xCDzK+vL\n9XgCS/h/RFkJbT5RqsMRE6gRQLVuEQEmwK33/aoHUOcmuHUapmOa+W6uLYEE0uzz6X2l4d2seMmh\nP63eh1an+qT+LvvP8p2GTGNqkv7bAOsVzVa8xNeH6VPH8mPmzIKRUU+hZ6BS8g4QpJYvv9sf0b5B\nhGhqROhn/F3MPgRghJk+ny0FIgUNGR2ANLKBUCJArzaF0giPgyXaxy5ULmYZjNrIfCDMiJ4CIvR5\nbSjaLZSDXUuljs8OWF+f+7uNczpFKCzjIphQBRZLuWdKgdqTuTbRfzcykFp6KnIipKdx55py8Aoc\nSLoHjQp6kMFjfkqB1nF1+X8O7Z77nac4oLwWFE5VLX+kkKCiS4VIFVkCBv7gGuyU5xfhiquyW/Mx\nf7ZOmS0f6L0m82Dw/vJIP9Z1MPPjPZshC+CR9vWZFJri5oovW4xpSA77bMSYIY80ped36mu+gGG1\nY3p3jb086dWn6o7TXB2HeBeFwHntcp+NkR4JnXOCjRx6Gh8QBUoVBwtFXPpuQEZZuOK+TEDjWpXR\n1SHeqmWdV/pgM5lfzfFciyJy7Pq81aNRkU7zHO4Uk7uii+s1ST/r+PNv0lIpj6XMIkHl6XKZmKxE\nD4Bny8+RIcH7bTFYreYjjRHud1l4L4BZyqPvKcqGyoedxq20a2XguKLvQENG2aH2a095UnTGeyHT\nmMCeMAkLPpVePRqeHLOMl/9zKjVUds0yvfAeqHy6LicNvOTbNzTSlt+5pIMyfFQamJAOh7zBMmc+\niKLxObVJ9qcYzezrsYxLQYixRIno+2vvB9je26SLcI8q+5vmI983v+PtOAVM5fsnFhg3M6UBKYeK\n95CUPATeoNEuNNhUFvv7Rsrzp9DmxJtQ+ljWKEDJibMXPRnlENSQpfFazqXdOhfwXPIGIo/WNdN7\nlKZWzzaiXwTd69oRIesFAiP0wGPiXUj5QmOR9w9YRc0KjRyh2yqwXvQaYM+Yx8VnqIOi5rOeobpn\n7jusulbt21XOFs3VfD1HzZHpc2WtnrEHK8pxnt/aYyP5eY2nZH/1x1Kx0/SmpNcEGMtxNKa+zGus\n85j71QgWeR8rGifWv817G/LMrOvClKZlDKkncy6Hr6v4G5LnrG2V43nN2PPZf28b+K6J4O0bRIiW\nnh6UwAWuuqcyQzPk8V4UOLppAUhurt5/BQVUqXmiNjsgghzymfTdxYdcuxrPwdj0bHsWXbMuTFOM\ndX22/5bCclotd5QHifOojUw0Q5lvjDUN0UKCB6JoiFAs8EWUdbhXFiiDZiBCOEcpHD7+Cod1JW/M\nBpctP+06Lyl0YNPaqRZjoxQDemQZ1sx+1/xQ6I0IgaXQG5JfTUWzvksDwcqgtomw/GUEESZhjFlY\nq4BQQ2T6n6c7QFIbULSpStL8jFpf3180OPR5+wJimdMPwAGE5zRG0sE0JtIB+yLfqSSd52NcjIud\noNfxlfJqeV+Gp+Z8FLhQz3cAalU4aYCSPhKokL3MXOCzAc+nGopaBEvQRO18xJ7Sy13zPFKppBHY\ncq2qKOCq0M0GxcyX+NmQrpBXMEJoPu5R1jT+3H2/q6vACCeCUjtePNOQzsv8/1ogEOCai4E1Eeoo\nXhHj3BX4VP7NgpAEjPwdBVhqf5mfq8Mg6JYGOWlRrunyGFUeDyt5kSevRGcmOSK8BWAEQHAEurXh\n/FHz6Oe5FJlk4gEMZTqjIDADUVcjReVrjVVBAAWJJ+UfI3i+pOBJSyCMz5Q1KAW8nge9Tn5fn7t4\nUaFrIClKXAuZc0ZZUJnXvcN3ayrcDrvUGiVcg3y+7PUs6is8eqJ1Pg/uEZ/35Myj5OX7Tk3zU7Q5\n61kOPK+yqkK057SGbvMzEfOb9YVBOVd8knJfK+uPNvclDUn+jXnNdz+aMqByCcs9XFt1GujfbASV\nThSQQBBZ6XXkOxYAASFr5VQm0g33NmVvGe/lKNPil9PYgZRp5OUa6bj+AEVXenrZ6tCqWk01Nn1G\n7onQjzRKgMUqFdgi7XD+S2dR/rDw3qb9qes59qLHuGb5P+9F6VN5v6zZpbYIr80+FajvEcG11wge\nmfZh2gcz/zL2Ec4PByzpR1OgLeVn6UIj91oc6x2f70zod8D+d/v3tW8QAaUgZqGUViCT2i9p2CmT\nDW8pw7SUsfuxinW0ij9j9nSpscoNXeGWEZbYh/K16VnNIsVAlK/0dobxxs9KcZg97xwLGSpD2ak0\nkC3QY04gAaACH9+jBEv2FbPyBblvHY/WIQAWAyD+vxPezzELizy5YggTVAEOUfIMCR4gkOjMiRP3\nKj0SQ5QFF6ADaih/0lQwqne7i7BXYybpMBWJ8iBPiq8MNItbCYAwhUdbeBZQdSGYzqAK+bkIVRtX\ng1EBBArrykkUhXEZR6gvyHQflFB2u4P9NkyFFZMeimZMxsSCbVr5muG7k5Yoz1H6mI3H2s+prMl3\nSvMrYKjeqVJwI9IGFYGi6VBeY2UGCDiv5BkV9WTydyjZ0TcvFNomDV89gtlf0MNXIfy6zmvhMlWW\nyC/QpQ4G5pzPuQbCzCfuc+krFUnbrpgr/8+/J6ByLCCUdt6ScVaYdc1JKZhCMg1XkA4QQ3o2cnwt\nigfrnuf8Adf1vXjExGOmBjTXp0LOa9/5e2zqKsGHi/I55t8rMOfjsqmPOR+pqO48mMUXFeCYTmIw\npTMBnZRvQ/rMPdBCVofe/5z6MGYD3ihf56gANn3/bEzHb4jhgfLqq/G3a1pI0WTuSBsJqkBk03LN\nCmyqwT4ZWyjeMqWt2TznSWOY11rfW88sHuN9rfXUvlAmUYbO8qcBrednGRWXHmu/hYYSeY8XDo0C\nmlwHyjsIn4m+HMu8TPnfRh7b0/ikMZuRXaPW+ZJCNP2ejVxjX+S9rFOysh01fCvtIfiD2bRmtb4e\nTn7KejkQwgiDkWuj/c80BQToMKrPWRMBRQtaX8n7LjqhlWd8RHrr0RnBpKcQUZ4xWk6NfaHN1YgX\ng1hpK6O6pnXkfAbYBMquAtiB0GNHGcQupkaOh+AuAQgee14RSGNaL+W91IuVR630toI/zZAFk1d+\nUftyPimkwKaBs5lvI5HRbiPYBYAqAEZomPs+5vTkngEwbODnmPm7pnA+jfqhHvGoDgKbfv8R7TsS\nAcA3iBBtVhiBRcGAGAMGlKJID8fMcLUoDM1LopIMVyXzP5MZlCLDNATm8u0UUyoFbGQeazqDXlfK\nzEgFdaSyunhafoEXKPKqbQ3F1M93TY1DVeTy/0X5SPQ0GDtDc0sp1LBRq7lI42gslewh6+tAwnEQ\nYPLKyFOqA0pAzLFe8RNVs7wqcuVKUtkArkACby3lp8bYICc3gEKBCpxdfuh11mMes/gQZuUR+lkO\nQ71SISysgJsSovxtpXALXe6UJ8CyynwbtZ+qH6L56I8gG1SYtVq2KuUEMdgfo4ILZHHBnMN4Zik5\nVsIdFZ6oyvME8EEBw+IZmkdIJRB50NY8j30IbYhBRYXmsOHV7GXOdyUjcnvpvFFLbxb0zurzoag2\nKvdzKkgWsVrGq8aI/+97gyDeFDGwGJMr6JhFSHOPXr9rNntC+Q7+zTUYSkuFsmECoqzluaK6123a\nJ/qz0CJ4L/n/DOox91nXt/LRMeXuZu424H3gCSInFT9G7pSCx9zinVKqzWIuaQhMJ/IutJl5zjaP\n4ad4VpnOkH00ZB71bFjlFE2pG0AB1YdFulNcQ56te4h7gacLpBEg/AexzHNOdxlTE+Ai/2PpY3rr\n06AYuba6rxw829cImdI2IO8WvpT7PT3ufvrFYYZHq1MyFITQHPbiBWVIq/GiNXO4BQiQrCTs4yd9\niZND+z3RzExspAsDpJ4HX9ICHTCvj2DFcxUsP5rBuhtKZFG6NnO61uxMUNVix0+1ngXlhItkgnOW\nRm+t8Ug9LYsXovgdARMFaXRdWZ/DjdVZHiodQNZI601wHJXz7vnoTHH9OSpShXV1gEpxPGX9SUuU\nuR2A6bG9cFChgEnng71XSDzrXmmaAueDe4oOCq4V+VPR+bjsPcPIoxUZcWU206jKNaczOZ1k1Okb\nmQokdJngoq2gjU2gitFhlLXOtCbGfPqCGVIuW9JRzSfBieQpYPRH3ah8K59jFUFh8QwCXc+gKUPw\nt0NOBZN15N9Z40FlEvsV691NCk/aPI9K7xAH3dpUr2o313y3f3f7BhGWRq/yjX0LAGLQIvOyKVD8\nGbUJOz3VZsFsZ5QXKCVcFRn2pQnj3SmKJTQtfo9iuqO+07Ax6s/XZxWD4/hWBqJpDasXEChlp+bK\n8reGMLNyusnTiazz3Sz4VAZd/aYyMXnHJJ+y4VrHQZXNNLJGPZecNo+hWuY7gRbU+4dJNWBgopuM\n0LD6nwBRGYwFJHDuVXiq8nOYnwaRglZQ/Ra0WINsQkjVf807fGd4rHOnaDeFkj+3BGhFMFh6B2Yl\na8i472M3VmNx19ndHk1hmnurqpFPj7i84P5Vr4Qj35UVwV/MqT4/U2EWxVHnK/+XcdCImBReAHM+\netzDRVqMXh2ggnVTTQNRlHZzo8oDmypXu+n9lFfsmgKR3re15sK1RsJl3fRox92g3rQ1zSA/X16k\nRoB+1l/Mzav3aNrJum8N89ICokTL5+pN4zSPcT/0dY+rAdb4kqSlGTBct5mNax+fy7uVFiYwX/hG\nzc/8m39PcurNkq4AAn8zv94/2ADfwb94XcoQHbO8Q094mgrR2Zx+pBFZBp/n/6hRYbjsz76QY87/\n0u/1+/W7AmNG0R5IhyKbOMdvaNfu0Ifd9VPUkJwEMySyhrqN9G9d6ztaVvpN54N5lJTqSQkARJ+2\nsgULK2XEwbLbL3rDBMKXnmDymd6rezqfN9zw02kl+JYpoJQBNstdABONchxr9GrKJVvnuiK0VJYn\naJafzXyKumOeRgDhZeA7RZe2iohl9I+/f9ZfP2nKIzTlVIEMvoBzRT1eN/NKn/V8y9Op1u/XdVXe\n9oYtXeZ55R3r+3QteW3uIRsTL1KZ7XYG6aSiBmvcVz5bfO99PaJ/fRuAfUciANjoWX9qW4uosN3J\nwNpgM5PZ6esXodCEOct3d4vRFiG09m0VYlM/MV8zCYhGQ6OAjfJe8HqbxsJnkcFNzFrGsfvZPYut\nj/sx+D0zkPDV5v2dPUfsq/+xfy6Borr+9fsng3nD+F8Z73fGKxUbv6ZCAS+o/s7I2bxMn3FRQJfP\nVnq+6/OsrM3j9+eafH8/15dnmRhpzcDTJ+qesaWJXV8N8e6dJoTrOulakX5JR9O7NqCj7sncgwtN\nEPzh8+c9dqWjae+LR1H7X/eIm2UzwF2ofEb5yD7f7e/VPlink/xDeUStreETXnHHPyYeApuex//d\nY2a5dzXy5CPmzjkSRfb2mgmguz6Sn+0MjZU3T+Am6V5wD9KM/39j6HC+XwwxaUz26rIVljEUOLX9\n/oZ3vmrav2mvvJjwixFj8zz6c8OIYnoJSiFu8vtCs6jvM1WRfwuQu2s7Rf3uGo559/0rPvuu1Z5V\noF0MMd2bsu7bvsp9aVRr/5Z+s8/T8y7CrG6+q7mg/b/0aembAvccn/aDdJHrDokoAWpNl3vzfUzv\ntHGhMfZT75v4tUS2bnmkFe/f0fJEk/LZNBaUPFux4rnfOs6NvInn6G9N4bzy9Zl/rI0RMMCVxjRt\nkH3gHltbvW92tu3mauULF+M3xzKmfa5YV/aZ/Hwqrn3PGzlHlfJ0PY55B77cbY/rfEr6LSiTlygY\nmRfO0zznM73leu/mcZnjVaarHNef7/bntm8QAZh23W47TAozf9bK8NMmrXSFNRSOzHxlwDvl0/La\nK7q8Ltwdc72MBZIqkIbEflpWj9aun35dMZJXz/tquxUwVooN8Foh8v4BmsZwfY8oNE2Mj8Urs6vZ\nsOvfuzYVptrQQa2feE5kbc14xF+vvuANgLBR9FOgcoxLP3aCSYWJCmki/gY5JkvGwz7ORZqG7JWb\n+YAYw1oAb7PgGtare0V9RVNNhPU9qLV915oxlJj7OgRqvG8syvAMqBTNVeSQeA2WvkP/FxpQRYL8\nhvN+6ewXLJML9vDiu1RsPniuKiD6/6tr9999YSwmoVRJzERP+bdNoMrUV1XGAcnzXoQCnIbKG3jl\n1UWL1X/dG3wUi95W9xZawnV/mTxrbQmeYqanu7aCRet3zWoKq2BreUH5/J3xBenDJSx6x5sxK8s1\nVtuOh3uJ7eIdlfHNwAGW57wBi+V38YBN/5dxaT9930q0GbiPrQpebp6nz9IpUx6nOsZKbwpe7vp1\nB8zetVkOqMvb5olfXkrHBfulfG+3dzLs3RZQI8dZ+2ud85pvv1/D/ZvwTTNPCdjJ9olu5J05bwLs\nTqkkcu3FiNXPUGMu/o4aL+aUQB1PFZpWR1D91u+VbalhrzULVvky6SURNYN1HK30ka3OPPEJ5Nw3\nq1SGNRpmnWelZfLTnIeFhvhu9pNzqWQ5GcnqWJP2CgBcDe3i8deoOOV1HJPJ5zNwZJj43sQ3PJ1B\n9cEap19YaTgVmZy0JvxGZYim6DB6o2jRas5lS2N575/Thoc//bd//he0bxABM6Nm2+ndvmFX49I/\nO1rlz60AAo0kMgBL5sn3CkNeZO4sLK59/8Q+KEYsnsVl5TVkdvo9zVF9p4jrahzUvCz9wMxsVMEa\nwzCmIwnXsMr6+y7EbP1fmat6m5SBKiJdx5Zd52V6fzBaf9+4zNl8/fXvq2BcvAb8W/o65YSi1kMF\nQ3ns23UhOcYvGMl53/J7nuNZqOt41udNY5P/v9zW6vqo+dJ3zWc1L+968fKFBPZd+LSrdv1blbW7\nvq+KS66zKISqtOizJ6VCHxQbzpaXaCG2V8bDShPr7CmA49fYZZ1XT0Yqq8sPr9Uf7lntjw/juo6e\nQ29F7zsi2NDROh5tNgESDYyKWQ193aMG4euyTnceK77H5APu20zV0p8Xfd5RdyqewEQ/uWbC92fj\nil7cOVrlJdqzeedu3OseuYzx5rqdrCq++WsAbz4n+KktxvwqX/Seuvf6TJV1BaJ4P/Oc+pT1RTfr\nfuDviZVN/duP+67fK0uc7tl8vgKK9Ryh1VwwMph22WvbfZzzMy7jU4Dqbly775R3aqg/6V/3pz7v\nBve4MfjWa67RCzteub5vfTe/J51oH1OHke8LELgCCWv/7vZG0p3UUNpFh9ztWx2T/t3Iw5b3Tg6Z\n6bjma6SK6k13KSJrH9d3XddqowOKXHxHXwRttt9j1j++0nSNL3qj6nrLWOb7C7TJaxb+X/UnrlHY\nvF6fuX636vl/HJbw3b5rIrCZbKK1AMrkyZTrE7lcvMG62foohZ+F6LRwFzczEWbWAVjfxf/Xun1Y\n/p/yrOW9bOUtoIcXVS1ZlDF/b05D3W+v83l3zezXQDXOUz1nDx40Q+Sn2VRYMvPQVMlUgRHjS6as\n4IEIMs0T1NZQNQ6A1/PCeVOvw+6aSx0HzIKWVdHOpkqD3DBB1ikNUzFIg0QEeiki8YhUcmd69uJA\nAxBDQPtuqAJ/Q7qSXYMoWAtBrHl5VUNjEZhvJLKGFfJyzb++9KnN9DH1CVS49PmSXwlRpkyLJ5Wx\nBL1mfb58TiUsCyqi/rYh39v1eaVQztFK5WxfNDy5WWu08FSXJv1oJgXnsDFgrNZ7HdulJsIv8I6v\nNPKZC996hRVsFqYiy+Zokbqg6cX57tWDy7nRAqT6SqZw7bbvu74nSGF7uuVcG2rddJ/zu09aI5+c\nh1xjb8KjgAtt6looj+FlvGeMa2HetoxPDUPusbXAsKYg+LMH2PtXpGAWdJ7Ak3y3SSlscs+0bmNe\nlx2wM4V8o05UWivB67jWUyB2NFXXz9GR2SfyCu2DvKuMinquIU62wahTKcaVH5lhCoXPh8sgTAhi\nOspP5mEyFld+A5kfIx1dQempPowY2Mnrsnityx3lbeog0DoDyZfV2772R98f9+i66ZyxEDP/1/oZ\nub6y9jb1qdaN40lQYeLhVXdpKB0hTtbiPMtcrcunfENpg3Og+09Tny58Kef/nudNOh7qvTw2eZWZ\n6w/pNNdS+24AOHfLOADcOq5KNle/Bmbdb1oz3Q+Y6xXwKPJroWZx8OmPcZ9YyRHpB+2I6Zj1ZVx1\nbe25gaKZPAJ00/+c52Wsd3L8f4nz/J9p3zURALyWqX9sKyVloxChmKEaN+uRNTsUX1spnfWe9dJd\nnYbVG5fXrmPYjGn9bodmatsxhF8xAn6XsVAxBIpx5uc39+j2boiw0TYLWX63Np2XO8R+Ahg2aD/n\naQz/u49Skn+F9eyN0IV+vrCbb+kSdczU3T1XOq3vU8HJMP2N55HPk+t2z/uowyhjrIkCrGGftj7i\nxbP0m1Ux3fUxK6Tj6nWfus+fVG7WvOB5HnQOdvYw+VNdP4edrs+4dkiUDqx9ubbVG7Ibp77vvwkW\n3LUx5t/A/f6dWoACu9z+V1NY74jHyPpPHv0bmljfo4ZGPvDD9oVLs32yRDuj4uNrF0BtVbQBTDRb\nRhHfZfIsiYqQ5+VULf14te7Kg7ZRAyi6WY+wxHKfypNXMmUnq4pW/ASJqo7u1eCPtsiqF3tvfd5u\nTOu41+fMQMksW5SmL+PHvKZTZ+/+l/do6sU6Vr09AXCJ3Jr7YFNfJgOYY5YI0El2rnPRriC79ivB\napEzelqCvld1wrq27tfIE943HfWZa7CvTTHppahooVV33aVZ1f8iPzbpHFVLYid7Yk8ycoFza1xf\nGV8b8xzk+2SfLXM78VXo36ITypxRz1t1Xk3947N4ylU5VjCnaale/2oPo9Y/aVCjSa10EdKFrp3O\npY63Ugx07w7p30LXcc2R6zA7B7W+wpTWsMyxzvPUv48k4nf7k9p3JEI0RfUu38lm+jjcNxDu9fit\nZLIfqXBIRrAadbsogU/aqqiuHvj/iXZ35KM2outffjaiGv/GqwVch/rKoO/DML7Qh2YBFsjfWP7+\nSqNC6Ex9ji4pT9YmzHOjsK3Tzf7MyuB83yqEd1EwO698s9ekaeGh0ciKL7fo3JCjqvhb+3S5jT1r\n84gu4eiLwkCP4wROfbAHXchfe8Ioll30kj5/Vdh4rz6fn61GwPpga4axhLqMYXLQ5PXdTV6yKvrv\n2loX4neAha8AkRVhJB/OTPx6E4vdvhvbVXP3X+0696l0K6iBfdRGPX72gvN41rULJgrg841iV8aJ\nvaRZzlsZbPvrGgkj5nQ+IngBvY38z3L8zaSCOCpK4L7/jIoZEyi5Rm0B96JM3zuNV/q6Hh16FzJM\n/pYe/Em+X/ul3lBAog0gR2gyD3nhPbxuPTYyv3sxdWu041NYQhvzvOv6zfVaBjRd6G7eOQ1Tyo/e\nJL+1GOl0/wf8dA5zn6MP9VUpj/T1BCwYZcXvlvtLRysanUAB/lCO3USpJAggsnZlSdQVEN1QOtE+\nqy7J/g/M69ZHnODDH+mUyXq/2jsK6tA41ciH9fr5dB0Bg9Zn2yhwQuZr1YN1PDxWctdMfqdDDnvS\nG0L3PBXqsm8hurA6B8UJ8aqtoqVAlBu9Yb1/98zl8wIYZvq871Ol3rI//pzSuzLycbNtv9uLNvAd\niRDtOxJh076ymZRxAqXg8butp1sY7STkFsVNkUfed6fYrTLhlcd7G77fZmazExrs4z/RVsOKnvqv\nGO2fvcd/3/U7IxsaIpez7sucskmolOC7Y+T679Z7I8+69HcbAVBGifZDU1ASVFCUaFLy5+epsf2q\n/RL4ATFAN99pf6kU6VTMnmQ+sMYzGcYSrWNyz+ZS6QQXoi3r83VP9Kz4f0a7d4DkqkDu7qt130cO\nbBWLZjNd8L5GGp4Vt7X9qvH/bj7+6WOitl5l4742eA2DoEDWDdH6IdJeFpa7aIzyPgnV1stXUEpv\nX+c3j2qVfumeTeOV3933dPu+ijaaG/cdefF678u9hHvZ9Dvg0V2+sX8n79DPVf6+MAJ0vHOx2886\nvIKsd7Je513rIfA+etYnT+UvrvFd+6cigzTC7i2wx/3FvwGRr8pz5JYXj1rrNr3q3/r3Nc/+BV1t\nnk/nwLv26ppPgNBPl0mncxfNx/ardUHqPa/rAmzvwa9FW37auBb31QjmUCaxFQAAIABJREFUa3+1\nL5/yAe3FJ/tsd82rPibI9IWlXPdR8hu1NV5c/6vtjz/68Q9s35EIN+0V49RQx9Hrs1UYbj3hd8x+\nev7X+vNbTfTqtf0385tGJi/fM171iqSx/6K9m6JXxns+w900/vcXBHAZkbPx8LsK9FeY+7v+mo1r\nzuqb9lW6e3X5p2P51Sgbf38pmpNnMb0wk1vCv1uPtML9ON6N4W7Nzfb7qTxI1zG8a2/X5uoOuiZW\no3jXMy+bvZT/Ld7zT583vUtn2L9YgITuo17DaYGd0T+uR0UugJZ+9Daq4ZNmn/Ghf8JIXCMRdi1B\nwBcb4Y7spnf9Yh8/bb8y90o3X+WTl3dvQJjtdfHdkOsKLLw+J5+Ha80fIADZzfrR+/yVdJTfaaYD\n/mBDtA8iUr7a3vGtT/bVDHa/b5+O4FdH+ivG3r/NU/ir8uiTqKd/qr2a81/p/0vnAub6DNp+5fjd\nV+9aowv/3Db+OWT2f3n7t/GX/0pbPRX0lo8NSnAXffCVpij/KthVUR5L3xydHXukMz6zzTNftXWI\n61xonz59lqYylGfD0OPn9v43UQp33Vg9d7fthaL3qmXNg38gfPuz4Lmbe9f5+U3rT9c61y5EMYc2\npzjQCHsBlt3sD50qp/83k2dzmPerGg67ez9tfOpY5mF6HF54ajdNo5WAeT86HdlbpYHXso//pAHw\nriVNvOED7xSOrwIIa3TVjhfVd7fI5PV/BQLW1IEP1/S2dsoHY7xEMinQdfP8T42aNVhiFzXzy0q5\nRmjJs3Yy43faK95NGZh9+uI+uKR5fenu328aSXZaRTSsKTH826+d21fB/q/QzU7mvnpfRo7xITsA\n4YsRBa/ajgfc8ad8/RfonfJYIxE+ASde1uTQa9d7Xzz3k35nGsKbuaWH/g7w/oQPrntlF0X7Sav6\nUl+/9/qsz75f+8oCzhYRqbeOtQ/e/0sggfydkWI3z1pTx/yzmadv64yg6spINpoAZTfp3Evfvtt3\n0/YdiRCtisHMbGI9c3jX1GsxecyHeeXTNe+rvRYy182/hEzpu8WLYdnfvUHlTkgqqM4sqeizwjYL\n8wCW+Xy7KrSsRD9QzMpPlgihi5nB8dQJr0JdNRHyeW9DnzeffUF56th7yNw7M6csuCC5rtman6bP\n+UrjWL7S/4uhgZF0wa8m46M14PlMSaR5qJlDKF6vu3fe9ZG3rPoif0aRmVcOHnX0IHNJdwj6paI/\nFu+vzeHn8ykTM6gwFpE3nbSwCUV/Nc67SIJXLedDnlGlCu6PYtsZwDQasz8yBMv/l2Jgqik00oFh\nkB5aKSqsvbEegXY3Lmy+X8E6k1UYGElPxQ/mB/Q0nPY8RLfkU96/o1GeLNHyFBq7dlwsXiqQ/q45\nRQ0xH9P+iguocDL96UsA7Qtjh8qsRoplYbRRed3vonbenRijTcP7jxc8bZJnrY7RzLSY+1sv76f8\nmjzlA9BzybUi/dtnItaBJyAt/G2bXiZ0yUySmU/OvJIRZ5laMub3U9bsogF03FTgj+CHfw8Wm6sU\nqVeG2mUcfE9j/vk9Xnr/+WsaJulLIOH8XRuVPpQd856ZLEamCi5yVOs2TP1CFe1j3r7SDwOsdgEQ\njCwzA4621ETAbLj7Z7X2h3VZK332WGTL/AygCvhxTGuandIKsOhZqHtYM6MNKz11sJBfncBwNu97\nHcPKyv2sKYIae+wz/iZ/O6xqF7Sjl8yOeWmyYNl/q7U/jp70M+07zpnN61RRvQuQYAWImEjyWea5\nntpkL75aD4/6q7EM6rgm/D0IYqoLYVWvZN02lJOfggec70/bRGM5NwN2CiCwPJO8U0+BW6MLL++x\nMdWn2sn2dRx/tCN+4LsmQrTvSARctxYVhU+9Nb3Hpr14i7Q4jwnju+vH9SUzYlqG2CfO1DV8f2Xc\nMGzy5efffv2egX6lXZRy+UCjEfb3/j63mgy532ivvAyvChNqPz7ZdDtlaP7+Wj05jUbLhV76vtz/\nhbiH8oLJaQeX72aFbRXqZRDsnst+8V7DriBhPu/FhmSlYq1Grd+9GmMaBhtlet17E7ax/F67Nym0\n07rFszf9suWa9Z75s31RK1uZgA4GuACgq/fjV7xDu/Gve+P39+Gy10IhVLozhIE7EUC7/o6/GVk2\n5LQPjufr/dO+7dd3z2tR+1ivxdWQ2T1r/WxV5POUA5mjtc/vxttyo7++cDe+1YDeXv/mme/k6OUe\n7MekoIm2BBtfdIQ8Lv+3++nw/lr+TQNSeQUjEcykWr9+v3m+0lXxins6Ux68fn8Hetwd3fnx/s1F\nvU7mV4sW++8ZqOLc7mis5BCNqQKbX/Pb1w6eCbjHTLc7OrujjQuvvX3rTIr6Hu6Fy/y8iIi97LvN\nO+q7z6MqXjUCc9v+XOTs+7396op3VDXJ399IHaRevH/HR4/N53za8n39es+E233wjBVbT/pH/W+b\n+77bd9P2HYmwaRqabrAvnan9qmXEwA2T5DtfeTx56sBaFIqIvKYzrB7v6axhlRyNxvHdO8fbwkIV\n7n29ajce1kTgc5/dUxlGN4ylI6pseAieTaHcDAGHjF/nCHCe2/hZPO6CpC4W/jsB2WxMnqJcPygw\nMhcqY0j2WPq+0tiuQBTv/QgBDjfWK2ObqtQuHNT7NOr9Vp9n39+8fn6XN9Lfth+ouVrTGayFddVs\nq5CuTWn+WrjuM2upj1nd4t5ro9ZVx8d9qO80uFGw7klgpq85bNagyQB34bofNx2vaA3qeW828HwR\nusxxd1wVi13/5rm55wk7fvGOh/jenq/pGDdHPMY4VWMn/dguFmZuF0rLZxGEsLeMwve7XdaT86J0\ntvLK3f7dhbnepbDpdQPznmdkGkPWVaaQV/p3+xQ59o90dBdNNqd63V/Dvf+ulhDHof+T52dFcvFa\nK8/M54s8eBVlpFEg2obci+XvvGb32WZcWSEdYtAtMor94/Om9LIxtofctKSv/djYLvzR6r4epwIo\nzUx78Y1eMA1GaIVtfZbqLOtzdxFnqvMor83ie8tDXgEE+s1XcskZuUM6u6SnffAozrHJ/235/l2r\ndMLXL9S9sys8WEcIbvq58vptP/bXAl+bV20r7zxsHsfKH3Z99GtWuWHTZ3dpDEpTc1qubdm/yiKu\nrT5HeVLDQDfDEdePiRJETxwVMYXNPH4lBQi46pLZx+X/3fO38uaz1/972nckAoDPgcR/d/sgDHUS\nMDYzncmbJ+HA/H/nVU6vrITlpbfCBPFmaJmGV30wpFcMJZFxedAUzn+Hrr54XyGgdglTfgW07gyM\n1dt/D7rM7WXoLu49AurFpVGgYXZ3R1Lt3q1X7Iyaq/Fpt/1+ZeuSfvK8awoWGtnTbxqNQUNy1JLd\nPF/7t2sL+WSfNDzw6gWt/VAhdlcFHSh0Po8MSwN4HtNuXnZGVj131EV2n/sI1F6ePsvniMfLLM53\nfw821v3zmF8d9bj26S7SgWGd+Rw1nnXuNhPEPdde9OPVvF76Mq39HNXFZwHFL8gz1v/X64F7/rcL\nwOFJBzMItfn5oDVb95ddDCPy7V9tUyTCAvbMfZnn4Y5HTM8GJi+qNvb401ISax/XNh3jZnsaIJ+Y\n7tv2+doHPv8aRVB8Lru43PsO92nkkQvf3x3ld9fv288u/1fUFMPfT+178hi/nrWQ7pp63qfxSCTE\nyrt1GTXijDKGfO2Wp07vH9L5tuXXtU+v6QzruiR4gkp/mCINlnHoeAyY6MAmfavSI7ZjeqET1v3L\nezHP0fp/RUhtZKeMZRetyAg2jWSbxoHSA+p3hbNvj/9FzXnRWtUGgLxLr79rq9620pUCexyjrou1\n+8LP7zg003B3dDFdYyUWLWSmATibpwigAXZaprQ24ZeXPSLEuzuCvenvZU7u2KfJXtWxT3RE/pbz\neX2W0jev4T3H8sP+HFb91XfXM+e/L+/EZ4DZd/t3te9IhE1rhoukvmNiu+KKek8qZ19QLH9lI65e\np7t2d82rceQ1n/Tjw0iENBLpgVXkddhWuGdBS1GFP/GE7ELrb+/ZQfPL+z9t9HCtnq4PbZa5SwNR\nfPLavS0IsXHFj00I3FfbFAEin2eecAihO3Lajd2BFJsKiq41M6oDfR7TMIw8H/uLgxkDo1/nhYoD\np1W/3dbWANDN0gDfnVve7CVp1fNfAWE2X5fetjfPLFros0vj7j3yt8VEfIo27yJlvhKJ0HF/Nri+\nY9d2xxL6DTdj/R9I6rSXzOaz9oo3c10+AVAvn28+W0P02W55zJs5/G9URL+whPFaZuoJPysL3Bv6\n88OU71/2xodtB5hMRsli+NKYsGX32OY5c19f92HXvurB/OSZr9qrPmY02ovrr8BR1YF61Z+t7NnI\n9Lt1JVD77pmfTAkB208SCnd76JN9dcd61ndyzifnxg3PUZnzSW2nT2hruwYCZnOOJzksz73J3vyo\n7e4Zm06/A0/ahy//VZHzie7wSfuyirT0AS/+/7PaG6HzB7XvSARpM1p79Zz459fWu82KhqDYlvcJ\navnFWZ9Q7w800vWKqxdptgoUeX7VflUV/Gokwqs2pTZMf7+/92On4z+8K+6UoF3I/TqO1Tgem+dt\nx7S6SYAvV55fwx7fTTER98M8vxeY176Ugdd5lq9f8j4SQfONL9/xs+bxmlpE81KYUJ6hXgVtVPrz\nf8mTbJs54LNWL9gu3H1+z8YQl2svnhBoyhI7tI9EeOVxe9dWur3LC17bXSTC7zQFC/m8jDzROQCQ\nUQlLoU42erXyfxp2N7zhVbHcd+xkvSsLvQYxr++kZ/Heizp7yfI+23uQbvu14VPbB27e/6qV9537\nbI6uuUY4fe3Eo5ch6wle1f97kHv/jFWR1yiBzdbKz+/7Kh5mVO7+p2t0TUV4PYYpumHp3zvd4t04\nJrBqJbRLNMKY7n3X1r34adP6OP7/BiTCPa6aXuObzwGh40U+KP9/tSfW7+7SeS6RDUInVSti/v1u\nqpJvL8u1Ky79rt2nw77+fm1r3Yt8zvL/Bxjm5bmGq7PhUvvoCwS289q/i0T7qvG9cxRMJ+N8qEtt\n0y4WHe932ndw/5/ZviMRoqm3YhVYv7u53Jsw8m9931ee0bDP4NU69O88mRPTiw/UkH/FAH9nGu7y\nTllzwpU5ewvusR7CXc7jr/Yt2wsB8pU1ez+O+TewTx3w8foKsx4EUEbES/rcAAn+bxX8pIL16uie\n1eehBqO+6pNwdxXiboDfGUKe65vhsQBe1UJQRXH9/PbD1raS9a0RZPo+z4kc8GiE9RUVceOfXXLe\nZXbvXvupkr0elTXd/EEdCQ1/nNb2/eu/3H5n3+74YINdohrSwLugOjGi1oD+uibCyz2fmvfHXV/q\nA6DyqT9UiO9qV1R/8duRD9oS2Fp+/0+5HyZZjOseGRiYo7xiD0jKlt/nE/Oq8BijjPQEIyzgEPnm\nqthfgHo1yOLtCqIewXoO7rXwZjKk2FA8I4HCN/x1ByBcDCYZ+45M6jSK39mgrxnWxWheZOG40WUy\nFQ9lDDabI7+Aex3mK/LbawLcX/8KxJtPCXrxDnv9/Vfbqluy3gkr8/9K1MjK3gi23NZIuaEd28gm\nE3mze+/v9PP+utLzX3P+L7z7pj/aPnHAvGsF+Mz86F1Tm2bdMzw/6WMH25v3/Eo0yP/KNvBdEyHa\ndySCtBU8WD3AX3+eCpN5d30SGq+GgbZreP57AKHujVwpahOGVJY+rVT71Xbn7VnbrsDPJ8rMu3FP\nCDvuDMuvIdC7d2h753141XQ8a5EmYE79+NQ7eNfuGMCt9xE0oL1N3l+jYuzKMa9p8js9jx/0bfKm\nrlKw2a0Ssnratu0CrFz7uu+T/94puKvHah2/vov5ifpuN0x2QFI9525M2z1QyZv14mZ11NovcP9d\nIabfaR0jfz6/Z/+cj/jMnZv4w2isvOd3Na4X7VIIEleDZl2+d8blP9ndi5G28Vju9t/Mh7U2yv49\nGkiz81zrfVNq1S8YwLujFFdvn8qQvO7D56unVz3UAI8CrBzl06IugpVsX536wBLSvfRdr2vLs3i9\n/1j8/9qQ02d9Wa7NEyl/7oEO4NccNz6ee2eQtlfy4SsRGRIwtHn+/XMuEW1fmNNdPn3RVAEIv9IY\nwfZpXSq+2wDJ1d+PR+sd7J6343Gk09frNfOVu2Zyja9Z6SE8kYWONUh04o4+NYVCT/u4nnzBz2tM\nnJ+q+2Q5jo/bEkCX86T/0yGgTiPtB2Y6bdLf7Sv/eyLvu/0vbt+RCNJeFiP88BlkeNXWsNixRbnX\nY4qm794Y0xqJkJ+9UKjfKVmfhiT/E+0uncFs3Oai+n1f7+DdHV8J22s28Hxh6PHvNWx2Z/iwqOIO\nB9j99nvmvpQ9uJyu0Zq/dVnId2Pd0ZI2jQIB5kJfLrg29+j7cU/LPaIt/Lm/pwxpc+NcvDQb4p6A\nm80zzJCnE+y+25Hx7/T8nRI9wHWwbT2U/H9HRNJU0XgOmxSNO4XM/Vr/37dP6sBM59briQqA/9/7\nBT1YC+mZPGtm5i1BGUZvZCj6TX/09BxtE66je7QZzJzqJqOait8HRt2vRn1sDQF+t1jEWpTzrpF3\nHHb9/GU/lueu0RvTiSd2NYC2fcH9GjUrPrnNmb75+/IOIZc7Wv2K4cBnvK5/8X6xzfY7eBfJtCOt\ne72C+w1XxKS17QR8fMQe3Aj9lWNXa6/MvO5uDAAiy2k+CvKdp7XA4Tfj+EWZtgMmGJXh3uRZZno/\niq/z1rWeQmgKKZvzdIb2uSMHeAM0xPfWNDX3SnPbWljy28B98JoAdk4d/l5BvKvOzmd8RS9c3hef\nPcdeP9ATqPKkMgDHzfPv0kkJrlyPbV145nLPc+FHU0TkzdT+2TUQNu17QgB8Efz6k9sdubzzXr30\nEAHbHL1Xz/oEsX5XZGv+4/oOtp2yMHsix8trX7Ux5Eg21DFj+z7dGJ2iQK5hwmwqKPxZ9f/ERFv9\n5rFlnyijfPfL798+YX7WzsNEIbIrIlaKPbbKGqNOKqSwQn2BVZjUP6vX+aNwa4yLMqUO8bu1/Ih8\nPtAcFVX/yvNKGH9y4/UxnyiYn7Sv5nlea2jU34ysmY60vElrMJsVuHUsn9Q1+afqDH0pKmEH3gx/\nxrbLbxi27hFADHe96MU8/mNtdTX+Q49c2yta2/L/N+9glfS79++GtfLkX43gGmOWpXp6DXB97t1Y\nfud0jbv20rCMqC0NDvxq9Mja41f1MvjOT9udQbZ/vgJgC2i3e5g88y0guBrJry/P5wKv15R6ROXu\nv56bqb7CTZ93ufev2u/yzk9O97mki/ziuwhbrM/9SvsK97Tlt753TPt9/g3M87rjS8qP7EWo36f9\nZWrA9hkqmw23kQjv6oR9ppPOnSgdbAbI79o72p10w29b+o9u35EI0dSru+YpayjV5Yx74cQ7D577\ndWdGt0N33ykZd61Q2vVN9y2ZUDOg1ZnAK8q/Q1DVE6K1o+9qHtz3wS6h4X76wGvuxWsUQHgXlbBG\nVjA/dnvhbX+vwmr9/1eEKY3z1cPEMekjeWY3z0MHZi/LtVMFKNwd2bQqQet57jRq76Nk4gdlABzi\n6WLu4apHfkWJndJMWqObaDrLeq21wPdMz0G8tx054fQ4ATP9mw1sD19fmu6VNjBVf0+Q8NIP98jg\nickrtqt+/GqWdL8xHFP/nzp4XYDwoM9kb7ZGTt1F0cy/37W1zjz5hRZU/ORkBm13+87XwmodaaGo\nV5QPaEJLy/5fp+5yxCNfJobvV4sAsl2qjcu+Ta+o1fHBX8EYVs+y8pqv4hTJS6UTlB2f5oLzvbk3\nXrBi/X2X57+25ElCy3f33AIJNvLlarRWvYL30nb3zkt0i/Ce6fjB6aqvNY02s3gnIx0vx8Auf7/y\n9O96MwUdKM+ZXPqt9g0w8VzgM9DmAu7Jujo923VMy9gyldMAG0PmfDG4jEC77LsVVFzes+W9cd1a\nsyH7jXCgwG73Aa9lXaSkj+E1YPh/HzaNcxdNUvLR5fOUDoVaNotwfmuGT+T0LJ7HR+s59WeVjzcO\njlft7vp1XvUYyEnuTReVbqrykWeC8ZmVDvC+H19pmsKkbZIRjf1x+t0V5J6eaRVhyvVfT8BwuqmX\nrkNY5YbWavkv4K7/P2/juyZCtO9IhJtGPYmNe2Q1cq+Kp1bM/QyRXo0f/VwL0pDxaeXwUmgs/98x\nZxW6FBT0ujMfeGWYa9P+1fuF6ZgbBa/OeH85/g8Ny11F2SH/31Va5jxdQYBZgOy0pVc1LN4p5Ftv\nJuY+Xgwh6EGWH7bU6FoRYGuXBajiWXJr0ut8Kkl9joWur+2gYYA7hbMqZfvzNCdxGb8ZLjUR1nHl\nVysgN25prqr181nL9288G7v2q+k/b9OKlnnPfNM3XqBU5lV7NHlAAAjrpH9FYeSt5D9qN6ztVXrM\n3G+7/L/jJ3dCa1eHxKY90Za/5Wd5zrr2a6QGvyz++Zn3Um69MeJEpmwmNK+D7KNFGdTnamHPtS+f\nrgvftzZLWlo+3+wbNWB2b33Vl7t52oFIrwz3y7PkZ37fgEak3T1Xn0met7IU5Q0rgLCu22msi0B5\nv5xaccOP5lBlBer2NHnHv8vuL4BaeRDHs14/PWMavF0WrKLi5v6pE/guqlDfu4KmfMXatzL6C4Ro\nmAGvra6w2dNK15pXn9+jZNxm6Pd63kKfO/rRdxrHIfPA1AtNqyr6uQJHczrUYvgutQsMuOW52u9X\nQV4lgsa8J5ReL7J4Hr8+a302r/ffNv3+v+y9Tci1zZMfVHXdj06MCyNxIc4EHEg2SXA1BHHpBDKC\nGBcKswsYCEJAcCVDFtk4C1HIRrIIZCEijiEoGRDBiG6TMCqIE4wODpgxLvyIbiTB9z7toruqflVd\n1d3Xue/n/b//9zn18HCfc66+uqu/quu7rVzTcbo4USbI2iwMLq6u5Hvkjfo82ZrQcRgKnK58ijjK\nu96w4QwGquDy6yWOi5SzcbSx/3LZmnL5ach+t3rCvgclhzuPzo+TF/yI4OWJQPmBWpXBTY1eCI+i\nlmljfwWVXYxjN8s+Tb+ZhfKZdub6YkhD5op8clNBI54E9RURd3kHPmNIP0GdpvkCmmfssrwIbWiD\nhWHaMfSim0cFyRHRBm3p6pBHbwMJL7nYeyJoDPJivOVgGXYTiirqKidC7JvEC54qlqrrm6Rvd0AO\n3Sp7Mx7aGPMo3ggfAfQ+wOSW0UtFvFL69w9mU6fOMLd3Yb5qxaesBWmtUR3nfxeiJ0IV1oAhTIhn\nevvLjX1d3Y2udXGI906eC6yEzkYHa3KhwfroXJuXUxtjuJ6/6VrDG20JUx2rVwa7EGi13IbGCd1Q\nV3Rq3Rp65XvC5Skg0nhwfLYLS5J9fweq9SDKIME+E9Yj7pXy+WslRnY4kI21nHO3ziOpJKs3/OZd\n0QtFHtaBNDJVrs7QwAvsa9kV3d7ajNGjswWKK47vVNcGsnWKIQ2P/sGNAQLmpUIeBvmAnfK8jd3/\nLN+bJtHVPuQGHA2vo7bkPbP8LCuQMA7k75g8PU5zvhC7s7x7n8he8tZ/H3LS1OvWfpv7kMHFfV5l\nv8RxzLweBSfhx2VHRn5WxhfljAd13uebCW1o9PJEGPBSIgy4o0WbQhqEQFTlY1vJabZrXrTnMSGQ\nMfPNfUfGaKrrQsp7b9d/Vi6RJtcWbuqLjIMK6sT0GEfTiXCbKVmM+ZlPIpyjZ7J9E3kGtbV5jaHF\nRQR3m0+eynZCf/M4XsRuW/yyMREiWDQ2gbbPU3M4ZThcG8+J0z32NUiz9MWNxmFc+3TgFr9HuDNP\nonxq8HlXB+bJ8PjhOt4Puhd+fWWx7shQEBnTlD0jmpkOKdtxDe2JBSaspIo56XviDmcdTMvJ+FSe\nTETkFzFf7v2Vt5LQuphnRMC1J5YwxXFGpqJJaxo4rG/N9rx7t36ViMZaCzj6tp83Re3igLN1eZI/\nJKOWUahzQtoOUYfT2XmIozJbUZMwrLKs/xubrgwZGVR1r8Ct19g2ChDiobOofLmf9aw7n49G99Y0\nrtWowNjdRND/rgXjZ4Rm7MFK6FvVnCvOOAiBvu8ZMOftZMJn9rsrs/m+A+P5ajxO4G7I7WdDPP9a\nG0pcavTgzqG+kfGCOrbyvxj7Ck6vzqy4tom+tPzzC75teIUzECnlrgi/CVPyfWYcs/vf5T/WE2Fv\nifFue9FSgu86N3Qon9YLJg+91iapM8N3BydxzZgTYQUnXgz7tgZeXBoRD+q4b+3NCL8+e4IgixUo\ndb9UDlTMe1faUYwX1t9Cmcklj8x1cvkOdyZGXHIzkFCD6uokooQoXUTqio4xtgUwgbWxFQLKKHAi\nZJd44rqC727s9LfnBSzXJnyOCgR1jxZPAiQCzp1/3gRVCMjsIul/jy7EZagB8VS24+pDFrLPF9W0\noo99/rDTmOb7HPMZZJ08AdAyZmtoyVS3tSBwCuKqLJ/xL5F3lb3bxSNGf2e2p3PattofWbJU7E8m\nbO68QqpzQCNJxL8eosF210yuYOXdYy7F4JIeaEmEzBrr6qzaCnQ8toGJ12YvyjVMbcp+I7LzaBCJ\nKRQBPiOv5eq/jL7tAMMZnNu1hvJtlEsLl7Jp/Iq1tFMyrHi5CN4dnsD1vBsCMKcV5nBQ1/0Cryn6\nZOqb33uV4kyO5phTx9U18m/FkFnxHOrtkZufVahgpKOSoHRJSxjGkOXcs2vPLRlx8i4BjrHvECpw\nsSnWJbQk0pvTEF/sK/6VMtp2dT5eNv/Cy+HeFr4ORQCkPRWa5Rx/Dpvz0wFO4/mV/v8UwEuJcBM+\nYm1ZwV3hdle09IrgtaZ9ezXWwbo+tQzW1ggez/Ne6tWIwEhlgmK81mYLRedaY5f08e7eju6fiDda\nk1fVSn/xfQFlGBwndk/f/6xyJUKUXb8awCRUe7Ikbmg9hnpM1pwPZeB/e5BGoPGYiGnR3BZKpUeA\ndqNs2VACFUNyZKlcoBJDHtATQf7Ld0UxPMvgtifCBlbeBAoXb/ccO3bOAAAgAElEQVRXNV7fJ1vQ\nDs1u2bzEZ1OoWejglA385t6/u47RlXbnCUjkFYs73L6PsIC0XaE/lDPwK6vv7kyKxoosF0T63kEZ\nqf8IKnelm8VVgPqEufqIdTrNC/EkTtlbp7jJmvXGgefwyPoUve9awO1ryztxfd1prrru/DPZk2yf\nVEanmHPqBCplIbaf1fV45A2c5GqrlHm0wOWbCWd4gcIrnCFATGZENGs79ffqrmEKmapdssV5l60s\nFNhuLOYsCOFpjOkWDbK2hVwVDUOBay/HqdJEPwO1dRE16s/Xj8JsaiThEDNYdPrZcIa5nm7g+Ejo\njLh5EpllZmqkP+yCzuKkiJaQ6DLJdO+wxoNMrQ1QicS1nlmSmFoLme5RSwL9ipm+cb6d9p/CXF58\n5IkgEIWVi70LKoav7GDn1dJdbOOeHvsijF9W00Wkie8cQROmYtPvrZJysfQqyGjHSQ6EXZ00MpVP\nz4h8DgPNkofrqHtoRGuzCCg95Af2ipppLjeup9fBLvtBVjWHebOEaeO2k4M6q6RdWm2z70IHlwlJ\nD6/hrTwG4p7EfSo35oRjadEeTIXrC1hhi/M2WvOyvky32Ojem88N7Fdlpc1wZ8Z3G3Fr4cyf56mC\nzIqcth1+m87Aou4TgVT2G0+NBO+fG6YrOTMvmNO0HHg6Mbzr6/J9QBT9mmj+r/wOFDlTuuN5ioro\nU54p61qeHNvCWoWnfLQzz86y7bjeIcEg0X7Ktoq5OBfB+v3ZEG8Oq9dNIoAHZJEPdTz3B8a7v8/H\nil7/HrmBQ16/uikhsgEVeI+VuY5Hmz9PuH0T0G4b6n6s8PJEGBCvRbprmT3xUEg3nbh03WyPyNOK\nNv4R7ZX9HAkmHlS0F3CegbvEpWIAYqKfCqLVqSKi6yRaURFkc7VqFy3WyiwW78SRnuPeJPmizwER\ncRSXRkXCCU1DELn8e5nHAHpRSTPq+QELJepecGx7n+s1VMY3h3JRCHKNhf5kUM4t+p8GXDOFUwV4\noOq8x/VG50T2PNeCYbg9yFMpSdZFoHuXz5wtY+EUqs1/Xlmxn4HshoZnoJz7KNzgO+J5Dcy6PosF\nXT2+3Wztn1oFtVZU8E4M+FRk/M6KzuRuC88YflvRMomxF0+sFF+QBLIbX3Y4429RMWAZyGvhr+NH\n2rcMln1cTcslwpQXJgUqi6LiTbiWKPUuuLjRl8tn9I99djcgbfqD6295XWOiJKmUu6iHM0WwP+Ny\nZK55YLL62cbnTIHkby7CVzLBJ4aVnkD0LKsUY9ZGgWvxzimsaOpJ7oYTiKEPPxTQ0MfxXbpk/Il5\nt63mN02y+eR8ZPVI21n4KvKD1fpm5olmZ+dqaizQdXo+b8b6ePqwG5OTENyXJ8K3By9PhARQ+x/h\nMRiqluRFyOo5STyzEjKO3GtvgN5RT/2MF7R2cfKfBdFamxGuR2MNSbRQACaSTLNgEc6SM0ZtbMZY\nULMQgTpJ2b1RmCxUTC608iIzBPt25rWSJdERoa253zc4isAtB8fVLLEm1WuvPCTWrY3DsmfZVyYP\n5mPnhdAoURBVZh8i35fFQbrDG++mJpIDlkOZPgfZYX93v8R5Q8Yo+31+n0iyRZe0JU5uIeGp5bVx\nWlQAw3JOcMxwnn6L/aWzGxpOoFts2rjOshBmCsHGeSQIk3W1WQkx1ubuisfbeEvjBXgF52G9FPZi\noFd3PGmi9BgVcbl7r28HmepO//p6zrojZaNAgfAgmy8R/qMQn1nQ3Hp279tgoUDehdJBVw/8tU4E\nFsz7IPXjEGet4DnhhQ7YxwkOqKj5ocHdkGA5GqI3RV8riTJv0WfjhZr7i+9eyTrHtal5CkC4xPKu\nvqR9ptDvwzkSb4Qr/PbMvQisHWnpPm4RR3mP5UpBn7AZb1o6uTI1e47n8c6II3s87s3oyReVntHC\nr9eBjncvZqufaM9UAMTkndFTuAJ55xnvX7yd4fuAlbHsRwfVJvgG4eWJQESUEJWopUvfKuKN8BC5\nuN//jNZKuiyZi4C/t9fqyqykdyctxVKsbkEFimETO2J93P4TTMvOFXGZCb3QPKcWBBWusaB8bFtr\nN4IwPpi7IDLld+IIT60yDsUL/BAXFVQW0wwqPKNnahdS8rvNmcHdVPbCwvKVP2DSBIEpnov+ahXN\nxiiRdqpYwZWVkw+ZG//d+r5UMIZxPK3fh22ARXBxI4W6DH9AcF9BPq6WSPHT2kHLLVYt60e/H3K0\nsUisR3+ex01pAXrxHApIRLiVmyl7VuUjTkkZ6ctZfpukjcT1+UTZ/VGeK4ZbRahW9kfWMwqO+dW0\nn6g8WllTP6mNTJBd0SZfdkVfg+AdtRaY2JXoSOnmBLxR97V4L6OVftsKjjkv0nmrUUadtXLr/Edp\nJCrUclz9Z/PWAF514GHeEvZsVoDUVyBjO7nz38f6ime/4CLt4fcVRO+73KvX4MABxpV181lpQemc\nhsWbqkTZhLh1r57nzz5MkihrwT1LPJEqfmJOtjp3tLBBvOAbh5cnAgBeq3IKokg4uV7piGlrSeK8\n5OCUTYwKsWhlsXvk/XtKtJ8gYCeeFRFaghPWd2fI+527rO8iPrt6eGiTXdtPnI/W5vBKORSCqjuP\nVdBQIc7qkwPc7hWurQCfpRJsRMMiCIIP4X3F/YPgbXyjucO/47w0s0a4nCIH43aq6HDMfobDUS3n\nEOcyWsO6JeQMolAne1qVUjTPOd7XjWtiZoZSrvAQsxkeZMtM7oYmBovJ6l3pn8xLMSvZ73eueJze\nz4T+w+s9Z+b3fOwizkuvkQ1UCrL4a6x+51mAeXL2ZVdKyXtCYRz90ySheD979YyIUuUv7qPJm2bg\nZFdY3pvrjhPTM5TGMf/R4FBA07/tqTNstfpxntnRa0/3sY72ZN8rUK+7Q55J/wIP9CDerqmHlGud\nfkc+DvmNj4Due6D1jfyaxSKV6zjeerTar1GpJ3yKXNXcx5bpcaDMlisiMZxS18CGH3yMs39F9zIF\nZFbe7d9BS114XWyXWpqIOsVhsdel747XfGKp6xnZkJ8b/B3bFY/zWc86Z/Horq9n5MkTYenxHOpp\nsHcwzLJKkCxXtn9T4QyPV04Eok8TO366Aa+VUbc0Nk0fkbdkWjb8NlwmG2iB7d1+3V2tXpCyb1c/\nHJZXAileqHkEV7pEw1jFWHXco/nh+9cuCsGJ1oLoqiv9VveyBcOKdTH3cX1jprcxbm8aT8nKqE3e\nCHRHeLU1srUWS3/Yz5nhzs6qjUk+UXDT+iRmEOuKFmcI1Jfkb92tEK4kopldjvG+mLBQsERXYSJb\ni0xNx5ugnI2DXX+aJj7LBg/7NCqt7kHONPD22vzOyVw/wuc5dwA7LyGck1UC0TiGlYUFrTaS7C8y\nM3gdl/dOgTUBSPPFbk1gHbF9mW/nLgt9Y/htBR9lMqq8Ean3UVVJ6o3Q/zCTXYuV0NTZbHtpEjJ0\nf3WvEDmag9Uw/H8TRRgGoWuzwAzqPpyTk+3OGrRaxXMjzq32RWgvrK+MiIkr84oMRrqBcfVI/8o+\nEFpjs/pbaeXGfYQ4a5/I+j29G8ux4dzrZvc74nwCyn+Qn4vIf2BfsF2Pqz8/Za3Yu3PyaP/Zrpu8\nXB2s52XcW3o+IFHYdN67/udnIuKEHo0lz6PzIueM/GY8W1/XkDQVeTcyzz7kNzK+Kp7PWbe56Jvh\n6Glo1n23d6F/X3TN2BWPSM+Rh0VPBLte0pK12rrr9KfTM9J9L+OkZ3zoY1w/2O9pjrT/tWeVm8OE\nrkyJxHnQTzJaWu0N4QPf2PjBN37MiCK+ONfQfyPVgZ9y69Dvw4lmh5wInq/w9Ej3/Sj8BvPq+jnG\n9rqaWwNv4z/icYV6BE9Zj3GvS1vflMLgBSW8lAgbENKV7ZcqnIEICCkcYEKkhQBFzeJdIX516GZl\niYS4+GdRoXCn3s+Gz9D6x8PcCKP/fQU791zM1YDHmxwwepCQ/cfvaZ1kyTFdf0QjrFp4a681YDQn\nav/89j51040MVSacIHw4Zu7UgnxSaAzYM3lHMIkSrqvIUGXv6Wdo9yRpETLvmSfEsh8fWAsCFdOw\nU5Z8JkRGawduT0zeCJwUgndBiYzM/mkYBI4HMv/GUM7VsKADg1qFVPn3CmZccIe/yOBGwX3VpYyh\nHCimv8WkwTvFWq4UyH9XpRt5i95dSK9+E4H1YNzxezV2ckJU/fDKYGP4M4UTKi7uAgrrFU5RWUXk\nhZipb2Htzo3Og3gnRJBobXHHPZSdNTKe/fuNNaJbXIQprxx0yg98DfisuK9jmbthAqZQMoWeCvqg\nSDC8cyu0ntPJbxlEwZmo2DebecUQShyfeEV1lrJmtcfiT7uz4Yp/2f9gSuF1O9UzPKez/YRlqnCG\nrA/Ck0lIT8zTsup3VFxUShyhCZFeo6IX+/DNgrjFfO3/PwXwUiIEcFrGgrDuhA4R1EXjLYdN1lYv\n7w/4DBer2xhB+83+EXkixlywHIm1S+r/muA1sP7ZeYx+f1FKZwKvWGr1u2Oc9wfNNvb4EwYqDV2J\nConEpQz7ZdaZpLPu+8fxdZaXhGmTJSXabn9oYqLFxAoqhyoVqB5o21CzrpaQsuDYK5d5NCAeri5i\n2E+e+ZAxEcsH7mlmdgLbjMbMUBVoTr/lwhwyLC25ai1yZPP70dPJP08aDVV3RrHO+v+1GI9KkJ3o\nXHc1MOGmUK74qx7h92kMuXhvTT/iU1x3tsA8btV6jvsoWs1nS2G+HlcG5MnyXJwf/f0DhlaZaNur\n+CyrMyrAURCKzLhZUNdeYltlxlWfBXZu474PCWVDnUhX1ENl8AritehoIfAFE0lfjbFLOLsua3xD\n7tkV68B1Je/7MQsN4nWoCSKrWwGmvDuVt5U0Lf/jGGo/mqNzWfJEvCLU1a37K/dUEUs9Kh4vFJaJ\npj2WKWpwqMwKPyvpGeo3RUILffTKqCzZo3s+zg1mmbb1vMwGqbm9fvbnxhG8zlvet2dAE4u/Mw8Z\nxtA98x4YzI2+4DgP5QGl78xjgAYU6xO0T7B3aT5PkE6bwXFuZwU7o01anvy4opeK8SQgV6xoh9Zx\nE/EX/GjglRNhAAfGB4lB3B6R4AkIUyDMSyYkxLuHnXuTbkgvXF54QFCPVeqEYGbW8SszTdzqxTPe\n5r62PqDlffGg+ExFGSYMSpMCoTstELr+t3c0zpM/bLWwPSeMgR2PLxEU9p27uI0s42N+k7HWGF6Y\nWwbGE+d6CmWgmXEjwnpQ+G3+ZNAH9iZq2LPs7hf3uFA5QAiqO5lvcZfr49rcgSWZiD1TdZpNIgHs\nV8bskeW/kH6dwCqkCMcgavXVqyhZA+57rJMavYexztp1a3gDE83KuIxJ+K0Tkh4nkzqczKqtz3qn\nTNRYeWNcubU/7hGlm9OkMjE/yveyJSXMpVQ3Nb8YzGu0gUL0pOwY45W5HctavRjisBdeJtiG0Zr9\nZCNOSNNwSDCLu/8d8x/Mgo/7ThhiNJ8fd9alfg60VAVEtrmbQgSzOqEad94E6GcJ05er0dvDC4q+\nvvW1nM71WZUoMr4QpsCWaV6euXbY+Bn7nC59o0/cyF9HdE9zPRkYgl7crtqcBe4dfUd+7GQ9RHow\n8VkM48lM6GHay89rsFovcj4u5zWQ7Sj0dV5D8PF79tFCiOiYf3eT1KHn4Q4//V6UE8XEXWG5Arze\n1fcZ2nQ0ENaA8l2NVt42ERxtCvRV6maS/cfEzfaT8kGHPEmft2SwrrgW2K2niQ10/xu9D0Mc9qXi\nNXO8fmoM5V8J2isnwoCXJ0ICeLh+BERgnH4TgRWtmAftmfXC1/1ZBPkEnkms6N4ff1t7LiFUZgXQ\nhE9Zeerj83ZZ7gm0snY5uxAOFtATPwVBbCESnyX3SZQn8FujxIKJQjlaMO8ycIuuR7dkJtFSCw4m\nbPT17JkEO6TaVOcJuH4l0K9dNIuGT1QWPVJ2FuJ6ILKkpSIcfblkXBAvz+ziewiaPHPHCLPRDMSj\nvDK1mtRAbKI16BTMy2Idyx7hqaRUm3d88taFJifLhzBAcoWIpYooWadVXVSvrR1tF0EtWl0rcAkE\nOV+x8TpOZSAP6re67fOSNBYWy8eCrMoZhrgd40Uzo0zUx+XEW2ZZd1Emy2yEQj6eJ0TrcZ72bBBA\ne31eQbQDS1aa4Ek0/Xq6FqRc9Kg6NjxukHehNYBTdZ3sKSwcZbTd47qC0cLVQzZ/F+X7YDWPd8YT\nwxmwvuP8TYUyznlOpDiCQWA8xxuoiMZeT4xq2NZkdIO2Mu9eaU/O1Uyppjgmrv3xKMS9iZ4deX1E\n1U0gcyhh7klzwXOpU/qxgn6anhlYjCez9ivRFpW4mg+DG4yzKUqjEuLlaPCCCl6eCANE+NBYQSIi\n3msLS9e2YQV4bCwHAhcXlsCr0fs7qaeE3KPumVxrQwTNygKmhB1Vk8v+DeG4GZF2Gb0bmxBERFc4\nDN6jhr4Js2eu3hcbMVPG8mr0ePBwjzMNe4rjsGEhIyeZg0Wojc/uQB2T3FSRYAeytaEH33j2RfAK\nDJnvh70nRH7K1isadGfxFI49CEnXSKDnPC18kh2x2CvuCfNvzLK3YkRBQ6wzb/A+auAzr5Lq8JLn\nrqHOjVAGyOi8wd4Vrf+01AMn7WLged7bMjZombPfG325mL5rPZEnUaM37vv0LTAwsX/vzVsFfZ+s\nDcWLZkvO5OaajRtRWB9WSaczrOsCFQRSV6NKCUJ6GwUOqYy7ebU0HT+imVasQLKId4VRsNyNLONm\nlbI96a9uDWOxgSXjFBUQl1WdvYaMcCMb29GBgbckPQ04X2Gf+UdjD8keHrSQzRMhMohfiOh90EWk\nX41MODBXdVhzQJ90gMJYWgx5pB/mFow0Ji7PR7M+WD8xgV0/76rzTerURJfuXO8WY4IzIDsPHF2V\nemCOLmbiZnRT5lPwx2Wm+1HaC3/d2AVhjbmfGd/BWsH65CzRPuv4WB9QOSU2zYuJuJlAKl4J2H9z\njTf6pf0ZY68CCeBlnQl0BpO6EtAnsrUh+FYguSoseaDg0EzwwvEY46S8Eryr7SZt6tl0zYmLL/3f\n3Hhc4X1p642NFyF5D/qs51Kb10RUVEv78tujWR6E7okz9udl49PX6bwf5X0Kv8s4SUfLUJ4wX6jQ\n8J63+I4pYzBPBXpVCv6aJJLgbCz2OyrBpZ+9bzmdEHrSz2yjMVPnCGmf8BVGQ97BeOHPZzOkvFGn\nsRI24eg2Ga+Ohhjfdr0nBK8HehZRst6FrrAkGG90wc0c8t31Az5Hj6BHY2fwkjH+5hQN37YrhsLL\nEyFAPBgYfjt9n8g2sDIGeqgZwRMCJUKuHHwCWUIgPcQApwo1LKsHPQOjKsLloD4mrHuXOII6sI9V\n3xEywoKE7hR2BCo/tMgdQrEPaZ2h43eSQFVySmRChPFa9SMDfOQz9iqHMjfoKi8YgkW71fp3608O\nO7fO7QCc91JNfNXqBd3xXLme+srgc1FnppRgxnqGkiW8H7ObIz1I1zgZsxEt8kcWpmyqGPZ/UC5h\nGaJ5L6m76NUVSDOXbFJpdMdMx5FqT4OKJrD+9Q9OaGnmwaUMsq65uRJ5z625ab7j//FsqseYQxFe\nU4YaOuTG0uFeu+9OwhkiMZW1mN4sMZrbJpSfYWj1jnPB8E7HW35vroyEM/AYO1WgBIaakvc9jt7C\nm9KZaRQ8Lce1kpWdhZykUKhXQsMYiFC0Nvr9GdoQ4SX+XuxzDH+U+d3O1cE+Kvsp+Cc0PcfRx/pL\nHVmdWpFWGEoukL6iYIJ/EwkyuqDHsxdDW6K3VbzlCdcQCrY+dCK3tCM/VvWuWncnyRWjYhuTJsY8\nCF7ZOOMeeS9Pf8Z4jbWPitGM30R2A/uo6wXHVHkUoKvbnsvesDriGGfKVaR3WX3Yd3K4wY9BgZLh\nG2lLVS+Omyq9EpqgNHuzt6PxSGjRajxnftS8EmKZuK9kPCNKka+N/XnBtwEvT4QEhJbEu5CRyYiC\nhn9fmAKLUyvbYmtv5fWghIJ5xJuzI5aWKT5PYoNwNzsy0Vn2+LuKuUvFE9ZDW7ToCJiDAg+8CmRc\niIz4vX1l4oYCJPJSjzYT2Eoo9/UJ42oHX9ZjTIR3jOsB45LBxebpknkrXNw18F+uRg3Me2LdjHXJ\nXzzUZPTi3jvHEayWTWxvd96vn1V9IPJx5kReyC0FcBQKdkwACXNmAqndhy71JYqlQ+jvGkIYS13i\n9MSeOqERMZb/00BiGB8Pmm9qIJcXpv/0eZYGZXAbK61QQZgCY35TcXkyVMLAvjERte4lg3SSG5NQ\nGC8AewGmam3FUIu1VfopVnQiZPwb+JIt+sGkzG/GxMacABGeC6Gb238PZZCeqZcWyd4vhAY2gYKH\n99YbP+gLX3oFnZYh1h15uu/QiIA0mLkRNSbMGyPgcjGRF4Q6Lt0zCb28lvi0BxG9pY+coo68YmQ3\nT7PiNPxdrIMqY76iPIUp1jc8oOCa4SjnUH3Rt72L3kOx/3jGK1/h1mWfU3YJNTvvme0rDvQ9nhft\nQe4Md8/GX5lZvTWq4gvJhwni+K+SlE+GiIRHxpwIp+DoHip48cqlx/1bm/DMNB6EypMUPXruwirp\n5YSXU4iDV9ZYH482rnputg+jQXPH88ta+GaufWxUb5BvDF6eCERESqQsA/TJYZ2GMpBphamq4wKB\ngET42reHDJNaLTZlT8HcP++99wzEmFCiPcMuLm5lnfAolhKrzgXjvZ3bsDOMCZwZEmV81lUuISPS\nnQltUzn5xYg9KF5mlbPjQMzNVSwae7izJMx6WY/xUgEUhAKrOLdotcYQ920WM2U+zlHfAjJxaLF9\n4+52rAIhCAzRKjG7Tq/X/m6dzsm6gHnGIRPT0qjQhbjImGvisvP2e5tz2Y/yEpEZiXkOVlf6aaJS\nkVitg/6vfF7kD5m8pi5elsdQnRQ3qi9PnTxdAqGacrAEIcwEvVBvEGAzC7TDsU1NryEZjurd1bqI\nmcb1dw7Mft1sL381IidM2d/aIoztBU+9pMzqN4Fn9oApWzKL6UzSkd4o7kd7FhQb+Ls7PiCcAdqX\nclG5Et/vP6A5e56xGH4hRbM+SChexCFTwCsPB/ihgL3idXwoCCpmBT+0/IsLPXqSkPN0kO/mJdXc\n/EmfpayNTaIsARzk3MffED/tA0F7gTe9wnN9T4+L6Elbn6nOC4zFC1fGbla+IC7Z2B8ZWyK7Q3YW\nZ/OLoSxTGE3iiZCtE2nTEmKjZwj8l/GNayPs4dgPHKOtTHBYDkO1iWye5bN5J+XGjKz+lzf/C4jq\nc/ibgmr/VbHo7t3C3ZGoJkJ38fBl7u9cFDxTl8/ZKJfCZ9MMFAxWmnqE28nfpvfzOjk5sUwwP2vz\npAdizfkawIcLLXVjfXJ24zWaRMKU5PXFQ1x/D3g5q5ke7GfkSjTunw14zaa29Ul1H1sXmRwzkMH0\nrFDAEBljXQoBh6DMyXOvfwosrSCTqdJjOntdr5UBc/1tvvWGgg5j7P04xDuBvczJQuf7NmPGo74R\nwTzbYrnBDCc4ndDmqpvH659ywRHxM3d0EFLPqs/rvHLBPC6pj2S4FwZ++u3g3TvWP1Q4Ea3mw+g0\nEdAH8nscb4uYlG36eU0VLvgb8cHEoBl+CGVfsAwI8XcgVSAtcNnh5OtO+pIIxy6XQyRnUBfmjDA8\nvMCeK8TWeGRQrb3sNbsZKqcVMfRE8QphDLlywQyAUmZVv1OgxILF4siMErvxiSFPy7J31qSOpSmS\n4nxLnbhW0OiVKVrQUHJ3j7zg24RXOAOAagmDm98VNqdqXEVbexmhuHgkrLsavV0Pauq+CvGsavW3\n5HZvTPTOFr8vSZMYDgXDQ5JEea0m0XBDo04MHmyEwtzP0crC1MD0G90X0XVT6mgwHnbVI2vdk4NP\nI5J45scYO0syBGNMPoEius6i5l/mIGpfsY82V/33N7ZwBnHjk/mYXKd1ML2FBMMsVhYtcV+Vz84a\n4Yh59T7Oqbib5YfmdVnYzMUNXr5Au3WNuQZtO+AzCRLAtDlcRhm70pKJIammWTTGuJIxqzLn2qeB\n/6PNoTfIFE3zooib9XiKA2XTuJurKeua6VZKtMjb/p3iL8PRf5FPZoaoPagT0y9jH7XwHC05EeIa\n6QmbyMZR6I2Ova9XcQfm6GKaFx0RUYsvN1Ak2F/0tNCh1/0+r4/+fNSX0B0ivx+IZq+MVRjD1ViV\njjzmtLVGcr0aQaKojvsIF7jIFIRh7cxmv65MvN4e9HY9lA4xww06cdNwtFZ7Kx8U8/3B8ZPmxx7i\nQZsRNNnYWJduDeiY+Jwc9jsThthdRPSd1Gt+Tbre9OwJ+F7xHeikc6OWtpO+ylhcDc9bK/doI1QP\ny6oQ4T0v8LadB5SPYHiT0nxB7hoPXBnCuZ7rYu57oelYwHmC/QztVxDz26CXYRw7XSNk4xfHUcaB\noR6/n3siNSzvhFQ9Z3F9NvrCdi0xzlnkbYwIXTAYcg4x4Aa8DbyG28yUF8Y3Ic7T2gKcvzBZIjkZ\n16tpX9/44XgJW6+dALvwSbTm69g3+sJE/x8BXSTSthjGurMF/nzp/WZLShu9DtmS5ckYSX8erZ81\nzJ3PfDSmNzJ+UftMjVq2PuQMh73FhHNoY2/eCIPeQn0M46OeIroeYP3AMkDBvfOjLTFkGa3D80QS\nmkoC1uhN2T0+uNMX5PGmNYO83PCaAETxKuxIC6Weh/bN+ktke0/G2BJ894S2TOOz1AF7W9Yw7tmM\nL7d5FFwMB8U7eGM9ms11l28AR6EJyR78LvAjRD6huozHtwXt5Yox4Nub+wWIVvWNPeETcExhcI2r\nNKDRvTUKbXrY0NlkoJAgRGay6KrwLTjM2ZcnLjfpZxbLXkHmpJtpqau76GOeibuw2s9CwHVeQbN9\nqv1tDyv4aHi1EYdQinUfsLkM5zsjYEmiAhTzWkF8P3sd13cUYPBvX3/ey+AuHnhQOqvEZrJWAsSz\nMDHx8Lu0qQxOpBc0Mx8VnIxXNi/Vus8EvWVFJV5rPO4kksffX4cAACAASURBVMS98bXO36j4uQOq\nGNa5XuepiO+iAqHErya7bp2dwDPeNp7hvk0qiGjEN8NEz6FfNV7T+Ui2h05QQbot5U9o+HJODtp9\num72Z2hzZ4f9ri7u8pfO5vd+HqIZv93YiJHDuWKT0TelkWUl1xJZpwygwCMl5RkER/vbPG5sY5q9\nr/WH/qsgdplAnofSWOjcl9BmbwN4O+DXpn5ruxjuUI1RrNt4y9yLwMpb/yDUgVCoHM9GY6pIcIqU\nM3qByniHzyXPPR7twWl4eefbmt1sQKT4ynOtm2yMca1GvHA+3Tq+QUuj0J+WIbuhwdrp66GHW8Dt\nZGRjdcwvXJLTpNm8AU6PxvQAnhUVwFcYA6dAogZ72oxhK3jJ0t82vJQIAKhhPxUuK7cs3Ng72B3k\nRDR5NLyJ9pT9hjccRt3U44enjX5z58fEindef1Cb724/gEuv+gka9uyQDQeK/GaHn49LQ/iMZDDW\nVrwNAqxq5AXtlMGBz3YF4x7BO4egWp5pPnxWB4YprfL1ytSTKn65QCu+qitYbTONf4wDX+EW67oj\nIGWuxHfaxIMXGUGb7xxwD0/1J/jcETDugK6JxCV/NxTVWGc0AmmHCFQoWOFePNmXQtuEviCdWeKt\nE3SlyKO19E6CxWwfRuZXcEPhYnfeoBLT1a14rtcsWqiYKF2jVf0oaAjtKtuBZ7JWvybcCQ07E4DO\naGkcM6OfbaKP0UNgBepRgsaFMLcnNK7vKZ98WdugWcCeY9M9fbY+P0F3JKHpYgKqes+NGDeIPa3p\n54runJ4pXyvB3EpZED/H8itjloODQf+o8uronWIPVTjcVYieKg/QO+iIhgBvp7kIEgVzplC9A6YM\nOuMHIt3wSVPRG6g5pcMLChBm5mv+/wAw87/NzP8DM/93zPyfMPPvgWe/wsy/xcx/i5n/2EfaeSkR\nBlzg0tuZH9tUb6qhk3hQYbhpvENkLmzg2scNBEERKBuhJplJ6hcGIicld630au2I9WiHg9SVlEN3\nqoyJ8eVzRpyI6CLW/5Vbr45JcMMiIn/vMQqehASRw9/+2cbe/kdBmFdSHuCAONvn3L083p7xFvB0\njHlgCCPzba7K89iicqV3zKn7XcXO7dp50tjvjRKF0xOQHT6moMvHMgMNv9EfLrIEeZnAiyFCzY2t\nMsYXWz2AAApkaZ90Pc/9wmRObl2d9BFdFYmn8qzlwnuAj3OhJOinFh79xfWx6B+21cLfan1cYXwy\nGnGF+YjWN+eqGWnFoCH2nNXLSn6fPBFUgod1MypuEKstiSZZ3Wu9t9IbE11vD6vLYtmI2N4VzzCh\n6agcE2+oN55pAF7x58xq13DnvTwT65JkJfPgrY/9/xfFw86kN1i3eGND/2v9cbhixwaxMia76XpE\n65rSayJTnGkbPgzHCw/hXFVcm797HcYBwwzRXf4EdG3rFDOpuzO1GT+gzYIbPotzQIQKHTjzuLul\nf+HH6JsZC96YPE2Dvk7nBst5mQiURGSKMTsLnTIhnr3J2MueMANG6B8iROTprJxF2m9bO55XwvVi\n47RSbphV2feNoT0Mo8C2sD4eL5s7u4USmFs/GiWAzxu4ohUa5yyucy76Kzyl4O68GsjGwfVHQ7Bg\nbrQeEzhjf5HHY+EjtEzgfZM1p3/Ve8P6JX3BRYj7RdZclpMG6SgzhC/h+Ck+ePYBXSMbC6nX8LL5\ncmdVZMAET+gvFhX+TNcOVgP0idnjg/ilRhDCPULKY0deVBXDYfwMb//Zz2fN7O34lhf84OGvEtEf\nbq39U0T0PxLRrxARMfMfJKJfJqI/RES/RER/npnzK3QO4KVEIPK7j/whGfeREQuvSCAKTAHZAZQ0\nAe9AWcoOfU9g5LD6wsiU2jNk0O1AYkdE9Q5gOAGUWZIDGeohqCPSWvwbhYTeh8+nREiwj9zAyXDC\nMULciSgIq+t6o4Bzp5enxNmY8lzoroRaJzDhKUY09SvGv7pEWfCqW1fshRjZL/L7Gz/cwezX0WAA\nyUKANF8BBVSnwQh9wscEwsh4l8fvWX93kCWvIoJ+hDFBxiCDOOcx/ljwndsB5k8FNBAgiwYvLDBN\nqI0jMqHTGECfkEmJzCSGr2TMpRMwkhGKaytD2TFnxOnBhYoEfc/ROdsXqEAgp0yQdjG2OBmUZA1m\n1ibsY/zurPs6zjAPRUI6pQtBwJM5iajO747nBX4c/pb0Kk4MtpEw1U7AAbyJbK/H2jIvjSuUx3NS\nY5sLUFoF72E7MrY7iMI3wXfsl7RX1qPr2wvJTOSUoFivCS57QIWBF3DMy8/64+cMab8T7rN9SmPt\nmqZ4PJgVCLih1OMCaSlacnH9TMJtsddAIedyTICAq3WS58+YvJDG8K61DePDpMos+c3TKsP3yn4n\nG+P4XJUYJOPerC5QxKFihYi68szlcEIlBCqRQLmACpKBlE8a7qbNraecFvsysr5tDP3603phrB3P\nJh4+ZGsQaYebkwQfwYGk36AYehO8Lr/GcAwzuiS/63qDZ6bwAwUp+TM1O/M0FFnKyjjquJE2jHsl\ny91whXWs+UHc2RG8m9mfR57HCdcCj3+n/OyPChp1D6uv/f8jKLb2n7fWJP3RXyOinxuf/zgR/Vpr\n7e+31n6biH6LiP7Is+28lAgAZhFcWy4ckxEItjyPmu9ZiADizJC4iyoGxWsPozBs5WZmct3pdUFz\nM64t1DHUIf52hEZUzmTjdZ27WUVm2lvf5GDohZz15WIvSFzIVJ0KoOxwYPg9Y+Aj3uoST/Mhm7nw\nacjHxImgcNRPJLVYJ2vS9wE+y8FSF+/NUc74Wj22v6b2MoEtbeSMZGVMaFpABGn5mfza2vVZmQiy\ne92lnv6c07EgIrN2F0J8xqwjrs51HKwwWpdbCzOhmGLZL2MwBFb7GL1t+nfBsX4nyxmCnntfLb4S\nFoQqEK7LI3tJkXw+iGgkiqmR3OUDWO05fZYscaH/2TtR4TXlqYD/aO2UpiJO2Aoy3soIk/dyOb0V\nBiG7jedkZ6PgEdeZcyFHfSPZ5wyy9cq2yZRmorKG7HFZt8zDaW4gRV14A+tGSodk7u+A0oiiTitn\nQobyFJSvr3L6V9oc975ZkSPE2xmycKu06V2btD/PMewPwSeLRRoccVgbkLJ3c54uWJJ1fYCQK2sU\nkgT3elEg90Kl/L7y1DkJ88uu666UcXJtZEULWxjb7TkecGPygvnUPijts/Go6l3hWb6nOIEyQZQh\nGX8U+MYTiPQ/L9Pc+kJlqfKPFOl8vnYbQTgizRcWPxO2/IIl/GPM/Bvw/089Wc+/QkT/2fj8s0T0\nt+HZ74zfnoLX7QwDsiR1fSPVuzNaE/vn8e5gxh9tduHHsqYN9ta1jE8Vhuhiou/wYKfz2MEVoKLC\nGRRu0oXbCoRwUOC4OqEpKGVkflZyogl5HRqN2yamwmscs/WRlot9Ct/7bx3/9eoyRkGzKzshtQGT\nM70Ijc0YZ5mQM0yQSb3YsvKf3iOfMr7QN2ozg5Ypj5xVK7bh5OSoXS+Y3UKqX8d6z20KMyAWg559\nu+9judEEwSXghFwPzoqy2G9mtVozDbu+eAFQ9pXcjpB7FOCVf7EqZIrui5MzZLeRPANMQDCJfKVx\nLenaaOCVhcK5DEC98KNnDVY9WfGiezAFgX58iAJ634cgAMDexbUj+zXHs+8NXbuhnOKE/TmYD7X0\nJl4IEdyNBJu6MaRBf2Oiq/k9jgrSmMn/RAjBftx5ydP2Do1EYdZ/8Xuf9DdUoPU1EKyXbHX6tdLo\nHXablpGz8/LKwArvlcAqbauFEraTDpF4kZWH8OX/hrZQoOxnfZxPENgwPGXBU+lnGMfYrnl9FHhH\nXAnPLi+82bpE3I2HwRsYBC+Pc3PnQdp+ELyRL1PFSsibEj1LBPf4eadkkzKoUIzPOh4Z3r7Mrp2o\nIER+1J+1K1wb+ElmOEXPjBnpSD9OAXG9uE03HmgZFs51hemah0AF0aN5Q0haF8l+bdO54ZQKZMcc\nrlsiWuL6zcH3k1Hy/2it/UL1kJn/CyL6x5NHf6a19ldGmT9D/UKm/0BeS8o/3ZmXEoGI4vjJYf2+\nssIFYoeHyV3ig0L7DqRui/lmervM84WBsVJX0IhOoc3Pktg9kyAoCh4nsBszdw3fISWTeURm4UGN\n3hLm6xREWZONCxJmIi94y3fBadd21cfjMb1wUfjKJBPylFixEl4B/6VlWr0JcqvpDpZz4UIZzEU2\nzoOPHZWDEw5s5X4vylJCx3jbEh1YU8I0PMj2XKQLmcXX1bdpK+K3xM19uVIGXiDLip236+c/MudM\n+zE7hTv1iMJmX/DKPxPpZDlX1iHUOGvYcpLWzZtrKgjw5JlOokL5UzDn0VV2BcIkWt6GsG6pkXjN\neEbV1+ErtbUV6fdO/n7QguDs+gKMt9D3tc7MW9nwXI80+k6ixhkvOx+qWnbnqcW/y/9572noRZv3\n4FRf+lsL762ssGC5pc5v4F7PhFKl0fpgvUvVUkvWV765PnQdIAqHU9n7OM4Tweki3StRseLaBGV1\no1zAXtEnN6901uOLGj3IX7Fn/ah5KYd7wGt1ruz3cizflJ6435G+Fj1tYW82EiWWXWnemqejUp/l\nq+BxtfgadrxkVOxkZVERdgJCqwR/DER3exJouqxPUyCBcjRRmOwMioJznyH7K1d+ojKv2udyxebu\nNrIXfF1orf3R1XNm/hNE9M8T0S+2prvrd4jo90GxnyOiv/MsDqey6zcDSBAyt2zVYl+WW8DHEIpm\n3rud6XPu1E3u0zUtv9c0y28ON/gf3Y6iNjmjae5ghc7x4CozAarSYsd6d2UymOLBNCEU0XyFZoih\nZz8//XdLrii4vLHdF81k1zFh287yNH7UfoekP+ihkcVJymdGPPWfPYvMeS+PTJThlq3DKVHUNU7N\nyLzBgsB8cE7IXcyZE5Sx7/BZyjkNfMKUeI8Sv970XfKxnoycspvsy60VHKcvl99T+orgqxlRLx0L\nBpyjQIfNR0bMXBZ9bCz2NxvTydsGPW5gTHQZQjsM361O77UzN3qRUyiI8CeeCCH+83QbV8y6CBt3\n61jRElTOEOF6mvN4aA6XUIkLZbgu+D62/xvR9dbdgjGR3ZvuH57HUvCBcBC/jwetvySHjVd0abiQ\nnAXJgov5aioLXSbE4FrCPcpMjuZEWhqvKFMGk3PpVfoZ5zDu746X3/sqGMd3oe8ynm8D/zccB6Rn\nsr1hn030GdZSXGdyRuu6wNtswLrraLh738ZwB2582Z9rF/QT5zGuG9/2HIoTzw8/p/N7mpCSLPyP\nWRI8yjzYmcZjXnHsXWOKSD+PjOZan+WMlr3hxpFl7dlYa6gF9F/WF46XKmNkvV8hHAAUNUS2XwVd\nx8dpmXl8hL/o+Nnv8veL1uHPJvPkMOu4ow3wHfuCyRUxv0A8V96Uz3zo+xIbj7c/MfSLlM6RtvUW\nxtqtYVhHMa+z0RzbNz1nUkLfgS8hivm/BN+eYNEtq0hvyeoxnpEVD6MjpqwrQyx1rQENxDLkcY64\nY14EGUPMZcbuH+k8yBhmPIgM+pvcXhb44XSOZM6RxyZZBw9Xj6M1NM8T4qEhwXtS9+MCCWv8Yd/O\n8EtE9G8Q0b/QWvt/4dGvE9EvM/PPMPPPE9EfIKK/8Ww7L0+EBJAo0vjcaD4TS4s+vgsHn2sDiP/b\n0Pxh1dn68YKObd47+3eKs4cOYf1RUGRiaokZ5WKz5GTx+itvjhhefBKjuPJYEPfRTDsq3Xw0L5Sf\n7tN4wGUg6yNaurIykQlN2xxEXcYdhUyrTw5QbNSfshxOFsz5sIOfxB3ArfU95LaXnqIHE0HCnJni\nRubko1dvpfuS+lg+WtjDxbuPFsMZPj7I0YtoEvT8w/43Gcdqf8mZZja750DjxIOwuYOMvpy/PPbD\nYT4NonkcHq17bbTH2v00G7+M0cQpiIrg6X3UC25o6glEj6kMkIbWiikjpJnC+w7IeGDf0OtlcgGn\nenlHiMX6/jsgIxdnH4nIaFQb9T0W9HyiZeO3B81rWgVEMmHns8AJwVTvdSvfumcjkb8JA5A6Wopc\n7z2vnPJKrazywzQLqfLI6mhE7yZ8Ii7xiykb5PuMP/JAU1uw14ouub7KWfB+eLXx1F7Vn9U75PlR\n+VF4HuRTVyEgkycIIZ/lX8os6BEuMu8OvSo78FZZfo6Lia42PBIGID1DpUFJQ657Yxnz0hguw8L/\nAcZjNUq9rTpfmTPGEalCqTFRG4YYDE+tlAYv+KmEf5eIfoaI/urYC3+ttfavttZ+k5n/EhH9Teph\nDn+6tXbk0JnBS4lA+SaVeKa0PGr7r1m4FY0nX03v984ZBmOQJkEQcQlWQtHAi/JBiRblsdgCeD/7\nHfio4CWEKgPVsIMVBN+LiYP6O3UipkyRwSRj3AfmsnPSGKtENa7WqrscMc1zkGne5fcoFOwYZCke\nvSHShrFeJmpqhD8QEsjGD783+OzLiqVkZtB3a6gf/JmwtRCGE3BJjAJTQwT1b6RSs9jOeIornzD8\naBX9wnBDCfm5zOdfrFprhSBaDvr3ILSpNeqecB5d+KWu2F+01Gl5ItuHQcDIFI5EpM6Tx/iB0gHx\nZPrEu9iva+z/Nui5Mc9aRJjqxcbGPApmQQpMHO4fV41ZgbTeALMgbRbRuyAM5cU+Xtuei+CTK2RX\nyRQnZnqBR8a0ZvsWy6oitnn6hGXjWpax795q7TiHkOTHKJ8LTof1Ze0+hkLCuzajZbALREgfRVDS\nMy2s15UQreXJxrKCa5wxarEnf5bKq5NC5gYRUo8CnsfS6A96fprCQa2qqXLXeISLm+ejDpReGBc/\n5+QwetvXIbtzPPKDD25EqDgmFLDFlRzOdhwPXAuIf5MrwxPFZVgLKPzjXEpffL8TPkjwGWL9bs28\nBbz6OT7o6+jHMmfLOOseoz7xIL1Iwq/CO2SeErIu8ro9jkQ9KwF6o2L/8TzNFCjxu+4H9XJht7bf\nmOh9zHfFo+DvSENxryFdEkVCBTZ/Vl49v6jRg1lDLHCvI99+g6X4duCDtyd8bWit/f7Fs18lol/9\njHaeEI9+fBC3XyTK8i1TArjvC7eo6rc5OQ/G3VsDrXl3LLuTmLz71ty9TwG5nQF7cup5g8y+WHD6\nf3+QWFKshXA3HYg1XEA8UVmze+8EWptj5gSQAcjiT3HeVqBMykZQMDfEBJ/gleDrB2GHcC3ytCYr\n2GUZJwIL/KYudR/M0L2YKmtWmxJKjfqK/Zjj6t279XcKezNlVo0pzFyMiWqmBttfQZ6DIwdV5KDE\nRVR/JqBHQfjyONrf1dVOqkiA31xiufHkhH5IBuiYmM7TFHuuHhMr7mfhkdCvN7Pwji9ZgroizwTD\nunPFBxMs1/Iy2W08smb8C/DiBoyW7Ne5TPmXy9pdWZ5sTZtyakWzMJ5/KWRk7xZlH20+P22/+bCQ\n6XwOmepTnOGvZ9Jr/Mu6EiFD+iBnHv7WPfEi7fJWUqGH/gyx9lwbgV/QOkGY1rhx2s+nnl+CC5y9\nHMpJ3aeg25NNOGaH570zOraM63q3jS5en0072oznvOwXeQ8VIyd6lZN+m2D5WVpU4FdC41fCi0X8\nxCNnqpPy9VXhLfl5ZO0yEX0R3k3/zutN1wyOO+XjzRACIGXdun1SMy1rJHub49qWfS3COuVzvl8H\nGI5h43q6ljG0LI7llYz3C16QwUuJAKBMCdkGXrmYes24MeEYR6eMTNYeNUfwYptRm+yFYYsfjMzo\njolz1tjsObWS0GfMw7OA97kvGT0mly8htm8Cu+VE6P9E4dL7JPFpb8CkqZucWuh7ZU8xkYvvyuyy\nCZrVe2X9bAcOaqgnuOG2HWFixAlw3jCdCBgylqIYDnFkVpeg8ehzQcziHu81J6xbFBKjYyulVWT8\nY3u298QSgns2rzO6cerBHS3Nuq7btO5X8yD1tyf9/ytFW3VjDDJFuzqfhcnig0IVzwoNngZM/JMv\n+A1+JxMcs3nb7bPpxhNsnsjRafyP5w16ZMWKotLZxUIX3j8ZuL0GfU31j8BA5v03CSlrG5njGKNM\nNK8vIMOuif7Xj41477hx1v3dbnE2zyzNZ2OAZ0854w9MaYz7PggfYd1c7nc/PiuYrM/Tc+MzzHDh\n83nE8XcvE5HLHRIUmn4dNB9DvhnbzBX9Dl+CfTLaO4Mqxdy4e7f1L4XAWrnLZ+Pcf695tqptaUdp\ngyg/lVdC5Z+P/zf89p5ryqce0hjpz0dB+HExmLHgQsmZLu3yLkjC138Ku/2k5cjzeo6/l3VHltfB\n0dgnaIp5WqFyoCsUHw+eDCzMRG/XA+Y0+z/zmS9IQKwZX/P/TwG8lAiUMxG4uVH2MCsfKfMUY8xF\neYCCv77P3S3vuizJiSW4SXALoRIYK2lEqjnChX3I+oUfGKQA1Jxj+X4grS2P82FpP3iG35gfVx4Y\nKPRIMOYTFTL3XXhXBFuT96EC4ZJDGRVG6A7pD5YbxsMJsCfOM4CJqkOe3RrDjoKwBMwbD39Avoiu\nN+/dsFwnnwgXIWO2ZxZplO+LMLf+zuVn5gCt1M6ysqkPmczJ0hUYKumbtknjHJD3m1kkrY46x0dk\niu3u7RxXWY8ozPO0kccYMqwLNnrGV9PxWckG8btn5u8vnGW/iKc6Iz2p6mIiUg7OKRJwXGSfkKPn\nTjEcG8j+Ejl6JU0buZ1pxfFIhfPFJ97az8vJXs49bIKlj6D9pNJS4R6K+pxBszJArPRabxi7paUR\n1zPsr1Ma17dJg3Uz0/oKUHHaSLxoIG9Cs8+NiB7E9GhMrfEId+TtVX+GZ07joqIlf3c8T85QP2bm\n9ag8CuXrChUd+rCir6qwH8aQCyz24Zw2vIj4y3x2zfhb81Ep5/mLenz62cquvimUCHCIdFe7Ce86\nhUWoM/IlwtexDdV4Zu3FMIasLz7EzQuJ2IbgovhLw7CHZB2U+45I+QuGNtBDVval4RDGVJW4oPxg\nH8pR8QxKE8IYu/oTpZDnAw1hvmbjgvDZfe8OfkJ+55meO4UvjBOeT1sFTrYXBn0ShZsmWGQ7fzV8\nJ9xqdhF4tzK5/3KeVLLIC16QwSsnQgKXUAoA/Alj65Bw9q/3tJuo5T3V6DA1y0BPOSO9fH868TPc\n5nqOkxAGchrDGebyIoTl9V2oWY+JYhZ9lTGV/3KVmVwXlL5QwKkm2nDzjH7EWZUz4DHhlU1+LV36\nHYQWECocflJBayUjV1kgL/YJzWwM+48PZo1FzvbIMyDt+N5Bve6kZ4ru5Dz2woNkPwXZkUPiq9QV\nHRSAiUV4ZhBGVWSHrrMKEjnGYqUwuZ3HYKH8SeGwIK6n0ypP+ndSz4QLMX2V66Pi7SWPkE8IlQls\njKBj2gvpXOhTVPz1uGkeTCjrupgFBzgDipCJi3sOFWZyyboq5n45FEx0tZ6lop4HDOcI5cZe9DHE\nnuYJvq5dyq+9q4STTOHYcR/7jEZ8cJsFE6xX12p4ViUGjghh+ESW3BLDQ2JXYvFqqoQneOOHhsCg\nskjPSrKQmIhqdptQhJXiTvDoeIL342jTKRLIz/WMDNDrxIPM+utvQ3H7IZyF2Dc8E3F+M6HffVfB\ny0Lo4hpT41DhJYCCvr8uMY4f06P50+2anhuPQuTXBwr4c7/gqEcFUOFd56YG6rc+42fY1+HMwQwO\n2RoTpUrkWZS2jt9XXoDdY5Thdob+uXEj8WL1dBSUF82vS8mF0lFobkwn3jvue+kP7sU+CJPSTVoV\nZSc3ofngkdDs1jDJjyBjfBUHqQvjUAas9+Wx4Lxkf0n9gtvb1agBEbNkrp5/6vlyPB86e6viWniS\nEfhpA9EGv+DliSDQGruYQhkYiffK1swzLu8RUBuc4vUw64QdrjEWKhA3mgX5BQJH3KfEGOMQxDhk\nLas2GA8PEUQTFASyQ+UBLlnoincCaHHA6UrjxkYn2ghgRVew1mbXsAhRtohCgvMiOca/tlZHqxVH\nSWLlq4zvHeKC8MwNNDkjZn9jDoOdYFrtP0wQND1TQdCY2kwBeDI/ONzoJq4hMnS0tYyhDFsxMjcy\nRlhvKSRIX1aDLl8XjFxVBUImOyCYFba53/AZfieyshUtEfn5JCfHKaDX0fX2UEHjLmSu+xcb4+gU\nhpTQg7AILNGjX3P9cZvWiNRbgRNyEuEJy8X1KG1ma0gY1krJJV8/mo7qZFpbaGRloZzp9fmcr0rK\nGZzRyfiT0HKcN0xyFgUmgez4jn2P5Z1QuhhM9OrCdkwIfF552Ov0iltU/J6+uy7zHF7Own+hkAh1\nBzwyRXA0DnwUF207+e1kHuJZFZ9V9SL/QnR2NpaK8Ye0d7bHNKSH496o34n4fQ1ZL0uUPuFR0E8i\nT4924cc5As3xLWXoZGOnZEB+cvY6arDHWzrPMS8aEaXn8wu+HXh5IlDOCFTXs0WI128RCQFNhOEm\nwugan9VjPJg6Y1prL2PbK4gZeb+2dkmyUZ/QTnWxDmONml8EyQDfmXMjmK35zPlzQzU20QuiLDc0\n7NKGzKUTHG4ImHegnZxsBdxlBhH3mSEerrnjmSbTVEHRXl4m1dt0Zcksh7+n4Jhl6BmiEvHKXHwz\ni49ATIIWx6OC7NmD5j424qV1Ilb02CjHEMSqcwoR5+oqNKz/BMT69hOD6zrOznxRXz/XENjfyObs\nI0LYs2DKLlIr6tP0vpgwoc136o3hPtk+q8BCCfjpdfEYFsKs7lUS3bUi4aDdUCp6XlTn3B2QcY37\nMRurVUgF4lJ6LN04g8y93PJ7uKo27+PYyVnTeNBAmM9dmAiGIJ+GlEy4TIrQWomU0Xy39hWvGRef\nQDN6eo42b9B0wSEm+SzLUlAITx9O2uttOUNNeD+zzMs3nSta8A/u8w2isFm/u5rwOVaVJma/idbF\nMsfrFyUnAt74gubKixu9FzTlM/JZ/PjhCSvajxRenggLiFayBi5RYh2SuDFjCkGLXWhbJScCHqBn\nLsQjhpAf9MYP72a0eK+6bi3FLdFSR3jGCr1tlyEeWo1apwAAIABJREFUO6FtrM9yratYOr1HRIe7\nLp2YE6HCZ8Z/X+YzAK1lUVk1eSJkLxYgS+T7oItRwea9ETw4F/LIUCQTe9dTpcKpgmwrlde2Na+5\nr1o43f/Te0k9RJ/LBMQbFNCj4CkLCgE9TZnrDyBLM21aXUWYgrjbXiDg3Hl9Mwem1LxHM66rBXqP\nyc7meVglBM1AlHwYz4/WxwKpM9xvWA0RH6KhfCEbNwH1NsroNxO4ovs+5AJdUge6crM/y+1mBS/E\nZMlkG7wz5UVoKGie50Mg8pbjpeKRvKAdLaP5+CEPg0qn5t4l8nlfckT3a+TStWYKfh6GAI8XEQXv\noDoBdFgvBV+WYcfiCw+hSblXW27Bj0ro3PtlHssSl8W7GNMu5YWX4oRHqCD2I15zGL0oUy+bEEaT\nrq/L0y7X12QAcO1l3lO6ZjLeIennUVgqVHY8drA+WP+2ab9JnRH/E0AjJV0M3gPNtV/pcmw9Ys4J\n46nRwyi2eQqPNTV4wY8QXp4IdKbjx8N+Wa64ZmlqUzZy1LwDQ7JjKuzA/clBDGNAS+OOeX0MnwEi\nYL4r1/0HE711b4ITnUjUlOca/QMGu+CBIg7GVNazIZYRjMEVZ23BJbOEfSZEC5f3KCjGiChotL31\n5I28sNy9EPZrtzVwnxtWB2RO7yzs6uaAz4Rq3Tk3SzKmxu0NUNI8qK/nE8+WCQfirZJgN/YdURAs\nRgLR/nMikKpg6aekW/s+xjTYVW/9M4dxy2hJlrj4SPlwIrV/4tXPW08aofUHzYplsedXsN9XawHp\nzHdAn7qnyh4ejaglY3ZqscR6iMxSTNQF20atVMA9Cyumv4W/9s6ywrQeCXOUMUXmGRUxGS2UPSOK\nmxVd+Uwa9hnK/0roSddT5p7FdvPRseW71YK6QOxWHPNnvQu+D8g8EQTWXiHnbYiAGK3R2/fgjEpz\nHxQKEgxR2YF4I0whSNz3j09O3rqrCcD9sEoTvh+tzgczvRfajPu2qubiRlcyj1W70fiwAvTIO/G+\nVKUzGa99EdN7M2WeyhVMtzwlpK5vBg49EX/s8IPxRGDmf52Zf5OZ/3tm/g+Z+Xcx888z819n5v+J\nmf8jZv4HR9mfGd9/azz/J6GeXxm//y1m/mMnbavwM1iyaEmIB5KPmROvhDwh2wlEi/iKKEoIA2bK\nxYyzWZZY7EsFz14HdworDWXmxRFBb0oorE8C0RsBrTAf3fKSn2KrHAGmoIXfnoFnLOsV3JX5ytCP\nqv6JYf5EuSwgr/dKP2ZG4LPG7DReXH4jypn1XWLFWEdZNloK9C9YGWhWThKR59JgLPtVUP2xxmaf\n6CE2ngiZgrGC7yU0oTV/8D8e9v8UbnDun+nBlN7XLow1/LYcYwIGdYQbxZ7j+ScWWEHxI0JoC+86\nF2wqrPq0OsvuM6sc/h4BIC0hWvhoElaTV6MnD5Efj0djen+MGxqoFhwjb7LrS0tc5gWQPp4KLOie\nj32PbvwTYIHWlAzNioH7HlkP4qCgtfO50f68ljEX6IqujwlCWTiDKO5sD+aCsPd8reqHemE9rQC9\nXrAerOuucvAOXNwmTwNHDwoSfCf3xaxIyhXO1r5fv1UZDQXS36DtgGdL8JA6jAbM41yt+9xLymQO\nIvGIgf1cd2eqL67178MT9QU/LvhBKBGY+WeJ6F8jol9orf1h6sbNXyaif4uI/lxr7Q8Q0d8loj85\nXvmTRPR3W2u/n4j+3ChHzPwHx3t/iIh+iYj+PDOjEfUWRJdQpxEPd1GvPBCce20gis8oHfDdu4du\neTXSxeSt1N1lbbdAfOy3F+Z8Ipn8gGKa3UVPoEr6EuvWWwUWdfE44G67Ph+A1FiFTlSwu+VjOV7R\nhTS7jWAIJdOhEixqogR4EDuGDd+NdQgj54WGGd+sXC8b+yPuCsUa0muMELcF8xgWaVatMgU7Bplm\nJlQ/g2C0YvJWzP5UNjKCEZcmluakU8jFJZ4IyJhU+KzQE88aFEK1OVrcAMDz1FYKmlj+KIGl+LdL\npnit9KLqFgSEiXbgNaoDdnluOq0erwFa5br4CrQobWb8PRUkicbe8MT9GB7V2gSIeESXbPm080qL\na+q0f8qcQx+rMz0qCLJxnBQI4AmCe9XzEASCR73npa0TBV1rZnSIz7CfqdcefHZ0Nqsn27xg5YjC\nJPIxdYgFkYYaJc9ROYPffY4Ndh6e1bje4UVkfprQ3XgWruaF/DvO+IFrQcvl69H6bHP3GAaPmDAc\n69zCEyTIbqU4g7vKY82lEPaa24/pe4bboxiTs/YPy1F+Vt/p7k455/mGqMx8cs5d/beKf1sgjN3X\n/v9TAD8IJcKAL0T0DzHzFyL63UT0vxHRP0tEf3k8//eI6F8cn//4+E7j+S8yM4/ff6219vdba79N\nRL9FRH/kI0hlDDGCWPD0OxxQSMAf4TnR2eD7+7LF+hdi4Q/qmeDiziSh/xKZi3usk/UamnsCsVNM\nhFrj98oqV+aWgM+rxDmnlrpe2HMplh+BnnQ/t3Ydk3CjjlsHHgcBZ0yUCYnUFWDkHtvrH3RHE4H5\nToKzCQdOPo/+NLkm7OIgE7fp3W2jOjbeuyUytLjeUWhlEkUVPKe5LJEJBHegZB4S5sRfM5VAlgG2\n2MTohvo9ybIONuht33XvlwlRsoQaefklnR71+Gv1msMhKkAEtiEZGW3Wn2fF2YQatkXeqqZt1q9P\n76YNyB4qYrzjjSN32p2bm9e2jGe34I/fAl3Yeeil+0zpjvVPblKSPb5KnFeBU6zK30b03i7jGXah\nYAmaGXCieNmBy9gOb1U5EYgKYWOjmLOYfakvjx+PnxXPgx5FjwAEdaEP/JlrQ+l4nVfgDo36DJlA\nvCuIFh4rNwXkE+ESr49EWHlNfPTsqEIlTsquhtorJDmli0Q27xgmsPcU9CCKjttzUigQVgbJU5rq\nc2q08Gz/PvI4/TvTNf6/4NuDH4QSobX2vxLRv0NE/wt15cH/Q0T/NRH9362170ax3yGinx2ff5aI\n/vZ497tR/vfi78k7Dpj5TzHzbzDzb/yff+/vT9lso/WwOgBm16KCyE3t5/XNeNa/R6L22ZOpQhR8\nj8/lbyQqd4TRSYgMQt0z4LTU5IV4546GzGJA5BmX+K1rJ8BRbgewLtwek6BIiKBJsyBB10eu6xEN\n/0lOhBSfJIbyutryZDu/McOEmgrQnbYqNlnuaFYQfJYC+eRAL+ReA8wylz1evIxuol9LMR4VRplS\nC2lJyliG75+Bp9D0iyR3jSgURSIFZeNl+9MnbTtDxNGmCh8NWZvrj8Jtf2b1yfwJMyuW8Mx6u/Oa\nOYXV/klvBKB53tBVeEf7pr194zCclZjrAcD9oOOq/zmUbe55BLNkkxodTAnLodz4fNivz8oDcJpD\nY4JDT5/Iw9i6hjVA4C0FSZYz+MxI5dKAAWemtFnRyBPaKeumWiffK0RHRqcgPBM6KyXnZ1yLvmt7\nVZaDAuEzcDDanNMxba/ZHK9AlZP63UM1hquhfYDi6dQolXto+s8/CSPDDwZenghE9ANRIjDzP0rd\ni+DnieifIKJ/mIj+uaSojGq2dNvi9/nH1v5Ca+0XWmu/8Ht/18/o76KVbFruc+b02YNtuuYqYaj6\nYTsT7VljOIj7ZtYvmg+LE6is2md3GAtjAO8nGtMdg5e5kxKZS2B2cKRZgYsxOnV1/Azi+tDxm9s0\nN+SNyeYGmND4ceIVBRSsn+gJDfjF3QvhAFDYytwKd5BaTsOQoPIlvjNbRer2Txh9LDFZJlYvLs3U\nNpZifVRPla8Mm+iU/ix6KUE4RPV+6cFwuG5WcI9hzcPMkMZld3ufrlMUmHcW2eiFVa2XWMujyRq3\n9efwSwYkOzOmWxUYcDlQJlTn0KQAGZ85Od8qC/pytG9mNayU1FVZhGreM7p/SplFobXCZbV2Ts9/\nWVM77wlfOeAANyCt8Dk5d53RB/C7Az9Jvj1VMhVlba0xVSEo99p+7n3Bg2nmmaZ9d1EZ9rVSLjDl\nayNV2FC9D1dr+rJC+fObw4NeMC6vQpinzOuXCBUIc/kcPxjr8CyTIb4W/CSuLH7BTxZ+KLcz/FEi\n+u3W2v9ORMTM/zER/TNE9HuY+cvwNvg5Ivo7o/zvENHvI6LfGeEP/wgR/V/wuwC+cwQ+QYlZbHDb\nnV7P9WisyfiIZuEsXhslZSQeEiEeEtU1Oe4d8oR0RzruuuuvXK16e/0HY/QyxnrNzGFCsczNcgWx\nXjxcJiajkEA2htzRzvNE+cxjQbTI47u0e/X1qgeNnuhMeo+9hjdYv7IcFJk1/Y39Z4zTbUm5jpsp\na9J42QN41hLq99O8qnRPoXXs4iFAz42WyY42eGQKFPxNY7nxjmzCz+Gd8L0KjZloUra4DrghdF3N\n9rhYvfF2hju3JeBYVHQ00kq8+aV6H5/rmoR9baEwWczCWtEz0S7ZX+G9FjxxJs8aInonmvKLTMN1\noGm5wwzGtZgL8G2799zav1iI0EYhlOOR4YiWXSa/j+XTY9yTrokIaRaWxWJ9uTMjzJXWB/27QXuE\nDva/7N6P9FNA1qf97zHx37WL3h6N3kKeJbRQY7uRNlRw8UzbZa6s7jVNQIFoBcvng+ae5B16wFj6\n9db/r67x9fkixjpp+Xmg72RCZ3HmpzcYkc1JNQbmETQ/x3ceYK1GvLoByPrT6wzr+bEf26oPE0gY\nZ/AoeCS8bGW40efwGXkpl+MhXAEVQ7Gq29Gq/SoeVUIjVuUijs4FpgDk0eWKxcojTtcHrT0V0jaa\nKIqQvWvTGYbjUt36cldBFpPhvgDgNTgKPwhPBOphDP80M//ukdvgF4nobxLRf0VE/9Io8yeI6K+M\nz78+vtN4/l+2nrnt14nol8ftDT9PRH+AiP7GHUQwl8FqnahAF7Ka6/OCoJ9YYOPd5DHU4lOgikVA\nPD7YRPREqGKm1EP4iZwDsS1RSsQuvTcTbj/ixpYlZWrQtvwfinfFJYQ3K2RKFG899MI/jTqZe5br\nyRNhMoM/pCLoQ20B90onE6Mzxdb0LtSRWgmw7kUywcobZQdR2RKhu6TX9aE7/ZHVAtqNgoLU9wxk\nrz1EMRPcESWcId3CK5eKm9cTrQRMXSObsIOPwux2nj+v2ubHYyzOpO9mUu37A4qUazAwcjg+HDwN\nsGRnOO15xEYZbQmTGEL6NUZ4d3d8BOhaeZ51xZApA7bzVyU5hbwNp8p2wRHB1vV8FXKjecyOQn8O\ncbmzb7sANSu8TvHw9NXOltMz6qQU0gfvidG2HgC7xLKqRPlEfjoNZ9h01Clhm9Hkahy1zPieKVky\nYHcqSl35fEn7lQCM7e4UHbE85kW444UwG3rWspDxO/27elMFnqfCQPigGQ//RnZzw4r3rjwM5dYZ\nhHg+avLhdm+vOXxZ+LscySxfyl0FZVQSnYQPRB7zVLGUQZXPJmvzBd8u/CA8EVprf52Z/zIR/TdE\n9B0R/bdE9BeI6D8lol9j5n9z/PYXxyt/kYj+fWb+LeoeCL886vlNZv5L1BUQ3xHRn26tvd/BJb2r\nN/ltddBsD4NNkj500bT2njulOzPHRK2pQBuZVPwsVmoUfpmJrtYtaBcTvTf/+gO+Z+5aj9brEMuh\ndD3NwjwSLiFhj+VWrpNoHRJoYrlqM8Fz3wOn5cY8zJe5JhtTUXl9YLvV+kI0Ti34pYcECjeHnggr\niCVXeHWriRd05b7h2hWvr6kr4GVJFXGdzjG2OBfuPamH2rDizPXxNWcLjwLfx9VpgMti7JeW6QDH\nKgCxvut3tt8n3Nqw3oa2PiAgoOdA/G0XzoDCGH6/2LwDLmJ6p0bMTK3ZX8fgjQ6lngjJoixjQa82\nrz/g7GRudx5iRyCJbIFD1/vNG9NFjd6p36GebRPZcwIi6KnQR9Fq6xVFSzd4HniN8cyy7WNsu7YB\n51qkjyfgbxXIs9pnJLFSsGRT1LvVNOkwejTMYUoGlQt1L+cFr+ippHlkmq8nxkSL8PS2WFuZNfQk\nqatUKfHdW6+uVX2OcWCaPL8mbz/b11l2f+mTu06bCdbYx+lzFNA6jh/TjHwfwhUmwsTfKjjBCecH\n5yYzgMzv2jNUpjP5Kx4zbxLZa5jMOFtn2fnu8C34b0zi6d4RL4JY7zWPZUZfNByQc3UEKpkm75oA\nGY+KuAte0g/Fq6JxT+QXq4wS4kUn84L8/7cYxtBenghE9ANRIhARtdb+LBH92fDz/0zJ7Qqttb9H\nRP9yUc+vEtGvfgQXdTui3OURAQ+2uJF7KAP5u4tXbnXFZ3nvZM1m7sdyvd5nLPms/pPyeM3UgzpB\ncpa7K8/+a8/X7UgCq2p0UbMdtcMfSfazu2c3MppvbIx8ZO46Iz8UHiSMZX4NokB6eDwexrQlngj6\nblgRK++BaLGJLozqpk9M7617fqgL30YwcXUmV1dNfQuWZEwahO+hu66uw4fnTNqjLa/nQ4VVdXWU\nS1JHfs2rmyvLGMleZnrjpgIEvu/WDPm63huTD7mK+GzoxJOeCG4fMw0XclZ+rYpBXq2pu+EMro7K\nAjQm31mqRoP8eIyDf2B7XfMCPwUJZ3Btz8VW1apFrcm8NVv/QrNho+FNP7guG83zjgL7e2vjPDPr\nrLsqjQJ9LPDFeWuPMbrJ/kELL47DRTTTvIBHG8oiCWdY4gGfkTnPbm3RMtiHQkhBzz8jn2F89W9z\n9Vb4EXVa/Wg9t4fxFUzvjekL0nvn3u77dwktGe8aHgPHuTtWF3xuYx3oX/3d01Lrr6wdjxPTECpc\nQ+HQJ7K9kgz4zpK+7hN4E4zqH9wVjDIvlVFHaTMla2NBRGP4gbT7nvAC8v8d5grPDP1PM69gZXgI\nbm2EFdp1y9EToT0SaT/UK8JfbE/Py0c7Czsp6oqgawwmEj3qvFcvCNvNyglv0IgmOoueHnK2vgM9\niO796IngkhjGehMP42jgwdsypAqcN1wf8kz4AFx/TsnQiN7eSPko6fMDxsn6a5/lfRwTkUGMPhzM\nK4yXjJHQZGwjfn7Btwk/GCXCTxqyrNGZ0Kku5ZcxKxmxeRYmIRRdlzdNoOXio8nxVIuMn7lbwJBJ\n8m5iM55yQIsnAhFYFljq3IPEzOGVTHj4R8ZNGLXOZDRgnj1TuT0rC+SOYizDb29suFZadnxfPotw\nHu9GlnCGu4Q8S3YY25TvgrP0Vg/CKvazEV3ME1N0AjsN/AlEL564Jjnc9oCeCJWHBTIg5fOxtp49\nVLMDfqJHUDYT1NJ3byoLpnrIaIkq/0KZaQ9uxiB65cQ1GJMqiodT90/qfy9K8hTgO7R2087AQtNu\nvBQmfHL/JRQIhHbNi1r2lUKy8D+SEKsLMv3/d8K4NnKKBRqM4nQGAW67c26nJM/OVMTxFD62qj1E\nYeoKXmeVS7AXAoju2q4lxKQR03cPpi+XCYdC10+8CESxV7azoF/bELXEPVwA921UpNyZzBiuMrWz\neLfyRDDhp0N0/4/nt8zhbjy2+SNCeyfwIE83olJGeJo39ucE3obU2xzlH5lwWfMJPjfBpn/SlpwJ\nJzzUSX2DvyO6SX+39dfPspCDu3DnjMm8dOuy/rPzSq540vA3W4MytrOHRfdsOwHkXSMf+01d8/iZ\nC/WnGH4oORF+4hDjN1fMTgxFyNye6naa/r3UBaqpu5h6AUL5K1jpJakiE7hiEbxPxohrOAORlu84\nj84O90JJ0icJYqJLUxp6EL5XMVu7enoZ70Ypblj23cZD+ooKjqj0wGZQ45zhJZnptQMXe5fOC5RH\n6t5n81dde3Qlv51AKkxTm57pnDG8qNdqjc8j8Rl9ucT/kyRZ5KlQks3r7vDMDjDn3ihrjWW+RvRo\nFc6g7rB5OEN1j3WJq2x4WPvqdsmGl+BYxd9/TTi51s7KSiiC0BcpFPxLIZyhu2w3XQ/qKgw0wNES\naSvDhf38xt/7HPM0bjHSIlMgaB/js/Hd59DwZRgIWcPQjsWNDdNcxwJuLYb2Evdfo1FCuw6ZD740\nnEHOHD0nyNx+mQIdgD5kvWwLZQaCtJWV8ueHeZLJfzyTIh47oXT+3fb20lUbn4N3oPOsT9Yow3+j\npb5vFyOtyqGFv3kZE76ISD3NGjG9P0yB4GLpyStHI0/CuAYod3eOUK2POM53FFcXkzEOkWjqmSR7\nNnHDH3TH5/7pn9+uR5/Tt/7uF36k52wF2K/szJb51++gXMa9dXobyrPhp7Eewc3RSbK5wf9m4LLP\nF2PZSE+hTuS7hAcCPkhuI8KcCG4/CdIX8LQUzlU5VEK77vyBcIZTkN2S3g4TaCLe3DTxVDLQwBNb\nmILx6FKX1duffZF9eI76kp544Xx+0Xhm2/sex2Z8dBiDXoXnmy43b0YzhRL1vckObxiy74UnesEP\nD16eCAmgVftrQKZJjNpG9+yTEyumseYF3CEMaGUv2y3kOYHWerZ8dcMa3/E50WxpjnjEuNHvRrkv\nXFhwlWImQkgBmTXDaZADjhcMwEr7jS5pdrNHFK7aVN4efq5uED0RBNJEUuQtaHchq3OXbDNj1jAM\npBX17iC9oq8oK/N+cd6OWtjn5dXfL6x9lXu8U07RYqz1dI+c2359ZHu48kQgSiyRyfMTEG+Dk2eS\nE+EIXB6Ddf+zcddEiai1POyUeBOpaysIh49G3f06ugeh8kdwyOZkg4J4BPUwo6Zuvt810nCSlfCL\nHkVuHyVcY1QcOqV8aCPzskGL9mqG0F24JXhrzoYnYScA2ng05w3nyjQiYo9bdTZqKAsxfdcuCwVr\n/rxbna35nsS9MuN3snzRnRy9aaQ/PTwvOdgPlHURdnQ6y1MQ90Ts0jNW5ikH08bbTz3Rque0542k\nHvk7h6nBbR+JJ8LF+5tVIvi1+fUlwI/GzUfPzjgneD27eFjtPBHQY+yzwMKyWOmDfPYJVOVZxMt7\nhiF0RV3O82SA4Qw82l/ekBP24N39s/IO/FFBZPa/YXh5IhRgTM+e8mUx1XcIemzDJVj7Hoh7hElT\nK79T10TW2uz72sjVAvyMZC0tIdLbFw7BrAB1mcw12OLpngPVKn/C7n32roo7QnYFt+4WfxK6tnys\nZ94LCKLRJ9qsTbJ5iMw6JqiLlsePQFSgCYjF5xg2IQ5TbpdPYAxO6UKlQMieRQVC9EIoYdP/VY6M\nGSl/bd0pvcbQJMsXEwSRYtCyGwt2EN1jEY/4W47vol8Xp5bl8eh7s1A9G+KQKSJWSNu+z+h7S8vu\ncYg5F2qFpHgr7NqRfdxcufXNIGmbAR+JcUc8J556taA+cT20ZF1jAtH8Hcs/IflB0jWQvRt5NbK5\ny/aIhSPOXiToIRld0bFvmRJvDr1dD2qMmb8dAklzCMj3AaKc8YkJYRzCrO0UB73MrGA4CWPJ6kXL\n/9yOH3fBvbrpKioUVEGZ4Ie8X5aIvf8+r9W5TZ4+xxwSLeX2cvimwhleQEQvTwQiyqys8Xu9hYTh\nrOKPMPnJCjIilYZSbPZoRUDFcHZxM5dDqVBd+NEdWhQJXSMqmVljfb2M9MGeGT4jhlnaJ6YHuPwS\n0WBqQrtX90bIGNPJaDcMFAy/CV4yXpb0qDlLzwTg54n5L3q9Hu/4GrfoduhdvURgR3fNDKQOPfAz\nCz0XCQEnq3PyrrquFwgAoJVJD7XmGZqOj7dayhjLs90plNXnvkSL+nXp6a0CTJLYKm3Wp4kGF+yG\nPx8BJowj3Q/Dm+Zk329yG2A7Uh6/PwXBDb/niTBFCxFY3qVdwEOu8zZraT7O1RBqXoOiQPa7pzc2\nvnrzB9mYoMtlKsXKOuKL6HoEgjX6+5B2C84x/N2GQASQkDXb4wsQ13xl56yx2DVUbmU4PILVOKNb\noekU99LLhUTZfO4lEr0Uopt6DEWQ9eYY7ibvNqMLErpF8x3uGaTb9WJittnJw0M8j7AXYuyvz+3j\n8yGoAAXCJI5ofnw1dQvX32j2WIr5iSoQbzgUhqu+OMC1gf7pGs6AuECcP+AW+2WfbV5XZxgmtKsS\nRt4Fc4H38y1zeYlyYtHOlIwPPD1aI3qwn/NH4+E23khyI/X+jbYevLntq1YgiBdD/L2CnSJB5mNl\nmpDrirf5JYLXC46R7BkBl+wSykRo4Z2dd4gAw3mVhkSxidqYkPBBc5LpKKQLXNxz1qBHVqN8P2B/\nsnxKuYdu93TCBJS9Dh65w+7n1/qm4TVYRPTyRCAiYF42Wk0mNoEXGJU7bWhdXLlin9VXwWdYfSZh\nHPUNi7Y4+a3/fg+p6cqwjUv7CSwNI3EOoybgRl2uXPH7Tri0w94SbdVlN4dxQHa6zjAw6BW+pzMQ\nbxvQdjcai0rXfSe29HbiucHkxpwmWbysRLqUtwkUzFW29nMrhJ/nzHL8gP9VPYbP4mFsIMB8hZb1\nYi90SB0gyIe64l/8N8n7YW3u6FsWs1ojCyM40ZzFezh2ASG5fk4eTTHmB2h9DYgKH/N+mPd2jP/G\nHqZrbihRMq+sbN3sXMPT0ADyNCKzJkaYlL9Un1EnEGmUjGN0s45l5Hen9EDLqljGyf/F/lX9nMeK\n73nSAOjeufZKl9I26QYDviQdkDXj8z0l9Ee+89D7xZxUQbjrzX2QEQIF9UcSmhKJ0HhmTDqu80b/\nME/LLYBFUM03pjnQ/bYo35+vByLmACtQchDby7bAU9cd3pz7JCJ2LrMoF+lT9CA5wXGVd0zyqeV4\nnV1NHM/2TxA5XvBTDC9PBPrAJrjBEZ4y4UJcqrhcXzZo54kcp7Lt14JilC5a+DlhmE41uwJqVZAk\nMHhwAdHH2zDugl2nt7hjeww8X3dzuicHWKoF9m1n1jQEZPJX4NaA0/BcRI/36bSqGMwK59O5jC51\nJ0ESYlkVKxkm9fko4E0GeeMQc65WeJ9ACwXCaDnwB73gP1sl8eLROUzpbKXlcdRZuRsrN7EIVm02\n6JF4IjysW0ucMndvVKxMeQ5u0o+pvTuFuc4osbxxJ80zMd6rYlODBwmGM6BSKLXohq8qU7mEWLOC\n9z0IoGYFE8uTvVOFOyCcKk8xyRdRfZacgssoWEU3AAAgAElEQVTPF551gTs9LFM46UKWM2inzKxC\nRKrQP6cQIfNKST0S3X7xkCrth9tglpPiLghti3W0sGcNIfz83Mxn0znp+ZHGwngjXWqNo3MavGOW\nV+FbHNwYsJgEU6vYKfjJj+/uzF/xL+0hIRofE+rkdga+al7B4URn+1vP1ZvEHcNEkFbi8winyhpR\n4H1USUSUK1A7LuZ1gQrH6MGnNHp8Nl7C9r+UzXJ2nIDS/UX5Sgm6KvuJurGfHjhNKvMNwMsTYQBq\nt4UY412uRF446AXPCG1/9wyEuGTVzklP1sRj2aYIEWCKPrH6xgytCB+x8pzAdB85ne9juW/3vfU7\nhFev6W0VsiYWCoxMCKvcsSPcoUE1Yx+EQTTdRiup9CPpy6cI7uPAx4zjROMwvGGGWY5LcjtDhBiv\nexeytyrLAe7VUoBMcInJQtXLoBDE4/8MkB54l3O2cQuhHFi+J6SzyoVRZ7rrS5Q2MQTgMA7h+2od\nniu0IJQE+45jEDd0Eng6ZY/X+KQYVjMLmztL2pQQLpMO1VNm7nj0FtjBs+xOeSZcTHrzy0n5AJkw\nsPQqQPdx4lSgkHJREe2eH2H3vMI6gygg9M+sdEFj9Klf9diTYLK7Ix7fxbCxKIzcvRVgx76IRwSG\nAKIghC7XD0PCKkBlLZqqoX6km7uwHgntkSpTJRj58fF00Y/PThmSXQep7zYbn2r94hiJ4i627Z+H\n/5AsMPbn9EiN4QyGG7u/se+uDqrn6I6Cqj3aUS4kFL4tJMAEcV13gF+WVDEmEpTEhpgLI6U7HzBa\ntbFfvnuw4vrdaFeu2RX6Fb2Ner+aex6VDfH6TmnT9THuK1lHzfgNx6u5cfHHYdz3K17um0ms+AKF\nlycCwBUYlUi8Oz8OmyQQmtXVNEyDGR+hEDsXfa/QLxjSJzSoDGd5P+Dfp+d6LRaZDBLj2pmZWrNc\nB66O8beN959R2PWY5zON6Un9okBIme6rTy47AXzgsRC4/VU5exwU38NyxmRkQkRbH3LXRfR4ELrs\nI+gVi4e43IEoDDMIj9fwOPFeND1+Wt5x1jseQhQH5cElVzDJ+6S5NogCgwtMi8+wf5G4YmMuAMGz\nigdPb00Y9GHFIGH8PpGnAbtY3bi+IvNzy+0Whd4QykFEzq1RLNrS3owHT4xDFutJlNGJus/P0g0i\nU3IewQWCjRM+PS4Xk2hQ/XujQJZjBPV66hUwfptCV7C/SfzGSVLQHfgYcf/bTkGFcFGDcbvc1WxE\nXpnc16QfmDtu3fhm9P5Rbw5gcC3nDyp01goopDuPBvsyWUcMZ6PD5bxLzjtJ65B6GG9CCILC8LqQ\nX6J3VMRT+oSwO6fUKxCVnFHRt65iVGT0ul0XMSgTupK+X119SrO6cshi/2OOhFRJT5a/5db1vwKX\n0VXvUWLrCtv6yO48tSaX/OXV6Gq5ohvXwtYYgbymzBOtx+mCD8vrzq9+lq/CGU6uck3fC7yMnfu+\nnh6SW+PnjDDwM75P5MeSxROsOKPNuJI0yZ7+vEOZTJj/B+ScYe9B4fMzGF7aZ27pGhPeS3gTd908\nmXQgvz3IzlcZR1xT31RixZcnAhEdngffGgiTtV0jNzwRltW0NSOCVzx65nO9YePTz/QSuGNZ3rWf\nLcIpsywksLwTD4hWHHNd3LyvjPvqsDtGwePjPs+VROWIz/z/9Qj0iWsaasWjwN+vijOrwftmjHPF\nyPr7KaAXxB067wWfGjIrciPySdCmefSC2ymglYJILJg3B+bQrTjGkFdrPFsrn32efkZ95Sgh0XZx\n23mRE+jhD/mzam/JPuprxyzTq85X96HvwNO/WdF3v8KH/5uAjL8TtjZtnqD0mbHlsSqlOan3x9zw\nZK0LjL+2E/gJ3NffNaOZYvVXayH5ubpL1+4qONy7aJkEGpfmdEkr+ATmaEAlMH0UnvVWQxAhUT7P\nbdQKn2ydPANtcw14XLuTQWx+YVsH0VqAEOE6Qpoo+iLKri4kmscUz3dfL6m3wgncGeqoOFwBJihE\nb4odzZ09EuZnCqGTWZ8tmajxW1/zhg1ODAov+PHDyxMhgcrKHYW6yuXpglhqavWhh0QZLf/R2nkV\niY7wJoWLmN7Jew+8t0SjKKZQNDWCJU2skEyzxaVbe6VPrIqE2tJ4Dmhp44uIH94TQca5ukYso13y\nkzB2TqOc4Zhooe/A3VfTaxIXdVyJBctXyOTc/ePfI5wW7fPQRDevNb9gvZ4yt3pN3bD4C4P6kTjq\nWwqmYkwmZuugKmEacD5xD2fePNHVsEQTxrkUeFZQzX2x1leKsxglw8mzXgd1j4tgWcGycZ0kxvft\nO3aRCtO7eJCQZ8xTb53sR1VS4ueKcOchIfrToYdPVjvLwGHdheeaCAIxgskp9kB4QQUCwp28K/bj\nCGUo1leWlPEZqFDrTHmdTZyrQyGWG3/LvTTOxrsQX6ms5XaXfLcUalLF8Ty6O1/se3WS6PXuHMxX\nw7EKaAKPsKaIBo27ZOxpXhthAB6Pj10buDqus3WR0Tak2a6ujDZuPK4k99Kz8BHlGF+N2vt+LEtD\njvOwXSsQrvDXF/RVZHNkYXLrDse130nz3vgg5QXQY7SCaotXyQ+zdu1K9H2/4ueKjp2uCUl6Lvz/\nM5DhHeuL56uV+3rKiR8qtJcnAhG9PBFKQPc0XCpOQbCB0tXwmrWCaCXS98Xq8PCxdBor565oMVwd\n8T1D9dOgGpqMyPTbLsJvxYpcXaW51O6SWYhVU017Rmx3BSIy55h87wRM01z3pa8/i43svwFj+BOi\n2dn1Sv6g9+64ESqm8Wus04/WeWLxldszZE1hHCORt1BGetCTYdn+dXs/jGEfc4y/9QJU97QPK8qd\n/vdIfcbgzV4R87Nn4DM9pJ5u4O5JGK7qeEbQxCEzQT8oEOT5xtK4t/A3bScqFSIuc92b8WOfT+cZ\nT4m+f86EIIvtHfjdbMuFQsBvVWE5e+4IvJUnQrVnJA8CxlG7awCz8AeKHk94PkjY2DHKeT+a4dKg\nHx0n6VOzco8Fc71ZpM94jW1xXzxvcF5NnqeHyNg5PepMnotSSPmQgFfkR2Icv6FkND8K022jkMEs\n/4/Q16ggWr0vZxzRemxXwrEltIT1/aBhoZrbNSUWGQ4t70uj7tnj1mmzurD9fuWhV9pFwHP8dHlK\nKPR3w7vou4HLe7O5NXpgnoV9HTT929eJ5PBaz4/wC7YnPf79M+SCQNkhrCnPg85rJW2fMP3yC74l\neHki3IDUkvDwQjzRIHxBIPgMeJZRTzd+NF8tQLSRankedaI3glRTalQXBAabb4/OkGfKgqYE34jh\nKfR8CERfxi0NhleB74F7suE192OHGRLnR+tZl+VvJlycuMHVBdZstsg/22oO1p+4467CGTKBKGq4\nMZ71Lug96wvmYAXRerJzZYxtZN5EFbTGRGNNIvNQlqcirwcZo38Mn6RJr/bDCoRWfFYIy4chhKaZ\ne3JQFCyUMZqoqnC1zb5rPD/fE1I7brMyaVdeUEvdrjf1uHeikqPI2yIQc+qs2qiKZas70sqdcvVk\nqJbeOPT5lhc9Bwbtb827QEfZtsrQXylvsl9360ZiuFEpTDQLrxk8l4Hf2o1tWIjJjTrJxlIg8/4q\nFQ03+mBGAWnbEmVa2/l7ytMEPC4yhb2cY+LlYMKeJcuTdZ/dzlB5VDmPFzpXJKwLze2ueZecjjQY\nv6hc18+TZwjML+VziwqFO7xB6pW7KC9ngX4GvNLwXXnulBadvzblCRBw6UOrb1x4xPEgP5bZ+VvB\n7oz55jwRonblG4aXJwLAHevuyvIk3gp2D7J/1tuShD0tvFvUScJ4S4baGtk7Ln4KofOaXOWTaMOO\nyFzjesdV2MKdZDunY6DFgtS480TweHkXt51gFHtR6XJOaVT3Kl6cCJXLcUighbhlhxrR5uCEQz/3\nQpjxlj3i8CIjTLsEpFMbqtXfTJ4oVpiXa07gRMFycqdz9e4K35hBvCq73B9RkbTgIMT12pRLzb3W\nf4vfZxHvM85Ypr1CDuMwO1MdGj5BpIz6aOPv6t3+UPaTuIVics5Yffy+Y2hPwhlW9Ar37yMVx2uI\nY5AJq3jdpC9rbrLL+Glta8z5REP3GOc35bRxlay189T5uIEpUSZ8XilncP/obwSCaVLvXTyfOcJP\nz9ooyN3xyJGE0bh2cf+c4nN6bu5uTDmqJCu6eHZbsXsD7iSlrN6/IwDIVbLrQr7dXYRo1QfBWfmR\nZw0Cm+e7hMZTfcu+zL/ZnuVAgxc8Fvx1oXlpKIenu3eg77vZW6kKJ3zBCzJ4eSIMqAjtdEguhPwd\n3NmIWTurcw3zHuzadwc9IHVdbbhENxDwTKB4MNHV4C+Ry4QutzUgREL5DOiB8mT8pFj7Lq/IzWEO\n4Jvia6sYPyc8QxmU1+5of3v5/T3GH/VEIALmfXxHpl7+Plq+zpwnCfFWgN8pBj7KdOGd3ZmXyAq6\nQmgWiUX4kLHGLSSH/UUgFASLyUcTGkULbTVGgufEiMttHfrd8NEbW0KOFxVOydZ/lg+hf583V/RM\nypRlc1zpul8CYgi4eDCY3DQv14PZ08+bHFBMqrjO4D5T/uymjMoTQas5qF+UBtKG0MMMv6zHkq0c\nvZskPCCjIahIoqJMirKuGw8r76LVeo7waH2O09jcoYzO8hXNionF98tu64kJRxEPorHXeVYWVJ4R\nck686f7ohd7VvdquJMbr6uTdt6StU7gr0orSslIMS5nbeBwKPdPW1ZtA/Enz6aJ6mhfg8NWBy2fg\ntGVXYvmKPw03NKBnqdQzKfOv+X1sc8XzRtqxG4sTRT5RTqt2Rhor1/xnOJMvqj1oTFHbN7qeY/Bc\naLGjlxn+h/xf1gfxROAeu1i+u6o/hlBXXk1EBa9HtdKsz/k3pG14eSIQ0Zns+80BWgLc7+N7JQRd\nNFt29Rlo2mkw7XhdTITqOpgM1AoEh2pplC6v3znf/CeWlc+Cu5boCCfWG7vyEiakSGa2q2sF0VKP\n/7M2Vhl1hZFCtPsD7oJHvKs7OXRwTa7ciO9AtFTvQBkutquk7hxDeOXXigFZztllVjFXN9kYidCq\n9UG5RpTHPC9wOVUqZGhnfamv1QJTUOaRkv5kSpRq3OLPz2SNl7/OXfXs9ameCO2msk7fOzF3TXc5\ncjqOFS3OhM1nrGwMXm4rxj5avbK8HYjLkYB6DToDgjYKd1Kk41njJr9XU4WopLcjJEo7hNXVp8/Q\n8ahcPwWMhxeIHkbi3h6v9o20ZfJa0DrWCJXJ4yZDST0w8bYj68sBpIL5jUlYDPhn3LKwglUIWW8f\nvX3kN5yndfhIHWt+DisPIaKbSo3gXdXffx6PHaxyXmnOADx/J0VCsceL9jAvAEJUJCy9u+K7wSNO\n8LTQGvgt+a/5EJKzMVfyrvid/WxVxrAV7PJgvG5n+Pbg5YlANFHH7Hq2Mi56xNKKm2gG2ebEmPvl\n4fLwjIargyRuam43Ewr1/ajJfCJLnxOiAgenFq62JoTZfdk7aA92TFU1dK5dEqtOni3ewc0EdCWe\nEYcxJhLTHpkeKR81w1j+NEfDbVxdAi/7y0ndlXY9/r0Tqx1XwPTawu1e3wkadv1fra8b8xyFLMSz\nQTtMszJG5rXxglFss6Uvs7ggLaqUPtshf0KyljwN6tFDRMS2XldtZs8qpZmgJ2sPqYNj0qexak4Q\nb8ME/LSyr5EmKrPYZkBQyl1gd3mAQAGCBeIbBXf0YIl97G2FVOcTngndh7qmZ7IOAx69fMv3dlLH\nHYiWOfFgi2sd6eWuCdx3mENE92aVnDc5h9xY7LvjAOfQn4ejr8VWy85lvaVh9Ec8EaKCSccpKO1O\n5qUWVMNZFHIHfDfmpIqrntYt0cKKcbn5sfw11jbSbKF3p4IpeoU8hodSBZZo7zlwia01Oa7vNyrs\n+hjOz5FOKIBeMvPgwWv7EJ+YEyEm54xntOLP5i2HHggutp9sHQheqdJyM66nuYKQj/hurHk3lm2u\nywvl6/ZXtDLD9Vjx73CAZMihLZyPCGiMqfk+y4WQ3ZyS1Snygowr8purEOmP8pg/OpgysX678PJE\nIDL+ELZ4J5gbohGoJFpVu1ulz4fgDMabmHu13lzNWUktu+oatUzpMbsGihVp/MX4WrKrHiUWCy1L\nzlWN2YU1RLfle2EcoPneMA5M6H7vG0ELMhL1sq6ogb64bH/XHxl7ZwRm01THdYXlV7DV9Uyq5WsW\nlg92PI5rEt2xbDY7LLNyGj+eXrvly53AnXwZ7j0M5xnxuJFp9XiXhuf9noT6Yr8zJVG1Hpbr2H2R\nDXv5yg49Eso2Al6rZcnk1xNRsqbY7xUm/zcrd0JTLgZkxXK+Axfx0denXleISqso4F/k6Jb0OeJs\nuXJCszCnLoEjWASxXxfQSUOhaR6b+6oi0y07JyapL8u9AMStLzHDh8nHW0f35mcgJgoTwH2zEjYz\nzz93psFnDgmBPoL7Lo+MEzQSwaOXy/f9nbNVujTnoMnHTG8yajPP0fmjtlcgiGfckxD7J+eyuJhX\ncDfvh2vz0Pvx4pYmv5xxgXdKj4a1USQC5hLCKwzlqmwNTQ2eCM7ZcndmjrFGTwRHxyNOkQ6Echay\nkPTnIiIYdx5Kjai0OhkfGcunAYhBls9MixDSjLlFvfmDQPGS8KGyl7I9T7SmHzEnwgkf+Wyy6Re8\nIIOXEoGo5LiW2szFTsSNjW7nUx2OOJ7fNnCSITl9r505HeBh8xFArfdnXv8i1kGv1a3rF1fS99Yt\nPLV1+lxCEWa7X6Pl20brzCPM8f/P3ruuyZKqaqMYNfe+//vtSvl+KPCCYBhZ1b1mz5H0MzqzIg3F\nE3I2lonlM8jc+e6Q4+wueznEIV4YraCb6lw1FXhNd14mxiUKM1QRIhbTaYZQ8me8kmmrMBZG4Sap\n3g5kbZklzTMCbi2EdyUUA11do5Uvwk6xeatIiYoEcEMf+Ihyc7//n8Zjx+KZh8UJOA+Tg3e2ZUTB\nhvtkyT1pg4DUxhQI4/MuG330RIhr8l1LqCi9TgEtdGg9R2Z1F87gLaWgoEKcNm1HeHrGiEIHrXS6\nb7LKgzCIFsxTHJFWEu0E7jvs96AWa1EgFHVHr4sU5yLZWgx7sKvlIj219/QGAPJ06gg2isuMD3G3\nGdB+rqwJe+sEtdgurh+8UvsEYiLdbZgnyRnQ1mfhOWnZc/hp2OcJyJwInOKX3ZCQ8row7gwKLOH1\n0IMgCufYVkxMmuGZ8WfvAL4vy915VhGpAk6uakQlIeKB/Ip8vvr+zIueCLvuyDWyHP45TyDkRaB/\np+P0WzfR/SsA7+v8u/79C+CjRJggGlwEtBCrVYmmhncmb/Ll2QlGWI+zAgSNrFn+h9X/hLmKd0K7\nWM27vor3AVoJrrYcsPinZU+G/iZ1Z1ae0b+1U/KsEdmYKo7WN4HdtYu72x/QAtxkDgn0BcHqJEgN\nJYF/fiJYnnoW3BHmrQwUrUny9wOrT7ScEtUW47sliesiuvfewU6b3xp7xY4Wvu9no9Xq2y7ejpEI\nKtleOBV6cA962rGvY0m2d9hedsNFWUnouyhDs+E02tecBbodrm+sp0Ip6ux2VT71bNJyfgGcvUyo\nDE7ohIxju/ADLPbR6mf0J/NE2HUgJrtMEyke0qU7cI4bVT2x/aRi3NPeYrda8GJKGnfuJHWmZwzZ\nGS4WUakfb0nK1u2pktRyO+RnO4LDsarvUAFUeU4cvZt8P/VEWOuK78WzERvJvJ2iIqHGo5HnvdQ7\nBN715VnLpbhD/pBqr2guj4sJreZmiZek07mSJlsfHoewduRZW99xZ0isBzyjnKdBW5UJF4W+JwYi\nVDpd87ytzgO3H9NeriA4aCXwt8MZDG5v53KQNgO9WessEVWez3tg4Hd7+2r1eoog9WDOGORDM35F\n4K4F9ERY2oW5byK/wD93tqO3Cp2ftbGtD/w58MmJsAHUFF7tTBsXieDi8hVkoJ+6a2dZ0f9OcDFi\nN2UzTwRJvML6LMd95+mB2lLWZ/U4Prb0bShhmuSwxTJEaECXzyt5VmXwxrqy94g8U6Wxj9lNDJuF\nexUH6wWHSv5enl8iasyr7xfRyKgPjNm4iYLcoba8/MB0wLRafbk3G6OHZohd8U6DucB40ezdJ1bQ\nnWcKWgkeKawPbuog2giQG2HpHZD1fVoWP0/2jv9Cg7DIxun9aDyeWKxingLJZ7LzRLjrANJCsVbH\nNohMQbGr7mqNOps1/yLfv5M8PQ4Cob4bTbEM7tY7/sTJ752NVqHV7ArT/FtgSd/s2Z0AdbKuMRkp\ncyOeNFX+lu9mqRw0stH5nncx94qbR2yXE8HX1Vz5rXdheg7tJ6XKE7Qbx9/kfDD3Cc45B8+NjAdQ\na24L3gbs91TqcZA8d2WovtWEaFUcCJznkWgaPqBIVXxZwIvoYC9Q4XlAYR33PL8X3rb0xGtN6j8m\nBbMBnpNS7YPsyuO1/fuVufNEuNrc74Q8LsDcFMI3/fT2pxEK94wfyuBfYjz/MTD97hnzb4aPJ0IC\nd257JrDNv2dSrTLjq1pD5t9Xc9loHY8bNnJ0rVNGlCzp15OrD1NCkWpfWX7yhrybpk6J/KnGUg9w\nlfv8Aa313bATmOBIEy3O9xtaTx5IRejCvnutipComDA5UMZ3714msFhx1GLvzDV14wlkDHsF8Xdd\nk2SH4clSyJRjP3UxNJfBm7ulw9hkd91nipUFXywTPnsyDoNpEMZozYWQCZk74SvbS46BxHURrYGX\nnwMMZdhmww9/n8JvKyFu21oI2OXH4sBzZ9lCcSyTNVTV8RNPBLUa/YDZy+j6Y88OIhs78cQApTla\nvDBHw52Sw3A8aB9goYtN1vV9W2n7F7tJQqt05hXwDsT941ywQRnJ5OmH5iF40JagiSv9JCwKlZUo\nDCOk+z+eQ/r8cguvSgwaz45Gc07mQoqeI79FQ5xnQ/B62EGl9EJIlWZFORUst616iPH6Gc6VUmEJ\nf0F6tiGPiTNuWSbPfRQ8/hJliK2/oJghyyGwvMPCA9TzZoI5bmgyXvhac2I1/Vy9hbOQTA0dIOM5\n2ahjiRuRn/u0n/PBTnnAQXbQtpNwhk5t4riGM0T+k5lJkqkbP/CHaA8+sMDHE6EAl2F1EvTsTtXl\nTvHAkCNUVmT7HS0TPxemqrbfAYzVWn+r+xnrwM8M2uXHNIYzSP2LkLURyOU+bpy/HQlv05dwd8Uj\n9qG1TZ+BKMvB45QENM9O+O1Lv99bA0q4Lm/5SV2OYWyX39bv1ZjlDFJhzeJGkhTukruVp5DhmNw5\nJife5yfa73R+5sOK6XJt0J6R7kx6h7IwgHHNZUzhRUwvOLwLXmGWtWemtGEaMg+4bb95oPsLW/Z7\nWgUTXRuwiBHP0Easx/Wv0WO/KrXsEznGRvsSiYVcpVMoD7gTSWxujHk2pHuyv+5xRU+EpV35fdP7\nqHC2BHMrA5utACZhbNnRpOjh4ZRi1b4QL46vLw0fuLtmdfRh+7MKycw6Dd4DAPdTsr5iQQlf+ydB\naHpv5G+jCH93XbdjXl/U6IsxwRrGTvNilcfY6zr0xJcn8jSiOrfi2bDkz8AtdbfJ429zME69MGOp\ndtU5dO5AznTXPxWE5t7oTR2WThVRI4SvJdgaxJh+fPeE33MhUsTUqXnlwYO8CJIw+2pMr35t5wLD\nIRCQTuDbLqdGKBcheiLYc29dl3X+FOK6dW2XXrC+9JoEmW9xQf4O+Xncw7i3pX+6FtzvbW0zeCJU\n+U8iRIWMVCVepTGcYekXTFg0KIx2/1la+38G7y7I/0H4eCIAXAnT8uz9KZRoZlxj9KT+pwlwMFOw\nuC111R6ereMo5FsglrcMxAM2eiA80fj/XRZG9figGyszwLFrW+pHnxdLcSM/H9nUOOYhMBWZmxxa\n1LdMM+KRCUhxodyswwzPo7YhkzeOuz98zHsmMsUlPFxQKf6xAz9YpOKiiWOzc9OWuY04dLL9jIyE\n1EnwrGLIRBD5LYgMZcQdE9ThOnXvPCSifwe90LmoPBHeBefJUBPGJZYZPBFSPA/h9tagBFal63xO\nwqTa33cwvJ5+YRwP4Kduunmd1s9KMXhaz2k5TLhaKZHGp/fmetL2eCco8or3d9fLuXLJzQyIw8Ja\n3AVSi5W3csG/R2mp7hQ0gWyR00DrhJwI1k7IwXCoABF4V9x4ShsyD8XbW64yw9dThk/fvykQFDNV\necFj139UyO7aPTmL3Bjc9PvW65X9Z/X7HTDdK+Gzd07qz8r808rWD/xvwMcTYQPxIB+CwnTFg9OZ\nQbh/v63CctvbcsWjXfPolQmLW/QTBECziXzx36QLICJgqjZl3D3HoEAYf3vBmmng25mmTWBvGSAK\n52TnbfBhZpnkXl+3GcfOCZxw0CAODHg7TT8Do//LtN67uT6bc/X0IJvPFwrC//C5tAj2Vfu9U8ay\nVsmxTsYkZex5ZZoWxiDkOCDyQgXWpXd6J0LAytBHn8uLiF4p7tvrZg/20VpfO558J+M/auW8XgX0\nREhyIrTLmM6oTHVXL77T9i/AT8MZiM4UBVJu0Lzz9i5Umj/G7BwQI1FSdtu8RBRc0v8GHKq8ME+A\nVUE89zXbOWeu/SOPhdAzdLKp6txBHtMPIRTBUHGiYOKELyoaJ+pM3PPV8ciFf4cPa1P2rLd5Xt+M\nz8HtDFhHNp7u90DDXTktA+1z7vU65mS/4CS/Af6966/wkRrCImXv2nlIgyzfQsR3fobED3781vJb\n5QKtcy913nnYDVzWh1kYXtz7/lYTU9SJ8l/+rvKroaIR2VD1SNgqFaMSf+VLzZiyegwSkYYzZHBy\nlP9xIQ0fTwQi+ngibCFup0Z7bZ24leoNDRd6I4S6ml3/KIyh81g44Ho0E3h4xzKtHgB6IgARxHg3\nrCe7naG1NoQGX13S511fTpA1KBmo+Pdmn/sYX4+43Ed9Am3T5wr4AckVwp5VLUofu7vdtnR6zSPd\nCYxWPP7L27fvKAjH+WmhUcwO/NW6cxN6tQ8AACAASURBVMlOxzBXnbv+nFjjt+shtK/x41Vd8O8U\nuDjIK/DWryLWlSycgSjQj2h5f5D3o4X2EQ9pB8cq1oprZreuKJSRchHeEsx1Y4Jk+TAnwsAtjEPy\nnl77+tBKue3XnVUMxxKfH7R7Ryv1LCN/LlQ4Nji/4rzezZ2tE6nL2kqT2ca/W9MbGp5Adta6+Wvr\n2biWf9amgDMA4N90L7g/ZV9P4teJzoSFSIotTIIWC/7iFbfxRGiUhymM9TPLP0xIrXUIv7W5cnuU\nI2e0yXD8v4Ir8JHCi0p4ING6TjUDP5SNdS6eCLAp7Cpof5V1tMavvLIPs6rzMdT9/a21/xR2ngjR\nO/cprAajPLdDpgSL7+szGGuhtY4fcB6uKx+GITKYM0c+T+WRD/yZ8PFEIPoZVXqgOldFQXGa33ky\nKGMxtZwxRrYW/JtyB23T/k+htfbYjVkgz7XQ3HexIjx3/93D+0xgo6/GznU/ehbk753VvybdHODj\ngg/HAwoxE9HhXdhEZwLJReYt8WI7IN+FozmBDNoCMaFiikEyYAzvYF3QzB6VOe9M61quGALxYhEP\ngzvPGZcpvLBk/J3gPCrgOVplsrX/Lv+BsaP7kTmAw1spfgqLIN5qa/U1yfIWs2JzbwWhMFJo2czW\nodVJR4P822FtP/XaOMXbtZngkKIxJ9SfRUmR5GUX/0yk+RCoCW2ce3mWfVGj/wCtyBSySFflPWwf\nvQl+A1LdbbrHi3Xaex5eNyEmf9vC1ZbNYon7cgHvtz2CUFX6judpeQUlfk8VqLx878GyHpMrZm0z\nCx86yksffsoSSstHFmv233ENcG+3niCZsvoETrwQMnhnDWXhpzFv0JmiN8+VdPseeCLsbv44gdNx\nugvz+F+Dz+0MAz6eCAEcs/DwXSHIrfFWm32MS7IpB3NhblJE/nMrPCHEUzfxRogW9ph5/v8C1C2M\nvPvVSazYEfxinO9dmz0cpnkdXpAV5nIogySx2gEy0RNB8nbIs1D0qdu04ddSV/sarbzgkUAMnghp\npu8HW1AzyYc+Z0nrsnYq18FTqMI/Ig3A3AgqbJw0cKgpM8uTh52nzVH4yAPIXEf/L+CJkGC328y/\n6T4W+Qh+qfMxcdtd3K6Vq6Se5s+Q9H76N/Dc0BykR1UpPXclPA8sz4/wARNcjCt/xxOhoiGZVZ+T\n3+PeqrwBDKefrz3NPcS1IGL8xnvr9GmOKILbZHZC4Ynb+4Mm3b7OIArG+h3xo/xcQ0VilWAx7sN3\nFBgc1k/HEMnHtXlQPiK1lD8HW/crfxeH5+/0Ksf1eeptGtGxsNuWlmOyNeATBft64hydJlO8yK6r\nNGXPvI3hNvTJ+vCBD2Tw8UQAsNigVUC/mIjbFFz70IiPqx2pjLMbyoSEiF7edLIwBCCUMJNqZvVK\nR0INpWVwFlgtJWcUYMcAV0qLXTt3MdunYLGMZp13mtbDekXw+omaQOZZYglHpvP1oKs8EsbcsSPO\nndaymKF33O0OHigb97SzPjx+5QgwIVi2BqtDMLVs/Rcote+UKNm+HQqescaqdZkxhNHyGNeSMPK7\nmNg3c2EtsJuXdyAKRRgTWiklvLfND70QDmHQciLa5DlJ4YcD9S4TXIfZ1KZ5Tn6JMbeYRX53P70h\nYgqUE+H1dD5jjD7p32SW94TWZO7Ix9bKm98XBRfgmQFmW68VCU1/VyMBnY0RzrXnAe6Fgye5MdCb\n6jeFtlNPhLiuyltDfhGyM2hR6sJarhR1JzcvSDlrZw/oRRChUsxgmprb/XA1aui9egNMVG4eXWc3\njFe07JrXnReA5bvw6TvF9h2I5+IdPA1jMf5tXS9PjgsMdVJ4yMBqHjeyXCexDSyHzxDw9qOct/2D\nNA3LpPy58PFEANht7taeueXm9/SCFv0yK2dmeXO5B5JriaIlKbryYZWt2b22I24xFIY4aedWR+xc\nBaMnQlw8Me79CbHcxukX9wf/BrjDwQVrr/GdFSwa4dMD7FT5EZj7Xdv2Q8ggPwGvrZKYZ4trX+cs\neigc4Zs8w7Uhydc0LwLV3hQ6B0UBtErFhFJHIHONezPEf2JRiXt/x9Iq798xwO/mAzA6AR4VVRCn\nxCY3HGMpxvTV/N4/wTdbP/K8hbJZ3Hz2XJ79F+iUVria7TM3tH5+34qjxgDzy65QlJ+0GMSx6msH\n7e0sx5E+yHf7PdQ/15H+Travifx4/FbivAocbnPM5OyS9RktigvN0/3gaec2H9Kb+EYBVJQ8+Hem\nVFRcyeYnj5cu8N1sKBTsT86yXRlO8rG4hJdPriW8VgVRzAVzXNfhmX3qURo9NR57ov1AHvkVj6ei\nLrzJ4nR8l7wL4Y8jzx1QEiKc3kh2AgsNLA47t8f0WSizeAU09z1T3P4Igueb4JcWDa2LF0IG+3Oh\nYdMJr/hfeUp/4G+GjycC2aEdIVr3US7hqQYVbwR3sKtgM2p/h8i7OHvwROjTDNO50QssFguuhAwK\nO6VDln32BH7qiSC4xXcza5ILK+mNuLFapNTyTytzFS2YnYjaHEvMeHwiHDl8wm0cotUVSx3Dp1Rr\n3gMrnk6TzkS9TSs24P2ac9ygfoTtYSwx4L07LlTWa9rHTXWCN37K9wu+f7P/1ERhEFv8xHtCx71Y\ns+iRklks6s502oWu5BnM/fpF75BOvL01k+F9zNmA3kU6XonAIO8yPF8Yk+4ZF1cBkZ/4ibxa3xFX\n9kxP9JKImcN3LtenlEb2TaYU3dUj91I7Godz4RCaBDvezpCsLcnBsl2rnek01wJa+51VF39HdDtM\nTOe5b5v+tGsHvZXULbaJB1RzcynjHL0Q5F28TteUmQmjnWylMtN3jf62rI9HL8pv5isuCfSKuRoI\n8Dopfm3cxRb38P2Cw4AnjZdnHfgJlrqZ6YstfEDnhKAOGvtPXZ7n6aAx2NzGWuk+Nwx6Qki4mbvx\nh4SWmsef3ASV5e3Au+134HIiFHvN6tzP7+gXnrA2LvKO5v6QPmHfMPY+uT1B6TPS0cRTIlqvje6s\n44S3bMge17FNzkJcN44mNFL+L8vE7xTowZMqy6Nzu38CzclgodXs28A+4Rc5A1270+3J0Ucioz0B\n53gmZXhFVG5DHoO2Lq4ZnFtHpsNNErKOXnN/RY9Z/MRzAPmlC5+FM6OC9SxpqjDw9Xsv3niTQ702\neNv+H+WJQLRu9j8UPp4IAHGDoPX9qScCwh3zVxFBfJenQPmaTMYrHER4UO3qJsrdPZ3FpYgDX+Kk\n8+7cAsb/RQbFCeshjEHCRoR5MSGOA1FfGcYFh+x5PETk0FMBfE2+h0oNTIJTXtlZHHwVGl3729yh\nQlQrA07hHRroDqpw8MiBaYkVw+8yToVwlh2aKSSaqN0eE1w6lBuFjanFpIXvADI9d/PCZAd3p0bf\nvSnDYeu3hfVkjEEPZe8Y+d+CJ+utCqGKDNQTiPoQUSAcr+NdvpN3NkO0iv5CHpxT0KsBKWdyRxlK\nf5N1hVApJBd6lxbibZIppY+8zv9WSIH34/4uPZduFPY/3St372fn73pm4Hc5z0ktlqr4gbKo5Ill\ntK75Wc1FZcWVecBxfgca8RFTEM949/6EI88ree/QAwP3p7+J6r1F8W4eiAhPE9+dhnLs6PW7++e0\nHiLPL3eezPSGTsRE2nft/nqunE2FKAsQ5bKAhdrasxN+7zfhSTOrMur9Ov+p/n3gvw8+nggAkYYg\nA4BxmG6zBW2tuNcNN2EmfrXUDZWShC0RVkZvMs3sNYtPQNtSt/2L6Bq1RCa4chO8KL9tPt7OcLXs\nLl3TsoZrvScOxmQIPpFJwIRAIb2EtondTPuQjbkLZ8ivoboDcb3OXIrF2nV6t/iOMGfXyalySK6u\nE2t7OHGzcX8H0ljEItHlOv6sODyOb910INvDC8gCA/fad67m26J3WJW/fin5PdlDZV0XuJBjOIO6\n3M910NY1YZX4hJtSBb5+AngjTOwPfmp5yp/LM7QaKy6qvGN64btsV85af2UM4Pt1kb44H2WeGQsy\n0UUbf4aQkoj71Sbdo9GcKN1uaXhCi7JEoGt4GZXrEENQymbnP7l6T8MC5Bo4gf9cc1jjNXBMTG0+\naxoG9ILXW4OD9QB0DG/2ROYZ0ehe6NGf9Wz0L+BekE8XDfRgvxKZQoDIlCwaT03nguodE/+2wp+N\npst6vQXgLe7CGZ6AhDNgaM/tO9mzeEZsxvj0ukcvOP5MGbPgoLSE3XfFw13xSPMaS1yj9hviGW9n\n0LU9/2gsV5DzMmYV3Ja75BypczogzgKLwixRQrfC+LWrV9HSK0QDL59eRVrX/ZuKDTEgCCy5X9qg\n/9yGUTHDDa/3HHW01BNkB0+6tMvZ9D8FzG97dP+vwccTAQCF8tKiybYRM5exCDEGehCmPR4VIWJu\n9D29EUTriRbgn17lksHfmeAOmSV9llgpBmM/xvzVRYFi1liE6Mp2y1wJR19JNwkoUwXuYkvfwJKM\nuLn5QoZRniPBJ+vrri+N8sOusrxmISXxbbsGalaV1INunEM50sATwcYkc4Pz7qBQNoxlmhOhtHKH\n8U5L4Qv91oq6fZ1yTwC0GuL6zgTGnqwTotqCwfPf0fnlgueTGUzNkubt8xRw5t696vUpdGJHswcN\nj4M2wxbid/28x1XpxFP8fmkYcI2WSuf4TrKmNMwB6CTSoVifcymu+hJ+2CkF47reCVuSaBC9EM7W\nfdIu1fumzImwgWp5qycRG33A7z2UlbqE9xCPBO+NZn1I23R1Ai0Nrvix3HZOb36LcEwx/mHGe9ea\n6aKf44ThHnXb97zET0fjtxNMbnNTJT2qzr5LFRfs/j4BDvxt5KGy9uS9k7qrun4KeCX3bm/V/L38\n48CbrUmpSxySZ9GwY+HA6OEVytzU+YEPCHyUCAnUwhoWaqXwcV2FUBfrC8ngKkjzCJAdUp3Phf3t\n/eKa7I7KkAYrOz7fXUAXeSuOxHLu4De1+yewYybvDiBhMbIDo9E6X+bB4H8Qt+XfhNQDhGx9Cw7R\nOhxd+nJPhJzZzzwRroTBiGPmciJ0EAATiMmfsuljST5h3I77/V1vBBFQKuH/1g36sB3n0i9eB1EI\nOnaDmPOMGaMST4TYRrRip7+9oX1814qDeqaxRpt7rnCYv+AWYj3hCh5lnOn9PkUQ6+sT9U4ZolAx\nt8Uz9EQgSgSCjZfTe+ooD8iQ/2SNRE8EoblEZ9Y2FDar8MboqVCB1CSWfsbvqlAu9Hw3ypQY40x0\nRl9iNnxpCz/jd4T0rMO9kuy/dg2afTdeT+nyXX99ss9ni2qh7cVzIjgXbupgolTB9HdCZo1erN0P\nDV7tYC6zNrO1V+H2E+XMO+f7uffdvu5fDb8oKotP43jqWnVhcHvEnqB9/Tdcq/VPQf8H/v0L4KNE\nICKiM/ezcSDM2HwwbC0a/8Nri4hyouljf0VraH/H3AgYHxkPoxTSgMEzQvKbhBAtMzGzvuVC8EyR\naE8rBus34U6pUf08GMDcwqxlEiFzvMdaB1rrkOm8BZdUsT8w4a1KjKXqgDOFv6Uf+r0UqvO8CLsx\n8wXX0e/REnBQDdGZ5fEp7PbJGBuJQbZxiomJkIGPCoqTREie809G42Cgn253W7MPhN3s2b+MGWlX\nK5nIqHwjMqH2McN9k2vlt+HIE4GI5CaEzc8p/GZm+VOo9uaPFBThXVn+6TWBhWKAyXumaXn0tsF3\naJ2Tio+5XJmkfcXD+A1MrPgIlFCdc8HvxO9HQ8edAvkxHDhvRSWZeITm3omPm7tt/wnEMc68A7L1\nKm7zT9s48T7YudULrRs87fvnQcZPZ7/dAd4EovWpIQ+FcuCDyO/ZX8/jEOCET1RFJSgth/eT5FsC\nGoD9+OdJ9Qf+BfBRIgCgO9IRbM5If01STjlisqjYdHYnsSqpQABHYvBvhLukdno7Rc8zRf8TULuv\nmiA4/t7Xc3KIYBXOHR7rufN0ecDAVdZCPJDwEPGhCh5XUSBkNWaCvXObS/bfVsCfCry3vTWScAaX\n3OmGcYlrIvb5REDEQ/ukzp1yJFVeigcH/s39TIGw3M2+D2t5l/z8lGzFcIazl8IodioTvvlyxV75\nP+Cwxlr4mRVVrPN/l84m20M7pj6t44EL8k/6ce8t9LxyC21i97fVaW7MSGezbOxesVC3Nb6Hc0nf\na/pZeUtFOhLpzZEgtBnMuM/+jq1zdx4cxYSHStztEeHZO+cP8m+7OqIbuj33ivjMA0We5/Wer+dq\n7e/DYWoeODUg4DFV5Faq4J2QlLswIV//PaCxZ/BBeHPUY/QcvLNHIt3URM28rh2in3l4fODPhY8S\ngWjZGaz/eCE0qrl7zauUXqDJCx4NeNXOHRGoLUxWpxABIQjDIwG1iV6YPSY8CVeAnge/4ZIaYREm\np3dHdeBhQhi0covQuoN3M9iPJI+mtUCviOoKwBM4KYbW52ouSwFbEivqv1ZyfneJxjK87vC+8yZY\nvTDkWrOkbKUCb8OFPAsbOmaOsnvLQ2jFePb7FgSGfS1uzM6LIsy5OLJjjDW6eF+NZ2I7EQoZ/Psx\nmWCjmFiRE83Eb8fanoAXLtk932ETwxmOIOaI0PvvgN5yYJ433Ga78L09EhnDi4Kkc7IJUnFGi1Uw\n5ChIAurFGKrSrxjgWyH/ukrJfXd2nHpUoAeex8t/xufvwN9lJUy9CHjwFyhA6vzL3xjmkMxr6eV2\n6Akp9ATr98YP+6d4QLu7dVPCJjHiyRWeO1i9MgL/VFzXOD4zXGe9FPZVEHD9vDX3LHrmxXMuGh/k\ndw1pCfxnZvle+oS5pCD+Xd7D83m0ca6Ef3d7aY4E2GQZDYjrT67T1LwiUi6sPaTTMR9TBnijVgZN\nj8v7Hq8KEr8eMo9C7QftaK/fm9kcOQ+CTT0y50NmuNTL6NW9R6R4OO8Utw53Cmv332rJfAf4H/j3\nL4DP7QxEtz67nY3BUEGyIyMT7+Ud/0Y23PNMvSgcq0WiN+JmiWYE2e8uSZhC+YThODmQJesxEs0s\n3u23FrblQuBFy52NbVeLczP32iftyfw9eO8oR8PMMrzEEs6Bulpz2cjx5ogK0OL/1jVScivDA2+E\nLK59B9hdp9TRQ5IXYde9P/cFK1NjioRyiWGYBncST4S0KDB4+Ix5vt/7Y7NldlNCJvBjWzIDcrsV\njkmHvqPb4FIPMZEoEKN3ElGdqf5Ok9iFsaOpkMmLVaP022fcnUKr7KZ8PkEo8UR4DKFBy4Ju+VDa\nnDua/8ebba5mfXonltihUqNFnYi+ivcqTwSci8V7QRZcsmCe3GiD85a9hS72wixL+ZPcA5Vy8Bje\n0CpUa7DzUB71tgaMKY2c9IV5nu1R4BB60mwMKm+Cd/DMrthzc/Tuho+eUKGtDHbr7x+DhCbk3qGJ\ngit0L3Yh82q4NzRJOVMMVIpLf+7dKx5+Aifz4z0m/G8avtpsbaDgG89FbO/OeyP+fepp+DTZsq93\n5btjSMPCR7CV60z09eZUmXFt8lTdr7Ml2Tcol9xV5WQKLa13067IOx/48+CjRCAimkLq+OozIxOt\nvIQItDG54s4q4ojKDXNSCetOwxo0tDvImA33Y7iv8d17k98FzH2AHedw8KCy5l2GRhj5dMw0K9jg\nPh2PHMJTzPq3zuVv0FJch3Kt2R0hd3CoQIjr/HCJ5l4KyVMUmnxZopYmdioafvMKhXcPtsp9c7km\ni37Hghl7F+c5KkWO18IBcu8MLSal+yeAKVGOvkOnep9B7Bftwjqit9FSTBR1Ur4zMZ879iGNT6fo\nYRLI6paYDFAIf1rOCeNs6okGDgnxRqJTiFZZIjwX5t+ZwPYGIF34rXWMiYIFbt3qQVB6sZ1NmVXd\n/Z2o1Zw1tqNQENosctHEdn5F6FSCdb+eK6+Vp7dnKK1wiohViI2fSGOFJva+0oBoqY2/Y5uVEl3K\nn6wPnOtK+dOSKxPTPut6Ey+XDY0DEJ7wyYrwBin7/pvC5v2Vjv7AjsrEqs9to1SvYDfX2SVTFdzy\nXpd5dFzE9DqYlb7Z16J0IHpPl/5HAtPniscJn3AGADyEqxv/1Gq4uZ1hB6cEdGFGwI3/uxN982A6\nXvBcNLa7pf2UufunlYvZmNqVP2axJjJLTQWZFhtB3dWzO8XTpEotHLr56DCZF8HOle0OOpEm0Yz1\nD3f18fdPhFh5924spV38HhMBMtu63Lng1fX//CYKYdwQp3chdbfE+QSN/V0izQp0jR6+txsfsYAr\nM/43Z3HaofzTxIj4vigssDtZ9fFK0mMU1MOlLnLP2LXj23aITKkcvXhu3yNhHn09Arv1gbQHBYmq\nLNb35GacvVttboUlWs9cmUO0rkVoYU3o38nk7+YQ234iPNzdDHxXlYyJnONCP03Y89fj3uVMqeLi\nM4i0MmvjyXWvackHdODW6w60NDs+JtKKCqX46ejL9M7a5R7yVxPXv51ChvO13aX3MLzfzEB21P5N\n/F68EXtV8uT4vpPAOFuf5TgVXrS7MLdlzhN4Ov6iHIphMK6t8Ik0bwdPjnTZI6pM5OZ4FUya2oG+\nnvIi/7Rs8IH/Tvh4IkyI2mhk8IjMms/U9KCWsIbeQcDV+uaG7IXrvSQLJFMQEJG5QpERoa5CtDEX\nkg9BmA6tVgVVXvpUQspw8ULgnkLn/HssIwfd4tLWm3l90FTckN1OwaEejB+MPEZnc4n28YWQWA+s\nJjw95kk+sS5h8BhuyiACps/PZ2bRQ9f2i0kp8ijLMOcyHjb3rpI4toubdt9qCDK3P1nr4lKHQq58\nRyHji0QBwPq7hdp4VYMog+yGDXBZRMFqjsuJou7OpdMz4c0aufy4VKFHu310ohRiHtsdLV+oGPvW\nsciEBHaCpljYcE6WcciO92VdzHUFAdtVP7Lnsj46E3HzlkyZdyxbeUNdyRq7mr2frTukbUmXqNMa\nIjV+AMf+YmHJvrdwG2i3zzrQC2H+zXNiqjkQ5e4gKatSkOZz915YEC5OFf6Wc8cpuJa1AXNDngHs\n8JvULX3ozHYDECX7o7AwO9dYOBcRNx1bxAPxabZXXC4cAvrg6AwI0LwmTPWWZNJ9JM/0tzc0mbmF\nWPoQ1a2+7zYmZnHWcMUwN0TjbJPzTOpyawj5k6x/oGrEMX8Bbe7zXPsOOESlJ4bKpHTnoRZX+J6U\nd5hIDAeiaHUXujHoUWei3hrhzRZE5PJURRRFMTzKDUQ0jBJCaTCLvaw5VAR2bsNjLdQ9ygM9J3Lv\n4hwJvezYBo0593kX/Nkn3pwYLmg4S/3wjGQvtTDO+bwpDQNcbWw5va1M2tQbzdh4Gcw/4/Ne2e+O\nL4g0Qz89bbIz08ZbxgfnEsdu6avgm9BrHB3JKeF40EBv45pm+MTQgSqcAUNF3bg6haxf717JZX0W\no1Qjptf0npPxXoySTM5YpPssG7A/DT5uG0T08URY4CgeXAg0EMXHmZuzhHC01+6pizuJkOaTraGl\nB4nS2nYjl3RvPqsSHu2g2ke3iotQdmdBidfhLQzyeVMpqAa62bioO1uyQ9S1b1oeMWt9o2b57BrE\nHNPN3ALhJrJDxebSM8ETEV9HKqXliRUrA1G1/h3jmDAQAjshz5fzzI8xZUnbN4vpcbwzBlRXVw5s\nXlO8imalWvdJfsyX3AZz/6I1dWUYcuWBtTvXZTaKSyLByUion6V9f/dQ2E3TU3rw9B2Ei9p9H37r\nXk+lF56JjXPgrqJL5qek02AVXDxNyPYRCqQV3BmFV+83z0Cndc++V3WP3BBJf2/mVvcA1WEaakEm\n81xBT4R3cyK0mxgldE1uBGQEyIrDhVbavzP27izGmv+T9+Xyeg2yc7R8j4v1eQJFso3VrXzT5zeM\nGHiOEuX8RVTk3NeZCcd+bCrPjru5MsVd+BuVC6FOwwGMLCHsEvMnZFf4pfADLzLZc8az5XXJ+o1x\n+7EM8rBxip6uyeUaxps6bsNmij2kCjryCpAnMHKFTV7qpHzKT/g1/z2VBN89UxjYtfEZH+bXW4Xz\nSc8+8L8GH08EEo1wK4kCgmpwX6hEiBbQoQ2WKwnTqyMLwrkU40YNjMligerTE+HVB3G4c9Us+xV+\nwL5cjemaB0qWDIaIyvwCsc3qfZ7/Xq/LWYJZx840269+aWZZtPxnIAoV0eruXNqcJ8K0rKEngv4t\nmn21BIy/vzt4oBx4IpysMZrj981E/6kO9ZNTtPBEiARfxkcSP1ZjtcPd3HA5LesZugaHGCTy2TCT\nDRMrdgbl2cqsYNNLXwyRUc/32pYprM4YKmdlkINZ96vf7h2YODm88d0W9o7sEZnGbG+Ndx8wf7OC\nzOoq3lECogCr7mQ/gS0NKuo9fecR9MHeDcLV9R9/e8u1Xiu7G1N8XzZtgKsR/dWjoFGH7XScaDBR\nKv0BbwW09u/Iu1rdYW3J2CLGkamWveysmA5R0r6XIQyEgsy54Cu4yndMqIuw3NuO+6bb2evPNXif\nniuho+cEwd9lH/SZeUwEMiSq6cngrwKE0BG0P0S6I+dlFv438DCa6/Ai8BDTc85+L/MI7WAuvhYS\nK0ZPnwineWaiBw42e3feynq40yGr9xhYcoVfLIUpatMCfp6nZNc2EYHHnz1HId1fJ+gF8zx/Qyt/\nU4LxDs4HiyTNyTGNcuqBGryysqGu8i3p781yIljY5lmyauH/tvwI/KQJosl4Tpy/yH/eK1Gnso3a\ncTjFngbj39avxSsD6EOkbwJ/c5TkvwbeTNP1PwcfT4QEMs1xR8Ld/WG7r8tnPVXYxdoJDtFlj0hd\nDDV7M3kBI7oiIe53YJZ1Xhitd0EEfWSYpC+dgqvZ1KSjy6G5ZhphQ+2p47WlXsa210SZRP5v54kA\nz3aa6CXLLYw5uiyioiN+FzdcwRuZSf0355tDXUREdJGbq5ZR94eeCEQ1U+0YdCgVXTGZzhlOFYzg\n0DrSaG+sn8pAA+NnMo9wE4ZhnOcTqxHjZ9x3WC4w+aiv8jivv7krZheBw8czEj30yIieCCR1CBPP\n7nCIcxrXfkVjntKgWO87MMIZTBfVrgAAIABJREFUHsAl14W+0Rh4IlQ5ETDviNAyonWtp+u+5fM0\n6rUXkOmTp7gOkcZ4l+q2zC263wtjvMtXktKdANm8VgJWNiYnljCiYP2fnnVDmOCU+eXw+Ruw7Hmu\n94icA3Kev3QO4QwhPw5Id87slDmgMgT5G3nmXL9v+plCsS5kLY/98gxnJEpCo+pzoK4mtl0tYec9\ntqlv562B4/wEnozNBf1p87rfiB9RfrY5hfTFwYWONcfBifDYwvy4K5M3+Sxa4zSXgipBE3xxvGNO\nhKwexcnxLqFTk1cS/k/Kp1eSFvtZPndn0N1SkHC+bH+3aeXB8XL8V8EPCJ0fihShM6aY9sretU/V\n3+Od36SgH/g3wccTAQC1lMMN036z2N1pRejDG8GucZTfppX15RUNyqwc7LWLSC2X432LcRuMxvRC\nAOYE8UOc8XpBokTQ2JwMaH0cbvrsrCESs6oulrEfTSxe490XgwsqT7fj5hlrBK9llzwIzTFRp+Dm\ncnZOZmWbEyF0LB5q6Ia/w+cOV2GGxEVW6u6NR7xiWe/NyY6eCFBJ6Yqf4B0tWfgq4h0VWURDo954\nPQpffawudfkjc6+LGn6npUDE3J/mikeEQnBLPBG6/6SMUbFDtbWx/uVovU1+RKM/sZxk5BeF2Ktf\nup97LEe+TSJjAi6mydjM9oBWHEMPa1/agGXicCIfkrH1fKLVAnQHLakThW98NmKOWYdm0MtmYQLc\nzJqZVULk5n7sEQJLmM1RCXiNqlrjr1XxuxEgfwp29aF/Lhig9TgK4bsrxMQKZoqr1ZqPk4XhRtWV\nq9g2QjYs8brLGCOdlRfZJ3oiRFhCDiYOslRE4eAKH4C8/wI8opB6V527yvUH60X4k31bK+B1b+/A\nYjF1mqN1Mk6SQC60zZ3FiUBM9XWmvl0Ij6R8vNF4sbQzz5rKQNGETyn6p9bejZ15VTQ3FQKJQMHX\nG/XL8BX+8wWek5LjQusicn8rze9w5kxmD/e00paMFPR8z2mbfdCKnSdCBw/UTPHo+FvDlGJOBATc\ne9nNWncK55gLpsm/RmC4qj1T7D0O3hX3mzzyADbWTNxnPoPAtY18HDEnxmwT1tBFXvmgucbUS2Vd\n20o/iQIf+B7N+NeCMGMf+HgiENFk7GsChNB5uNX33spDEN0CI3FRxiIc8rl2zwszImjJAcDsMzn/\niGG9TPhqzZQoN4l6PaN008SwcppgJtAJx9QOwt79OKbM7A04AYTe96pAq4zUe+KJom0XxVrL47fF\nqigJCnfQmaYHx+hsK5KdCaA3yG8DQ/0I2H0Ufl49JKcM7zN6DmTcRQHlzRkHe6O5Q3sqDpoxDlmY\nbxQSTuWPihEdv+XIolt4XDvRi8heymf7zvqeCT/Ax2ynAhVifwdUjMuFcwQINg0/AM5ps1di+IBI\nG3f7S9sDRXQ1jrfWxmTBqvITlddkTJ1j7ppX/izhAAeKMVxvSn9vJv+dKx4rUOVxsqdvBfMD5j57\nh4hu6QzmvNFnRbkdiEfBYORHEAPOZ/VO7tkAQkpBA82VPVHqgKclelxlcGQpj8q6BxCrj4kyiey8\nWJIOS5OxDt36+XrSuou5x7CPyrNk90zO9SeQ5bjCxIQSwqJ8p1xXzo1eHWnE+PeCvqPi3Y1HoWTO\nYF1D8rzmjzL8o3HG1p9XahK9J7hgzoioQOi456HvcY3wnD92z1ZeXvtHNc/RNqfj09uNfFJ3U44p\n7zzXreRFyP6JMi1Tqr3rTfOB/334eCIUYPGg4+/OovmEQ+TV6PryhCZ+t/jETGMtGuXZJgh3i2UU\niNL33OhCEIYnghFadY3sSNA3zMxMuvbEnXcx3sffoV1hkIaVE26NgLuNRYnQX9fi1hYzRiuxKwia\neEvo31K+GVNkhyev4QwxCR09dBV/CGg9wXn65lUTTXQmCKcwTZOYkCwDGS/B4wVzif9kLOWSg9wN\nOReFmYle6olgHjbqrjvnq7ouaulaO7svuUwA59aLxSF6Zsv3TWBYntZn0RshtSwBE5eVk7ngZrSo\nEcF+srXzG2sU77rHJG4Ov/nsqwlD1Wyfk2c4cC1l+9U8qAKTWJSXdoSWEMl62V+FdwpjDM+Vg/re\nDGc4a4Pclpb1o2Onm6yXC9bmJlcga3iXrMM3xsPpWngjTEJo0el+9Uz4ur/Ekr+cK4e4D1zWPREF\nOlln6En12+B4iDCdHL7HPVPpTHlaNV1/NjjEKjDcK14jiXjHMcF9GkNNyjCww82Y0RmB4e5uz3Z7\nTde+0hZvfMC97cJ4bnDL58HCgTIFQRYygu1FWi+ffZChoDRgutT1XPb++HcRu35x4EOxfRE4X3C2\nVdRuDfWz/lQglvCsrir0qV15aIvkelj54XtagPtO2uDu87uk8wqhfjtlqAsbUIXz5NE78E2E/Ca8\nD6tl5Q14r6VDTzD2Sovw88CBTfmh804MawBzVNn4yo0iUod8xvwOf1o4A9OZgu1PgI8nwoTMNRSt\nR+gV++JmiQCndtMl0+umEX51O6yFKbgDfz/2cHsWDai2z3AFFLzrD1751yzJzA0MIcJuHLiI1TVY\nLGf2mxdIY+I1dQ8laX9YD79ac14JpjW198UrQRUIZFrVO0ZPBCEk0jtrkE+sOJn3+VwT7LyMAdHD\nm0z4xXZQw7yzTkdhLSuTddWsrPAsMu+9rxbTeTJkih9MZhWHamddi1ZOFDZk7TWoExVCzMMTQQ62\n8a73zOAO0iQksqPej6xKrfn+sGwiCPOQ+fcMZQjbCPVkDPYyRuT5ABTQu2MEkTkO7+in75/tJ6uz\nSh5XWgCh70RkbvyxH63eP9la0X/NW2qRJhhtsH/RoyNrV/aX0A+5iaG1Rl/X+Cdjo6/eEQwgPDGx\nnD6PLqPBq+HuBpEdbC3VxYGBjGm29i23xboOXfXBPfgKvzlPDK3bS+LqARVo0I72IT2Q33Wthz3w\n4isV0CINinRKwlNc/4A+4/rE9XenDMJ6Yh3ZTSyuzDz71tC1ibPgDrRlGzoUxkrcuuVqaYHdEpPx\n8KFMBS1J/l7WltLXey67vtUj0u2m7vBxXp9AfA/XzJMae7HviOYZlygicdxSIbvAw9YG8Evs96Xy\nJJDMeySitnAGvTGBzscvCkqNPK+w0OhekiwLZ8Czb+LSX83zfDeK3Eir0jLN45pd75mCrLHEEwHD\noCzx6+Tzi7qNXniuAs/0hV40C8nT8ywyIAkgPXFeCGTrBm9hkDURb2bIxml7bk++/gN/Hnw8ESaM\nGGpz4f9qwx4pz4hEsIcDtze6ZuKZq/FC1KOm/g6E8UVLlbdSD+XBoUd3qBs5jeKQhyQ6kkxGmR6a\nShDpexufmL9hvBcPTtFijrwI0uLFzYVKDMbnIubuKuSOCoSAbjOcnLVN59CYPCbScAaJFdZjOPPf\nIq+Fjxr5TEN9NemnVzo1GJWv1ujVmP7TiL4JrciroMo8EHaM9hzHCM7tX55d+0i15ZAifxsHUc3Q\nVNYL1VpD3xzzpFrwMXF2kHnLjB3QBBJ7zpTKeHghegye9M+sZ024A4/3nWKK/Frz7YeybRDW7/mb\neCRgNmmz3kE9BIqlZnumQg0FiLfimK+RQErGDa94VIYB+odr9M5Fe5Qf9POEVlkbvmKeeRWi9QPn\noRH5jPWtraEOEg6ja+jKFW0BFu8GcQFJGKY0Xh/2lKvnDvq6RqW+bOdpr2B+OhFRQNXNrTK2JtjK\nWCIzege7xIox4hvp4vib3ZwbUxr6B1ZThK+J95VPCeEVvEjjIq1F2AkvGuY3237NPSo5gyQnAq5H\n2QfCZHtlBuu4oMeXPJNzLeawwDMlKlFiPoRIA9M+w2ig5RfXleAmc/R1EX2xX0sLaO6QvHEReF3f\n3Pocfd2FGOzAeLAhpH6RKbIRjN6tFv0swTWHuXJt0vRiPcTxpFt67jYTsjvPcMB+jXOCTYFg3gcz\npAFmR4R3VE4wwRqYjAdeYZ4BbvvO5ATv1bjVFiPGqBti8F34Kmk4QwVCrzrvaarQF1FQYP8djvPh\n7ZXS+I4a+bxHGN7OgHvobq6FR/DKLaAt0wtPbsSxPvl6VNHUzQtH+JBR1ow3rcl1kiPcAQ1kp2d3\nzEfzPw8ZI/iHwkeJMOH1uuYdquMw/6s3ejHTN2yM/9BYO69+0V+vL/r/+ksTLGLipxccVq9+0Tdf\nqukTGATXu+mjh4HGXk3N8Tdfc93a7Qx/9Ubf0433NZmS13Qfl3pGXYn0LYDCGcaMUYNDicwLopPd\nFkCr5fIFnWQabl0xnIHme42Ivnujb2701+sac/C66LpYD0OvVb+WcZJrLolI54qZiK4RX9q63Rf+\nTUQifwsBdccISshipZWDtAshtvgydCMbODEcTGMc5dkk/zqGcu2bMI4XWT/Gg+lq1nkyq/KPXTmJ\n23Yw57thUkX2VmeayplvPWSsL0xDyWNY27Awka6xPnH6gu/Sv5fOBdt3qYeIvvtwzPyrX/QXrP+/\nmHR9X7N/iwJBrniUOQFGRF3x5lw5XCiAXs1nY4neSGa18UlMZaxezDrvas0j9pnWZ13fZPP3rXv+\ncnv/r25j9WJfD11Mf/Uh/Hw1HnRK5GLVHyHzSIYwrgvh9mQM5XrLPscH1sW3jqX1+8VDeBCGhiZz\nKOtTb46hQQsEjTuQIg29AnCqBIf59NWNlkQa13nILdl8twaiDioWZF4nXUaPmQ7DpsrX6xr7SxRS\nQkK7FzqWfDXkGdjXpB1fTWhkW6x/fpxsvzOP62X/0vUj55aMj9+L19TPtk7UG89zINBSXX9C59us\ns8Gehj359WUMLXjlCVgOn/HKd7ezhJVuJjQdSPH3bP+bjfG9mOmadFT2WVPcSA+m1+uCvCtGp1/d\nlA5Ca2RduwXXLamx7PtvmDvZ70InZY/gkWv7QAwSgy61i7Wvf8E8EdlZIHP4F/x2kdFgef+L7Fy2\ns9PWAtIvP952Lvk17+dFtwzOEYy9lHXMQO9E3ZKP4rnKvSm9sn3SCOmMKpbdGQ1CMplwNJSMQ3gX\n3YwkbxZrPBEpfzOOdrPA4nhoO9oW6XhImwNnv8fk7Bvj1PxYwb4abQ7e8nvpb1NFFdINUURiDqyX\nrstm7ufcBjnTvBaWB+GbjW7ofM2xo8vG3h7isBtvgGdCKOT/DMqK+Bs+5inMYu6pPsdH/pm13Hgn\ntzYBN13TNM6GqGTXeiL/dLWhFJV9H67KVL6cPO8r4yzu/3KLGioOZH7tO9ySo+tA+MWhXO1sPJ/Q\nn9ZWxa0oguTs9QkcTYky+BDBgem72R7R9UQrz69OurwaEATHD/yZ8FEiJGAa2vkpREC0wHJA94uu\nWRgPQXlHNJQ7z4GYEEW1iwVeuLnxc+DAS1n8Wzc/InM10hwAYD4RT4TKXoPaeIFFWZHA8o4I1nxp\n30c5axeZi4q/js+VONdGpRWueJiwuS3EflTtze+x2btMvLEJOSjxnuCdMKZW0glNBCSAdpEJKHpt\n01qp07RPjkwOQDwQK9wdH5mUx7pNuJq5PmANLMPe1/5UICVTDzuVCL/cYdymN9KuzmwNdpb8APYu\nh/HZZQy/nddQFi3bWHe81iu4gOQNSNz4vNIK18VJrJvEZq945+0JHZI+o4VTPD2I9q7FY71wOjZ5\nYaanSd1QGI5M2XjYyeVOWWKH1x509/uKL1Oy5k/xhbpiDCszLx4e8nt2SwOLCxQZUy4WqvEerquB\ncR7PHOotnlf9kHeihx/C1iPmGnuiunrzDt/fhGqsBZBHEBpTCmBk60dopx3t+bqLR37EjShfs/i7\nlEFvM1gq9UvJ3mvXuIZweCfmruDpdGyIkpz3maBDZGvLkutt2llwyfaP3yN4Vn4BXauSPp6ArP8u\nhgHXFpQDRbriR8Z7ioIS8fXz/hzBwiGrhs3c4f5Uz0Jphzy9TBUYARwfUZStvJsmEtRaX/NzIR57\nFBb+HHHDzzu2+cTrD+sj8l5BjSRX0VC+frNMhSiYJo3vprBBRTdRTYsEbC/9jUT0vww+epMBn5wI\nG0jPRiK1bPSXxXAJqNW8m9U8al2lXKx3actp3E3QQs23YybYE1uEkhAFBjsSTXRzlb9jnK3lJfSN\nZE2uMd92oKtbWHIrA3NTjw60qpyAt95ZtxfASjtvLYKjSE3dTwm/li/QMcvF+ju6DuoL7OfThTcc\nSCgZ3l6Tvq4PxF29aOZAY+wkwndvamE0LbgnzG5McJ3OQupuidaCG4bN7TvwRDCLjhfQUdhtSX8z\niO7FzjWxIa0goBFYpsCdasZkdKeQDh4K0AgYXpHdTGG4AdPSSPOwyLtxHcRY2hhnSeG71k1NYzA1\nthzqwNCLBaZiTfIZYF4D7kzDEwuVuYWXTzae3a9Dw/eMSLk1i/t4s5jV+iVnRPi9ChHJAENpzP03\nWDxd4x63jKFy80E2l0scNUCljNjFSJ8yMRhG8DR8tzV2510j37dIHywf0XwnrE102cezSS2Jm/PN\nXJKhXzf9RhDFQ6YI7kAHmfYx5GWuDacNgb3CeBZ5TwSiVWGUTtGGlFXKEYRopNhSRj1uPH83xq4t\nv7l2KKEd+2bcu06Ac/wdhDKAd4Tg5LxHGXjIWe4b6sGzJ1NMaH+LPmLIIa7hlG5CR4UfdnkaFqOR\neXtmoOdI/rPDL4ZTmscAKCrUA0XOgtUToW0U66isGXPDFM/paj38JJUAhrYYLhxoChrhhmeZea/5\nT01uDXOqdqdwXn/gA0QfTwQHmtCFMBTANlFj0gNWFAUd4qHWnAht2eQY24duh+iSthwqDAR6/o5u\nmbjJ1Y1VmZGDmORwG0FmtTFia0wIQxux3BgDUk+DURZuZqBh9BS37W++dExbe7lD2hhZMpdCsrpV\naxrqFoFL+v8is3ZKPxbr0MKJzH7BOHvmy8f0ixVE3LtEEYDjY66HpFZCZ72nudakPik7RTV0qdR6\nH7lc2Du1m589w5s/5Hebe7JbLzjUw378cU5lr0TX2m+2NdVbs8SKmv0wfJIpvpwCABgpxP3p+MRx\nUSsh9A/XIpF3UZVYwS/CveKZLNyvsnaDPmvBvzOEFfHvrAcEtLJp/3F/wZw3wNEYWE5xrttbmZRl\nPRW05BVo3Pjtb+BylNA+071jPLK3DNp3ccU+WaMoziP9q8Zb6HNvbdBFJuIm4zksy7LvrHzTc6aL\nJYsT5rFAON4aMfYIKsE42UcWwtPJhGX1WJrvv3jE4gtpkL1zMXlFWievkCZj8HEtS93/qbuz7i8c\nX4I+Al2UvY/75Gq2RzrP85rN+odhYF9gQMAz9kXmkiwhUqRCkQ9JEMER3agJ8H0p3haOSWT4yRpA\njyH5p/Sn2Tydwu4WD12H8jcbPULwczrH+DLacZH3bsO+jXr9Gn2xrEnPx0W8xncU3v0a9Tja2ra+\nwPkPz6QOUSwhPbD5s9CTqMiQeW8ohBPytMaHfvfQn0A7EMwzwMfJZwL+UJDlfBlK4OiBuwMJSUSB\nHM/a2Af8xHOorD+uWwlnmJ4IhoetN2zD42p4NrI5jO1JH4ReoOfRDlTxF44fWQ/RCJO9P3ju5ugv\nCa4k/Glz6zKOa3oukyhX/xztwud2hgEfTwRaN94dI/eaty68+uWIOdHcgMKAqyIhaROsyEiYdlYF\nuw3AiFVkxN5e14E7PHVndvjx+v2EKe48YuQ7kcbyIVjeiMv1dYP+Vrsr795pU2NiRRwPibkv34Xf\nsnYqK048FJnIMfjp4SXj9Qvq4cya80QY5MM1KMqDb27w3RgFV+fNIooWYEYGD57fDU/FPG7b1vLh\nb1rHIfU2IWAiC8aEyJRIZuHIx8RZwH6wHmKYC3oixGoFl7/LvW/X30eVAGThPgIxLvcILnl31n+D\nb0xLg+/qYF/Xdg7FAtiLffNk+isPpMHo5gJSfNF5ETXe1BkYa0roeXgngvYbfsvo6RLiQ8n6rQYv\n6YDM693QVudPTr9N6cjM9OqsipGs7I5e7GAVSKtyXmlcCZjRGqxr3mkDz7gIsz7bM6llt46t7WBx\nPmjP/31Xvv4NBa6n78Y5wWe7ftu5UxfC5Hhm6ADFAhiwaiv52SI79bh6AiJkj+85ftXNVoINesRF\niPOyC4+MP93RVibJ/9LcmWzeS009l6T+rPl4/equ3ROPBs1ZxN4LVBSIGX/98Tr4wA4+nggTOGwa\nOZQw07JkSx5a6LYIvboBiYhY8iYM4Xc4GL1pLSavaVQFQtjsaHWN/RENtz6QgkQkVt0hILB7L17V\nJu6aYoG4mIbFmHla4Nc2UwaEwB2OeLi2y1WW4EammWLxQHwwjqx64UMAZOP1dxlTJ9aEvF2rsoqH\nrVyNjakcCb8EcIzRuhJxJ3QlTd2v92OSKQ2Y9swZxlaiPGTfZ7woGWMjygM53GKyS13Hve4PWrXc\n4Ud2MNuSb7ZxZK1Pi2UUnFERcLVRXG5OqYQq3WLQC3VrZptvz9hZOeJ7ZiCGDkjfHgkVO643wM5N\nWNsO77Rpho35D+6Uf6nCrU36R6w0GBuMt0DIzQxala6buYZEsOmd6PtF9P2dTmY5PC5caLMYAuD8\nxLqdEkoPkr6dIxQMjpUdEafkmYYzTFQkqVmqIAyHzckatHPQnzXElKagiUItvqOKrUqAm3ROXJF3\nDLF6HCpdwH0WcCVPixFceBfZ2bkNtREcivMkti349klTsE45P6My3gtZKxKVEjULPRIBr2V1usNj\n2iiRdncm7nvlQgufWi+vhoY7N2t/LPpkjvheY7mN62wz7UIZKq+iMoyHzAU9dYZkKQcKFxJFAfCf\nvRE3C2tQT1jydOLU4GQhpQnOURnXjSfBEAUtN03dlUJA8U2UGg34OLmtgNm8S6VPVt4Dnv/Oul72\nPJ9fpSFs+7wD3hVk8yv0A282kHNTaLD0VW+gcXylGbJwP/pwNAunRsOjVCP8FnqB4pigEqM6m19M\nf541WgfyAx8lAoDPnBqUAjSECLUagNAbXeDkyh3NncCrIBnvOu7hc+Dj30PXRAkDQPwknEHKvrpn\n4pXILpy8JwExhvm56uMexLVK+vhiuWsX3fRIP0UZo7Hz86DOvBLQTfDLCTHjHWFUd8I90eqJgDhF\niOtF2uWkjPQfwxnkGUmZZp/UQVY5l/0MHrhfO2EmgFrBNwzI6Nf6thy047vlConZ2VETvktymAEq\n0QSXnQfHimO+GNyeTIQ/WUfG5tS4YbwiZs5mYrfe42dv5oGEdd4KbVsz3tnO7gEfjIXF8c28P7J6\nsmen1o4Ta1+fM8GINNEUYISwrXsCaTImKhvMmNzWUksG6CYdcTNlqO0t+Y5/V3UL/WlhlfmM9s3T\nGPi84AzpNBVi5BPA6TiwZUl/Qb1yHRhz8+N6o/VCbxsiU4LpmkHaFt5FJa0IQy9x9T9Z/wGP+F3b\nBNww5PBdWBUhPpwhK4832XQm+s+1KlVwL+IZEl3NBfAsjPhwMu7juVlPJawTDQL4DoYzLEM2b+9Y\n4Gqq+K0F8TNAF/KIg4TZjX61fG+TjYO5eLdx44jyUkAHcOzIj0ccZ7zJI+5JzTvBQgP8/CHfxtzG\nbSo0FKQ8+215hLBf1l9RIOjtJt14XLx1o2k/fp/Tu5tHNcD1Rl9fvnR2M8Ook5c1a/Udtiu0+OE2\nr44Aq9fWx2vybkSD98xC9Jb3me0z5E8qceK13Lrf7Wz47uM2ICK50ax5RTGvvMYHPlDBR4lARETm\nSpdZOlDrOA7WcbSL0IuHrvyNSRVfgThHZnUnuNm1Mma1lGso8SCXg4XgcwuLtSAbFdMHq/a1sL78\nBIRBfc28CF8dBSo7DH0SIXu/8naIbeCnjXltumAYUPRKQCXHuHLT5jBz934XxrjQIplebRy6ch3f\ntuszeZxcV8nQlxOmIWNKj9z0w3sxudG32yf+CjIp36ZFxbg0OCGhAbkLOetTTII2Co0xEY4+O6BV\nuHdMoTW/Moz+8w46HNiR7gjvILRH2iSae30q9jDh6fgtsUjrwHhLoPuNaKwNIiK4drYCNyZzfWbK\nvAiVJ8ITZqX0bEJlYdwwnXHRk65gl1jRisvNDN1RQKjr+zWVEPN9ubeQgK6T/4xQhdDpuIeFoUlE\nUYFAEOuctrLWX0FG13m2IbHia6VTKcO8KMUNxz2cMPFyNd0rOUsz/QWH+cQQwwqHUg+iTD0qbqB9\n8L5CEJr4kr+Tc6Hy8Fn2SKhHzv3S+wJpS1h/xkesawaTV6ZKgUPgztRiDhskEH14IkRlKUKk2SxJ\nTydvUCkrh78nuz4wmcUWr8H97vd0TpJnx32MXmQu58ls92oh2R0ZrRa8q7VvZ+Dw8BxzLfPFymMO\nYW9cYUpExm++LuVJUbHoPBHI8mp8NdZyw4uFqE13wWpflyA8MRXz0/HqxTmGelvG8KBBRc1xs+C9\nEF8z7z/jOSI7MXBzFU6cbL8JXLDlbTzbMq9yc1EL74rCSspmPNWSpBzO+nHLlu9ltY4lIa6uATbF\nQWsDD1F0yVmCNVc0AM9boYGD9/19RdR/K3xyIgz447xQdoCHFgrP0SWayAjSestCiEMrmEhxj2wQ\nO9rI3PxjTOjuQK/2LXoTFCGevp553Vtr41gc77C+K+QwWzTmfpW3P/rkM6pj9uqoVR/9Xhk3OXii\na6ibOzdPeV9tzEGIfMA1icVC5vdufKVmjCPVLPbz70oYR8G6jO8TC6sKRp0q5RDRSgDHIZXHMUfw\ntw3Mz0356jez5CBDFsqomQv60/vSAVtrdjhnODCazbrswfkbeErs+oHhPRlkbsumGMjXt5TJaE31\nt4Yb6ftn8/cEYkb7mHU+jUN3762eTZEexU+tZ7PeV1rSXL1RwaJrSP/u6zOawgqb8lYYyIWpTUIN\nMmY7xgpHWp5+1wb7+sIBZOOJFvDYpilfbCyjtwl+LpWQnR0LLuHv7HaXiDeCCBtVbqFL5580zE7b\ngqmVcIY22Xq/b9Z6d2DnoffUa+T3Rqx7jGtbyiC8mEn+iyC0A3kSq3d8X5WoYbzn37guM/f5iv48\noi+yaRzttnZjKIRMV4wxrlx8AAAgAElEQVRz34WBPtka6JafeYG6doqjU4Tx+7b83/GNn8gfokBB\nj7bRJiiBCI85S+6dGWHS824jwWc0/GmnMEnhzqOuwgL3fYRGcFbDswyehMZWgGcFFTiVYSxwho2/\n1xwOciOR1LMTXiPvu3jF0RhTDB8V5QGedSWtTc7yqs8f+DPg44kAgNZpsYzi7QcSzvDdB5kaLviX\nblQ5M42QNw1pGAKSZQ3HZIEvEKKQYVuswGRuaHLNo1qP2ihgzN5wjdzubZTGn4yT4KMHMlv/KR5Q\nVlYyqiuzMMu/+rA2ffNl/YfDULwU/urePZC1rMdNXCzVSkoyb4PZtWzS03KB0iFA20n38kq0esz+\nSU0qfDTD0zTxY+x6G+xLdJW0DNwWlhIJ/J3VOCA7DtiLZhbrIAShpUL3Qphbiu2Tu50B8YuupoIv\nTcuHXC30F4t3jT/I0nCGm+sK0SLh+5YIgtAHolwIsnp9/20Nsptf74ZKThgbn+zmC7MiaygM4KpW\nkE7q2iyu6PLbN+6XjAGoTJwIl6x3duOge51Wj40+fnACZgxxwLl/17KJlhvbHz7D/qsjzkyNo/hO\nJtBQSFg4ubK/40aHyjqG+0jWDSfliMibvmI93Ny+038EayfDi0lvaCAoK2eHCO3fTNRgbSEdw8VW\nMbaV1RX3iPQbaai8K3hlSnWG34UOERG1qymNI/J0ZKjH/c0QEtOLazVCqiBp91553mtHCY0vA+Mg\n/cvrsrmSWGp5Xgm2naJFvLnPqj03rmwKkxK3Dd5W6b2UGT0kxt6oK5Z9IzhIHeOzCne0McB3T5O3\nLnHpGc2FejuvOOr75Pft3GK+DJ4vZAo1f9bCmaJ0BXInsPdYkhh4IqL/NMFjp6zx62XhQ1z7a5LM\nqi6iVfEW+25jCLQK1meEjI5mqEg4yW7dimfpqbUV+be/utEg6jmrHc9MuU0ihtniWTFoW7P3qQHt\nznDCkLdR8GvSru+LdI1oWA/QZKVNvCZ4jHzgaOtsD/0vwB/U1S18lAhEkxH2GtwsRlmuVhLh7q9+\naSz/Swmnxbr55/5wkORAunEJDwRgGKjNK9/s4BAmCAUTJwzTnjAuHKzAJdZM+aePU8CEMAhPXZQH\nwW30LddmgkbdlC2Qyb/7g2SUWxlmEc50Pkk08sYuOMEyIC0hADsNew8Myx08c9Eb//5zGc5y6DCT\n3fAh9VbcIHDlDP/E7TB7pfqOzH/VvzuGUhgaYWrkcygSxouuDuRanDsQQQJO689YF6aQWPDpTOqK\n3YfLZp83ruihzL4eHIt0z8Inutuqy3Hzy8jWolee7MYW2xHLsigwxnumQOnCdTo3fiJ04fcVT0ar\ne2sWvvoEsrwYSxl6L9kshnnctqFcuowD2DvxhgbZF/Ms8Dk7JpPc2whlCIkVWf9ZMt0u7xBv51WF\nWqTv2aKK78jZQZ6Bp2RoZJ1W+V+wvF7NSXj9H+wjaWshDESv16TdER/ZNzIe+jfs09BWFCRR6GcC\nKxqbYvqacyfhDDKfEs7w2Po75/nUpVvwvy3HazkV9DpRnzPyivSOgO6Q0ZbOdhYzNQ3H8THyWEfT\nkMhVMLNwJmZR2pu7O/azw7h3bZt8g5jINBkHvJUBhWNZs/pphJ3QMwW3SOQ7GhF9k/BTk+e6MCEh\npf/0th/I0fQNoYPuhgPFc84ZKPWFruMVtHo+4Jqm5vqK/ZA2JaO+0BMfPitlx99N5p7MyhxvP7Ik\nxmNGv2SPJ+vcKaiLedTvQmaJHH5yFLVOJvTKfpUxQS8wsnDCmOsl7jM8S30CbumThYAgP64JqlFx\nBQtI6QfU5dYcIQ2z/YHstfAzMbwF9zHBe8vYAnVWOtpphvX4vWPl1vAzMTaM/vNIit4sP0InCyuV\na1Gxr6fwJ4UzfGDAR4mQgLnvjh2E17AQGdEfVw4mVk8kTsC8ZJrILIb+IqJecMrZ5o7ZmS8i4oeC\nfAbCDpqre6PGgp+hp26WZImh5CBM46BpJZh2ZZePyUZXPJ4MvRDvdwHf1bFHpue4njEIJ8mh4hik\nyhcafYt0eIyjDfiWTquwvcc9A5ljPLDj/MnfzfiPsilch6mrsjAIDAKL4uJdsH3/bI52941n8JPk\nUWJ5vHPBxjwqqGjD2GbDx4SKOP/oop26bbY1rGJRC6k5tiYI1fr1YQmSVK9WHnrc7MaEau7FTRPL\n+JAxRH0I2y4WE9cg1sMtX5OY6K1wsXbFg7VWBSTl2rGOYiAmSOZrYYBRaEgF/KD0kMgGVwSEqWXv\nAEpOeS3tNvNo0eexfhoKW1lCrz72s64XNkWc1f98f6lb7FxbF/t9InHu0UrdiM0dGPdIMhdrOMPo\nfOlJUKwJDWNIfpOzUvohe8VoZpu4yN71Z/wQVrwyGhPvSvsR5yeW0lPIPBse6O4G9E50yX5DCWpP\nP2KIiOz/51ogaJJNQCVa21/GNcEv0+3J3sPnvpqRXf80j9SJY6hTeJDxStg/U0pGxYwpiBnwRX6L\n+vRs6bx4GOWhrOTa98ryGn/JVWFGI1Gm+tALeWdp800mcNBKUIzIuM1GGLQlyH/u6xRFwqwD6H01\npU4ZUdQvlI8o8ADdezS6d1xCxtWzR3ayeCKQU+r48RH8EPCsXs7iPwXkEP3AR4lAZETUM2WrJ4IY\n9777YNW/u13hKER6aHwHqZWsuJj1VIl0cCHyyZBMmzjcNKdWWdswIqVuvOreNP7GjMqurz8QomSs\nZEwYcCValRtGoI05Mj5c3PhZhUkZRzsUkdA3iOOCelPmF68RJOImlgCm1psyxaWmNVG5R+WGPSen\necZx6jBGajWCd6wOzyCj9UiEa0TrxYZPlpcjBWEI4GSu3pP1Hxmk4V2TlK+a1Lrgc3rWSCjDi4n+\n0vnnIahMrwsdU90YYNXSA79Q4ADu+Gy82z0nVoDsuaxuQUGUWqjL4OR7al1VRkrmla1dIg1bUmtf\ns71/ke2Fr7keXv1Sq8wCWT+TZ+ihEnHGPrk13wzPSA+QeZZ1hSC/j9Ar2++LuySBBZvjGIv1HCx+\nwvih0qnzHEhcR0MREJnlR8omQAbfE4VOTMqnFqzQv7EW8jnB9x2eZHOh5xYZnZF90MI7ogyulM2y\n30c4g29r/PGeRFe1hXMbhRBhfJ3w1KZnWfBEwErx/PYu7BbOIOt1KC1Wz6x1Xdj3KHgy5cKAKnmC\nQiBznx8K1VHOyB+uL3v2gmetAb1lER6wzx4X+R4FB/EOIPLr9Gp2A0QG7j57HIQuq5H8RG8AcVz2\nSSf1tIi/d/brfCjEVyW/eDvGpL7Z3OM4rjh6QTQrg2Osz9X7KJyNZR3N7QN/o5F5xr5mOOirX+oF\n+wKrPt5wgOEMRPk4EQEPRn5NRAt5ZwLvH5/DxO1n4T1uPNBieB5mCUl5Prb1i2EsHGizU1Ikc+76\nviFxbk2GuoSuiIfOoBNMX27vn0HmiZDiA+3aDQ/GR6vyWNb7zL3w3cdBIL+hF4KMI8OzeC5HWekD\nfx58lAgAt4cC2YEsrvU54bX67rSYouk83YMqzAUC6a4KDJWVStvgajiSY9FMrjienaZMOOANSmCm\nKVAORYJ3zTK3YsyyvAPUlkerH7f1AFsOi6TTknDy9A7pUxxftHqSjPbssO7cnKXyLatT6JMbY2A2\nd7JmdL3b4cGJDj4o0qfgPKydeuPIXT8CPPFEaI3S/YpgzOk6Fk/XeByjzBNB6h2CAFgqafX4iXCF\nn5a1GTPrxQ4cbu47RmE3LquLsYzvP8x1LJPpzaF2hWubbrUmUIkbsd0U4ummQGlNamMvlMJ6RDFs\nAhffD4Kr7lsuFEf0voXIpYwAIW2g99wMmClasW4nhMYy0x4XPTmEhhCh1w8ocULf31F7yNiLV2JM\nJLYbXvVIan5/R+8e6yeGvsDabE3/rvIwlIl5C9zuhTj7tPZYn5mSiqfXJMCdq9aCo5ztz2isi8Mn\nHxol5/0aW+6FYnxfvz/AodMq4Eo7OpdkZwHD3nFCJ+wDIrFAk/6Ttr6SdwieSc4hxEHmC+cS82lp\nviWoq03BUq90JRu7DHRfiG4WfwtlTxJTan9ovblp+074W/ZOmo/gCAuPj8BJPhQZY+ZJQ+h5qC9C\nC2MsUNN+35DM//c00jRu9JdcMgS/+3BOg2wMT8bhfxGY9kqmPwk+SoQJGAeMRDuuk28euRC+meiv\nJkkR13+i/R1eC7mGV7Tc2YZtkwPpbG7BwxLP6horRLYiydEtcNS73/HXxZMhYfqaLqBfbYYy0DiU\nexsE7YvGYPXpuky0EmY9QLlRb2wW+WYux51MAxotUaJhVoGTJUbunHIxDUvpcHsdd4xveZtDKj8s\nH/eublqe4EAnYXwNkexO8FH3wFnKqAXqGxm6Fswd09oeY+KX+s8O9MX9M/mOzIr+1kyDre2CZcTu\ngfaMghy4cuXU4n4e+mN7ySdnjBYD/YKu2GA9WcYH+uEFOHblZINpyBNOBRnzh/DiS/suDHm82ini\nMzyTqt9tLbJw0Zv5P124liF9LZ+FWmB4U5x7xDVrRz6XjPHcVEnSydM8cU+Xqx2ncWVtV/JgXFNb\nCh4p/E1m5ezgCiyvGiJW13Xp32phg5wSmn8FLEEoAG+T28HiFQtfFRYSoVJA6VqeuEhIQ6S5Uq+s\nTQFZUq7QzDYs8cMRMktuPLPQYyDFo4+8MNgPES5SgPpwT98pX5cbPQJkiV45fD4FtJh2Hp6Ffa7l\ncb74dlG4J6r3lvNs5Ox3MXKwPpNPUUppGWaSYaxIhnuuWqdO1GcS08RzJdLcuCeI4jkgtDrHocJL\njD/CSzkFYTHjI+b80nFkrc/GSekx+3mxPEUhb4PDy2iVtlmsIqTpYgRBpcvqHQl5bXQOLReEPkec\ntd+TdnWrS9pGkPPgar5fmqeJTRi1jtgguD4BvupdSZa3QfjcrSUePR9kzoWXSNz7kU/ZyYI7o8Ol\n7TY3n2jke/WmdPZqMzfDPBeZ/fxrvRthXW9n6OyUx0oPoL+uryQyCdNfcgzOBNeoHGRqemMxh/ar\n4e/cbuWKD/zvwkeJAIBESLZEGsdM0x2bLXRBwCV5YWF2EiVC9wc9QpYzwL07CdQ7YIdxbPQCLwSz\nuIsVLSOlv6WIY4ZEe/MQcRni5+9qrT7sughcX2SCnHT9xAgbNb53oNaGwCWfthdhJLRa2yAid+hu\nxwNNmAGueZCIH4zkRIgu6BnceSKcgByk48DauMQ5jqenKmBv0dsJ4ntTACr1IgoncLonnEXqCVNM\n001yV+a0vqs9WuMxF0LEOxUiA07H43iwBqt3OrEXDpjJ5z8AT4LiKlRk0FRQ7EO4aIqQ54gz7x4p\nVbtEG33QZS4PQwLMak3enRXYh+z33fvCZCp+UqdskqAdq5SSeB4KPn3S5zsL9GBs7cYI/Le285zQ\nyvhnIVAZXM0I/NPWqu2mQgUxvZjdutiB2yc35VbF3P5vXOWYP6NsA5HQSZonxebKYfMWbG6N5A3I\nOzU2MnZDAYHCnSSdJJIQAdZ22fV5aZoxsaRP5Dd4vHxupQ0c/+jZI+cfPsM1Jl3vE8/vbv3pTpAc\nf381hnpNqS5GGAmFk333BTgqEsnCY/fd46tIwhjdKZy8EtXw1jp0XViyV+SNs5CGav3YeMm7NhYa\npqqWuT0VqC7Lif3FUEf0uIogNBhvQPhqft3sxvLJ+fhiAiXC+E6XV8DI/snev6Mhfw4chhH/AfDb\n+Xj+pyAOjhEcE3olZijupaihJDKhLYOKAcC4xvEJtG6WudvHJSMSLdfFe1f4W3/ftHkqNIj1cLhZ\nxUQ7xszrmJvx8Fhgk/KYvO8Ev6fuStm942jJVKF50+bV/PvV+iohMms3nghEq9C9Y1yjd8677tKo\nYBPm5vvu/H5wYt3yAiCJnMxzNSYVSnj3s39eCFnSjvyDdRDrieN/q6DSNeCFUuw7C2EJsNvjJ3Mv\nRd5Rov0KuP6iJ0u3zwmWKdwLHmudyf5KIAapCc1yzP09z7qFO9fgyu3+TnAfdZPSXRHy1kK2pp4w\nVWJhPmFAVMCkfKziOoxK8tTrBb/Dz7FknF4R2ST7iLwv7+mVcM36J3e/4/kg/V9wZ1MmRHyyO+TR\na+cJM/fk7FTc5N9u3aQxFdBaZ7t95AZSF/TfslyQXxdXsU9iuQUfWGqL19IPIVMSOn6ComBfK/Dc\n3/Bc9nindk9L3PeWeozdzU/MiRB5ZPQoEBydDQFxeHCm+PAsr5zJ8dyv0YVORG+rqewRBYHzfGB7\nnuGJIVNZwuFM8V/NHXqSSLsSZjGuiWc1zr1gPWRKospD4gN/Nnw8EYiIHBGzx4trJaFG12L4R3JA\ncy+TEAZ12e5GRJBgrprkHL0e8KuEyniX60+gEmBOAd3Y73DCMfWWTmDmydzfNZaP/BxhnoG0HZMb\nh6aXmHb2laeeCBkgjrt4ViKLoXX4wvcI4iqc5uaIJzEZIncH/WI1ZEqFDmXq3zhIRn1jz3z3mfk9\naUf71XkKLJcKf+J+juVQwRaZLC2XKlR8IjL5dIxWGFK7ncPPMfbxTtGm16jBFGWhDwN3Ag8kzxwQ\n2VjkjXlGfpcY74TJkrYVh025/wrQPdAtDGFzO8Pigr8TkOdGlSvK/Doy19UIWWI+1+4hMT+l+Y4W\n0ZmVm0lwDGeUjt9Y4TvBsvqtM2loju7XUFaUBxdRoAtmoXwHnGDGYCV+WE9mlbzzJNzjNcMZptuz\n0KKofMRpILLYf3Fdx3LvWDGFV5EyM4l7Wu4iXtq1Auj1Y42toQxmMce6ERfpdHzP+spAs+37sm7E\nMEHrdXYsdU6Ht9scOmQ0GF2+1ZWcoQz0iQWXgCPO61dDgRMs5xKeMMflG645xrCFb1D+qeA4G/ir\nW/z7izERoSGg4V1zTARnGesK0NCW7YOoKMD3lrElow2RN3e8IhrZNusa+YSRzPd+r8oYKi7AX+zg\nxawJg7+Aj/D43LddGjBu2s/gm0cyRW6DpvwlrhJJuxkLeQfXO8zgvxH4dxWa/2b4eCIkcMKc+IMH\nDzIj6HdrzLlgBwKZ47X/PcMRP7ddui6iS7Sfo2RmrXnnXvctjsRHyg+04hHlRDxayd2hDZ9HzOfD\nnRHxybTNJcO2qXd3IP4G7GLT7+CnxCMeyMgY7JhfgR8peUQpEXHSPVNbdW7nC+sJ9R6hlryzrPW4\ntuhZkkmBnyrKnp6j71gu3rV2OIHXffak0E1dNJeLi/fON2cWO09kwgb+O333Fj/HUBdl4BMFnApX\nqXdLg8IPmSCQ4YR/1ww/L2VQIIu4VnCSDPduGVwQ4pfh7p6F7zH0sDICxOsd/Tu81LO+fw5RUWi8\nxSrgLWuB9msnR27FHfmfJwmLY/x1NizZmo3GGPz+zq6L1t+1vb2wnb1zBxpuR8UaYlHQGI5RIdTh\nN6v3DFrBB2b9iJ5YcZ62Ho8ZvgdjFRUNfzcM3mXtCB45coOMlFd+J/AI+N4JPD26pWrxPEC8dnT+\nyThmtwt94H8bPp4IdKZVFDDNrnkiEPXJLEwNLMmVjGI5j1bioBFP9h1ucP/c8BCIyetQAGMiiL6G\n9vs8QsJ95BmcakIjrx6/78CS6FgSoNGGeWuY0uYZoVKmk8Ez4k4wcSa787ZEsSuHLSoT0LUty2q9\nWuHsOeYMUMtAsDy7BISXxKEmkyJlqz6gQALMorjaat/Ce0+EPfQq0XndCSq6oLv261QTLGtGlUwy\nRr2p2+JPb93AcdmX84tPmMGtYgI+d/sJrz6zl2HsJJ8EuvAfjGGH9dfhGeKFcZ1EkNyJ8iWY7eGR\nPNFoWVY+rk3cZ/jcCVyiMOJO9E22UGU8uHuFTRSEI6qRVorVTvdnwlTSOsdMti6bCmiQsybh7HrA\nEwWgKt42AxFkM4VVpDtjPpomANW8IvPfqXu6rIUTOoHXhErGeWmlk+W3Wd5LvHHwykKpU/sH46dj\noVJy3q8d+j8JTRHozESJwxTe0iC/YSiFx8PTArnlB9fhsqwTC78KPGSx8yu+gKvT7nSiDn4Z3N1a\nwaz/eK1zVIi5/h14B0TcGPrjPM44irkeuAt9XukB0jShf1kYI5b5Sn7TtqAskXg12NXPooD8anYO\naALH4EEn/VRvBTLhNSrpOxP9RzweDgxEO08E9Nyorxr2fe2TT+bexl3Fy7isdL/EbYN/VC5I33ee\nsj+JeWcSTwTvIVm1906OM6NnZ8m9OwufzTSSIgzPhC/26y7Sxyfwx3gi0Bnv9CfAxxPhDRDCLLGi\nS3Zcpy0+I2wIEkdZCSWZ5T7GdcYYv0Yb5idQitZ4xHw2ViYF3V99vKe809bf4d9OwJLDZBC5xBJC\noj21+HkkdI4xgkPd4kvhOzCNDp4kfKj6wLY2ouIgEuNnypUaNXOJjMJjbm1drQHrBaMVk38iJMdh\ny+J4EVBBgvOIa1ihGLRlbCmVv2bZcIp3ceXEK/1qfDN44m3g74nPB6ZaelmOlhQf2Ruun+HEe8Ad\n2HV0PmdD1T72UeYR/43n638x/tPRjzlWFv/t6aOjfw2UGJmZpzM5TwJRAvRGr9c1b1iwe9cFXGhN\nrFP/XM8CZNhFWfqCv0WBliYXnQQlZlx/kkBQaJ5Ys8cNAJ4uEtm+0e9kcbIvtuRmROTzDvTBlDoX\nbthHUSaPw8fhdyK/hpAuYB2nKzh61mHMseQnwNF84p3jwpeeywEL9Ck6dnAxt7PuDUFjM065MAPf\nYz0nzVdjhxuxm7LH7a+EHsoTTQgdcIoQFY9YRDP/y/osO2ECMbq/jzp9W7p2CfgLVMAgPmHdW533\nA6uKgOQ8w7MOlUeZkacTqWELc0Sxlmlb4ajyRIjtGH7zMyg48rlrbsxl/FR5SZ5eZfwI8n0IqjeG\nEEU04GmbDzYxLvXsNaTxyH9K+VNP1d+Eca6xz4XQYYzZrwcBlCfwn/x2UfujFAgfMPh4IiRwd2AK\nYfhmYxKNgRpXkUUmiggYjmvVWldXDS1tC36rjl4hHl630BrRdc07sXk+Gtc7joz94+o5yd5/arRd\nFB3U6FUcmMJc7yDr17i2cbYHf1d3hL+AUJYwJ+opM5kluEJ8cE1lgnWWE2H3u2+fB74SfyqeCBG5\nBE7vbXYMZjLGp6CMBZugIu51uysOieitk3Zo15PBReUKWDAl/tMLLHvPoPj3EyU1dimuHYcy3axb\nqUMOfJxztx6MAC13Tid7EPsfPRF+sg5O4XTKt/lXDiqpvBGcB8imnlPL1UmeGP/C+Pita7REASRK\n4GxdRwb5K6FtJ+38BnSmeeXhZPRBeEvP6cVRxAtV0dL27qjGnBZVzhv0IBh/r0x4Bpik0a5t+501\nkAmYAsu1i5PViONHRObpyBuad7L3CrxOQay8o65zX8UTZdQd+gxj9PT3TLGm4w3rVMsTqQfFDi1/\nlaNdR/mC9qT+YbipQzzfschnCvxRly8zcJ3niMPfK2nwebxGOY5htYayNX+hUv+QKFe3M0TgKazT\nzDvxzW3BXbzmomL1K6HLgx8/wG9+uhvOaOwLydPAzESXeYSKc8J/KB8/XYuAw+9Qon8niMz3gY8S\nQUFCC4Q4q/WEQAnAqMGcGeV7o3bxolG0csli654A4j3iRH4TxwMlHnqpMEo5o7ps+oJa3bl2Z79m\nhBC/DyYjr5cJ3drNWjDqlTLiqXDOgOPYveSlq7mDVCnixrq4bYPqkJR3IbqUZW7sYi212MFm4QzM\nZC77YHGNuHPiwVBAZVGp8W/bBGNjb4EVhURY4FAO+uWy6/NicYjfdT8xebYyznWRkDAT2itFglRx\nQRnH8CeSdmZlRLfXHUSmHfeMrQdQDznL+1gj3H1ISHx/B5XAJH2JyqDI6FXhDFh/tCq6etL3PQ72\nQ7dPNUldpKEd3y94T8Y2ScqG66TPU0LHVd435t3317+Kf+P6sbaYmuLt63blfmj9uVN6Ke1mc6X2\nBUb/5X74+O4JXRS6/rJhJBfOQLYX5TuF8rE/g2aIdwSExyX4RJngt91Uq5wISJ9Iv/MUlMwTodFK\nF+W97Mo1U5r4tWjti6XXK0bdGGCdFBKALmdzgpjsi8vTbOk8A54ujxSsN6m7TRyEb+q9lftqGHBs\n3BpNWjjXQJOQSWquLVRIDW81qbPpMx8eAjhP/NocU/TG0fVKBM8NXybftpRrbIkV8T0LZ1i9XSVU\nIyakFvycp9E8E43ngr7DZGB4ApYTkISb12QjucdxmcpqGjSiXYZzi+tPkjgStslO+UGUH9eoQNBx\nSY58ZutLtoYQeQkPRB4ro2mRhgoO38z0/zPRi1iThmOZCtBTKiWfkGW2OqcrL4nORH/1Tv+ZxsDv\nzvTVBm5fNMZWjF4VjrIns/r/boPCB/774KNEOASx2vSptX3x2GwvbvQfwsPFb2wh8OkdwkKgyG9Y\nEb52Vj45UIjmYdmkHRPm0S1YDlXMcnzU70JJ8RSGRb5Rb+NQUNdS8gdexhQL8X6xMT5xXJxHwrS0\nLYw5ibIjHCA/ZBqHh4YdJorbzThfyXeZe3O/Eyb059R5HPL2eQrCKAijhIBXyO0sjzokyZiINr4E\nFX4n17y9c9y7Va/xrFNkEEYXcBDmMu7hE3hqkUcBQLL4E4EVYT6TdZW5PcY1XrZfjFW7GrVrKqR6\n7pWQCV2oHMrazLxJolJgspAFwjXsrPi6ZzjBAdcQ0RBuHEePCoCmzObIbQNbucPm6fNmAlVoicBh\nRb8Ajbvear9QsfNAOyljWi2DE2s2ji8y5kRB8aOKyr+fa4x3yGf5ZBBOaZt4BBCdU1cMzxOa12D/\nRs84CU2U37DdBvXZWd2m9TLiahi2+fsTT4+4FutyIvQNGOftIG5R0HXvzTY8oZojoDR77RfeMlCB\nvOUVnnCr1ea9VFmpLu37ATGBuKX0V3g0Ob+2oavklcOooI7DRlJvoB1RubLFPfTPv2uedvK5eFuF\nxXVHhsbcm8JlvSVk/gY6patZ+WF04KVOURQKH9Rayy4TMGUJKAuWMg4f6Lucc5m15gaq4gP3YfkX\nvvvFtgZQ8VDNaU60erkAACAASURBVPS0sMpDOcrXsvQXz0Um0ts4iEaYsNHW6WUcaNgJiEfbLzlK\n/fcDE21vw/qD4KNESCAjDJ38xhJt8Isb/dWbJVCZ4Qzf8zcwUjmo3IbXcqQME2rO8VAYgsYgsCnu\nJwdPEDQGYwM5EYR52tXxAITB6lOvKeEhY7yaMkpygGM+hG+ebleBp8XvvdnnxeDBcJky4hZB+Swo\nqcx1ZGauiMt8JhYd8dpAPli+osVsWLXZYhdDvWplw64oh4MWoP6WdW0RItiE5adCs6/XrovCszuz\nbHvr71w1ugEamSLuHpk+xwwTK9KrOytq3D/GbCbMaLK3T4bZeSFJPYFvQ8t7xsC6upp9X7CMEqFW\nunoiEHlGXXKiLFUmfflvAE8PoN+oMFI6dxF66khOBFVCJQoU7WuiiJA1lAlDaMGKCWJlfoWPc9Mx\nGxzzdGld4ydMNmvX2hHt6TzSnkyxp2uShOGcMbPAiC57bVosZfzW/ovgsmJmDDArftl1hqgDEoFY\nyQCZ8k3H/0AYQKa3LA17xOXgmJ9tnl85hbCyp+S3FxtKxmUIq4rabdLjan9Gi6rwM+O7D+fSekCx\nbe9Yfa6phN7Id4b1El+RtUfk67OY9XuaI2eLeQcY7bdzBy35yboUZTtXhg05f20cWrOuOkFd1lhC\nn7PzhsgLfvqPbE+qgK3/rG9IE+zdNt8dFb/mOsIzKMuttMuxkBvGaOVJtHM028ZrW9f2lLfBcRNa\nOBWIamwBvHB+K4jjgtdyQqEhJHLOp1+NXEhvL9YI8n4v5sHX+qGwfoXmLxoLCpV/8Wx49SudMywb\nDWai3KAmuTEY3mf6EoUZKJMzpfM9df3AnwKfxIob2BEjcbFCoY/0+71A4+KVinYk8RNqaKOytBLs\nI5Ow3fQzJ8LI1cCzXSOLvxHbOghqHleuB28gxqLI0HI0GFq0zEYXMSdw4fNJML+BCdmOCboGXPZV\nrsAcyeXUVrn2iVYmLQqPlUWw4r9yNMOPatK67O+Z74JoWJvNInZ/FGTrGyF2AS10rhz8LnMqY4QM\nKH52Jn9t4QXkSq17f+9x5pg5wS0yesl72dyaNSVvqxRayQs8UbkjgILhyJHRdP7dhIDpU/Kg4PrY\n4VQ9N4+Zou+xbzdsyIEMWIJrHs28ya0K8on5YMZrnOOBXH6zPdYuUbrmiGdWJRQwiBJ6hNbnYH77\njXXvhGjOrxBU4YVv6OWDNjPI5nsRTIn0fIi3FyF9jSA0Mo691elB98BcO+2y8cbLenbn4hOdbaPc\ne+cEqn2SCnjFOXVXv6wBPF9LK2k1OL+UIEPOrwYJgf8uJta87NZxu1q9B7Ou7rx/Uj3vMZbSZo7j\naXuuHnixTZoWE2nv2rooVz7PH8Meuj8HUh47KduQryB/Jhmea3uKqmYMHgdp28zxXZ1MTN/c6dVn\nHoJuNCsuBfnz7sxz67w15T/TuSebO4TBB3f1RhA55sV+rN+FPymcwbyQ/r5//wb4KBECWJb2ugzG\nWY7EJKtrXYyNFfBCMbpPn+M44u4iU+ldl2Iuve3e3qxWOUAb1PEOPzCUIZsbJyhnUPDKx87TW6Fo\nI97G6OLTpwJDksv8NmQHnCg4vDB4cij5Md4pEmQNLYgUngjRknN3iCNPeHdA7C/MqsGsJzcFMYxB\nBdZcC49WX2SeO9NwEZ+NYhZuuU4U3Vedwk76mVgkASWPi0wHedfmOL9M675ynirR+Ls25QQ9yYkg\n8z87Ti43ApFfF53e8lj5bwM3VtGE/f2Cz+72B6NnC6yrnll7dDxtHb1e1/IukdE2u4pt0iP5PWMY\nAiexXOf6MNxmvMPp96jwXN9L1hvsIWK74jLun7K+yEi76jKm3H9XSywl5aOuKLGMuhsaKkTDS1le\nAqxrB+8wWj+5c915CyXqA6ZzpRCTF4BQ8UQUlGHRbSqcQwueC72VPWL8U4e6Mw8B9FxAeiv0UM4C\nLIvnA1FOu3U9wgpBAdwSFrIzCvgy0CbgGfeAt7ojjr58VCAznlmBJqAFGsdSx4RFiDSvBL2+1dUD\nXhsVH6L4m3dkWr6DkC/tFSD9Fu8pw9vTLi2v81HzWehV8YJ69WG0avwAhNf85sGvy/WKQrMwj1il\nSHJnuvwAjG30RLi7Be3FTN/EqkjQW3cYx9uvj9HOmYzybxF8P/B78AlnOAAUHhwzkzBDRP6gEhjM\nyt+rpruI6EW0TXr24zbEP5Boe1tAfGdHgCKfX5XJfsIYVPeMxli4NoipIcFVBGm11JLXQt/d1IBj\nLi52Mj47wp5d24dMx2AimCKr+zRm/w5EcSGHhXx/sccJ43qJ1u9ST1x/FbYjlnHNDL14M8jiuJoK\nbyoA34zFEn8fTjoXa0u1ALRzERYlgbY5XY+zGztOoHKQjkqNF5nwdgxBU/A0tk9yZFQ05l2r6t8G\ncXH1PrwzRBEAAhIKMdsx7TDjGxPO0nT8+wh/+fAC1oNXb3+rBGEnBGXzXeTbkPJRgLlrLw2f4TWp\nI6Jyst6yC2rw/JKfdjWd3qBE5Gnm+Tut/NvyKlioH9G5Qv/v2JENBlCnIJ6lRH6NzL3SE5qD61rC\nRPZ5dlibHH+fQbavq1tKIlTrc/sOTb5M2rpvxvBKnsXEmRFSBUvFV920j2ereCJkrT7Nz/H0nQqy\ncxV57Z+eRSfK2jyETZQlTBevCSkFshteiAbeGW84Ko91+MrvuszM9N2IvohdOI/mQ5m0stOca/b8\nmFQvrUofxHP6T4HP7QwDPkqEAtCKLHt2iXVvawIZIi/M7zTdRF5bXMVeL3iBhlAYLCLP7CGhllpP\nNIknN+xFrXmmUc3KVuEMRMOjI/vJeW6AdvSR5wZLkpuBq+SqWKoQ12/5TnJtYl4ven0gqCUc+o7j\nyqEs0Ui4I2stG8M4bnb3eVB0FCfznRIElTiMf0OZaDGVPmVzWoUzZG2Kh8h4ZozjkzmO9WIfJPac\nCQh/Z6IWhGmdr6afDGNCtDJdaAntM+mTeyZCio7VqhASXBsZk6aeM7jXtfyoQyw629scbjg1d60r\nrJG476KFBK1skrtDaQ5Z35HuyFwQ5XO7MEOg/MHyuK8otK3Ps25zJ+qQ6K1AJCYEQ2vQeCdhvQ/3\nF35Hq2KjEap1t+bT2FtoQ9sjf0bE5FrufRi/OF/2exsX+cROnWTrw1eIMLm4VoPWyZjccTxvrjwR\nOY+y1mrlnyQbjn3U/QVlXf+CMrnyRIh1OmM8ef7hlMkWAUToofMikbbg93huxOW4W1a7NRdpE9bt\nPVtuKiwSK9r7oiCTvrWyqp03o/zU5x8nN91k56u0k91+QSSeeaztfvdBP9Nzbr6nZ0DEO6HxjSdd\npfUcziDWWYV62PgaXjvjDbrEoydFBL/2ahpP9FDhgPgCbfiaewITrOp8sF+bO0WCMy4kNBz7f0nW\nwaU/vqPS9LD2j9H4q49QWrrIJUbNlMzYNznf3RoIcSUukftcS3lIzfj3TZ3+wxe9aIRbdKFzZOdG\npnxC4xI+i/LAB/4s+CgREsgI9hV+70REPA6Pfnl+ChkigUjH7FpHS8B4CqrgSCzUim9CoFLinez6\nGH/rQgSSg/UE7rwWBjFCYtioNUv6wrReA7bUT4HokVmEmMc1j9zGnJ1CdPGWeL9V4LmpJzDmp+AU\nRu55m1ciFVwONkr0j7upV/0Ua+/OyotLhXuLHS8Ev/nzvtgYryDBYFK80/kRpuYOVuunf/D4Fggy\nRqlmpuEHPeFrJl48EXCNvOPpcudx9E9DKdjgmMTfEti7vKubwGyzsA5SLsB3YXjdfeXwY7f5ju9l\n9D1XzlTIe2Y7K4/MZDWeQiMl9OxdQFyyviwu3QWzjHjFpKuP1mdHfMb3kTOI6ZqWQrTOiTAvikQi\nEwTHu9a3bbPE3gtB3x/eTfdnTStdz+W30L3ZrinN5G8Zb5e8+aZ9X2lBc1j+gdV8I8zGdzPIxsVv\ne7vlw5KR7tuJQrZTxhWGjyegStKjsh63DKSP2c0VWVjGCcSzIBtncRAcbcIaS+uTdQg0hBsRzI2V\nq8/a1nx/NNnsnSEOFMOu3s0koMEo9n8Zn2bC+os7dWr0xePWlWsqYwXnE7D9h53IX77zBujE9Jo+\nuo2ahjRI38Q4minffimtyf8MfG5nGPDJiRCgSlJCVG/OhZmTf1Pgxu9SQBIYru37NofQam7RSOda\ncPeLOY0qLfr/BQjNi30WZklQiwR5SQxz0EYGZtmxg7skAZB07icQGbkDWbioR+4OP234dzUGuP53\nh5SsdfmegTHS7MrdjkfnKOWOj58QcmdJA4aE1rnCT4EnHhPV3N3lpHi3XgeZAL2UOWvvn6Qhp1dA\nVpYmfdyZXF6IZB0RTSb0B+tpEfSrciQx1Pm7J15DROdMXapMiwL6w/ftxUShN73zotCiNH5T3WET\nOoY73CTZpb1TlKsqCANcJVl7smJCzkZVPljS3kYXtZKOYk6Vu/DIFujTbh3szk69RUQUXneQJTLd\nIbG0d3Y+ZjkRDpu4h0140nptsK3HXTWLxxTgj0q637boxhw/6N0lwvSdaspuhcn30arwWxUslSHD\nlAbeuMD/j723+bVu6faCfqPm2udcNDFACEqABE2Idozx5gawYwdFoSF27HJDTOgQe8YYbZDoH2Ck\nQ0IUA4kdQ0caRIP0MRI/MBETbmzAFfAjV2mIcs5eVTaqRo3fGDVqzrn287zvfd9z9jh5ztprzZr1\nXeN7jBp8DytybL/miWD12Z09cLUlVcllNzpcK57c+6jT2KdeuHXOt5ZJxrbp4xXevAoRMy+Drkiw\nRMimMDuDnyUDwSf87MCnJ0ICemCjdTPG3itBcdd2NUGV5i2i8EjCrFZ529zmXcj4TnY/Wohy9FMa\nBL+1cw3bGXHPkF9syrkgizksOyYzWAz0kwnI4hJ+Ihspwela1pYi62WQ8ESPtezcH9UqMwMTtcaZ\nAiB6dNzxVJj7KO+uJ9JNBac6F61NFxl/ld0Z8CUVToFFhClqrYUCTJWgL1YvsjbwvcXAhcWFLOr1\nKcPDxGbXJTqcbdkZaHwYiqC9N3KltbMclXbMbJ+dTd1vcbxn4Qxs7ePfYr3xmfZFYEoQt566B2Yj\nfj+gNrR334gmmgRWRvAKJ0WmLOKdXSgD41m1QO/mQpmgJZSCeqpu4H2tkw4CsOsZz92stc2lRB2V\nb7ivmCCu/32PEWvRjW3QldhUPFeO4XS4ctNOy9djnhP+LatAF6o2wiexiCx0ocyzAKhjEDPYvH/O\nrq1U/FtbV7Z3S70dXL66Vd93eIB+Y2jh0Cue1DHeBcbV00NhGFyfNN6rOg6HO67K037j9tsaefKl\ngioLpNjlEFnyIXScs0uIG8HoYmJFgd8r8b2KJJdG8HyIbauwmJWPbZxl7vc4qy1noCZ90H5zn/hs\nzDKhrV0vMmWHfrKiYpIDjHVRPWv16xTXLONrsms7GZ21eq2wuIKzbZvhsgKj8Zb0cXgjzLMV+MkP\nSMxxLiqULonRLfT99YpVf4erouck8wVArlToy9pXrid7NFllp9TmdlNa8cX+OD9/8Bm6YfDpiUAw\n48jG4dtlYQc8w3OGb3aeCGflNTHgvEZQrG9LWQBHkWkhPkR68iV0Aiowa8fDZ34LnSzzZynq/dBm\n7J/2/1F6GzPJjowkMGxVCf+OomPy/exjlGlRucVgX7hx6dwt2exJ+JheEbtGyBPBX43YZrzfvPZo\nXPcosHVepvd6WNb38M91C97a/xKwi0tp5JZre36xjtFYZt9oPPq30Htz/uH3BjOw8So8EdsX0Hez\nMTiKaayhTFdjexyvCt2tta7vzsU3WgR5fDvQMbt/0LnSs+KvwYp9VDzAe7q3K+4ZZr1trAMNYGp6\nzvw0/d9sBY/XvPL+ZjzF6+zO/fj3KGY51f67/Ub7y+ZC0vKMRw7CP49pwZWOW8Tvh1UqzhG3Ch+Z\ngHcrydbu948wHBfEhc+rfuffAVuXL4G0B0EBs7/uri37WuHMowlQPLAWUst4Vqf96L8KfcazJeF5\nBMaTQvhewtxr3do8exjoWdDfj7B2V3PRy8jidbPQiLAOmUfDGf2oRBtL+N0UMGYFnrR7V5HCSTxd\nphhnmArYG5aVTJmgbaSKCxW4xnev2LcvaS6SZsYjJ6Dv5uQmfIm3Zf/ch+XF8IlbYRQbvLcoEJbb\nISQtp+1q+IyWdbckzTrNezSe+327tg+8Mjpf/zkHCUNvXi73QlfM+KDeB/0mhPdWpzJI/+3qu0TX\ntGiRhwD2uEShSUX/z/qoivjdvnF8QKTf+HIa8wk/ORCRf1NEmoj8lvFdRORPisiviMhfE5Ff/JL6\nPz0RNsAZ9tUDIRdMO1wlRVRG5Ux7LWinBJ4RFP/Ggl0d/W3iDEW+d5sDv96VTooVnDMfWV+vGGcv\n9LXxmUODWW/O6jkD9URw7+76NgbrvBFOhIiIRO9qKa8YOk2w5/omeV9uhV+QJ8IdiMqQJ/29PA+C\noJar5JkArMRcvUS2Mf6L+fWc9cmmfvmt1j4PX+DGz2yFt4Z+XEXNygLudZhCVx7w+2HeHX2zH7NY\n8PR/BXSdNW661xsEmg1OMKFxvHeCR4sMnHtSzyq/DFaVb1Tgwk4htW3aIDEfugiJD1jazuLl71jF\nyjn5GbRn3US79VClzt2tfIVPohCbMb+8P/jvSmdBmdY4WBaup8fVTZjeL1rXBo9G2u1wXdDdtaZn\nYunqF0MRX2UU+LPyz6brmhsj7rS5+02wZpIH4BkQYIu3Iw/j6s7OQ1tzAd2d5jOX9LM5DBcpb+FL\nhKlXQhbj+HcehXzVePTaYAu0Klmc10aNZ6xNxZlTqlOxMwvtzttyhzuuDHS+7D5Xxy7cLfOizPr1\n0eNbUfGOijL8bWfYCuX6egWujBdX7wKdJr/jiSINrVXU1q+gLLBcKImzZK/jRuNfci3tzxd8Wf6f\nnxaIyO8E8C8C+Jv08x8E8LvHv98L4E+Nzw/BpyfCgGnNhCkHZqwQlwvvPZtQtn9NaJRorREIv6wE\n0t73v2syP7UCAKahrc3unq2wxIPPZoK3ts0IWXZmQAzr0Y1Y7W0IQUD+W614G94BLyCeOZ62/8dz\nqPPU7+vt2mC9F1n/zVsNogtAad4bYcyLMhQqRMoIkXDxe7C+uLuBuQw957i0qanm9aX63ZVAu7kT\ngb9pAnbTRPHru9Ox12Re2YLBZyR7F7OMX+Elz4XuA2Jy3FlZ1N8FKGXP7HO9jnkil9vSzePqYbKD\nGvrC+IDdXHVd+VwuViqsgjXPQQOfXdsTz/nP7nV+Jmsy+6gzIDZXZyAqhQRPhNg/t7/DWXu21jM9\nt5HAdFqQaPyNLGHJHDXCBfGT32FmpyVz7tx/y9g/cy7iGZdlfhQdMHp2CmDehwN/6rz1aaSM5nNs\nMse44IjsDFEfpcjpHmWcEvG8zbvtvV25xuVbWDdaf+ujzduufzUIMTWpx++P0Gc0h+NYscrjmJZx\nsRt1OCcC907H86RPPV8NpEhT/FBIyRPqifPn5gp+r3qX+Zwuxmse/RqsZ4HxhkL0zPJnY+VNuB+Z\noLC0lZxZbX/ij3jGpND5W9tAGEOleZvj0nV1HoGjHL0beQAGzi81y8PjUfY6OYP4XOckKpezv/m7\nnglg/ZzCZ/L+7Mfoc66E2Z3LUX94XMb/pBjeYU8chL7oXKuCqnvd6Nr4yhePMwzlTExaOoxptraM\nt3JreRy/lo/nRnnpOZZG86TakSJz7AV9PKxEikekjOem4Bx1S7f1a06rZ82t/ZEu6mM1rmg/5/kY\n7k18a0Tk4XRep+dUdq5v8N383h2FTsRfn/DrDv8BgH8LHkX+YQB/rnX4KwB+o4j8to828OmJkIBq\n7nfWPy6jwAz2mcbujvaK242W3l5HLE8KAKxCxeXhd1y39VOZ31kP1+nK3kxkQ4Kivr/E04fvk6BD\n+7ISptvWMrSJ0LeQmdJBngkjRrJt+sNwJjTOPl0+98zGvtuRo705KVmbJ20thBq2hhkTs4MPkZrN\n4bpijLPv6omQQRf4BoGebfgp/fjsnq+jZuqfwhb/vimvAqpvQyWIejpWewEpc7/rKncnO0+X838D\nogJh175rh95xZVrD9ERw1lEr1AXQzTynjfmR3/WIugUpPlaB3FtBsmaNyb+eeD3vO0+R7drVChSP\nwcuLTOcse/rM8KwTALoK2L63kZthUxkz6JeQ0MTYz4iK+KtXHPr3D5ji8aw/rFSV+dtGCJl44KfH\nxL90pPkmlM36LO7xqkjUeUjei0J6XJOVF6LcSlM0jMoAeYl8Rm/BL435t35ctEv7A9gpYXKlFL+/\n8HUXHmlno9vhT20vKuPuztVH6McVD3LFq79a59RBoAvTGi5QhiLhS0DGNm3ut+sgCw11VOg4sA7e\nwpT2lbCMM3C+2O0fjycCviyp9334LSLyV+n7n26t/ek7L4rIvwLgf22t/Q/BG+e3A/hb9P1Xx29/\n5yMd/FQiDGDhcKelBdYz5TX8eiAvkF41oSRa13btaltcf0cBMgUPfcYWp1OmrjZHuXvi8tcYkShY\nRaJ+Npf6u7PM6buQnojqpktZVCaIYLrjNZC3RqvTYpoSBGcyM66aE86tY8hjwtjF+w5kDKe1kXiu\ntD5PsxybngowY5bf+2eWWBE4J+QsW+oa7ezakYlhK3GEl0mNM9t0wXi3JroPr0JkAFtXi2+1hJkv\nekXP7sX2JNQT4zQt3lOSRGD+PJ8J743OC/3gOzf/1YWhb+9AfVpM6h13znntG417x3+cJVYU8YLs\nDm+p91IG6e8VFs4QK5xJJ6udibuMgXZyIPJWX9PbpUrorI3aevLPup5Vtg73Z+MzEQ528MUs3+hE\nfRYnoLk9zH8nOKRBhWCr8qI5VDRIk+2eae8N9Sl4PstyLpxXQFI/J1ZstZ+JZxIC5lASrUOqVANQ\n2kqnIv3XPews0YO+LGOkZwyKz5z1MvRF3b+t3TwxJkaZJg2AbM9mKuhHzRQp3e4k9U1h4OvdtZ2Z\njkLXv5NFzbaft+3qehZofoE1SWF+A8lsMzmnh5jCgT1pGMe792WtNxuv9gdQvqkFZYn/9PvNns2/\na4MMvFmfxa1VS+ib1SmTfvg+0biardExf5P5yTkRop639S3o+MoyaYq9o/RfV8DtV11PXYNpmKPJ\nrg2tNrRZZ77G9pvRSR1b5zct78DR6vAk7KE/WUhD5+Z17rS/yL1qVGE69vOOh2M6rnizSl1CUDLe\n0n2mtfMcXBT4hI/C/9la+6XdQxH5rwD8Y8mjfxfAvwPgD2SvJb99eAU/lQgDRNpwW1oZPFcO0/MX\nADHOlKDukB5j9Gz9PunFpayshxYIxCH0LSZiY4ZZRFx/NAb90ir0ghrWM4XX++0uUnHJBMGueeZG\nxwneruoCQDksJoVARcP37YkCwfeD09n2cXaoOW43rmN3GSP3PeRMWxaTx96eZ6BESOeJ+9yTzCWD\niAHH00Vv7NcxQRbCc2+xOEZap+VJzzWRZzqO0MTU2tsSjXwVRvDc/FxMVo/NtEYahjfR6VvncB4j\na/OmfdUuKu5w3YffG30tx/4+aUktEJd9FT1LidKGFQfLi9QWuQqvVsFd/3Iljv7KDJ9+d2WJWRHa\n31H+4LKzrk2fHNwM2JNjnIXiz4Se8TnKGf5QkYUz7ICVWvpdxxDndqlrU/eMSNP3qK4zhYa+s/M8\nuIJdCNWZl52eRxWm48Hkde/ClhcUBEYrNAQBaDhIiHa4UV2xCycc3Secm2NTfESbi+nQGUQlH6B9\nHXhCZI6dlQe7NVOhKN6qMPtFuHLBr5poNRsj9dd+8xWcXT3LSkLdQzMpbuaOVsQTCtic7iBTRmXh\nDLF82t+x/upyHxP7MnCsv+KCfl58+QeFBNaxxgfsDMTyTL6iW7/T/Sdrrfyo4vhDhpAqQjxrA5oM\nvsmPdybjHXU17QOIV0LfF62JhQ9Czw/zmttpns+3IZbw494B0594NnbngcMZUkF/llnDWUJF1Nc8\nR1msfs419bUCeMo7vh81lCZ4tm+6UUWAA175N5NQBh7q2YCjJbSOvY9PPBI0HKMMqtz7VgcOquTp\nmFcvYcBb49uPDRJc/+vSjdb+hex3EfmnAfzjANQL4XcA+G9F5Pegex78Tir+OwD87Y/24TMnwoCd\nFj5qUZfn6sFA2r7mEEKCiILViq1QX6rR2zEOCo7Ri9Zd7uJGW7/rXzspE7WaGXCG15okTuplPLLO\ntKfeo8OySD9bxRNPfI/3JQfBAhlXhpVJZtWGMnRXygEl5EuTyBmn2K1L0CsQawXen9uxuFc21pSP\nwhmjYUyO36eadT/C1lpV24nbMl25unmX50WtvHodnY+A3Cv3dsA95vZ3113Grul7mVByBTU73wCm\n50Gr/qyzJwJZ+V7BRzFRXgYcy6pn78w7idvmsny94xxC80rV3COh2blIlCk92kFSi7/C3NfswaDv\nV8Vb2tx9Tquv8xBY0gL64eu82kvR4h2Bb26ICudXPXCsTcpYn/RV106tayqAPdt0mHLA58GVrwOH\nw3JvuLNWNbSBzvaGLp2CWiTb6ong6tLiOF8TLdPfabO8/qY48Cz3wklX9/1rvo/cl/4v7i2Z72kc\nt1sL+P2n9X8kMWulPRHHsSpE9cNCvljQZF5jJyB9pH/ZdYm6158nDTAua8lvs6/Mip3019kHXjQe\nasx+3MVT+Nb+hU6wp8Ad4L0091yw5kf8wHVHL5O5B2FnvtFzrV/3glM8Y53PLZ8VCr96nWs/F5b/\nqqLiiXc88Y53PPF9e+J94Dqeh6wb+rnkRXBnQ9znUk9MlBnoJAMn9s3o+afe4OcLWmv/Y2vtt7bW\nfldr7XehKw5+sbX2dwH8BQB/ZNzS8PsA/L3W2odCGYBPTwQHmQCYWZftOrX+3Wn0hSy8DSgii3ax\n17Hvg2a8TYXN5hHLUuf4nf7cA3OQSfI11tbPnHyiArOvnX/JLOZqaUz7DWZm29QYu7bJSj3HGusZ\nv2kb3hMBliFpNwAAIABJREFU+A7vALpCQV1qdb5p0PfdBOYrzeo5mfQsO3qE6GbLAtetmGs2BVFi\nRU0Oxq3rvmQtNnvh7LrKw9CkPVfTtvt9q0G/MVY3VDQ8oQLgYDQGo7L0K3hnlKOOn9vskyYmigRV\n8cFV/yR8xqZjud37r4BezfoSFLg41uiJcPcY3FI2DLxwdQzOlVDSPVbOGO1s9nji57koQH0CpXQL\n31Gn5U1vuOhMVZjXEs6Y7iPhefN7JwphCl8q4GRKgKzMQtfG9+7F1pznnfd4u2h4QIyFNmbUXHR3\n1q6Tamc5gbdi1tlnogmuP+aJAO3HLkv7bg2G2S1azft8di/DXZ+Tahx44ZKuWFPvJiidlxlKwHDX\ni2RaFAMO4z5kEBMQNuqCzDL3+9Ff8Ik4RdQzwPgLrheN9zcRHFwL0DxetvTvvDpcN5NbODLPAhdr\njpUPXPpx0S6v8keVeBn+j7yT9o/d+YG98YkTH2KpKenDXc/GW6X2gi/g98dHLKLnHiyGO+7g2Vjv\nE+90Zgre0RMjP8ZhcnzFZp9MRVlby3FixR3EOdEwCwBoMjxy0VA4xw6NtfOdRrA/vRA6dAXPz+1k\n/EUAfwjArwD4+wD+6JdU9qlEGLDNYhu+T+ZQ3YPgtei+7BoWIdKWk721iEMZ2HNEcQVeoL+J4Emg\n+mm4q2TjjwK+JrwrhtMWxQGAEG+nNxu0iTTfbxK5yHNm4Qzqaqt9OLcG2e0Mynzp5xHGoXi77621\n0rMkcKdj0kSRX7CftnXDFEy5W+ZwjczyGDS4cAatryTnZVTWyxCDw2dkZ304d6F9jShEJeLh9qpX\nrEUrWxdSfXtuHyR97/X0L5yLYMsYZ5LjMy8KYHGj9zd47OGjDO+VMuElAeUuRGWp7qMbSE5Us8uH\nd9aTvxOtt/pbZn288gBYXc737WW/uf3YrL7dWVGICQzXjnHNK7RZB2Y4g84BC3i7GP9lPCDc2My7\nq0HxYujeixbbHezcm9mizJ+xTEGzkAas81wgTgGmdCvmfsjejf1U13aFtlnCqJyeRoxEgZCtz0fP\n55mikBVu7pjlR/cUMsEeWJXneR/XsIkdtDFJLmQtljnpD5exOs/61p8rb9jXZQh602OzOc8WRV2v\nLJncEFS5bAx/UCiqNNrgSUfHsdYxlW7Sz4PCbv9lijvtx3bfKCJBV0Jm72bKGD0vzP/MfqjAjopd\nbqwi3QsrNqljWJSvJ65/bo/T2llCS5q7r4QXtd1n8/V/ws8ODG8E/bsB+ONfq+5PJcIFRJfrCKnw\nOz6fMKsmsNJwthLcsrxCkZYhKn2N40VjbrBbzHgSzgAMwf26a+Fd//1OOMMZ7AhYZm0AgA/I1ivU\nkHG55ppHdb2T0YeC/VyLCKStWu0SxvERt9uunNpvInUznZ8hfEfgrefRs0K9Yyrt2V6RvtMmk3II\n8BQZFsQ+oM4Ymktwdu1QJECd6ZJcsqoqTPt3dvkzTODP54iVEJqx+0rTvFvny6PWtI2fMFxJhwBQ\ngVbF7QsFi+/tUOhLBeZAC0w3MRkfmDAQEypGfFBh91Sz11Le3dwL6xKmZDIGWgpmiMeH6sEXaTj4\nbLEXzxr6ZkkbLcmbh2gl3+XzWfvQk75evcMO0B9RaG959q90BKbVF4DezqDhDIDh6LP3nQt089L6\nzp17j+evcfbq3ajX6Rn9esX62ejzFQtZXIM4Jo3fBwCOrde22LtIcKGMy3KyBHAebeck7RbkguSX\n1Xna3he+z7g282LotLkriRYjx0WdDIqz7/Q3925Yy7kbY4bALUkbmWdUVkfal0SIZ5DN3/GWgt37\nHwE+6ykOvwF81qOOeuvBS7kQuN2ylDnnt3hO1VtLPS4VH7ULGvHVlf0/B/Bz7InwVeEzJwIBJ0rj\n2E0f27luHBbInKYZgShyW5S057RPogkGWYEAE9CoHf09wsIgacPMIZTi3cODJ4IxEqrt3sNuTKn7\nKlbLUxqqQG3bWPzfjdYtwsxwf1f7WjyR3jFHryR4+ppgeTcS61j0kytr4jeR3EUvs84sxGfDBFhi\nTOTuqbMc3Qed1H0LgieCf9TCmAIEc9AyN2gfEvJPY1mT31jxMrpyCg25pn/GUwsxFFGppHe0633t\nZx3T/pFC5qpvuzEUwlNWbyijirifNk3WOckeJftq3twQOb7Hiju/mqBSLBRJmxT/+EPQhU2jd2ex\n2JeJdEuSPDhA3AMf6XfHL2zla86j46wHZ15GpzibxhbHWMKavLp/tTaBGK8AwSGFaPvX2UhmsDhP\nEJnhTY2ljvknVo8VrihBLHreClBKm+FXGjp2CR91edqAWuuXZm4IBz8pD805t7hnPDAeU/coPTsR\n1q8rlhESFNraFx/t73Hf2XiiQLZrJ/Jv2R7M8JXeUiBjza+8TM9+51c9K2FrUASoeEKDlKpUh6+i\nLnqnl86mMuYdSZVEbh9Ypa/gqEz5sy37KU//aOHTE4FAWebpopTglegyrRmnM6Iq4mONXFsz4dP9\n/mk+BAAzwYyikJ3rk2szItfgyxiR0xliOKPnW2b0DlHcKBAAuHAGgJF1qKOZIFvJ5Meu4Fd9fVUb\nMOUJIXfbZA+pxTYOM8apqjLEYmUtRAPoe4uvozv1RDgZSyEF1R0r5h1hMtN635nOmrjLznCGi4bn\nmR3fBbJnaJIfLd+Hvm+MrQoIupVWN1V/Dhl2zbOighmIq5hdZqKie+RHr0zLwmK+JHzKVd9WvBPx\ngI4pw5U+TOlen2qmApqbPBNu+saRwYwfpUIEI/O53c5QjsTnlEBjvLla/RTYXtDbB+aeFa8c9oOh\n+k7Gf3Z++XxbWA9bnVa2O86Snq0zYdkpvJP2laZGQSf21TA2/96vR4t9u8sUZ67IH4Ep9KqVlea2\nK2Z6M0qTtEzvq2+f3+832wgOkT5O8eV1XrQunZ8rvMr7Yjf6nYLzDLQvvN/WMzdqrjXVwseY7tWq\nnO2EUEfWLj3L4MqRKOI+U/auyuVsbaMSWvcGlz+DVHDc/P4lcOoxMz39+tdol4jvd2+UqGTzvc6M\nEfZsVdT55+O3G54Ia+pIa6PzzeL6fQVKrwX9nEbF/1neizo4vhq41J3xgH97NsIpPI7E2NfHFxXM\n+8Hx9ZPqCbiWCd8/xmL+YOFD/NYPED49EQgy7XKW7yAiDnXV3kEqGN/0ROhl1iseP2q1czkZQjyF\njCRrfJ0VIzu2hr3qifDR+KuMcdbYYdXq3nVvrvO/j2kzciJpn/pGypQFgWLt2/U4fPZpyXMiTCpU\nPEVSyz117mvnRVCB6CirIkGZsLmvsBI97n5KlHhsQJrfoaj7ntw4W6NQOa4tYTz3J9EVLwG7Is52\nsCoHTvtF7evYnaWFpZyYEBCYm/XMDfkOjvoSD3+NBWfHKAVvCfMP785TFt+6ltH2bg6gCEY2xWmx\nm9dDSi6ExT0ZLXvpEoS+z9C4Kcze95nR2xjmMbrxzmWZSTcwFZK8rz1Ty8IA9etiBGd9OI8bV1yz\nFmIlLYPbv4QzOeTwbA7P6HJsq433jzEvjwIcpSsSDhHCka8Re0sImwtkCM8ilLl++2uiG07O+iIt\nKq4hOhSERvUy4Tf5Rpcz2MrBm995HbthIvfGiUrBu5Dd5JDhxzvhcFtFB87PRcQ/2b48RZ9znWiN\nNnkKqPgp3CVr2b41L9P+TD1i/Hq1rSdCr0O2uDl0YCjxRr3BY9Dao79v4GEW2s88v6xOfvfccLe7\nUjQaic779hrv8QmfAPwMKRFE5DeKyJ8Xkf9ZRP66iPxzIvKbReQvicjfGJ+/aZQVEfmTIvIrIvLX\nROQXqZ5fHuX/hoj88t3227iqUZM1ZW7xbSgL9HlrwLN1y0FHXlbHWTsah3wX7CoX35ePgLY/K5nY\nea3QZe1/QQnwEUGi3USsSiCUwYoKHcB/d4kV1bVM25plgIWToJwIPcZ2dbm7umLH9TsZl7M0cb2u\nDaBuFjvdQ2kguU0sx77zeJQpuSN8c5iC/92EmsPLqKMba8Wxt6frPzmxc79Wp2xDorjZ+G+v4TL7\niYh5DaLV+QzOxihUZgo6uLLH6Tub/TD/jY2s1xyOQ6A5EVrrf/fY+0yJtmn3Rt9O+w26visMlPMm\nZMo/Znri+3X8r8U5yK54TM6Frm9rqtwJEtW4TrXdRHg7/LbdLyc5G5RevRJ2E68YPWMa4y0xW9Cc\nDdHFduYXcUVTRVyDXdp2z2MJ5hqM5mjHzKFSgfrsVzw+b+BnR1sVrxLOvEqam8FiQdwcoCLdg+2Y\n/7oSYZcraVeP7VflY6zcSx6P00PKBElrIxfs5xmZ2v3q/82rh9vsI4//sk9avur47IpHbX+GnwZB\n3fNteehpbMtYo9fOGLer/cog4qkoEF95S14JlbHPq/eXr6fp3/P8tJFX5N5a6dzurkqf/UhQWg1t\nvLpvtd8ZvY6vqyeC/m2/iy3C0FBk6/+qwGQ85/hMNsQdvpfLtrjJA8R8Qlf1ZzTX8aDUXKYEuwx3\n+yHCuD74J/3v5wF+ZpQIAP5DAP9Fa+2fAvDPAPjrAP5tAH+5tfa7Afzl8R0A/iCA3z3+/TEAfwoA\nROQ3A/gTAH4vgN8D4E+o4uEuZJbt7lLewV3nh5wAKGgylzPN544gzzpE2wwCT7BQRG+BWL876OyJ\nwCbynwJMokU5Cq6QXGY1YU+ECDPuDEoPPobkpib64pTE/tkY17KqQe/9bO6dWMcrWmFRaTlbx5/A\n2mbxciLk7heajRaD1xo712xYssY9u6ctxiRrvLbx7ayfO8aNiexcX/rHZXbvcj9fAd0nyzlRKYQ9\nETgnws19sT1jyPdopqP5EgFsiYNFPDshCSrj8DI8EZz5eD3QOw+dSwFieCK8ArenIumn9oc9Ec7g\nDoP6ChObgXoicLx9TMoZIUOpRqvuMb5XHmW8pioYAgmuvRAqOSeFlquhLoH3F8hQd7+ysTmm3Fkz\nRWaOoDIFeWszoxvASt92t0goXDF97ImwGwuf8VtkKhBRdz3ijf356vOPG1m8QBtpwNW+ND5xUz/8\n/ssEaqfko9+ZlvxEweHC67WyvWzhTGuZgQ/IQXI3j1ehdJdJS5sqJkd55OeNIc19IMn6cxs3F6OK\nGa/06mkNR35F2HdwQXOK+PXY7kcKj74Lp0aQnw+59xO+IvxMKBFE5B8B8M8D+I8BoLX2XWvt/wbw\nhwH82VHszwL4V8fffxjAn2sd/gqA3ygivw3AvwTgL7XWfq219n8B+EsA/uVX+pK5XAq5FkbIDr66\nEvJd4ZrZeI45hDNYYiV2o/KMWRlWim41lrS/LMAJ1b+4ROYBZ4Z4uD/knhpfy+LBzvDbInxClno1\n8V4ce6xnZ6mZfYXN/dlzN7iN75cTMpy7p++fxg7H/ZKFM/SM3CoA51AdOfTQr1NS+bCZMFPU/3Yv\nMPrr+9pcS90zMplZm44ZFx3+1jE9RP+JC2kwN2qfzDHGs+pesD6M99n1ofhxKaF3dzqPev3+D0CD\nUlfsW0kl6XW7dUXcttG29Z+6K/vt5fHDIT7zOc+3b19d/23v+GFpTPrYD7wH4hyOAcWwGPY6sjHR\nfgCvvyz4JjtC5zjBhzMwXuntyPyna+C9eNZM5fvG9iRPrycrole3+pwIjqEsYgqZMTGF3t3p8tz+\n4H0xxxqJSTi3bm0M9+yUCa5NCmcwmrbiXyDHR9bX5JyEOF0XYgQ607SnbS7EnSHeR9l4tC+9bhPf\nT/eYtGSu/RwtbRYJ41r3ePcc8C7DK44U94/pThnvPwrwJsCjCB5FfFhDWEMRn49Bx7+6NPtzrGsB\n2P6bc6A0F4Ge8VwzHuA5KEY7ZE5u8f9oojl0qIdzNMNbFI7GbdlA7BzyHNLjuc9Af0fBlENvVp6m\nzb91XnkPe1zfBm6ytWeIPIqA9h/vl1D3PJ/0u3qqaB2P0VfO2cDrqP90DtSmrok8ef21zjlPZYRp\naYiWehhSf3mOFR3q/EVvxXnNIHkoHsL9CzhDGtEcow36t6OVs37Gh+JosO1/wuk0/4ULcuW0/gVm\nJFFPIa1T99OjmDfRHEsro9zAdKNtPtv6rq694mUe4+wPzaHxEuu+tHm0Gxq6/ND/A4yORl61cP3A\nUj+v7by1hc/pDxwazFjxk/z38wA/E0oEAP8EgP8DwH8iIv+diPxHIvIPA/hHW2t/BwDG528d5X87\ngL9F7//q+G33+wIi8sdE5K+KyF/9te/+XwBeIRAVCe5dGJJkzbKztkJx0t5apAhtMh0neublkNNh\ndla7TRWvWuPdvb2TCHkGOIOMsDOcWXJfdYuOngh35iE+n+Wcy3P/F8MZZjuJUgI4Z2Kvyl6NPVpa\ne78GAXhhbZc71B0hvB7DmeJG94US0tUrZnV1zOpSy4Eiaqpg/LPZ4ue6Z5UpP0TFk6QRPuybu63P\noPdPRn9zb5psbHfd2aOl05XfzT8xE7fHMxrIvG0cIxHaPFu3K/hpMBvbNi5CYbJ5U1dtX49XKERL\nPPDiuYz91X3+JS4CaTte+XTX2+mUUVBFaOIx95MAE3w/tpG+xv7jswGwMiQvy+A8EUAhDAUTbx3h\nzN3ZBmssvtKH6wFn12BOmYoUeOftw8IZALhwhlg3CY5ecXDZ0dRtPVe43oeIz7ry+pwmWn4SUjhQ\n2ShwZdXE3yT57Uuh71U/Fq+kvfH+VPS0Ux6AYVfkDC9OZQNsziTswbO29Rymz0jJUEgxsF3fYsoB\nM67dw2+9z8dQ12B+2jjP32cFb4qvijgF0q4OK95oHvU/U95bv/OztQuh+oRP+FlRIjwA/CKAP9Va\n+2cB/D+w0IUMsh3dTn5ff2ztT7fWfqm19ku/+ZvfAGDVtJ01nJUxzXb/9yitCzSxzoJuOU40iGud\nzYgADKG6PgXCdRuClUCIGe5jfZ0hvHINvezSZl61zivXxRhrGMMZ1LVsO0+0GJPQllzIOuvzro8q\nHFvMpB+QxXi26TK3E3ukmNXzVGgka+krEIdVwj5brPTSpmVuatmz7sxzQm05ZnwzhvC3EMOR9TH7\n3njyRwFjWvrvuwzcMRTnCq7CF3TdsvNvyp170JNGeeuTH0TZHK7x/pcmNghwFs7wUQ37zn09hjNo\nG8v8T+S0XkOTWSBPgaWDsdElEaLdlYTNuyVv46WTtUiTqMIvaSbExjlQl3oO0Uv0p1uX63Q/lv0V\njzul8is0S4WJVfHaXBkgFzABE6gVpy5xvzu6JdKVjOylEscS+xrwWhTUSiivFs5DuifC2/jH3osO\nN+B6zvo7LXy33095nCCciFyfCbVO+x+DF9RJHzl59OnYykrrUhmLPp0Vl/CtepBEnq6N0JfpDQl/\nU0//XPE2e4TwuVfPEW7D9V9WJQN7K8QxFipvXmDGB/TnXqGcKTcyeiPCHo00B8L7557gHRUW/bmf\n+x3s5uuM3kcPn3yubW2WPc3birxlwk8p2DqpJ6D6e2jVOYF9iV9f3rUrUqd3CO0UXbeDlHRFMD0j\npAXFBv1958wr3E2A+kODbhT7yf77eYCfFSXCrwL41dbafz2+/3l0pcL/NsIUMD7/dyr/O+n93wHg\nb5/8fgvuxvowwo+C3s5KPYmPCioXhy5zwWPtsbkh9c+f1ELu3PS25ROm5xUlppfv9oTmK8s8awde\nwIpfC4GyAmH3/HTcRTzTdnPiV6aYGSD9jZ+f1yUnZeL+uGKIJZMeLiBTUly/45nZtMzs08fmlX8/\nE0TO4MwLYeaGYA5s4RY3yoQ7bYf2zV3bnp+N+UthZw19KZxhefmDmPMLDr2eD8Pn150/S7J0doa+\nZN63tExew5FnXn2v9u/Dy7wJi4v9+Br7NNa5e2Y8gQpW7LIu6fH9KGRVsJAX8yDYe3Kr/Zkb4uZx\n2inFlnovip01d6Vg3r/H1vC1A44+YszRzpPjpJ1X15YVItlrkeZFvKD4WXbPs7EWPwd3uvu1bn1i\nMrYTau+i4SzMhD9dg2d9Elv/TPHjP3MvhNP6k77eei/wyqkCBarQKiiNgxrOaOuNtr+678wn/DzB\nz4QSobX2dwH8LRH5J8dPvx/A/wTgLwD45fHbLwP4z8fffwHAHxm3NPw+AH9vhDv8lwD+gIj8ppFQ\n8Q+M387bv3h+NkldgWBJm2b8kahFdh/XrxCFLiYU7PKnz1Son59anpj6l9yPlJEW0HVWq1VtEQCJ\nCU6tqEQkOZ45A7bMrZaGNVHUqxv3o66vwBrOkOVr/ojXRgQWUtN4d6zjTq2nQsqEm1yKhqtMokIM\n7GR24X/j/cdM8EO6W64KSlbnuQUpWjvc8wuOy67ZDFag3QvkDnCX8QXW+T/bz2myVcfUUe6RON4E\neP7TMCuK8+1XuepkqicKe3Ps53NJPhn2O6/pThC+UgzxP64nwx17xUl+TlwfUsS0id3QvhVvcZZs\nbUK9MTFjtgcz6188QyIkiNEGYqFrlwvhSmmlLrJ3acPu2rDsB46Hzt5npWFUTO56E3GN/pZ542Ww\n866J3gFMx7IORHqYWTKtr+EaTaLJGf5WnPlW2vBA6Nc8vpVESAndY3ywg+wR43k3BjcWn8+pvydL\nn2Y+C9fAfZqjn7txZL+d3ZqzKDYDXul9plh8beeknzwX7jemkWdjCGNhpY3+zrlJYh0ON+g+4vAC\nRK+DNs8ix/MrvtBxx/mffU08L8sFTbUz4c8Ij51j+Xk+XD2i3pVtzktMIJ4lFL8LGTkQ6jc/4LFc\n7Q8FDePsOaEKCo5Rx1rDmdBv+/h8gDG0ZOIbXY/gGdJzWpS0P5/wCR+Bx693Bwj+DQD/qYh8A+B/\nAfBH0c/DfyYi/zqAvwngXxtl/yKAPwTgVwD8/VEWrbVfE5F/H8B/M8r9e621X3ulE6e3BAB0GBtE\nBM/hiZBh1o6wBY/MBVKAoygB6OUYsfs2zZ1MBhIV+cjFQ1xx0qG0mHdtfBVpK8z7fbNnK/4mgnvN\nJN+FroFdf1+YzbAJXhEyvwSuPBEiqNB4SHe3XQXF1xQJZ2tcpE+L0Pdn6GZ3y204iuDR1j1vV4bl\nXgIxp0VnPNpKJWsUbhpq80yYJqDK+trqODtTkeC3f+aLUOlfa82J1WkCMDfu/O8olLwCIli0n2ol\nUSEAyDhSWTb0meUoCkqsHCk4z3ECvJ6L5RXgG152GeQBrHNQK+54IFjI0SYnwkF1TyH6ur4M3P67\nuMLrFTdHDU84FnQv8/mdFcoEjn5IMQ5dW6zLfEau8oX0Y+1/jO/EUd9VDO9cQ8/CxHb7Y4cbI1pa\nw0jW8Aktotc7vpX+rzbgO8gMaeN34jp+bWChW3kMPfdfG2ZIpya7uxDWrI9rb1J6lPASUQF3hrc1\ntNPw6WYcifCv70xP0Q1/2BUwfdxPN8aTfkkDmiUO7PQv9Ims5U5ZOdZSPxvrmkFzO17gMB5OIOoU\naRPPdprDFvmID93+guZYMIVInFPNDXJp6JP131IGtJ5gfn60TZoiDelgZY2+l0FUmAoEpRWImLVf\nUFBk5CG4gbtGJFWns+NvbiQqORYDRzA+aqLWt/aGp7zjAQ26OPfki3vzEzqcKTN/TPAzo0Rorf33\nAH4pefT7k7INwB/f1PNnAPyZV9uvL9wHrAiDrxIU+KRxiiDPGMe4Ce/IekW6lffZLOnKjnnNCOtJ\nZ+w9ytfg6kvqZgSjjFSjv+1dwXMgu8i8XRHL/fPRzuXgrjW6Z3Bp0TqpWuSnmGU1E5aAVSki/mdm\n3pQp6AxK/8LMWFckyHxvNg21IgjeBHgqIQ3xmJ6Ra25dspChIq3LvCV0moe5Qeb6Cp8Bu2+cf8zr\n2hGJV/YS6xc5UmbJgi6CO0mbnBUmtsX4R4IgJAkrQMHvUoC24RQyge/pzvZgSBN8I5CpSNgtoWcs\nx54Z7809N85RgaBKRzKTQW9AlVWRsJxL1UwBpkiYZ8SKcehAgwzPjERCzC49PwEeP+PPqSCOL1Dd\n2ievvFJGfvUUydr9UkiruUhUyX04w5eau6aQcsPeDUrD0ZN6sa98+3wStR6gjo3FVkkXOlJ8nqAr\nKGOr8BjrqLcERQLQla4NyuA3PETwlIanAM8hYN5V9GTAAqMpO+0GphmGEHA0j0cVPCycCRIan82R\n7o+bZ0X7JaPHtV3vX8Oh9nlm7XbCKswokxkYSvh7UULAaKUgPyOTpoogo4lWbv2R+9aFWBUcWQBm\nx7o4NsvOLwJIM+UFQDfPcCjEFKSNXk8cPedhXX/2oooKFX45emqt87A+W70R7vPLq4KF8BE2eA2L\nrt0pnfSc9/5av7VvjwIceKDgHRVAWai1b5exE+/fJ2z/pOOjMKQ5HqUnYnw8KwQLBLWVqdSY/Un3\npLaz9p35fFNEfSVi8wk/N/Azo0T49YQprAShqIox5qxd1WSJRwHeifE2YYuRTcNb61pcQJl7QTkq\njlJH8kW7Oofbd4gAzcVM9mdf8cAOzMVX5XFohqMDhFhUQ1pFpmWQEcyZEiPTVAM27gKgjX7wdUBK\nALIhAH7NnsDUthaUwdBd2DuIiLpPiVeXBeE8CBvKpEXh2BPePm9KnKMcx+6Z7AY8k+aU2i0EbLF3\nCTPLZISzYTrCmExFnGZmHlgw0PG+lYZnw7iiLOxpOgNub4nFlKowvd031LgxLJ3ReTaZe+UhwFO6\nx8DCiMbEig/Qlaum3T+10M8yvm4ZQolQuaiEMUYeo7/9TD/R9wJf4ZbBo9jZm3MmwONRMS1GQF97\nvpi7CNyKbBadrVivQmQuMvBML78r6acqY1khd+YF4fpzZdqkqy7tnQthZ2o2xtk6CqQIjqNSRndW\nvjXHdKqyZO4fEGOetofpluoZWW8d0z1zpTiOc5cts/bnmG3ZP+/6WyCPgunyT+Ow6+9CYi/qq9b/\nKMD7Ju+D7toylJRTGdFkwa25lTooIS72tQyLKneYk+wBSp96AtnnGOujCN6rn88yBtAa0Uoa16Mj\nEnw7uvg8hkAhwHfPjhMwFAlz7kRpmv2u+EjHW2e5OJd9zzx0Dqmfdj1pwyF1eEjY2p3O2R1cQZW4\nK3nOv2h2AAAgAElEQVSJXzp5ZZwD/ZPOAjyeVQcZwIREvUbSks1VmwOlabBzhQKUozlaxX3iqxOP\nYgrPbI/3NfOD4/N1FEAqnBJjEdZ1LGPtnmLP+97z83oU9RyQceNH36tNDD8f3Mc5Jq+0l0dDOXSv\n1zl/yx7X+S6dJzEeTtVXbT7ncSnemMkbaUy9z+Z9c6ZQildaAsZbzTLScJQ6BWrGbdOqH5ghVvCW\nMO6+F2gfg25akYajHShjw+ptCGewqjlXzyMl4VIExwxVsP3JvHkhnKUhpm9F8DZ8EB6jT3odJV9V\nqnW9kvrnx5RcseE1j8AfMlyxWD8K0A2hR9EhRWFNI/9uJ2Z3eGJ8NiPAq7g+7kd085LhlpS5MInH\ngblm/IIjiATe3M6UMTHNtn/PvAb0ESdm4nG5e95fOIvsCKbjzBgQJzcFSJE5p5Mfn42MKL7u83wR\nV27N3HcgzMWu/PL+TYx901Ko68kE0z8PTNCG4VPizFeUKUOVdq/dD99wa6RtJgKfMSdw54//brVB\nr9DT9b1y6Yvn7SMBRTkjYnXr/eCzzxLKhbPEdTW1FoLw0yVnfi5oewbKdsEU5Ojvmew1aSbbP2dd\n253n3mY+7x4/78e0A5G+n1z4GNTdGsZcZwh/9tvnwIlzEC1qRYYQEft7wZFFYXk5r+4M9LXh9WIh\nhfuyXRcapsM9tfazdAFzH8H6FfvOe80EG1nGW8YeEFcu6ax2kRKOSlJEYH07o0VGj20cAPxeIfrL\ncx2t5NqO5k16lIa3AjyGN4IKl4d4uroZ4kJ3Gfr4kjqon1ouoyvxTMa1285Z9IS7s09AfALRj3lz\nznQc2i9UpMHROq/AluNdbS73QFCosAJ4nrFwvgXreZs4NIz7FXA4PvxeYrkQtiGwPaEwcfyGr9Df\nHwLMG6EQzi4rYtVLg/Z7atln+lw87oy44FFWHNXxWua5QHMwcSHjEB1Dzkf3/lA/p6Kr0fwp3lhx\ncafjlsBwPsM+9JF/Mpq64psIdk5iboxYv+7XcbmjyHLWskg6Z7yifk5cmuCFT/jxwKcnAlYCcpYF\nX62cj8i4DDCmpuEYAs5RfRIfvlPc4pmaF8KVySh1IJM2ktYJ3qShFU8oG1nq4hVdt6CUccVjgyfA\nzACarrTIcMdVREdtvqrBjCCBaOtVmend2ReIK4ZUFByXGuGvCYvVbyzSLr6Vr13r7wuOjZSnRPch\n/e+VOy+YSfVkWO4rlisrX2FglE1S+4KaV1W59BBBK+pJsI+1MybaGIEvJUJz38BbMBSm0B88EcqR\nM8934Ez/cXYOhJixgi4wPIcbytnZLWIKmufcIwGfqJKrCJw3Qi1AqVZRIQ+VYQ2LHhnc7kchehY0\np9jxTHf22RW87RKvfEnYUDxi/qpY2+ezYzMWSDnbPZPHzPBLePFSkfC68LFrIrPydZw/zrwy3E6B\noB5B4mha1k8TUuj2AVLQ7KCICi69jqOYQDyvo8wslGVd0x1wj3lZjSZ6euhyBOkYx7OIF8vgumtd\n8yLMs4zhpVAa6mHY9dna9F54JSZZvfhm++GTXdwRyimvwV5SXTloXg9nuR+WhjMIVvP46tk5Zk8E\nYCX/4aQ6gV/350Mq3m9sDnmYhVz7Z/PoFUbqeafldA120xAVZ8A9/KFKAaG/OWx2CuHoiqnvW/dG\niEotx7+5/apnutPL6WEk50uqA9/hgDm+sta3hjiaR4Fa9hG8E3UvsgGCedXdFiroirp+LMXxCMKH\noAhEKtHDPtc7UNZrJkoV4Fu84Yl3vI84wRmGNXDWyp+syg/1qnkiPxesKGNhvwCTl1ee6K0A3xTB\nb5DuifAmpf8b4/4a9ORHA+0zJ4LCpxKBgGMPo/DHIGIu04xYp8uWMvLj+yGr3tzcupRQrZaCKRSp\ni+xwn3wrPScCC9WLpQMvJkNJLNYZUTsjJrFNLiYnmP32NT2St88J0HZ1HhAcrW/3Q7IItdAQQRS6\nIyQGcnt2o4mmGiDYHDKTcUfpIdJyD5MXpL/O0Pu7yY0pts+dMNSJaEPFyDK+cS1eGFwYM7PsIWle\nW3YCfMXhQ4D33mlfRn9oJ4vG5QZExaK+ecfiHb0LAFUgDEZpWhx7xdO7husY9RyqbMRK8BdPKbeJ\nBkZ7YigWzjs+k2Byn8UnVoxtapmr83yWVOoVQVvHr/tFlajx+R1odWXSOj3ofW3xgb70IvTxyfzk\nGzomM19hyT9frFuaCfq6xXfTadcSj+8bJnWHd18FVkI4XaeYoJS+F4SOMgWL8z5tc9mcfFcr3q4f\nAGaIVFavJlPu5a1uVRTExSjoIWAVXVnw7dhzDQ3vra9hzDWiODIL/Yrd4vwbAh9GpEqdTDhpXA4X\nOgESXgDkdCjJQdNGwktVWHBd8ZUz0D26S97JazDfUUs5rve1KnvzZyMZZs3n6SwHguMdBTOcYYai\n0P5RwXCexebXMF7RacoEVqCo4G3vspeO1qV/xLCuqXw6WSNnnNidZ/B6sxJgVSqpUF7Rad9S1wYP\n7JaUPR0sLJgUHypQb4hHtl84OajO41sB3uTAW3uDUv9DisOnWd06bj53W+VSCe3Cz2uR1kPsxMb7\nzQF8UwpQgUcRvBULZzjUWy3g2rM+fMInfCoRCFioYUFmanBFPRHUMt6FescQUV3TLbYGYb94BL1z\np2IXJiUCb6XHv32zeWc3LrXmLVfZTK7CalMG4qeWEBA7obShDUb7UegObRHX9V6WmOJgmepCZcHb\nUCK8DWTuxpdg9q48sMRwWoz7p5Cx/NFDI47X1nZ9V5m/QwSPYshdxycClMP24XS1Zu8D7sjsdP/H\nmadtLNeUIs5r/N6VCF7hwBpyVxc9V0IWlU2LMJx1JAG9JeLKJYcZ3i50jX7AC2KvgDtWC8MR9hh5\nTdxV/GUeLKZsVJfbZkiLc2TM4OqyMPuc+yPmiMnGqONUxrQBqGKx2l8CLykTQtnlOE1Oe8eN2e+1\n+kz+tRmekBOfUr+PZNlHmswsDkm7dodHeyX5L5CfuytmUOcyKg8EJsgsQnbQeGWecLOeNphV6Lk3\nxjzL5TDbRBteWWadVDwTcXLPcTI8CIIgxHRYgGnld3iKCX5ZvaniKjIezNZX21MFIZ/xQxreRh/f\n3cuCf/AU1KFgkLPwR2pLz/6ThMNYxta0C7gz8eMQhtzw4W+60Tq2+M0tRrkVTtfaSj9dAlEZ/E8h\n4Tp4rnESYPZM4bwqFhNvQhbPhymGra3MQ409AZTOHI3OibR5TqYwCNA82742HrKNm39IiAxkjz16\neh3qydp6glB4IZlv/up96G1VpdP6DuyMSSFeoqKfpcS7gPlcVVD192xeuZyMzR89IGX0ZeafmOvS\ncJQew/9dad2TB5LeYMV90fnJFaKmOOohRL1fD13nYRXUvAhS8vV38zD3Ty/XvYV73b9QDjyfbzhw\noKHigN6EcI6EK0a+Clp/xR99nk9oGc1DDAGbngiPgqPKuBGGlQi2V1+FOwlQf2jwugnhhwmfSoQX\nQQUldq9XBK1aTUXghxIuqYbohgp5JnIJjFoEKW0kqml0FVR3dVTYCfvRUuEsgPH6P85GNN+/novb\ntz9Qnbv+1kDwe3mfUOzYdEqZ/cwy+lSmGD00wAms8IQtUu478b4K7UR4YqvpKwKS9ntl1tokci4Z\nEguOAHAcWJQKBFk/7vQtW3u1wj2giazyNmeyKnX5xJcTIBb8nAVD6W1zhU/ruAqTOSOy0ZOEwecB\nMcuQW7rEUsnQkzaNpK5x/medw1r0OPq/uf4FXaNZFgFJSrfcMuORCaxq2c7iJqW/5PtPTP3OeyX+\nnemMzGJmQo/3OpCZrZ/75LjxLwRnraLEiprpkmN6GXg8nAivf5fJdM8QnIJFwZOBu8btpFyDF2R2\nyqpl/oHJdE8apW3dmFfOMaRnsooQ3eQkfwJpSkNlJidVequ0te/9nlSssnJ+tLnzIujXPOZea3P8\n6DTSFLJ2QLPcK/FdwARFRn2H9BsXPC3qbXWjRD+Th1qiW786uieptSsAOUnvVFAPGr8oJ8kTkvcd\nC5+HeBxiwmqD8TNGUs5vv9CGke8NJxXbzy+5BCebvBCdcYqRqYTHTBCpfNQh1ZLfzfkYiU5HnaZo\nh+M/+JYES9LYBTTAkt6qx53uBXHvYgjJMn87aP6UFZtTOR4dxAtZUsAeNlvGhj5Kv6VGEy77f33/\nseJOoXvD9TnCUTTTqbuhYXoR0ZLO/Ux7xZSXLMQOxczD8J3tMwtftU/Dh0rHn+jCdRv7noGTKvJN\nRzNx9ZgrSA/zUAWO6LvOEPM6zTBa3vfjIRYuIJBxm5rlpVneD98nTxDamIWLoEidc6vrwWegFE6K\n2df/2wP49rDz8lZMKjiYH9j0h6E2K8eKrk/4ccGnEoHgSnjSg6ShDG+l4ajiCC27FNn1Kkz8O7Jq\nzd/zqkidkftBiLuXw2hXGY1uI3du1qowEKR+rEogbw96vmeCQv/XG5jMqagQr4wjx1D6zihBZU1r\nBiKt+3ICjqhA26S+gb4zo6UI9RDBt3LgGIj9UpAfD9kTwVwFmR9qXDyFEv5WIZPHMPeIs6jKDF/h\nOp7AzDIMkNb5ivAV1WQbs82v8HpMOYk8Ctj6FAmIF0B6bgTdK9yOMgoNMhnIjPC4mEFWityAKWxI\nz2KdwpAoVEl0J9MuC1/KfCzVUvW75dCzpNAJfAlnfU0YxRZCBrXmuPqvbhjg9wez3IKlyN2G0izU\nhV2k4z7uuKAjAy6r/brsC/39on6yvz/O0AwBeoEZvBJo1DPpFTBc7sMGWPhtwOLRdl2vzc6VcOfz\nwox2Bw5+wtMc7Y/uNZHBXEKTdlJlySbXObSz3TVyukeryLQATnoyzmo2/UGWR0HDmwi+GxbVyGir\nJwIIx+nvRSypGePaqbiYfyeStc4bC0ahryogOJwKw4OZ8uatdE+E0upYp4I26Prffwq+HzIdnn7t\ndocjcwnXmyO0/2yBn/SUFbtBWH0I8E6NqpAWlYNz3NlGZg3O9srk1V2+0KcMKV4VOjPBM4zPYMWc\n7lkeUzlMoFReTs9eA/E5g7GxuHLes72uhzS8Sbfu6tyYoG/W7qN2OuRoPfy/Ij6EhI1LittZsdDm\nWsJ7InTNEo25v2eenP3Nh2huGt0XSmb7okoRtGK87VyPScfh34POl/7e63a4fwxA57LomospZEzB\n1oZypk0FTWkUnkVbidfT+FFxdAkAytHQqpBBys6r5RAiAhvyA7EOjHHSUSq+r2Wu21vpwvovHAXP\n9sD3reKJrlR4qCKBmgE2OBqdLmg+IKW3mUQfz8K8sYuev0nDLxTgH3qIefTSWhbA3Vhiebn2Smfm\nBX5cIK8pQH/A8KlEGGDZWo150jPImlbV6r6VSm7IbSI+c8Vq8wqWh1SPfEUGMevP+AqeiZBhDE0p\npk1+FME3aJ1QNvNImAQd1u9oFe10PGx8RkZFAE3kyPFWmzmLRygyN4xcOpHsb8z7vQORMe2xxgk3\nwGnUO0M13W2BhVDs+tkTUh5DKKckSBnjEy330yqh1nNjdmK8Lo9d+8mKnY7oJXXH4zmcBEr6tUyx\nHgB0nVKjBHkFSK545A4qk8Txk0ybeP9pL5U49f53hpwtJso0AQ1N+r5caLIyCMFCUsTW45CeyyAy\nK8vk8gENjx68X6gCUU8RvvZpmI58bKatS2yf1yGOT9/ZeSLo8/7ZaB6MoYmKHN0zhn+8Jcm1fXR8\nongIjwPTWq45EXg/8GLDGMBFMKPxOEsfzUkZ06rMRmQsojDLv8/2Q7l4NFWppWFOdSrR+qKoN4Iq\nENwaXCihfCxvzhFtUyCcePoANn/SvNV0tt2E1jO0PRj6qFCSQWN8SJK2s1SxCAMsQMf5VhrI+3Ja\nbAVLX3of7fdIYwrV1YpZANUaqN41TWR6Shi+URxBlsliinQtZ/PCffIW1Flm7qGu/LYbIGjfkyQX\nrbF87mTM9zH2D8eby5i3R+k5jJ5DUOK5P6Qz948gqFT0hGdvpedG6HHhtpf0rLHANPfQ0R8ue4aU\ngjMMDmyBN55DeR69ylqqzVMftyFCxpeGFE7OW/Io8hmcW8Kt71wLj8aYPvU9bQojVoh13qxCaplt\nGl2jxYHRSFacaXm7+lLzY6nY3H9/FFNSTDQ7+2P916v33ofmTs+iJh89pC004RBNzGzXLmq+gCIN\nOBrK9+wxq1b6Ec4w5uMA5nid4KnXQj8K5AGU4nMq2JzbfLHi5TjqrFNxCU8ghxAozlM+lz1vFTc8\nlNaPvBPv1m3iuxk/uWWEXpnc15SVR7SWro+WTJUNfctehEye8Bh0V72FH4NXfysC1H6VYq9vhDQg\nB8YrOs+1iduDWrCU2mlANdrhvHJUdihm9PzmEHx7qBFzJVvOQBbwarwyU8u4nCw/OmXCJ3wqEV6E\ned0hMC0jQCfwPeFSP3lXh6lVH3/NB1aZhVmWmI630vHjszXUpzhEri79lerR3x0DXwG93s5BHVwV\ngFZlhhfseOdX8IUZIfK3ehwtMymrRUVj+tx7N9s/plW/fy4CjUv85K/+U4iaxzteCP59/edf0Bg4\nLaN16pVGR2C6usdHEHqV+Gv/w1jWrFN74pj2ndsKf7fwvLbmLOPavJti2qedyfMEKste7CoYEkBN\n7pafDDHCOYLubUDeK/DW0N6r20RtNKNTeYcoBp5lAe6D9xrq/TELEZVrdp61T4AxFir8TQFQupVF\nyyyCXoxNnosyyg7tx53EWJysj5WWsczZ9/i7KqzcEiflNGSoolHuFsXBQzBEw6G4ZCKeOnGbDVAb\nsrPOeTFawH9zbmqD86VPcGkMBVHhI7PYRGWQJlZkb5nWOj6ORyCzhmRTre3fXReGVJE351X7eO7J\nYQqONUjGKRp3fSCrqVrRHsXj38mAFzvnH4FM/o1jmzS72bqqwBQ9lFQg1nFq2J1AhUgLg3uThmdp\neKvdyq3CJK/q1Zq1sM8VJ5sicMX5JryQEA1z1y+jB1lM+uwXuMA4b7X1a2f0zAyc01qOu+cYwl7v\nCXbzsru9HcHnoWoLfmsnWFzXW89vhXo4mnJs532mwmZpNPcgfQtMmXNFh2f/N+VkKFgX/klIKTv2\nY0zWqe8vuXLUqBPmh+fLJ7X2XlUupwzXi4TPo+/qdfsowPNpeSPO1cG2V639jju68tvm2Smfymbx\nYIL1WY4ggJVzMr0R3muBSMP3teKtFMwEyhtwex6y8kBUsLU8wSuD8pwAhtdMw7elAI+V39AxZL9n\nfKs+z9jLHzp0XuXmYf2Bw6cSYQOR4WPrrN7r3DWY4rTTZjVpMy7tMbwWehhtl1DkwUl+WCEhri1z\n8zKt8psIngI8h3GRrf3K1E+iL5YRuxM5HlSgvEUwr4DDSjR+2tAtnBYnp5pjtfacuVApkW7AtOSr\nAuExPp8JQ2sVyKkxJcJtZpx470hM1PjlPREADGLCWehFADnMvVKUGgK48kSIwPuNGRtlO/hNE2D9\nc23eYi+b8/aIXVgsRGNg225uEnQ5lz1ncenEnOc4MgEz38Vmned6BGBXTn3cGSK7Ck8JrrpJz3WF\njrs5nHGI4CiINzA6TwR9Vz0sHmTl6q66lfZDo4kn5RLnQhleGK11PDDHRdbbuUZ05hRtqIFoGoq0\nrw1rRvkNk+8tO1aOyzcqp67KmSeCznMZTKzEBiJsbqTRnBJXTGPEnZzHxSVU1PqaCZT6vNMF7e95\n2kRTMNqeynIAxDp0X6o19A6uUiup7S+PH+b4xwP2RHD1jP7ovq2jXh27Wu4sC3veF92ufIVax+ur\ndQxAeqOOUF19XmCJFfnZDF4vEzlx+BdXW9DwJGaf9yr3eeJIeG+dQxq+KU9wbowK4Hl0JclD1PWY\nzppYLHoLZ6yPvaE9Ce/ABCaPH32YDXtSqpDdrdgF01tN96D4fEtTKI6eCIkm50y5c1eI5nw6u/dU\nOdv3crdulxEGqGd0etsIRuK7Nni0MdejfAnrfwzv0u6VinmbyqH4AyFv1ljXidMHTjiKbbcumNh4\nppALpq2aH8NCZR0Onf3Uda49MfPTvHlmgkeQglQM17tDEizyANM8AXsi6GJE93/GpVJ8iMl8HtsY\nYz/EBHPjOGxfKy/oFAOjW/ZpE+S9HBQ/kbeSiP8MEFkF3YOMv6cHRbHcLU3lBOx5HIeXeN80W59C\nhS1xZ5ttK75lrwyhvfMmgm8PS7zaJp2Cm9/Yp7uwMxJ+wg8XPpUICUQizUyBMuwzvEAPPr3vtM3B\nnS3GrptrfBtuVyFXgnRBSRP1PARow1Xq0dpIVMVx+8a8R7cuahTOvTfBFNntEY6ZlMEUE4PDWuIq\nltDGxVCPmXpeanU9QTFCagbF2ZZ7b2WSNbdAk36tjVr4J/OkhHNWkkuVu6RddyEyfErEt9Y3wUi+\n1ByTUcae0OzjReBvZ5iD4sZo0i6UI0rEuD33HH7+ZjP6T8wTQe+D1+cZQ6aEP012VgZpY+E3kYLU\nyuDrVRfZC0o4vILORbjY3kroL98J7+tvKrAJbB6ynijTqdnt+2/qJtmWsst+0JAGISUTFCchl+CS\nMU9BHsYYq3KBQxqWY5UMKhsn41vAKxUYvy3vtHu4xV4qW+VU6oESrVUbDout1ix06plhpS+AmSPA\ncoDc6Hr4fmbdOunqJQhkhOXZWrn44QHsicBZ1LW83qgzmfzZb3UX3zDtgzm3ORxKGMFU4CutATzd\nOgPe7io8mTUWlKF9P3G8XJU+hZ6Z63YuJLxRuJ7isDcRfC8VDzm6kKnnjttTmjs+TbFJQh31k2dl\nEUhg+NLKmJCugvDu9gx+Z2aON40Gzu6cuWvNi7mc+IxFUlcD/uQwHOYlLDxFHM9X5ji8MNzrpqTP\nY19mIWbzH0iBFEiwXqkss4wZfPR3ViYIiIbCblyIwjdIcekE7DGPU8nKuEmNNcWf7RjmZZ64RmsV\nL6viTsSfV+i4xsDjeZaR58LWqOMEDnV6FPWw6XRnnjXhdmydhObalDe2noxv9dnMefM4xtn3dDWe\nX/cu1a0eFN8W4DvH63dDgeXqGPiSvITmOsIUKEsSyYcNMIZZGW7pRoVy1Lm2b6Xh29bwTRE8h+vr\nu3oei3oY2v5rhEuE+qvQiC+9ywP9kOAzJ0KHG+zKjw/ODsO0KsEzVoDXaKr1nJPG9PexcHQTwY/v\nTtgsVkcRs/RGxiTr+9eMT4qhEd7NyZdjBpK9Xq1Mc58RzJihRN+sJxMB7/qp7cU6RTWyMgn+2vA1\nUoha9ti2zgfPz+6Kxxh2knXnSJB3BL0+ySgIU/7rI/6K1++ZdVbmGm325iynzNUq+Ka95YrC4dQr\n+WrriW6iFYinboYbbfzvNGcI71kOJ9AruM6ufdy5/fH4bby93BKTuQHHTIoqHMytX4qdlVKaKQui\ndSUy+llfiUC2cIbP3H4Z5rzR+zGkpWEfChLLxt9i2Yq2t4Rk5+Dk+jlmFLf0YJoNi4uhFWmLQmoy\noFhpB1vRdkvSaJ8DKrRer4N3Cb8s3tui8tbvkPvlwoc1Pi5kKbOxsjCx7x/3oTPXPnfQXbiza71C\nNjDvmdcHCSuLVRgkrJ2MTfMnaa6lt1LtRoETPArk9GWX0yOWyebb8yqUbwM355sNFCe0p1UJSnUT\nhC7rh62FE+gJvekn3wRiMeLV0So9k7FpPtMqeFp/tX6Og6fcIdM4FHQq9G60OPc2KInppJOYc8O8\noiqe1LqueF8VITOnldbDtBm+LrVWew+2XmBeHXxOMhC9Fhb6Puo0LwnlawePW+y7T3xpOSj4eljG\nHbo1uHuronXMD7hu68fU2IUKGM/uDEll7gO1+PcrKo8iM5SWFQi+X+uksvIoows9T46+vz7X/aWK\nEMvl1j1nHvRdvaV0/833pyrrGn5sCoRPMPj0RBgQNY7L9XV6oIGRDLFMRohdEfW3icj1HzxjOTXe\ndMCZuGg/hOpSzSxKm1b9mYCo+b7P/maHe5cdWYlA8XMBeISt/2Y7YoJG5h2wm9NygqDWpFBWjz5i\nxQZgsaYZHIPqPIpPtrcQxXj1JfWHFUSxj15JYv3h3wqVbegCYCQgnaDL/LtA3cwEQKN574qDo1Q8\n9G7nDIZSIbOoTe355lVObhWr7NaekPQJPb5X0PB9kvSMlUNcl56rW8qME5V3PMNbxpc2jARpJHq1\nrG3sn2VNaOZs3gtah4Y7RZnFrIr8mwzGsXvSWC4EMVyiViBl5OZhHQPkcIbRkL/e1Fs2Isy9R1YK\n7jOHNKCtirqU0Ynfh1WZr+nSZ+aR0M/CUndbr3mcUCtQjvzZR6C2BSnurg1kHLookkDCDk7OIp0Z\nbobLa2y1az/Uy32YeAo2t54JH0pbqqcz8CfKAySeYOj74yEYiRXt96koHX9HoVhxgyZgTcMfYnfu\n8b1WXMeWvVcsyVqv2hT6/D6ASeO9UKifw+oszfVXr3hUZTnQkzC+lWqWZzS3bnEflfAJqOBH38Fy\nYUikuImh13l/BD0k7/OGk+mOuXku4GzZVms70y/rheV7EPrb+CgzyHj85ebmZH97gZyFUQlhMati\n0PaCrSkrBGqTGV7CuJ9zcKmhqurvoz910JEuKBt/qUp19g7Q86jD9J5Bc8I6PSiWPFDnl/eOXR+O\n6b0RvWDcmhX/+5xLt0am1OjXcntvmB1dNvd+fxYKlWGvXj43s886sEfx/U7oiluf8e8h4yYO6bd2\nvElDK70Giv46BRPgR30j7FbnRSvQsfA4De+0eQ24KSgbGhq+KQ3Po/fn+wqSTPr/s8S4+ZznoWQ/\nFvhUnHT4VCJsgN2lHEJSRIe2IBaz0htDyZpZAONgh0Oqz676JJqAjeIkw0u3N7Yj8P2l7pK6JmZa\nXmUm4mZ7Wb9cAjScW3iBRCjBPcHTGHlPkCRLTKPz8l77fHAiqIBc520T04137U8NfzsGOVEgPN3z\nQUyh/Q1uqXdMQyOhVXuvSyec2zWMuciAma0dFGKsHgkjpozP9v191aMCMkfPZG6rayvfK6+uqnai\ncT4AACAASURBVAoNMtdVak+s2J77PX9mve1zpvHmKxO+WIHddy8ga56DefPByTqoK+aujOXIuLC+\nN06I5/d5je7CL5zLWf3+lVO48rz5IkgRUWLOTWAycBF3jn+7fivjrbQkCgmqj4i0AjD8U58ZxVm7\nvTxvmEJgEVNmLgpdIYafx6v9SkfG4+97h88iK07n+NqIw2+2l4vufbTpns8QLZtT8TDKNuwd5nfu\n8lP4Avy5VK+uG6Cu4apQ68qR5pTjdrZXgbKf44pHqRNfVQjeWiULt+V28XxInhdh39d1WLwHgRyf\nCBifws0V5ywBNtPWKLFv471Cbbh52XsjdL6p3eY5tE9z3wQBd5a5gW60Xw1Gw8xabnk+Uu8OVcZN\nhXGigNXz2YLi6ezshXHO9jIFMI31GeZenxfp/GlXLgtaQBJ3c2Rp4ufFABG+TmX3BrpyxSu0ujBO\nSRabKmS8kokV8W0ovv1z9lzZ0ATYPm3hTO/6O8MkhrL0rWAkxG3u7F/BVAYkuOO0E/OxKTa0uCos\n3+TAd2NfNek3g+jefuWqxh+zAuETDD6VCANMy3teruMHikECaYrnYR9MD1l6HTEoa9K+DMFMIlJM\ncVHQOTF2y/8Qy53kRGCLyw4yHjxa3G93ISgQlufSUJ11tCPU54sDnhacwazyGJf11nl5FEh5ake3\nwFaNK1ABQhnezBPBlR/MSZZU3jT25jaZCo1F0BN5Fl/Bzb5fnQfKr0iWxQpBWd41Rubc2vM1NLwS\nmPktFJlnTEMirnIjxKs2W9Mrt6xMHEPc38xQqjfCSRdne8pQrHk/4O5At9jWghn7X8qQ3kof99Gv\n8LKG+KzdcC3+GYfOFCc/xlTUmYR1WnEBquIG4/DstohVORmZd4CaPJln9ZTRveaVO7ZvetjNOS5x\nPCjOhW+11D0KZrLPLaoK82dpvuixAKX1RIHqnTMFlzkepJonPSc9FwK5aGdzKn5td/gtpzejH9Ok\nV+bY1BNkF87mFC4ylIvwgpC+wtuuJ2AeLunUt+527HNJOLyT7CUVRnVfZPkmbC79+Y5eDDsvu0u5\nYS52ufQ+UKWTC/+D0N9rY3d4lF23+vvmPn9K+8bildSVk3g8UCw6AA4h0Gq0/ZhoFljHkuH22aVg\ndQZWwV6VSndzg2TemzMfCAogL8y32PqoMnHudXKVXc+O8suY1zzaNZidjuve3ubDuQFl5F7o/Qn4\nkHNByLjecrPXnHEA5k08vU+GYlPDFBWdPOe+NjjjAZWfimOd+CmWl+ZwqeaomDgLcIrJgs5LlzCm\nfgOSKUd9+LKu1dr+j0mnsLsZ6ccIn0qEAFcCjGn4jIBkSd7NxdhcyZq6yhECmIhSVgZFNcMaL1ak\nMxfPJtO9M0MyagGye7AvEO3G9LlzaeaiyjS1ZowpoF4cxu1ov3q5kFmd3slg8iU6J+p8JQ2ady++\nr1Z9tVbp7RhpPokMKY9FlcKu26TtTtwelWm08SMPJ9HyAxFH9ztfxvr/pL3mQwKajYFi4FtJxOgb\n7huF9kxKtAFAzBLm+queCKU57wbdC9ECr+0wE67tpnt2c0D1WqsCuzlFmXTu21JPfc2ypX10YxBz\nvdctH5lB/T16LUxBggg74v4ELa+s2d6nBQkw3CTN7YUlpIGka00qlWVN3xmT1N2SxxGt3Du8oz/p\n22e4Sef2Gea0n4uxz9Es4/3ALRr+4cZ+ARxnHYUBYM+82ftWTxHDEYq7jrCeU+ijvX7WU59jgNqF\n0aNdOAOvBSe/1DmNR2D2bagDFGcqs7x0rHohh9tHw7BoAxiWOjc3sstiL/M+ed3rmrTs+yoj6Zie\nhTC5wBb5Kk7Sc9oaRrwy4SJSDtlYWAAxw4Hu+4PqdPM4FJoT32k76K7Gb6X20KZSgfcHnkXwTXl2\nRQKfd90jo8+Ky1nJnNGluQfE8IPiEeUj9F3eVxzvH/F0xHFzv1yckR2Y0M0C+KAZOvfO7mEu6dPL\nhqy9XYgLipVivJu+x7dUPMXmaM6nWM6B6VFEfbYY+N7jeDsDz98xlWBE+9BmnP8h5ljO22/yPvye\nqHeTX28ZMWWqnH4X5S/792djjwiZ10frWS8HCdPojXrFi8cp08NibmzYPJM+j3kUS85ouRak+JwI\nMue131JSMa6kLBb2AQw+S416NEe6Nwv6+dA9IKXNmzqUN7BcEMX+gc9bm2fD1qAznjq2JzDXEKWj\nnrcyrmRv3RuBETgnhdXvc2/Dzpvyq5qgWuiwzNAcUP90HTFCXIvOZcVbEZQmHa/UjjsrpN9QM8Ia\n3mE5OSxRtdEwTvI4Qw/xCT9m+FQiBCiEnHbPj9LwqJb8SEU1tgqX8WlJbwbCm1iOiDqMKYkQcyIo\nQqyt3yn9HTEnX1sRuHMF/VJL8bzjXUzrmSWHYovK4f7JpduVDxvo1zepe5lmQ1ci4Ar2xhdGiAWM\nKFjtwhlmQjqcCwfcPFuZZgJIJYKDYM/2i70Tmbd2dftGsrSW6IyyVUdLB6yPqwKrC/CPUnHU4tpo\nnNVaGhH7BkHBQ9oUHhRMYXJOppZM8DBXYBYuppUrydKn4QxZTHfvv/8EmBE8yz9O5elvZQBsTxOT\nvhUWjemd7QuVmfGe6plCBW8c2uxavFm1ANLszNQwDzsBl2Ptsx4sewh2XmJW6rtDOUtumWZr5PpL\nW+6v11JTyaIW1s0VkfaeCQS6Tg1m/XNKNG2fmyYEkuGSyZyfgLearatwNpeWHT0IP5vjGC0zbeSo\nUOs3aD7QVmEcsPXvAkAXHqbQNIUz85CIis4pUN0QZLUtHo/oA4IM/0RqrWvBGIeVfnx9K3vGPaTi\ncTzxeNQxR++oAL57Hl65KIO+bNZL95Pv06pMUDjEvBR4/r0nks/VpFPD8006fN+IMjwMjG/nNaWN\nyK7vb5rAlbxCzsDlQ4ApvqbAOsZ/RpczXMjzZKE4GALZ6r2l66L7VP82AdrORF/f4XFDCovpVSK2\nz3weLuZN2uALaIyEX7pwL9M4ocLvPNvJ3j/zGlzKktEMCPSryLSMT9pPfdf50rHaDWiCdxBtODna\nEnDpmtvMQkQewgrLcM7H36XYrU8cjrqefzsv+npPYCiopeG9AU1WPncHuq9YSRYLeGMGh2cQ/3xg\nKDi7Z9PRGr4tDd8PY+T06i3DviBfX474oUL9VJ8A+FQibCEz2CpiY0HujgDBbkbzt6hVJ2LDffBE\nTy2rDe9ShpLCmJMrcAxI1VhFn2xty3uHOjiZITO4Xoi2yq5yInA+iR0kOH5fFsNCw5YSwF2ZdVqF\nxtzf1Jh8BPHuXNl0NQSmcY+g1uPlpTPw4fAkjNA60axkTZeTfd/PR52a8Qx23i1aJxAt+Cz0jb06\nhDdzh1VGTBV37GLoFSENYlJKSCEfT+npTRQQOKtZoqE/AxOsjGGYjO+mbd2zGlOuQmHMNTHDGRQu\n9rDmRGBPhHi+urX6/NAV8VZubjX2QL/HyAJO+pedjw8pMGsFcBDyGq1ookWqtFa/nwBiwJ12ZCRq\nvOiQruUhbQjVqwIhdQSbeWoYh/a+VfG/7WC5UnYwiFFZuQOh9xK9as8rQn1Nuj9kyY7nTXGrMeIq\nSNsZeALuTOk5UUvYFMqHMk2T2S00uDYscWAXkI0xwvQ2UeFsKkO8MOYUCKLPbBxqWXyUisejKxK0\n7rfab2h4k64MVUskgkB4B9jqLhhzSF5TU3gkQbs/i7hpeAQlbahiLAXlMWg/K56JOTS0vaz+qRSt\n2OavmfuGvgv/vgtNGJ4i0RMjq78rAnRuLBN/FUwFkgpxJbybJRzVZywgq0dFth+j99croMq7Hcy6\nk4ZTQfYF2HksFrEQg8yDhpXsRxHUajk6NAnrVNJulB2Tn3L84+ARkNBaGmhUKHP/VaFuxsKRPBaA\noOJNzHP4rQzDWdsbKGfdDn+oUom6VsTx7FmYyzQswRSDh1QcAnxT1CtBlSy99is5ZtdvR+c/NRA/\nOvhUImwgWrKLmOAg80Ca5pGtCzsosIOduQ7P9pDjepGGxzjwj2LJfACzUsTr2OZ42Hrgg5wGU12I\nuJNl9gbSA+6VuUIwA8emoGnF1Ar1fWKF2oEyUQ/pGXNVYFvWSufiUuha+w0sMmn/LfnUtdopCLxl\nnRnQ3APDxUUOQVtC8rdMGWKKobUj7OKswqPAYv+v1jsj6Jycki3+8xM9ieTyXm1jPIWUX23WqXXo\nu2phUuYsq4+VCJqgkfvC42aIoQzrGDFzJMx+yfneZ0ut7ulGCgKF3ba8oz/agp75F5KZ+DmyvaK4\nIjNAloCr7sJOEdkZSI97+9++9qYbbeK5ZCAn5z1VJEUFFCXh2uFfwAQ6PcNzfworhoLyp1ryywYZ\nycTE9GDoe0VzIswzuwgsxojGa3l3ozeBlwVQ6lszRWvPn6dJOUcRrguqxFBPGlXQmMJP54i9nFho\n1z7ZDQ3XVtKJb0a/GK9Nq2I/ein+fgV0fAXiMIfmc5g8hCo3VVAo/XaG46io1bLh67xw2MsZjcwg\n7oNsTeYzd62r9td7IgB7BVS2d+0f4e0KPJ9GC76G4KFdioL5IoQHRcIZv3YHJ2obj7H2sTpVUHA/\nuV8uJAO5QnG3x+N+zTyBYvmOR8b3q8ERjb1Keq14wRL15nA2p/G9fjOIQJ50G4uMsBNtN9m/rJTZ\n9pd4g+6Bkexd7tuFcaX/boqJAuCb0vBtkXlmn613SnBvzwu8Z4VTxBAtuxubrwbQtzK8ESrwveiN\nRjINkpa7oavF/B4zxX40lGxvRvqBwqfCpMOnEmGAiyuDMXfTpXo8U+2zxjK+lQJUoMBicKemP9x7\nOxFREZSjMw16zRtf86jteRf61jPek9LikDLi6ajvG4El04Qvc3AhjUSkzNVdIe2sb1eJFfs7fe4e\nxe64fbaemCtDnZEAK4HW+LRvSptxZu8SGB8ZGt47Jinu4+2S96F7nVjohV2LRiENBfOanx7OUJyG\nupUC0SR6mWUBZjURaUDTuDtzWVfLyOzXmBq2OMd6j9K6q/Hq7OrGx5b1o/Stvep1HJewXRdjyhqa\nAG+l4vuRO4RhnoGw4ZhA6z4+S7TKFlFmqpdwBFl/n4KRaKxidRZLbbuPx9ellskW3U7VTZM+u+9o\nsU7U5vf3o8wG+Oxn2fC7EGOKjogX3dzkU2b1+yk6L0teHa5dwTYnwpMtrakWKW+9H/+GWi3+9xRq\ndVzxtPAH0HUDujfCDEeBhdz0eOhke7NVLAjnOyVZNq75dzL7zJCzB0Gnc2Ob0NjuuJMz091pqb6j\ngr9MeqdKgYd0L4s1CanhqUNpQZORG8GfrdWybeGAKsjPMQIunGHuc3fo+hefy2UVRDU5Ktenlu3p\nlox1fY9SUUrr4QxHRWuCZ614e++eCPMe+3juxpjVLd2s7iteY8umusarVdIJtMETQWB3yCuOfh8S\nUff0k4ETaI+xdkQhegABc01mH6eXReK1iRyihwqTh6pzA7NmTxd/+qe09Sg2j7PdYnVMIZ+8SWY+\nhHEeahUL0dHzM+o+xnUkRWxu2dqs104zH1X4n+6xObXkabesefOfsKR/Gs5QqK3pEaB8gG2IzmMc\nzZL2YsU5jFOEeBJNhOrKFrrtAwnNgvG7epuACuLfN0EVSlQ6mlXvGuOjCzRfVhVVzio/jmkAfCtd\n2T/ziBiisbEX2yfruHVMvaFj8Oi6N74pDd8cXUivTfDUs0K8k6LS1XBkuPEhtCRjDvu13aOt0iDV\n87IFbWxoklmG3PIbjjryqknPkdGG4aJpnhkZ8yKzPzPP0YXH5Y9NkfAJn0qECZyVfSgMU6GbEa4e\nzFYE7+x2CkGFdGv+wdYQbi/UedE3wJgEFewE/r0WEFJmxaxNbHDP56C8AGodVjuZdVUi6dH6GGFR\nMNAANbZxtYqM+DzXTx835q4hFC9oubqaubcBWAp1BYLg20FIVLPuvAHYE6GeJ9zr1j/aLy1YIqlK\n996wUus/zVQex6TEvTOQxiTqWLVQt1zp92qMmnoj3Lif+wyuFE+t6x7Schoasc5BZPSNwe7WvM3a\naIeGZUvlN7UyHlAGTbaWKADAc8h+7xXt2dDebT/wurrmRhd28eDczenkc1IuVVpyPeSJwHOhzOn3\nifXh1KU4+/4lZtfZz/U8Xu24V1r9Ek+E7lEFPmxWURE7G7Wedtr1V62qrQK1eCuregSo1wC9qGvM\nlnYLiQuCGPf5vU7LbUNn+mQoI6bnB31qf9UjpI150LOlzCA/z+aXITLQrYqNuWCco07v7IpQb9Cb\nwt2oq4X6z64sjfAQjISDG0WPc8JSK2pyna+OZ2zi9Hmt3dPC4YR9R1crsv+MbeTJKFnYDTSe+wyj\neeql4LrexGgS9cuHf52PxeVrgd9DrSVZCyYhHodPaVCzDdHJ7HplclYVj/lV4DNm9HilPQpCbaLB\neagtfZvvW66qzLNQ563/WysTKqfntuiayjm9mfwq5ZfIxthxkf9th+4kukMMVOdyBs169VMP+fi+\nWzBWVCNJ0BrgIQ1NhHKz9O/vwDSmZB5VcZ/uYFGeLXQSLpzhDiclUA+Kbu3/hZlToeH7cX/t99X3\nLfPcA0zxeBVKckbGVSGqytRvjie+KU98WwQFBd+XQcegCW9NcfA+JpfxON/O4Hj8L2clfq4gO1M/\nVvhUIgxQ7XCE1S3UJ0R7K8NVvGisZ3/BZ2D3yaMgAjl6m4Xq1L9de5RRWLPOCxreRcYVUEHpj3Ok\n0hpJafMlL7EpIxhdc1tbCYcjKs27O/G7Z9CCKMJu74BZTt6kjThRwTuP+QaxeIgMzXD/7dlguSQ2\n1EFkfXblOjac7m95ZlxNTVFmufTsufx7/2Noys9qYkv0C6CeOLHmu67zmiFY19X2kLgyfOWQpSU7\nEXrDWOa1jO5KKfPuieepNvHhPAFiUzunlC4U2lWrUSl4rXyxxFh8m0QG05uBvFAYn7CgolYZl2gz\nIogifV+Ma6ymMb0Ap9eJ/AThxMnkwyBOKqCG9PMqzsS9JpRYUZUS9xR0gmGtrN0q1caC8dWe0ZLK\n/dZ236uMMnsG5tTl+MX5VWH9bVpk2yr01ni+SKlK7apVWy12qKY8V2v39ASIgjjUYmyfhwBviYQV\n5yUKKo7shXfT+Sll8eKK+UfqcP0/pEG9uZieaRJDvk1Jz29B90gsR+3W3mdDSbwTy0CLxEKkBITH\n75LwwuNuVch7hwFTAk2+BJr9PbSTTNUE1piwUmH8NsNzap5ojtkTDXFrgWc5C2NR2tX/bvbb5r24\n7k1pRFY3z6fygEOJ8BA9n9RPeAUeW/KtT6Y44HK7/lndXw9XO/60+E1z5aE64Qod3kCXfJVqV84M\nb5g2woROFCudJtP3cEZaFcijTnzEBprRqK9w8FeAV9iQnsnqLeYxC/SEqd8eDf+gthme+Fa63U77\n6Ixe8zfDHWowKHN02p6O7976q/zQPacrvjkqvh8K9Ecpnf+ugu8JB2fb/yrP0yf8OOFTiXABLKRH\nty9NftRE3aIu6gIdfEIEduWOtVMDIenvd2G6CPDWqgkMly176DGsDeJMRW0SeIZpnX2lftJgvgKx\nvBM4xawiRwGkUlypvr/0o38qo/pW+o0WvS2fGC8fx91+dwE49QCB9eEVUJe4mfuimLUiXYzh4rbp\nIIBOfM4Ygr4/199aeJ5NWdRLXSXhYzDCdfJObYAMFc2wgu7iKzuDXHFI2SoB2NKrlspYh/sO9JtR\nXBte8DmLh+d6AHLdVEZdFQCic5wzu3xFqST1KfgkgHsJ3e2JZD7PQlIyyNxdvxS+2GFipzQ6OeDR\nQjlDhu7WDaMXD7HrCJ+aGR3m6q4zXLJ117M7vZ7sRN6NhdUzq3lVdsDMo5YXoasAQQyw0o/xks8r\nsrbxGG7MeruQKcBs/5vbPgvpax/fBHiW4SYudmVdF8L8ITz1GsBGrnFnJ0cyel6fo83pUo+uRDeP\n6HHOg/JA/zZX7vH3NAx4d/e+N7xUpO0r6D5lUO+pOAssRJ0lwbX8E2OuTziB4iSyAay0U4UC9S32\nycYRno3vnJQxa58FdKVXLKz3T1sT9hQwXJ7gXho3z5dL/CdG9QoobAIyzzqHzswbF9SNfHgvHYWU\n2HNOfJLgdX7OFSxLCM7m7wV8xJZvE0y3E4bVtWHPjYfGaWiUKhH0hoZjnC+9rUSHJAFfPMoIu9F+\n6rpSAke7YlImnsvGzh4zjBt13wCs+LB1eisV35QeivEc3rWaZLGhh3ty4m/rq8cdzA9MvDE9PmS2\nGyHeelLQryp9HE98W574rnTJ4SEVKGXo1C1f2Cs0X+HHpmP4vJ2hw6cSIYASH9ZmK9KYzNTRcLSK\nozR8e9ThhlamJvIh1TEEIpR4p6BbNoohs4M+ZyZkMXcvjTNTZqILSJYZloG9Bty4rvY7McK7jLRa\n7Ct4Qe+aHp4UCYMA8/w4qsBcrzYMEDCTc/f5b/iFA/iFQ+PTyPniBannjEArj8QCJY9Ly3TFjL/v\nOAMVGA9peG8WEyvAuFd5lLuyHn+hiTd7WwYRNwElvhOYlqQSZaQE3hWUi9YqtzecSCeUahnka48c\n8GIQpIkU03aM4ZxxxcA2GTwrB+y7CQsWr2hnP2tT3+Vr3yaDxPMnZDGOnijzLuz+2+6Gj2X98qEB\nWBVIy/gjw4vEw+Vki6p17g5oToTpDZV1LPrY9xen15f10+eocZreG3uSi+irXWgwppOva5uJ5uL+\nVMEJdv6nUoEY3F2XCu1XnmZOAJrNvwr+XXg8GaQTDIUe9ZVmT4J5RfHAaw+y5ioT+2xw3mx8lqdy\nVbonwswlIlicaDLhZ2dl20JQzEYhegoS0+vJT6R5BwXBTfFH6V4Iis9FerZ6Tt7c8WsXeLR1i1FG\nl99kJ0zkfwNhT0oiaA787BSXYzwNdj0gj8e9zAoE97lX7sR6lB+bD+dYvHAdFQXA6DMU1zZHM2c9\nU9gX3xaXmUqHNvOwaFvTG6F0mj6VhFPxo7lF+s0CysfofmDap16M783H/UcFgvrs7RQe3Odlbmka\n2VI/69dDVApQn7jriZAJ4TzGOcA5b6Qg2eD+QxowroueocOQqdh6yshlAd4Ppoxk/B3PhuKQipOw\nihf4QlNKDAVdafi2VHx3FDxH2M+bdGv/VCaR3mXnpDFxh/JZdOAcnQfvl7DG0HPcxk0wFd8M5ei3\n47arWgremnlLfZTFrz82TcInfCoR7oLFCg2BfyRW/E4FejB/mWPFHYHi+5iBPdNs17Q0c4Hmdke5\nTIHg6tMA79oQr3hkWOPoTjj9G5AJ13dAGYFHaZNpZGZja1GClVMvhG9Kdy/7/zKJ78RKd9ulD9dj\n7AqE/e0MCsowvxXg+2YaYh13q4FZmLHZtKZk+lgYKFEG/3XwoS0r0WkYeUHoN1UQZVZ/5jn5nRIl\ng4scDxZq1D0R2Do0+zqsKzKyy0fp3+Jd98KtCkU9eZRnyKzMNTDDqW3uKLgyEV92CglKMS4mbJfZ\nlwF3HPeje6aEv9vJ91ehC429BU6sqM8W2F3JOIP3+X2LSV/raV46PbnNxQkR0kYyXOCdBBZ93uea\nlF4zrryNr5TN/gM74BU9oikc2prYS+shrYW6p7vs/pNeDmF5zIHus6nghT4f96oPK+IUCqlPHEr4\nEMGjnHtWvIKzX4GsRT5GzPQrDncKPy6rysRDlQiqDPXeSVEBpDT9rrGAhTbAhN8zwbmvvyo4ZQl/\nkISgm1eTKgyq/8z6dibIMYRztlt5FqA0h9L2+j9ap2UrVSafw9uFhbZp2Ohx5U9pw4M0F+zYE2F6\nIUjHXw2CMhJGP+A9GB2vE/q4u5HhrpeSU27HOWKlDV0zntURIf4kdPb7c/PUWN4VOPz7Jg3fD6H/\n2fgceSpiyTJlengxb2jXlhrPPWlq5DPGoDSx4g4ktN/DtjTpesM3peK9dCPjowjeWlc0YXiiWULg\nDrOv0P3blauKJ09DV2PfiKarwvIYIQ1vpXtgKi5tpeGobZ4Xhv+fvbdnvWVp+oaqeta+7icyMXxA\n0ET8Ahr68kVEEPFTiCD4CUwMxVwEAzHwASONNDFQEENBMDAR5T5rugy6q+pX1dUzs/be57quc/a/\nDvv811oz02/TXV0vv6rOp/lY+bwmVvyV6BfueqAvI8IH1GAD4OaZ1X/rqqw4k8qk2e/jb7CZs1uc\nl+eANMPqIT0K+aqAySrwL4hCy8Y1BeB+Er2OAV2buRDOPuBOp/g/ZSYjqYigHGn1AsJ1obtF17jy\nZHm/X4wZq52x3nkpmYaA+k+OkezmFKL/p4L2LvAB36QqGKUaVbbxyeShHcpwg1I9x69RdTjUsLJ/\nazQFOYe5rRC4ZEhQyH9rAWOfwxk0AVw1fLuY20yYlAzzaCCFpG8zFlbJYJ40jnNadDxM4qaB1BaG\nMONqJRq4guBu3ps0vhoO8fYYXSJXfrAdO3FMBUP1iuS193SPUd6xyLAS/46+iQkTOn/xOTs+zqQS\n9W/RI00S31/2pGsRfgRUjXzKibdyNAWOy5w+7hE371SdCE9RPLvEikt/OpGcnbg3onc6T+RddPQJ\ndRllNZv4JG/tid/iXv4RlnSerrDo76UhVHnNnKP9pImeYhNAdc5rThqxf2K2B0QaEEUP1RNS5d9C\nEUxBSR18Q5JTbZP4/Bg8bCZKk+FBO9lPFUKE2VgH18znWxtq16tvQtLEDYUy4chCYJeBYc57YyDd\nI9fiiWiutWQs+V65UnmzhPeFuZL0t+GHtnsuhgqPvMtUIZg0qbHyZzsNgx2FeWX4ZkohZppQ8T0S\nOMvZSd4y5vO5MSbvizfy5KUrmYxGbpzYGhDyOBLIbjp/bmUWTa4tdIgsaDQ1Kr1Aqc1Ii2FcHAYE\nmoaEClx4tXZ1XeXfnjp+wrjrXjuNq4+P/4V77aSHdH3UtX8nIznraLsjb/HkBXK0MDOxRHmbCVAz\ncrE4Zhs9hwn0HZiBhjPstgghTaDusr+GHWsCw/MYa/ZbG3lyNffAVXLFMU7KVwpZNTXoRRLCvQAA\nIABJREFUzrhgJ7y9Ov3l9aZ/PA8SIUdS9wbIHbJTVyqbuzmxvrToL6IvI4IRHoGTmTV6Zg5WuOFJ\nf3mddEqjU4YhYTC8DnDneW+LiAFqTPwaCZVerxEWYUmUSD1UrvYozFEtiEcTsyKiZ/4J5FfwdAbT\nYrkUlu5ka8wQfV/vLHPD7AwWH+BZU8icff7WRrKab/Pc4Fcj+kfbmMgSEyHpuP9Fs+UenX7rTAe3\nVWDBgEUiwp38yqul1m8iMUji2v9nDFcFKfWi/KUNqO//1/3UAT1rnF/zvtaX5F+hT9wsiR5qK4hE\nyFDbXWttLTBRJQdcOAZTOVEw0KM7x9x3smFTT/KuvGnZ15AGnS/oRSWagrVqXjDBcd557GP0vOBn\nDzXRWEIJMY5Xb1v5zHF0i0n81oawzuk+/KsJ6BT6HeCabcyHNvs/jne6mrQ6J+ILy0gERD5kHvOB\nPvpXoz4NDALGs/UmKRmFHmXGpwrBWbi+qHiz/pSHvbjTmxu9mOkERedQ79j8hbX9Pa0DzY4uE8Wh\nCiLRreI19hSxY20v77W28UxkS5Z5Ppgcu4Tkc5YFvJj5um+Oo/DGIJ46Lm0ont+Ywl6Wn9e5/oJy\n/tLYjck02lmGwnFloq37vV5YR5fJjZOOmPBTkyr5gcl5J/LQMec6Hd9meYeQiMzjnx0J0OZ+JzMU\nwOK4LxiNes+1nRHqPzylaIzMz+o7+9YEeA5bCBoJzheKxkuiuPZ2aB1SBceNJneknmpOv9lnQt7s\n/HY4f+AzGElwHGQmUbUjHu0deBJNohFG+E267SkvZhL25LeefHvwzU6O5tA1yUz0UsPbvPYWoXP2\nzkJo2fcjRS3peF2FNORcDm0aKBoTNZkICCun2L8bUXupfBzn/EINxywaTND5cpjXe227IgIU4dGJ\nh9wreoSij2HeK5vuyY3o6NNQyWMrHHyVie14xz6PeNwYNBIS4c74qnOpa9mHJzBUnvQPrdFvE42g\n/Grw8iCWhf5YnhgqkBfH2Osr1JyHM5InfXx1Ol5D5/jLNKh/O7stzX9sGjbie5RSNrh+goj4M9Iw\nkP89SkB/ffoyIky6sjYiYVIeZUb/yJ1e7dP0g04NhKQ7JUyVJO7N6oPTkyxS4YokGxG6EL3a9HzF\nbPfhuC6i4GXaUQVLV+RjIzZDAkLiKya9nNAw802MhHnuybKyC+GNyAXikehmqPkKLQxj9SAzXrVh\na2LFO0ImnI/dyvcQEYQziCvDWA0YUGIhM2sPCsAfelsx1LnSuYjWOSC0Qt/Qw1fNTxOqicrxWCGm\nUvZFPS6ezEq2QunwUI7EcPL249siNNGhkztSwUHjCBvMJ31VGttdCV7mKUzGCrbrtRyO8Fb9Pgch\nVQBQ4iuDwneSNq1CP/1w2YmJPZ2+jZg6Q04EfbhyqWire90By+yu441QbZjUetqHCtAVvaYS+Bso\nmer50ToWAyswXkN6zT4Sxd/uyHmhJ9ziCy0UFa8D1mfgAxDO0N9rGXG+qsEyrgf9TRWu1zQKIE/P\nArIfqeeQ8Cce+R11KgyiGY6fCFVYQ/8YruairmCgvJ7UeiqCOxfckCwUu6vGpEoG0fFcf/d3m/l7\nB55oHmD4lx0Wy/4ARyWv//T0p3qsLjlVeh2oTKKxRo3wOCbVqQtuxEhYNfCqB8cG3iJqxB/ImKML\nvdNE0jaNpIC+DrC8ziPXghkpiG7liS4eDolHPOpJAfr7EyRCHf4FvOeGwdiQAnojz8Oc+BGRClVy\nxU5jXJsoXxDjnwcYErIxgWGuZtQMczyqdRhw8YhsWPMXG85SZ8vvfLT5H9pJ76NZYsUXGEGOCRbF\ndZQNCTqXUS8oc0+ocad8j953dWoex0iweAqT5lcLSI/CgJDpVw9l+CKnLyPCpGxtRGh+vG8gCIiI\nvs2F+O1sZqke3quVqbRpEUUyi7opPtfkEET1IMxNCThLFuhzmZ3YOzcF4OyNlMn0Tml+K0U5QMdI\n4HNFCK8d94m10ePAZBFksoChsVwWo0sFs5vvK/9tPCCw/zC9Kmp9bjyPmEpeaS9wlUx3gg9CiM/0\nu4+F39enmDBCQ+Lm0GnMFUsg1hwtUCfvEtA8p8KYobjFDoPhDAqJzm3WR3eGBOw75jvAd659l1mn\nK89kf4+5g+Z5JGqZSA1TYVChjzgWKthZ1nRsq/6vEI70Xeh7ovwctlnnYBoHHUczpM1Mmz2VM8pw\nfqHtrlAg2Xhg6JFKMcjeHTQgBAvVvXBpc5rW9Y/rerd8dmXmqu9Vr7X523sAiSC54Zl0YgNhYjv9\nDoX7usKwIe1Hr8N5TCGnAX/ndC2TvGngXr+1yaPH2sJwhjPlIAjvJvPr+VkrdgSZhOePtM4Nhj3b\nH8LxcE3aWpx5UMTDLHR0dL7qEWi/iQv0CJvXNbCOoSdn1MbpPpA9dHZyBI4pfO4yPcPGs50/hce2\nBgR9dj9r+xyu7MGza9Dmp7kbrtwUHtayb1MwVDIFlJa2ScMZ1Rj7ajHkhimOUV7Pi8IJcobOZQwf\nuzOA6XVby0RhjaFDAxVr7+fnio4iEdR4F0MY/d0Po7EbrM0YjvUTGJk3SpcaEngaEoQ47RMftr9H\nA407de4dZRaqlCrtaQxGefG53bGY4zrPtm3aOxX8GOo4QzsYkouSJh4GmRfKcmParg3K130fjR3t\nNA4VhZ+EbX1kJ1qX0X5qvmZG+TPseDq9XmpohPUW1lFuxryW0ZBVn7rEkIvwFuBhDcNWdIU7QWLo\nJ7bBeZ2Xy+R7h+sCMvnP5+vtj0rfl03sz0c/3z31JyUVghCJoGgELhZgKYTi9QkzwgQ7VxseKhtq\nPf9ZpBt8qVipoimROT1VGn4GaZ81kVE8vibem9vlSY0k/MPHPjWo2qZiDHRPKpxW7cttze2w+UVu\noCKKfVaoWmzgRYseuowNbgvfiZ4pe0gav35XD9NegSCicsJJDkClqWw0X6PrkWeFBnvRNjXWXRGT\n84dPCHkJ0Wp83NX1pJ7gsdjNB4xV+JPSlWAbjSrPlblRsPi4at6TJnHcJyEMOcLZXS3cCYul0F0k\nJyW6FuCeoNzWZxzNgwazbkqWM8CsaKkyupRVtBE9ihllo9e1DCIyg+rB63hXPOFjurCK/exjvRb+\nlNof471rsfV7HYKZ/6zXXa7B+ZNRUKxhDguSZhrbrry69Jxv6lp+Mo/DKQgbo5Q7ZGI7IgLSDbNV\ntZYYu0lwJBGpAcGV2hgaJpEfkK8Bnd96H5blyQHvx8D7GtujfVEZ1vpPNf/CdmTavdoKQYRlPXmH\nekKJlhX4ROhX7l/NR6p26B5PBHvFwwWV79LxVLnDkzznf/ftq+esGmuwzuu8H9pPvdf/6RjGfGzf\nK+d90a9LX0iESa4YXltrlQHyhAV9k3EmLDKkOwMC0coIYrwbXJu7ifI1ZU64OVmZogJcgvOme8xq\nHDThYSVQAVXHwZEI7qXNvXJvwTXzzXDdTm5d1qN6UJBGgYpZ6HU4GsGTK04YIDxbedK/seeUUEO7\nbT4POWYpuINXYr3/Wbk70n4qEoEImLzOiw4JlfR9MpOFNGwaExN4xblUwVWJaouj2u3RE2aWcbzP\nmuheEp33B8uMJSWSlPsuVqYoi24d6ADZdBTCyELcqBg3nkaNaWKXLtTfGL6zCpHa9w5lYaKxnFGe\n4L7d2LXpeTHIPFxjck9lXlIuTA1vjHpid5DbZewyFYYsNRxq/1FoU6SEzg/0FOpYaXjV0oSsY0ht\nBAyezaW5mlTQxyYnEKwqNsRVRmOYl9TnjykWvL6bpSMWS7avfiChOv02Y9ktGZ81QcKas9ND1Ht7\nMp29TSQC0QCTxYGz+XIxDBkai91Z9h1y3kNdvXBgUEMEwltI+t4CY/kMmsxEh56ZXPvvxt1CGbUq\nR+Wv2aatIG5eZDV+P2PwyxzS/nXnNfiXYX58qtRhWIkk5ycmNrT7QfHoEtEXiyHF9u+1UY6okkV+\nwL7ZPWB0v1J8bvsPMZciYz7z3Le3j6Tv3EY4wi6xIirkDmm/DjNFvhbIUAj1c5i0ciQd9fxCuU0m\nr10kuhzXiYjHKj7Fj1X9JEw2t3fHi5e614lgvFGTk4bLu8LShSrxKSJpK5I0TmYcUMMQewgC4rqE\nlL/GnEEoy9jaMlRTT2gzCX/1uPNPvM6qA3xrnd5T5jyFDUVbnYCwLQvmT6CbU6pmQ8atxq/IT4Bp\nmk+hMHZhNbDP6z4h+VqQJT9ghH9kerCufhX6MiJMUuH8KBasxiFakpujUzuEvn0bGs/rfXqCLC1n\nJjxRofRgGUmtZlYbfhG1NpKdWMJE2KxPyRZENCBgQpUoHDahkeX3gqIXaZUgPaO1GxKUfq+F4wmE\nvAL1KDchoplcRxM9ZYMDUvaUHDwSKv6T46S/tHPWJ5Yx+bKAB8QslCG1mabOOpSgzX0Y1+s5N0ZS\nK9x8mOZm8GJLlBMk2VXzjH3q4c9om95KrjAfTAPKDMUp5PgE5fKKIvLC26DPjjPiiagNwenVboYf\nPFsmTIpb/4+jj7i/6R16Je+wQlUH5Jmt4+gV9jZGw95AAM3PPIwH3ywpKpvyeUfanAZr+LA17nVn\nUv5gR1PlG9oI4zi73HvVuQ2jgimFtLxMRSDVfRiTNcdxEu2NcpUOX90T69mTxs0zD2NMyZsKPHkw\nKKjhbSIRFE2A3pqS+rQaQaUaCpH7c3CnPo8bfbWRQJTI0VGa0G3Ze4q8EJpU7xNC4bDSFUKXeI4n\ne/ukDcWfUMFHA3Soq/jNyhp8qgvRb9PoMOC+GG7miuBpbR/v4tWETjU4HEx/6T0kz/tpIboJfpXD\n/bJxyY6vJDdO5z2IqJ7vo/z8PYY3BQ+ssngadgdUknysoizi4688TMywpbyrUvQ0ceC3uQ9p7LTu\nEUJD1tB96cXQF50fEMpQoR21PS/u9GrNeGylkGdUEV5HD7Ul653tfrV5ZGY4RnMam4OH2EvUPUVD\n4yw8DkJwyLy6o9PfWqe3NDcMz3K/MZFM4UwdA8rHte1Kwxg97u0yxvale8Ic+4O7PZdPQci8N88h\nzQNwsJ4IBf1vsG9M/shtHA3t8myc+5mna50aa185xY7pENK255wC2s/XcZIIzxPQOn1rzde/yYtM\n6PUfezLR0UFewn21eeJlzbmgiroRyMTKz+94rhlG5vp7vcY7+ssMQRPimdtK8yKwGfKUzxHFvVTR\nW4F/c6qTI6/AZ3W8LaxzroHjNXIi9HOM7dl45kfwvDR3PGtHv1I4wxcN+jIiJHqC9jZvVRNqrZvX\nqgsvTLyuJDJ9hCQhw6/qzaEMIc5SHIlg13cN6kJ0drc4E0FiRUdkYJyk5LoKfjGN6VvaoSWyN5Uo\nIhHUcHJwt03EckQ8sLR/a45EiFZ+8jhAHBtyjyBSdVZ7FRtbCecZLScU9quFVNB4NVnGZrQveaq7\nRAt1ioUPRzxCtnciFwrt0UI4uCOdMycYoIjimgo5EUAIaNNacbJeA4G5ghfD9w4efYxpDwlLc2O7\nznf33FXeBvQaCozV2NRRoFnfY5cYo4veeiQUzCwJGNXJOrU9V9RYXCqxRfuAs6lxqUBiXD2C8xrH\n6WfQVVEZiVAa52QaDQSOn5ufmQCRdTM8pud1sSPrkPkOBccHCxPTmXHavrOte/XE07ybiEhOnmWq\nl59mDgRHglVj/DMMvDhnG+vRdKNvHSrVmPGBlJh5bgAVNC7PtUy+VtQYgYTGe0UjELkSl2nstT6m\nWoeCmMTW9no82wIi0d/DIMSbtSwv45lkrXctShaxCfbW3sk8BkrQ99xc1u57QPBtkAh5eiCPjdNZ\nx1/MmL1LuoZlaV+CoJCMCfZeiEwh/5mk88UNdH4tH3G89MFg7TNc54FFuBGRsBsZGPYhIl/vBwu9\nZZVxlJ83HifOvpjpTUKaf8TkFDAMEc09r5IJLniAtkWNTmp0YdrvtZmvxfL2/BnHHmU76brvC/zG\nxIfLnkRg00bZmNzAqHs6tkzDpbIiXLZ9Gq7e1MgSLgZj1z0zXdZkkOGHIeF9qnFjnMT04jbzjDzT\nFa7QP5+QhTEEQ7m32Q0IrmcQrbbiK3mViOhXQSIM2f3X6OsdPXGc/VKk8ODl96TAcyNq84jG13Ga\nJRfzFoz7kgI4hRFuTO3oFtNuFuNUL4OHjChaH5GZIl3xvy48EndVWKRUhp3MQP4vK1pVKIMKup+Q\nCqzVsmQmasewXv/l6PO4KTFLM8IYl/Gb/76x0F+ObiER6D16QjEZlCrgPA1HsRxTqmgd5t27qUJB\n9Gz1sfmQ/XOrOptHhVEazDQHKIfG5Djm8Ait3q89/ND1sJzkJ9xHuil5siSFnqrHZayxawONIxFW\nQRkTlVYwwJ4726OxSsVAIQ79Dxsp+XjgGepMY65erb+gGOi85TWmMZs0TNiDehV9ZM+0gt/sCBZN\nPNtd5/bW2VxSSID2kIJCV/z2KbUrAWax4MUjCu+oE1E/wRtq8d7dJ39BBrEFQS3Hn+Y5qsYD89zO\nOX4K03vy5VOc0yHPu7KHfCqQqkCu/FafXwXuxEvSUEcjOYbjeD16dGMGVLnhTpUoN6y+kgfO9Ndi\nAHBcNCTGrunvaqSxGD7d63nxlo7wDrI2YT0Cf7MArvX7b8B7IARjjJsrRlpPmfwM9ujSEDr/st4j\nekzjGkKJJzMRDY9yYz8G0QwjFId58eZKT3MkzhVNvvmU7GheIOQZ1Xi7UWq/zj0mHMqdc0hPGlhC\nBMj3nSXO3OYuWxv0XzyNxQtFQwJ6nhGJShTX+VUM/B1hiMGWHxiCBOpMtwT5xv5X14MnY9gevala\nlrG951s43kyORgn3JKcUzzltY4nGg1Rhta5cnom/a7uPNnSDHIZb9Tuvp0yhOcaXXOH3sMh1XoR1\nOeWD4+gDtWm83cfhR45v/EIi/Hr0hUTYkMJ0XZmCkIIJC7IznSc0SuNqEWJERGbNV5iacrqBKI4e\ndr33TaslVRkeWgoT8vK6TztrAzBP9SjlmMOAeCgZFQ90Afy2YyeNyBASjaYizHHjDGXPMRJmMwCY\nUt2IztPPzZ7I5DBG44QDDxs524DNbzenD6VtzYmAUPcu14iMpY/ogSdVrsUEZkvgacqjbiQAocaX\nZBOj3qqvjm3CcSSO1mfdeLF3IVxAvalF7/MvqFhRG7DcAbllqC9J4VfGEnLvJRoQqvcwYs7jOOTE\nb/oOmDi8W+QJ1fFn+zZ5v1dY4n0Z+t7z2j9S2Y0vwhk0p8TsjMJVy1tTO5h8bu/IcijkeUODH2CZ\n1fvx9z4mIcPvY03NDOYyjnLM4Qx4xCMz3RsK1ALWyAQsNexmfjtiSRmewc64lxM9UmZclpnpvg+e\npTHUwzs/3uHJXAqYo5leV9UjFdhRkQprVucH+Rxm1mPl4v1mqJroLerzlB7bB+sx1TGzNhW8rPPQ\n0A5udOr6b2JhQQabnxuwjR+Lrc+jCRHAsNWrZ0pDMYhh3U4jZpX3hcjf490eYGPJrtyPo4ddmcF1\n7vd6vLbud1f8OBuctNnaDxznpS8E72Hyjux9rBAGivwjahCyRcFTqe0waPnlaNWkbcF6cX8JSncO\n+7Brcby1nT4/ImS+tfE9G/WUd8X20ZD1wPiFaANr+/Q0x3ASnPdkx5KiQU7N1i8mOudcpj486W/x\ncQ1JRY1vyjJ+23HWPspE/9EoW2P1NZfAQsDT9KuHnACfx5dF83Sk7vUeTYhfGhohdJhBgRYDnYVt\ntLEohmwcQ09w7dm+yGIhLP/Y51GKPBB9B9SjSv63Ob93/Gwo6TruhVxK636mOkKbctnZO307u4Vl\nfGstIBdtHCWVG/5GFIZWik4DDMdk7SMwBcvlxm580BAQNNQcsHc2vj7KFff4ceC8o8j+/LRLc/vr\n0ZcRYZJZ5tOGTeTMAhWbgUQY1trjGEncTvVeqhB54xVsh1A/Z5zSPA4GN1DckB55F8k92jvY0TiC\ni8B9jIYE9BIw+bFiQ2A44RFELWK9JuBctBHDGToJHcRpc419daOMhM1EPTWN1XscvcTnHIOjEf3D\n0ekvxzlQI705Y340qrt+AIxe+z2NKd72WunKUF25gPlqn9vsq21oKuC0VcDyY+hu+gCwSdsUBZTS\n+a6v3qd2VyHXO+j1+Bw9eOrlIhpGtt9gYy2TgxZQw04uWauA2GC+aF36ePS8r0oXUqXUu1CueSvG\niXwW5wibK0+BbSmjRf5wtyVFBEMUVGPbwECBXvPj8M8itDMujbo4PK59fuJkQM+dQBkf2ORmOekd\nW5nXSRSXIx714S5zMsPDDQruLmBdtqvDe0q8E4VOpEZCxG50Up5lQmHab4KnX4j6e6zTTjRDscQM\nKtYuiuEGYcz0HczfTbGEdxOMN+QGtWHg69R7G0YO1vbR9FYSyTt7+bxeX+uu8FgiVBifFyvCbD2m\nj6AMvb+xIxeq5G0/QsYfdig9uKTjVNWvvE/F+6o4SzRroROOBFBeonuVHsG5zB+gStmpktgx+/GN\ntfdSFZZuxp1vTehoYDAXMG7SfMcBFtNTPoQxnzXM5ADZRvfyS0KDb7XO2PuKyuYuJMaeUX4O1zXc\nCevjZDzX3w8WkvMwBdKu2XtzI0J4dvb3ZQrdkFlejek3EUNWZSOLG6zuDTeN4H5yI9RQ1FXBBmWy\nUTz2+2bMlTIS4TUVf50bOPePo1M7veV6RKKFN0xetyYWhbEt5r7K3ooO3DkR0Jim8sHoxEzAe3Oi\nSOj35jY1IigaoRPZGkKjXKWoE/lQojPE1vBN26qrXVY0lbWVfZ4gTwlIQYnG5oDkkrHvDiTUs3H7\noj8PfRkRClIhK2+S43e18ImFJLSZqOWUGqalnuLG5DuJhimowYGjNfyJULSzQKPsvEC6ZLRBs38b\nxKxLUK4MIimDAWn6BCxb78tnxmobPoEmNyaziBOBBRiP62tC31I4gnp+LNHbRml/zYz9r1en44x5\nFTJ8NVCKjczwehWIxa7LMk5a7DkVmxEPeq+TMWzwjRGtoYNGhmbxBnW/qNRaOaE8eSbPDUCf9PL6\nVIJtA9m0Wt+3laehMMtmE+GyPPupsaBH8sYGhYqg84acGUYxzP3hlvVoFIydp+0LqKZBNa/cOzCt\n95ty0GYhUgg18BnnckUN/mXhWL0L4ahBFYia0HJCQ2tErfaCLvHUoDSp0e57qDJuallcXN/Vk09n\n2FdIUYnJL3G37gsy4+u7j3+zoYILviAUhvXvKXulSebc1Nh+nTE+18f7KY3ED19MHjLcK8wrBR5D\nVda9jdYQmz+9MD6N/soyV30sxt73apHXNfIcB/noOfeid/foWT84Lrj5W9ybVkMUhvFrvpSKbWC+\noExu6PLx1FON8j1Eo80j/n7GhBehW74fxvkzkCzr/drqJ/G6ZtQylhrbyizUhB0lSbUx2ZFZaS/t\nYs4KNSaE0xVy1l4C2WuS23P4kRHT2qRzmDcedgIZwzz6o+KzNw9pKB4V2MM8F5Ya+b3+PD6I9MG1\nhKGpRAMh0+YdO0V4RxqqopRPcVFjtZbfoW1NZSHNH1MlTgUD9hW53AwGrO79LXM8SZSvFBGJY4t7\nLhEHPuKhIJ4oc6ekq9wtKG+Iz9dPrJL5RBPPP6CGhMFHA5LiovhqdBdDGCzUdlPeUhYgGI7WiXtz\n/cMMVFBVUW1l6B1j/0FD/uD0iX7zZ6YfccT+aQmZffU7ERnM7cnZ4j0lsTNXPrkhoYpRdGUxzlYX\neNa4wlU4Sps0pxuDgO1egvFsBnjPMu86rM2+4CfoZVYFWZmrJbohsiMMzbILiiF6z3d1MWmG43ns\nH8cxXgjGwza0JCTnpJLqqTfP80M+WnlIkMZJBQ7l9T5Nj6nNIX2X/eLfVLot1tMFoTyHAvQeNpUw\n/4v2CjG9u6JXuBTAdv1USGfwEFHh/QgCaSF0FwrL0k5Q0PpJ1M9mAnRWHbKHyry5qrBTDGeYaFQw\nsn2+0wiJey8/eW5ZqBqXDKiUjE6ZHnS9XR9RRUjpyZh+0tZMP1P0YHb+IpUEVPw1I0ni56UyVnhY\nMWwi5+owGCkIuQESrfepN0eNB11I3mN+nt15vaTm7ygrMjEc6vrZ8Qx4q0FQNUVd94zT97i79rjC\nCmWRKhvRAJ/RWvF3hJev/SXkc6pY0/WYLfP3gUcS9yLsl37WdfGWdX2qTap3Hjzo5PG5M51now74\npLzn7Pe7nTEitZv2TghMfDv2TD/NCA02ubxUyPpvDoYdH/3A0BHCGZjsJVVHPBK5E8Zlqev3tzWH\nFvO5GnM3VkdIuT+jiDgMWYt7qqIVMkRf2/eUN+J4OsLQ6+JUr3rtdaxKCnMu9w0+p8fQs233QmjE\nsfGKI6kxHOP1UR6oeIOe0KA5PLTuzFfUEFnJF58YlvF9Lkkzm+cewJDll81RDvLEVR2f0u594v4W\nQyrd4JP1jyD/FLL2GF/lGb+OEeGLBn0hEYAiVMzh8IHZ61FBLyKiGeP6mkyi+3EzyFDysV/UmPjF\nRDMhHh5JlxfwcvwTKEk7hTg7bZFUgUJlbL2H6S2N3sBPh3OMszxwSVd8OJ/O4B6lyJDVYjqOpxnQ\nMEcijM3iPRU3ptrA0WggEb59O8exmjMRZgkHzLv4RZ9E6ljQJ/vPFa9FpQOz5lryQSaiJsSvBuEM\nUGCX0elhxvd+3bWJXEBUmLWiJoj8fX+yTyCixb5rDgmA677agGMf/PCEE/I2KTTWYLFNbN5kw5wQ\nTwExTuBsze9CFjdbwmFnuQOaSMGQ8IQQ3k3kx5sOZE08xk/Cc97WhVccRMchJLsAa5wPVpgbD4ic\n35SKAtdenSrp5KWyJus4yabOpzR4lFh7gvFGmZbCSfA7kRkAKoNwEJw7PC+A3NLndf6hoEsYUuPv\nWMj3lD49vjYWpqSvfXzLMJCM41B9blfKUDZ0xn65QQHfB4Y8HE3okE7UiH7rKV/DtHBhsrRcd4ey\n0BscPbZjzDAvguX4EFd2FY2gnzX8j+l+3SFMtzERy26nmF1DC1oq2FFb+wp1ihxC5JycAAAgAElE\nQVTzNaKxdgXCsNUpMgwIld1R3xWuwcpbWLVLx814+5yjCPlfnmlCPBs7MsvX96px6miFwo4GNkCs\nVMbfkOCOvK8VEiGvsaWsqUhiTgQMtcDku5400vlPl4nUPGI/1zbPv8c4dcSOgcS5TSM5MtEMaxBw\nfEB7VanVM5WjcTqGyLnS6jxHhNL4ycKHGk15SXRfHPljXujIWuNjYl2z3yOkyt+j8Zfp5bYjFCkt\nIWY6DhmnFhRjimPbWKg37yPK5oh0wNwQMdfH6hfH8GDzxM/fQgjLfEFXsgiyiQoV2I5OrfNEKs8j\nflUmKXiWIS/SONh1ijJKzL9WhSzRNsQOx+FoI7zE0QjrXpzt7ohEwL03h9T9mekrJ8KgLyQCkFvg\nKcDqzIOUF6mFJMRFiZZTpcw0pLvA2SCRFxEKctcLskIifETJk6bZiBXJJsQmy5rs/AGm8LFHnjQJ\nzjpuKnCgVVpj7WJeBH9v6C3R+74d3SzDFhNH8E4LzwkqV3YMoDhcn4gGXJWyUOCMuLTcPhwj87SB\n0FPFArLGeosQnef49z7J4t+TEKdeup3BPaBhYIyqNaCkZSkK4byZmy4QuTCA3hhN7oOkR4TR2Une\n3WGxxPY5JNC6qN88lW83bNhGiWPB/m5RaXeFxjNBK+T3TqmJxgqHn94tF1TwKH3exTsaCiHMB4PW\nLLfbfL9oezZeVG182n+lH92O0RtCRG6gNHhu5nXz83v1NjOsOaKoAI8ycb1de6vR4GP8iXxPqTyl\nesScKBKhj9MYhNx7bc24GxNYu/qbesAQycUwZjjXY+I5HxNfi7qG7t8gwx7nv00FEjyXGf20CujA\nC00BvEhKmWbX4z0suf+rPu4MOFnBLw0Dev2cewscr1ydCuBzB9Z9er9rO2ojAcooqqASxT6a0Yuc\nr6FHXY3dS5jdRD8t+RDe3fgtIuHifhjbuyARivHDe3V8EDZeo1lc8UJUC1L1zpbTgCxU1eeklx8N\nCWjUCO0gl30y3D3zW6Z7pF0mf88CfR3/FInwwnaZl0iWjSAbesJ7JzKGpGtdDfnMbqlkruW8fFqU\nydJEIZzBEV1xf2bG40jdCKOJkdExZSib1KdPkAjY92WtNvHE6cdEJITksS5/6rzNspbJfxRDZS7b\ntMhMz3gzkc+vKjyimo94TROkfyERfj36yIjAzP+Mmf8TZv5Lce1fYeZ/9vOa9tenHBdEtBduLfPp\n9HoSXVvH1+cZjBCgJD54NqMAUPlR6+gdL1yclZsbTaB50K4fIdzYGq2Mj3kgEdohtlngMztSRv1q\n80ibeapGYJTfaYm5gmOqwL88k3692qtUYFCL/hAi1fhEPv9ggy5pDtJt0rhQ93WRFalSo8atrOQ4\nHDsWHPM+iG2ol3TROBRSVLCL8dzPinToORgUgyLoMN8jrd3qvT5B7+xCbRZFilaDBfKS4eK+WbU3\niwd7VAvU6f4n/buZU4s3he4NDDkBZyVIZa9o/uzP7sdMOo1cCPm5Bx03VAwobjvqnTdIBD9yd1WM\nfYbv9oZPSb3DCj3WNSnC45hgOPISwxk8Lh/KuhhXhTdjwtzVq+aCtPKJF5xoFA30u3rq30XE+JWN\n624/nGi8t/G69bo+rveeQpYbYewLYvvDiL9nC2XIRywqZePL3b73hNybC32jWL/uleGEIDDYZGU0\nDgasE2Agmrj5E7rLiaClGS/UuWvJqtd5gcjTsD9YsktvY8gzkOZ1lfPDr7shIXuVPRcC7H1gSMe+\n5LFV41tF1dHH1h79x16u1XMjv+54l40HPL4NHW1T2Wy9NHz3NOZouEQFt3bO+DhqKOhdf0KfcV/Q\nNrTV4KG3uqzNVh4S5h5o8/SOLLfu1vBl6BXsPc/yU+xln6pvVZPUgfjAtvJLUKVn/R7//gj0KRLh\n3yCif5+I/ltm/ufTtX+OiP71n9GovzY9fVf5+Cr8a5tq8VzvEAaw4Q6XDA+stLpBfHLOMpYcskHr\n5m6bvW+gpzQ/lxyFIb2d/O9uwu+UDDvJAU8xIN/Ic+yvEjf1VAg8c63wyrzvaGqAkHJT3x4Fpx7r\nrnJ93NLvoNw2zORx15X9xoR9kLeiV65un0LW1NNjHmdFI0Al0mN/3ItfD54pqQ+9H1oWns5ANN6z\nev+W5F3kgsZdwqEwV98dUCH17ZcKoRBp4ixHmFz3b+fR40Lw+1kUT2VwQWpHSxy5xnXnv5l0bgDa\nZvzMiX+kxy7mdEVbo+bmuhDd8mfMHD2+w+eOn9NCA4NApXja/JpoI+WbVs5MsIiIJX0O6RPj8tgj\n2JMrnuQeaop6WaUo5CiOpzTKTkIwelbhLfT5Pz1HXmAdYXmjPapU657FQaFWUoNFjW5Z2zX+3nQI\nKOmxl3afu9MZ0ICDa97C/ciFzFO07/5bKEuYzolEUCNCQLrlPVCVD1rfCUL/q5CBWM4cw4vVFQ2n\n7gm2vut95oWkhcdgKIPto3M+P5mfOpZ3FOYS3+8nIaqL3JgiWicgEMt2Bb7s4XNLPWb4ykc7xva6\nMcONG9l4kOHsZbs27x0dVG7Q9HEKT91oMYHXFtd1P9ytzy1qTsuscnpkBb14To1GLxu/msyxwL5/\nSwpVu2wf+VpH0r0C28xQFyIlVLZi2o/T3btWp5Aaskw2L3iMAE9AdELeQ6o67/b2P4qy+0W/D31P\nOMO/R0T/lIj+B2b+l39ye/7mlK2Exmg1bKFBbB0gCfRZopXhtbZh/uZJdgaDnlNTFhLTRSViL5Tf\nrOyp/ct7/KM+Tw7oMbO+Cq4Cgt8PhVAU1AJzXeGXJsw0spMwNAbeoJUkw0OSxlmZ9WFH6rmnGpOa\njTGJPcuKxRUsLAtYV4x1eAMws3AsJ0LaZtwewRndajgANIu13wSADv82wgBlhV43YvCwUBQmryDD\nKkB3/P5gg8H43JEbZFNXMtNWQjdRXJPZY9PVaKCKXx9CPFG9gV4ZBlTp0TwVCquOfeMldKYR8gwJ\nZe0I5ZrsxTC4KFInf/fnuRoSYEB2ntvq3Xmd3280+ZlCR0S6eMGCFrts3s9ogguNEo2WNk4CYRD2\nzz1P8XlfS7sEXEgWmnPS4M1T6XpLCwrqJ2RedrlHdYz2QfsBSqvtVySC/TtrQ+Qj5U+0zjpGf9de\nQybQhQH5wsi442VdN7hCkQr74k65pNUBfwpZfiGrI9zPoFhrWMPqTcZ+cuIBTwS5PAw7T7bVobBv\nO50hhjIQaUJkD3vxjuX1NQZBTvJ+PoRZPyHlr0xkIWYmF+i6g/h6mvdjHoOMZtnzxQs5oECMWKge\nzG330jtCyeQ/qmVQrCM7F2xvKWRFnysxZBBPQtH8KtDJOQ4Syn3C8/WEiJznIuakQH4y/90Yvkwe\nIR/LYBgxWZBKgw3yNcybZO3OBucfJNMPLCl4t3dgCS1Tl2tHhc/tK0J5crfHWE60qr0E75hclrnj\nLT/bcfJHoQ6y5+/1749A32NE+J+J6F8lov+TiP57Zv63fm6T/jaEQvzVqzMvEZFByj3BTW2NviMU\nPLHuyAD9fO1wpMwFU8/eHqIppKKrP1lf/Qgrz6CM4IksAF3RU+bS2JMGYtZeThsA84wvm9ZmTTYY\nsuNP1qeM0AwURw8bB14PtPM+PbCcMJSJDN3alfuzMySQbwS66b+aGz1Ck1vaMLLh4Ds3Q49zhZhE\nQIBYdenzWXj19fPQ1UDZB+/WeJ9gpcfGdIAYFv35kQQ3djzdpsz8frJQl40f1ZzPcOvsSY0xsuuz\n8d4ofASjBQgsFs7g2cx8biB9IAE48ufa4PHEyPjX8l5YkrysFJrkCkaUtBtmXo6nJuiczEnjKgr5\nFYp5kOk8Gxi5/PfIh13Aq+DOua78u3vi9J0Og1eOydUEaejZU886opqu6MmrNmNL0e5jZ4SHe/Wy\nJaUsqAqTKNurloCC7FhcbAPN/bl4xI2qc+9No2HIn/5MqcZ9S9/bFQqS0r1IORdAbWzxH3flZAN6\nMFiSzmPn4QGxovIF3QvOTxU73ScP7kGewHnaNjKXtgnfS+ja5vMVNVhno75Y9yovrAgEy0tC+D7W\n8bg6JQUNmlgeGoAkMpmHPdStJrZN8z3Y2gS5uW2QG7rsEHnrdVzhZmbZGPKwKRvbqP90nxA1Moe+\npTnw4d6FvN8U9PTOKzRCfg1a7Q7NfNe+0ceYf2X8PseauNxHdiRUo6u+6Nei7zEikIj8X0T0bxLR\nf0VE/zUz/7s/tVV/bVJl+ScvBhUMzhNgjhpKQGS7kIR40qqgcQRU+AmUtQW+pBvCjGFark9hGCGG\nCHEfxod5TB9BGINB0pHZwyadmx2URymvEanleChkoZ14z0SAYBZaTTijZegoLp59ohGDh/Ay9Fou\neK3kvVdFUxyGacJkhuejkkArNWLS84sXK3Ta+FQ4zYJcW7RsbScqSzOkIXXQdScO4+vQVBdOUPAJ\n1ZBvIPpdvXPT4QQJFtfncdMiQg/DRsjXH3FXFYk2MIKjSQGuVxEqZ+GoS4lzu6JKvgqK2P7RQMza\n/vjEcgzcJzwpS7g6j99nnBfhyEcV7N1LofD92N5nTdi1t+JDfzVDQlYKJfK+a4GM8w/Lv6zsE9V8\n3BBmlNZbWTGZkq5eaklzb2c8G3N4H7+KigsXvMj4q6G1XNi2vAhgPMhx/B3mtUHsAfXkyLYnSvN+\n37iirHAG481m3ATbB+tn7JVT+E4IK1O+QOnp01igArakKYN96TKOcxThkR8BEAkeOre2F3mlj3Hu\nT+ItZa+9Ldr3SjmuEFOIhlD0WuhksUY0CaeGtfwIVf3BdpbPBMTaeo8aMtBZJCmcVKAclcNUhsvo\nvqptn1BW6nAuoNEF95K741Zx7pT7beBvzoPwEn6uUK/laQEtXvcEokwoj9g7KAwJVz3LRzouIRC5\nPYBKGRVTRKldUO63wHu4kj0cRaEyD/TtZjngZZXfsS+LnG9rGo4H7kQxgauH7O1I5b3dux73/JU2\n878jkr/Cvz8CffcRjyLyGxH928z8vxLRf0pE/81Pa9Vfm9g3R7fQMilEXrdxE/xACmxEI+EfWDUN\nQmYJFxNjm1/4RcR9PO/ZW9G7IqShDLrhdcGzZRHOnzzEcuN12XprJNyCVtA7BYspTvzGwwDB+QLB\nJjaZl0L5XtwX5m9eg6aJBrslz8mwTqK1743H0XftNZjoOKEhxQIGrVBdyusmkSkn4wy6SioajSnH\njQCFkEyEwA1kwgxjeDG1g6i/hIjAOCWdCA9QGskkiBuRnLEeQ5oU9Y9nx1CYs3YOC9vzUZhVn0Yv\nxiHTELUVOTLH8Sy8jhWsYVcmSwwxAsHilKR4FWtgEXxoDa/RPut7Z/Iz1J+Qr99osFEPhQp5uThE\nQQwPUpz7/FqNTt7oPm+c82LOcX4Vi1MfoahY/QihHahEa6T7qt+rV9+I6Fx/rkmNTx2+w188badS\nRkIumbIx/tsQED08y4Q4cuX6oMlX4VqXGaZjRt2Vp3ya6Lbf3K9dOTh+J3KPot1LOg7+wzjpZTU8\nIWoCDZeVwd5jh6P3Uq95e2K7bG/mDwxdaTQ0Mac9f6OE7ctlWzNdfD88wfi87gk5jKEwXCXKXkyi\nejtn2N/y+68U2mys0DFWJAiaMxABgt5fLyytk/TCF68wGqp+zLZgiClNvpnRP9yEhhim132dNlBu\nka4Qpou8YrJNRBQ05rIchJF3EWrJsJeRIvGEBJcxtarlSHFCNMO4sRERTcXTT7Go+6inDGBC6ysK\n4aIJ7UI05F1+tw0SIRYeUbd53W7qpSJUFfrCLEQz5IKb1OFYU17aoSWCfPPAGJqTp1eoqN0eu5OH\nPDxkV2cu/4av6DyEZytEB9EfR8H9ot+fvtuIoCQi/zEz/y9E9J//hPb8beiDFXEVU5Spd6ZWJRFS\nWMIFPYJdfid6QoTXTf7dKSZWcwvmzsL5s+hobFD2HeHxPGo80Y3/4KFINHYL3ggfAOEgbawlbMsE\nnqdAxUgGE6YxvrqvqwLETHYevIYyBGGZyGDGmPTHheXZs2XzhC96dqN5hUzKv5y3CCMebZ0birAZ\nqHaPZ8/E6PfzuVka8FA4Igo7tx9H+kzarLL1m4KWyrlr8+q1daEKYcYrGsalvE8UngrZksMJGO4L\niRUReUDN54U2do7j3akd2I5GuMbg2mRp5ql+1r3fnRxKPXhHBdfFiA875ha8NIEQrpKNEbQacUyY\ntnXvgprdQxeGEMz7oWtqlXe3VF1Do3MjIuwi8gFXBMCANe8zz/LFfljVfRdPviCxZju6cKn4fkKu\nCI+yOg27z0mFoGwe9LXObJRRr6pdn38NCUgDnZVL0qnYhYlh3hFRqcgSgVEN2rzNU2NzjmAvigaZ\nT6Cou3lWItZ07EzOGA1Qg9OOtqcKQLvtNKwP2q60dwbE+i1vjqzP4T1XZaJ3t7FPgMpAgEo+ovdw\nzK/g5iGh6gMjmCrSquCjE0T6lF02myEaPSqk4Sjf98bgPNPrN8kVM1lC8U170Jiida5IiMyXUx0Z\nZQb3oqNoqf9Kbm2okHsuCM+NgeXE9+gIx+vcLxVdIXEyCsGu0ZpT7HF9xNRJqH3Xqvzj0RNj769C\nnxoR/kUi+j/yjyLyXzDz/0RE/8JPadXfiDBGm2hVGJRCSII+a0xss3jNSwGLNglfOeY9MwLLV0D7\njSuTev5KhwAYM0I4AzG0d/w7RYLXbFxL7Svq1nZ7HyS0i4iC1z2fo6zJHk0gsjEC4ZZAiSrGALMn\nI4Q+W8iNmotWIs8Uvh3zZbi+Ew6uylySsmm51fO4+WkM/IMKs00L10DnobVkBII+h5+F9L3CcWbr\nnjzvj+3Ja++6sWBQAIixfU+GgQwDx9+kk8GJrYqLjVCNJNgn9XzoO/FxuOvM51QJMlsRRg1Kfa7c\njgztMG8LKtEVqS5QzbnKuIRrvJJD829q/NNxjYJz/YyVtdRNE+3DdoqAJZFVtE4yHujn2yNQ+5Dy\n1IjFbQ5KjzzuU0IkkNCEtZ9McrqxzBIuTmHtSVZtIrB3yDpWu7ZULBHnXRciOZn6OLswwLmVdA1o\nvX7KBYSB0coHKn688yru9udPKSP48EjQTF3fgahaHq+ZjQnutb0T2fNU6+00JAgNIYIx26whIl+P\nCXc2y1llkXjqQ35f/ru+z96I+KGcoUpWGDs19hp/EdIEepZXQ9tGhcEuFHXdjjxELckR4d5Cycb1\ncXZFhWSYvY+1tlfHKSJtHNVTKf5x31zb8klc+tK3yZKqPqoMgnJXyRO6Y3XyiRrpNvubW6zyVg73\nWdvLJqao2BXGvnvODF13OlfXHAf4GWRIaJ3lQBIO+cpFj9WVK8Ohr01dz9qHEBoA/PCpw7HqD/KK\nxZkntVNIx2kte54CozK+rcF1jislMK7ZzZl8rJ3Hzz3/78Z98EV/Lbo1IjDzf1D8trtdiOi/+8E2\n/V3QULzZPi8Ci2lZCCuKyi/Gn1fEbQrP7FCscF0fm5uaCl5NhYubPuBmlslzIow6c5yoM4cVpurt\n42BI0BJUIdBNSz3wJ4k9Y3BIJoPJXSERvM4xVpoMaJzS4PC/oeQlwZQQyeDWamxz7Hzd48ozuQjB\nNDxbYaqwK0cW3pHu0TWVIeuYdfjViFonzwDdeEDYfwsNKtuufZdw6uNeXInwc6HzgTDZZeRBaOLn\nrj/ZQ3N/17UGjfHKlo8hLhnai9C8DusRN2EUTrDMCjWQUQbZ8Hg3Uk+ExFxG9l4N74SGW8FzM3lo\n6EQOb1k689nG/4netsCuN8YVTvfrZ3wP4/nhRRZh6izuSWYist/mWrpo11UuhCXGn0aYgXrdecbN\nCvFEN9ygfIr1o3yckhd7tA3DGa5zB1x5wXDOaKhEfFb/+nhlj1cVW6yGOk+sGBUMXEei9xMP5QyU\nbCyPwJvYWHcQX1sdIN04XgElcTExn87ZxlB+mh+ddBy9X3jNfief5+9OdHa9JqbkqXHnlGE0Olqf\nVYJgD0qTGjavVio2987w/QmqI8L91zWa8xmpJxtJ0maAhqT4Pj2cRREjwdi/WdRP3q/Os7V/kYeP\ne6MijqAj1M9Fns+t7FG+MnSoo0TbN+SavVHI+3ffBn07ipAK46tHHVbPotzE0Six7lexr8ZDpuH6\nCWVDU9WeTBpCMuaPfvb3HvMyjHaa00D5e9F/RCJERx8F9Jmt01lEzgPhJ92AzEBTOefaGK2hrK8L\n2SIPaQhBg3lS8euln6y5xmJtGDqsI+oGKQ5/fwX6Przyn4+eIBH+w+K3dYb57//RjzTob01MI8u6\nKt+5k59AWKJSg8rLau3E0x0cbrqudBWe84ahyo5uvrhZLt493AVhd1SIzqlWSgIvFv6zthTtS3+v\nCIXXV1uzKZfPNPfM4zhp7gqFA6LyYmOTlOhS6AQDQkSNgECRhB5rm/5GoNhQRCAoIz54hHHgGFZo\nhTb7fHA3IcROBUl4VhPeeqeRLEEIj330WPC149Zm68toyIuZfiM3CjVAc4wx8s1cCIRp4eABsL4T\nbNqkG70iEWSe8QztSvPBIIdEhpqJ19e+7dAQRET9bFO5Gc99sjGoYGHC9YYtVlDEBjlO9hDe+rfH\nHlh9//YZBiElVsyUFbVOqmCpNyKGVOzkQuQ96LnScq0++sw48QlJFxcMO3pL/XqlDGQD6pIToQuJ\nDk6P9+mo7pS5q/Eyw7MZet1oXM3jO8NVntM6f3b5anaESswwJIgZyqsM5ubd0naTe+pMWc6CKvaJ\n9+OEbXoKyXceNstl96xpndY/3+QIkSb4HjKZYiy+TpQnnjLzXRCZB9TGg4bHv0IhqEEih0S6Ibp+\ngei8+JEwEDyKFhEhOpZMTH7UZuIvSWjQI3UdGfNsxYexLhi077sS3nEI7foOMuRnwZ/xGhchGtkw\ncsWvEW04+KWG83n+KzSo5ufuqJHQCfJRF1gzaiDC9inT1ve2QT1lfo60z80j4XrwghsCAcuGdbFV\nfCXUt8utwbwPg9Qwjq2goHWRr+v4PNefu9ZNtkaUj6q8fkXb9wsykNV1U1pGHdwdqbk+7/zy90BZ\nftEfk54YEb4Vz/y/RPSvEdH/+NNb9HdEtiGRWx/dS0GLhGMbKdAj6/CF4szsDEuFjk/iGIl2yjJF\nZpk25yG8sDFMNSjYdYAsf7+IgsaPNbnPAnlnCoaWBs9n70h4jmQZ40feYFZG/VlfctHV8LuHbSIz\niNwQQmoMgmQ8JhiluDM0Jkg0GjhOcNU6LZu0ebpiv11QGILHiO+t57ImejPjAUdD08WeDOOxKqWd\nhmBhGyYUlD2/mNjNoIRFe7vM6xcel4qY4jxzz2MhkGzKyMaleLSrCkAU/5Iaytw7FYxJqYJFeNO5\n0GY4Q2caSRXnxElIhADxF4dRYgqAMC4bRS8PbWnAkXWtVkaHu7L1twpKiaEaEW4N8+mh5WjMm6FR\nmnBIkQFicsDFC4ftpTnH0ZuNgjO0W3/TV6mKaaZLQ4IKjvAbzrFcnn735GjAl0lhsUQEBri6XuAz\n1ob6fssDE34Ti9/OfblCYfwIIfyeiOa6un4Gx1fXykG3OskYywIRJjBue+VprX9Huof7/TVvNJi+\nJHmnKA/rDOs4WFzAmkKZv9TlIxKlyx5NiW0hUqPE5qjNGzlM91qaqI/zbNQOCUqsZSYSMPIIgyyU\nDQmj/YioqOjOiIzoge+hylijeUYy5aSzS8jtQ2kvJjlM19TpMcd2GwIM+WCyQfJ3oZvCMawA5V40\nchjSCnj4trzEy50/3vRxNuJpSHMOD0FjgvenkLVvyv3d3sMfhJ6O/5+dbo0IIjGfO4QynPnan4VU\nAFw8+Pq3YA5ltmPx2KMrQosgQkpzbgDMiXAmT8W2bNKkVNgu9QoQibq+h0ZL/WQTJPRoxyALSJQR\nntJVrJSeOnDwLowg/vUkOn5cmo6ZkHvzDamwGf7SAh/qfc4kFn2O1+8O/WOyM9klrKlgFIn9jJDS\nEhIYXlb2BK1CwY8csTWE0qiAqkP2vVZbPl9Rfl9Lpmko2I/cVOGOfZ1ALCU+SuTzX2M9z95cMEgQ\nSvMMEygHpuR62TvhSpV9hu9qDIpHu8Y58IQQXsxNgiY4FDztpGpdOnYn0bd4LQv3T+nJvZWx4Mm1\nT8jCGdJ7kErjVgOCSW80jCvkgtnWYKaTfDZcOpG8hXraCbUViiZT3pmaYUEm6NWzvB59nY/WX9qv\nrR3p7QjxRQTS49MNbP8Y7eynC6ahL9C3U3RPYf9OrrjuSA3z+F5cseBghP4eUnSN1mWEGkGHvVfr\nL8rCfdLGieCoRx2bZL/sSZFS5KIb8df6FPVUGczvCOda0hkDSWeSm0mB4x9uLTV5H8NoPFvn+OpF\nTtfxmv32+Ryo5g56aq8M0oZEEJ//ZnS4MHCpIfhHyRE910YSRSLYd9xfDdEJ7UkW453HGmUav5em\nYQANkPN9PWD0AaUkab2XxhDvB/Yn+01UZtop9shzGXg70u6dMUtoJxE5qsJ4B6J63CnB5EZcDWdQ\nGSg7Ej5B1TSWYB3u4uus9zRXL+iq3jtj/xf9GvSpU/tPTciAFgWTkqIIUHKNs/djquC2VkPOuLFB\n7McRj7Icn5MXL1q/Y7v97x2fDjF0m9VvFkpCZdGFjoeOu6C0edmxzqFQgyGhrUc8Yub59iJqxzA4\nvDD8I1lO8zCsxzBB5uCQSXN6adveQo4ZlYnuPbGSviO6BZ+tDA/5mC07lrIR0dFGTgQMd0cDQipM\nj7AL7cRbKG50YS5S9BIyPB+81Q83FOyq1nVwt/eyeLjvXHqTMmTvewTLOzIHJXtejtH+dGwokKFU\nyAXujEQIWf2JKOf2sFCY5nWGd/Riai9yHmTawpwPOdkmtxFHRD4vruJVK95yJdj8HsKFmFIeC98h\nEeZDw3OTPU1CizULIbFKOodEF7IxwpVPabiVKTbgxUfUT1amy2ZfjF8n5yPVXpXLid1eQ43u6gso\nHHEBOd7jBaB9xs+WuVIGPF44/u7lrqfSeG4QIhV4Ze7Ju+P07gXyKw+i2uQMTDIAACAASURBVKTc\noK2/x6NycYqcYJAPZYkbJ3JyNi0zwpVjGVdbfdW/H1mPyo+rMfUQEbROSJhQlntJ0X0Xrb8UYS74\nUy/UvAZovlAHx76Yoqvt3fAFrKvD+3ka5lrJgvnIRgzRqeQW/IwZ/3dtx+cY1ornn4hoozD/Fcw4\nc+2g3ITGqKW+5jKLl+VzQMd/p8g6Iobh+1wrpCdGuayS+2iIvZvXUsp4cwB3e+HgaRp6kq9F+WOt\nby3rColg6FNOa2nZe6Jhasff7uZrdspZecW9d46iPzPpe/u9//0R6IePePwzkSVSJDKvNlrYhfaL\nLyrKXl7vAxpnnvwpgXimYjLEwnimblvIrzDRBajc7/ukzFWRC5PJvWl4Bt7jPm40UAjCdEqzs63P\nPpNDmcDj5QrUcVW/fU6/Hcb8/VSGim9XDBmtuNF4oFuMU7aUP6IFlaCCYRTy9j71a1JFj0dB9lmh\njxragFn/3dYhF0iE7o09z8XbXGb0zfYG/KwCA90Id5OEdKMn+CfLO8yjluH8JWk/NCt8d+/mU/JN\nfsBQpfOc60XSzKty5BPBcf0+EvI9e76aYatQrHlWlE/QGK+3vv9O1Hl6yNCoEAVHg8/PcpMuYO3P\nR3thUigULGb6wS2PUMSXfkbbB/a9ElaqEIvx2+R3RDS85UI8kQaIQsBwBs3OrZDPCKFdle6Rf2SU\nqV55OtI7UWMRo/AGvHw+n/tlwjMk1D1hTV0J77Gc9fvOEIS5Tfz36wz37mlL66aod0xFNSS4go2e\n1L6ZJ2pIFVFl3ZWLHP5zRcs6JJ8/2Pec+wITXF6FF2A8d8iJIM4Dc64ELY+tP2JlBcRAsd4MaVe2\n5X48vGyXKfx3XhIdd1rftRpldkmRMXkzola0Xu0r0bVhgWgYhjI3vEIZjjbvlaYSXUC+/jDfh7eZ\nQkohHZNdHyoZ4UdyVOR3lJEIV+EBGsKAhoTcHhsTEfzz6NhIZMZ2Ihb2/WKRjnqzzBXD6VIVXhe5\nUQKTKC9OwIREaE1iv2Zl0jfGhRuyuaZ7cMEb17bDZ/bfMJQFfVxIWZbzUJv0u/i+pt/j9X0bP0UJ\n/kgOki/6Y9KXEQFop8QqMeliJOdm6sHbWv42hW00lMoLa0fsTAGqyfXmqEI+CoYokPhxNt6OkezR\nod3nFFxREDJ0grhI/dSAUCkiaqxRD+5hyILr0wDcayX23MEjCaAQMmBHlWRyCCZcMy9+n23et2GB\nl6LVttjAdn0/JVp+hciQkOgdOLg76oLI513jmO/BAjF7lD6DwuQGoSq5GRGOmQvrlXLn1nMx7+p7\nCqR7Ybuuy95JpTanvsh7JgIlFzSIxjppcHzRDiqtip9B+2atiKwY/crJ9YjytFgU2aI+FGqeQlkR\nvWC/EVkCMYbfMo3+zbmMY9eYqM8nVEkSdj6AkMxHrazJEAOiHi8Ov7PxL2/WuE7z+mqkVO/PEhaw\nmS5EZLxalX4zIExDlN6jQqyvjRXuqeMk71nGNJDIe5TBx174NBSCpPlq/XYlxGJXZ1vO3lz5lqio\nBLhw0X8zXsPvVzx7UaarvkxhFUOC1rGi0F7tv4Y1BOPyBay2WiumiO8Uw/m+RdqWv7U55Rsohcq3\nx9hP6/noMPAJ3TZV8dY+KO+YqINZ9tmJzhb3z8Cuk+dS+4XHLFcGvcpbmCmPceRjqPjGsXWHRVRU\nd+Twce2kGI/WjsubSKZNW+czJqLEv9q/TDvk5CdkxtIL3VaNVMP54wZmd9zIXJdDXlJj1Nmz4Wc6\nbmYyQyu/MtAUHuJPQx56Wn/oxfe+RmMR5mqwXCzdczBY7pNcl9YzObrABVVWF2MJ7Deo2GLIjMqg\nyvfO3uiUZoZU5yk1fRKKhwaE3kGu70MokzdRn3Ng9BUNOCD7aD+At3p4REQZCbRfZF17zxsv0wcQ\nDXGZ4j00HIW9UT/ZxldRNe++R8UREXUap3kIR/lOSMY1uuYTfzb6CezoT0FPjnj8l9JPCp7+p8z8\nf+f7ReR//xkN+1uSe4UjHEqVjB21aX2V07P26mgFQebB7OsE8MDdPXBZsyQzZPa7M2zg0WQMXmrb\n0KkWOp96wp7QUIqZXgZ/i4VmwZTB0PAkfCOUBQr0vkEznOGu3XS9ye+8fkqWrZeoOizBFU6mGRLj\nQqOVaxYFGi9Lvc5doqRqmfhvu7UIbwYnFl4MCdX7zz/tvGh3r63ydo8KojAW8xfMTdqMYbuNNf5e\nJbe7IiaiCjqL1/N3NJTomCpPqLJs49plfY5w7nviKiKaoSo8P5skQ2YYa2A4mMfJ7SZoPGNbeVHV\nz8FrcB7/iBCBa6YqRlE6eV7gvFT2Z+UUHi796knE0vdd+wzVQDYwVVhAaNu8rp5MoWgI6LImTRuK\nJLZfP2t9btgLdd0olJVR2fOy7J6rFPUpXJ9i3yPsPq8vMErPz9P8Eu59CgGukoAtz8xwhgzzrfaM\njGYIeTQ2DCEiDx1hoWgJESG11eN79z74305MPAtsUI4pTMKmdPwoZeOLKYtpTDWuP+RtkVXJwJCa\n8PxD4aBWdNf7xtG1xVr+SZRDGbowHeR9lrRHjDwWm+vEdFy08+mpCtoudKo8ee5JLic1JqCcQURr\nyBepwem+rcg/HRGQuMFFmChSh3E9DcHk68xEIK3j5lSvta1x3uua95N89mNYyj0SDW5oNJDOz5Ac\niTA3GmOL+rq+RmgIfE/jgeEhmHdC235nJHxKX0iEX4+eIBH+N6o593+5uX9zIPnfN2Gyn2whRMox\n1zkXYFZQ0Po4UAB6wRXakqEt9Q446NnHrv2IqU/hsMvw9gsKtOfQJTQ1plpdVcAzoYimtVkFpFnx\nnTKJVMUqa5uIIJYcY2rFT6EwKNZFgp87td/ew9muN1n03uqz3d87EZmHCKGKFeoieiVcSdLajzaS\nEKoQr8pQ3tjH56w0brQtVRrfRPQ+xz/zAMS+ZK/oGn8JSSqptkGgrN1p9EcBk7s5erW+sBt2P2Aa\nNZGdnGJ9yN7ivlEGxYsxaO373aZHSYUUV/Jc6Rm/vSWifHJIESoMu9MscthTFUahxLTfwKvfMZzB\njEqHDHdocL21Eery7u4tMUWa6S2eaFIJ7KFbyuEFmS+gwo2fNdwhz//MYxSJkOsaYx9DZpDfypuI\nX3N8ZPyVN1kol6JzRv9dMcAjHu0dIbJhurPlHHOpfdvP6jGPWhCEiSgkPAtKo/CAflsSrNWou+O7\njg7S7+IGcPE5amvB1r+PK3qFg5GN3FhnJ7z05uMEkF6tUxFtI5zBf2MbF19/uAZ349jJEXPY3zAG\n/RqJcEUiPPjLNMrKm6ZhkgNCz41BYv0A5/tAOcx5q0tQxLcxHWOxcnQeR8+3vY/ZPo+XT+22vkNy\nOiIb02xw1fARLVvvNSVZhmNi9LuF+bebg+KTeI6dQPiZyxjvzgaIchmp5pfo9FBPd0BnQN99LOKe\nYEkSjzW0box77gcHhE1YM8xmKDo7E/OYZ2NuNDckGdIihnR1eL88vw/e5/IFtgt/D2WQr0/0dmuu\nAQy9RPk29DvsR7OMt9gkGygrtjGJY1yM4+ly5+6IRwzNxffeiOy4ZV3juube3fdjNAtWWz2O0/g+\nvoyQKEAWwFiaTD/RMvR2VFpYJ8Bb414H6CGZKJaTh7FV5xIRvQVQZYQ8v+gI0LLfz3FUBIQb49Y1\nqciOIRvBnkKU+C6067o5X0Sf7yt/VnpiRPh3fvdW/B0QWoefeEr9QYj/6kLH0cfxQInFLkygsrZD\n/ZrEyBKewf0RijeO4MMwiEoJtWdxcy04Bcb+6aaJAsyndAc9Zhq53b61Tsf8Z0d9cTrGZmJPLTEP\n1VDeTKZvQyfa3bPg9WB9x5C4J3tfPo0da8UcYxJ6Nabz9MRB3GQmKeqmVDYs5KDYCdSgF2v1vj0Y\nS6neOmWTjZg6DygbDQdVuT4qwX+nDIy+4PgJvbiHhIG/LQJqXaAadFyQEvtc3av9vTNlXCXaWu5N\na293neEvZrDGECYN8cnok2N+xxAeDHlw7ys03lAoMi2eLTQq59bgJoF3ofEr90f/dnKe2WRk+78y\nIPxRKPPwMAcmCoHTwHAcXk8kl+aijk91fF1XoymthhlvCxsPGQlpZ/04H6AufI+7N6EKbpN4j4aP\nEVE07D54pWpAP4XpVSRSc+W5XjiaP2SXOO6TUyVCmeRzV512Woyglv+QFoOXyDy+ty7m6XrYKRmN\niZpIOX+4CTW5CK0hn1vju9aVlESJXvaqH8p/NDHyE9J2OeIx1vtptu+716/ymX/33/OpR9quHcX3\n7Pk5PpgqAUlWJt1GuYIUNUB2ehXPsW7iZXTtp+3ho2/CaqSIdY2+6j7SDeV2Rdz8JIfdO/IEvaO8\nak48QSJYuAgouKPFOz4R21QZotd27A0dV7NqKNtZvoc9kxCNgH36XOksVdUsQ+/6kdrmKAkKfLha\nf7oeFOGcyY0pf7x9/Yt+Lj054vE/+2s05G9NOZ4MCb0z5zSfS48CI55pq+UhAw3MrLt1nrov7Kp+\njOHTnAgE1ttd7Pkaw561eTLvANG0OM9y1dtydoWeShgDNS5syyb1RqsAPRW9jdTJNDayAxLjKBIh\nbOhTuFNotz6r/eWp4Fak3guFu8fBKh7oAhZ4sNLbe/g+GpBsUBJ5tEk/n/B53fgFC/KP6jXoc8Pp\nQkSKqPAQB/foLF29JLWn9BnWgM/pOxUUTDkansb7HzFzldBUeTyJNsIkWLVQuPBLw4MG4AXwEGh7\n1DPlxgbPreCe0Mpm0cVRGV7HdfhPpiXTN3gRtI7lmYvniWgxBoyCOpE0L7DJQCc0sXmxnNv+Iezy\n7m5d+5VQ52AaF3Iy39JnkMdcHRerdWrDLISpC7GdzQn/9H746/Xw+ruQhYGNRF1SGmNzH82bZf1x\nOH+G9VtVGTWEy79UPqJhTOCv/rsTqp+QkOcSIYrrttGat0L7/La1Nqbhq/nzIrrXFHwghNdMT9/0\njlsdc1/6noRoRI4EY0W0wOI3L17ySCKfUO/oCb83moYEilOuwfPaH2uDKHLD92F9/pQ5rWFOjb1I\nYp6FIkeF3Q9eYOWfNfJxvKc2n9OkmNo3lFkWJUP3G+i05SaZYylQT6h3834GZJ0v7qjJ6nvA14Kn\nWWLbcLw67HluJGv0ngmpiXy9jznB03iHMpsjEbTMK88mzhNtn5ZRIcTyGroyjIR6ujJgn/t4TXlX\nQIGFe/zzE36iYb9o5EFDv445onzeaQowsnVwgnkdK99zZC2Mqe4TOgb9WvHXMv2UCZA5DCUwnEIa\nXmmoZK2TYr8bPZzhKJ+mvgolo4Y4P0D0psr6JtOKt6OiYWQWYuGAbP7EgPZnobu99FeiT42+f1p6\nEmtmAiBsSNnyiufVXtHiweL18/DCxOdWj4TnbTBF+qoPkpToIExHgTXAF2kojHnx7CyRTy2U5vWe\nSvNx9Mv4Nm40jhsCj7Ueq4fjYP9yu4Sp3cXP6RGP8z58B4aAwO+GUHBESO4fxuIezDOEg6N3msD7\nH4wEQt9at74eLGTHmJm7et4cpFzYPQsXeYb94W3BOANeyMra7+Wlfi81ujDj64TcE28hG/Pe9eGi\nxD0zd3QOKCGFcKXK4o4Z+vy/rzNfZ/b3fUUN5hTOl3Uu6XGSfZn3xET8cvSSzwU0Jj0zf6nCgH1m\nWtsT2mvPRiVjR0824bt7doZJbweHH1TprxT/S6QOqTIiFDRCIlOS9AhV8waSe0Ez8gm9jVl5wMRj\nVTuiIUaMd/jzqyDa03vM/V7zDsTvGEq1tAn3Q9iP1MucQwoWr31SkHbkpyTVKCOia6EfKe+ZyMs0\nKVo1+bIBuUIeoYHBlIZiPUSjUP153Ff3qdH+nezutzKLNiOiC+tGJWMbeqXyzlTEHllTJ1VL+GfF\nVt+V4+hPn7d5PmYj7/iNbDwshEHS/fJsXj/qB0XkAu6XT6g+WpJCWUpX+SxQHrhsL8v2eHMkM2oV\neYrUkOZGuxjOsbTttlU37TCDF6yT7vOfKK5rNz6DIcKMnG2ezMaWyBDDlIiiwQrnFqe+vFpEynwv\nKaqoyuOB5CiE+yMyv+iLvk5nmLRA+S7uVU/F1T3Dkw7xjbkM9XIkb9h1G+ffBHJCIRJhSLsWakw4\nCtPqhTQBiFwY+r1oCK88T1bQUAZlmGKftX3+nCrtLkTpMZY7Z4UIjYSXJ98nuUmK1uNjIauiJP5F\n4fUwJdcFWaG4uVtyMHbYpdG8MRikdMdVl66AAkmw8akVuwbMWfFnavdASowQGqS7vaapor544W8e\nTP0yj9ZbPRWxHM32bHGsRfkmGHSymEKivQV+RxiHGOGWc6yHb9Tux6M61UB1pfTgJu7GHTKY6K3Q\nlAeni7tBibYGhQxvrF6R8Zs5zRqNMAa8dkdPBBQtH5FNoR14tuSOzAUcf87IHIwbtUcF7zctw55b\nwkEy/zK4sRtmRxH8SBjvtk5r0pAJNFLuDALKFn4GT0fUiudUiCU7CmPUrV5a5zli7dL47RWF4DzQ\n7jXjxNoungbWHWkYGsOM8rCQgZTqdnqRmIEIvYhEPoaoL783/CaiDCW8IO1LE0fhGeSYokFC3x9R\nNOh9ojytKChd7+l3ohG+RqoMg2GRog0tnyYFBU/DHdk4annr7dEQ9T1k3nlAwzyRq1aYv7fpziil\n787RBfm6jh/WEZVr5W/6eccXNSzhe2hriEo/WzPNQKprPK3Lm/rwyEUM69reXzh2NF5fc8nYHFza\nsubTqmSaEq23odsE3OQOJU7v0j73aDgIa0jW+9fyp1NFoixctaP8vcGaSygYkfg9tLso/6kxoT3e\n/f/49JUTYdAXEuFDCgzsEsb6QLCtygSqGO+VZTtfuVr4BtnU7z0LOwg51LpTGT/JxIAx4o+f4fiZ\nyS24lXCOiYcchvmMOe42nyB8kHtjMY49K4GOFuHlOhqDhsFAbCPOfc9IloW+A2tVeUn1s/19Es8Y\nPk/hv7Bqh/6TLJvVMuw3fb5K0HVFASYaflehZfUaSPFsphFPGL30qmDeEfad5wRwxf3Bu814U0Qh\nYOLQXicae9K23PNPvYefIBEwqSKSiNyGNzyhHzEUfkLo5XlKW+8vIISs/Cf87HHN836Ms97MvTL/\nCO4noCTFf26IqI71rcap363zD97lbiw8AbIs5d2tFwvjg6Z8usbWMgftkGNPyFAhaiwrkGjrM36a\nxtW9jWW7N1T7Jyp6VULBpQyWzyeu1XV3/b7gKvcBzkMfI14MXMPw4kiOq/1G/1ZT+HsNCB/Th/P9\n6tnvJQ3d9WSKwEOsqspowzDWP6ct2Caies1hKLOkdYbHPAaed1FXtZcaLyk6t57uVMvA+NcNiLF/\nXuZ3L7kv+oXoy4hARMTFIqQHi2hqjPwaie90Ix2hDW6NLZl/gMhHpU0VKr3viQU1eq/3rc5xdWat\nh5AGhFu58rT2gX+AxbjySBPy3S2J4KWiamM7xvXF7rENIQDT22R91ezMVr979xmtCXrEY4tHEfFG\nSEIY+h1pe0ZyPAjDIPcsvZLxgWhY6Y8mdoJFEKwzlpkowkkRU/udlEMc8u9I2YvtfZ6KcDKqaJnV\nEV8mjwTpSha45QIH73sYqToYs0HpSajCAmct7q+UHn23GU1A5PP4sKRV8x6O/EePN9R5q/ebAQ3n\naghn6HEuvKe18GFYQ6bqnYe5esMSsvHvSX2KrKruZ+bF+xGS0OIRdSkUwZBYD3IaIFkehORhVV6N\n0OjF80tgnCqEYAMQbUIZ7D7tq8Kcab9XmVeWXCBX2gmreU2VSXqNtaxrF+8JrKho5Q72vRvDmEeg\n4L8tGlmzsSUbeHGvZ/L9UN6e78LyDARjyBpHXPGEfM36Iet3RGSIRIUI68b+WD3z9+zV/R7ls0qq\niP+8bN+Cmm5muawLh0mVUBON8ETXPOUpD7m+ntYoKH9EOwOZGw00+d/qZKmRDMsx1sSrAnfd5EDb\n41lpvw/GulZHhcx99nuMqyIjFLQdYskg4aK3DwyI+KzA7zrOb1kNAxoitu3XvCb4ecqB1biE/aDD\n6Qx5zhYyQ76uawcNTba2qTaA7PqAzqnvIUQd2Ik6KQQj1EnglNP9t5hkPyL/f9Gfh77CGSZVTMU2\nRnJB7NTNvf+AlW5nak6032zQ6OAKBzKcVxtHamlm31COMA2YmpDB1VjGsTQ0E1+ZoCsfGZdzujCa\n7bsyu3qSwWFEuAo3YCbL1q1K9asRte7XVRC3uq3fZBCzcuNNYQF6326zwIQ+o+/QRmYzvOg86jL6\n+q2N96N5EaTJjJsXOsmNC3YKxcwVocqCCWu7gFz73IPUh8fY7R7BXAiaQFC/K2w9y4q4wTSYoXmM\nOXyOxpCcnOtubUnXvR4F+Zloij1h4oLiSOXg5h5igQm8RwQKE9M+eacJ+nO8SWxsXNlP9yOMF1Af\nba6hkTcjhjU0GuE/S3jLMkZCDEYXNqMCMLWbcCrQjymHtzQm4tn+own17teRKgRKpmwkwDW8lEdM\n5+z7jjf9SCxnHouQZ2YTFmHvEeKAUfDbjS8a0xoP2PMd/LdEYbF/1r9YQo65RQFREfbqdK/QXI3E\n8rHka3eQb6GoBFeGhOxlrPpqfUk21Bb6rryuUqQHP1CnthrmiHz+jfGYxkXgm67gk3matQb0PGr7\novE9JqJjXrfDCqquBid8ts3NtLHYMZm7sUIF3fcmrwMNqNVsi1DsqTQX9+ne/ZRqAxlbOyvnTRWm\nsnpfHzfBytR3/rK5ncSAmzKU36tB4W4U7k5jiPeqs2OsP/OEq+Gd8UQlIUmGaT2dgYRI2BM8Yp1u\nhARnlzan6HzlsBm/p+8WzqVrFGTWpvwK5MNEGuJhhk9VhGld/0fheArIT/tx1tc8EamfjiSls+6O\nt+k7soSa4O1XQ5QnNQQemIZa+4Ky/DjxpFNnz4W1W2douNbveYPcPkuTN6Lsx3DqG7YN+KQZMyfP\n/Fl5TP4o9LORLn9U+kIiTApMrmCSeC0zLIz/2iIPaDK0q3jNghGEpH6FJ7ixKm5D6dDFrtd3hDkR\nYkwwWShD5Xmw5+d/1e/4V8st+zuFuheT5UPAf2Ec8rgweuA8ZgwF6SAM9CjojfrVylo1jpf37Jdi\nAk0cc+8z9J/WMWSCI/q8yqX9mgTSBZ45R7JWSYSS6+qtN03bN7EryB8Kr43rv1d0dYtvlLLO+aQY\na3xy9v5WAo4KV7USWMzVYk6s8Mj0jCTPycajHNqVhOI21zXykuxVQVSKKrGoCDAPQ9RtvGKIwyj+\nhXvzWLAV8URZf+otqarP4Qq7z0Rk4QtXAj52W/NfrDcRBSQB0cenU+RybS8gEE5VsVVlE7zL1s4P\nTdKehBSVgIdtJgr8PVOFRLBrs/0YHmZtotH3ar5kiHFP17TsO/Ikd1Oheqi83pVdKUaaXNE8osV4\nofEDM/LHuu/bVzkMrr7v2jzavRoPKqOFlpvfFXqwdb7qfBmKkK9VVDzuQt0Cb7m4TxVVJt9Xmf2h\nnTyxJq5cB6eSv3ZKfPSQr9d9DXu8+3IP+XVPKhyV6IrykYWhvZUhwmTQzzSblmSr0HCiZY1fUuKl\ni6ycjHJK2/dJPm6G4BJf99fJSON3vHyFVJwV+96wCeWp5m/mYyPBIhuqR+fBqSgfcFJcUbnOYdCu\nEpGHNidZR4AHYF32mWAt/mIGgi96Tl9IhEkBkknjODriVSgODE/hq6oQANSeQfmbt9JJwGSbPz/u\nmz/bBoP13DMJhx3p4p/lJp+UEGwMytRleM13SSDH+NTeiieUkQgLo1Ljy4N+mhWbfCNu8F3rueN5\nDYSfUe4zLpk95igYGLMVCkiEpQ8M98Ozajj2/riFvDU4BlPbkF2SlDxwCGcnCoJB6EPVT537TMTi\niRSb9U+NN/C7PatjG0+rMC+h6LPzAe2OKV76HRtZGAECvFhjUZkQKoDvqzEZzFA6b9fVKozWxoQK\nslwRooSqeoLXhinMZyY3djV2z9GhSATkUUJRcENXYx+eKkMjTEakx1xSUp5tytwYR/RIUra6o2Hu\nR2PBrygjEXA+3S3nsl2dg0D2SaiSdB6JrMh5EpPP+Sp5VSMf34PXZKWZqquKyDpsbvh8UN6CBouB\ndnjuRVFegR5PpL4RyBEopYnlMhyfCJyeNlWjSoff3HsXlWSsvQs7n7sxCI2xYShnvG8RJnmPRgmt\na8Prqoxh13SFyqkUIUVB6fdocHU+sVfEqnYDzyx43Xrfpuy01z4x6Ny/k8TTaL+Wd4pgDMm8WVOG\nRHHDtj7HEvMgZMOX0Ej61wCyH091mP9+QAEb71joBE+xttu86U0eGT8LcSGUR6R7o5g8FIwCzQ2X\nu3IV7clN5Yao7F+FR+RTLdQwo7U5kgnbHfd43Zd1r9T3ekW2V4FzQp0W+X1an8kTCV/1JVNlQF7a\nYxiMwdsdnaaFw73N+TIa354QJihXWc2cctPBN8pj04k0n9eoU43KLkv/KsaGH4wQ/lPRlxFhQ1zo\nGAvs+fvCil066CtT7bAxVwJs2EhIgrKhDFMXv9D9RPe+jH5pIpuQ0GY1Jn9EV4qEbgINvqPSWSbb\nAviaCX/zNhSckc5zblC9GNWcCXGz6ywCIEIAL+4LbZ/M+mB4XxOWyjwW5JvcQDKMUxQMLLf2Do07\nsN2qP3pxl+22eTeTBU4IXLznfhPRs9PVe9qTcEQU54v1O0gqKxoACeOl7yjHY6/GArY1gGEreN89\nCmE9vrG6T4mpnoqOnIn5EIhWD5sdURex1fG38wwdeXpSTGWsU34T2vAdvAIVpYxUWO79zvquBNlH\nSISL53dIsxAPC0pJS0bebZWyrrUARjL+d1+e0D6Z5pOs4eO+61NuMuwYy1SPomasV+iyeuiu267P\nE/WC2Tw/8m4NzdG9s89wxdGYoUzYOe/Ey9g55Bp/04z987sQiQwPvh73Wo3RU/peWR2TqykKQb29\n4ag6RCGBc6EXfR3t2XdEjWtKq1c39qZCvLUmtUCU+xc+X49SNqbf8w3UfAAAIABJREFUByPQgtLp\nMsJGs7d6jaPftwVDIp6242dRS0p4pqc5Eao97W7/zWMSjpmkOP/sqEe8H+rJDqhqXa1o0fT+d7xb\nooGDyMR3e1c5WaLIOAns7G3I1b0BUikhe2RtG/J0MxCkdt3J1XcUj3Kt60edAsvMMvavYjz4opW+\njAiTPD5LTAlXhrXCo2eYgSVWJDqOTufZqLUhoI1cBKrMzDpChfNZ9ay3GEPmda0LmMgV5wHj52LR\n87QExzhli2/MoQyMjDAyxJ9NZilWwZd9I8jQLAsTaTKsOjNx2dF6UOI1jnwnXo2YrWxBT9aRxEmv\nQk+wlp3gikLz2Dy8fSOuPSkCU8F2b67PydZiTLImgwxJIXPlAT88/t4JBXlzyMUrgkCNIRXpHDw4\nP6tlemgGCdFJMR4Y53rvHBJFhjOcS08aT+t97AOSZ07ejYIqOfk3mQgTrA8+XwitbsGvjE5jPqOg\nwLQaBcfvM8lm69N7DeOVq9fx0n+vBmgEgTnBYECIhQi5kItVONRx8jiBe6aV4dagdGNMqYyBn5Aq\nq2USxLJBK//ZF07LxGImkkbUjjWcIc8ZG2ec9zCeSpeCor2Ta49bPmp0W96F/UHX63bN73jgLHKn\nMH96kkp+xsM6eLlWtWU843OrZJ3n5A9vIX65co3w44uoqi3pcaTDmMDeFkRLTa+z1oenKKjioa9y\nzK+9IuC/J4U2IULyYxXk2RBcAu9T23wXxpAGKRpGhTJajG94x0cQe9rPzerUESzVE+PVaBtF9uQR\nFHhHanSSovyyTegQwXbBPDEjK8ERsm11en1CC0rOJlNtLMT9qcqDo7LTwf5+qzxiXZiOTZvMgKXf\n4bcytwTI3FW/nhuZfZ9Ho3KFzrM8FQ/frz7fYR1Z20AWVDraYDhoVND1hCExAgsmyFxtnf+YB0Lz\nZgxUjT+vaOYX6BS5bCR0svwq9GkI4p+VvnIiEBHJtfCBFJIVNdrC4J+Up4xWIWDb5t0oPEoIhd7q\nluRKg8YK93NYTaXrmbxRB1VB0Pt23xav7/pmay8I3K3VHn4lHTeDPprSjeVF5icgDJTvBrl0oXDf\nCS2mXCUlKLRvevGZwDhEnhvhYFewva9if7G/W1pw9n1k5O8x0zgKxlcWae+fBAHniq6UQ4TQfVQG\nuCEUariLV8xHGYUi0r16NJd65fJmaIJL0Rw3tvkYmoCARoztxltfyEabinJWekmL1BLDnT0uZkMj\nzDkBEmBlQFjaXHdlWW87it66+E401rr6Xe//FN2wQxbkXDCjAi7v33nqjD9gDDq8FDOU6f0Egqg+\nmuZJmbtjO08k/NPxrxSwJSXGUlZZRSAz+qpSIPqP53WxvuX3jKFHS9sI1mCxRkddkXff7q89/Lnu\nF/n81bLlzUTTkNDfg0+8O3ruve/v7nHOYanNmetRRbFjVV9HYmMO7ym/u6sl4InbVsRErlvvq407\nWj8ve0RFT+bPqC8Z0ag2vqLCHBX7qu5izRC0/yLswRIXrtv/QnlOe13uYc4hD9Vaq9a487rxzCfq\nyfcY4nYkMwcR5gQgQsVz5WuxMX5/6YS5EB53spnO0ZiEOMlWBYoBaccXQz3x5VHOEVQp0lcGLzNA\nka/H6kSKigwcq8bo2Sum1bml4dPZAYl90vW0Ih7EQ1PJHZnM8+QzHrmXUJ/Iax1DH/JJSV/056cv\nJALRwrEtA/38vbK0osvQ0QIKs9dTEWqG6DFnvrAtgR6timKFRNAmOLNRRsDmva+kjSBc9LjB6gZ/\nyrBKZtjrk80VPTxPjQ3Nxg7HUfso4dhHzUGBzC8wOKIyFEX7PuqbBgu6V2aV9t6MZ31EUoPBQBYw\nnUzmVR4QOXinczPm1N9QWJMSkSBdiNNutROo0Et39d7QSMWEy2DM+RfH32hjeMCs00RkCIKcD2TZ\nbHv6q/cVbbXkm0lIDO3YdzUIhzQVXEWLPCUdJ41513WK7TMkDqzzMZaIMBK7/zg6HW/1JFxQdp0o\nmsPQCH0KimB40cSbyVupfbmKA0XKSdSeGBcWbxi81SC0g2AuIqWhMhgcFgtQ/KohQ4hEQKislzmM\nr4twrM81Iu6u3GOzdkdqRSPjmCM7XnNlwMG/oaugqO7WAF887/f4/oTP5fUZTpDRNug/IdrlfXAF\nOSoKuWyiOA5Zyfxewn3Xkka+uyERLMHgT1TYiFwhC57mndGqQJRom0sZBSi3uvKuj3eU9hCYP3fI\ni0+T+imZgjPf/mEIgXSjGoY2nvGf0S50OmyP4cnNSvO2vid6z3fvGA31HgJXy5L08PodLUeoTh73\nPcc7ouD1SaJHSfloiNS46J/H3w+akpRqy+EBpzOs7Rg8XB+Mhsvr+hR9tpS5GOe9PC0TeTCTO5iY\nhQ5S1KpYG7Ufn81tSX/jNUxUrvkPrpBBKCv+ikiEH0FJ/pnoC4lQEMY+X5EtrEaBAeZEcvGZLHXt\nZ2I+1sg3FwmMQJlO8HwTXULOg/FgIhMwoY2SekLse2ru7vvqHV6Pmhx98XF+DCWmxHR1LIr73IPz\ngRfrQpquIL02DWDzv1pYepzYC96XCk8veH/hGQarNBcaV6bVFRjfIyREy/H92btfGbYqQsXLlGK8\nDmUwj+OLrtaK3nenBOJG5oYinRvXbd7FbpuSqn8hfjv8TsMTiR7D3H6EB+7IN2+xezGx4nK/bvhz\nXmxDbwxVk7XwQthRIT0pvHeb5VNFLr6n+p4q94FdK3jK7tolaRgZjJmGld1RfmZbxYXwtZQJKB83\nMK17RVxLYHSdYinOscqwkD3fnwp9GIbkoVYfFrKhMc+4XHtKV2ebL+V1QABQjEHOlPlaDPeTkM19\nQeVt6n/qmX9CWCfW/WzNrXfhuOzGetzHy32jzA/XGxDOl8s8ClXnLhTb6p08TaqobblqT4WWwOR/\njk7hcH8IgXmg6Od5XRv9fH99Sp+uU0Qt5nwDd3tZuJcTD9w0mhP6tOJT1Vwd+2Ssw+W9VMem0aqM\nIz+306CgTuQjTwkRZ3oEqCGMppMuy9iOQHD5Vp1eo73aH7G/wUCFa6yBURv7msJkEGHiOsQaJqdh\nY3mfyc6fL/p16AuJMCnAToXM5q/rQihtnJ2IDnKBdGN1DZtmpShNyNRVOENOrIflqfWzMTvcadbb\npGb2Bqnq4HkEb8voXq08ZE/13fcntDI5MCj06JljphFz3DzWLnp31/KFRrgGlvGj5JbbZ51VBnsY\ng3YF0RUINSbkh4Xa0emoIGvfaQ69Cxm5fBaMH5lQ6dUNiMMqogmV69PrV7dDUQw/mt1fN0Js6nXc\nNMN9LowgjFjPftd77N6q/odzDZEIbnhQz3Q0LLXWPSfCFABM4UFbQZ8YioREGIs0hriUY5GNK9b/\nun+7vqJC2+V6/XHJseY1jnVfnYCidDt/2l4gLr1KPX5uxQ7qsdbaBp0rEdKfDViNKDTmSbjLizsJ\nN4Oe7tZlFT4Rysz3p3aJhUyshhFmIQp5CuJ1g+Nn3gV1afI0iyGv2sgycx16cr8qxErSvlcph5y8\n+tnQF/JopOVDNNrXlUcVqJ0KWYPXch/b9DpWIVhXtJu7layBe1UdQuBzHucsohMR8YB88LKNbX2f\nAeFToSsovrcrj2tIdifxNzQsIwUe9nAPrwxXo56IBMC8PF2IZMbX9+lVzs+P7PvsrHnTnAr5Y31g\nCXHxS9vT3IzXmALqQj3xN1ZGANOW6/rKyGonJC1lRkOCzr939+9WflXmNEbevdGnyA0sE7dPb++u\nfJepB28bksgbynkiulnOs1xX8a5zr3dokvvQXOfzKpeiHPdlLFD+/0VE1w7TX4o+hoOpNbAx8Wsq\ntirIZWsfGAA8oVYqDmLeURFTigYDhT+OBX3Mfy8e8UsH+9F67un2jVYZuMBG+11jUNCnOm1OrrgN\nG1BP4YQdj2R07j1A4bmG9cLm8+Ckg+ypHG3cd06vPBlBJn03Mj3yBHkR1Bs9k+3pe3zFOTAbtOvs\nbNR+p1IkwpMNTYU6S+oI4hQqvdon6wcPRc/Koaws6zqJnlcse/SDHk8sQxGxr0FcV0qGWCD3Go/v\n9/VktE3wdBb3W8gRr3u/xzPKfPc+D+K88N/VkFad8b3IFvCC5RPppSgi12FeCDOCMaBRPqrCSEgj\nyYtrQiF04c6AYEaPnoQp/G5JquqydhukpPHAZLu6TonoMbpKPU6oyFXEcP9rInkO8ExeoUIk/c20\niRQa9e5CLECJQISCtjHXfTf1qutLPoSL50uF8cIgzvBX+ZgZ1EPeDDCwq3IIy6nq1lVfsQ87R0Ou\n76q8vN52isJ2f6V1XD0/QyyrWnZXatvOUInJ3Vy28b1D9x19J9jAT2SVBdHTnG9W4/Gk7CtF6qlx\nntO9Fbx8tJFMJvA9FvdONLbgP7+fQ9mpHbBucwhY5l9q7HLeH82+Nq4aHsb7kLuKN2LCUWjGltR7\nrv2o1iK20HNLrXU7+mL+fRrGAMcsojf/itIwe3/I5QSeMqA7DHK9qmskuSobE+D9+5ojW3sN1qDy\nQ0XKqtyB+84XfRHSFxIh0ZOYxwjPIhMc7XSB6T0XWaFgO9qdt31FyKwU2qxxtRlSnwVzTaqolvp+\nqrBGwRvkULzZztSdJ/pIlN+HZTXC5ff96xuYcc6s7JBeISK2ZyzPQ5+Z6VmIgzBSNViiANldsHxC\ni2JHYGQw4ciVxBMURGx7NR6aQG3bgQWzLA7Ng4SaSDLbOKzstcCdvatEcX7p2DOBQg7KZlRCffNS\n74lI7enxRk4lWOdtJxDg43Oa0Gir+AD6BmO1x1yPgrt639COgf1xQ4y34QqS/4TGWHpdO1IhO+SD\nmuuZc5Y3JetYJ3p3kjcFhSl4XaleHz+KDskKeHkPek3LNhQCKIEgbOsf3ksK6r6K/c0Q2XiSi/+9\nQnKgMFfN7VZ8/jSuXLNrWwhMMffwnV7OJ/gbIKws1EQRMdfoq12S1q65eDZK2yl4jFtWWtV44Ot6\nmyDXCl159t3IouLSTyaZCUD62YAfeE4hDDO4NY5Uv81n8ny140An30HjT2VMQB5w1w50HKAxxPsB\n4wXXtO/l3lB1bN6oKCiBvj6SsfJ39kF/lKeJfM093bdD6A/RPHFG5517l3viPeeci4qUUSQCtrEz\nUUsef4F7cW8J/ba9dMz5bS4FlscGyzuKaCtcz/fj+MneoI6sPvcrPH1b91TLRTJHQotvvOYBycbG\nu5CnS5q8/ZyNyuE85SOJ99lJaJNnvLv3B40dIrJshMiD8TQFejiXia73ph1hThuV6fD0N78v7ic/\nZ+b9sehn58f5o9IXEuGG3Lo3v+NyaUT84oFGgJAGtA6G5G76XJdpeCDSnAiKRNglZ0GLssUxkXos\no0f7CNboONFPYGxE60KIMXy66Ys1e9wjVAkzmXLsswr53TZGGGM7hcCtxePa2BwVGaCIBGY/5o5p\n3Xxx3HTzR3psMRYtpxZ+d1SNPYYBIJIEQxvw3xiP0fd2+BGPLxQWdrEFpkD2gEhQg8jST4qeSNyA\nsU3qdTaPOHk/DmjKq817aW2eokjMg0rRo4L3ayJSa+cDq1WDdTfqWRWj0Dfee9IeCQ/pe/B8UOEl\nzGM75/KLJYwhrmcf+5lYEY543DJxRR/kxiMygWgeo7krxBUZXPOeN2ZNXNmoFvR3Bgn9d2UPy4ka\n8Z6d4Dqm/1T6gkEwfidC3gLePopoD8tcTquAZiiE5ryaCLxkm/mVxy2/y3DEHkVh7YB1tENiVeNX\nESLC8DmMuz1mCFLen3T+ZiSZK+U1n1xY1nUTjZB/KU+0MiTOZW0P8rY8z3IyO0QiYJ27nAyLN7EY\n/x0d3O09OhrFZYaKcL0FtMemLv25yrPxlCqFbNnfsIEXpJ5Qn7eIFhN6FcbyTwX2YOA2GSL2Hb2z\n+P69G3XI4p0hrkpcF59XnrCuJXwOZc4VgSAuG928U5UXf5Qw+d5uP1UkbnxmfvkAAbeV5/S6lk3w\nftNaz6FXJYImoxI0hCnkQ3Ae/P+z9zYh1y3betAzaq53H0X8CUYR7w0kYtJIQDsmCCL4BxEVY0Ph\ngkIagUAIYk8Jdr2gdmLLRjABsRODiAabIcaeBiUdEwleTCOXNEIw2vPe/a0qG1XPGM8Ys+Zc6/3O\nuTfnnP3V5t1rfXPNn6qaVaPGeMYzRmnJYHjo76z/7t1eAfO74nNk3e/h69A8QCZCE8aHb6c54lxn\nGqxxczQZP8b1Q+agHDMDjnbWabw9P0T04FtJ5RsTYRVHMQHPB8DY9LEAQP52KobL+K+T8kFk17Wa\nJaA6Y7mutrmJ7/Q+xb/h8dNqgDzFwDCYe/ciE7vUqb1W4og+MhP/S5qX4W2I0r3DqxI1m/GJkliM\n0sv7jgWMAEBvOFoHkzx68p1qlTBePHll9qvaLp5Ta8O9wWtXqNdPw06eQ/qZ7brjVDtYEPX33T/U\nE91LoiD2y1AwJL9ThkbqQssxxrZWA1mNcgXgXEEWJWjeYwfOxP29vupFVgbN5r3wGJF77WM/p1/v\nT+3PFA/UzhB278gIL8n0MAToNn+Xa96YDwoYcMmu9SdlPrV+sU2AYuRK5ZkngeDSeGbvYN02Uz/Z\nli3dvTCA7uJ3v7Z0vLdbzM0NLkswMa4thJ2n7y7uN93/hVeMc+NqP3o/zz/DuHcGGjj31nv4Cb2A\nJIdlDalsEJ6n9b2kMpd5Ty83Pf1nFoOlsfcchgc9lLXP+C5LyF4wl5DGeLQtnuf3ea61WTyhSvJR\nZkLui/yp5Z23UhlOvnYLgP8KAK+x4QGIsx6WwON0rTOyctgb38EMixygie1r7LwIaAL+Fl0nbdW3\nAaQAXTO0ATFHR2nb1Evk3ZT2DN++Na56NT287SemW6pSNHGcE1AGy234ACP7YKzv+e5nSUEmxNeW\n+c4E9Crz61RK5zFf10v2Tzn/uj5v3GOc5xpQdKvNfSkPnngtc3lNH7aVU6PH8xXMZf1298khSGRa\nAKHbExCeY+IqNGi31qdy8wIDtJHTX64/Z13OIA4u28ubyjL9oZQruflDLN+YCF9ZrAH2AOy7BnuY\n50Rg0r/j6I7KKkI5lqVh3AvvhomQF1uikd0Vx0cL7zS9ldw6sHoo1bDpUKM9G8qVhVBZ0YxZPgtR\nQT9H/ffw+7nXsdxDmQhAVlybb2G4+vwxjwWCuh/IugiRBhuexqs3C6DF3SoFWpW7V4L5qpy8+RaG\nozIr3OBugB3T2+djaaIMl8/YeezDwybKtSxPuqcxIAAC4KwXouMPy4t4eM5jTHIR2hXG+jlThx5t\nWUD53sYXiDXLd5KVIi3qMYln7OtR80yQvktAoC/wrY795wtjb7ftoJ7nHnAbaK0npokmNDqMoF0o\n1e0YOI4c27lVzFTzV057qWzd3lG91wPn/tWi8ZJJ3x+5D/aMgnzjhIkVWVJzIcRwGP6ZZMuSeDsl\nrYZuAJmJACBkRbquxsnHtdEh4YlTwOwuZpwAgMk1V4XvY8CW93qO7QcZWptrZn/EGgDkoeH1uJsj\n7i2v70wAO+T5vjPm2N592wjiy1qBKa+ulHeDxHOv+lBmD8rpMp5flRneF++abJY+DF8uDBqWd1kI\nfIeAjLULOXXH5GF/a14j1vVVHeoztE68VzrnvVuVG6PMmbin5neKUMwwWlLdeoAS1TD7WhuGTDoF\n4QAkYOozyZPvypbJUf6dGBHyGUy9qDPX5mjLnsE6f/tEPdf40SVD5dk2lwCoU+bz9dmdXrhS73hu\nBv3282DThxU/vHtVu61BS5sY5stwKD6XelEK/QHXctHTqcdY3L/WLQGb2MtJW9dST0psSTIRdH0p\nTVMmVeTUCNZGE3nj7Kelfz5suI5XcyKcurSs19/KD698YyJclDsjsxq8BAPy9imRD4GTdTfPrhBA\nP6bUTISBMcZI3qcw4LhLg7lwIdatTITsfcRWwG7bLoyG2g79foeca2I2p61vPKiu0Lex+ncdl9AR\nTSQzBWNG9q8UWZ6/Lf18hS4UrzxAnykzLCUy8I9VL/emS5uBs0c617tI9A0LYZDeXQoVgVa8KbVo\nXF5aLJETYwErMU8DjmF49pFBCaHSVZqtot+pbZ9YqNSoqfHitf1uiFOpRyyaO5p9AuTIXhr5t11x\nEMAVjHh2JGUKIObhoIp5/RMtUQCnVL8OGGkWVLz76pPlIbT1m3v2yi4x06CLG9NzomPDEK/kJzEn\nvjYZYy2tqjx9ec0LIAjM93ti01Q67u4hpOlI0fwKdyEsZ9BrPufR3mB3IZg+SYnEgLLRrspO4buj\nXefxGcZMqpP8dmoXkIywFLoh4/+kRG+UYm3Drpjc52792fZ/OYdrJPPn9LH3Ml8aALAFAK55PoBu\nM6adLAKCxmEwDjwXA+8q4d623Zt3Utt7SL/nNuQLq0meGAY4t9Vl4CeNiCZy/xwukAGpGrJx5w3f\ns0IinEHXmXpuDcf5mhIq4f4+QRvPMiafQ0bi8HleSVDMU3LHwsz1+rp26ZpQn8+6XlXBWWmne74n\n6CtDgPODBvbctSD0Cb8OeexchV1kECZ/7up6Clta97c2YD2HIF2BOspUqPeKdsa6w3sc1vFoQFP9\nuEV9I5n73uAPcDyA6tDHDB3hxLRVn3BO2krYjpBdS8l3/X3zzJ/38g04meUbEwEx6XbCHNgv0MaZ\ntqwCz4HAmNiDXuRYmAJJHGD8bNzv3kPuWWVFeQyK+Kw7UcOHhfAMdD0MpZwT4XN9dZc5XZkInylt\ntc9s1ycFaaXHzZWiAGou6zxsJlaUdr9TNAb6M2UnXOohnqPvXN+9K1ktxprnD8C5oyPb/Nj/6TlQ\nlH3+fRlTcUnME6mvMj7U+6dx3IbMVjDLAsZjFS3yFbzy9KgHIxJE5rZczdNdjgXek56PJour9w0C\nVGG/KI24GhDO7tkYaLkt+ZN1PCgraFQAPrerUlANuR2AAKz3O8p7r67+VXFPeofz3O3S9hra8c40\n3zEyyBSo31/JjRpKUXOsnI6Ps8LKfAgKnI6BaeWJTL7NlyLe1bE01l1YwyuvcgVkdj7Vc84avX9m\nY90Zkhp6UD2NX6sMVabcq8RubG+djxoG4cl9Zbyplx1YnuKNqjwgAHkJTekIsI+0Ys5zLcyh07td\nAuu8budJJMhT332Vhdr2XZgX+0M/vY8qAV5+r7/51NdnIgM+/eb69Nyh32ULw811Y3VK2iqzrKU0\nAP27xdpWwQ7PY1KS4qZnAhF2cgNs7HQFZXTtwJVtiCkIoBQgJq0lVt7f+T7be9wxl3zNirXLAZnN\nbgqvinrcgSLbXhS+/9TGzbw55zay9Nvl/aGGN+f/+Rw9N63L5eQMIu3qCZHv8bxYLkM+KRNBQytv\nmVZL1wqdYbiuUcsOmFXGBxLjYyRdzHcz6SGXz+OmMhIULA6nxm5dqaFs3wzqH275BiJIuULUaz6C\n6dHDjDt/zHAG3+axAe1YFOpjeJJFR+wouJZFxkSCcX+pTznIRHST4jTw0To+LMIZ/K8heUEAOBsh\nKQz9eicACrbfqLjmTGt+ryQgYUOtBRB09AE8x8BThPa8x9kjcfm8jVJ8hfxf0bp2wtYXRb0vwRBR\nx/z5m1lat6zjzXUbv31IQwEQkN9zT2NdEelz+AgxNEBAK4NT4nxhkvvNc9cYPnoKN8i5F9hOe1uh\nqcUVc2Hs7EpNPMXTPNeBzpn1nYozz3kuqjMVDjWCsI41y/eyJkmO2hAABlFn5L6tuUDIsnjZP9Ui\n6XlsKcDW1ZBT8KT2G9Qzft2/Xwsu3nqTq8d05GOkwgOiEDsYBXCnkmooanJFQPqd9blwy74CMbX/\ndh4tPut4Qy5RhjgYp2Ncn4v5/nI+gOFzvs59lwHIBpJ6jXmeK/QvvKHzGaFWJwDthdfbj4mCXo3V\nyhSZoGM2UILiL0bGpsp1ja5hL0PuE8CrbUObeL+rOZHk7I0HnPIn5mMYbum8ZDjZ6fjpvuUGaqzF\nMcoBAWPq+rY5ln68KPqk6iVVADXqa1sZ16VvQrTdoGl8ZjsbaKnq4zzOrgAWZeu8Ku8yB+a5tT8C\ncErGXsvgAXcJOzklbl6Iy/6vdJzMi+HJ/nI73mvzlkWyuY8h6x9Vv8jPlvtLOEVy7l3Uj/qXhs3c\nrUmv+lgL502M36x/5PnBNSgJjeWs7MveuO7nFCbTaEPE2kEdzJO8Lv2Na8qxaVdNqvpDLOM34e9n\noXwDEUqZhsHeIGRxr9PNPPraOXZSokRxTQYcJ3kx8HJMvdyneOe6euHkU1kKcW2+x66od/QzbX/l\nLXBvfEFXRtkSc4cqU2kc63f3ypScAPki569uQyxq0f5zrwwVPnqCcR5Pu1tqPJ0DCVwYWK3ihZuK\n7qgrkldoPLuACqXuiDHQMZXhK+HlFGqEYeuLmwULwbP6QtsgbIvVJmfq+D3OoNB2GIlST+OkD2ET\n8f6AKFxRR2+7xHJXb40bPBCgZeyN4flbxErW8awsk91Yr8qsKo6t9huBpguP7+n9JlqJvH8Bm8YX\nnLxCNOb0dmq88OmVmq7HahLEnzQYeXXfM7jgFRIP9fv3VW8rj/dn3MuBCTW0eqwhfmyY960mhXMs\nZweIitc1PKTzN8+jsPEaXYlflUOVjfA1QE9iIlDhvjn/zluVxBeQxl+V1VncbYCHdfFMVgyv104O\nAxlsj7bldj4ZtgQaFPucG1NO5i3RlBFI5XvHnvpxlLEKLrLo9oT1/Jp4UUttV1pz9D2NydT60ifb\nT13AzkbweWeepJL1rAbcpVND13omurzwJHP8VAAqncc5uv6d2JlbMGWNPZz7MvJP7HWQ03i9qNOu\n3J3nz+12m8zwnukX3xOL5wu2k/mqPq/ERlpLXGa+vm/CbN9gIihQqIDhnexJeSCcpRY6ZkfsajbH\n1XAWQS27cJXr5+a21DXXkNf6KxDLr09gXz5XWQenOiMDYeoUUDbnt/Kt7Mq3nAir+CRDGDZO3xbF\nzNFQdfu0vMWjNYONARvLY95o8F/PxKDnbyaseMciBhYJQHhL1qV7AAAgAElEQVQYMGzuyPDRIj8C\nPcJTYViK3s6YcYXnvKi7MYh9PoS79mAsxelCO93Hqw2/hyZVdPaHI+1je01VCmsSxG2ICQC0Bk+q\n2PR8nNgLOxp8k2drLgob41YIS1QMxvo37DzWPJwFL1ZFLTKY7+jGVAy584Ya9jOB50zu8xgD3w+i\n1CMpzDR0D1l4mPAztXeh362NxEZgdTNzB3vNDQC3Oa196/e3ATjwFvPvKrmXd9mmX1g6xinmfter\nNU55R2l1mbNkxKORqG2J/aFz/DCynLozk1jjd3cKmOcaxpJbd0WNhdpOz8fSAHQ4gDl/M/Q0P+fn\nyejSeXkCIvbXpHYYUsUY3/mqnKjVx/wLOcv3k0G9UyGbTGVDYZ/NNmXPl614Xw1J260R99vILhnY\nesojEnNxU10BGxIrRo3a3frA5GqbH1NuDz1e/p0BtayssnCsvVsidnhdf/Ign6/R29c+axioCXOr\nV/zK9A6AP+KHD5vv+YnVTwO+sxLlUgU9z2FZe4BImWB3pcNwYO95j/n6udJsgge8/yUYccEiYzsD\nMA0BoyFd6f3tjFr5a2N7ystyBoXzGEw5PdbnPqDm5hmIifUeYyHyIugxQAy79Z2e/52cNMu7TM03\nZVKn+f6shDuZBfDzEyvycl559K+OMyeCH9s9ZmCra59D21b7h+Re6HBds553J5s+Y2zX++xADp8T\nCNmbEiv2cVq71fkw663r2L7iHB8a0qD5rZzxganH1/w2z9qOnxn/+Y9X5jv8Cc6Nn+HyjYmwim7R\nshNwSfFIBi0BhPitUmI3D4vvF29gp6w1hHGkNHNmU81/Fx6Wk4J0UcefYCFiW2OYVXhG8qPz9Z5r\n4hOjtVI/k2ep770Yqbyhyaa44otnfeWtw8sobU5CK3mZ17/JPnD69ggreMNEmG2wiBcuz+HiweRf\nh0118WHDE+24IQCIoVtj+8MD5+3zHUxCia5U7gQkXNSb75gAywQk8vyzCwWa963hDNHf0a1Z0dzk\nR5Du/kxpC0zZ5W+oxqsv9BfhLVvGTEVBfIzIWBmQLdB4WsSNOw1e5ysULJtAQvWu1n57p28+6/HY\nvxuVL2WuJ0X2TJF+W8YwQSkpsqJ4vtriDJC+IqMAASKxXVFlesCo9M7vbTF6NDfCqyfz/b07TtWo\nDW86ZCcPBYHOxtYpdKMARSzhNcye8+073BQ9X9+rjmF6zU8KOzL463VyD2WuU2JEIHQDdTiYWZoP\nNSdCCu1yNkmWA19bwmu+12XUoOC3zxrf0Z8Ml6nzbKAajZUFVJPE3nlwNV7/nXoFq4XXFb3HDe9s\nUH+2vON1HtVov/Co3z/nfGznVY7xM9KxKz0wea8h/THi2lyPF7UugOrXMtDckD0dl+8v6rJn/t1c\np8zTMs507bsGEsKJoqEnwL7froaygpH1On/2GhC+Br/IR8MwaO4iN0Mpe+z+sM5pGGXXN2FF+r0U\nlBIQ1rJT4Fv5YZRvTIRNoUFwyHzgVzdQBEgYS0OYxwasw9kIpG3Ty6x7FSfAQbIH7/RYM+BYk/tx\nTPFzLO/l0Qc+VmbvDzN0m3VnNlcuQFSgqBS9Uz5tFNleyGryNLOfPGKpi58rRktp/FKUnCpwUxsZ\nziCr9mfj8cPwXG2W+mh869OVvVno3UiL3Er4dlsGIv/Bi9XOKaUjb33WV30exlCEzEJ4tI6GmYdj\negPoSYyY6UcLAAGgZ7qdFkIz4DjmgtaeoUDOa7p7tE1opCeun/fZdbGZEj0h6rNbZCyYKLMbsOEV\n4OPU/8HvkfPDjRe9H2I8qAKgCogCg/RqktHhgFox7GZ77+u60JbNYU2sGGOS9dR4crYaqJ7ls1c5\n9dOV3rZhdrxbduBBM1t005UMUnNq+KeFodlsZuA/Yp5RFrOwdp3XrPsYLJJ9zkr4y679Wb/XV7H1\nmI+z8ZPZA2veHDRGN95bXifPDHDMR2IKZ5hJ83KysF0drgCEdwtlTNQxPytCLyyJtCuDTwGECNcI\ngy1ozrH7zSFjWIHEdzywybssx7X/lV3TAZdr4HcxFMLDHPVQYHIM4KpadY7qPG4Dt4JSDYTPloG1\nvupBHdxOFciAnTLdIncN+yUz96g3KQ1+lGf2F218pwQuP8d+pX+fvcVrnsixXXiclnTuxTlTgpkD\niuot5nPjeTFuaNylxHnrKWQ1zBwn8QyvF8OthoUxfWGYbg1iGadxT/1ul6gJmQB1eXedG/cvN8vV\nFY43Rp47QBl/Mtf7ZOVdFQ1rpOf9vCae7xvHLm/t8ujKebkrw4V56LI2KFvmXPb50uA2BcfKcXQ8\nnw1jMQs65lbY83OsnSboPLLlEHpvcv1QmAjA50DAn+fyjYlQSl0oajx3KhcaW91zHKCBuIxKLob9\nLNgizvXsKSNq6Ciizb+PBS58tOHfueUjBcusAxWLr19teY8U71mUV/03vdAUQmH8RB3Y5vQcWQh1\nh4KrqisdXsuVd5jAzu4aXri/DrAiPijTgfP4gVRZh8ruHWRabYwDzRjvz1QXuB+Lus8D85xdgsVa\nRpzudSGYMI3avpLxwBeYGGeWjj0IbhUDmIojAE86ynAG3Q9ZqaxXCbWAULZjrDGcKBIHmYcSXbxn\n5LHQNgpsx/laxkXqeXG/2ScqO05x22R7tAU0ep3FM4rsCdAkSLPd8XnXT0CWOSf3Paoitrm+HI88\nGAuw5DtAUEMTBdzy3Nc//s7r+Z/KkAY7eXNzPLmBFFa7EhIXcjcVArnu2RdqZ/Kw3cvQGk41j8X1\nGsbAxFXVqD5Vf5y/a3LFoJ7esOBSHd9fBz6bEM6jqJCNYrZTx7XK01Hus7s3AOziyp25dPIiWvn3\nnL8+rxpcyT55Pi2/t1r0nei6S7lY5R//Hf0zwkto4sWU+mmoydUbq+EzqY6pjwKoeIe5wuvnUrMP\nW5hrR0lKnVhO+/uGfhAhZ6lN5RM4z7vqEKG8/kyp42PeY78+35UcepDbciVTd2VnmCZdUmUpAeiN\nLpPqc9JZ4sST8e96hJ0M9K8pvMp1llL2hvf1nNNEgSx1/dqN7HecQVcshGrkx3pV9dbQ43c5CIKV\nci9Pw6mx9FqVkTftuAqHqvox9SReA4SsnnKoh86GGHOe0wWfWz++lZ/f8o2JABFyTvE6/65GRs2H\ncCrKRmhZsDuK+A6nHUgCjVlVH8cTX3D4Dg3f97lLQ18KzEebSr3WW2+nFM1XCbWSJ4WK68Kxg5J7\nLUwapsB8Ah6vTMNBjT+2j9/HMBwHWQEjaXevPK61NpMOfK7j6RX0DuBIP1yh1z8O3fTy+cheGAUQ\n5vmk8FtodpiLs9l8QY64L2+Q9brIjVP2ZNaFiZkPzO52Wpt8ft86jt58cVEv9Bx7E9gCLjE2zwHQ\njo7WbaLfdRsiafP0/AYAx7+U5wJh6B2t44nmCPxO4aC3iVmsKxV793pnTPMcw7ZRwl5N62yET+8D\nc37Qg6XtSIASEEaGeCByv0ob1xgYsBgPNKJvZuzO4Do9B7NPH0bAZI47gkmzfQDGGXy5isUPVsu5\nLs3G8qjOPAsGW/HPZHBcy69TsizKPgXfDHAmmdcrGGS1r3wMGk4Kp3rBWfRd2pJ/AwqWBWjxXOPy\n+WxoR7BaUkSKXKf0d01UGgrgfBF34ioZqX5NABR1brJfdRcEleHebrm/pfa6Iy3Ju6u5c/ZQ7owO\nnqvzcmNIFPVdlWTWT8fInXdQgWMyDQLw0/cUeUOw7s93dHCHFir0Xba+FRmruWqizktmmH3KLVaB\nkR1w8q5X1PuAByai4AfZh/0Znm6lylvLzEsaMfuHvVenWmK3jZ0OEDpfhL5EHauDI/KkcNzOObtT\nSW490G86csIxI3Wg7F/tsTaTQDefp3k+vsOqYfLI53Nthf2s8539dAbv3GfB0C6DM7XKQ8p1cc9d\nfqv4bjIXrgdmTVhLlmA12PehjeG5R5n3Hmr1gi1AoOawM3jAOrG9d6WkZPA6uBQX3S9dV5/J9qzf\njqOfEjlzrmcdPNaTw86ATWVdaVV+MOEMnzDhft7LNyaCFIogZR6oZ9KFcxsTIKD77dFgD6ztHdd5\njwhloKFytahoUkZHMVGEKQ25o+M4pqE0DbYhn/OPcekPUQjdS3MhwF55XPQe0V+WFoodK0GNhNt7\n05hqZ+S0Hev4A6vPS3/xWaU9+zYM+Sv10qSKzU5GPJCVHNs896pcnbNlO9Bbd/TZ1sdu1dv8uwaE\nflLKnb1qaxvR1vFYjIGHkQEz3Ptc2Qkcj1SAKwtgxnJ3HB8Dx6Pj8Xie2Qgb4+2uuGeXDIeVa6CV\npHOpvUsJ0+f+JMD1UPz2v/OwEUj56B7bzn5MhqD07dE6rOxske7d8udsaAAwX1t0OPHd5ISP521l\nvU4bmeBx4v6uDVV+1N/ISHBj9MUISaOfBsTd/uSN8ibCyhzU0fuOzfUL6ExARPHAq8zZxZzu3qcq\n7Uo86gugOTjeOR83gMFuTF8t/IqNE6SIbVjnH+tUwZLjEPZGEVC8l7Y9QJq87tbvqS0JZPvxtDhb\n94s8LmUNEQeAvpuTnmABkjjzwOdtMBKYR+bQz7aTf7Jtp8jRWd8IJSOId9dfWlwOQuVMbktQ6OO8\ny7Gye+ab8jPmQ4wxbncbv8ft3gE1rkB5v2fL67ZfpwYaaKPdN4Tjtq5T4YGO87bXXwB75uZiNqT1\nj0B5yinE7y1fl6+/N8JZPrtOnNegnQFN+SvjS9pT6+xzfPM8ztvds+URpzKdBvGcO3033t8854p1\nqCDPfC/CLDpCzu2M8Vfl6nxnE3pdY7zt9BzmXFKmpgLE+V1wbMr6B2FTQdbuUq87Z+K38nemmNm/\na2Z/1cz+spn9p3L8j5nZr6zffv+P84xvTAQAKMJkJ4QIKBxE8jhbRTuOxQoJBeT1Hi8k2uBdwsC6\nrdE0jLrvC8yFd+ZE6Bi9YdjAc1HJVUnPWVQl/s2fM1IMrDLit11WwIP6nd6Z51J27zwlDXBaN8oi\naFTOH5iJLG/uoZ/n32Mh3VHEUlkW0/Xe1Oy3TPFUFPxEXy/fNXdDaoMqprbGxo1sDg/9WOj/wPgy\nQS70AXzp88/jSWdOhPMWmdOzOibwD6e0rU8m30n7CLuiOw27mXCRCyfcoNhVvz0m0GbfZ2ZEKLpR\n32grwBhbp+ev3wySdLSNU3K7Jh6NjrNXqiEvkoqw03OI9fi2of5XzOYOjEhKyDHSrgBUNqj8Kq2Z\nbJCXTBz+vnMTqhXa6emeY6K12S/0vHgbMadlVZ5sGTLT4LEqDt8uFejk5XqfPvZCpMHwvBEukf9i\nBCuh0/NkGDbWLhUhu2fcqCjsBTQEZPz5pF/PKBN/G8fMObPe88G5ttoRSeRERm9mEZXB4wjDI7MK\nZp0+6x0KBoECprmPxzBgAQqHyNUd7ZogE8cK5VyANONaFmt711zgzg5XReO61eOr2KrmQggWQmmj\neCQrG8TKHKF86RgOGiioQG8rZT/BgEjCRo9g7vd4Xi663nGdfdcjVFk2YYCoHB54wk7vRYFE353h\nymgr+RA4njW8hwbXc8X8N9hL+RHbJMqzcI9fVMN2Z0De8XUCHIv66Vjk8xVAcEDmMzSR9Mz1iaxO\n1jl2f4+Bd8IQEjuVMqyFngPsmRx6/a70un5/omSQbspMTbfxk/aAjjHz44wWoayn3FGI7yzWBsaT\n4XbKJIq/ea99G8/bMUaba0g05ce8Ya4D75faRDKvAwiha5hNpY/11/DI+ItcHBpO1cAdZwzcpeuH\nVAa+mhj1m1bM7J8H8AcA/BNjjF8zs394Hf/dAH4JwO8B8I8C+HNm9rvGGM+vec43JsIqNV41jmf0\nDYAkVQTsaBG2wOOP+Te9UyMt2lfPdiUMSKilU8SWYDqO5cWlZ/h4JiYC49ebqWdQFCkEdQ3YMxO+\ndnIoKp+8iTCYUcgWgcnrXMABSrnicbcuHxEiwgVbvXz6bJZETaTiLcbaifNemAjKFJk/n5Xedw2n\nV32rlF9rA8bYglK28YV9AgjowPgyv7/Kh0A978tJSc6G68caa06/RRgHNF7m2F3AlvWMs9V2LuO5\nPWaSxccjxjTfa5oDBA/GtTJC9g5DNqanJuaVIQMDiVab3u9tl+Vn2v77XeFpZE5QljRF/y3GAmXC\nowk7pYXHIHUAs44LWDCYF4PgywVL5W5XgRRXvf5oFH5YeHJ1V45d2bEMIOfrmLHybwfWbCkvrkyG\nbPFQKYR88yRTklCR+8QrUJjkujHvzPC2vtU5q2TKaMyP8F4qODTH6VF2ZwhWeE4sGH05PNv2o+Ux\no7LwnaLgg99//TvirofUZ5900Wn4Pu+Hg4KaDyFYGFkWW6nD7At91zdt2By7S3Knc6uyEE73lvbs\n+tTYdgRwMBkH5iGGc8tlcybCwxYL6hCG4dq6VXPOkPHFcCGul6onvKPIBYNjPlfHYO2zHZBRDUUr\nx+48px7WcDKYhH25Mex3z786b+As1t7yvIs49ISioiNd6m3Sf3z//lyZ5z9OcY878jpFlp0n5TXV\nT++97FoGCtNpqIwM4Odqe0ReN7+Ue7sBS2DvPSCBsuLdknaYKOEpWscdCPKafUt5bAl/P98nAwgK\nqqpu8S45dJcfJ8IZ9s4tyn+2MsJLZIy0IuMLQK7nap6dnZzYAVg/pMSKPwPljwD4j8cYvwYAY4y/\nuY7/AQB/eozxa2OMvwbgVwD8vq99yDcQYZUxgki2ZyKIR+mNXgva1OY5jPHeIonnhZvCPAQTjbCR\njTxb1HMLIKIq57wnkIVqzcRdPS9XJRsEVHbCAHAj4cV9zACcvAXxaWKJ3ieWyYL08lkIJeBU1Ev7\nxsJXvSK7OrlBVK+Tmqb4Znqi3ascngIWH0MdGF8QiMBAQKVfOvDsCUzI22zt6svkiN3DGZRuym2A\nVInyY0bFUNu9WbyPAXvEOG5rt4ap3MaYcuZe6V/ti+mdEOVqUbxpAOki6AoN79GpKGYAoTrzo282\nHVbOdfr9G+i8h0A1UajdANT+pbF5ZiL4U3bx+RwTzzVevozIl8BEGMhjgrHBt/U2rB0k8taeNCC3\n16ya7pInUm4cbQKOhxmOZkWucKeN/QM6Bs7byJ7BgrR1X1eFOfotK1qr/o3zrSraFegq83SYh0Hl\n9oYh+FhMhHNCtlVXUat9nHHMH92N8x1gp224Kwmo4f1bMIXOa1ONcZd7IctgS20Po/ESbEKVlfvz\nuij329+lFsk5oGNP6sJT+ma8MC76yqOoSUY1qWJOthg7JzE8SWWV04zlXdYwF64juq7s5pyC51pM\n+p/3uxoeu+RwV89Jx4Qxppn/R5e8PqVO/LxKjMdyisnfvBNer6yeXOeokzIbuGw6QwsVuLus1qz/\n/c+X5a6Hc+jm+0ZahCbFNdngxum4y8SSE8S3XkWeb6cEga9Agh8zkPwdcHQ3drbAXzkWcjwb6QMZ\nQNA1TueWM2sstq8OWZcNcSYgZhW0KvVcPlfriS891ZGsxau2AkhJnPO20jH32tLvNOSJsosy2VnO\n/l1l6dfOgJ+9EjsA/cb9AfitZva/yt8f/kQVfxeAf9bM/hcz+5/M7Peu478A4K/Leb+6jn1V+RbO\nsAonIQ0jpf+TrumK8oEZp75ZuSc7AUCfxsG8N5z+A+AkSJViBCApM1qOo+N4dBwfHfi+pTjKo82U\nUc9RJn25kaPNXYwwScpDNN+F5k2fKUDh9V6N0Mz5r8IZDIzpi77w36gxGTyc4YrOfQdUeByhxBKe\nYu6aAa25BPdwArn/jkqoi3QIgOELjhpl7giWx/YQGD4OdaGa7R7pfPQAVlxh+7Le4ZcFdFUNqNT7\nqhhoGC5WQYuYfQ+hsTG3EEWM67imYyya86UXh6wTGvxtGrfzOVRsz3Wvyc5UKWLyoNYGxrrnlc6V\nrsPs99jekve7Vj4CrBqpP6fBx3c/8ApgsgVKJnqxtNvKPNLx111iLSW5TgCnXcCTbw6MuaXhVypz\nM2wkAwek+7cb2EQBBJYKctoKi/F5NYC+6JIxlxbtWX57Xr5jMRb6lMsVEMy01Pib9aORteaV7CPu\n/V3G404IpThfaXvEm/b0bpPRVULMVKmH9pUYhLUP0rUGp+UOqTiPKV1dY9ZbU0NjAXFrfJvMpZ1s\nSYo0Qr6wDyhPdnNNPaUsD8tz5C5xHNeh3Rka78v1ElaM1Dt2jsh1NdioVHM7vWCxzBdwwGKNXgCq\n17e1JGNzjgBLAGt4K/NY8PatfycWkQngajj1u4Kphw10eXdOs+Y6f8Fhd5BSxuvoAdgquHEQRO4E\nqKNttdRQjwB8Z9+kcx3gXv1HRmiDrwunEB0HHuq6sgNy5vrXx5gtaXEXZb+o0bsL7Wu79hSvdQ0p\nIuDUuznQd1XMhjN52mJdPnuMp6uyW0/09LqEzBDBa90MCNnr70DeTy1kKEVukHPyyp28uAqNSkCQ\nhCvc1fOqqBzmM/tSGz1/TJvsyi/PgaN3HMPEvihsLa6BshaGI+nchirvrO3rPMOmeM7Ssxim52Nm\n6WpHxxgtAVZa17Zkl9ooT5nH38pvWPlbY4x/6upHM/tzAP6RzU//IaZ9/1sA/NMAfi+AP2Nm/xj2\ny+HXKYT4BiKkUinxNP67BYBwtEUnfthWivmkl5nFUIS2UXbCAz8N+dMtu/l+vaQ/t2Ng9Cmknn3+\nfbSOMYCPBnzfW8SpLkWpBrsogMBP3VNbzyGwsBfa2l8i6M1WtmoRmDjHL6sANRmNNCx1gRx9xl7V\nWFXg7J3wazAzu9sS8E0Wr/AwygU9pPFlPgiT34uQd4fkiH7jJzAF71iGD/8mJlCUFgzPBzHbTsbD\nWorIZgHc48OunbkRMF/6GA4y3LVryPGpQK7kicfTkyo6ym5hvtq0JXysceFfqtUJyPIFsM33bd9j\nAkgNwCEUcn2dYrz5fUS57+wzjvmUTV76FVlBVC9qJDBbyroNQAy1bPzey1tmxE/9ezWW2A8CnlWF\nk2DFw/qK1b99fBT3rK+B6cASj1FZVeNQLh/5M9qHBCB8LA89E8qFcr92YxEZoUVZBgogOAvEKBpn\nf1IGyaFtUe/YVG7XfGk5NpuKchqTy7CzjZyYfSnjRsIkTl1f5FHNicD2k/p6WE7syTwV6gGjLOMO\nA5GDh/cIIyP1sbyTTpkzhssmW8PjSPVfdaVBw3WCXlsggQe5rWeAKJTiyVjqIwCEh2wn1sqcrX14\n2Ei7INzG4yPLVSDkHOtGQGyCCTHnIx+FrD83Xjb2EwGCj2b40jETHXPerTagy9aPa03nM9P6BHi9\nEoAABWGyQn9XtPYR408ZLeuhDZelDiS5cVx2UOFffX4fqF5dypeaE8GTK9rAl5scIDsZqjI+t4+/\nv5bXp+dszX3K5DBSadz2Mfw9TEMrfmdd1LDV2HMCTXG/PFerl7gPC8ZKNfLX8TGCtYoFuqbrpX40\nFD2MY8k2lUPv7O4wz8XJ68StP+n4eDekgfV7tIHWBdRC6BTPkd85wxbZf3VOJMDYpo75fIZc4xqR\nHUUB6Nwx9ByYA/BxPB0cO1pHbwZbO1opeyicbjI2EOPFQym6AsnBgNv2mQPR60AX3ffok/35AOx7\nAmnx/HYMHM8pk8cggKPAYazNjf/rZ9vih1H2O779Zpcxxr909ZuZ/REA/+2Y3oK/aGYdwG/FZB78\nNjn1FwH8ja+twzcQCWeVhd4SUno0e/PR5kTEo80/AExqB+y9UqdYrI0ASB5vC6Gk9/XF/TGmILCg\nuDWhsz5I4eZiV5S6u1ITK7J/1BDQP8OkIJ/pm/q39oQXYXRYpjSbJIw70bWXplMTK1YvNOuqSnOE\nUyxF27e5UUNTG9Z481yHTd+9q6Bo/6X6ezvimHoqWUafiW8Yqxk3GLEod47DOObj8mL10zW/siPS\n1o7Lu89dQXQLMv+DLKSm/RvvJPWJrEaT0j9kq0Mqyvv+hBo0crjZEI9TAatKv76jGCndMI/519dy\nfLMo/fFuzNTfzh5AKhYbpVro+KOMh3l8joPBBBhJbkVdNd69PiPNextOy3Z6titJkadgt/MCz2P4\ngnqEZ9b6swyZcmbeu8H8OJ9DOXP1fpIxI0ysJJ9F9pxiwJv2vblRNDrmFnZrHj57C3NDlHAa0Tpn\nNIfNLm6WYXY7Y1nfmYbb+XyUd/ZuyaBwBcKCip5Cgkr4RtRJxi6iXjUMigDImXVzbieAxRiafzT2\nKlh55xHlfTkGcyjO+CrlsMl9yJTgbgyPNaY/fExL/pC2z7BPOUqAg2tI9Wz78+187CpfgRqV7I9d\ni/091O8IwJBtfzXGrsD+yi5gOMOuuKe2rLta/9ROZJDU6+KMCIYwnEOFgMLgODk/AlzxZMLIY/gu\nT1NqVwEm1Liv7LNX4SV1rihIxHZYGkfne0WCxQVklrXgXVAh1WOnP90wKAB4yGQO+4pxvmMcVNB3\ngpWhewK5P/dhQLbV0QcUXJ0GuOqRZGoSoNDwSjpf0q5WiLmjdVbmTzybSSV9Il32m7L5op10QMr8\nl1wsyZYQ+eBhqwi2FtfohvM6/Zm15lv5DS//HYB/AQDM7HcB+A7A3wLwZwH8kpn9yMx+B4DfCeAv\nfu1DvjERAEAWpZ1gSqcaxNg9zxj+nuKVxDPqyct2oAMuhCP3A9ZnywJTKUhKh99NakXZd5ns3ymX\nC6KJRxuBdIYRdf8sbZ9+vlOq5xnIXslIQqTeFeyhtLaoW8ooKUqBH8fFInlRz7dyTeh92uzDu+vd\nC+Bu3NfPuHt2BQQ0hg7QhTwvhFTEd4rlSakT0MgWTUAVxesKZuSe9/ZrW8yPd4p63bw9eI2wqzEY\n95rHrpg7u7actxG9OBXXbSKrFijyR4CFe8PqflDWHCkRQ74+x1lhfqbz5VnlGJUeq/0pupwBPgVc\nwXI5c71Dgxq7hvf2TK8hVQ487eTkKdZ6c78yFt1gsJDTakjd3etc1zonc9H3kObWxb0re+gz84j1\nqX7cnXctGVwqo6XeJwaMrNPvepd3iRWV5vuTKJT/c7o6GmUAACAASURBVD2xBbDNtYdjmywPsiBC\nVuZ5qSwEzWukIIFSiglqXtH/Zx/w/GqMBpATx+P3Z8nlob/P+89/JCbCzWu53WnE5JlqUJVx8Gpn\nmvS8qgsUZkktNRHfO4V1vitXOmVt2916Uce76lkso9utYW7rXV8ljOwFHPyM7rUr292++llHO9eT\nDMcMPCpo+Kl6rP6nIw5AhO+e+vD9MTZGfSfhwHAmm+ST8bYkub+/dzB/ch01V8t93a5/YyhpZWZk\nWwIXc758Hy90tZ/j8s76/He4/CkAf8rM/ncAvw7gDy5Wwl82sz8D4K8A+ALgj37tzgzANxDhVPY0\nNrjnzbOjK+xW3bgQQdTiHv4M9whe12M3L9syONoxWfe+00ATClKbWz66gcz7LalBNNXpa0oLv/AW\n+PNPRiFEMAoSKec9n/P406IOu/ty4ciCTdCIUoYvTnvqYS1uEDO5DJW13UJZeYL1543ye4o9BnC3\nXFaquNLqDxHmHEejI5IMAnm80fP8BUCLT499f6ER9c1iMim53UNAGF7CHAnqTXTjxD2tw6t354EB\nxOBfuxQwO3mNc027TJRQhrjX8DmyAyOqZ1M97tZye5rBqfg7j64bO5vfrkryIhagES0r6/O8oBEf\noqDc8cfSgr6WhciZAeAxEvi5U5gG/0Yec8FAmH/cDebDBropEyGU9cwKyv2gIQz02KbzV1OTaG2G\n0Wc/jWHo4k11haYoXdzSdOy8bnJ87rIzHKTScU0ZQ+aBxgy/x2qJrVGfFluiTk/bnGc8j8p3Y/1f\nO5/c8Jz1LeMek+2hNOV3Cg3NWmpsbmyjyet4rbnSvM2hIWsXvbnXdVkgGq8T2V2itaLdF/dTZp7W\naRp19x10Bv35ybnLe81fjgZ8LHBbKcDOSFgJZee9bSaYpdy1mHOVwaGZ0z9TqBeYzWSesR3vWZaZ\n/MaqO7sEU7xoDg0vPULodEtVthFynTLHrI815tOtLkttv9aTbU1t93nOLfl0/V71QtaP1EFTwZ/5\nrIXet+asBpXzHmJU9DEFw0I+hicYCF1UGSOn8bfW6zEshTPwOgVhG8bMIzP2XnwWghE1vE1lAdWK\nHzNP4ql4yAWWPjA6mjU0M8lBkc/379gbvlfFlozy0DQCzSJM+M6oN08WFt+H+X3i+eJ4OTrMmoc0\nKBNB85ZpVROYnsZnsU26MOpKH8Q5BhyR/2GymAFIvijfBrgR4Bwus8/MmrWVLGUSx6Ou2T9UROGn\nsIwxfh3Av3Px2y8D+OWfxHM+uwb9hhYzO8zsL5nZ/7D+/TtWZsn/08z+azP7bh3/0fr3r6zff7vc\n44+t43/VzH7/554fSL8jhQiK4sMw6YdMr7yRVDVRlx/XkyrgYGFMne+Xn9FWVnsmpDuYbZWCq3gO\n3p3STjdEGBHpueVGFCIzk3oACLtwBnpLqsc6eVcaZrvsBgkWL7vuoQ6EEsDQjnqLY22JdDx6ink2\nrOe9seq4AiS9ql6hXT/d3y+MtVoayviRmEVHo3sg1eNLGIurkpKFvxjhoGdZ9kBWdgrgYAG3XlSq\nrS+Wtc6+gK6+2Xi4tsp+C3S8rkEnA00YPPScjBXnuQtn8IRx3uZQEl+VpDRzrCCPW21b7ov9Pbdr\n7OrIqySMOsbMBrgDwJfR1tac0blu5A47hbec8iFwbAw7ja8r5ZDGXN6GblE0cZ7bXm+ssKfG0Kcc\n/kTK90l+NPk9/dmiVMaODb694wprGIV5kDKPD/hnfRd3HiLo9d08jEGNpv600zgL9hNSv30wPAih\nhAJZvilQOsp97/ZuP1NaL089nefrIJOeumEFrxOLhmzsQFmOi/Csi1GGnAelzrP5LLmXAAhmZ0PG\nFes1rms2+VovBRSccVKMp1dl0n6jfTpWP2yCbR9832VM+9r/IHCcgVxlb2jfELCtReX4PvfNymfR\nQs/ZLbdBz1ZK+aIxWwAJen2qj7wUH8cehlaflZ+7O+euJOZMOaZAv27v6v9mzD7CAaBcmldJOw/P\nR9JTSI63JzFDz6CF6z+it2l/kH2moPglG+1CJzrV2/KYiv6JdVK3dtSEmDwnPZfN2siiLH/hF7/D\nciDIlRMs5rlan3EV5lDLFcNKd+hheTUWCTZ5Amp+PoDjMXWoCGmQxOdpPkU+Md/q2eVfDmnj2n6q\nx42sMwPaA7K+jdip4TjLHpXRnA2x6xTDNSOsYYZ2nJNf/rwWDuXf6L+fhfLT9s7/PQD/h/z7PwHw\nx8cYvxPA3wbwh9bxPwTgb48x/nEAf3ydBzP73QB+CcDvAfAvA/jPzUzzRV2WK8HcBDn8oNH+MJjk\nRDjdZ+MiqLcfPbYQnNdlgysJyR6CCjR+W6D4qoRppmv/wxnxPAl3ZGUw90G0QRW8lAzNcmI1ReyZ\nrZrfXeCY3Mu16P0CswsdAaYh+VZ4gI3IBL12GjhtqZZW70wN1DwKabtP+QTOC06t2hinTZGSwPDh\nw3vKOPKkivWePRZofvd/M/79zUIa7UfreCyvWCv95gquAAkGLGUqQC19v7m+sugbgOVdn1s+do8l\nfkc41SRIyt54FXOpSpfGHzdR/I7GbPBhBD9axPgz+RDbWedB6lvOCYJmrQ65UDZVyeM7Ybyldkwd\nK7cgHBRMyP22K+6VW9/5aBpAHzaNo4/Wk3IUcsJE2bAEynh8ZRNjCuyfDdDQ1DiLLTSPluWLggne\nDsl/sO0TyjyXq+ufYmjVWacAhHpa/ZkV/PUxEVR1NaqZuHT2u4Ic1/J4V6rc93F5fQmYZBHIRnXd\nbz6BmMOuGQBkDHAOXRgCNISnPOkCpITBnNuWFfH0GwDm4QBwCcqzj+Z8Otdtx4ao91FwLAz7s5FA\ntoEDCW3GeX9w7rTprWwfK1b5Mf99HNydoce9WsiVh3/mtZ71iHrHfIs5GTJb5Vz13tMbWdlRKutq\n/382gWHu0z0rcDfWOS9P595cc1dOW0ZugDIFTVgm+DdzmlRmo5WxXkFCssz4vYbTEsjz9pYk03Vu\n7sZ69dLTybTzdLNojpMEHhTGql55DWrsj2vpIlNq3aNPkWTmHXh/d/wVY0y3ttzV8zliPaxFjW9+\n15DjySxaiSK9PdSfo16hJ1e5G88d3daibEl3r/XZFV3f5nnjdH7KN4JYo1SfSzJHxve38sMrPzXv\n3cx+EcC/CuC/WP82zKQQ/8065b8E8G+s739g/Rvr939xnf8HAPzpMcavjTH+GoBfAfD73nn+bQyR\nKAetjVjFWdzbe4H+7xDa6jm+qpfmVqCAeay/k8AKw/iO5O/UvSKE6LX5UoTlKxvUF8mkrGQFNiPH\nwylhbojZOAk4b3c55pm3S2wflWalhPl+vOwfTeBHBWk3C/pI740LzOyXc89eGY71zEr32nueRzAk\npM2R6djiYkH3E5BQvM8RGy8eZ2TWCd/To8G3wjwW44VodVBtAy0P40gUpJv1ekvJ3BjVp3uUuUJD\nq/MeNtF/bmP0meL0PRsydkaAIy2S/2UjcO/VuSvu8SSAuLlw50VyhoUzcV6ID/GOnz4X0qQsBACX\nxqHPbzGODgsauhszGLf9QIVDvwcImYEDn7+irPC6nSETzc6gnhvkPZTjGsp1qidjWcXQYkmezC73\nXh1XQ6zMMHc5aX0Zk93/HutvlxPB6w/DF1HcKZvfTXDm+3pbjF8FcfkdUNAK4lm7n0sTbLLVVmHB\nrfs/GhxsmoDT+mN4lI20DtwpJc0g7I29cQ/sgR0g5DHbrkkV74yPys7RNYd1f5iE+CzQ66ORiTCN\nfnVIPKwHs/ABtANoD0TCM8vUZwUmUuZ0zHlyrve1MRE5bzgGQmYGsJMTBjZ/T1kWVqPHGXIaxkB5\nVYxGzbdzXVecwFP9TUGQ1J7qJEh9s3QgYRxMT65pE+I5hfnRGGbWyMQKR447GywYRpehNYUuHkzK\ns4PCr3kxH2t5B9xRnaYXtpYf3xj7WtyBcZdjq/arXbfzKEyEh52BBC0xnrPM9u2F7b2cOMCZdXHV\ng/pu3cFy9KmHLFCQMjTaMR0lH8sPqUA5h3lb7Wc59fsQ1sQ7rErqcIsyuANZfUc0y/PR9WrEmkyZ\nk52F1/Lm57FoSM9v1N/PQvlpyonwnwH49wH8vevf/yCA/2cMzxzwqwB+YX3/BQB/HQDGGF/M7P9d\n5/8CgP9Z7qnXpGJmfxjAHwaAX/i7/56l0JKWO2Ng3ZMDRPbxRw/6e5kxTsmmJ8um8EnbFKrVJtfx\n/Euv14pTM6UkORsh0OyEYEJQ9XUsqFGW7s+6ZXr761FcvR1H6ROn4wG42uKxsQ/IRGgilN6EuVLM\nIrDeIBcPeXeP6fWhUPe+donpqzms9eKVDEMp2p49QWoUabwoE+0NBpFJSTHGO+9AATTmRfo7Jird\nx6wAF5cntrQ3LVXmz8WBgNnKh3D07XvIDIxYqGvRMeXbSAnwoeBBO3pWAKwM4Hrvdf+G4VmGCUgw\nVUxi3SB7W+oOH9rMRzvjhQDc265MBDUqtDBkZdcfP04Jenl4hv03ggyUnAQ3V3/YOuczScrY/eqV\neLQMpOyMsLUZ4Xyu/O6yzsS4lX4NBRA+k8eSz0xOt9vWrmOgj7m/fR/Ac7Qw8m3Ee++hJOfcFADZ\nUAoO8VlUlAlAxJaRECYQDZGgAoeh0dGtJYWS/ecKqxhbBA7n/RDAn/8O7LeYjHNdLkH6fOwThxrf\nDbJhGe8zqLVbI70AagS0a/hLRyTtOxxYGMJKmW/cn0PAfBluDQM73flVGAJ/DoWY/468FxEytvdK\nsuicp4GDMWO3GwYgRs98RWtNbeZsnnYMKFfSDY7FRvhoHQ87cFi8ZrMFSLR76nYYAaMcJ4Nxz+qY\nbZvHOuY8JwuI4IEaDE3Gi5dNv7ncLbXOLExdU3RtXPdUb7wDHNpWMd5fgNler+U84bOerOM408O1\n9gz566MtZ0VmFyi4smNqKHCnPeJ5ATYGdndd8axH7EpiI4gcm2tsTsjZRab0bmgtjqWwEHCracoi\n+Dy1opeovKpzie3ksxtUj1j9OyYj59EM348xt0m/aTZ1B+3pSKx4fWGwNy0t4nWJrDmsCOa2xRJ0\nJwTzbj2A9hyJXcTQ6Dn37DQ/s8MN0dfrsy9db6y1DZj6YU912jSyDcAss+1s9hDaVD2bjtcNCKfA\nwbQv9kldv5UfTvmpABHM7F8D8DfHGP+bmf1zPLw5dbz47e6afHCMPwHgTwDAP/lb/qGRqGIGHGIc\nevyqTYMKj+NsWdDDl56xPmsG7z6mgq8sgyKtmp97/s0aMDZoYqUmVeOmKo0qaGp4wylusVzLUIbs\njd4YXA2+zy/r0VcFabB6mEYzVLJ/anu5uXq/se7FGOkOejaX5+d4xhY3D7j3Y9LvWbl7q6rG3s1+\nWArFpu2bKsPM0nthOXk+qvIuLISdXpsSKzpiBGEgXLQp1U3ovW2xEAqAQMCqKmdXdFQtp8WmGm9v\nFE3Upd7BRo/WY3n2GmAba/1KjVAParBqhiz02aOrXhHmAzChiirlM4y4sX333h3CBqhAn3rb3PhN\n3u46XpCAmt37r/tN70Kc/PmoHlH2jXjgElWW/WBed9b/aLmfmYwxgITwkOobOzB1vKms2TTOloL7\n9HoaWhmc29wHq/R+zkJuIltpkCi7gfczi+8KxHqf2fBkn4eEfGAlzSMTgR7//sXyM3r+t9dv35RU\n3LADw3AiDITz91hGreO3IsOOBo/l9b7i5xWAQEAb8WfAiX1xtIE2Qn6mPAcgm25KC3p2ybJ7tMgj\nsROEd0ajzr8AroaM1SFn3ZdYu6R+XH8x5wkQORGAZf/2ucZ5GNDHcgzwvkeENDBMiOyGYTNc48MI\nXkbd2VfRDzQGMi0cCFl5tB7vne+M72Ml+rQRCeGCcTTn6tM0j0kAsL69bJFBAJKxru/LWVbPOC/1\nN4Uozmsji3tEIe91GUJX3vEqF/TffcDfY2XI0GFDMAa944nm/efjdckoBWrqGFXGhMk7eg67Hc+5\n3lXmsQ1x3NfKTxp9BFN0zamKeF3TzvT6Zcj3rKYrkKD/9lwp3WSdHR5WN0YwqfRaldeuo+Fzhu4M\nFyj1L+20KToTeOa7sK3kvPYA7PvheQd0DZhhTTa3fW0x1o4F7HBN1b6sc8IBbGH5nMaBhEL/uCwB\nyhnKUHeMIdb2V7uv/TyVb9DJLD8VIAKAfwbAv25m/wqAvwvA34fJTPgHzOyx2Ai/COBvrPN/FcBv\nA/CrZvYA8PcD+L/lOItec1POiC8Qyn/sgb7o0lx5WS5ci2Qi+FN0gosCf+URbOW3ScefPyiAoNvv\nXVN8XxdnKRRBoAIj1U2MKk92dlogQ+k3G6eZNw2yEHCzbzcWTOkj99ZdCC1VihvgMf0zKWUYjb54\nq1sASEhtVSy4V7rG/F6QU079lvrGzkpM/j0ADo/XK+11ZW0h0uwbANMrcOOwOCXtNDGQnYUQ4R/e\nN0s5q7cNgGHcUi7HsBOAEIyP6/66vB+f3xZIJNc7PX+EVwQQmuIwzzWQKZBBSz4sFmF6SlUmqHLt\nC//mmd5PN8vPTpSop68avC/DGQgqOZUAQt84d3TEu9PbvMaTz/EdgBDe5gBTwpPG5KsOMGAvNwKM\ngHyOVdWp2HWbHugvAMZ6D7/ep6I4bRAaT2vefHKl53aqVzL5KpeM/pvg1vTarHCgZWzQ+HUq/5pj\nYXwAz7T7yL1Ry3lfjQVlQakHmYWgspnkEUCAOYdlT6reO77b2Qgo8z7o+wEgfLSOZ59j7DAq2FSu\nFQTPyr/5mOvuAb73xWsfRTE+FwPJALaYEndeS45Pyn7mB3m0gS89j+OPNvBd6zDMRKiz48zBATsK\niPBAhDRYdwDhYcAg+HOSOytrOuoaHQncamtaGy5T6lD3MMk2YN6eGr6mhkPI/a8plQZNGTSQl6/E\nWEPUuxm96vA1eY7l+/oEYyhkddRhf40akTQKxwJ46pZ/QMiwqKf+Fse1XdQLFGBhfd/p5x1gktp2\nIU80UTEwfFcbPptyTf9qTSoovWPKpWcqOGoRbsBx6aCnA4ADGHa5/TJBxy1NSes5uBNKBoeBvbHt\negPbPYAxZPcLgm8M+zzgCVPbc6A/6ZyJ+azrIWVPMP3iPc8Q45L7y50pRT9ddUz6NOR7g8v13bpy\nFUapzEAC/Y9m+LLW3q+d+9/Kz375BKH1N66MMf7YGOMXxxi/HTMx4p8fY/zbAP5HAP/mOu0PAvjv\n1/c/u/6N9fufX/tf/lkAv7R2b/gdAH4ngL/4mbpYWixzbOBjKXxc9a6S/UW74FTi4ccsjpV5tzO8\ndrkWTFbwSplj+awhxqLU2VcKOJ9H5VOVq/rndbeMCaRqvqjzZ+jXXkcqe/T6kIlwMNmNPLcACZ8p\nhy/0899cYId872vhAXJT/bzNfTUcIQw713TzuYMG41r4l0eo3twXd4TBwzpR4W9HxPNpssJX8dHv\nFIYzVE848Pl3rB77CXQApKPn8+T5ZaDpzh7zcx6vWzFx4Y8EZ5oTIMIcaqnzItXrojsThX1zDumL\nVZHT3RlWY9f5RZbcBN15ygRtg0V/0GhSpSji2s9tDGU/7hWKfpYbuhNDBhQkBtz/3punieFxEe8b\n/ZSN1gxI8ZxQit0T5DkR5m+kRAOAZsB+WMTz0xiegF3fGFKbd7ISs3Z9NkEfXIBQWMyClo0/pYDz\nu+d2ARILKeXNEKD51S4RtjyImYmQcxo0AaQMBKKwvFzZAHGaczHIgP3cOzFqZJxxXqs3EdKHJy91\neYLxWoQcCOp/zAsmUXwIKMDPyXqZuoTnRVghDR9HhHlQxpAKPVksI82NzxRP9ib9kn4n8OU07OHj\nYj7P3Osf838vT05MTNjWWPkMEMHxl0ATl88KytU1cs39HuOXJqqCCnGuyf3zvea86t6X3KlBz58G\n8BlASL8bQRGVPfncHYC8NXZTAsTrUeEhSRdga8hI6ggCCLwYbb4G9fKed8l2yjO1UDbyfWr+HYay\naPE8GIgwxLrm1jwd87rb5kT1XwzNlEugAXbEfD4esy0zH4LmTRnO5qEqesgY3vaT7D6T/uqJ7Tye\naDtc5R+7DLnBWadXJlRiaPwAiqpQ33Ii/HSX/wDAnzaz/wjAXwLwJ9fxPwngvzKzX8FkIPwSAIwx\n/rKZ/RkAfwXTWfVHxxhXoKWUPPKXM8qVBCoCD+trP3sKodA2Ipt27DN7ol6DimwYe6OFSKZhsBPS\nLmA3HvlsFFLwx0DfFU2kxtJlQRmAU7a8TxCKu7IQ3IPdMvo/lTVzrwE9JrWvDV8HEOzKXEjMFUX3\nkIrX5y5zd70X23r5LKLkVOZeCFEmMVNlXsu2Vh0Rw41NOIMaMBAg4TEmYIW89/G2XmtBiJ0I+rYt\nd8noUjsIZODsvRzDMJ6G8RzuLX/rnjdKvRuWm8Xxag5wTjIkme8QCC8j6cjHQvDJTPhYBsFMjCdG\niTEvSFFwtu0xeC6LU8JLeuKWYivXjC+h3KWnpHhUQ3/OvuD5AKZUfMwxYm+MC/YLFfRIREfv5F7Z\nUUPQ78HfLH7TEAZN1LbD8R5ttuu5gN7BZ8yWLM86vOvn2FM5d65nAhMcJLjui7OnTe6x5PqZij1E\nIZ5UEDWG1fPbMPD96imPT76U4QSELMn8WkJJHc4IMZs6JuU8xy03HHImQsttJujINtdkZadkXdAQ\nqaD0dhpPxlAAggnhPX+O83riNOfWYT36qfbLVamglXp5cxv3cs4JPZt177DJjlDgkcDC6JjeamE/\nHNYnC0Ef1RAhDQRf1v1oFKjR7sa9CShkEt5jeR6mvtgY2nqPSLCYty88GROlL92tX8EDMcpdFypr\nAxBr3Nco0RvSYgG6Ii/K89kcmPcq828BczZGomhXZgwZGhFOtTPCzgDCZf2vDMeNV19lj+dlkfP5\n2fV6hKzowmJiCEENVeoLECWBjeDDVUglmoWOK3L4dN4bRYGTMFrvd+PS/DIVYPI2rXHZ2tju3HMC\n4uUe2SGWdWgNa3A9hGyEEYxHdToQMDeE/A1Wa058zGrSOdmfhufT0FaluIPEWHXQ9vrcvAAPCEY/\nn83HzLzn+gTHviVAn/pdZXJ9Kz+c8lMHIowx/gKAv7C+/1/Y7K4wxvj/APxbF9f/MoBf/uRTBRE+\new49hqmtRf/R5haPfVwmrvPkblePrIJ0ZUalsARQFvdQ6mAhCL4G+XOatS40VIiRwYjUpvUwXahn\ndZitNdOe+OkGHmwtuKKMoCyc7b5NOwG4yyfwHJI5Fiu+9zugfUeBH4pcpnCUjl2r5xXowEVLE/Ap\nG4HtDBrcuFRQ833lH34/Lhb53OrV90VtMRHq03ZtoUHH+GUmVGQ4Qy0aA+z3wEgL6a7sklXV+75D\nQw1P0uyehpW/QcN9tmMlvNCu1C6QqaXxqx5DpfLb6icsz2JfCfMauLtADdsJSqaBFHe29RS6A2Uh\nxJvbUYZf+h/7rIYm3xuLovzZ0gD3nMwxInHsq31ex+qxLUYO5asmaXIvp53ZDAyn6GOErBHjiMAB\n51nugjlWejc0GtuyB/p6wpw7rF8ZN5OdRkMkG9CzfvpbNjhcblvQx5mEzZMKHpSH8m6LjNgtM2FQ\njOQh5KkdC7TE7OvDztvL7oqDDR4ml72QKocaLK0V2i+zTUgAAgGVuf4cs1/awON4ikE8Tu+SMp3h\nEAQSot8MOwU2jOIYU8FECEq8UqDplT6xL0SeY8Q9HKg2AdjWPY/lfJjrSkfvDY9mDsaZYWZMZz1W\nTpf2gPdJJD+c57E/fT95ti8BLkvGyHcd1g7ggGt4lud8L2REfPjOIsNlIA0fz+9wwaTkuAAUhIp1\nuNb5VWG+Ab4LA+siTBoLuZPm1Ub27bzrLjdlzNThpckTDwAz18nsZcoyGr5kKs45M0ImLgbC0aYj\nasq/jjHofMm6YBqvtc5l7mVjMJ+7k5V+zQg9z8GH8m6mrjhOgMI5L5il314l9NUdt4428DEWE2Z0\nHDaN5EfDNJ79PROIjHAfJvzj/LiqX2sRPjJKUsVz3XKfbcNXWJ8DsO+A5uyLjsej47vjGblObODX\nm7nTIcD0YFTs6lDboflG9JzZQKnXA77Q2rH6pg2ASdvHkvn9/Gx1APBvhuzFOPypoLX/ZpWNffRD\nLT91IMLfmSKCk0jmYDK1sbZm6ovmjUUJMre0mdQuGXJfoagDNIpEqbgwhnYlCWynq+1RYz2fmaj7\nmDFO73oAdkivbX4/USUtf38XvdSEgaHkwdtA5Y71oGrwMOB4dLQPuNvZk+CYvM9dBfnsjeGfldIw\nnl4BOwGeXPxen91X9l1/p/v6eV98WQCWzXGJB7KXmh5vsXWnEiaxtovKnHJUPM23AYp77dugdHsg\nPiPBUlEqpNHavoZ4fg3r0b5gyEWdL72H4aPG+W53Ei3Tw5g9owEgZIo2Kcbu9cM03g4ycJCV2/Da\n2TLupwyJEBg79VvuW77DULoy7Z6U3TUfu6E/zQ3YjvliKlVc+7U+2yz2tlfPclLmi0eTIjJhdN5P\noQQey5ip8db0JnXMIVA9oLvdGQCgJncKj530zRoDh01vVOTkECFyUXgtlezKzlGDm/lBPIa6NaAH\nRfxYhtrss3E2AmSs7uQ4s6g7Y0W8lCxH41aDK3beol8NZzkGrPGqSRVHHiv+7+Ut4xpSAUrNh/Bg\nsj4x3j3JH4EGi9m/k48NA4+jw9rA8ZzKdjWQdiEofr2FnKPMq6EMDrJLPHg8H64X0GidjCQC0g1H\nD1CBoCw6fFcObgd4tBE3XDen/PI8EY1J2MKIZGiE96UB5mFyucEKFABFt7AAbE793NYaYGVdMJzk\nobMqFERIxhb7No9Rr8eaA72fgem+wBpbfaWyXcPPnKUida3bMmoZm3lSjUQd46f+Wfc+jpn8b8qB\n5kYkzyFwFyyO3HbPlWLd3w1lm7JBUn+9AbZc5SCoz9ZSQ5N6O7+red7FM5eA6mXe+Nrf8nk856o9\nx9ExBhYTxvBY+WQGOK7Zp6HLcW51zgvKNlz3ERz31QAAIABJREFUG1l9bLu14Y4Klbl3eqrJs0IP\niR3V2moPd6Ihu+jDmKsmtjYOcJ7AU4Se5npfrDuua23qWObQVW6EWk4+TznGfh4DJwfCt/LzX76B\nCKuQmmsI9J4LtCpCjuaxrJUnQhTWX6GBpqIGFAw4xon6p+WWXjum0FbarhpM75ZEhcNEmVk09rga\nuAoCVFvcaVnyPV/LDLvXla19qmXXLeGZiUR3hw0cH33tx02jaySPxq4om+RqAfJwBkgc3mqrGugO\nstjyRxfvksm5p0a291DPtDh3YNAg6tqes1LC9+Yx701YL8W7tAtneDXW9Gf3bDwNR1/el/J+XzER\nrp6v24TW33d3pIFGw+lj5chgC8lE+FHLSQU/2FfLu6qehY/FpJkAv7lyUavlIJi4ctQLBIhnYVf3\ni3CRE4VYWSrLqjcsC5L0xM3YTsoTov0R7923SrqOdSAUDJUFkO9KjcwgzFJUhhi8QwAIepmMycZm\ncyaA8Brk2hayjg7Kh9InVIo1nlrosFfPMht4PCT/wfJMPo7n3FP86GfmASLMRqsHRB8+e3M6bjWA\n2H8DyjCa4/KxBuizx301JlfBhATInZ5xbvBU5GlEh/x9HE98HJP03Y6ppB/DYktDB+SUjVeMzfVO\nHo8nzAa+tOaeZq4lu/r4dxAsvQdxWa7f5xyLHy1ygzwWIwkdOKxFu5fuABAcnEn4CCZokmZrAB6Y\nYXfH8B0auK88eugjfD8Pi1DBOl7bMlTYd6kNCwx2r6fV3l5j6OhznKZcD/D3yxwpKYb7DUfKLRst\nMSq0zlq3AE1UPgUouQA6y7KAsfq7UvUXPofPerSBJhWfAOAEBskwzHkN+PwAar4nlR4RBkkGXC/X\nvkoOeFXeARBYansZ7qBjiWvk1X3P69pFvUQPqfWt4CkBmj4MH0s+PsfMHfIccwWgrgXQQA4AabSB\nowfI9E6p7fb2lXWLxWwPws8TAaz8W2T+HUfkhfnRMfDrfeD7JUeYbDXncngfLDqHXpzltxZrZFKE\nPgzY5TMpYyYbMK8vg7/h/b7+eShf6Sf+uSvfQIRSEg0QcHoRvQJBCVqzhSDC+JzwjiRdcuwqOdWb\nTIQrmrxP9s3PVIQBIMzh1+WssIigLcd3579TErDR72nYulVXUK1C+M2dGQz2sOX9jrjud3lYGsdZ\nqbbTqFzKuC2wQBrghhJU0QmFFMjVSIa0tPv0jsnK6AYcI1Gq+5cBZgTxpIu48LxDcn+0LkkV43qW\nq3GqZecB1Dbskire3s8t6oi3rFsgagLICX7cKDQXiy9pvbM/umddP6y5IfZowHfiXY1kT2IM06g1\nqZvMETVSKw2+j/1cDvr8+ruYq+FBzf03OtAetkDPMbdU9eRSEX8JnI0selU5RtyTqv0mdaCB74lE\nkzFnfs90vhxrWB4SCyChSZ/ynopxGd0hpSSAVXJPjG7XWdVb1ENLsDwsHfPvMqY9LK0tY+zR8dE7\nuKvB49EXiDBm/ooLr3Cql+XnvlpzplFvEVePKaPGbBx6XzJoMUN895ElM7n1Losqt5MuPTyre7Q7\nPpVh0CRs42gdeB4TAGjBaqHM5rNqaQan2avCq+NmV3hPJpekIfzYyP4rho4+K2/xugABOZb+2kDH\npGQ/muE5IkmcA6cNGGsSOBthgU5x7qRof6z+4hrHNWS3jAnJ4exNtGsjS8PZjhbsiQ8HDbLRTqfL\nWCAlt/LztUiSgNY3FAnpMnB3NRcCQNB2ajgJwilkkQPhnVJzAjBc6LRz1/r3cQx0zuku4Xz83WLM\nO8VejrGOGjLF73cszTr36UxiaNSnQyZTHywwRBPIFlbB1Q4PWj+ez3G30sFs133N3cASTIThoQ1f\nRgN6ADo+bpgIdH3OXBZn/TPJqUXlz/VA0jEA1Qne1I2FiTBa6CTHo+NxdHx3dGf1ffTJQOgE55ow\ne2TMpVAq4C0LNu/MMEQZrucNjGfs0qMsiDpG1PRRmWKbc7+VH0b5BiJIiQRPWXGl1+BxPKcne2oy\nAJ5TIf+yBC4T3AGnST7pSPkYEVc1qJ4LcU2C96IopZ/f/foxKXEpYdDI16b6jaCfPz8R0gDUxVyO\nV3tXPHYaHw3gst/4m3ur1/XP5z5OVwuNucMG2sdwrWeXcyIhEK2dJOVOqYw45wAFDjM8bPgWdFqe\ngwr7vK3mUbhUFjpRY+asmGNkpzFGKE3UfSwjQWMRdx5E3e+bCrHfd7OwAkGzi5i8rHAMzBjG5xin\nseeKXTeM6sFCjrOOB+Z2ApjhN+u7JzKitcnn8X7rqO5yoWEWSh8kU4ThClwkPUN6m8yFj+PpscK+\nqwACuJtjImeL1kIldSbki6z+g/0kQIgrjpIPIlgYZ2PXz3uKMv9lTCBBGCpavA/W/TkOZuxzULdV\n0fB7n28HQBS58p2/nWmnMU+qxUEPNUGa3OaxjNqBAzncg/38shS6Jw1kjhfd3WHel5/6XszDUsjo\nmR73qUQ+u0WSwaOvsRfvVMMt+mrx0+fabL/L9bHyzIy2xg5Oc+exgK8ftYHv+/R8Mclc34zJCYTK\n/BHv7dW6QBptAAXzuGGFAh5PPI6njxWlfUfIxznRX3o1NoAFvnDHi3j++fwd48qGeNIRQI+/Yxk3\nY8R6vmN6PAzQ/CBmA8NaArRpEAwDnhZGJA2jCBmj4Fj054+Zx+ch9GcyBh4EYXo866pwjWqb4a/6\nzu66yUQIxgJBl2MZVArGaFgI2VVqgGqeoCumpBt6yPJtLtsjBCuQ1k3OH2VFRLgVUjz/HThUQxli\nB4hzyAsAH7Oa76QCr0q11yS0YaQt8KN1PFeiUCYGPPVLGn8bRmFlDV60k7kahrTv3Bcr0SJWn2kf\nrjXpueQMn6PyEcBJVu6KU+I3v7VjwJ4rDGwYjm7zitaw2+OxMeeKDTztPP/vSgZlJDn6zXjhFo91\nJx0tBBJAsJZyX0DGBnNAbuoLdEiEbKIudVc65jv5UuTU9kTAQaKt00FAIAI8HPea+PaHWrjOfivf\nQIRUSKNswPQILHVet5bBga3ld0JXXTnIh12wpbgxCov10yCIoch2vs+nvLh3il/JTnt3W6WO8d+q\nLO4olcC5u3YshkELr9TZwxkGPIllKHbXzIkKuM5dGchEMFh7Rl3egFD3yQiHb9sTCowaQdPLSY+s\nGk6RlOv140eHh6zsFLCUPf3ZIvswMJW5zQqdkmitTxrNx1LqsZTcu/1N3hGkl+csYMKO83gWzMhL\nTR7JHp2g1KyvNigZAFIPGmlPMX7HiBh9lsPBgbV/PZYXsgWo+HjkbdjoQdJClschc+XUWIRCFt6e\naricleG7+Zp3iYlJ6yEUbT6zKsl17nC8frTYpYbJ7ahgRGLFCiRa3FPkgIMHEAeJibINYFQ2AuKa\nu9IQz9TiO5yI3OvDYDRs2/KgvmAmeU4EG0X5lGeR0UHj+AivpbWZqfvxiMSlNoLJoluqVcaNt9HH\nuKGXkAOV5xOsjO3E0CL2lm3YJaN7mICOcn9VHjts7vBQhrMrvyDgNtv6eHRng9gy8Fqjt1u2EizP\n0WI2cDy6P+ewnsEpyi5vf3i4ed+ZHyLyFvA6RX13uS7meVMFMO9XyoLu44F0erIYP45Z3y9j5ksw\nLN2Cc05oNm50ANEv1D0Q4CYTVJ49hcMBmhxGNMMPal/m0AFJ1mjwLT49nEFyxBwNsD5cLjyOSBCq\n5R3WGvsVWIb5Buyb79U8v4i3FTnvjAIInnxz5SrgffyeLRtrGQAoxj5Cbof8mkBWe07l5Xg2AW2G\nvytgriXPbsu4DYDJc6XYAGMlON3ojSY4UGPdXc8QEHJ+BJvOjXTK+BFJXbvcj0yJ+ZzXa8urosCg\nsxZEH1YQcQsgrHY/HgRe2wTd1iIZ6y2B59mXTPB5jI5WAsLOOQJCt676XWLlyZqzZ0edQ9+iYvAw\nJQ8Ncj2ruUOid3FQGE6OnKtyG2b7wEXn8nONiYm0JblBQJcgner6yQ4YofvT8fqt/LDKNxBhlROq\ny8+1AHt2aZ0lfWB86RhfgjKXEprdlGwQhdC6y2fglKR0H0tIoSugoBdrznTuLx5Vz4r0szc8x9ze\n5ctCmQNhnld2GgRjIXEWADXjPSvQsLoJGgJQlc6+bjaYW8LPM+mrWCj1t9Q/iMRPk+UhiWoOOFeX\nSqbTCSt32/t7DwT572J8uYdmxebSE919cZ+Ld1J0lpCuj0iLt44RnBkqsY3oBBCUat0hIEyPOrNo\nkxnf+7G8pZVaehV+MEp9A8EOZsvA5p0/yWzIdPJRxv/V4t5lO9QO2fGgvMd6P68b1FDjO1LjAwUc\nmp/Mh/CjlTDtID2xrVwJLYwxA5OP9WQcTQp36ccUspL7L7V9JUnUJEpc9NNYWOd5HzBsgXPrGQ+8\n89hwfH60ge9a9zAOtqfbPot0LR5eZPHvZjF+bHDeYoIGwJYyu8tvUQ1nZSKQms5xpv3Wh02G0zsN\nSM8L1hfBPd+7u4fnhoaitZU/49FnIsQxAQXS8m0ZZKfngGN17/lQNo8mBPRrwXEcSTHRgY9Fqe82\nzaKcIC9kJtpGOfb7G9q6R55HuZJGg+7oOB4dzy9tEb1GOkeV1t2zCHg0TGUcmADEu2WCCYYDwRbS\nLYkJSk4Gn+Ep4LpuPej3s5xDhjtFkE7N3x/OsIAbb/q3HpCE8QS7mSsigF0mSeTa8YVyCxmkS+12\nAOHec7gz3IFsVOiaxWf6uGlCv+5Iskg90hW8ZQmnQbwH6lPYGHnKomA9CNZGeMnZW+/A3AtwQ3fx\n0b6cv2nfhJG/25GIIV8NwzGqtIsGYuxvwww37U7/3jzzxy11d4Y+JnDWZY64vom6RsUavWUiiD6z\nfbZ8b0d3wJFsBAJCHmJAw7cFYPuwji+LEaQ9am24zluZlrpGtsXU8jXTmav7eioTIbWr0H+sTbkf\nQMJwvWI0pLlN1sJd/1SAju9j4H5NjwtUn8bpu+6kwvfc7HzeD7X8wJvv5RuIsEooMkshT4tHCHpX\nOHtWYO6YARXJuyujfIY3SIZsy8d3AmNLF8R5UQLyQrlrxi6xIr0cce8zE0EVmBrft2VW7IzU4RZF\nyjT2jpBURc++wwxFeTTgS8T7n+6jmskbhdTUaXAerogr3Tp7BDIl/qX9UryM+rkradHmgkkAoann\nYi2MXqeBHx1jGcQd7SEAyg0ToZYKUlxV9eQZ2oAcZ6Npfcripwpdo4tw06mj9J0rDqJmHK2LcjJz\nQ3zXnvhueQ0Yr8hkaQ/GubeIcdTQhzHifTvlWfugnb9fAogWsZ9aOuYuEHdl9KAs2sZbGJ6U8GAB\nASAcbYInBE7o7TEbaGNu/0VvFr2YwHncT3lg/m8gXhefRe8amQjdjOktXIa8NzND/rCwjXfFQ2Fa\nGAc7Y4dG7fn6kPd8JvucGe/HMIk5p/GVW3UONyttK8+l77ueMz2dWAlCxwKEgO8XQ2l0CwotQhZc\nscqAe0VSKd2GoN4TRAAm2Fnl7nFEkr9j06/qGW4PPqusKchGhXvU2A/rXN1l5HEzmHI4Q14DzVZe\nlCUnaOQnJoK0Z6wEfEcP49e9gKsRmhcBbRpRM6P7nHfctlhZQApEn/rMmZSzbyo4a7ZAjp3nv81+\ntsdIWeW9esb3K7Lt3Ym5Ka+YCPPH1S4a7YhPDxEpf7vwmF09lWXAQrDZZa+yVH08Rn1029F5ryEg\nAYCuBmnULTzpIqsgY0TqPUbogvGJmQOgjW2c/12p4Ra1VBbUDjjYXbMDffK/7+ulwMDRJigQoSMB\nqPHdU+4Gc6fH3Lhomz+n9PMOYIr1K+bbM92HIMb6t7rtF0Awdc79WO2IraNZf11fFCA+tyF0DSBW\nEjPM0CiG3Wz1IjuBEbs+qixAY5uxwnSXI+fHEAHfys9o+QYirDKKksAtYpzax0UyXP7Tm7eZ3RF7\nvhDGZDyL56Ovc5cXy71aOhXbSNcByEi/7HlOo2g3lZl0jIuT30oobG5gST/siipvanNXoCSUDUuL\nVa2dewv7mFsSIitwrqiKru3eY1/8hxutc6EPY96puVfAwB1g0PLX6qFn0WRTzIswpK1zbbfwDIri\nxb/aJwBOY2vU8SH0/umNDk/9cXSMLxY5By6a1jCNRFLVk1dJnysU66uSAKmktIZSpF6+MSJHhV6/\nfYbkZdDEgslj9AKVmWNEtrgcZ0UJiLE7kycuIMAyFfrxeOJ4RMblUArajCdNY2KkeeOJH2Uuq8cz\neTrkfTOWHUBSi7YKQmI6rXs9l2nv4Qzz3q0NPJ/xHKXMkr6sAMKkUq/Y3V3/rbFPz+9U+MwVkQow\nhlISCksH3NvdBtK1lX7P8KFJ1rK9nJFxEt7z4bLGwzw6bhXxyA8g78UBrjwHTBJrtaOjMYRnxfRv\n35uPa3PZqKUaF3elcdwumQPAlVW6lsjgogxz4LXdg+Ox9aQwpEq3GZZS/JjAZH8iAd9mAbwkCi1i\nfOT2zH4bPYy3pNzeyDr1Wquhv2tXTRaZ2rTGKfOiUGby+U10B86VMUyMHzFIec+GuZtOAzwvwmMm\nl6Pn0lmRYoDyPhzvsS4vr2yL5H5ArJevihvOnGOIcZdzIgwHiq684jXHRxwPb7+HGvUNGMb1UXQp\nD0FAvH9ljdGgdN2t6Roj906sgGh7s5HmYd3m8S5WvvajA1sW76VZXg+ajWSUVrFAoHFHybcboL/K\nOyCvJ1cJGOl9Voasfg7UfhRdtJ+fNcb5vd8V1+9afj9jCwqNU/8quJb1i/vn1qKsDCD03PncLP97\n1xxna/RU22CN5ccCdKlbdEii1jaSjN8x0F4Vzpf5PdY4SJ00zFHn4tUzfN026lEBXsxwhuvdHX4e\ny7ecCLN8AxEAYAiyLEgjJ7LvP3z0vZEyQtlyuUIEciHHzabX7t1yl509PXpUAS20pvQ9DI8aVpCM\nl/IbIN7EVL9721vPG+IFybSpWKj7F0wA4U6Bl8MZtR+YGycSJJknTsNvenHsw2CHwR7NcytYEyW1\nKVowpeI7NG+i2NPAGjjsvFNuTohEhY/KWI5VPT1x2XxcwO+Kv8+yT3PEUobizn9zezRPIri8KSmM\n4yITPeB4WjkmSsT6/bXSsD5l0U2X9PPvcji8eqAXQBQH0Cio1Mvcp6qQMt/FRzM8rPvi6WENK877\n+JhKPt//R4u8GGG4SOzmZfsDAAwwz5Iiq+E9ETcvN+1xXlUI4r2FQmFYnmhXcsPr1tacIgj4YUNC\nGbor6nfbkCWKp1EOmHuEfxJlyPhiYkX/7ea6ZsNp1SzWDKNcdbcF7K7QIOYzWhtoH1gexBinPheF\nVVYTo70qHAOso4Ni5TxSZ79rEzmizGkGTzQYu8tI/p8mxnkLIxYo4w4BsNbCeXSs/A8zFKEl7x8T\nT9KL+GpdsWPWrbVsjF9jxMPBgzFEWTcXr+4biASWAjT1PC8ZlubhTgtYA4D21LkvXtON8XPbxrX+\ntBYJXslEOBYA1Xo2RiOka2ZbB6Ktc71ehhnHpxpolvvPwZ3GrPJPHCZbcK42OstKmDuvyqRc71+W\nGo2J2r65t+tnFvVP3ucFHjBUSGO+6338e3kG8+2QnUaZp8wwZwSoTuJgQVxPEET1ygp2sDzXM3Re\ntfKcYNwE/d0W+KHnpHA9kRez7eMtGVeTPbLUtX3n1c4U/P391bnmz1xgoZW+1/ebxuyaFx9Hx3O0\nxI7J4QtZt7vapYHtenDcIK/fc1vPuGdqjzARbMzJYo/h7CLqf25vrFDg+Yyx7Y87HUrbw2+6tlwx\nERjicXc/LUx06v+W43Xt/FZ+GOUbiCDFFwqhyWkJ6vXIf4Y8QdfkHcjC691SPbj6WUuO0wowQOOY\nKOx2UzwYDOvfOBuFSkv2Y68UPTlvmtUi5EapNw2eXThDFXDJ1h+oyKdSmHXbJ4d9/URZkF3grxfX\n2kriFM90mvKm3a68IJQZZxdsOr1Z5FBwD9LGK3a1M4e/n82gSF7n5RFIlO6l7Gm/NQzPMv7dYyYL\n9KSKatRvwIQKRO3KZ9F/Gv2plL64CsHRnAjZeI4ygTVLXpIdhZEJuoJlEonEDhqIx45CGwYLvbwf\nmyRorzy96dxPGiHeByuUIcd7YrGZwuggHbPOJ3qtv2sDP2L+h0VvbjYwVEnF9RyZv1tW2C0+nYrJ\nT+CzkTSfKu5Fl3HsWeVfvBMCNK7o9WuAj3lsrFOGZFBPDWkem/ViHPKqL86evzBsruuqht6HDaB1\nZ8f09afb0+pYf8lEECbQ5fNp9D6m8W/NnHqd+kkNtRtl1JVhsjlO8n/97nIOrvw3zLWaso59WN+d\ne1x3tGYMkJ1DMJE5HyqNm1d7qM8bugAZc6MPyYswn9HGCkFYzIfemH+HIHqsfRH6ExT83I/XhsKs\nxwA4dhdI4CEvqx+OZg6mPB7Pt+LzP+0JTnUyMBlcYmFA196VbNPBlQD0TnV5ueNIBsSvSgpt2Pym\nYQu6zju4ADjYMQSgeFUI9MzrFZTbX7tjItydp+zUcDQJGVeucf1R9I8aQvg1JcKS1r/ZRmEp+S4n\nqa9XSEBx0nxtUd3uqiTgnkwEb0i0Q2UddcduBmWBVTboJehmexCkrbmr7J3PlKsxX/uAazSZCPfQ\n/c9PGbh+Jz+08g1EKKVZ0D6Zmd2TKn5GiSeQ0AXFvLqeQb9SB/de+CJxtTDMz6oUp8XX1nY9I57i\n9MLNgjFwFgZB4crfDeG93VGItU2Q62ZdZaFWivsK7XjXs6GodB8Djzbbwozk37UO+67BuNfZl5WY\nq4IQzHPRuxhY195JeiKAMCzV2KQcpiHURtDiH/TqsP+kf4KaP99//7Lpy6Kt7MIPgLVVEePhVdGw\nMDDMkLLut3bODFyNifq8BErcKEGTtmknpWD3jKuiLIdMHUfql71nlPeYn9zukeerV/NoHQ9g5UTI\ne8N/0Lv6MdY2jx0/at1p49/3qfBGwkp6P8+UVC272Md7D8Rs8j6cQQxkAZYCDJX7tDFZU7yfGyFk\nqQx8156ZrSKGCOcEvSk6plMYB39DGCS8zu9hcZ6GNBDvy/R1eVYyss+MoKsyjT/tC/luYYRdhTJd\nxSE3m940ewDjS8iLtq6JxK0jPM+W+wBQts2U5RoeFm3Yt80skmL+aIVTfLSB70cIco5tMm2mLLgx\nMC8URfeGIoAAMvjYD9yW0RVp5tY4MiBHuuz2OY/ZKa3F+bEzzji/Pwf4Vk4BaZ++NVUKyVyK5MOZ\nkUcZwL/WOmyY5w5gyMHRwhsehq2u7zKAWe8HgD7mjh6PyLtC8P2w7vHXBCmzd5YyVuj92BtBNWQk\nJ7zErMPHDN3SsK2PZvh+RJ4U7jTyTrkzKhVECvbWklnqA0C0NcIqeqzDK7yitY52t0+29Iu/n805\nCo4m/ccWg6vFWGY7GuD0+8NmuAITb0bekdhFYjQLxmgxJKfcKYDjCB2RsnsWYb7o+lj+nfoAc8yw\ndOz74bIP+eRXjMk31njS4tku5pJpz+YgC8fJsWSqHQTC5xh9Hh3Hl+GhdGQTjJHzsezkeWX3qmNA\nd9/CWA67Vzko1kJna4cGlVvUFbsFuMlQhwQ4L/DyMyDcXF9kR5OLF/rZPBpX5RsT4YdZvoEIq3BB\noAIAqPK/EgsdY78Su6carhhyqybGNjKcoSqriiSfPMSycF7RkbRU5DeoVsFEqNM8GAsZVNgnWLx/\nvpZ3vC5eByyveceFMbTAGArUC3TVPS4jDA3PkP1ImpYoANKvDGlYTASCO3xPahxrLoakOF60vQr/\noM1H3WmAvVPS3uLpOYbe26SNtx59R+/cwzwBE+vLHA0/Op6eLDDd85VnFgFefY6ye31vKu46HzTe\n/N2Y1PS8dYmGAiTvbnm/jHPWfAfhKZjUxPYdXMmPjMuMOTdXDD4WEKGGNamn89/nfrvzyFYA7Krf\nNVv2OpLCGYAJlrRFa6R3l1RvZSJ8dzzx3fHEx/F0g6ENARJUdkEAAgEFqjFD4NFjRde/D5vhBqsb\nJ93TLA33zyi5qU8kp0GKF/f5NECPp1OPXbG9BsesYXlouyu5tpTH8eV8jQMIBaB4N249P1++8/7r\nGPOdfNee6ONwoHOM7P2ih11B4YH7OQrcs5AM05CzYxrFffURk4xR/raVtXzmGMAlC6XZgB00cGNb\nyABFw1h3A82YAX3ONhqa0ZBsPGk4g/YjS7AQmGD1ubbv5HoQxi3Hw2i25lV3g+CUeb8FgM/1py3W\nz0frHkJoC5hh0kUaODQ8HKwSQwUbRprWQYGf2WYyOoD20X2rPc8ej2Cs/Oh4Oiur7o7j/fqGR1/f\nscoHBwkXOzC8uTn8RmVzeHMRY82Bu+FrYM1RQfYi68y+IMPhYQuAk3dGY56sEQ0foCzjVpMMjQ29\nYQFoBJu8v4IpU73NrjP21Z5jLKbTAiCe5u92DPMddJ7IoQz6rme4Qn4/KZzEx0nIl134lDL6PusB\nP7FF3Jge6Y99EqErlCFTR+d8IfsvO7DWWiVyPOkYG9HroI+Egd2VkcD56YSyh833vPKc+Bhdfz2N\nZdobHWOzP7fvGqHAVcvroYNuIg+iQRCbRdkvlq+v9/tWUvmWE2GWbyCCFFV6KcDDYBAKJl3oXyKx\nYlK0BBjQ4/S87Ipmge6qwMi94mQAHb7V2/PZ8JSkjJ40jqfKI9VwrclzduenOo7PLwxX92EzPPa0\n2+zHzXkAJPiKxuRqj9GbYq7sU0GkUfdoPUAECeJ3peaqUd22Vj0XHXoK6GlgiMLcMm2CSGBdqdA3\nw8Oz+XdXxrgY+qPZR6SeX4E7BXjxfAjdMMzQnw3t0d2zBcCVp0jOZbGAHcFC0Gf3Z2xnp8mVUrzj\nECqw0x8NHed4ymqMBcX+PP4SS6Ofkf+enVRSn/PL0yO91PV0riEZIUdd6D+mQdMaM6hnNgopigQi\n74xez2MgNRzCkqhFAb/rexJUmlu4ArM9XfqaMb/A/8/e2y5XruNYogukZOep6pj3f82Jnj4n7S0R\n9wewAJDS3vap7nvjTmUyItP2/pBIigRTXHaRAAAgAElEQVSBhQUgn4n4v95QkkpqhDFU4+PwsrDs\n07N2xwuo4ML/V+0ZCBUslhcuuDsK+Cu2VPU2hwHjyl0qxffA6bXffk2kkV9bXSez8k+AcOC9n1BY\nfotdzEgVl5cVvGFyL+AKIDDh3J1XLEvnpjwLI2jzf92BWa45AZKJkfPyqpGJIM298gGCONCzKSrQ\nHF5mlYlNNDEP8liYaOwr0Mi13x2U2WjIN53etz1UgZIvxtUkajBGKCTBa4Y0+EdrrDdAw26+fqXx\nr+yWC3hRGEDTGq/OEb/O1uo5V0K7+nB9RyFL0pN/BfAFZrnP69v8pFHfpEekIuXy5pntadjbtb7W\n+GP8xdC/C4OoLJpXfacRz+vUpIDVII7cKZKhNTWPxqUaQ8hrQYRlUqa0BEnv2AhfzgFSN6p9/Ttt\nfd76xTXk6Tzzu963Moc1SWlrI9ZqgFmns4CQzhlpRY/6G5536szBRFjfbxqho7f8KSKTIfcpt9KJ\nozIzHee9PM/Jdxi6dq5I2iJSnGXT+Z/n4d8NNbrcE69Zlr/bv2f7DSJ4I6IXyD1myuJt9uHQlooi\n6CwEdCrOSdOMmMlQJgvy19ZLu/LV8/3Itj7029RvdnNSMnVWlM7RXtJhgSuA8ErvnYTei2u+7HOd\n6zLuVUGx+ylEjaJak2RRKO9tmEW0WC2Vvm73mRAfrGEmFQVfva4WOz+wtx7eW70xSIzeDrx3ouWK\nU70UWjm0L7RTSc+SQNOaKIpe9QyqAufZnJJr64gev1Rg0nsX3nKWnWtXEGxtl8NU6hwtxhZSmedP\nNP0W6VwdrahK/VcG9NpMOUpg41RBI+iGeT1wW/eeTIStyAaGOMmmwUR4W5Irfg5TbHcp4Q+ueDd6\nqBs88WoqF1L6WT2D635bjYNnhijp2BkuZJay5WuAj9uUdNVmIRz07ga45JT4fmLfzwDPqCBPyrBU\nY8Svj/zZZBnXjUyZ2VgAlGwEXue6P2pb5QsBFyn5D8YKJgSFKA3QKMkFYNwouTWXRhjDkFRa+Vxo\nRHdjAulwRXczppo0QB4IdtCzMaWRU40MGlXzPDb4fcFwhhNvfeDQgR99mE47xMtzpVcv6e/Zj8rC\nsv6lUKjMNfVQGRr2vG6nPHEgAcwrQO+rywN66DaOSyniquGVRrYlY5zDGQhyoeV8CjQU9eqxPl8o\nzYoE3mpLdk7qBtt2RsLI7iU7614wlkJSlJ82p8Vzm0r3MXYLIZqo3GTKkNLtLB2CCfzslKdl2FwQ\ntE82wk1XqNP4c2vdwPjNq1HszWQo8+j0bUTOCy6IyUi5qWiSw+Za5vgwy2HKEp53Ze1Xb248D9fX\ntm0EEBz72Q1NJTAjuX5qboXySOK51ZwQcYayUsgGyIMefUQIy9ZPWwvd9g1DY3tTtDMdEc1DLyTm\np6ENjVK6E2i0aazF1u35jE+TLSIKHX6Ou9Ft6xkYTXGOHBe9672ps1Vvzm3K8Dhriu4gDDezz1TA\n7ZZZx/VUn/V16eWaoKxwkI5zaCxLRR8aYVjN9wqZO5UdSnAx1xr1feQ+Kv1lMlU2nocEEVqsiSdr\n+XJYI/U0T66497mqExrKXi3ga1FZiXHXe3FeIgElil4mZovcVgGqNgvmZ0L9NtlUcx/K5W9//1Xa\nbyaCtd8gwtKIHoexg6tgxVBPwpVAwCVmvJmyaAKk0K7udtvI8itpBLty6ru2dSuNt7p0V0T1Lmxh\nykjPnw4gZKm7/D1jxMt4bvodBsMTo+DZazXs4lDLRBzGbstx9a7xetCvJzAk6XlJlTY2AqTmKRhT\nUsUL5fIuRCXeQ4I+l3Hl2mgodEqR+Ak3+Hn1TaxeO/MP2KFhHrIa2kDKa7yAmRK6jqHSHZnorRXq\nuhIUqfRpZJz+Lmpetf46trWWb1LMHrxX7cpEuH6gKp0ZB37dMzzkB5k0tzfMz9j11n2S6/3y1UUR\nImWYXRZ4CEAHZBP0zZVWZ5hQ2YDHKxNIuLSmwCkxbjIRpgzVkyKR17gwEW68E7VKw0lj14EtMj8A\npJFX1kUalAZ8vTfFvp/Y+hlK2MlM9E8M31eNyjjALabxOsfNag4VBK1Gj5RnMo8b/5JWQzq5bGIG\nfgUzgNtQhgp20nOW39EAInnNpiMQkbYj2EH1+ZlHkokVaynScm3OwfS9q5y252gJMbd+Yh8NP/oI\nL/xjVKU4n32T1QM/e2ZrDLXeTPY1KbFNYuuG1X6VhO+ZVywSVcb4EkBpxVCsidZoBJAyvDtQZsy3\nOURmaDKAyNLLPomPvVzHqfyTQTKNex5I7nEy8HR+827M3GPFEPpuC2NPnxtsf6cx78AuiodoyLbm\nmuQd0D8WAOF2vYRMaf73LA/suecImhvAUjzSASZ0VgKhAd4mRgIrKrRiQFbDePoHvXcgRb/qGPys\n0uwj4Mat2IaeQuYuP4EqQZLBMu+XqhfIhgDWaMDWZIQBgnp/TmQyTp6JlbVyfS4JWExhC18swSnx\n8YvPDiAYNs/WNY3lzuoyozAR/L1gIvR5LIrrtuJzX3MBvPLEh4EPuMTQyF+xjjtLKbqdcNpZxtfp\nVKwhkBgzwGly7Pl8wMeqBH6WzU05+Ux3DX3rv5ELQZ/8/rv9Wu03iFBaon88wGa6mYim1XRXA5Gt\nCnmnbjIB0pRQ64l0nZSQjR5tvRq/3oK2/ERznpTw8noNZWCt779BcAATNSry5Cy4ytNWveY69eOq\n+8dhRAoW9NLJUJL8uR0OJIRiwbkr853e3+fi76qQ33+eisgeifWciQD4IZUe900yeU49NLhGqoJF\nDzzHO93fEJPJi03lNNdDNfrTwypNLXZQjJp6amHcbH8zgeg3WzUYQ9kRWMjHNxuN7RFe9SdtCSGy\n+6ZlyXJnivvcCECChyJZyq16Crq4p8STn+37if3DvQtiiccw0mNZPaacCBnPFafVI/aVof7KwzmV\nh1Q1D2sBbdKbMSbvnhBEKAYTvXs2X/fGY/UiZv9fdv/Lz7wygMj4EpHI0XB3rZpMtoJV5pW1DggU\nGkr5dd6lIcCrBjOQmijCaV0ME/NA8oNmQOtha745M+iinaN491UmefBsTmhERR/dgGhqc8MqAnsb\nOHx9PmTgvRplcMCh+dq/gAC5H2pcNfsX8rtd120yA+QW7JrGVA2qp0BCGt8VDG1gOAMib0J9f0ip\niuNgyTMQ8VzCdDRCMNLDv7m325IKGpOnsrw4h8/OmahIVDpxdUYkOFHns17zylpL49HGPkIPme5f\nDAh+tq3rqGw83nvzc2MbSCClejt5tjvYO59JctERVtkV84aUI3cGMnNPCGbWIXMQRJ6B8v36PGpO\nCa5/wbz+83nmP+ZqqaE4tWX4QuaYaZ4TIRiFnigwEo06qMGzrd6v9XlRSGjtPrbN8CU5fX8OnvG2\nJimruC67J5tsyxjX6jkcCz8T5RVxL6ur57w21QQ4k4FHWZLP5HK9NouAmLsII130icKyRH2ektfL\nvVNlWtl/S3hj5kNIUD2Zdl8caqTRAZOMF1EvmbqFLKqhkutcVHC3TkiszQ0Yxw2LxjcPbY6/iyJe\nGX0AJEGfZVi/VFP8Bk7YfoMI3u49zSl0og1H258AALFZHUCwpCpGiVJWHFg2c7AQxiy8wutCD86j\nfOmbKGLYLIvCNEAmAn+/fvc51Syv+R0mAq8VnjKdBdRQH/u41+pCCRk5HrsXDbqBIS3iXBnWsDWW\nLxtfWCgcUMu/aaAvIQP0mlbKdk30k/88N0MTyMjDeWuIPA1JcU8mQgVDVibC1N2lbzlXaSg1zh2B\nDFc46KHZWh5gVRlsW7nnDcJd136TCOX9MqauJqPkwa8le1r2NddLGHHeD70BEO6e7JTcqLBVGNM9\nItloGpVr7DC9Y1QiZi8V51MsWZLTJ5lYsfsz2n1dbP00A43fLYd6KrcJXpBRQ8W+KkO1xXs3SgIB\npMpaEDJUKtDSh3vJJWiwmxh4cDaJ7P7MwB506dNYDOeQWP9NaKSlh7eLTAZBBRjunp3g/r2g9ANg\nhYKQRS5rVeAJbL9OgHWdTJc/BWyrVNc7IMcUfzfYNgAHlXQaGblP0dzAHUhDt10NR7Y1tpjsgJjj\nolBTDtf8sQP52UjW5VUaThVneuS1bc5vQql8PgwEGxg+9+cTJk+9RsyjWanfavXMsms8B3sn40/g\nSRx5ZpI+rhNlePfXKjjLhGl17FN8epUhnFcasXQM1POgOCBeNSWIUEIUK0uIoJRRznM+Y/yUTesc\nyiyjgWQifNWnV+/3BVCNubzRa2r7KvyseoVjTGL7XOBnkvC8cyYBGVNNcaoD8y0BBIblMc+PUeQV\nckp4cckgWwFi7ieun6R55/kF3AAgTT2xob3P/dl5v8WArTLMvOoxY2hdJvAknk/nJ5C5RhykhBvo\nrfS5iwZ4HP3x/g1IOFowMscT8yhU8IrlooP1CQAuZy7zUNbQqsdIA2RosEPqPlmZPPV6IuKVo5qF\nPQ3PK9CLnrxZ+FAAaeWcWZkdM2Pj7p78bnUgZDLaU5D73AGgaAUcDLYRQ0kaYl1tjY6FJWkz1wdB\nKCnnouRYyUSQJrF2Nylh05uggpDWn+dnjvUvdbwYH1L21dZgCXD/7lH7u/37tN8gAkh5WhS29TNK\nZF2TjZA1Ee83JZkIYayVmIVmivakOCDffnbo6rADI/tUaIJ6pTkrpm5CYeEDpydbO0bD4RlgI6zA\nv1OHVHMi8LwXRTARFKbkMMZ2vf+hloeyen1PVZxq92d1hmsGfnVquoKJF+tnVkBjKBF1DYOMxrxN\nrkKPMV0jJ37EZ6pS91Vj6AAV9kzCR1CggAhFGa9ekPR+PE+Ylx7K5Q16Q06AOS5ON4xP93aMAynx\nb+YtGBs8bAaZFDPtrYYz1L68UkuDGlxWRsRHck2M6+encQ5kcsfRcI4Wa4sfq9egZ/TOm2vXFTRt\nAaI9m9+XrAw/WVm2ae9VwTYDq9Ig7SuLl2ECgHDp699qy3q1vBiC47D1AAB6dv8p0FO95GPpz2JI\n9VjLOiWX/U5mfnZHQeDG7+H/IMlEMuq+3SueJ/L3Aco3vm7xvafa7wNmSBxqv2sBiZgYFN3W0Dla\nsdFes1ruksLRW3UCkVDrkgiX4M8CFkXSPLkHfuo9BgrQ9cW6WI3/OfTB1ua2DWwnY3EFDxVs/qWr\nkbwATS0NHisXPINTL/vmCu0V8MyfqweQYxjlvWkvlmulgqu380rZrKBhqhGOYWeGTPc71eL9j7PF\neol1VDBNZlBvwS68X0iV9VITJz87XqQBWsYXRg/HUwzPr1qMVxIkfca+ur8AQaRkWFQmh0DTSG8I\ntiDPjCqvU7/wcz3GmwDCyzXFtSppZE3ANLQY7SNCLCYgy+cXZxqsDQ6on4qblEslTKUYYqWP05qu\n1QmKIV+BsAs4GeeuBEAb1yCIsKx9wPSvaV8VZwfv0bvlEMAgIzYBSA29JZkTbbk/b/fsHFxJuXf5\niu7WWV1T/5PMxzrHd2DY/HwQDJDaqj4NJMjBtU85O5GRp7AI6prlH57MA50GyHwnd4zXques443c\nSjfv8zPThUo/v5IBuuijA3mvqqelI+l/7ln+/7rpfMb+yu03iIBEKaM0TCDSlkQIKEhlPfkXd9pc\nRoVWGiDdkEcmM6KnSx1IsO8+6VtcZ0YS10Ylk6pG3fivaJtUKEK5wb136VWj8h/9w1WgrV6euQ9V\nifz65pNSQ8VR06t+iim5XTxmszIRvgzmy8kNZVQwzf90ULnng+WvSJfdRBDVeUYePElfSyXoluqK\nXD/VY2Y/y7pAMUjq91UuyeDIaGG8Hb1KQxwZd8VrAhKqYf7N+LmVZksPKt8TwIEPAhUCdAeLwjj9\n1q2etpWJMDNfuEfUjQPcMhFI86cnswI+FifrF/S5I532vSk+nbM7lYF7oSyFsrnsnlva6IWZoqlY\nFgVkDmOgkJr7QI9dcys+AU/bSwO2h967JU+LPnzj+Vy8FosMeOG4/FardFj728IZzr9BNEwlH5Au\nLqMlPcASOzEUttoqE6F1M/4IDoqoecU3gR5P+jRm5fK7CnXEgot5Oef3UuYLCvNpP3Gezfd9wy6K\n4edbkDDkeR8ob4fFTjnsKUaX5zyu81MM+whnaHXeNdYeWT9bkbUxj7VPktfivmICtd5HGlPuhaaH\nDjB2zdZSWT9DFiyPRcnQm99PZseSiNaNwIyzL+rBV8+UzDe9Atcmr0eUm40paLNMqwwpekUjuVzz\n2GmkQbR6XyfDfD03BCkHnWXDRIRdjKovN5rkd4BG9kErC6HIWo4tz9wM4eN46xlG1kYNYYhwgPq6\nmLxgkkOC/w05ttqfTqo8TGfL/pS+iTOzznZ5zX5y/nL+W6Hmi9BZ4173uMYsd+J3MpqaRIgU32/V\nGw9gNAO99OwxvwMpp2wOy/NfgAxbQ+NyHlXGU742g2qT7sz5almG8hkolgwNv25TnGeGiNh5WQzp\nDZAHQicLkKiu8whxWQCeGwBQytwE62ZI6BMzg2RmIqgzlulgXOXiFKIEBziXvq7zLPV9f8aARIlP\nhvYk82O2LZ6FQ3PdZd+vgC6Q58P6Wnzvb5y7v9u/T/sNIpTGw471ZXsRbqrmxdJTS2lHWsB5jelg\nLsh3q0wEvjfgZQCL0eD/7gwOLcjmcK/zGG3yuq4Mgtrq/qeCZF4X6+jf9YJqOWuGJjuBXh++Xmmz\nwCy0cholSs7dgSQXIUyDTsyrj9biPmHwDaM6bpufXrzZMb7nhbn0oXgTFq8EQScDLuy+YwiGkPZW\n+n0zzXev1ZwINanXK5o2qfnXcAbE4qp5FHi9TYbFbfLeBT23UqKzUnjnGc2yaLPXLuaPitlNvyOB\n5g1zIPs0l5mc7s3/BqCHxkE4eR6Qz0GBYkBcrxmJmUK5nZ/5en8RZHLFZgpH05meyM/xZ52e6hUg\nblUVUfMQcR6yj6FItbxO9NHnwKqvuEIhJdnmsM9QAcOZHjLKP0CKkXYFJ9Z7ksb/DDAEkm1ABgJg\n8qi7GjKcNnvHDKkJBtVlHUMnzlhf9+EMNdFmTQ4assAvrodCz3Vc3/CYObOGAF1z45kWetBIh4EN\ncHaQvbauZ87HdR+Rwi3lfKqU11XhrJTbbTunsJNNcl00pIyp8z0BcqIO1GQS3qhIsSji0/wXw6e2\nSERWlXvMRjg/J2L72hRzjX1RY5YjNr/IOb6voKKd81bPSx7lFVx/1hh3X4GTicL9RKEewTm7V9Tv\nWlQUuCj6eV/S/rMfKbcI/HCNPGu3QD8p2KJRrWb+/HNwDEgP7asysDxfxiSrNeRIyLfC6Z6MQDIt\ncKXCa/Tffy5sBMCBLugk556Nq47ZzsZcm3fjI0A90/sJQJTXnrBY7Bpyv544WF+D4bQgQ6esmfjo\nzbi+Cm9h/2aKu8v5XGrRnlXgeIUaR3lY2GOplZgiOfBp+u4457M6gajrtei0uNev5HKW5Xv5O2VM\n/uO+ul5vsAT1sIHooQGe2OTw7L3ed81ts7YmXuHt1qFVgcQrkGDzQwUu5XraN+lMAapzcSJTxNxo\n0eGt178egPArjvmu/QYRlibuYWDMIwCj/Z/dFP8DsXs0tShEosSWaHkggZtda4qZai57B4CuFqdX\n4p/uGo3sMJYWCmBVTlIZuipHQz2cQQxAOPw6BijY5ljpjq7n2e8OFsB/ngo0EZyeAZrUJjOULP48\nBZKG8s9+nU43HqdMSVvm54JQDOFKFb0RIgiLrIY1MGxg6+espPP5faXE8Rm2q7J+7V8q5lTOT/G5\n4uWKLT/RGZdrjbjmzZtr31BAAX9Aw8c2ADt0h8czEqFyDzvLgYkmYCZFQbKLLUbXIjcV+YzX+bgb\nE71/VanTE85CEDf08rq8ZwBMOh/AXNdZSizvGyEYi5aThiri/cgfgLJPhkSiSSZjNNo878WxuuHo\n5c+oaACeRFPGDEZqWQj+85WBulJETWHItRP0ygB+ktWTZVxjFZpn6hT0YXsxvVbl96CAZ9xzABXn\n6/7WxvmkIhfz6J7ReA+mPA543Wx/TnTgq9rvDIsZqhHicNYQBtg/IGUfaeS1BvoozJPLfJ/pEV7x\nzGosTEnH/LnQUI3XG4yJsN5jwMr3Fg2t0lnZz1eNCdqAq5LMfcH3uidN3UYCnltzmc0x3Yy3jrt6\nMGfm2zwPBD4ifIXhVtWAu1wfl/OvstQ4H7b/1c9Y9dKDCaDEnDeWK0uj0ACnr40mhYczaMN5Jgi3\nhljZfslyuOs1UNZb/gOOITikGEJxaJUSj8AE+pJyfZdUdmbj5FwSkKn5H+7ayiSMMdDQ2IC2Ibzm\ncd/FYHkWYqFDYg9WWbyCkumFv7lI0+m8s/szL4LG+T8bO6vxjvz+eTUU787jKA/7TC97ws67hGSW\n+wCYKPT13F3bZS6cyQMQXJFpnaABciJCz8bI+1vIwmsjNWxdlUlPCcbAjeE0g7x5NpO5lB/ERZ9Z\ngdDa6nnGsJjjaLelV9drhn6IewChXv+rlmBWJkZ+5awLfWUJiTV9TqHacIaeIyGbXjU6Fm7714A1\njGD6k4yQG/ZqsEUUcYdnDKI4U1zvHzBdnz7Veub8br9O+w0iABexSO8hQxlo5J7SLLv2KBvad1zr\nCm3VUJNJehlKfj39+YlnsWFrUpb6e8R8a2Y9Xj/6fMylvGMRT5PijeVAZbd5ZksVOJ4DIIcWwIGC\nyr9O16EBcNJbegr0SEaCjX8RncXD9JV3sMFr/Ba6r7qncTWOYxAAMjdCDvwramadp/AE0kMiRaF/\n0tf1Odx/5onCwvUwxL06ngGbz5jouLcJEGF/pca7S+bdIGp+g5xf2QD5913ehLy/Ruym+j2eJZhj\nPCccCAnWzc39/04Oi1NrjPC8l2p3vzPuyuygwuFEI1fErp6mAAPj7zJf3xtGNN5jbcwFQFCJ9x3g\nc83+hxLKa9LmC2BsXJ7RxHJZ2kxz5N5PcJNsBHo1JlaCAlLkmfV5Xk8Xo7waBCtopAkQ8addR4oh\n43NyqMn4435sNf/BymoAqoHjniVPCBc5XQ7v6zl/PgGpeWSZ12Hux0qp5Wt3LT67xP8GHZ2gB25k\nTCk/HP3xPXh6ThGVrC+uo/SZc+Y5baTkvbn0cRGMIYoXuTt8sSjMmApmQQAZs7KcY7WqAt/JJ8Dz\n73TDxc6u2XBgQkW2uXKM5HX8tfNkXoAWOReiZHNFXKaOYAKYVCUo3Wt77jl/fj4GKHuzvrJMnV9n\nH+g9jcwJTFjypISnc/Imz/MyhT8O8zJf8l7EGK7y7crAKcAW5flxvxZy/HfzWN6nQ+bmDAiZcpJJ\ncyMrhkDFxiaSTqTvArAxloGoGANgVswCGElv8BTmcrNeallviE57y5hGN/tHtJRPTBX3LEPhc351\nfpn8k+dnff296jVlDz0K+/Zyfa7XLxxy/CyvrUOg7f55ZynRBNc53ujvkOk1PRHnSE22zkZZQBnx\nrEV51OfD+FarbI3K+KVcWVvaFDNbg3KQPtNw9PB7/81+/t/SfgMm2V5Der9o68V72KChOFbBBuDe\nMiy/h4fiq1kOOqSjy7gXflX4ftdgetaCWi75e90U3+k28Nz78N1WPYXfpXd+t9XkiuuOfzp/V+31\ny/tMNHjw+WW4wHfbMyPgzoC4pQVrejUCGFgVlpsOVSAhrjd5tf/GINjHxWP1VavhE1PfJk9Sueby\n/XgG39gXK/j0LJnX2pehnnwUVwV0BQqmZ/DsuT4xqNb2ao9Nc/viepNXlvfX6zgu10f1OJb1sSp8\npf2ruZW+Sh5o9/rXrl1BRxuTTp636eKF9RJkEal7y+Oklzj1lOP3BmGwu7wSDQHpu2dGltAaRhPv\nL0Zsff3Va/ffue7RMNbHbADGdYpC/YqCW5sWKzyZQ/fy5an38NKPDH14ZTDXfCctzrsCekIur9V7\nDn09yjV06v8NBbMaos/78cU1gh1hf8+G23Kt4hGo7IZ6rafAleRPEUzhUBfWzOWIqvd4MZYAv/Ty\nvWc09em+y1ym7jWzYa5nUr3G/f5dwzde9eVVKMN/p3113Wfy9qVj5m8AIPmd62vfOfcY5hWGeTG4\nJ0bQMs71vPy+Lqu315uuE+DVs2uUZ11ZCE3CcfL0/ks/gATovtV/6C1jIe5ZgSikfVLDJmt7prc8\na7+N6l+z/WYi3DRSkonSDfeUt9NjzG48B1O5utvgwkUAL0J0ougFargo5+650P8B6Kc526LrAFrD\nSke/YyKsrSKSVokASVv+Zj84nasSdu0whV56vUKhLywPKjZWiscSwm377EpjkrM0PBU4TmDf4tkG\nFS3cUPd9q94FAhZbA/pwWraw3KN9PuoBl3AMYF4uBCLYJs/CtIbMa1o/1/vAfo64TvNyV/HCmD3n\nQfPlnPo6VpWnp8K/Aix8Z8m+VCyasX22bcDo+fnh6vVyhzeAqzJguR+Y3NJYKo9RQoBuvU2JuJ8K\ndFUcC6BoZTOZwG3EYQ5hYs/nMbYA4jor3XdWWq5gSlU6kkKJ8KTQe9RPy84PZLnJp4lci2JOg5vx\n32u7U4wrhf7uvZBtTvcmAyHYCf78wrOhAEvQrjO4UsvvdJ5W9hszlTfRoMR2L12ZF8W0p9YmDdjK\ndWhYxVy0lAVT06IUc90ssVs1xl/Y5wCjyucKPZlJ4yrwXBVJ5Rx0K8+pI2N7h38/vPhNcJ5zp2oS\nW87ngIHsuwv6YDKUkBd4H6J8cPWqF8U1QJU+50TgvdY21MAXicz71Uu4zCeNX8kcQ5V5sbZ17/UX\nRtgKWtRwq6mvxRt/DsExJJgIL41cHr7LPqVn+Q4AvA+zc0fIjUoyMWgWr60SRDoAeePZe5WnkYxx\ndaQ0oG/DZdER4VSUjxXMmCnw17GQ1cgNf6GIg+uSLDynv59pwFNGxr4YyPw6y8ohmKDL9QDuPfO2\nn2e5xyg5a5TPHtBTMKRB5Pnhds94qu+j0LSeCDpO1PJdjn/9u57hc+iFX2rRf7/r4KGunOFgBaQ6\nczyvdIjYN6fEZ0+v8HGU/D4XYJUtstkAACAASURBVG+grKOUJVV2klWJBoyzXR00K7CMBJyZX6W7\nrJmu68+cW0QPQD1cbR2mDu7/K2jJdf8MyFllzrNm+3fMh6Tef+eZLnCf9yoZx3FGxz1/Awm/YvsN\nIiztGbXnVAHObgqmG5lwQ9Moc3mYBgOBSato+GI5GV8IgVdGV6X7A+ntXJXIimXw76/aRVEHD3GF\nFKlZzzWABoIbBsWQuHg3JhyFJcwQ8c0T7XFIGsBuIL0aQhz8/qnwHrYi3Y4BHEwuV0AEu+H893+j\n8RmYFybntdajTtZCKmSMkQNyHfG78wGiEepSlRcgD8LZc4y4ZvbRkw7B61mTlupAwzPaYW31edwp\nBTSoia9F31jfWgF83F/3Ox7OyTPhtOlrz6xVrzJCkZ1LrtXhrhRcyxFwBRwIvjTPpRL7Tj2chhm4\nXaF55XG3+fJSW8j5W/fuCiTczQsNp+fJz3wcNP4IZPqaZJbynYZts+elj+f9v6Mef9VWAIEy5ztA\nJD/zHVCLa4/0+7uOhDFw8VIWEKclqJJZ8q/Xs/MgjYzq2bc+K57ZFq88XfxZ44l7q5Jv+Q5mQ48A\nhUJxDEQ1hMix8+S+E5AhqVzXZuEMN0bLwFTR42LYFPBrHUWtkhAyyf+xH4Dvu14OiaZT7hzueRrW\ntTpDgs8ac/DVmmptfGut1xAYReYHOH0seihkN6Rh8mwvAmkNl3jVKgvtonvUa+G+GpMy9ERhZXjv\nSTfl84hwp7tEk69CD+uYamw3wwFj7S05EfIzGr9zbBfjkPv0lomncf62sq7PJ/NcZUHoECVkMsH5\n6/c5lpUleMf0yb7Xzmo4VNQ6b6EMo+7vGfyb80Lka1EZrKwTsrSm127OkWDNvsA0nrW7xIJrfpnh\nBu84PdTlJiluViN4Dfbhi898pz2Tx9dzuayJYcBJAzJMrgCN1WkQ8/7EecR7nU+GEXkbJPM2UBGJ\nMER5Dhhcw4Uy38gKIl++W37/lUCEX2ioL9tvEMHbSs8VAfpCjzthQkEHLFNtEysL5p8JRXxrQJ9d\nMr0p9FwO0hrjVu79sp/juSCwW2kR/JLMABqa/u/UhnNoJFakMnEXb5xzYEDCBIwDoLnD69cR3AnZ\neoMVja00+snDSmXm0FvlblVmjRWhUX4MTaDHgr6gTH0FEhzBzbwMbs5FIst1XvJQIzAgjlgrJIS6\nCPBHV7x3y+Jf4zkJJjDh3DRvlXL2bE6X/gwAzY3dUQ2XVRl0Y/UCOtyss68O4jRsrsbFbIDMCt2z\nfAi1L3oi4hejmgISgALgOTX02m8yA/g5X3M237PRwvciZ8iScFEG8PA9MIJ5RKXNE9jR6AY8LOp1\n7o4w3ielO4GLzjUiuHh7y9cnTwyAyDNSqzMAgPjrressb+5o9fLaAGC/X1EfyVAiG4fjukvoxqoE\nGVnwPUSCcqVBphKPZNBHvK56UtnRbL5lnoMAfGuJNCpQNQae8imYSPz+3C9d+NCRgJffaa6ML9/L\nnCaYKNX8GeEOTKxYwEgqlPWJ1Oe39wF12pw4YMWKGBwbDVz2maXRehsQFZwnYh9GIkhnFEzjf6r0\najwTddRopSuvcjaiIdy4Xsu4xvwuCBSVc8tPc12rNWSHl4+14nHYNPyfjec2JGUxEsdyxk7hkWti\ntBfa+BqKlb8XD3h4kJ9eJjyH6XHnWkv2hDobQd3r3sRLW0or1QyW9cvnU4y+6s0mCynmqSlOeqlf\nsjNenz/V4KnGetLU+UFF2yxpbgV4yVhJx8t8lq0ysPb1eRjZ33u9vlfZgbKV332Nm9yQYH4kSm5j\nvF4PJiN9jKbPlTCvJzKec6h+Zn4n1GgF2p89V/tcyuDLNco6mgza8tr1mvn7Go4ylXhcKqPld9iX\n+fVVTvD6t+Oiqjl8i38C4wHocQUNKH/rfaK/N0BQjsV/brBKP8t3b4XoTT/zerl3yFRuI5fWOlPf\nO5l/t3/39htEKI0H6WM0DNNI0VyhFRUTXEM8TbheJMqcqKxYASsyX1B7opXjpGfAEznCDeegF3yN\ne62e23WTU6Ywsc6pMgEISbGi0p2gQc5RMhLoOfw7LZVhDa/M15+VKbwgqaMlA/diCALL4xlqpR0/\nh1+rUELroJdcCOHtL/cEXPFa4nmrV2wTL+2oCApcE+CtDfzoB94205qiHKUbimG0TZ7PHM/UygER\nib2KwjaEtO1htMtlsumhG5pr87tx+nHfm9fuUOuLMlsM7+l6BRywIUo+fz6iMynBtm4NFJvXR2Ga\nLI00yGMkOEDKJGfePCEOWhRP6Am/HzNEh0F4nxH6Ene/zMUrQPACxDAmeZEFA4j4el6/Vm6JJG6A\nG2tZDSXpuMu9QRBObyngd3N7iavHDBRYCVaJ0Cf+NHbA83lQzaX7lRQc5RM01KZ9URKqDphcD6OS\njLI3eIbznJQmyORZd0lZ8fxZBlut2bMTeG3vVs6BaQwErpJZxbmsn6nG2906y74nY0EVeOtusR3A\nh8PB9DrR+W2GZY6rGhvrwwqvus5zEPPPMDx/2Poosorsg4c4vTivpaUf09jduzce8mWOgK+AzwhL\nWIyXgfk8ZC4UkvHt2piTK5a1xnmhbCF4xed5lHGinDFV8c/wJBQWQt4nWFKcZ6Ssmr373l+wZKh7\ndll1Qss1qsHvCW3HAI4PwXG0AJtW73RlT3BG6hlrieRKMmdZ2Vwan3sJHOq8X5j8LZ5n6VPrA22z\n9VKBhAAHveoMw83umG+dlYye6F/SNJIZ88y5GK1SKyXcDMnPtAoU1s9XMIEWXU2kmPdKRkKCKHkt\nGs0VaLHrX4HiCIcr17/L1p9edWSoAKqMLEs6wMLrPKj3b9I1B0Im8D5drMKEilx1h+KAOossyb08\nf6F1u19zYGFlwSYL8TlgUefrOiakA+QweXV8NoyzRXnYuo++yuvCvmTJbuoegLbUHy8AFUFV7p0B\nMKxunM3Hns+M5TwzoWTqqEt0xC/dfiXWxav2G0TwVgX8YzQvV+hAQrEvLRuvAucAWjfWAez1EMI1\nUK8JpDk9WeSC2BvSL3OMntKwAwjavzI27FZpuNVwhtuxwoyuFspRgggEL9JBYtetG6a5MlLP+rqf\niC2sQOhT1PbuNZVQLKLT7hWhlyOFu/XTEN28BlkIBHX0MSIfgvVnMaCCrvE96UCKJL+e5f0yds6D\n473sI/CPPvCjn9j3w5B9MEZfwXCGaG35uc4VDdiW6yNKFfq1mSE6rlOALgIXRpyZqbnqymL1BACp\ngD1r6bW5f941VCPu9QK0WL15VclN5Xe+DmmQT72GQHhQ6zoC5jU7xbjGfQQPzkkcyPAxq+fhGPgY\ngtOfO+e2Pts7T9TkESeV19fFasirLipvQ7A12OhxNyOvoUFxDiNJBZCgszHK8pEivi783lsfJghv\nMsNP3r5vqBZhZCweycpwumsLvjdfczKwFWvJK2A2atYmAivFuAnamy3evqcCJchyitP3Wnm90Ikv\nrQNt5yDVQnlcPjAHw+SJh7zEjTexXCfMmB6GEeCgyNyJ3kcYDu9vB+Thcv1wQxmCB5CKN+/d/Jpd\nLVwHANpAO68H0rdo9huAx1WGjMPPPyAZBzeN+04bkJVoCi24axhYNanf1hQs+7veW5BgLkeQYHs1\nJnKdcT1YSVRFLSkJIMDIABD83yPioYvcCQrEemCWX58koCRoULAIN1rL+ERjLVUAIBlX82cBGoQ0\nggSPjw2Ph6mL7/3Ez7MnE2GpUiGtys7V8LwBHz3sRFVxPq4qaZP5vGDJy1zrPMesnHPr9mz6rubB\nf3hSu437HBBVbO8D23Zif4x4/jyLGQq2+zUJojHMIY7m7iBCMaBrqJF9N5/JWiEl5mU5YwEHOfpA\n211eEBxwVFa6AJvrlA7SSRNoI0Bpz4Ysw+EVCKQp+jnsfBHFtp2LMyTB8N5G5G/SIcmaxOy4CfZG\nyf/DEIS4djgOdHGZl2eNDH2sYbs2l6OAFqn71bMr1i/3L2rJ8cIu6yk7Wclh0jdRnSHGaOXamPr7\nhT6kp+B8pMFOO2Prwxk9udYIAnC89efULz7fAixJ3d8vzuC1GtAYMoWZTWMmyEb9FI4DyaRKzuP9\n5aGFX6/9BhG8VcHOA98OlhOQ9FbqQJbn2pqBCC68mPivusBJN+uiQEtlk+ghDWIKzPQEFcW4oIuZ\nUTURZHqaKj3KEshZ90QE0DlxUtIqyUbI1//H5jSnIf5+mgANVAABnCgCPeNEVZEnTPlepS+S1ptE\nEc2bu3bKTLlrksJXbTJ6nyjLYXAJoL6eHgNoDdg9Zvm9D7zvRyQI3NtAHxbyIGLKzdxvB4SIOmM2\n1OIQKQpsYiISh+m94ZQhFJ00v4U1w4N5Vf7uDKXminvviuOck8JlzJ4fghuKV+U6x3ctYqaL4VAN\n/RovHd63dj2YqVyAP3E9EDneyYBAggmM2awJtUSAvZ+edK4BA34Qm8HHgzjm0A1/aW6kFcSfz4X7\nuCYwa92fd+3wE6srvZYwUAPwxFcS8xmtGMFkImxiinTUkxZFpYT2PqDaXAEfBcQ0D/9dtyR+LgrZ\n/RCsP0rQq7I86Hn0deWGt8JlHpCeV03Bw+c/ARamMUM2Bd7NSGi7A0DF8GKrNP6Uza7YsrxYHcMm\nkE3jCJC38uYDxlAQ3NyndFHmmNjWzEgCfO7BLPjiCn4FGHh2KPbdhGh4iEcq5HV8gK01daV728yg\nIgsnjIXC1OE6ro20eMHzPW7ew8W4vmnfZUyJG0s1WWOEM0iC9OLgc4vzHjmmYISkoV1By4lqTjDu\n5hlWYLd6/o3NVj5YDi6bpyvgWudglfc2j/NnI2yrGMav5jfZC4g9Q5bkOWz+tmYG0DYatu6y7YZR\no5qOES1jn8dijIGucO9xnuE8M+YvXMffHCQKo6cNC1V4N2O172UfbAWb7wP7fmL7PLFzTDIn4dz6\niX1P+Vd1GhqjGWZWzmWXk9s24n0dVY6vbIBkeJIx0FwmyGYAZNLX04oL1utm+0uHZr4h3qt7KMLp\noEQbeOstngl1EZSEspyj3oYBMn6mB6haztS6PKd8CjdgSewZPGd3rA43zlfkoRHT0fvIECzc6BAT\ns8DXc9vc4dQV/V0hD6A/BtrjNf0ywMjlDFr73ZZ1ANi+OB49QGyTpSe2fqK3zdgV7nAQzPNXQSCy\nbGLdv/n8vwHj03Lb3DERgsEiy2tFl+Ya7V2hHl/W2wjH2NbyWU/nmsvVX7F909f4b99+gwiAGRPl\nsAsDwn/SK3S6907HKBRVSaNldbsXSXNR+ksbB4qyv3yqGEnfaWuyGQpZKqCkdp0qaNrwiAzFFqVB\nQ4lD4HcvfYYrhW5QCfJndax81ar3hG1VEtielbfkodOgGOG9lbgG45AtuY2ax7FeY1hCNcl4D2Oa\nlAQ5TBh2MTY1WRP0RO9tAKOFtG1qIIIdQu716IrzyBhDOyQsi3ZFpO0CPi83xszcl2pU2wUYznDe\nhDMQdOpUgmRhHtw8wEs5pS/ev2szePP6s1lBw+b6PNvCRJA0FEmb1vRS6ihxnOW2DPcgOMDX6i5l\nTPShhu2fYYimYY4TMWdkpuxtYHdvyybprXw+IW5kUTEre7aGRySrZp7L+HOiOyNiuc8hOKKky4AM\noyZLyyoFQXOs15XMZk8Fbg0TuTNInjGg2GK+b5gIBAGG3DNB/s65XWO8z9ECmIx/qGATwkKQTSK3\nBg2Zp3HAlaJcDIJLR9wwVILA/hxfVYIgrftOjobhUgCVCI3yvxOHdMWWwM82MIa4l3FgaLMQiwBZ\n5nmuwHVvM8uD+6XmhyBz4+kyKLRjAIU5VEMBnjFOJACJcWauD/b9LieC9UmT3Yf1vZRJ/GoeA2bY\nKq4hJRz3q8bqFBlukNc+vgjFuBv7SjmvdHK7ts9jPAt6lfNeUw6LF/cKx8YBHEeL+9M7SdlAA7kM\nOkPK1D3SSFbGxHxY4tLvYsMl34yFeacjsC/hVNiKTK3PiZ5bB28JPlQDjnNk4QwjPNjR7wqyN52Y\nCPZ+/mRY1BWIT0O6gt78KUpDErPc/wJsj+uHt9qeT+++733MqgS/NAARHSX0rfQz53s+n+xczM/O\n+a2W6yxskhVIuWsBTkp5ri3PxDu5HKBd9GmZFz9HZbPOX43+mfVjILbmeSwIkLz5+7f6ue+D82g4\nDxv8GILWz4lJQ4dBTVS7AiwEEiLsqiGr+1A++7W2Oifr4FvKXI61OqFiLZT5/uo8L8P93X7B9htE\nKC02DtLzOtQk5QmPNxwSnux0Gy6HVAUQ/DOkTrOZALv2gUZDfHIxfuwzBZUOJSE3PA0LQ9RnpSxj\n1Kxk3aEpcEljtc8lMWlVKhnPnHGr8+t1+JUazvtbIp050dpX7S5+mNTCa5mcObOyiOYEAGCiRHqG\nZvBnLH/P/Vg9U6tysTVFH1Y+bQAMK720mqSxzoX135XwG2UhDs7Sr1TyUyFJ6rcAoz1lT9SkPlXp\nM8S8Kkup7N1la+bfNUnT6jmO/rqBzaomXzV6HS3JWcb4K3wNjzS44jtFkV7n/1TBocC2fCcwJKTx\nCRjTgN8ZKhjiYUCHGBOhltksMbbNvZPVY0tFPyetGD+ggpYGXTBtgp6tSeetBkWEVMxzwBhjKjkH\nGrpqAC1cRndrLQwzXrNkbL+wGJbv1Kau+5hc4N5LJXTAlHqxC0AgkdT2lsKtd8/K5Qrs3+kMEYWt\nldHTiKHMENFgI5j3rlneFDRny7hREuR0xPitH0XGNIKTyYqy17lh7wayzF0BBeo91vHG5wuoxD33\nrIVCuAFy3H9OYWvc1rqApRdX0DY84IvBR6DiVXtVYqyCO+xPnh/lPOb76iU66SXmG7cAgsR38l5L\nPwqIQqB9iuPnM4l+L8bHsi6qDD6H4DEMtH+oYFPLEZAXm9dIzQFTY71jiKdc7sM5e9bu1gfZiPwZ\nr486zwkUNZmNHesrD3L7p/47ZUSGVSEYHkCGltT7xhny4lxY5Q4ZJdNrCyvALo704FM985CBdf8M\nlSgLG7R3YJIFFo6U5yP/VSM0GVzX9TL138/EZ+9j1X++ODupI7Y+IM0B2q5oZ/GWDzeE/XVVhfkc\nhOkLTGZ42FRvI6jyZJvd9YGygKENIdOGGb61csSrVnWaCjas+RsA5D66YQLAe6kDEe5U2aucr7s1\nH2PyNVkf0SyL+XM+kwmOnuc1h8NXbTXqgbQLpEmw0BjCYu9fdddgPYecLfcgkOPrgUxSYATIUdc8\nL8t5oOyo/36FRr3ld/sNIlxaE/MkAkYRBRAG6amh6Vtg8dbiSxfBtTAR5vcQhwKaKXbjMOG+0ZvE\nr6orFINKGuLfpW4zSNsMbOPSBXpuqcAQOKBBZhRODYEQij7P4VBydbJYsiCdGUBPgYToh07GDZsU\n4IN/tyWGGG5EfXUIATzQCBwgBekdpWAMk7bONKmfuWOJ1BjrGk/HGuwDwCmsAgDA5/0YzZJUkf1S\n5qEi/aYISCiUdwdZINIXhZZrVqa/v2pr+dDaarxjKBNFgasHcnp0rtdYvUL53nwIx1qj4aqzYXyM\nGeBa4zojBpVgRlXSkYnr4rViLBBgOv0Z0bg64WuX6+HJqUnPcFQHKS2YTq7MSvfwmjKnz4Aa8efd\nGpkC/gwa4An3gwZL758BLzbRHcP2/Gg4T1+7LzxbTeYYy+phnPr1jb3IVsFGwbVCA0BZMXuT1gR7\n9rkMJ0kwAYAkwDDg1Rgwe2sjLKZ6zJoAjxEy977/V1kgohafHFmyi/euS5b4sgWUseNF0WN4yDQ+\nYFHhSlddLpImTfBx3XM1D4nFcF/ro+f90ngGXssDKpDM+/GMnjx958g1VNsKxtYrWTJOe6V+jwnv\nGK9sL/o5tCyUNQN6HQOQYCfleAAJnhAw52XuQ80dU5udf8kIOh00YF6ETSz30qW1e5lSn0EyOGYA\nPdhZf4PhUH0dl3sSBYfJlG3zQT5uvnOzV5IVVfdbDi9B79KfXlkO96Bk9n1+b6gzRZvtaT0AbHk+\n1/w1l/veeMSr3LuTby0Mr7vn5QDPKejbfUWp2pgHYX4tgS8p4IwP9urgGOv3NUKs4jxemYRPlgqZ\negA8BEIDuM4QOwN/744PkzP3nuwAP7/RpOzJO/B2viky1JjOuOLMiGtS975pdxVNGhQnzBHYZQlT\nk2STjACQ53Vtcn3We5j/5atGJwRDKWpKohgDAaMFaJjG0OEhdZkDqUGxeWgbbRDrs+mmK9CzhtP9\nInjB7/ZF+w0iLE1E8aOfcajQgzAZew2Qtw7pDfo4IZug7eol3yS0WLk5maeyWe4G628DIhabtjfF\n3jJBIOuLo36veJ4r9Ygo/nwIX1ucP+FpoVE16y+1+9eD4E4h4095efhPfeF3gs7H65cD3OdKNjtM\nB2aDtnre4zsgfVUhXYHP08CeDdDPf138vYonpTc82CCu/H6EEgp8jobPo5tX/Wwx/7Md42ObKCmI\nA7mLThI84+Tv+xU0YVpRyyE6GdKjKqkIDWH2CFwPqxonyuRRPHCpcNRxEBx51vjxNZkgDThSLiuA\nQEVDBEbZ9uRvq0f91eGtZByhKMC+7xk2qVJqvFel1CmtBjzYa72AJk+H68bdmhOB89B8Hhop6Q6i\n1SSedh2j3kYmbnC8hTlTGFZNX6/ny9wQQCi5KaZhfP9SUxu+1Hk5ggBP+4HyOWB14i7XTqCPoArl\nxSUngndGPwf0oU9DDVrZC2xGn3YmQmWJuHUaIMKRXjEmS2Pru6J5HKqU519DA5LRXKjAhcVCmX87\nfQ2QbgnWjrNPpT8JQA/N4kNsTPz7yhDqbaDvX6vFzAFic5bz2PcRwDDLowquOTViHW82X/vbibc+\nx7I/vbd7Tgks1VCIAN3LZ48CwK02mzorkYmRM0P/2t98vTIcHg7gazl0pVNGOyR/Y3zF/W/27Z0x\nWz2kFZxcY/g5D9UAUhWrhNEVb+8HWlMcR4t1w3CP4fNw16aktdU5AM830maAft9ObOV5dgfhn13f\nnpvigLHUHmc3ve04cX4IGsHAZs6R+hDHJwLIj+shzwD2n0BA1bHYJn3O3yO7Uz1sDKBRfS/UgsFw\n0uBHJtIsCS4jDOjQPD+ZF6Au0NKnhnRu8Owmk+wcxragM2QU2Q4UnUyAvg/sw5JE1sTRp1zXabAe\nugHQO88z99FU8LSuR/YRtb8OiJuPpwUbcQLyyvzoUVkGM+DBObEDx/T1yrysbQ0dYrsDm+rcVjYZ\nn13ril1O1Eoex9FxnN2TuJe1No0dENUoG703xWNSFDGt58pEvoQq0aMopgNLt0N32+oZJg7KX/NV\nBNiICxbnulIB8H+R9quwLr5qv0EEADU9aRPFP98e5k0G8NdjxzjSM0NlET82YyI8Tsje0N4BfMAw\nhJEAQdwiBLhfZzMqmR40qhTb54m3duKtdQxtJowidulGaS3/GOM2JD0zhl5aSTWVWc8m0jyHMDyZ\nHtzr6Bcl58n0ttLPpgYWt+XTA/D4rIqe+7+ulkTGlfQGMxK3beBx+rwWrw6dOU286sAG6Gl0YwxA\nP+bRrPkRVukQmWzjcL03vjh/XQZO6QEkAKaYA+Z9+hg9ymVd5goZi25xe/bgxJWlLgP7xdUIVGaK\n5W5IRWDcHIY53HoYW+m5uxJCcas2g1ZdDAARVMNGw1NuzIpSRg9Xb0jcxw/cTQiW1I46eMD16qZV\n0uhSqZfdrsOKHUCCOtWgX2c/54xzCEj1ShLYA+9nfwegx/jWcuVa9eLOyM5krCMUNPHnDHh4TFGK\nGOvbPLvzXkEEXrN6PHxfn9rCWDq0pcfu74AIq9e+tEzqGnYzmIjp+tn8mTlB8nl8Rfus1xdHEKhA\njfI+YM/q0IY+FIQNzmH7w8I66vq3ydIPxfgJjMfckUqpH0Ds7XVwGUvq6MjWoA/FeNg1SXPtu06l\nHmXLRGzNmVrrvJ1a5o/JSU9MgBITYR2+xkOONkDegPPMcn3s4zmunl00UuqvRiKBKYWgicnivs9o\n6GW9D0zATABjMEBg20YozC72FvpwVqwQMfB9H1ay0jKdz6tNnVLPZ/asWT8p0/xexeCvVN3FDrV7\n0PP9ggFQDYSTQM21E26BpcZe2V2AXvYrPcPH97fx9F1Sle/2qY3JqpT0/UT7qRh/7hFKZuNKI2wK\npSqAI5N3Mrxoun+zvUC69/52ojdmridIEJMIlme2P+dBH6PhGA3tNLDj8bNjUytv3JwtUsOFzk+L\nVV8ZHXwfgJfBbejOwlhl01lkRH2Pxi4eG4ADG8YEgutk/GU+gjsdTA83vnn9AWN+OgClpF05+DpV\nNWjAeHBMEgAFQ0yanJHvgiBHXat2DXtOfRuhWzLHUxfBKdcgGrKeetMIN4rWFHpT3aW2II52glom\nsx5nn/SA/MI8xt6HryPF7s6Miwx7AChzzvVawzvXRtCqSVbomPJFLABThB56daPzo+Hx0fF5JIAQ\nDsNlcREEIjvH8mndbHTOVYQeEBxJeWzhehKOtPYGBzgAOItxiIe1eDjuyobknQNvZz+vPfrdfqH2\nG0RYmojirZ942098Pjo+Hpt7DlLoySaQvU/WKktXAXgJUYWh010BbkZJBdyz4obBGfF1AOqh4EYE\nwxssc64JTBOuaYR2uR56PMgPD1Q+BtIYg7zqevEOPxnb86++bFcvtRsgLnzbGyC7U7EgGBjhtatx\n+Nf+mmLadgDHgLw1p9MqVF8fYhhZHQJ47gmxjxrjYKhVurhk54aEJ9S8oUx4OCuSRLm7elklGgng\noajYdVxosJWeVz1fgN2ntwEmHXzWamhGVQjXWE1S5XubveZtOkjd4C2hNU8Nw2cephy6H+7qipkp\nipYskOt5MaIblY/ha2Q+6DI2d/G4FodOeK2RRmOACIsyLBsgpWwdQQ2Oo963NiWQ4RRDJmoiaACg\neEk1xhYJwWRYcZhiaLAuOnOwmBeV+9rWgIUSZJzyNNn1GQQgMO+BayhD+Q5onNxfb20Ec8hEICsh\nCF1383bz2rNGb/KjuG1q+llZ4wAAIABJREFUiA/3I2+kh+L8UzE+EKXbvtMs1KyFJyoAtWaMtPFp\nAEIt9yUtM9sDQCMjhQbtzRjrvgxasAPMQbeNtcM1OIPPY8mRQiChfhcwBZNevpX+myE/vv/bKGw8\nTNe+7P1yrVEASyZMe9UIrMhm2GM/NUqlfYcJs8pHgHtMsPn8DW04lbkhMhTBJMoqMyRowJSfvA8c\nCKr5FazEo63LB2XuoYjaq2UQz2jX4a1sVU48AexQ46l1ls/LOZVMKBpubmjs1FEGPn8qHqPhGMwv\n4mXrPH+GPyQA8GoblKdzZQoAkXCWTAQRdUNVPcwpE9etLecZ8fMxGvrRIWJnxePTQEOjZp9hjANm\nmB8fzQC1M/eDyXkfF4ad6UfD9nY91wHu4ww4EtcD4Gvh0xPYXvvva6cA0RyXCAEFW0N6OpPJHija\nqRA/E2X4ZxxgESKpL9p5SpyjpjciAA72wSpxVL1T0XcEKEAPv2AGbaO5M6h7xQsbEyan2DQfC3vu\n2mcDED6ONFnIECIoM84EdaijpB68XHsU0OTMShV1LtY8Znftbn1ewoz3gf7u4zzs2X4cm4MIBczF\noleICVdWH6FzJceAYDIls6N8hu9Rz2gCbA2yC9rh1UJ++Ed/IuyQ/04bv0qQg/5arItX7TeIsLQG\n4G0/owyWfOg1JrUtu3lr7h3E/Ul+04QpVN0zI0PR9hGlhh66HFpDwoAgHZ2UsRr/xTjsCiTURiWI\nqOcZijRzIiSofcmDwGtoJlaE5N98r3pzeJ01KdW35oie1w7Im6OoDZBDvBa0UyIXozr7XbLKH2pl\n1Zq8zIi+3n9t9bBlYyLLmm9iuKJ4aHqdaCDVOL85vg7ONnBPtDMR9NOe896GURAlH8xcE33uL5U2\nYX/bbEzT8Dj1eoBfy1X5JZhsSpJ2XBH5AH487rdLrg3BDeAT1GbvH71jF/BrPuAJzDxrLOvVA8U3\n6uW6PTNfQioDd1s4PJGY13CE2vhetLnhte/BrUvoTbMDnEqPeTnoBUiQJuZol1gPm+91PluTCQae\nxNwVQjxBkRqWkJORyiznhPe9p0r7um+Mi3fD9mb+4js3774y/q4AQn6YyRT5e82JkJ5jL9eLZJOt\n+5fhNbzheJhC+go4jDXPpH5dLffBYJWOEpLkin0k2hpeDegAWpfwtgHu7SOjCHOIS+4jX7dbAaCL\nId0AP7Gu41wbk9udy3lj1wfg7CB6+GoCrqzgYSXg2u6AA+bY4Vo61v6+9oOgcYQzCLK6hCSoEuyM\nBrR3k+sce697BHOJxzXZbtwXxtoYal7VyupZ83CsJLU1v8u6TyYqv2YM9KnGgpn6k1xkyDmiJKjp\nFSZXhxuMzD9RS7B1KbKiUMNr6A3zmxB8SHp+9jvAqSoWdlsL41M9lltCJzKaeTpGphw31BueeXRl\nXhetGeshkjdyWm5A4jXnzqnNK2i5M8U93Xcl9+KZDMsNc1cRws7qORZf3Bt8isTfDDlAv7/H6SDE\nehbI8uiftTsW0JTZzv+mHjC1GLfLfoYAuvw/HUy812myb0GtRwJ2PFOn0Lu2PLcpv4Wvr3Yde30+\nyXKsc2DssU+n/wOZr+wyX/S8+3Pn3tiEALzGGXRhg4he2QBP9jOw6gGZhDPma7O5aLvJKjgYOzxE\n+hgJTq4tnGlwR2FhF0/hpgWYWUM/p+uR7dYE8iaQUyHDdAmMq4xmS0A6maXB3MCsE02A/O/2y7Tf\nIMIXjWSDu/J+wUJozH9ws4Nc8zABxUMHYRDbZ1whlKJLIN+rsdfxnarwu7E8gDAyJyG/dMfKOzp6\nr4Jq7FfFiYDACiYArrwXgUuPYlZnuOZFqJ7FAUWHrGH/MZ7p71Z+RvAqDVZFP82AwVkFnISCzHmM\nm0d/Xpk71zZRn1HHLm5QsWSgx8wvxu4mCJCI4SdhJADpgaRiR6Vyk1CwiUqvY1ktX4Y0pPGNRK7v\nxuYG5TiL4nIBFlJxrkwDoBg2PECpDCAVDS1xyGuuDxtD0tKBooQ6rTbicJ3xMXCN37bPl/4WgO2Z\nJ3xV8AJUGw1ow++HSDwKWHm2cTboGNMYRMgQoJJr67TmVojkTVQ+CY5J9Sa70lUgzCz3lbIj9jcV\nS/cArYppMmQknsPfPfAzweWNMebrvz5v0u+na9wYtxV4jNeWz6zgzZxormxvpAEeXlB61hr3RN43\nriX2AnMXhBLX0qhJw2U2uAAkENAEIuO61sr+rFTj2GNFln+nGQUaASo3B3HqWs99lIYU7731cYkt\nvnjUxAzDsSlwwMCpsjanzzlgMiX4qsYox7dd71MZX9PrX80BAfUne/tZo1fczAnKMSnrVh1Iz89x\nfSmK8jzSg37XwsjWBJcfDix3zQovoX1P8pyGajWaua8THLmM7cWkJfBz/6F1Dqe8Jy0Buprz5VWY\nSA37Y1UdAphcp9LLeTLtsfs+1VBHjpcMymMIjtZiv0uT9MKWOQCqQ0TiOnetznG7+Z1r91m+A54j\n53lNmso5IuNjfX36+4YNNL+v00/qktdYfwQDqzLm7sY4yQ3XUQ2wGwHYXZ5PPUsXUHnS45Z7Vm98\nqMWnsQXInDpH5kJq7eb8cnB2embLR4yJxTmDVaupeQyQ5/Cr/XUPJhLAsBuLn8k04MeBCN3hHro4\nFOhoYf4jBwWpE9wxEaTMKf2MNkADWafm+mTkX+FHX+iGq8/0Vfs7TsL/m9uqj/zK7TeIsLQBq4lM\nShyQGygO1LL7Ze/Qg1CgX6SloSTON169FIxPupQU/EaTJsCmmZ26sBH2PnBqi1jpXRQiAiknih24\npiQ9RtK6zUgqRjYo3HPYdT4GEPFXKJ9J5sJryUPE+pLxthVvShjM8/itVI9i6yeGu+g+jj4ZH52H\nQ93tcchWgOFGmuckTI1KC3A1qJpozGnN6C+i2GHz8kc/8cf+wI8fDxxHs5i9oeHJZVhKbyMt802w\nvRv4cEibwZmO4nWb+6h+fwyvdz5gLIxvSr96zQoM0Fto8fqpmAVzxL0NDYzxX64b4AAm+vNMizfF\nPiiGPoZjynSeSv3azONr1zSPfY9oI3Wls/ZrrUIwGaxgOEMqzyf7dSASNAG2bt/6wMc5sjxcxPAi\nvHgcf83OXwElzgXBiJoTIRgbFdQbOe91/6gr16RTd1Ec4r870BRgzs26YCjFqmRV44mMhbl+/M0z\n0QQle/l5eR9wr/P12datulLL4zPuQeT7BpoK4F4sGo+nNuiN5kQlsO83Xu6bxjlHMx9X28rz4fPd\nTAlvJ5/ncNYIJhop99kl9r3+Xgxz8YlkGATB47uuqgLjk9nWB7pXibFJaxFTG33xcKqugHZFf9j3\nRBqYu+UyFxuiD1usHU3FunPOdNrbepbY5CdslQFjI8TnljV7B9zcs8nWa5sU2W6YCJF4WAkALuMN\n0HQ2RuxMNVr8cbYs7+jhDJFv4bRzWT+HMeXuwmfKXg5Hg5/7wT55sjZrWBUTdtI4rEbgvL60zLHL\nqk/g+KvhOPtkzBAkJZtqnuf0eDNEgMxHPjbG2qtKMF6yH24gUXXRPLvrPQhQUFZNeXCqZ7haWC4j\nu4dE9mZ7k9+NeRPmKdHUVQIky72acpwGKHCcEn/Xtq5J5iMYnldD18+vfY/XJUMY2Gggc5+U9bSG\nLVi4goQTSmsoTRitRe4NmeShhTN48ssSzsH1U8+0uK6HSAWLtoDt6xwRRGAyTy1Ag4ETEo4LgOep\ng4PB5lrnLOe8OcvHkjAne+WVc+kZaFbDhOI+mznbdJjcHR/A42fD47HlWS957lWmZuhSGyIPFfMl\nzR3yn2QD+r8xLARGRELPIOAQSsYJ6MMOWlYNGkUOc130wnY6JTHPeV6ur/1uv0b7DSIsTVXw89jw\nOD2e7mZjmDE2DCD4sQN/PdKz+p17DAcR3NIaBzdyQShRBFZlIbjrPhD54qHubWCMFp7QvRWaI9zg\nB52WyUCI2HJFubf3FfelsQQlpAE05gxNqGBDMBtA5X6e0KDqthE1jVVNCPZCEdRD/RBl/J/3Q4Bt\nG84GsI7UjOMALIHO5nGFn0WhwM2BcecCGfljjcWs19iamYhD27QUjIFgwv0f24F/vD+wv50gPbJL\nA8ukTeAGeBiJzY3oRSmJLM1lTNYnT6anZrAMlQAQKlXbntFzyif7kHTXVA4EGsY+PXiNlL6SEJDK\n4LSXRvk5BLLfl9SjIlppl0fxatnPpVRjiY0EUAxbicOaZlZdf9dwkMzgX8MZat8QwIwpY9s28GM7\n8PPo0NEnOiz3QlR2oAfWN2iyOxLQqDkRCCDkvFyfExoCXKxAQ9E1onSdMh52zP+qQii498jY+wBn\nhDXEN3rDn0CIEQoFKk9Gwx2wuSa4M20/nX/y8/H+wj64a8xbQgCpicTrMTG+GNoOtB/A6Wyn7v/u\nas8bbXdYtuutWe6VskeVTLQ/BP3DpG/3BKY1BE4avh1mFX3geVCZCEXRrPPI/o6H4O3dbnQ8OtYS\nl9NTa0B7tzWqkskPjzPXBGVAfGVHKsKYjRBpgvamGJ9+L+7rARwfgvPIMoj1OU5J3gL4RYwncnt8\nNV/IZwZNpZ3AQQ3RqvcmC7GyE6brkqGlCd7xO5RVBBAealVeujiL6hToMdxjOLJsNGw90BBMVsAV\n0Pty3DcGWlDxOc5n322ZEPTz5+bA98DHqa4D6FQ1pmbez/krPzGfA7IB25uDCJ4Daq2aMXdoPueA\nXLOCAmQ2xdvbgf39DKM1qqE0QE5g/3HieDQcR0cfnocIKOtWse8n9vfTAMWeYAKBmL4NHI8eRrPN\nrwF19lp6llsbwGgBOEX/S3x+PiMbGYCQFdLtQckmLiwxAQiTLlDXiD8TgjFc59osl9bmIA4BkcOr\nRolYn6dwg1JFCLiCV+JnKe9L51Z93nICbU/QZgVNA4hwth/XQ2+KXs4mjBFhDavuowwb0zxr4v4P\ne6Httmb7qTgPjWcqL4SJ7VI7syoDzvqQeyBYXA/bx+cBPP5s+PzYcA7B1oatOcue6MkqR4BUASD0\nGZycGtfydn0z2C1nKN85CY7U67AEwnCQYz07uZfMCeOhUDenetXxV/3+37n9QkN92X6DCEs7R8PP\nw0yHvV2T2AFwF8Wwzfi+AygHPmDeoZt2STKlRp8df9nheT7EPRZZ9iU/StDAhIYZ1WkoMJHcUMHe\nl1jJpR+qggM6lZoagHvOHT2FFpmzGldMumMn5wAgxTgI4PrFJgvPLdxz5cbn7WcHoKda/ggi7X5I\n8LDeNkGXgXNhIgBmNEtDlG6TTWZFJAxanSwWU3DzmIhYtCfj2j1j/udo6ADUDaTeFT88jOF/vX/i\nH//4xNt/HJA/e4Q3EFFnt0gPBuD0sxk8oHGyPtyzJOs5hiWibAypoOd/3MRZ3rQpNCEYCWmg2mfc\nWEFJCOhhJnEdpPEdni0/2GrYRGVS1BalE3X9hwgzEFJ8W36HcZFBUwb8+K+GJA3l+Z6VrnuE95BA\nWemXmoLNtdH6wMa8JkV2MJwhzvKJWWP/aMeyK9VQCwXHsyzLEhN6BRQ0XlfIJE96UEMbDmYaG0Xx\ngANCbnh3f+bWp1RwG7/qSnrmdLhicKI5thrSQNCAa6iCHjW8yu44b1EtoI6VpuIzs+zSBGzopZxz\nIsxGlDSBbA2yCfp/COQPc9Vs2/AwjefCrG18hjJ589h0KNp/bNjOA21XAGpe55tGcMm84JkU84ZM\n5cZIAlDNzal1/pukIaEqePvjtP7+aUnWHsPUgDPu60ydBsiboDVAm6I/FP2vge61TmmUh1wagLyB\n2HiZW03wexfAS+zWmOzzaPj83DxruRnbPJdqo0zXwxT040Mitvgu50H0oQih6blLXnNXS2pcmXeR\nUFGvcglAeDNrJYhM2CnOTHMmwiJLHsPGrccZZYcFY3p4URmohE4wzr9WuWH/rnHbrjdQT0Cyxer3\n+HudF8qf80Pw8//s+D//9Y7j7HjrA/s5cGjzc3sUuZCtgr+ViVCnUTrQ30eM8/hssf4pp61z1zNL\nnUnFJI9b86TY24G3twNvPw7s/xg4PyQNO2fXmKNYsX+eOI4Dn0cPFgNBid4cRPjHGXMYz92fw/Zu\nBugaktPaQOuCveV3e08nSvU2A8hyxPTM9xFJG9sbIi+FOtrKfW8fhnGrltgxcX2sdQMBWx9Qbdj3\nE+fZAjjZ30+rYNFasHCpi/RgDCCAjjuDNkDqZkAjUGRZTIob8QdsTI/nMjXYBf6R3gbeAGz9DHYL\n0CbmEBsZBcdp59tjAGdLZiIBr+2f1scNI5wOlzxByD0EINhTF0aSg4jsezwrWBWQx08DED4+NqgK\nfmxnOEU+Rzdvv4PVzGtEds/EvEGCvtWpmGFdBXhzB0cyUMtGVwc3/ipAZZFhBML6OTNPmq+pxyIz\nfjUA4XfL9htEWNpQ4M/DKjK8d3qW/b34EMx6+WM3JsL0JlKLu9E6IicCuLkV54f9fT6S7keq41Su\nh4ZleBzd+PDqDEDDDhNOtfybhTNkl8ypb8oMcyKEkaRzX2UZxuohlOXv2cv4eq7Dqw1EUhq+bvev\nFgWMfuUxXrWawDztJkhDIT4bxqNZmbWfhyn07y0QdbvWEw2R8zDyQKjxtIzvJN2VqO1by5hoUYv/\n/OFlyN62A9t+ovUZ1b9Nr8M11ds1HjJOba/7++Chm2EMpHE3euwLZW28KLEUBmsFEFrxwBTPHQ1f\n62YqlHfva4lHJ4AQfze4ZyUT+ABZh1zc6H2Uf5EIVBcPKnztciwBFLhS7M/vGOox3LNnKK8hYaja\nfGqU2JvDGQTMuL/mzQhjIjxyqehHnOtqdZWW1Nz6LGYQbAAWW/1O+ZDeHbI1qoGVCj0zc6ciUVsu\nsUU5dY9dpfCOoLpmdnXquVU08nnx/UlmWNejSoMi1wdBhVg+i5zKPusM9IBzAHCSuV4ObXhTA17N\nqmhWrvefCvnnDhzqslWLUpv7fn5QHHDmt6iTKO8d7Z8D6ANMbhWZtT9sQqZ+l31MY6oqr9P9KWsK\nA6Luu9p0ANt/+Gc+RszfY1DhTro9ULxc7j3s28hQmYVvooooXWy5WxaDw4EWDoJsIgB4fHZ8PrrR\n/329HmGElCoQxbg4yV5YSqXRyzaN2595lbNk/DARsXkI7X2ukZDzvPSy7mjUXeZZM5ztVAMQTn/t\n4XmLDgdPxgOQWq99sxuROUY5eZ7N91qZ0tVwR4ZP3bGVAET4wR1te82R0bri+Gz46+eOj2ODiBnq\n772Z8eOlaWnQ1GpSp3u0HyUEbdS15cZW24Hu5/rxYAgAJiYC94oNoO4TG7N51w283baB/e3E238M\n9H/mWogyd9Sb3oD9r4HzOPH5eaK3VIcZo7/tA9sPd0RUDzwT2L4r+kca/DS+aEjvu3nyCWqfp8Tn\nGJbCcUSS7J4LWcQBhDd3TrFUNffRCqysqBu92K0yPuxDp4MC+w8zoseZwGrgE02jFC1OCcYZ35/2\nwyjsBV8TFxZMLwlDP2eWWw0hAfJMNpBP8f52OAAieDw24LE5Qwwgm6tvw8rXMqR0mM52qAM9rjej\nAe2fYvXGoWh/XvtSAQopsucpa4dj3jT6IwKMA/j4uTlIumHrJ368P0LPp1wiWM2Eoxm6iGTV8rwe\nXAdqScdHgvRMvqgHIsRokgPDnJcYiDLGdGT0fQRz5zgMcNqOOWnv8PWxFOK5rId/9/YNP9wv0X6D\nCEtTFfw8Oz5Hw6kn9qYZv1gNHgDYsszjlJik7qQnBqoOQH+eVj/8wzay0TkTiR/uPdbDBFHfeX8a\nEcVDLBpAwqZnUKOYId9slYqoUsEpgmnyGXM+bjwMUBeyea0n5At7H1eUMg1N/9ccRGiA1gSJ1XN9\nGBWWqPhdDFuCJRbzfJ4Nw2nC+nDF7I+bDq4umX9BGpqCNXBq5q/e1HIYvHuG3ZoP4BUboGbgZRzh\n9L5Nqv1BYCmGYoqreaCbJ9Es87jcA0DQB2Vhg0wAQjkYmW+ixz8Px2j5uZkBcO2/OivCOj7f15gN\nPp4haCP3xFkUdK7diarcqOTZmCKcAal0c802gRsR1+c9IBCtCR1dOa4fJfOBHorzarTDnwmn/tnK\nqhTwaS5oJC5AA8dEoIIgY/UK0gDL6c08E2s9cI6DQNnabhMqNgVDOahk85/cyJO7VuVOZTXx7+vn\ns63btEEWz1HmBalAzSj5YUy5FKOSv3VjJPxjB/7zEaU0q7FG71plDYmDEDhuejwU8mMDjoFGoKHb\n2tLPYSACaCySeVBo9C+mUJcYm5j7Il8roCHNjBI9cz2dI0unPpRx+1VAwx4K9/UN4BZnROc6vgdG\ndWgkb52qF5Ts67GvwbUd04jNvbc6zGs9zuYhgCkLVgDhVathIHuTaU8NRSRwBaw/dzTuVZYT82af\nOabHMKPmUPUSj6aoj0+T8a0phB736mgIjz5/ZwnARdXA67US+SkkcwWsrJWL0deA46+Oj88Nj7Ph\nj/3A23bi59FDx1gB2AzBcBAYcgEQiJ3GejyslOE4JUJyqrO9DOJ+bAJPWGwlr7f9RP8DaO8C+Uun\nUKHw4m+C/seJ7cMYR/KZMgE80/ZhZfB+rvdTtA3o76wEZA/MqmgQTFDs78fsxf/sCcKTSeoylAyT\nyvwDHPxwJU50fmA63AQd+jSkVjZYkr9dMU4rjy1NPf5d0P9QoCnacQ2rYKhWewPOzxz73dph6x5+\nwc+y/DVZtHKqAakL2L3Ob9+N5bHvBxi2ur8f4QA5hznLQufo9rzws+wZzEBahPztQPtHh34OtGNm\nTtZSl9EfzAmP8/XiWCmgSTK/LGzs58ceZb23beDHu+XEOnrHY4wAKYKhUnQ6YAawol9RJj7PzzZ9\nDtAHnLWbQpTJg1ktCDDwBTAbg/3etlGcA8lGqOerOVSua+B3+3XabxDBW8YQmz+IRko1wAD3wm2u\ncL7vYS1JaB7+QXedRNZcKu1n80PW4vP1ExfBzRbZ8gcFB4UvoIXq1LpRyMxTYfggafJ78ezyrA+c\nW6lk5++rPb22lWFg4IArOFKcBUJvzv2FJsEO63/bFW23OaxxhzbvCBhUyzVIbbur5/4YLWpAB9hC\nbwTR8noofAEefCej/VtPfLadikYviPf68+g4Hh39oVO83217dS96OMMzXRTyyXAU7Hff52ef3GPK\nyyDl8A2qnXp5waS50XPFsmSZkE7SccI5XEEUfz783p0CWUMC6AFd4+PhHqbtbUA2r4UcYNqi7EIg\ncJTdK2bcKq51vpY5i/wabhgdR8PHY8PH2U1+sFtSQlWW/pJNwiRf1fC7j4UUtN1CgLrYxlO3agXw\n+Z9zPHC+hmoATSsocAdqVcXGxltom2QOdUV3sEYwAzaVRj7dC5m0lcwE9qbBZMk5Fk9XoTev8ajr\ntYEiy/yaqUdlDfQpTGzvwA91I79F2Eh9HpwjVYmQCcDH2Zsn0p3jgEPb3hpEFeiOsB3uPmKyQZbz\nu1HMdPn9Qqct3ttqvE+fa0DbTekeH65EOoBwjsw1QiAhLnAUi/6mRV4IMQONteRvmWgOiq9955zW\nPufZNF8oYtth65EggH1JvuUisgoMAsZwNzAG2HNahJy5Ah40cglmaEsjv7bKgomwCDCUAfgYguPo\nOD8b2tuweXlHegp5nYHLXrV5QzxzKwt7bdW7O8kUT8xYjfUAKwVZqrdrhFI0Ad62E/t+YP/csZ0z\n+Mq8HgRVAnwdCSBwDxu930tZHk7/VpvTrafuQpJW7lNJphzH49KN5znDDNoPL2fHcJraNq96tCMS\nodakiswJ0HeF7AIZNYF1MfbegP6H2llzCPpjJNtADWCQzeTjOMXzKiD6z/w1aGYAr+GD9vCQYPVQ\ni9n3uHbTh9RZmlU++Ve7/TMZo9jGQH9XtC5hRLZ3++zpaxqYMdf2BrR3oH2MqBSwid6cz1w/iv5u\nfdm2AZKZgrlGQCS85H6WFx1ORNHfBnb/jj3Tge3HwHioMXjGif1zpAG/Zd4WVmmoCXF1SAIIPwDZ\nbQTykcycAOpK2c4st3xztpWW4Z/ISWQoJktTtoH3twN9M7ZKP9KxlD8zhIRM4yYIvej07Iay5U89\nqD/YfqjJPi8OqGMG1ZqX5/V3QSbX9jgxHKjZ2sr19CG6jv+rRTLYmH+xQT9pv0GEmyZACL5HUawA\n23DYuimcbxtwutFIiaqI2DTxRaaHevIniZrK+jkwPhTnX0hPuWJRAMVjP432uL1dtaPMmk8UXMK7\nEkYc5hrgpGcyhKGCCLUNqMfTl/sVpb8inkPMWaXlIE7DkR4/KvVXJbd6uq+UPCStlvQ//8xx9Ijv\njmvBgI3Dae98BgAyX0UFHRRWYWMoxKtlzMySWYkLA3ZR7Fhr/a2fjpLz9ezHn5873v98gw4zOJm1\nu4vHCK/I/GGzNR6zIpuxbgp5a+6JkDAIKnvmkNlgDHqsr8ksvVUO9FVppbHMP0OBQ+Qa+KrWML2+\nqmIJh5Y5DiBBEOCD+p4ZNzkRannHpEDaWul/+MH/yOuVnGWzkkTv5hPvexoTZtjaWIpR0dXpoEaz\nJJOJpT8BD6vhNctzWO+1/n4Xf8kXqNRElndQ6cCkFFGZt+9kjDIp27UvESbEsZf1UGO+gSvQUcvH\nXeOj07ajXGBpL/F+naqhG2Mg5r0Om7layG6qwKd9TeN+qhoGsYoBh3Yd69ypDQMjFLzqxtdzQD/n\nB6Quu7lvEB5iQ0pka9AP9qMo1U2AzzPkimBAvVQIaaV3jSVaX9rELgPu1i7bVJpuB84P4PjZ8PjY\nQgYdxVt+li7pp2L8NSIHwfloYVTSUw8keHgbRjCcWtuB8ZeaLPMkwhmDW54bwzccaDpVJrlERV3p\nvZUMn9G6aIoXP/eAhbGsOS5oFNJIeCgMSCj7v4JQDBswp4BGiBgp4nHmwUsPjixHawa12mtnw/HR\nsP0YCLS3jIHspixFKICHeI0hk2wguHrHHlxbGNzh9X+uENMge+tneIVpTA8tYZd+rjDE6zg7spKO\n4NAslcs1A8FUMahqO44lAAAgAElEQVR1YxLsxfsZz3Vpaygj4KyakzJNgYP9AdoBjE8H2xbAg3PL\nfoL5Okbqc1Flh3kmmu1ty3Niuk/Nc1DnWhdgsa775qUfaThmuEa5kK8JPajLOHAwCoDwiax2FMIW\ncdDJBrShzkwww7sXdqHNaTKTqIuIAO2N1TOyZ8yHZHM3nwvth2D8zD116dPS7pxA/R1g9RxpQH8b\n0ffWWSmG5773j04OaXE+xhpS64OxFiQOIj2q7tRCdl/AS5kdaPX10FtrXqYC6jCBZW/GkqnhEVr2\n+mSpF13Y5tH+OM4+7wcXKhOzy20Hu66dTzHXj3yOfbcEkwR94jMnIEuIxzr2i72w6Pa/26/RfoMI\n3jLOO+PXFYKPM+MZxcMHZG+WC2HfgP/8075P+tLh5ZoaoJvFMOIsB9TRXOArxocfbp6EpW+sqmAZ\nvFUlKH4TW8FdB5kkxpBvUqvM2TXCG1Q9DDQQSJmNcAbIpCjdz1G5/XK+1Sz2tx4ozLpyFTbxebIr\nnDIbbIQNkHeirqnhMpPw59lBCv85IgIeH6cdDCKsyiCQHw4qVIFJ7e4cZrSfBUg4iiJclFF61Uc5\nOA+v6NHbnODxMRp+nhnrK6KuRDf8dAovvLTjncGgnxazWJXp8YD19dCYEzNwZFLaNsn8EIxV5dzx\ns+rJekJpWg6dKeOwsxGoHGwCHL4eehvIGEw+hflcJJAWCR6LoR3X9u+RBkkg4dDmSbRYojR7KXUN\n7YLtn57p+yOVZEEmVbS51gAY1hreVMaHFIMpjNc0su2eNh/n2fB5dPw8N3yMhk2y4kZtdT7So5qx\nwEAqqk9bIzCieDi9GUAkdJqyVSNpxIC6MWP7xW7mylQBHQ7N3Cyc/zvgvXpPcnxPvNDeGEpCIIHP\nxEp6OqxRAMj6PYKRt9etDAQHG2wfNPPWLUlyw0sKZMy1CHAO6J8PjL8GzmOzPsQc+LwMB0lPwTiW\nPtHYiPUh0P/6xPhplqTCFDlmWI95W4A6Nq6/2u/wfNOwWD5z10x5Bj7/d8Nf/7nj8ej4eWyRgIzh\nbUy2a/tn4Pgv6+fjz4bj0SLW3UKmrPXdvLI4i6e+ADpwY+z4L9zmZNm2EcZGrB9NJsKA5Vo4R4M4\nSNZ385Tv5ayzWGAHi840wNlfca+Z7Wt/PEgArE17MEOmeEauc5zU/RsAEraPGkoOFf/O6fLkHM2S\nKxLVJKPRO1YN0prHB0DIi82Oj/RjFPndJAGmDIvSIsfnMrxTCT03aFtT/PH+gIhi3wc+P3sAkcf/\nw967NklyI8tiDiCzqoeze865kv7/P5TtITndVZkAIvQhnsiuJildmUl3OTAb9rCnHkg8Izw8PKz/\ns8SdqcDH9Dsm7j6GzSWikkWqFrTdCHufsPLUVq7UbStiv49lywZo06niGBtufYLmCfpg1DfGPHTf\nNmGcsDITuBPmQ4AxC0aINoiMPUHErukZ6/gKsjMJ1b9UyRE3R3tqXv44K/ZtzR7PdzAAF+cs+t7a\nAgyQgJP02YA8L194pg8lAQf9s4elD/CCmAt7NdZtUVFQmgB1SQ8ayuA0OwUA0OCMBRfw02CNrR0D\nb1qDszeMueCs2s6w7DVjQr1Kr2uFUd/EQSlFK11sAVSt41nARB7oaBuhNVZGC+OutrHZN+7kd7Gf\n6IQHASZJGdNZSb+3wMplL6yzF/OZ/83GlFkqa73dO/ZdNKO2G+F8bDh7Q9fyr7VIEO4TlmfgWmKa\n0SyyJoyt9KJsN6f72oKUzox2YEJYNMLMiH/L6VRftRwQcVAfn+fm37n92X37d2k/QYRLa5Xwz1sH\nM3DMhk67R2h2u3jfNuDbTZgIh4SUyi4no+Xu8yaHKEMuGiurNkkvXE4o5S1Krd3qxF4b9hRxz/n/\nS1MjwyhxEsErXj96ETlLb7NNbzTLK1vg1d74s8iGAttu/FuU8dXBcv3/nPPtYjFGWTRg4VYBYlQq\n4K40Q/0Oj75TWZ7HBZyqHLhlL6jfGvhQxeSFBsuXP8lJXMbt4iDEVCxq/MaCMADhh6qOTy7Yz5tT\npDtLRL1ov7O2hJWy5FNUlWUegkYrHcnjalHmMNoAYEcYuYsQJoJeyiyRlpzWIw/G8b4KKTellFED\nEiKdIaxyQ9pNAwoQozoECc0IswWgoNGWa8zbuBevD+8l4C4GvVNMNwhV9V5QCKg7OzV2rwwRlreI\nkjRTRLbcv8Vwv+wGq17yWjMgnLkrIPSlcOOLy/rKRvLXXx3Osjpqtn8qIsfTS9T5R5ZlHsjOocvx\n4s+RNBRW7RFeaLllVB8/M/wL4NT8z7oqV3BJI8kK9VgUN5Mo1WdOkSLgmi5F6XBhhAo+pUOwgBVA\nFXHJSXU5APk5QL930AcWsUyr424VUJgFOHrlQC7DuVXM34ZEgE490w8xyksF6jcDgErkqv9JRMfO\noVzuNutRXEEcj2hV4Pljw/vHLQzmHMFCMparODDzIf8+zorem+TyKugwzBFqcr5yv85HYhEMYUCI\n87B2cNtFdHavu58ZV00N0ygpVYze/ReJTN73gVudaGVb94idO2kPCFBVovxsoqYHc09WZxjHX7NB\nssOeS7FlsFL1bONugjgLjAQu2JhvxW2IepN1kqn2Jf0UwWT2FKJ47vz3z7+TCRNnyyoDLaVBcwoh\ngP02pSSx/v79/YY+ZQ+co6H3BqYeYNEIh+wVe4zVPqhNHL9c2Wr/hTDOiVubPh8xzmlu03laC2Nw\nxTkrKhpufcM4VDx5sivvi4icGCq1Mua7MnLOpmUNBUAYXAGSc2H0hvEh4oox53Eu8ylrEZUFyNFz\n1xzqcTaJ9ra1hPHComiMetcxt7M4pbFSl3m0Upuk2lHUbSzgjFX7bCa46CBznLW1BYAg6RUh4Dm7\nAKXh2LLbnaUW1DdJ6QimYL7bkc5JSBrJKKJjYHNF4qiWVhYGFlPxc2IJKtxLAE1d+ki9YKZqSOua\nkLFrO2MbE/ssUhWrSIlttlSnTTrMH1NAhAOqrVId+Lqmrl71gwpCQNa/O/2UN8m+298IbTux3cOm\nP8+GY2x4zs1BBADYrOqSzd2FiVCLVbWBKxtGynTc2ZMKrOKCALZp8SmYXCrQ3or4LhWix9LlHjRg\nOrMRg4llc1587uORf3rWf7f2E0RIzQ6w73tHq4Qfxw3vY3MqYiFEPfC3XTbbo7sHbVQ+7rq9KnxD\nmqNrrAIe5NTjeoeKzAllUNRQAwmmWcLoUst8cbAnlBJXNZ2gLkaR56unZ12dbfsZ+eWOYl5SGnI6\ng3XH2Q3qMKx05QAsmPlCNzZjMR08LUW9C7txWu4S5a8bgT8m6i70MMv1JER0zCiUgFUMYHBn1P9s\nKG8b6CGnr9cotigkcWIhMPhVeU8kA4Ijgl8KeyRj1uIMg04Vv48NH6N6WZy3uuGXbThCP7lgYzu0\n43tc52DKRSsRMzF8eRYVo1JtDZLXXI02wMTBrM+I12oeNCOqIFzzxGHr2NgIVSMnNVJmpJBkAhtw\nuUy1WeSNqIJm0qko7CyUasJshdFK8TGmoqUrgcUYzekMlpMtIndqqFQsqT2yRl84fTVrMfC6JiHO\nqu8JAzNmUXppRFYtOngVYXKmB9TgUnDwk8iCvT5d1NkhyXmOHsmC/r0CjhgmBX0LLJjDY/tkMYwS\nu4c8H1zz5KnonKX8zU8CnGZU8meHJT2PjFGABsIUlrl2TcJanDWSdQovGJ9HQexcyWcWaapDp4Iu\n9pR9NIAiZb30+acal9wncE7QryfmvybGhzDHJsfeIR0PZmA6pb0sHWSK8XYq9Lukrs1DHaxesb9N\nyU/+hkBVFNh0unge49Wnjnm7eLi2du0cXuaBgMfjhkcX7vxMzrzlxvtdoc6JOWFzCIjQZ4uzw86s\nKukc9LiACDldhiTqW5vkjRsbirmg7YR9n58decBZQQAw7RZrQPsuf933sTqcGm10UA8JwIRpHbH3\nzxgIHmFNjpHt9XzW2BMSlVeFGRL4KWce9DutHwswkkAWm4QCBhsrwc5cTcVxNqCWdM6iZwCUaVEc\nYLeUA3nvCkS0PQIN9bJ3M+i3v01JDyPg/FHx6LuwrWZFKwIikIq3uWjmrMFCSOB+LtvpEWHbP5XR\nvgHlV7iuhjGWxAGMhe7MQAU5OxUQS/rErU0czw1EBdsx0Y9NQYcJMZPkGc/fKp7vO57PHc+x4ZyR\n0oMq/T+PhvZBqFpacPl+glfWkHTLNK8aYR+ziX7QPlOKmd5picFi7ANfu3qnEBXMBwGVhSkwFMiv\n4lCXxsFu6XL32XnkpUe1pCIPABtAp5RGpSlACx3C1hinzKUFQGqR9FgHK3bVGUhg8WJTkt2BU/Rf\nNgGKbG1KBJ1R3qQPV1DFUodq2hOSfqol0M+K89E8FXRMYcSQpqzYsxobYVOQ7KZ7x8G6AWV26Odq\nlRcPSKnt1DjABKsy8pnCH+fbyzTcKiVMvUTnCfQfBe+POx59w3NI6qPZUaN+DUoXtZUniRirMWSs\nbGlusgfLJ8C2VBH1rW/CzK3/bF4yngc73ZLV5qS0dwELPMU9PPWencR/yBL8d2x/o0f9w/YTRNCW\nEbe3e8fWJiZVtIPViCngYmin/mWI0ekUIRKj0fLusJUlqi10+6gWUJocDO17AR2yiZumM2xOASuO\nkl5p5p6nXsXgcqX0yiHShohMlRIO/WShhHcSBylXafgjmo7lW1qtdzFlNPLIcDamCyv+hYPF89W0\nRYQzoquW0F5UkKze9KJohEaEqk5cZiHs5uSqMVzuDbi1zw9IEGN/kAijDQrDnMxhCyef03NLrndo\nTkg+fMNzRm3wH6PiOYUqfKtX9/Rzu1LZeXBEfNXQdXqnX4hyWZjGgv3ZK9CK/J5tjaaLUS6E4hfo\ndrkJXVQRWC6qbHC/oq6LoKG+Tn/n9NapIIJS6AWciFEx+9nmk1k0BezZXO/hUz9ZKOK1CHtDHTgx\nlAlVTX4z7qs6FhUxvt7/yxy448qc5r54ZMQu6lYJb20o1VeMyDGFaSQgCiRVQHVOaAJgXvLahQZ9\nXc/VIyk8GNSF+eIggQESqYnifqwF6XdBJXWuTQl/FlQKIMrWhrEBDHDIUSL7+xIZTZHYr1qy4cOZ\n8KeWFIFBwFaLp6z48zD72WV6CM5IcAeP/SexlLDtzJ6eYechakUnwqbgFHcGf3TwMTH/NdF/Kzg/\nGqZS/QE4kGIaJ0WjQjQ1RW0SeFBE5Lh4fe75EAdsqMM1hp1nE8JKY9dr8RSeFA2XMY+1OdWJudJ7\nX50uHuXTDzq6pDBA14OI7lpEGxFpVIaQOT1zpioOpqHAsVZR5XkX9ow7gAHClCr7gqBaNrNgu4nR\n/8mRN9DIATPVlahFwJepKvgqjmhgBQOAGcFe8UGex867NTUggEgZY/lOSaGCz0WMaRjnBngzwxmB\nOZUGMG0lvVrsnmTRRBAwMhny/iXaN3O20/6ziHdLZ7CDHAnk/qpZOkMtUvEi5uvze7bvjPYdoCdA\nv9bF+alzQ58tAWni1JnzYXdgJwMRXotlMmlA5a0EEwLs7EYJ0KTNgAjMTC441IG9MwnAcWzoo7kK\nvokiAiq4O4DzseHxMACh+f0yWJ7jnKKqX0qUR7Sz2MCvebBU1gC7rUBUpeqGggitkgQBFDwzrZ85\nK+qIFBCxQxTotfuBCsZRAMj/MxfUE67DU/N4DAUFdC5mLy74CIgWSZmMeYQeSm2EOuUO670mnSYB\nEcZooF48/WrV0pDm6T+mRWG/0HW7WTDJnX0WJ9VSjS5MBCosVSjIPlcAhON9w+MZMtGuq+LnrAIr\nFuhQRu5W7Y4orhNAT3jKyDh1nPW5h9rpbCmmuo5P/Xe+bNGv9lltAHbG9h2o36uAqEQYZ8V73/Gj\n72s6awJLX34eTHRX7YdD1pyVAM3nZFc/w87uHKwotwIMBRT2KhN4DgHAu6R30CnryZh2mVVsdsFP\nOv/PBvwEEQCoM0BxiLVK2HfCptoIwCf7XG6LZ5f8S7V2aRaUUy4V3OBhCGEilBAAnBVM4gizUr8q\nA/MReZl2LBkLwXJvX+1ed/SIPzk/16jgVKfXczLVMGc2gMHYA+yAgbERYrwALEYLh2NdxElIPrif\nX270J0O3AEsECcAnVFU+iFX5vIjWRJuKNk/ss2I2Ao3NDfzBBd/K1AtcO2HKepfJFPooifjZpiKF\nU1WprVZ3inqIE5rSU9IQP2dzo+lUo+RjBn18L0KrvzWLLImytnRLy74x1Elgzwe9ziNNCePy0Lma\nGimkcLa7XiCtMIam0RizZc6IRHuKgBrdr0q4vRo3INMZI1rrlz9HJNAMSMu3pFk0+lLQ9pXqmb/G\ngLdS2I3yqGW/glQiTCULk/SCBQUTwef7gqbbPLSqCR6G/bGMnUW9w6HR56EqxtexuUOxbYRv28Dk\nig9uOGfDNqYzTqxO/OziSFKvDgZlcVCLEBurxp7TRVm7jKNF+easnyIhzphg1Thg3Z+AGkXNQQRb\nG8zxnbHOgw0Viug6lsmx8TVx6QNxekOaX68Wo+Ndi5xFxkoQACM+OwOdLgYLvvyR8wgq1ChMBAEn\nqhk/kIGwlJ9OVYDfxwB9CIDQn5LrPUbsbzOonM7McT4zQc6PQc4SmZDIE58T85B10nt17ZQ5CDRJ\n8nmhiyxFWA2wtLV+nVdb30tELw301amERt266cRkx7wY2CyskFbYWS212bjKGu0zonVLelKi1QaD\nJq3doSAVFXcAhlLG97fP2iFOxGLTktFx1+etbxX0QbhG2H0sEvjrjAIg9Q1/2MzplzUSc+D7SqsC\nFQU/jI3EaWy69vVUwH7ofWupO6Y5MntB66qntBlYuPbHggi1RrpSrvoSArYFuICs62dEy2Nm98Ei\nckciUlvvFfQk9LPhY4h47GNWZ9P5y5PAZOhsrEyEqRi9s9EqwalCeicsn8mQsTURawM69ew71cGz\ns+afVPEcm+SKw4DR6SlYFlk/jg3PseHRd5wzgDFb0yfZ+S2aRA7u6T6QKHZFKSRO8YA+e3Xx1edo\naMcO5oJ9n1INZQYwXoqCASdjnuL41U3OCtOesNKPNi6zyxkze9DUjbaey3+WIjoJNAvqZIyzom2E\n87nheexeLaJtBJoVvQsgZI50YVbhz4Ltg9C+F7xKy7M56nqu1Sbr2O0m1gDaUDZbYg7YM/me0bMJ\nVYTHAUmnOh8NHx83PLq4LHulsF1GBfUp6VJndYHKvI6JJcWEegE6gMquG2GgblSpkbu1KxvFbKpD\n15nZzWIvh00l6z+xMTdlEOwF9ZcG+pigDpzPDe8qwPzUdWvprHnfrRB6NLM7bI80IjRjudizmlYJ\nm51RXFOk3Gq6fOVyoafM13wIgDCeNUClGSCs3wNsrK4MDL7s7r9le+GG/W3bTxBBW1CVi4MKQNDt\n3Yn2EAIB708UFSsxhdcrkpjVqp0mzBph17ztcqvgMT9RwK9GQHG6skZANrl/BcVnRYAl3maOk7zl\nYlyZMY7XB8A1z7hegIm/0uwSu7YrJTdTaHMZRnlelsOu1uig0rHKJmjzvk+/qID8XEXrRisyr3Rb\nR2O3FHnWMSzMXqXhy+dSAzTni7kYUBWNA0ldKDjJaoMXZ0T8YyP8Y+/4x/0AccG9fhPgqrzOg7aU\nlbYru0QjoIBGL2u6kJU+KtFX+X4uwF6rMxGuDofhK+YchSYC/DL2udE/UuYxaMf+s130BEoYqTYn\ngz+XtQwRL/38PN7qsFWEynnnNb8YgOsAyAUZ4A8qfB20DNhwxL8BWUuSHoNklGv5OHxeEpl9YXte\nnn/i2z7wnBsArXuvUTJO42C59msO9wp0ABm0WL1w1uioXWZ2pqCKQWJOojkq3aKpYFSW8nI7RcqL\np0nw+r3ydbHGjfFhJeAsxYUmlOZKS3T0rzTiVQsk//7a8vl6PaeW9+rPycJGaGAU0so1iAi7sWNE\n7JZAD8b5sS3GcqQvYXGOALgaPLOABbmDls+MIeVr7TNrESFPK6FnHbYKK+QOUl0csHwfhGgjlhSg\ngojiX9MZmID+FO2KvYYjDMjZUXTVtSI5xGUrqDfWsmoF+ynAOkaLs4MVdOri+FrZYQCekmLfLfcU\n+bh1BSR6b7j18JjzWR7ArTCGWuFQoBdP/MtIoN0nC43e1jEsHUtTAhqJWKaOnxnMOS3s2haF/U0n\nES0BzcLOs3VmQEROi7KopzhCJKmQNe3JBCATS/pErazrCUsKSIy1OHsOEpUIThDSvVzXgEVuViK2\nNBZR4yoOxuOx46TmDBQy9Xw7wxHAzVI2VMfKyAQGWqOKMvykuPfNUV/Gmu2+S44higcNHurE7frv\n52hoNWwyY9n52CtjZsy2OIrSNwAFmsolgLeIX0YgIZ+b41nRJkc/E3g3WYSfi+YyGnBg44PRhEFw\nAuOQiHid7E4tzYJ9L58F97Cy9zKbz5+RCmDVVIiVBZV0TWbD3qVSgKUyurPIcP0QmhV0EOrN0qx8\n6+m6DMey6nqzANpSdSUBgM6i9blEfK/dfVrp5nw0nEfDx7njHM33m7/H0gqnpGS0jdC0NqSnAkJS\n8jyNEHL3tj36GeeN3q3JRmBEUMju8WDBfd5BIhBeQCdL5L9V8DkwH2XZQ9a3T4CBin+W5KEZc0pA\nfQGMAKTyjDEf9hofe4ILiJd7E8dhSAUiJkgaGgHjXcazH81Tcq6fTenvuf3Rffyz/fu2nyCCNouY\nTio4zk1orLO5UZZFzDAIeBzg91Mclsmgp136YrlZeSFADGyLLMn/K5V1s2iSHrSmnaCq1+6oGt3r\ngiqUqmaaHcjEqJsACa1lx0kMw5RdkQ7A+AmsB8NX1OS/RFl+8XthxxpjQRxOi3o5FdqcmRwNGexi\niNg02VWNq7YRdp6YU4CTSmGENkXwZ68om4ADfM7lGaqOBZTOXQwgIrgB8kr8DohIiBnjVoKnZ4AB\nwrR4a0IV/o+947/uB3755cQYFTdF1Jfx46DoSSqD0BKX18xEzevyRyj/V00E9t9lmms2dD45yM1E\nrzhyCzy/IMbD8v+vc81pXSG9dXCM2TU1ZwUfbN2m6gwwJ1zGdby4fD3VqBbRGPHPZmwl0ntetbXc\nWTjAkUJilGf5RjeWsBoRsu/IASGLbgHhmFv0xIxET0tJBpxHkd21S+M/GbM3p4FODgPJnVH9Hs9H\n1vNnemQ7GApRmWNdh5wMqetYZYV3GfsYp2t09CswIZ8TBoaEngp8zL5qIm4lRqcZdhUAlaJAQTht\nE0VptcVBYatSwRBnn7Xk7ugV918Galv3ZlBu44yxNDMexaulLCX5egEfE+0ObPvUMSbs9yGCa/cE\nVqhKuDERDDQzYNTijh5VzwZ5chRlbNI4s55lahy+bQPbRji7RFonSclD1nQSc6RRJYom5VLlrG2V\nfY7yn9EbuA/P+87fPS3dgyUFbfTmIMI5G45zw+0Y6D1KAgaLwqJeRcEmdt0hbIz5IQ5XTgG7Vifx\n33MBfI8LaGuiqkUBwwXI07vSzh5/Jl8LF1CLE6NR16Q5HQZ8TjJAQMdNqe+jN7QHYXuSAAAkKUte\nYULPCkoBBCDmXOYkOWxpDa7PlAIdl0htgOMBHFs6IT0I53vDo+/LnqyFsbWJaqr/xsLRVKssqAgk\n8JcRgZod4mxVmdc5zAZKc2oOaErt8Fx1BSks4HMNmhBLsGbOgrbFHehOGV8BOzkjhqYtAAiNh3R/\n2f4bZwVNWUd2rts6sYoiktbAiRlTlJE0cR4baJKX7ayV0UdzIOE2h1Q8cMZmAXTNfqrEQ/F8NLMN\nIxHpUlj2mQImvTdlSERKo82bOchzVIxnVcZNrJdYAzq3SssHADoIpYUjO7h6tN60wMIZXW0TMoD3\nAHgUHM8N57mhT9nnzRlniYU3Je1jaAoIAE3NCADLvkcYHAFoWnnnWFPV71YDFewePUiYND7eEG0k\nmkXtV52bKuLOfr91wnxnPH9I+gwgaR5c5Hk3tXksXcT8iOs6NoBjejocY6c18CUpD1EG1phOTq1S\nRi4TwA+5s+a7/P/5EPZLP9uXosHX+bdWUND+zDn4d2n8egz+ju0niAAxEIyaPqjit+OOpuVdTDl1\nS3uDz4ny4wD/+kT5zzfwSRhPoZO3XbwXcfDkMDEDKke0QiCNwR+SizSe1Wl1XVFAp8sqIsxzwNTG\nrjW5v3o2IIEHUJovQ/P/Ip2hJHT5Dz9TP8ucPDKjAwjEvGhaw+UDcyqD08Mh0RXx6CGOEJujXCRf\nmSaqehc8GPPQnL8i7922uQjiiXMhBv3oVRSBnwN8zAs7BFF72UpzKpXUEVzty6S4UCyaMpT+N7lg\nb4R7JWylAYXd0W2V8b0Rtgr889bx/duB29tAOTbslSLnGgUw559q9EsvJzPOrL46n/KgosxccfaG\ngyqOKSyEgwqaAkhdKdch1ClU+OHG7WfUOQ8SZ0DMUiLMUYIh/QG68AjDzLQAjDoudY6N1lzBTGKE\nWU1vNcILEpUZSGkaWBwsH7tXVMtEqbS+yjPLP/dsdF2cH/v9l450MaYGLw7EmUQ1hz5vKYn+qAb0\n0OgWn9M1DoIGLedOT3NEUzQUyinvp2ykj6p5puxijzkf2aKgJix4UsVB7H2xdT5nAA+ms2SG7x/l\na9pYydiVZCCuZ8CSv7/6BfLvMOaUnFP5K2dy6sTpiTQGmdt0toA1nQHoFa7X0kqAT3msqQP0ZJCW\ng2t3itziBBiY8xu57loeTsECHow5mpdIm72An4T6C3DrhLZ3lApsv0iHXPCMADrEGT+o4VQtBmMV\nTTeu9b7i6uKqeY0HwybG3o1jTaG534frD4xHw0TsM0t3Iz2HyyYiXDylpKKVQrU96nnvZwM9u9SH\nt+/VSLGIs4UD0U8BL56zoRbGc2zYHjeMWfEcTQx1lvkfrLoWCtI2yGfND0alifGj4HkYHb2Es0nh\n0LKCZcPvOHVer+kPdpb4GIeWyCR4pM3BBXVgTP3c7uqZ9qx9nu0/OQMYjeXuPaaUJdxOpZUf5BFl\nAYerliCs6Mh3i6QAACAASURBVLNJaglReGDL3glAW9bryqLwu8P6Nc1plGdxEVV7j5VCPBnjV+C3\n//6G93MP9iAkNc+AGEAo9nY/5PPHqngE/bm4jku5AUWjzvNdHNt+vZ8MNFd2gZX87SSlnAcXbBCx\nP0tBDYaJ7Mdt03tT78Gayu9mMMLOSVtPpcAj935GK3hYikT4y5AxMAfdxStrAiooMX90TQPAeTK6\nMlllj7CPgdwrFa1NeGnGF83sSXOgp0bbcxujgVnSDgwI6SZO6PZFzFfVfhNJelcpKrQIOX9ch8/W\nNRUwKxPnKWzPoaxM00JyNmRNa5INwChuAzVmjIeAa89jF20hqti0mojZQqT9m71g9IY+mq+P85SU\ngSOBCqY1AcDZCsbauYJJLqBrdgyl+5jg97nZ5pZy4veZacocDD4Gnv9nxY/f73j03UWeSZlAeaYM\noJL1LgCWHGnRL9PUqTVSQaNyGJbXONPpOVC7vIqfE3ww+r9EK+P8kFSU47ktduYC8OByr4AXIPln\n+3u2nyAC1g08uHreVSvi4Fks0FLqQVKVgZ6E7f8QoT4eydnIUduv3HKlF3FXFsMUOlvOZ8/K2fl9\n3u9WwCZAqGV/JBgeF+T1E/Kmt545KPD/0kHwV2nMgIwPs4gO1Rt8MgIZLpKvVQGk3GE64jLwnPgU\njbOL4BybUPZuQxkjknP6KbdPPRPOP1+0hWqbnKY+K27bxFsjvDUrnigX6F4Y/9A66Lc2hYK6M2gq\nW0SdOXuWyZFniQmYBLgBNnaxM9t8i4OQlYXDUTZjXAUMKYuHFY/y2fitzvFfn8cYoBVBt3VmNNEr\nNfirHEtzJO25PQqLWK+5eSqIqQ8rxW9e8ooBi3ZkEEsu7SzotvTlBZe0Ap6bbDmlcxb0vuHj3PE+\nNjdeMl3fcqGjL3CHB4AzLeTn67G55kqbEebaH8mpXFgcHOOXnZxMRbbm0e7U1yx4aiktJuxaekRx\ns3P2R2fBVylPMg5//TCqKJjKLsgV2U1TgJh9/M1+tU93QGIUWLnEthG2XwAQLc9ibA1TnLffTTK6\nc6S1EbQsKUFK0v5Too7tZEnF+mdz63u+K6V0ZrAywJxFiwPp/E5MhD9qRs2117/90t0hMAAstEbE\niWLIeJRN08ealNVtLcQPY67EQZgHUL+tcy4Al4AsVa2NPpRCro7UORsefXMnzRy5bLQC6bydBdRV\nXPRZHbQLgUf5sURo07lTENVaJNWJfC9nBkyOlObzJirdFI/2AdUFkG28tTgMZp4/tr0lwMKp+fu3\nPgWI6cMvYh7mHAmAMKiijYqtRTDi5XxzWpu8RhPlrCtLapuJTEqKijrOvs9l/T5/3fDjuKFTxa1O\nn9tbndj34fZHjrRfn9nG1dhVXj6wFQchxoc6m2n+3U6hsNWMBZJLGRuAsFfC3ghv28C+T6+wYuNg\nd9u+y2tNAydANLtrtRpBkzSIDPJaazsDD+izkEf4d91XtzZXxlU6l81xHbOCtORxU32I0F8IAdva\npNSzpUFxLVKtQQMf9rqVcVi8sgcgDqUz6PR3Xg3JWAT23ZZGo2D/OC09pKT7IfaosQh0ocGDQbze\neaUC5Q3Ax+cFnBmSxoKwMd0q4W2bn7VP7HkNLJgVRYFcSbvRgIRqmNi903ZJ12nMsGomsV4/BxRs\nzMyeuf6b9AFur5Wqr30Kw+3jxx3v5w2TCr5tAztVHJPRqWLTaiRmx8h5nVOEgnmTWc32PV/dAQEY\npqAUCPQg8Ak8fxU9p6ksFdPrsbFcKrbgCkv9vdvP9A1pP0EEbbZpJhX83je/CKwtpQiNFu9pCBJx\nckEgYkcRUeHUQs7GRwfwrhF1q8Pdg4WQLz35yhTlNQrbX1zDRft/PWfs963E4SAHRVleG/W2/9r3\nZTry8n1FDGsqjKqGmR3CbWctk4TFgfcySgUgG1cA/dkwugqUzYgYVH2WVhjHbHiOhjeqUsbmOSXn\n9FadAmzfIdUZgDJCiPErKpc/JxSt1ogbMPFtG/gvvTTvqpFwr1IrueQLgj9HdsUoEgeloEgZpMEo\nRal6GtmebDR4+A6ew/4tHOSYj9fRdLvc88WZX8csY5nBCqs9/CpCn9enGUirE6AOB8WzR4lN+M1s\nzryk3wSQYE3U5O21sT7dId0q6rcCMDCPtUwegGV87N+Y4jtezXqz6FsR8ctaRBegNMZ2I/RDWCmP\nvuH3fsPHbA5AXlsBL2WXeDI4MV0sDaEWMZLD8IQKacp5ZTXuJfJQYYwRJoCGaVCk7y2xL69pLK9A\ns3B4/oClkkAgfjFXf9ZYsSIz7DLgYn34K820Vq5nF6mz8apLTt/2tA1G2Ri3b9Mr5tiYOZPLjWJp\nFl2cowJjABNRBrKY8TZQ7g0NenbfKsq3TdIfOgHvEtYijTgHuCffZdE+N7CVRSGCmLzQce2ZM1Ds\nrK5N6sLvb6QsLnE4jDFzUPWI+SAAU0Fe9aw47U8fXyjVdwqbIw++sbbOIWf1hgmaFce5udr5XsSI\nRt81gm+OGqdnkPFY1sVRVNS04RwWuU5zS+uaJpgjk8SL0x+vR385F6wtbJm8b9TR4cougByOEJzl\nYW/xSgowICHYh8YIMuE/1jkeeraHXpNWdaH1vLqe4XaOyL9ZJLwswGUGaCyC6eeg5mSPd+DxseNd\ny4L+sg3UKXN7b1O0YPQeMjDVaPE2dz5e+nOog+nVKCrAU0AhXvoUtPo8MVeQtEB0PG5VKjbdt4H7\nfWC/TTweu3+W3VGlslZ3mtiKOc/GFtHUJ5szVen3kpXWJ5I0w1rX8zy3+z5gLNRWGWNG34mBwgH+\nm0jl9R42jaJr83uYrJJXdWAm57Nf7b5WyUuTEhe0jfx9rGt1MLDBGBdqm5zNhfbERg1mnSypAuia\npSnsL6Lq6zCn/5QaZUiXgFE6w6xVBTj2Sni7y+YYo4F7iZRHXU/2/8bksDuw2ppxdonoiqACONe7\ny2x15tVuz209D2xPFRWMZgeU6WSMd+D524bHU9hWrTK+tSFaGToT2b9wJsKE3AuWWuF7AQoO6bn1\nIhCzaDro2NME+Ckwz3wH6DTmAXxMfM1VRoMwLv6KvpHdkX+XbIafLdpPEAGrL84IWhsafcrt9ehG\nPuXSxbZ8riLnJoK2/NtQSlSXnLpSWKI5XCPahPLpMz1i/hcxQXPICtZDwp6nSRBFBaByLngY9tby\n7/7oUPnTf1OUOxE2ZFwvRbeXiEkFMOCGqlQY0IOf4vIsCCaCOORaGm+rop5OWCJUromgHXEmQl4U\nXxgIr0CVe52Yzej4jEZVyo/pRxjNTECnMJg8Aq1GMyOcxrKJcXY1qqSqRIzVK0f7lVij9z8BCF+2\nHEZBGC5Xoykbejldx54pvy7vheulU2qAW9dygli7EgJy1z7X4rWP7f35++17eenzn+8nG1NWoMoZ\nGxYtIAESjhlq4VEGk5VO/4LtkIAXa+JAhpH8qo+fo+S2fsNQ9b4jALYvo/9mzCHYC/OL8fGIC8mg\nZAf2VbuK/C2Pz+uZwZeff9QqzJDU+UEBsyXDRLPnrvZ3yFmRgUSLUNZdS72qpor08Wrk6k9z+G2c\nEmqzgClVzqBCLJF9qzKjCbaROlX+eD+mz3ZA2ZlK8HvhCiJ6N9TotJKNBLiwXBZxdCYCiqd2fdV8\nvkb55H3bGpJ8/upgp6VMGMhhfbBUsdfPnIAUEur81DxphvW5fDqzMs03ty+1Ovh1YE9O9PVMMjo1\nEMa+fOfrZkBkvvs+gW7GcvGzti7rjrj4a67vTVfZ62dLrJQrEJyDHN7ZKndu70KFb5WxVSmrbFH8\nqvooX9lBsscC8MjOUiKceZqB6xUp2OO2zotz0prp2ZiWTqshXpr7lBk5VXWjMjNvGcvr2F72JrMw\nNWojtC8cqKa6KlXtEvTr58f5YhWETAAzI59Xxt4yb4RFzyb2iD6zOuylMgoZ40ZeJEKPCBAN6xpe\nzFwHAv7YHnImTALmYw71mdP9u0T9F9sgGBLCgiPcbjOc3vEZXMkipNd+5j1RagBf/h4EYHC1U4C4\nP/3/l2ePucxfKKmmZdHKMLYMc8GsBSc13xNfpVgtH3tZF6HvxX7PX5sEN6WLAm5IvwxUMbaKa+oU\nxkRFZZ2Hy7PV9LgZZPh/IsL+v2IT++z/6178/6P9BBEAP6xZEdPnrDg0KpgE/SWfNvGYyq1KbfDJ\noNmi1BcERTSNAUMqs6PVPySaPM6G3qWOcR/NhWC65SdS5N+RlXGTG2Z5hKJI/rUtBmQGBAClc8K1\nCyYLMm6l1pYhulyejtLrJZ/LPE67UP2iYIloWXQJ7J/hFHevnoBldzIXZ3UwgHnIQ4zecJ4bXAwo\nOavmtH2Mhre2uQgc9fQCwiJiI8Y/o2gZHKt2YIaLGas28ub0m9FtEcnbNtEqY1LBVoWCWsBeTu9H\nv+H2mEonjvQV+yyJ+upa0drhdLKIC2ku42RVhJ/CaCkVWjquLlEfeb6VkmbzN1N5QKG2W/6lrTOS\n7y8sQEVSzs6K105jZIuGaOrBjPxSm1JzKCwXdFlftK6xovR0AzqqRphFJFH6VdUYN/tpuXBNRRRq\neL+43DLDxjUaeJ3fJQqW+6tjIeJV8ryW0/0xRZfieplfKzr4vj7hGhM2H4W1IoUZhNALf8peszrk\nxvjoVDFPExAVZoqBURXAXmN82qf1UNwQzVRVywk3B9MirV75gdUhSNT+V405NCiuLBkDZoy4lZud\nSfb7qVHySSkXE5yiMwAxqw/Jn4zgijgb8lx4akAF2l1fmERwgkFTI4dX/61TxU3F8Uwg02qtO22Y\ntPOAsK22eNLQxnntIHH6s46L7FPqFkWNucsgkD3/nBUbSd49j4JTxcoOLTV26Jo9yMoRyrlLg0GH\nGJz92bw07DpPFukq4Jn6A6ESn6OhK2vsPKWsnrOmkhNhiuW5hKulAgwqehfLa2cveD42P0NN80DW\nqEZBZ0RSLTVnpu/LaRlExdf/db3YGWYAgl3BGTSldFdfnaKrQ9+KrdUV+MlrIkcRbW5deyWVlGMK\n815YKxH5d1ZHWrcGYtuZl/uX933k5wP9o7kY3L1OvG0TUhWBXEzY9o+NgadKuXOEl81BN3O45ue7\nwZhWzACUaWVMB8OL9gLcWzBMtm1i20lU/HW/WuCBZk2VZYJCbs9vf8/zZuesj485qRXYbuSg9NUJ\nbE1YiBl0pzRH1jIzBoDfdfJz7YeNt62D2uS7TVSQufj9EJ+rqRIbsG/TQYNapZLB6DHuxtohZmVY\nQnUhJF3P9CNi/a737KQq9pbea3aH29rloQ48Fd9HIVgpfZhcsd0ZcxDu94HWCNtOuP0yRSQQ8rwm\nmGwivzsm2kkYM6qkLHOotH1hEYrNzBwpNICdm+v5L3O0aqPZ70QbpaC1uEP5FO0SOoQ1+zx2Sclo\nhG97x22fKIeIlD61rz6Gdh8PgLR0tzFeM9DXtMy5VILAX2o8hBnRP2qsYUhlKfkZ6SJlMDptn9Z0\nHpPr33+2v1/7CSLAHILYDEYfPamicxzqpgwNDceXvYI/utQCN0OWoFRDgDXCTxottpr3RAXnY8Nx\nbH7YC9VtrascFMdEUSd4hOivNul7GPK5FY2vVLsEYQwFdSDjhatBXuL9f6UJE0IQeWMiLP9uH1Nl\n/Dxf13LYNCJirA0Tmhok9DpmYR5kg+xjVnyfYsxbiZuyCWy6UF1NoAwAN1a0Fg4KZYBiyWdPqD0A\nnLPh+95x2zueY3PHdVLx6PSPoTlnahSK8I8K4HA49s2cgs7AlJrWOdVlTMkznr1iu8uleVDTuuar\no2ZGy+todwa5XjjLHGwaIJz97LBYm7N67eo5lPaJ64VjlNpi22j9vjQvFr0WgONzWgIQ0WUHCS4M\nIat6sM5ZPJuIQwVlE1ijDfbeAjPI5O9mOEjecnXH0ZyVpWZ77m/6XDeqpkRVh1JlJ2s+PS7rTR2j\nogCXObMEyQOdvaB2wGiVluN+TWmw758s/eQ0H5m+mZ2K+QL4yS2rgl/bH6VDsWIQTb/PzqEMNuR5\nrwBYIx+s39dqflH1RWQZX5R+VsgzSkw5zloRxiLgBtRbAYbk3NtzucHMAfgBBh7q+LCeUaP5OvAo\n9Q8V3K1AuWn1nlqEXmqCoi8cdB9DJHaRBpWIZP0RQpQtj5M1A4AAERM7Hw2//3jDORs+xoaPseHp\nInghHkaaatefAnifx4bj3D7fU2YAzwL6UIE1HbNOKjSqIMLvjzuemn5wddRsvb0CTBgCJPRSo7a7\n5e/y6nRbmpcBYznXGVB69JLSkL7vi/tMGCzBRAAChPiK2WO5y9kJkYpEsh7jDmV3Gp3VNFfHYAE8\nvjhTZCwCdPBUO3MsE6jAYwVLMqCT2WNMQD9EfO+tTfxy69jbxDmbR85XsF3sFQeYE5tycejU2aQT\ngNpMrMKUFl3VOEScUUNTnmYAvjautbCnnzIXKdebyom6cPZsIJpSKpJiDVgbeX/p3WNMkMzWMXZN\nqcD+C6Ee7LaJzRFBIvybim1HyT1jmIWTvxXGruKJ8hqp6mBxIVvHBoIUZi87ycwKkIQYt4FZtckn\nGPW9EuN2H/49jYozsDzlha3ahdmgFbUNoFdPHXq1T902MfHIHnvP1t04KvZOQGXXEJl+T1UPorQi\nlWv2SWjbGeN8h441YVOdKVun9oy3ffrZ0ApHVTIdv22L8sRy94YOjesL6b7JJT0zc80CNDKvBVwL\n5gQ2tfdZWbPjWTHUPtir6HR8+yZ0lLM3ByEMIDDNEhFRJoxH9ao1q9BojSAYPttN2Z7ze3QKsNN/\nVPRji4pKaY3ms2yaWOQXd1L+Ptun/3f00P5Xb381vfvfvf0EES6t6qFj+8ZKBy0GfZFoUnnbQL8e\nQiktyYB2aD8iSNmQYQbOs+HjeUu5cFFOzBD2hSZ7ORCWygxKOywEEVqkiECbkVPLusnt3fZsRgcu\n6UDI5okc7NexMsBBKJo5N900GEj/TQw3ebag2n8a/K/npUGNiHhu5rJcasTCJLELo6sR1RqphwKU\ne3HjrNYkEGYO5yaWbc5rze1K64qus/dDcsmM+idI8/ts+FCBpwoRCdorLSUAB4UD589IAB0iEDmz\nQaxRiNHloB8jLuMsvsOQtRw0/q9PvhAYixupFMi4/QnS7ekXHEaeOaaxByLKsYzp5fMjBcdyJgEq\nr1kBAX4xaoOvIT6l5vp1/jKAQJ+cgvh+++mUyhJg3PJ5WkOcKCI2t0owNWd7VhM53V5ctAHMrP38\nMnrHFu2LcngEi/Kocztr6sO6ns2hlnX35zdhXjt+RpjxrREtM0i81CCg4nXpOYqAqvb91nLK2Kvm\n1G/trp0nBr4SISz/5R3h/Nu5S/isuZCdprIBZS9Sau6oF2PMzucYE2cPzeIMpk/jVoHxL/JulU2A\ng1yZIc/9l+Ogj2jArQMHCUC4ss0+sWEa4/39jl+fdxERngIgeHRV+81QB/JZ8fzY9c7a8Oi7Gvxx\nn3nKCxWMp6xFzxtXoKarUf/7eXP2VW6W8mUzdx0Ci6pOLr4OmQq2bS7MmpyaJmO/rm9fl0rL37ao\nOJGj0vG9l/FPe0Z0UeQzAImMhqMf3cjrJWsi2N5oVcokWjQQeoczi0O9lO60/ZVKq0Zp2mArWCtg\nZxs4SOgsg8/Pa06/lXgElMVSCbf7xLe306vNyHwoK47i9Zmm7uPwxTFDHa5zZDodrRK2QiI0Z2cG\nxzn5aj7FDpF/7InNQCM57RwsjpZSBD/1Sb/PAjlnl/KMmTVDHMKQ9S5zxqyOOtZ7ykqIZqcPHJo2\nrUpaxaaigXa+l7nelHPKPcOsgItpQbGe96aHkEDfsMmUjbARtlscUg3JEVW7IYASuBaHnfvjcu/k\nZuPVZ5Uof7JfHdwYAhyVEnMj54U8l2l4TC5o3wBBmGSit+/wA6JtJCyKtL/bLoKTtz5wKmi5VwFo\npgHjJKLVbQ/n21INLMCQbahlrRW5v1v6Yy2nXBpDkTq8ZG+rjH3v2HfC7dvA+dh8reV1tzSSihNm\n2/lnswXW2J8j+vj1fW5rYZzKuqCC203YDPvbSmOmWdC6aGVke6iW4meYsZYtDfonI+Hv2X6CCMgG\ntuyyWyUUSIRlUAWRbJKdkrF5ayj3Dfzx8TKNwC9Vi2T74Syn4Bgi+sdc8G0fHj3IYIMJml37d835\ntN/ZwWDPZJdeVoceBMxqhqIIWNm/dwIGyf/3dCJ8dUAwlOpZNJ+vihFa9PuVkIFJjE6MQZd0hhJ0\nVZ5F1XyyM6Df39S4n9CqBqFY7BeXXgKdigqERYRsv03wSSLm86bRqxnROTNOCoVBYyUV49/NIV7n\nKOfRnbPi/dzRW8WPLsbyMSt+Hw3/3YXmzgy00vB923BvJBFAMhG9MAKy+TDO6qkMESUWY9AifLn8\nlJXlIwBgEQI0JsKyZDRaMl7MbXbsLVJxNeDcQND/n5TKnWXUnGWdZQbDqxY1qOPZDRyyOvYWIbKc\naiu1ZBd+qQAGgVS0lLpFf5IzqK+3381kVGd2Se6HdTk7+0RV5kYFpwBxhr41AxFk/icVbJa3rv03\nxempqslWG93mmAEMTrR9OwM04te7UNCNbSDgjUQvLBVnyXNHAiZYIs5idF9BK3t2G9d1HGyclvXx\nwuk1kMIE8nwOcAFLdGxL+j0ZAGnruNhagH+eMG6kjKOdK/b/XQ9kobnLeVZ1zRSIh1yLfEZrGsln\nWwNqxP5g9GMT8C4ZlbJfgqLrIBcXBwSGatvk8Xz+K1TyS5Eo4v4mRm+9W3WfBAzY+Lgznp0b9jln\nRQgNFItzSRlJDsRFRZr/fn/Df593AMDHaK7fYQy8aXuFREztPAXAfPTdWQQ5IptTBPpH83KLk43Z\nEKKv71r5yM5ruxu3GtR4SmCGpbvZGi7qHNUNXinij5pR9q9OT6u0OOexHoufM3F+2d9Z+xfASdPq\nLACCdaL719IxjN3RSUqOzss5bJRsa54GaUDIKwaC0dHLGinM52vomcBBxwB7o6/yM0TylvNZ+/Dt\n3oWaf5s4fxc2SieJho7ZPM0q57gzIiDidwQnMT5lF0yN4Fswxr/abIPUnWv+v4yBgSWSEnPOJuKO\nVuLOvs/sIU3tmSOivFfqu62ZU0twftv7Etwxdg8PARFaBaiTr0mLvPfesN8m6s4oHE6m9x0CIt1u\nQ6tAKEg1oA6aOb+aLqOsS9a0FNEzgIu52nuyiehpjVrVwWyovLZsjRhzxmyCTlUZFwKQWInb2Jt2\nzkTEfmg6g6WdxPmlelCnlXWui9jnTExS4iKMMLAvnrIXF3m157JnsHSGdmfs58S9D/BRHGDKKRd2\nDhpbYI4ExptNlGz9vD/G5bntLq/MKHrOWirCPKrbqrfbwNsvHduNUHfG87142cqh7AvUhVIn9/zZ\ncI4tAmX4ouk/UHqO3K7BN0Du8f0ulcLatwDAeYTNdwXOFlAe7GvFxuLv1Ah/swf+ov0EEbTZRmmF\n8Y9tgrjgY1acJI4pAWv05NaAWqQ8Vyq5loV7SMEFo96ZwRk5YBUVEoUIevFaZiromMUR/xzKszIy\nzkTQfuTLeBGAQRhB1yhdztP8qr2ioNvnsv6jGf4Vnx1PH+9LPJqmRP9eRryrgAhVPaHSIRGkmuhs\nkJSBzkXSUEgj/sXygBllLyj3JvXck4Fmhz5XoKmTRlpR4yqqmKPpSwSzqNI2NWyD8PvY8FRj+rfR\n8Pso+BjAvcLrvhtrQuaCo2wcom+AXHIe1VSXy9JirC61lTgzw3dwWia6hjOrxUGGPMyWK5iiUK/m\nI0cY8rhYn5hDZd6cV/s+c0qzGBkQQI6g2uzP6XnMyREwRzTrLdg6AQDuhP4DWmN9BQLyvJmj5VHY\nJW/183ObMZb1P2lWjNEU6ABubeL71kVbpajAoq50idAHkyTGS6NMHN9dsJaFtHG37zynOH9GKzUD\nrZ4BUnYuTlF3sA7x3J2KRtCw5INfDXd5dkZrSgNNtGtbK8FCiP7+EbXxlTFkv6tpjgnuLwWYijAK\n/6gRWHUUCiqLAydAp1SHMQfRqMl0QoQPB+P5r4rnY/fygZZPbjoWthYNxJxUwSpWZTnhBTa2wPvv\nd/Qeua/MBW/3jttt4tt/dI9YZfq7OdP5d/5syRG0ebCoch5/M/ABmeNxVvx23vAxJJrc02dkZlnT\nc3GM6g7jORueqQyjALWa/qCaQPOMcoudJS1ncqScPWcTBlbay8TA3gi3VD4yp8lZPXrJY4mo364U\n3KbRxutRdWXvyTip6F5hbI20FPLntZPX2kz7IQM6gLDZ2k7qANflvUDS8bA/EVh15oWDp5qGZEKF\ndK5nkp27Iv4JgBIzoaznxCKQp+/LLD1SVl/WAxBQP/SF7F7cNsLtPuQeZWHFPXUtEMsdZGlW+Qy5\nsi9tbDzaSwU8C8YhGgVzVC1juC1OkN0tPMWpDFslnCq7Jx6zYiui92FjcQ7TEiIUkoj96NWZNedc\nwVvonB9U8DE2vJ07tkre72HA2GgYz4r2TVhGS6qY0vSPc8PtNgSgXu6XACUBOJvFVpoHlGAMBPa7\nfg5hf4zZ0CoFSEQVXDjOKBtvCrsTUL0nZQG0XaLlY0SpVAMAAU1HGhuYioIIwTCyubGfUiZWAzqm\nXaHjalWG5qw4Hw1NS5cuqbvpXG06mKKdoGtxsqRLHWIT5eAaE1B22VjbjbDvE5OqpIkksJwp2Cjj\nyRiPqilabWFYWMDPuIqW4nEFI92upwIuJVKPzVYHRMvhbeD2D0LdxS84zg3P0fCcGw5lkLQyl30C\nnfur6K2vH32OcrGbBTSJs+MKKHhqSyPs2qeywUFw6T8Wu+DKHn3V/k6pDD9btJ8gAuARETP2v29D\nLuW+4X00PBEGrTetRzYfcihkw8EdbVqNGDP27aK1GtVv9w5S2lwBlJoYn7U4bATRRPjEq87fv6Ko\nwOdUBqespmdTG/vT+/JPuvzejL0/Oz8kHzQ0ERhYlFzHUUHnWJ772spmfqJEf277xNYJO0lagIly\nHVOc3YysqQAAIABJREFUp70y3rYpJXc6o/6zomwV/N4vDrXQzwoBlvrtQnMKKDiNzNZKumgy/fH3\nsYEYsm5IHLjfR8FJBccE3prVJ5e6wD5nLxIl7NKnWdL8mX6FXCDn2EADagAUzakPXQQzbGZykrOK\nuFGYAXMI+RMF2ObjWls80/08QjNF+8IF6Hg1NLIBIuNcls+/UrMdVWeLPgcAcHWsnE57kgMIFgnw\nfurYGMgy1cnxMkjZQECMUUHQGenFYrcyVIDRaw2lD6aDjTEAN/SYJQUhzwkQ6+FVeovRL11MjqWv\nc1aPvo0Zjp4Y7Pq9uibMwaucQKVL9OU6Hp9Kjb0o73itomHjdp2rNeYS+/0rVkP+KZ8re6NaepRG\nIguAhgqyqLE+c2UxB82pNnZOJ/msMSrmQ84Y6sDHjxt+PG8SeTcDWOfSq/fA8oAl0j6eml/LqUTn\nEHDh43nDx7m7cV6KrYETtz4EKJxrmoqBgVfA5dW6+KPm+0+d/PexadkzO7tDpLQV0X3M53BQrIP1\nZQDC0DV2zubMqJNCILhpVHYkYKFxAPPmQGyVcK8TW4knc2OYQ7+jk4zxdpM8Xpr1kyq5MPJej4Vk\n/qniuwOmVwdP95OeE8bw+KrlWu5r5C7ORTb2nb0n3afmBBKJc19bSUKn4ZR2qn7G1Cagd31xVjsD\nwVkGketuEXKyfOcUXd+Sgw/Ay8nu94Htm4At53vDe99FR8NABKqaiqC0elqrTDHiLM172Zw/ibJr\nqbvKLmLsjBSE01QrL3exsZLk71XPaMaP447bkFLdT02l2aYBrBXAhh/PG967aIL0dJYCco50kkDS\nfex4G/PCwBF9gPPRsP1CMh8z1qoBb3wUbI0AnD43du67lgps/cBTEjwdbTbXzbI7ddj5P6pb8CKW\nmZgS+rl9tkg/m/JTymPL67c5XaT6Y2yLuCkg59tzyOtzFYtrsInsLDBAoMv89lmVGSm/b6PiPBra\nCB2hns48+97JFXSKc2yMAX5IPv/sFeexoffNwQdZS+xR9G0ntE5RDcn3kYLtRxMdoi4gggFJzsjR\nKHsrgKXGPmZxFhobq8TYVDp3xgY2JnLbyCP923e1cd6Bj0NKpv7oGw69K3Zb134na/CQzM4Mm8BY\nLu0kZWFQCiho2V1lptjZBOjY3CMQ0L7Bq1QAAB0y3gYsGVPkz1gGOsQoXwnE/Bu2rwKkf7f2E0TQ\nZoduLazOveS43yrBYo+UnDIwgx9DSg6mKF5uRhkjpbeO5Hi1yvi2dzTNNaQZ+UcWoYgczDhU5AMh\nERlac3Czoxdsh+KGtBwE7BE41kid0d+Nemm0YPtef57k5sbvWYTN3AmW/xYYEh7pEZ1IDanIVTen\ncpoRXzmlD6RUDpVvrzd5/tokH3WvhFElf3KysBBEEBP4tsu/+/u3CiYGPUkQY2N5TPEMucZ4Wr3v\nnNOXI+GGsEfERV73Y1Q8Z8VjFnxMGc/HlEN2MuOXxvjnJtFqIKiYV5FGIGh6pqxcwCCr3oAwNLxO\nOq90uzQdMPplztvLRsdXLaqByE8DL8zANSHHYEcINZVm8X8zGrqLBzGc8RDfUaQSxVwNRDPa7BmC\n3hzr1wxxb4NBI8Cfa33vDLLMUtwwc0ElDrCCL/vHDGPLhy5aSozUURfGUpWUGlszWM8HFxXj2N+W\nkxkRB41G2vcu5wBWp0CfZYyKWtV49IgSxNlTY77INkInuFgcpfPL1rKBRPxHMX8qQOPk8KiRRmGQ\n5+hrpDOog297Oy2/4hwUmyN2w2RSpF5J2hXreGs0jhmDCRMMAmOj6udZUUAPVfpQuGAwozDQzFh/\nSvWb87nht483fJy7RlxjTG8cKUO2Joc6A+MhzlmfFoUvIsrWJZfYovjEBW+biNPdhhjFc6zinD2t\nn06S2jJ0HHeK/QwoG02d3VhDdo7DDVCaBY/HjsECsLIay3s1cImdhWAMr9YY20YYM5WF41h7xhI4\nZ3W69aHVjU6SiGJU+DAIGM4WO2bB2cShsfxmM4YnWYQz9nwrAqK1XYDkOaqzlMxZ8X3mwGBETwUo\nD+2O/Dp/PfK5ZUyeSM3JQCgz9KyR6PCa5mEpggFcZnHjSHOoeI5NaM/HhNXt7ZomdXZLEaloJfKj\nfRvaveTnUzC3rI+2ptjmz6P+SHPJsNQU5uIpCvsvhHYXR64fDb+fO34fGz5GxS+bpDPMUT1S7UwG\njvX4eVwDSPXc/iJzeg55XlsjJjYs7Il4vafMuPNZNGe94bfzhlYE+HjODQXstsBWG/ps+HHc8Hvf\n8aF6Raeel9aeVPD7EPG7b9uGAM+K9kvYSttvE9udMQ4F0YaJHMueb08Zl1YZpworT43atymv33sI\nOALA0aVyymRJI7J5Zi7OaBqzLU6isJ/SemcF97IdpT8lRanifhP9gI/zhseQqLitXUDA5ufc8Dx2\n3G9D+2FsR9kTk4BZYh11qphH0YpDOofuxAsDREDUOBesQtXId/27OLjzUTAO0Qd4PnYHURzgGAGe\nl86oGzwQcmXc2vc7kKPpKpGiYc9Q9Lwit5GeuhZl38od5GeTAnxzVge6amOgAdt3xvbPAhSAH4z+\nUdPak3XeCqOX0PZiBRT9XtV1HntaWC5iRw3Uxi7MHIEDYaZIJTDZz6iMdiNneEhaYgGdAsDMR8Hs\nBf1o6H1b0mSXvfviD3Hc7T/b36f9BBFetL0StkZ4awNvbUMrzaP0ThsiBr+fjjp6RJXCIc2laAyB\nlrcW7PvAvouRdvs2MY6KdpI7lbk2a3YgrKRcWAwAT2hFCENkVycxDJ/8d/aPuBr31iQtQSnYTrPT\nx885nLzWaBBHJRyFyIcPAMHSGcwRHaMuIkvM4dzwAKiagBGUOihO6NYmNpIcR6cXMzwK1gopSABh\nbwwR3HNlYBsno2Mmw5I45jZTw2wMBxUpNwhxMCRSJoj1QcBzmgHKuFUxqP9jn/gft4H/uJ+YXHB7\nEiY3yetOY5iR37YRthp5s66foX2yiJAba/w58pt1D5Zcv/R3E8fz16nThRHvMxXoMatXwyAW12+q\nE1E0d9Idcay5/dcoqqlcV/1OW6eRZ1k959X/pGdcouc6iHWT9TxOjRInp9v1EHRchvbbHPs8LpGK\nABdxRNGIt+ZD3+9DaN9D1L8fc8NDNSx8bC8igxaJAywitxo7tZQ0DhHxALCUG7U+RuWX6gamXfw5\nPSF/pjlGX7VwwKIyxavX2E9nV+TveXHG+LxZ//nygar2aq+tMM2DOE9I1wNznCekkIecMQxS0Sdi\nuLgoccwj69gTC3h1PqRazo+POx59x6GU7ZMCRHA6r52tNo5U0A+5Ti3/n6Fnv+bmhsAtS9S9CUvK\nnG9SSvKgOLcj3zieN0fGs7jldV/nP7bOnmPDvUrZOXNgTRQ2i4ZVWERvOih4S4r8Pl365zk3YSFV\nY3hkR9ryqGUczNAdXPCkiselNO11TWQgERDner9PBU8CLH8F5F+bpQ84kLCwadLZyrF+l3uTL+cN\nF7lLdO8bLTrPXd4LdsdOyJ3USZy0fQgrsXeJkptY7hhN00g2DL3TTHn+VctMgjVSrOuRDeyVW3p8\nonAnR0VZOtt/sDhzB/A8djwUWDup4p72s93XX91jPmbguK+MIZVK5A1ju6jjZA5oBifsXOqkLD8F\ngPYK7LPi13PXgBC7LXDouA3dZ+9j97TDg4rf1xbEOUnSI/bCeChbIcqPSpT9ceyoPwi3PkFTHDvT\nALGKTMbEapVxah8IBSc1YAC31tCO3e/MCuChpVcn1yVVCRB2gYPbBtqnu8R+dqoLCyW/9znks99m\nk+dI45CDEJNVF+LcsKXyf4tNaXNt6xxSDtY1D9iCAtEH62OkEBQ/j+3z+0dFbYzjY8N5NDyeNxF2\n1WDIZAFpxmwa2JCUqv02HUTwdQb4d/HYPP0DCDbZkn4DS6uIdXwqgHA9m2wtlmSTlSLsA5BG+79V\n8JNAHTg+oiKOpSRmBnAGfVoSubZzydo5JXV2GyRByCVoGHOez+xiApUIW4m1jC8PEdKdo+J4RhUe\nTyWFnYfFbbpr+7swEfK6/7u3nyCCNj8IkyHSCuNe5SKynGcAADP4OTD/ewBV8jedjmtGCRWvSZtr\nBNtlsG0khlARZBAA6oO8JM1eVrr7p86+WMELC2FGhOb6KfkCyE0OgESXVwBB+i1AwvWMqBeH8I+O\nEKnKoJ/LRT/TaPBVKOgHae4jPDpEvah4JaM6aKJ5ZFUiDHslbCU0A6QvSsMdFahaYu2Y4PM6bmrM\nVKWp0RqddQDkYqSac2eUTps7IPKKqUippO+bOJH/Y5/439+e+Of3J85TDHo57OuS02tzADC2O2Fv\nF/VcMwb1Is5O8mLkIiJqTGURyCCEgWyG9aemgJj9nSzimByq+B4xWBosGhbL9Fr+R1gWyYCncNgL\nIhoakf8wIs0gj89SI3lAECkA2xuhlIJxtk+lP3M6hPV7jKpK1OtZYM9YtF+miVA1atZ2iQQAmxtn\nv/YNP0bFZOCuSuP2PLuui0WnhNbnkTFIF3/qj0VLgTViDMAprqSGX7d559XwqUWivKUCLY0lp7m0\nSzJH5q5pLuZkyHuLi9jlfbJUbGGAXil0/knLff8rWgjLe/UZmoMGOve6ZqgIQ6bPhuPY8Dh2/Ov5\ntkRvuxutawQeCGPtoIbzFOM4RLBYRLGeDfd94G00zCr0+3++Hdg2wv02fE7ntHrg8ChuBgEqdPwQ\ne0CorH8+DkzF86i/bwP3Nh0kMZCi6Nm/19BEaJtoyoxRcRsb7m3iOduyl4lVj6Zvwsq5jL2wEppE\ngwvjQ9fmoffiQ6Ox9lkMS38LIMX2ZYFEUfdjYtsnejcW1nolvjqz5fkEWBYmW4CmTh02YxmxB67G\nsn2P0PcLShdqsTFJ8nxZi/KO4WRPFkbGx2jY6ybOAFX0HukuYwpt/phyhkmqSA29Jcaio+SaL4mJ\nIH22yHGidKcc98mS3mQOkeWOVzDqtwKejPGs+Dh2B30Gy5juydEJEOYCCiHsjgKLYGcqfwHpOWjM\nuswaMyaN2VN5Lx4K3BMDv0BAA2MQ3FTLYK+MG1VhmKqmzMcQBsJTQYinO9sMKsBzyqrZipRmfs7M\nDpL74tHl3L930T14WkqAOogfCvAPKri36cEGYuBQHZymjvFI42G58mpdqu6HjPNQ4MDGuab1G8KK\nOj6zoJSKQYTBUmbwnBWHgsz3sen3NXzMJqmgOg5F2QXP2fBx7rhtLxTEL+ucIc96PLOAqp1XsccA\nRHoGGdCWwdOC57swMH6833HOht+OGw49r251giF9sxKydv99o479Nl0XyNg5BkA9Z0UtzcGInoIM\nwZa8iCzDmEMKguFyLznIJTZkqUC76x15Lyi3Cvp9ov+oeDxuLmYrK4z9bFr20KyuNWSBRXs9IPuk\nFca+TdxoDc44m8j7lwIsup9xwssLj3d5/fNjF90KPVf7rJ/OUemDVctJ62A1L3+2v0n7CSJcGkMu\nCEAuXjP8SVFtQJC7goHxGwvN72TPOwtGAjSdIajL9plMxUvteLnBJsJldlgYI+FTI7XGr0nF+RmM\nnslxcQMRhfvy2RPN2JgHhNdMhMjpZDRHJgNRvUYb7b1XRVNmqMhWceo8ExZkd5w2SNPFnkytWPoi\nhmErjE3FEQ23cermTeflSYHA2lxxADB2DDqtngIdt+exw9rLnEFEhW514peN0PXQ3UrBQTKX35oA\nDP+xd/zjfuDtly41jbXMI6lC9/WwBoB2Iy0Tlcct2BH2nLHGYtztd0Z5XzQH8ncUUZa2clRLu9Bn\nLQrilF7I8w6Nhtcy/zQq6OUUl3KSskCvYIZd6teWfyP7SvYmlLViZVDNUI65CgDBqMrnWI/CvLWu\n5VEBeFk5m5c5JKXhJIvSydlxqyIYt7fpwGD+nCjdFt91ffbrk4szQtgUtIpIfQBLkZIQz2LzNdX4\nL/x1Ksv1t27AvAASAGg+v4Iu+AxSXtlOeX1anel4bZxDjMi3XI22eH/+/9yIGaYY72wYAzM4PlNY\nRWI4HWPDe9/wyxZquQQA7rSEeKl9vzEUem9qeJuwogJUveKXX07vZ22M798PmGK6MRiWKCss1zs5\n0j42ZTEYF2Awnfesn2mO48ZiNP/X2yFn5SA3+nuJszvPRdsZZWPsB+G+D9z6Lul+ql1gc9PV4b3d\nxnKuiPEtjslNdWAM6Ook39amCNjtlVbmXDrPzLnfiup9KGBjkd9MwX4pWgLAygDujbycrWkiGIuP\nONg7VzbCdY3lKKEL26U7Njsaxb9fBswYQMPvv7hnKDmTk6KyBSCsqaEVXfJz+XiznZdh+F8rHkwW\nhsO2zXCabNyhZ445HQ0otwL6XSLCj767Y7sVSYu5tempJbll1lhupk0yyYCB9J6ZU3oShZrCsfJ9\ngkgnsggx6QBbChI2+35xogcxZq2R+68gxHOKZtFJjFstaJoKVAGcteAxQ+fDAKsQA5Q+75VwKOBj\ndP9jFky2FAYZ66Z6OaeyLWqB5uQrJR+sLAR5xlYabpio1c6c8qWzFoyEiLCLgyrPLIyMAEOeU4Do\nk6qkFpGA33qNuojkx9hw75t/R2a5+f1i6xjAcWyojR1seqXhEiKN8DQGW7+DJfWKuODX5x2dKn49\nb8u9wRAm06nixkffouIZnwpGxToy+8TKVhKKp7jYWNuet3XVLtpj9v0190PfW/T8aAVAZdS3Ivpl\nihrNB3C8b3joONp5VLW6mZ0RrODPxtAy5PhkM5TCyrBUJ39m9lSkMxQVbfc/xKibgggAxjvAs+B8\nyLg9nruzWIYxXtKairs92KV/1/YzdUPaTxABZiCkS5o2bDXoOq0wGhItiBj0ZMxHwe1/4+VCB6DU\nKkTd3hmGoStoN0bdleavKqvmFJseAhAIp2/WF0a8OE/F1VoNObQIrNGPjIrNiAijGw5/4UBYaZzr\n+MllF59hjkF23q7vJWhJtmT0iUhlINVlsouO2bgxAecR6HOmbW2FsJcCKnJpHCpMVHaJgNJBn8AX\nR30rgzTE6KWU2KjmQcmLMYuIT6eCtwZ8b9PXyQ/NsywA7noZ3NvEvmtZnSFaDnuVlIbrNWtzW7YA\nhpySn4xsmd2IouXmqL86U7mO+CdHWSNzWSgsLwrPx9exsXFwoCIZ4n9GaZXn+9rYj/SBAmMiBE3v\nc1lKA814MMpWlt87QwOBzptzVhDVMkyXwIxUMa7Ll/3PatykY2J6AIDsh3sj3JS27mrsyb3+FLFz\nB1Ap7LqXiWO8jIJdlvdJ//uStx6RPL48xwQAkj5eAanclzyPn1NdAjANQbU1rebVPZsNQft5dYQ0\no8H/ng2XKyBhqQwr5Z/D0EGMgekoFF1DrQQldapBaqwiS9mKfmrUjFOERwFWidoEE2GQrNk+JUr9\nj/88HIDZ9onbP2JkR2dn0+QxsJ95CFfnNoDXrMvi/eI1Z9fydv/xdipTDWiDMJLmj32f7YOysYMd\nrZGzvswAhq6rzpIq8Y96LHNtubziZLGOT6xNJonOv49NAdXigKeBoeKIqNGrzpHkNUPKTmrKSTcG\nmYHEfwBkWoQPwKKPExHuSPfJgnu5nNlVaDRTsa8t/0oJfwuQVcu6v9a1IH3bapzzwR66rpniVX78\njrLzmVMU3UQGMxMB4TzZGS8dBeZDUhnOWVUYWPbjtyZsGikbyC/HPKLL6Vyz56CypNH1HgJ3oh2T\nHDXTmCKrghEgqdkzxs4ysToHCVmi8aT6IVGpwp7Z6OoCzOZ1Nxku1twZaY1UlELoKkA3NCBgQSi7\nczoBzySfv1cBnKWPUrUJ0JRZwNOL7B4xh3lZZ5lBk38Pe+bQI6haM/Qxhe0YaRkFXdm2h/0/x90B\nmwOWiP/RN1j5UncmfR2va/c5NuxEkGof6V7j9Tmc+WKOKmI9PjXt4EcXQdpTGRgApMoGG6gj42/V\nDmqXvWRi01dG3uD68l7K6zXbWdB5uWqZS3+T4w54FYvaIDZnhwQzTsJ8FJyn2Kx7ZbwxoSnDUvaU\n6l7pGje2bU5tDtvI7qawUT/1nwqa3dF5X2oAkgcwnmJbn4ecp6ah4ZpNGWRMNsQV0P+zAOXP9u/b\nfoIIwHLDMwo+lFrZCjtSbP9PUxwVPkRI534HyiMZ12oYZVBgUsX1zGIqDh7MXtyQsQ37qYsvLmcX\nvaMwKAVIiKiIHYRmTJdk3Bt48D8DqC1GlMcN7f//vJlxAYTehAnKAADX4iWNALgjfJ4bnmPzA28q\nVe/OBaPJBwqyLnNZbkVU+594ybnyKH0No9KMnIgQ5kjNilwb/fI/bx3/qb//3jYt8bcaAm78QyLK\ntTRX9H81ZqVG7fkrZQ2QlA4aq4NxdUIml0VYEWkYakFE5mrMgwEKq3hngFSf0zuKG65IP3OE04Uk\nbQ3Oitqmfy/Pz0Y4qTE785rF+jriIvNnTlWHlNubOTKvFyzFfIj4XLo0bdwun5+rlAiVT5+Z4ErG\n4ldrSalGmmNOotuh4NKemAi0GIbSnxirNE8XZoY7PzD9FBsDOEVYouHxrJ+jBjGm0YfoT9UIyaYG\ny6vIVzB64Pslj/P/TPufjXCYZoKNgcqhANUqBiDWcQbW9OfbNr1W+6JjgRATrAgDEjBDNaUVwfZL\nQbsry2cT9lr7Djfk6q/8SWX/lUFW9R8ywGbRJaMw2/ivYxkU4m/7wP0+JFIo2q4eNbU++1rxM1gN\n9yJVDYyJcC0rODTVycsOKhDh0Vsd75x3zQycpeDHaPjWiufo57ak2bCkZBwQOu9zBIDQL851Llsa\n5SvZ9Sny52cWSAYKrLyjUZiBWJu1iuhkbaIE75VJyp8b1FapqEDYFVslYUio2CGpaJ6N5VYjHCCd\neOEcXNorfYJwpkrkPNvclHB8lyBBZ/QfksowueKtClDfCuP71nG/D7QbaYWGNeYczmH0wTRJsjNn\n89H7tjiVDrjYnTvXuyefa3uBp59OtROa5s4LPT32t+klGN4s4FTMtzVLQ8mO90LhBuPkCqYAEPP7\nrTqJjb10OoMMcAfegbnkwOb7wJiKBoC9BGz8/opzyH7Xzb7kcNaJVWTV2SimQQHXkbG+fowNrbJX\ngLL5MYFenw/Ao9i5XGSu3JPvMN9XQOqbpLscur9t3nbfYzGuzMHYGSRii6VIed6XKZ7+3IRWaBH2\n5ctz2P/vVYCzQfKswRZeG7MxKtPvOoMejPNjQ++yTr5vHbcapbkNRDBmhH2WNbuD/y/23rU7ciTH\nEryAGekuKSKzq/rD7P//e7vdXZkRktxJM8N8wMNAyhWZNXN6d6cy7BwdvdzppD2Bi4sLAkww1DV2\nJgAXc/swHxKTwH2FTTBuCKHU3hh70+o6OcXIWwAYUJtA7wfHOfBXAxA+2FN/3fYTRADicHFE7bUX\ntAFcii/ORFHcWRfhpjQlvjKITvnqwQg4GqbeiDWvz0VMtrvSYPd9bnpetqibE3puxBTob9ZCcCfP\nRWtydGk+7/xtnL+7gWQRtqx54OnMZ10E30Tow5b6x03V45XCztbf3ZB9Jgk2gghh21T4jAi4tRrI\n+D6mMeJGYiHg1ZTCAQCVMb43SIfW2MakZo8wyBBlmtygzMblwYE/9KeLOTK+LjuutaMPPaRuvdoB\nXLAL8NY073p9a1Zd4WMeflx3TFBq62VGT3L/DUKl8eH+5r05+o4Q08rGB/kXiZV3/DhGMY89jcTn\nWQJTgOlQZSMwPsfrPiM5ZZ0PKSlaVD7f25/fpcXTGexk235ntL3o4QhnH9Dh9c5waMOolQfD65ha\n8ujA8FSb/a6fAwBrGfi69IPxVFhTldzo8GjDZ+Ddo/SJ3MgcyJbGnM1YxtDRCEXz9Kz54zxquQ+v\nK26aIfJRJNV/PzheJ2Bpiio+noeH+8dHQ/2/o3mZrslEmM9NcI0DwRL3oYb6tXQ8LTuGTP0KB8ci\nUi/K5nAmgo/13jn1vYRjj0GgqhEqXuyCn3CSmUwzJs0BFwQ8LwkvCeigsc9zN64dSPb1uCxKm4uc\nV8vddmq108J3oWDUyVBl9NZKGJn04Ay5j5JYSnNfUJCC0WVo1ZJYa/reIsDN8r/vfYI0wFx3fkY7\nO2TrmtN86wV3y2nf7Qwc/fGEIjiAIIfqMPk53IHOLAHfD7x5dJbZdVEG6q4pEiUM+nn/uapD3rsL\nEaqlPF24q3huiGSOmAsBfGDmTYNF2YfJcZiMHYrncUdRwS9nCvEB7PIvT/NRwJkDhGnfBu5vC1rX\nxMXn2tCFUTrjqTYslwZegbJJ5OTPNC3BR1drgsG9pdKBgmBInJvE+XW0rWDPvRCwFuBqKYJD1PG7\nWum77PARud7VwGqAiPP5zvt8IQTQoBHtIyhbWDcCj9rmM4OhmgyqRSARlCLMvQQAGpS5tPDcOSk5\nbEsC7rxSE8PYZKk/M6A5U1npoJszbVn9Ychkx7mtJ+m1PoaeqldkxNkW7FZMkM1tAk1tM22LdK0u\nhGqlzXM7AghAt+s0S/HQNMCOZ9NlaGaHZBBzCNnZSsZCmOLODpBoEErHfy099Dy8j8ig+bzf+xy7\nsqAXAjcHl+aG7Cyv3GRXP0E2oN2AtvMELy5bgCQu+FlYokJN6CIkdqc3v9e16J5Rq1aJcsA7QIWD\n7S6zXOZd0G6ANMJ2L2mtp4AFCUg07SEADDqypL1fDrpJfzUw4Wf7CSJoS04jCG/NRcnEFoluFgJj\nDewDGEC5DNC6IG/njpZ3y/v0Q9WbayI4eNB6wX2rKDysnEqimtkG7FEm4LRIxzQUJwuBovTfx+jj\ndFzyxh50uM96h6CCiPhoeJ2FFYFj5PmPmhu7R5Xx6ZzSAMQu2JqWwiokIb60jWLCPNN58YPgbtEp\n3WQBuWsqBK1HVNw/M/oo0TmPG7k5bym66wYYQUyJWXCpTfPuQABa1KG+dcY3qvjtdsFSOkKQLNHA\nz2AOoIjx1kpEeuX0dWSDfBzHmYOqgFdGp5U2rofEWWgspzNMkGoerpOiqN+jlvHJiTg3ZSLotXq5\nxBCCAAAgAElEQVQGDQihhxEGRXZW0qF+bk4zxxDIELy/XtCNSp7f++j93dZXGBvRjxQMgfxepzX6\nOt53RfEXHnhZ9ijt9d3maE470f5O2gVO0f3B/QFHAMTv2fNN4zUCdMwolzvPjwGEOVdmecYZ8fHm\nDJlDKoOc0mJ830lsjvNzuL1FhkQSfgweuHFyEONM8EOIDIr/fpwrs9/kMF/9cx/1Ry0Dl6qMkafr\nFhR8jw5OQEbni2tRxD1b3wgMI5AZAdtvqjQuxXrdmTctO0j+nKe+y/3iz+7OoRD6Po3kR/Nolxlh\nWpaBbdPydiouV/E9R/MNvN6HnnXdyqfdbksSvDsCRbH+h6rT+/qZLKiZW/1qYKrPS19LuxDQT1Tq\nw1mlf5+OrirKq4hdZjbQYa/K9+o04DOzxytjTLbZjNjm9eNnVe5fLgPlMlDuIzkAc17l94ldz8fQ\nxXcvRatBFU4RRgs0EIn+z4Bij4yT4sGzqsvpc2NsMBlCbcx0kJnmNmnsLOd0Br3G9ruKwfWhpUkB\nvQah4GlpqBcBLwg9nXiGB3PY17OXHu2dQ1tiDI7qBec20jmcNaZg/bgW4KUInuvAk7HAVh64lBEi\ndnnsFx54rh3PveA2GJei4oycmBQKNAArTyaWzwnv08U0b0RwqKDgwPwza8qmpwD19vj5nIXggAXR\n1GQIEIF1oCOSb3tSQbaZ8nkyAWZ9Zn3/hSXsyiYmPglWe3eo7eTXdayzWpWLTipUfK5SMMfpBCqm\nszwHHIrZGtNeOJ+zZGCJgkKVBSt3vKw7hhBeTZtjSR5sMaABmOvNz/PcFrvuy7rbuabpyweBSJnM\njDkXdEwIFGvYQTlghCYCkX7ouAn6HZrG8K5ptUyC62VHLR37XrFwBe16rwFwel+OOdfP5z+T4Fqb\npsbWEcyIOB/ScxxTSIDxCrR32+9sP3ddmMoTvNxtT6SBA5Cgu+NHYUW//l+h6Rn/F3nYP2g/QYQH\nLStHu9k6QFhE8/Ol6UZVn+d7Dkrzp4WbWxiVe8H7fVFBr1ZQy4i6ubkWcUT40nyNaHGmTCWn0qPF\nTmN1Q8bOh/jZjRovpXY+FM4AwSN2AnCkeJ8BhEIaXA4kU2Y0ya8z8DG/dIoHyeF/fTBgG52zELzG\nMDDpmP4zA1jWDoCUOmy5asQIo01BmIngu0r6EARCG0Y6cIhsu9HORHjrJTbemU6iDuVbY7x1zXP8\nUldc71qZY0YAKfLjzsKGY2ejSR7BKH/GTGefzBP/v4SBPToFIOOfwzZYhUcwEeR06gbTZeTDaI6d\n30+OhHzWIkpm/arlmZoKbFX58NnTePM+z1GXFNGyz3Xhzfu9Rjkrj5qGUY+jwe006OyA+do5AxfZ\nqY0UGKjImuf2tu5Grpd7S06MvTfKMckcD18/DjY4GEbpeb3l/O1wtsQd23Netz+7pPdrX+w+vwdN\nzQUzpAshnOiYH6e56QDEpBfPaJZ/nhs18T3N10fNozyUHnj2O0FIMIZhjqwiVF5JRks7EjjuR9cA\nibIOdAPU9zWRqNoAaJT+xX65XBvWe8fKPaqE5H5TwOY4N3w/iT6Gs7QE76+LslFYUG7qdJQ6DmfF\nGaz50C84Rh8jL7Y/Pm/cgPY5rWyvgdf3Z/y+rbo3OQvBtQiy89wJ+1awbcr62noxAbg8v3Qf9+oV\nt1YD3ArdHRgwIYS3nlIOcHTaHmm6nBO83JFuY6rbC5KOgp+DKZXBGQgzleHH/exAQaQ6nc7GAI8P\nAGg6//M+bfPF+yPmJyaDr5ioro8nl4EKYNtK/D0HMxiiOjmi7LG8v5zv0/ssa8L4/pbnSU599PkN\n6H56e13QOqOaJgaR4G5CtJe1gS+iwHzRe+2H66b9QPI9WTR5EMSizd0qUTxaB55yJskmIpqVrC4M\nfK0dz6XjWgauZeCpNjDEWIAUKTgqIqxO5xfT03hthJWBW1pGhRRAuHqE+QHAcalN577tnc7sAdS4\ndoFWp6m7rTJIRaArqbhpJcFzmWWcdY7r+niqDUvxvaWgmljeubJIAOEH4GwKgrPpRV2t0pODhdfS\ngVYxBFhoWneZ3Vlp4DaOQS4foRxQ8f2msEA6TFQx2Z9CQNHzsmSbOQEIns5wqc0i/ArCPK8brpdd\nz8o3fe+1FQNYVHuo8DBtmxKMgzKxZhBpumEtHU9XF7ulKKF9FkUVGJBDymoZMGCZNcAV/UR+hs9n\n6ndg3LXcpVerWNeGy7Wh1IHtNqIkrpfqPJ8hWh7+CJp5u172ABG4emqjxD7Qh1VAKzjsec0Y0Pnc\nKWUoaBlzRYBN04Xd8swMSSaAZIIWYff/2Pz72f4F208QwVqupes09ojmA5bfTAYiaDS7fmWtsdpx\nMFoAjbCOrhsmYBGwdO1t17I591HUoLSDJ0TeZCpeAwha14Fubs4dzAHwMl5BJzsZZUH9wgQQ9HmP\nfcE0DQs3dPx3NRiPr8854nS+jqQcMhA6jtUe/PPHYC3tyBJGcaDWRWmjvTNKS/m44RzOZ830TMBQ\n/GuHbIx+17I7lDzBvOl7lH1+P/2Mj4ZZUEFJ8NZUQXjhEeXTbr3gP7eKf+yMt054ES0X9aVVMAT3\nZMTHYZ+MAABo92OecM6BcxG4RyZxBhWcicBD+/dsrJ8N63Dm+RjZ88/1aF1uLubTmQ7lH8mitod7\nM2Nw37We9OgC2qeYkL7PKZIfnwk4RhgEpFoaTUXA9l6iZJbfZ77fLLrlay2Dbt2M3J1m35/F/7wt\nSw/wzvvSFfr3oTncvZNFHxWC0v/Pg/xHLIv5/+nw9wevn6kYZBUD8jMeXyzQHOBCOi8cOMvARu6r\n4zpxwMbux1gI/cQIOlwDiMoIjwqF+XicqZJzDp2vZ2Ck71G+Pi1K5J8R1HR3eM3ZxZgRxYiKF8G6\nNizLiD3ODcuocprOBO3HGUXzvnmUm/pf35/DOQo6au0qVrj0Q5oQgDAGvXn0OffDMGc53msRxLxm\nJJ7Rxrgx/uP9in9sKwaAt8Z4dzYM0p4BRK7s+15Vf6BXFaoVNjaW9QXN+3ndF01JMFAixPpEUxZe\nmzNljuOcPz8/M/AZ+EdWanKyQQZwSCX0yLU4wB3jOUHpiFjKqQ/T2ZiZBM7uaaIAaG8M3rWvmrHK\nXNhwjlNiVYiuuThXRYFmL9e2thZpg7nSSjPnDXCGGz58hrfMMgBcVJAiMOLpLUNmhaEuXpGA7G+k\n2ko78Pq2Yh+Ma23hxHUhLJnCPaa9EOOKz9MZAF0zzSLzxJNdGOOP5NTJZDs5cwx2/cXYAs91WEqA\n4Fo7Xha9VwcBZ0oIUEtHH5a6VBjXwrgWwnsHKk/G0sLJCT+PqUXLrxZRb4Ox9GHnsQI+qwEva9EU\nx2/7EragMw+IBhbSNJGsgbCbsbcaOyqAf4sSd2M+DgMxct952UTCBDAWAIOBl6XFfLz3gkvp6MIH\noCUzNJkEl9KxDQUdXeMkxjmt02BmOsvgwFiiSBk8g1jBVsAMytQ6sPaOS21YSseXr3csl45uJVX3\nzriWGsDgtTZc1obN2Ici6vwvBmz5GVZL19deG3rTOVxJZ5SmdaRUtXSfOVXWvwS6vvTSY4LpHRg3\nVr2kXSsdXC876jJw/bUpi0i62rQkgIEHDti7RlU+VweObJp17airinTD/lfT+TLgwJLa7C6S2+7T\nzipFP2dZ+yGQ4HuigzjVgwlE8eyDCGKsFs/ofsRM/ldtfxXWxR+1nyDCqREkhGaAaWgKaUmjqKBw\nIfDfVoxve1iUnwneUFr43vpg3Md0dPwiSi2kYCMMzEUd7ZQ26LnzQfdLInw5r+tgGMGBgemAerQy\nGz1uOB0+72QsxG3Rx58f5XZnAEGp9iZM1ylyQp1OByByT5el42pGVhcK4EVO/aZ1yWeJvXIRjJum\noNAKS3KcjvjBQU6R1bOxFkamG7WCg+F9G4T/3CoEV9wH49b16z93xrcduHXCwiY0ZvfupZV2IVx9\n3phhTIwPOhSeL31MIRAES0LOqH5ylgajjo9JBgyjFzIAVqqae2GaJvNRzTjTeiO/+UGfPWqe4iNm\n+LTGhoCPA63bDTHv+zNNN8MLM50BGDuFw+bzv5++H/uHEogA9AF0VkCvmsL1+bwIsSiWABH2u0Zt\nb71q9GtM52wagOf+o4c6FHRYIw782fVSH83+Z7DAAIqZ6tANQPD5ehg/WLR1cFoHk/GR7+XRes8A\nWwbUcrpP3Cf+ew9dr9Ag9n1AABkRTeb4Phke7gw6gyb2mUtH2zj6JSjfg7DQjMADHmHWOXUG4nyl\nEQl+u1/CufSz4Fo6rrXj317ep5YAKOak96NEX8/nDeaNwKKzFFoMeY579Zs+VEjv/X3Ff24rvpnz\n5qJufi0ggcxd12azWuxb5yg9N5XqVdPA56YLHd6Hqt1XEgPpCDuAW1fquQNcwIz0CSgkUTydJe+1\nYnM9gwbObhmx52UmwuyvzEb4UCo3nt8BvbnmfP34eem/+5nVdmU7bVs95GHn1+a0DP0ce9ahe8zd\n+pVIcNkriDR67X3f7P9Kyx/TWfTAgZ1Lc9wnaEoQix67Ur9HPieg4HtFcVtHJpOu7Yy7pRBeLzue\nnveIqsZ8aTOY4Y0xKfOPWrA9DExmkhDCy5o7fcw92iuMhP6HODCrFP2LqdsLKFIANAdfGW7ZBlOR\n0oHKAxceuJpwXqHJXHMhO2DmocfakBk8qIumCPJecOOjSV1p4FqbgQgc1+nmsPvXc214ru0IwnQ9\n15390RITIu+7AVqfzs54LzTXXoXxBC/LHv2sTqtg6QOMctRPwNQm0f4U9HYUHs0R+wzWO3CRQUln\nSjijxD9jsg+O16yl47IQau2odeD6pSnbpQiWt4619egbJgHXgctFKf7ySsYwOFZVUGBIbcnlOoDb\nBGgPTIR0L/l49qi70/nPDEG1bQAMUmfdUoMAYLl0rC8d9VdANoQG2PHa01dwdpenGIVdamtquWgq\nERX5YJPr2qFIj4mKEXXeLxdNxSl1oD4NSHMARANHrTEKF8wab0gAiqATTTbCXwc7+NlO7SeIYC1H\nG6+spVfccNxFEfvYjBiglUBfVsj/fcd4EFoTIey9YEE/RKfy/z1a64ZNpvsB85DV+/voaTh1W3UY\ntILBPGBhkYYjpV0jQ4/TGI4l1ObGFNTgOFyngabVgyal8lwG5xg5/uhFeCT41iranUN9N5wZUUeN\nix7Wl6DBM5qp6xJUO8Kd8VtnbANYWEsq8gIMq6BBi4Z/PFrlBhN3pRrHIZcMyyNdex5yWcfA58o/\nvP700BzL+yD810bYhmAfcthwhxvX7rwKfYjjuoPpG7mbNSMfLjhqKmQH+chGmHTH3FxU8TCvxmOn\n1fvERbp8jIDj9X38fF4dx5yiVrxHwdmslUeiaB/WTn5GQfR/b4yxd4xOWJYO7JiGKfK4HftnH8A2\nSvzPHUOP/Hkd93B6PMoiBKJ5AG83pX3/vi34zURSPYrlBm8GB6bD87mx7c2jgzNSfQTohjj9VVkV\nPqf8mYCjseMK3J0xI7gnI8XbmYUwoxUWHbR9x6OwkWaB6XzFM8ezz7Gk9LuzEXxv+qz5/uTPpfNu\nlngUDHT43qfAWx8eHdVPziUwXbuCoGvufqu4p5z73dcq2/M5wzmDJ71ERG+ke2ut4Nte8d5nSlIh\nwXPpeBkNz+t2dNxkshseObFepz5SSQYFaDzXvqTx97NMNWW+7RPgOue0zv6lYAsBs+b8FnPrmNKw\n25zRaKVqK+yWNrIPiWfaBaixxmwtAgbcwxzdR/czGQ1+FuYTMWsi5L09Eao+APkZeA+nJu0PQ4Du\n82T4PJspDqFn1AbebqsyNiwPPAMyH2HbuRfdOuG1F/Cu8p5PrcW5u/ViDJCCt85R6WfrrNVnutkQ\nOO7xwUAYGtH1/UB1D/T3+yioNA5jqPvkLAvqejJ9MC7rhsu1Ybl23N5rrPd9L2g3BlWtzhBlfn0u\nej+ncxOYe6wDVF6SL7NBmuS9mOMz+9DzJ+8tyuqgqI7wYvuQC536/ulzuZau69VYPGzOkULTunc1\nW4v7IHCZ95/Ph70XLIsK3I0+GXe+D+6D8YSPAKPPNbYo72oOXf4fEcf18rP7z1tn056QKE0714N+\nfhG3KCaQUHhgDI7gQQblJI3bkVngpSmPoOZI3+P8HD4mMxiXNUo2KxfZ01nhQuK+zgFdAw4glDpA\nRdK1zjaMppOVOlAAXPaGrZcAaXBi0OZUkH4CHIEJXImQBnXg6+PYPHgygzcUe9AYFPZMLQYgfAX4\nidFuA33npF9m1UQe3Z+zGiVbD4igjw7e8Rn8/GgpnRKsIAKgAAIXQV0HeBGUJ2DsOvDUVbS1JI0T\nHU/EdxcqnRotPmY/OLT/hZoHK362nyDCh1Zo4NelowvhZoaT0wAHMMvgXQtoKRh3W2BlgJqKZzmo\n0IXAY5Z+O3wOD1xrxz4YF9b8+GZCXssQdPY0gmnc6AclOr4zEFw1f2g0fzfKaT9tOv4MFMbQ0ckH\nZuqCaxd4+oKnMng7bMhOF02bjL6GDP3W957TGYK2KcB9r9i3Ai4jnHanxLmy7HId4LLbBq2b47WV\ncKg9x283o/Yrj8j/6++6gdLKQBMTpLIDzsc3GZTZEARwMEijL+MQJXhJudc2y0p+bxqNezUHmQG8\n1IGvteGl7rgPP+T0IIoISOpLnVtKz7z1AgxGz04dNJJ1oCLLMXrnfexRHH+erIugOe/H58109Tzm\nD41iefx3xkxn0bmi312voBtSzzzAD7yHU/bOwWDJrbvzYADI03XX/Mh3pwSna5hzpu9Tp8CreOQ6\n2M2qHbjAX/7IWI5FS/Z1qBDa+17x217x1nUtP1kUik1dO5cVk8N6OuogRLoFJtjQbUxKUfrlYgYS\nG/vA86Y9KqnfJYCWPFaeQ97HpE3n6Fam5Ad7IuVM+u8uSuclSLOhlTBX/VxSm2fQNLYdNMjNDZKc\nApNf53opOZ1B4R6C55yTOZpHEE33Poje1D683KMZso1RMbDfGN/frnjdK+6mY+IAwtxffP64c0tR\nMSA3r2HuudJuIK88cCfGmtZk9KvfjxzvP7dY28NBnAk8+NqHPWozQ7eZkKJGCt15IETNefs7i+XB\nGrW2lo7CFWQXPTueznbwebcPWBk4AQ3CTh81hhxU8K/FHJydM112Uv5zKoEILNdbxeqqvd4dyUMq\nQ5rHBEQe9oFpFw5OdgimaJh/dgYhHfzY94JGjPddUz32Med/ZkuRzX2fxH7+boPwvTEKFVXytznC\nQDjYb63i1n3uKCth7Ix254hOe9+7g+t/c2BtN6ZKZXOOBwM895ievueo/+iEWjpenreIBO97DVX5\nrVXs9wIugrZxnJNBwZbzfMnnEwUoQgSray/YTkCyAr1soENS3D85TbsoaC8gPDWt3NQHBfjShFGg\nqQDF0nNuvRxAv3y9LoS3DhRicAJcfE3dh477ZW2oJYlr+zoQLYt4NRV9HxfYs7vTSXDhxGFz5cg6\ncJ0lf/bN5sW9l5jPXipQ15gYcAIU0XEnaFTaNTQ8UDJsLjhTxTUMMgDt4ES19UZI0XscgUh/Lqfm\n55QUb1vX+a6g0ewvYLK6fN0Fu3cQ+sYYDVYp5mzLzOuXZWBdG9atavUN5ofGiQvHNgOvsp1wYOjY\nuXq3lKJDIAhzHCONwPc60uh/XRq4DCy/KoBAlTDuUL2ZXYFCPf+Pdpb28XywbM27CDWMJemC1PFs\nadzDzjM9sOWqncFFUJ9Vz4RXAjfB2ADswJmwOkUbld9E0LQfGe4nzNf9bH+t9hNEgB8KFt0g4Oui\nBbTfWsU+Fry2uQcRqagRWch93P3vCJVhb34QPFI9r2XgadlxFcLqSv2t4soDowADihRn2vrhnoeC\nFcPyyFvzvGaLSo8ZVcxGpbcZVc1/ow9R40ftQLlLwMFEJqfhNsip5fO9Z0Cii5Xq2qpSA1Okc+Zf\nA2XRA6Xv6kgtpStNUBRxpV03Yu+zlQfW2tUobFqbnSphvI/I/5oUU7+3iZgPmfnG0e+Y9+SOmjt6\nlQwQGX7wTPbHWpQq+fe149+vd3y93lG21cpRqUHnh5Afvq5LUBYtR6QUsumc+X24+vRhjD6M7aSO\nOjjjY3QWG3MAwftInXz3vmZ/nec0cPybGxvFD6D0ck/ncBpmlTnmn7UsRhZouDumUPr12E00sw7U\nRNn9URuYkdRsPDVFDeP9ec343ACcEaT9dB8zyut5rpe1oRSNOLlQISWQQK+Z8nV5ggnANFr7UHok\n2zUWHiqE5fdjNGkvBfpHzR2j1hm98MGAczVmBzYcPMg0cRfH9GhKZiH4fbsWQmYuqeOvDn8GHEXk\nw97h7VwJYeogSHqNp9McxV+zwzHXeXLQofNw2yrGGMAG/H5f8doWbIM1GikmKMbT+eXU72rcT0aQ\n31UbaqSuPMKRZpr061wX/Cwu+4fj5w6vUDJmP75OnQJzqDrjqXRU8kgvRwrMAGM15oAzymrV+1t4\noDGr3ssgA20SKGjPpvnnc70ITcdfr4P4n96bjqEDYgtzUNSFgFyRw8GEfTDWogBxt/J5btw6gHDe\nt4nEFNjTXHbgbBxZPt6OiYazL3XO+DPqjcZZIFM00WPADACUIt0CdLtOMyAhvx9C8f/MdJmMN47y\n0HtyBs/R0mEOUJ7nHjHV6gpi59nHMelDmQhDCE9Lw+VpR3kSFa3dpzbGrRVs94JSB9pepnOKmfb3\nqM316M+sfbrwUKZF3MsEHbTcdbZrKJ5dbYipQ7NyjdSbmz3rPgiDgNIZIhWvbcFb0+oMLq6bz6h9\nAK9NZ8JCR4aK2Jx/bxUvqQJQT/ezD8K3Vg9r/MwY3IVwPfSLabr43iocjImbObvKUuEouRjsszGd\nO7eJqowQeoTNy3uruFm1p0Ji2k0T5Mx7iNozFCWrpzilM8Ym2Ac4S0/HldNrY28TRElDZ0+18dHH\nFwD7XlFrRzMdFfleVQthL3jfl0gf8jnRWkHbO+pFo+yqdaCgvdAEpR1Q3W6C+1YP1UrOczQDgZmV\n4es6ny3n1ONie2e9CMqTgL8WUCVIE7Qb474p200ZqKpJkseJOAMx0x5gY472xiCbW+JMDsksNhUY\nPgQgK6FehwUjAX6GCY3b82/WR8YwnEzceV9TWFEigPhXFFT870zP/D+p/QQRrLlTRBB8XVogqW+d\nsTKjC0wEB7p7VIbc21T8T3Wn3RhxBLePGd30hf502VGrpjosS1el53fgYnWNBWL0sWkcDqHDbjt2\nTOGWpohmswjCZrT6IxVzGtAZWJgH9sdVMSCRzpD7KoteuaEy872nM+Cv+WzBDQj2oQfLvhc1REzk\nTYjQSULgqSw9ouWxUZty78odC1dsYzqWlyJKM9wA6QS+6s2MTTdgd6qnE3tC6c3A8jJaQe9PX21M\nSpsLz2jeHXBh7VWqhGsRXIrg39cNf39+x/PzBn4VPBct8VHNGA7QBJPqzosJ7RzyFSnmq0efIr0g\n9fukQYtSWIdeKyJ05rSWIgcmggMITvl153WWQvvIzPgMAMiHjGfX7Ra5dppqTp0QYM55ADAk/cxE\nyBHK4ffZ53V6pzAQoj8NHPDUHQd6tgA13IjWmt4YMvPmMQEcj4bJoCjhtO1q7LmTeC0qqLUsPZyK\nDAXmMY6+wnTMcp5zE4v2dwrjJL9nGgxHiqjT34G5ZiLiOAS70Z03Z4YIR+QamCUeM3gQbJ1O2Pc6\nBeWEU2rO0XHJYJ1+P5dH1N+Dvmt/z6+ZDoWzK+QwB10TwX/WcdJ0BvJ7guoiCAEtpXndO+N1W8G7\n4NYq/uN+wVsvuHfCrSv7YCHXW5m0+y46T7bB+G5lx+6dwqm+d3W0rqWbo6Jz+UvVfF4vmYfDc8y5\n4ZHP3Hz/dmHS1orRmem4D0h2RB3gYvyyaNWJbRTcLYzoUTZ38tVB0Cg0k6DcNX/cnQg/z3yMbmM+\n81xjCJbCLoLF9sV9+LrT/92tCzx/2w3VLH4YKQSi56qX1nvdjw5nl5mGkcuOnpuDDa0Vq6biQMxM\ntWhiayulMuQ9w6nOUSUjra8fGZhEM9LnL8vOwpCUFiCTbg+ZjmczZ2rr5QNDIkBPAJDJEPFKGtrn\nOtD3Ptkjvo+0MaPTAPD0tGH9MkAF2L8zvm8L3rum59x6VWfvPrBbClekVGKeEz4PfYXm6DPsc4mA\ntXT8vq2HvU+AoPLv6dqZefHeAYAs/QAAlgDFu1CAVM4C20bBf25LlPO+D8J9TLFZJsJ7F2xD+2gh\nwq0r4DPs9dtg/GNbcS0dl9EgQrj3gvtQ9uqtM741S+MZDCYomxCIPaOL4MqamgDUsK0269shwOte\n46x0B3EfjHtnVHbdC/2/Ru0niKE8Bx2XzIRygGVhwXtnvPeC7y2nIpkNKzBtp4IXbsZ8m0Ejb/NM\nVlbmuVRnBGdABszqs3gKah5rD3y9bQsubqPZ3nlrdaZ1iAIrW3ftEF13+Xw8Cjg6kFqATVlE+2Dc\nWznYCcrcQTDPVp79mQFRwPcKRpcBlmm/EQnqk+5l9StQvjL4qkLs8j7w/m3F230JBtPCA51mkGfa\nt0e7L7ftXjH6fNb8DK6DovN/2leohPorYvOmhRTYcPBg1y9nOfVTv/h9+RxQMGEyC+kwK362v0L7\nCSIgLQxbrGvtIVbzXAauRY3NQpa24JTE7xvAAC9AvWtOXNC2yfPrCRM9n5+5XlqU+OIi6LvSgq9v\nalGNNiPTgCOiOPG73dEjE9bicM5mBMNeal+cPSFMo/xHzYGHR+3MRPjsNW4YQpT+lOmk3SKo58j/\nwQkxB/EsXFl4oJBGpi4s6GVgFw6xLgDoG6OsA3QxRLt9/qy5jGGmUx/SCx68bxfgCwPPRaN4L3Xg\nwoxb10P1uQhWFvz9eseXrzesT8qQ+PKtgangPqaKMABjIuiH1iuOjmjkqMkhyqHR7By7OzY3TB1Z\nDjVgUj0IGBD2WV5bphdG3eDTa6b6+TFicaa5NTMk/J6UbjfA4587hDy6kRkixMB2L2he4trq5KsA\nACAASURBVJHMa/ykfRa1dyfh0/cZM2B7L9juWg5p4YGvtWuet9PBFx2j6Gub/4HusxsLsyRVdhqc\nFeEGILMEjdX79lEqyfFZ7J7jdwlH06PUuekY0mROnNIYdE1aGdOkhxBg5w/u4WFfyvz+GSXy83H6\n+LdzBRh/f7G+IsxIkzM43nelQP/jvuJ7cy0EMscVoYcwjd0EYMkEorLBtRlA8+u6oVofFhp4WVqU\nJfP1NMwYy0BS3lcZGVzxfd8N6pm2c+4nd7Q80vrLekehoVR5qjavClrRPQg8qbm1DogIVgM7blyw\n0BTZ0uedEfJne11lYBuJjTCAtQIrie6J4RxK6A/l5sJlk6ky/+ciqF4eL7cQ3jsxEbxPDxVoZAYP\nJkX+832CfLPB7OOldHARrPvAPrSePZ8WY8wRHOeq749eRvBaewjwAbq2XBnd00+C9t3pWIr45LDn\niheZBh1sBiGwMfEiuGFAXs7tJhJcvzTLmQa292IMzdlnwYaRE/vjFEE99InvfaR72RhTDPE8h52x\nkcfoHC3f0xjuAuz7rIZTCBgMLIMhLCjmGP2+a2WS3YCHW1dbxHts6xOAf24U4FdmGnxvBb9tK56H\nikO6I+cCz6+dMUTX2IUl2EgC/X8h4DYYS6vYxzwnXEgTANjAhLPmgYLcCFCvCVAxx7QJAAMqNNo9\n789BkJWHCaESboOMFXPcj+8jpWWEzZDsujSuDjLkez3bS94/3g8Olp7b+67aG86a0OowHAwKAaxa\nhJ0/BtiuxvzrlsYCHNeeVzzLZTm7zJTQyTSd683X0MAx3SDOgTzvCeBFUF/04ctXBv+6AkMgbzva\nN8H7+/KhGsmjVusIBkil6RMwCbatovcBtg3HQbVma8ADC3nPIQb4pVhKr6gvMwDZxSpbEdrGFpjk\n2Gv/DLPxr9Z+aiJo+wkiWFO0X+Jn3SgHLuacqgGaJs3eMb6raB+viPIpwHREnXrmqKlHV0UIdR1K\nK7JGDJSbRtTbIFx4irJF1HXYgjeLxMVbeqeEGh4FzoYdKgyLpD6wkRw9lGS4KuBw3Bhze1SJYb72\nsSFGCY3ILxmSNukEjBzEZRqh7wMyOPLYPCdO60UrvVVRZAoKnQih74TlC0ArQ24D8qjGnN/jqQZd\nVuw+t2xwtaER4q8VuBZ1JG9DKy8As1TUl8sdl5eO8iRYto5rUUSDu86ve5/QRbBHXAwnAwj2qmI5\n9v6ecCpP9+uGvh6cuUawOrsHJ1EmCyELSz5CxN3xHaCgLDqAwFD2TnWjAzrObhDdewmHS8cxjcMh\n7u/Pn8AoTDql39WQGdV/fb+EY5MdCDKmCIkrlScHOxtPmMb1Z81L5rkCc+GBl3UqX7uBkPv2oH79\nidFdac45gUVQhIyNUAC0T511SdfyPvrwmtMw7oOxCh/+p7PEgZC5Duc1jPVgBpwDl3JwWexaZCkn\nJzDS52kWh/wMQPjsuPY5AZnpDBXHcZs0bgVPAMR9+ng3owtrhLLGXp1TExz48f+dRWTvNt7ZwdqN\nFfbr9Y5qdeArDzxft1gvu5e5G7qeFWgii04j8v4btGKNr5MuFAr+k4Hwcc9WZoD+snLHr9eb3m/T\njcXFAMtgeya9CpFWqxhdI/9SCNeqpd4qaYnaQjN6v5ujMsHOyTgYmCXtHLh2JtFGgttgXH3+iEe4\nDOxBBvphJXEZl9LjnPPWDWwObYR4n/erzYlBGIMPUc7H6VlHgM7v2TVmABVNq6WjtKO6fX5PFjOO\nPYj0nHoqWmrwwj3qxA/o9Sup/slqOfUsTqOmg13h7UNqQo7Een/avh6VJERBSk/BC/bKUAFCt1P6\nO+HtbTURWoo55irzMmb1h0PK46k//F9ul0QJQtMFyOPp55nAxXx52gri5xqCAQUoYHWz57gw4Vpg\nlH87i41RdBuEtz7BAXWgJ6C3D8E21Ibw0qTb0N52pspbZ/y+L5o6QEM1FhIj6L0hxB6vPHVv3JHe\noeACY6Y9FNLSz9OBnRF6ffA5ZzscQCDro5kqd2Sf6JzaDMjYhkfZXb9BRT6bsRAk9W8TTQlxrScd\nUwHBykuf9m2mqXNxBINmxDqndIz0/9y+7SvW3vFtX9CF8GZsK0BZpgAsDUPZRG+WGvD0bqUebSym\niKvCsBPo4WD7TjaTnb1wBuA8R70yVrA37cYPqUg+xyvAT2r08HMBrQXj24bxOrB/Z2ytIgRiDUQu\nyU7wVk1PY2E5pJkBwNYK0AqWogEm16VxTR0FmUzAutNkH6xWO2UTjLvmkrRvgAzg/lbR20y1cB2O\nc5pLHmtgnjU/NRH+eu0niAAEvQ6wer89RUihZQKBRNcfAtkG2m8DfAWouPjfx/KOTuHyFvREE2QD\ngNEB7oJSRtDzPVd15jk5fRoGJMDK75kxJBSIbPcI2vjoMMjJNzs7nGSfGr9/4pT+r7ZgI2CKNgJW\ndsfEiQ60ad8AAez3YkJuFFQ0B04AmL4AoVcK572LGpXlya65K93vUbT9n83rcuPZvwPA16Xja234\nZd0jb9H7rpBWmaAynW1VZFYgQZ2oBDh1hqvRHRgS6T4rWfTGHICIYtv9ZQPOD0/ygxEzOn7Ox47o\nkjnIPo/dYCSaUQd3El14x5tfu9KsbOI01H0oRVKg2iGtFYzRYqzzc+axytobuR1o78OiGMZ08HvI\n4j+ez57d06ABn0AFSU5PjvCJIO6XSCZbhLTm+e/bqnTjTraO5me58GkfdBBFIjgoMyMczhZoRtF2\nNf7PDnY3ynJfZUcsBVQNdOMPTAR/vws3His0IJhBHgl3w9nLEub2aSrTyeE5/4x5m3+4/4RoK5FF\nE0+fZaDUSH1wHF/th7dW8NoZz0WCDZKdnuzgCOZ7FRhzQ973fViUk3FZG9bRVctl6VjWude5tkYH\nTyabOeE6hlMANcT+AOxJoMyF1Nxhzc2NQAB4rg1P1x17KxDpWpLOjUv7zMlWmSlA2mdi+40Yi8lT\nOmZOuiwupvuRE8VxP3593TdpAG+NceUS+dE5ReHsyDswwyRGjZ5GfxcK0dZZ4lWfPcq+OpNGpoBg\nCIrC++LH514XGAVdU8HUAT6+eKb3+ZcxGiEBIHgZ4kvpqGWEBgUAbFBRv0vpuFj+N2HWgff0o3MT\nP8XteQ5U5LR/DZnpMrOf3QFWujnbwPU78P77gtfbavugKskvJrypgtN+Nvie8Tk70YEMIglRwixO\naB8b7/e9UscjsxVnOkYXTZfRvH91hAtJRGe7aN65r2MHgzwFYhs6PixWwk4UkLgDuHUDxcbcOwQK\nPHxrBU2Ap0K4D3V0h/XpfVhFEmL0Ipajb5R5mxfuHF8Kx5np+6nvwccBnmwDst+9T10TKoOgPhc1\npcGYQPBndqfZwZg5F/yaTXR93uoEjwDTLcER1PQ5f++6PqdTbvZDgryOTK4j+DwE+N4KFmL8Y68G\nIlD6XIWBPQ3L7YlbL3i+r/DUhyYzzcv1EybNn042zxGMi5Qlm0cLAWBBGTT3yjibCZXNtg/xdVub\nNmHG94b2Dbh91+dhTGZiNQDtbJeWIgYsDyyJITZkMo99HbW0h7kYsAoIs4muA9IEvM5AZH+F6px8\nK5ChIOHohK3VYEpoqqKnZB9tjglW/vP28//JTdfIHxglf5H2E0QA4MZlMcT7rVVkMUBnBBQzSjCA\ncRvo70D9myq/khlWw5zc84YUVKlEu/aFF3WWrR1y32VGw/pgSCdIKofntbx3z0s2FkIY9T+Y5x8d\nsf+9XcA/yqN9w8TSfvT5LoC2sBpQWfQvlHnt931X8UURzWvLefV6PdNHEAJgwEpX4cko7XhzQ2ci\nwP5ZzJOKH8+UDuFHwINHuwQ6TisP/LLu+Lpu2DtHiUEXE2qN0W4MkYHenEkxI+9DNK+ThrMyANmU\ngncAo1Lkf+VhJUglDFOf0y5sSHC6G5sh5U6rBLgRzzQQ4I0r7zsTgUs/ABP0CV119tmRPeAGwzZK\nOACa0+hR/Y8ipIADHtO4d6bDSIaqDAVeNPKq6RIMpQPvCTghTEEgd5rcWMqRPB9TpYKaQGi6p9AN\nKAKioc/JonmXTcv9bU11PjxP0yN1vid4vuKcZ/7/GdV3euI+LILR9ijt5nc0GTNHEMb7CebsMcz4\nTKygeMYHw5jXw6G045gshFD3TkbM2fmKtCTo/uD9+0ftbLA4mOMlHidd9fHV9HW6EDJ7QBJtOZxm\nzPxcjwo2SX146JePs36yAY733GOeDP2qY4r7pRQt718md8J9PU/Wjeei6nUZW9f1k8sung29lvrJ\n0xKOABAjR6Una0OBos3Ex8TmSKExc2IxiVu7nTshPEYzG8jvZx8TsNdx0L9974Rr50NEOc6T9H4G\noozvkJqe28bP5iMA5Kxsv58YlzHpukFvliNDy9fKedz9ebw6wdI6XMfgDHjE52GCVs7KCsHZ/Doh\nq4bBQEeknPmtZ6cyp69kcEz7bDqWPi+aaJ+M098DTIOe13n9EinNud0Yb29axtKjskUE19qwXjq8\nkocD0s6ocQo2E4UQm4+s91OOwGd2ljPaAFiEXF3QQsegTowNoI4eAd9wPCsODCj77v3v/ZS//NJ+\ndjljTVMGjnvXeycMcbHAIzPEGRB3iyITz+f3c2AbwA7CwEC1FLKW1kl2ZAMgxuP9c9hx7OPnlYU8\nNYsBq2ChgEiDqezjMdjrfbwLaYna09ns5yIwx5MgGgSTo+5NHxQlLQUDrXPsIz31uWAyjjYA3xsb\nIENYaLIZ3cZx59nTMr7vC1xXwtMAczqMpP2RoZsqW2BpMhZxeKZCqnFUBuHN9uRiaPwU+Zzn8AGc\n2Aek7+jfBPdvqmVSSFDLmGmflsrjqW2Anre+rhYe6MKzstNw/SPVYyAcQRBf2xzPS+pnbAJZBXJX\nbbD9O6PvhNvbAhHgdl+ChTT3B/ow7o/2uJ/tr9l+gggA4lAzRNFpWwtb6TRYpNGjGE3pSiIAv1SM\n9x6nkUeWXJ3WnShvbmSIEIaJmbQbqxiOOUAeBeh4TCEHzNEb05j3qOueFn82aM+U8XmUPW4/yrPO\nh3cWUpkHrxliUCABMuntUd5NCETTcVlLx7pqRL7sM6fe+74UCSEpAKfUDQ5kWA0XgZCEkBmXAXJR\nmwZNQbE6udQEGTA6t6xxoc84nVH/uxr8s4yZ57DBy1WOSTd+21a8vG5Y9q7COIIohwVM411IIkI5\n+qTOOh3Sc6cXHniuDZ5z6eXOADmo25+fyYNmSs07ASdjzuF+qj/t7ZhaMZkJbvSKiaT5/Zyjkm04\nYp5yGtsRQPBIWCWndWsUp8FYDgyME9uGWDAao/IAidMupxhU/srG4tnpdabCSIbbhz6weXN52sEV\nGA0ANI/TqZQDCsYwT9Bi1pY+5iue1/o07rOwk13PWSA4OhhMEpEpdT5cE8IASzk6fvo5FkFxxy4A\npuQMRvQzzY3shKY9R/edqfvwv2pw/IihcG4MmiUfoXuLz/GcXpUvI4frqwSZzlnBi1d9GaxaJWnT\ne5hqQx69pGCT+DgQVAXcHXhuEuyUR4Y7AR/mq5c8PLOF+qDJapFJ3Z35/nP+uHDdtlW8bquVv1Nl\n9gwAuVOuiudKbd0s5SKnFeT79WffD/uU/1/n64DukcPGyIEfEXXE3vrcZz7T6fEo8N2iYy525mvF\ntSH0tRMs9eon0W9eySilQ5znqud7iyDKkwKIKPM2Cm6toG41lOIzO+gRUHam/3pEuZtwqgwCigJO\nvCc2AybbjRPgfaSRPxBBxuyb8320HwQN1LERLKWj3Ri3VxWBa8JY2YAoITwtO5aLCh633coUDp7a\nHmTpG+m67iR6K8YgZFJRU38uB1j05JjpoBQwsJ/dyupgBq5Fd6/nqu99qrCIr4MZFlVmwUsd2KVg\nNC2JmNPkmJTVUIiw8Lx/HzPYfVWa+ecuFpiZh9eid++Aug9DHg4f18X24HZiBjnI4vuCr7U87iG+\neRrDc8tsAbDeazVbj+w8pfTeQgbMQJ16QgIykvPvdgsjz9npUDtIBQDX0lFI1+nN9oVBPleP57+m\nI1D09SUqEzkz0NfufF8TNqHZWeY8p3RpvxJW7rjWrkDEYFTiYFceShADkc61M+FbYyz8MUDnLMSw\npYaozbkB6MD+OymbdjAuS0M1293HsBYFl8WBWMsBXAJEGPbcajcUHkAvH4JbDgRnUCzSU7tAbgP9\nTTB24P5ase+MfVdRzyi7KYkBjY99fLYhcqDor9L+TCW7v0L7CSJYcx0EpU3pQnoqH83fiA43czzX\nApMGBoBwDLrlhHnT8nwUr2l3RQABpekD+h4/iIKGZgZiM6M9GAvJ0fMoSBiSYxqEjwyIc4rCj1Ia\nnE77CMygMNDytf/cThJGgh/YRQXoRHTzdHS28FBKVx1R6kc/Rx1pFZRUdyfT52DPTiSoq4phjnfL\n36uIEkBebs+v6ePzyGnJwIGbyDly9d41QrZ1xlqmg3VrBW/mVP6+rXh6veDadty3iluv8QxHcayJ\nbI/7UeDHnUW/32vpeGs1nsUjaNkJAeYhkKPeLCpQxtWMiH6MNPd00IHHIVqa+4TTfPF7q+ygDh0M\nCzWInWJIFtFThH7S/rMjbJEvmswGyDSq8mEmpqnxsu6R7uKUQT8Os5GU7+uczgDMHGGc3qfzQIWP\n1l+GGtGvhO2mueavbYmItu8JhZTQSYc5SlFRYo7XNBIzS8IjBDMirH0cbBrIYU2qc2cMK3EGwgQS\ndC5MtfRs2upzeq7mgAvFhsp2OJxTD8Gp6Gfdg8wYyON1/MSPLUd9z3uUgwaaRqOpDP53EMAy/+ZM\nhNyyo+f07IVV/+bXpePrsmuurQArFzWW05w5zwUmNXI3TKcfENNCGXjbtCTZwgN1V/E8V952BtZ0\n0CeISvF5R6FB3yMANYAzaBzPlp4199232wW/bysAVWm/n51fTMNzHxXv+4JbVw0Ej0x58/3GHQ0H\nUnO/zGiyKtznsfX5eDfle41GH+/b+8CfTRkHwC1SeuZzOygLACV5fouJkepchs0LjeR5eeeR9vLP\n5Wnnvd1NQZ83aKlDq34haQ1GP0AxJT2TplOqfcL4vlcU0ugs8Yxquy3g1U/O1PbPtE/ynvVobjyS\nc8sAOWH21e11wevbivteNZ3FzukmjKenPTQTis1j3y88BScDCOf7y2fREGUYOqXfz7PKkzmB06jo\nHidgBlYGnoue6dsoWFhFK53Zkq+78sDX6vssw8u0dvIzguz8Ai7F+/HYb5VU/2j0mYbkz+nj/VI0\n7WchwSWJ4Soj5eiGRPqfs+ADRJj7exd6MAcej6fbVw4mAyrcXJON0IZWjtL+1bVVGQFkFPt8xtSa\n8spVGRQHcAAX/F61L5JDToJraSika7f2gt5nn+SzT9f8ZFhqyeQRz6/z2gME2nfexy4ImMFMifvT\nE+9paVEifO0dhcphv8qtkOC5dtORKFhYdSbycwN+PpKWX38fFv0H2g3Y3itaM52Ri9oFramNwiRR\nIt5LapPZs1MAe8D1p4bZFo1HYhem+YVpazlAOXbGuA2M20D7rlph77cl7sF1Vrwdma/+fLYPP5hv\nP9tfs/0EEQC4+e1fXm84cgtBQY1sjTF2dbjKxehpxhd1SupIOcZ8OpgF6gjc3iuGOWfbrvljey9B\nDW5hrI1DhG9YOsPowOgmrDVmNNfzwzxX7Jwfm4Xocjsb6f63H7Uop5bQ7XN5xx/2uhuSmOr8k8Ex\nv5gFdenobQrhgOdrPUKhxqUCLo4SFxaUy4A0Rn9TPQReaV47R+Az+moH5Uw9SY7eg75hAG8d+G0v\n+LqtunFblPD3veC1acnNpzLwdL8YNb2E8rAfnF6PHgydR7sBToPDyZgRNU9ZmPnTxSIz50HWw8QO\nCUYcRPpMGT3XOZxLpLUcIZTpwHwqRCaz38jGWWeyRxc4nnMfZLmMFdemwmI/ajPfGhHdITM2ujFz\nxiA8P23YW8HtvsR9uMPt1FpO89TvJTfP9XZKaO7SMNJZwIs+3OiE233Bt03rjxcSXGrTyhfWDwuP\n2FscGBgWFT1E3jEdco+i3A2QclDHjU5/fTgKmI73oe/SGj/nmLdBAFuk6QQCHMA129+Gibke9h3x\n9Xdy0nO/4WOE9o9YBo/+/yh9IYMJ3qa+Cj48lxpa08lYWMVZL2Xg67LjranQ6YUl8pc/3sd0vrNx\n72kTvnL+435VkTyWMLDXohGmvz29gwjYrR78Z2ll+a8u2sikSu5eVjIi86fX+vrYB+M/bld8b8U0\nFpQG7E5aZo946c5v24KbOXdzj50RL+1P/eHV9rMP/SSaH/7epz5KHocmCjBcy7Gf5xkzn8UZB++d\nDqKyAp/LCuD3IQejOJg2tkeFc27ryfOn/2g+qraB7mHvrT5kdGTGn+9/BAoK/YAyvu5D6dqFipYo\n7iWi8p4Op2UDrd8BXJmDIXZgUZwCBz4HclnSNek2TQDtNFbp5z4Iv317wq0VDOicdcerD8aydsux\nRpynh2j3g+ZAp58FMIFPB9x1rCYY5+tFSxbqP7NmyEIAs1ZAeirdHFvCpViZ7mYOKxvYx4IKwVOZ\nwIQCoV6Fy8v0Ak9Vy562AdyHHIAEIsFzGQmwEXgIhs2z/0qCdVCkdXhKAWwe+KJmc5K9Gs5kAsiB\n+eF/y5oHWUMn26z+2oWAQYIFeqatBgoMKHB3ZUmleQ2kYLIovMR9uZ3yaC90EIIw55SvJU/HcsBO\nQQTBPQAjn3NHe9XLnl4Zxhzp+FI7PF3ivTN6mYzf1QQIva/ObBW3WYhUS+pl3cBF0BqjeODKgw1u\nz2IGZAgajHJ2ZSU/nynAS2cKjjthbwLphP3G2G41mKXrpWN96hgNqI3R9nJIoRCZZ26Uq4WniXnV\nN8ZaO+pQm2kMDpZKTtFpQ8HObrZkf1fm8/ZeD+kLwaLLYBgEHTnd6XSWx9//YMP8F20/gRRtP0GE\n1PwwcNqwRn8oaFOLH8ADAAPlq+6OYm/MVRm6UfoAd3yOTsu2VVNopYhKuaK7G+VMQAnHNkeSYd/n\nxjijFV6SjIxml6itQERzgcfAwf+XjViNAbYIHcOqD6wdy/MAsEee/rabonmrdmhy1Bzehv58ccGr\nizJHxh3gC0AXUuGb5CB588oQCiCke0vR7Pib/Z1sg98G4R8746ksVnpIDZ9vreBmdLJfl4L3plGn\nW69TXFAI1TZyNRAkotRZO8E/3lMHAITwTq7hzATLQXUAK0Um07NFxMdDRkkcLIMpQAJS7P9OUfZ7\nq4lBInYweSSCT8BSjnyep6AbAN2MaS+N52kTASCcorM+TkSCp5cd9V4P7BVvOQ/T22faIW5AHO/P\nPp+tNOYARgfaxsYu0drtz2Xg5emOy7VhDBecm5Eab05N9L8TPtJnHSQYoMiRvJSB2+DpsNLsTY+i\nVTbxujR3iOYwR3qVRaomX8Oj60e2zlGQzh3TySqJPQcfHdmHueL/BIBwNlY+GLKn/+d0qUfXO3/2\nWgaIGi7c8eWymSOihil3Ukp7YslkJxrwNCY21hkOUaTfdj1q3cHoovopz6Xjy7qF85VBy/P9nbsq\nwKgxS1F6FQC9N4FmH0+H431f8F9bxa0zqjljLQ3MSDNziGp7qIPsIELeF+aYesTyPiYQMa+j39WR\nFSyVwhlzJgPStc5j5iyPAIatr7ZBqOU0JzBTc2IfT86Ef5YLKjqwov1wzGf/M20yBciA/4+veQQ4\nzzWt54ZXnMgVhzxdb7Mv15vYUwQzBAbxOW9CQaVpO/hnz70o/ZzGQ19P+P2urJW1dHy53FHrwLZr\nCd16GaCSGGKpX3LL7DHvEyZnjSgY1kyI2M+kA4sO0/5hyZohOpEu5mRezXYoJHgqw0DRBfswxp3t\nsZeilbCyw+tzyu9xLcBLFaysc7ftgGNSfq56SVMzCSO1wXoPL3XgWShW1atXYoGJQNorFxZ8sXJ+\n/n/tJ7GqUxYAGFYpZVCkAPg4zZTIGVwo0H3GI/pdCC916hrdhpZ53G0OdlHhRT8RiLQSwsoDt86W\njnSc0IJkk9rfrqWhy3IARLx5WtfF9hQmz90/nhFXHhhWWePCA/+2bnhZNOX1da8geFllq85V9bzy\ndAYfW3f4HehcrLTu8/MGANioYtmm/VQ57Um+18lRG03TKQnd2XdxJii43u6E0Qt6Y2ybanldLztq\nHbg8NyxfBP0O8DafN1KcPJ2BoKVchVL/ziDXujY4ye5hQAcGrJt/IIMgnXB7XbDvJfwGAJGGRLXD\nhRp1/0nXyzbDZ/bS/4/8iZ/t/532E0QAkI9fN/LcIPU8U8hE+wGNZpd/qxDj8MpIznqfAleTynU0\nMLZW8b7XyCFdbKedtckZxczmvEmd0xlynfBpzBx1Ec7GdSWgEdkmM0XOHoEKfqSeqzac/x+//4CF\n4M7LWXAxWAwDKIvrSCQneRGUJ4DqAPGGtjH4VoE7jNLF6N03Pa3MsA3Gl9pwvewoT4iqDFqOcwI/\n3mautxl3P4gIHgwvTMeiDeB7I/w/24wc7aLRt57yHHNurus2DGju/+GehufNq9gWt4LuEQaj5gKT\nyjeFFZUy/hk1bz7HPFQpCytKBlOmgXCY/yf6ptKO5z25SJE7CsDRWXDBo2wc+nvDYZYZGfCIOINS\nv8N0D3zd6twpVdMzSh/BVJl9rzTn1rPDLsY0sPzd1GeVPIp4bJ4iAQDtTamB272iDQaTpkI91Yan\nlx3LdaDdXZhR4l6BaaRkBsZHUGWyIkQUaKulhxHt+I8LagJ5LiidttMsxeVpDXkOf5gbNoZeds3Z\nFMG2SvvLQa9Bjjnq52u68/KjPefwnvT/R5Vjgp1DAIunODgIY8kj5NUxjtfNKS0E4FobrgCelh1c\nBHXT8nraz/jgBMXn2tq7lo63XlAH0A3QqaQ0egc4c7swPez7c5sRzvQ3mmeKR79DnVvye+lgEN9a\nCaYdiwTQRNCNz+dLCHjJBCCG/46PgJDnKZ/TGXJfu0FaSNAMeFVHSiPkLpzqGipsa/EwrwAAIABJ\nREFU9+LRWYDQDazweTCp2r5Oj+yyeQ/zXPHnyimANrwf2Cquh/DIQ69p3wXOzvdxfY30/wzoxd8y\n48KYISIn8UMA8PXWS5RfOwMfMa/t512Of/f/zVSxJFqLee4ybM70gmvR/PGnpx1Z/JgXTeVyuyQz\n1D6K8CEYXUH5F0IzcdHdnvtSJmD/iPWXn1OdPmUgfKk9xmLlhufaMKDpqUwcTiCTljp9WlrQ3m+V\nsQvjVuYcYCG8VKXI3zrhrZnuSvSZWH6/xBohA3vUaQeejRnhbApPnWkDEJplvK9l4OvSkEUjVadB\njPnBEGG4GLSCI3rvmYng/Txk2iaL6Wcsdu9flxbzbbUUq20w3rran5UptBEqqTN/Ld3YRFOu1M9P\nBxt8mLxf7r1MZoW9nqHPA6jdkYMeUbHLzoYvSwNTMYbBwN+ud1yWNtlSFjhbuVsaSMO1drOpF/Sh\n/bsMBXX9zF5Lx9Oy4/LcQpzcz9OYd5+cS1EqFukswFy/Lkbb9oJ902pidxOmfSkb1mvD8ougPOsm\nIDJQmr6Pi9mozKbZpQwDsXmTWVVEgmXtwW5wtuhh/7LvmRkmA7hvM7jiKUfL0kMfzG2Se9pLBY8F\nkz/2z4///6/S1C/7iZgAP0GED00prcMMC8E+EI6+mDdEFaAnBr2skLddHVTBzIeSmUc+8HhVZQPc\n85yAI/KZ3zlkHspR3jE5mR8N+hyRMiDCEXw6GjL5M4AjhZRpEuT+mfbIOM73kRsBkZMFHpEbBmi0\nt6xaSpOvarSUt/l/F1oEKrbBdkzphvdi5cxoIfRX/Uy66InlgM+H+0vRQMCc4Qf1e7Pj7o5oZcK9\nA69NKZFteP1lj9QBX2rH13XHpTYFB0hm/XdMhyHuaVBy5gQDgi4S+dSA3nPhmRvIoOQoU6Q7ABOM\n8pz6YtcmViZI7ovcQgk4ImXTiHNjIytzixwd/3NzpoHPuUoj2Dg+/5U5czTS4zPTJYNuSFARTQZG\nmyDbHLPpMDoNupCCCm7ox2sxDcVKx3xi/7/30/1VIw7dcmNf6g4mzblcrgP1+diZH5gNHnmwNaZG\n2YykeqkxLZ9IKrqGI5DjoM10xLKopV/zMQ317BAGOEHQ0nNVQYScGpBZUM5+Ou85/to8To9aNtg+\nS6t6ZLxkdoP+LB+ezyOrPgcn4HX+jFlm63Jp6P04b/x7REbF5+L8wLkf6Jz3ezvURo/5DuQSUX9U\nGYfpyJZhJGA5Azc4Rgbz+zVVr6AysGDEHKFwXBhLA4Qc/Bihsj/n44N7s+8rDxQ6vsadDL8HL1M2\nI4RKM38uwJXFooqWe400f9N5dTHAbWF1DBeZ5SZzyzRzzynOIrqe0uVMw3+2OlEhwaV0XI3er9fk\nA0B9rkagjrN+KdNOQZFL0eh4lIk83UtOWwIQKYyhE+BOfeprdxAGKACDs05TnBdpvzgzEYYQ1tLx\n8nTH9WVH2xhlHyrcOzS9Mguuhh2Ez9d83ted9em2kGrHzP23EMV+F6KZcGHhyTpQZoH+/1p7ON8L\nCbrN6QyCFyutuY2Caxm4dsLKM5DAoo53JWUjLOzsnwluVLbPhYqwogEiBcOCM16+k0jH7NZVZ4VY\nr7OaLtOX2uPc8H26saWtsUBOeakeisjAktusTBNYWlgOfUQQfF1m+PtiDj33iiGEO5OWo0xnu4o3\n6xx/bQWeHvCBYZP2yael4T4KllYDzK4hBiphfzhTq0H3aMFkGj1VBTt8LF+elAXTO2FtWsJZtS8G\nqqWGPV83tKa25NaVZdELhS3hKYXr0lEuA7Sr/oDPLzo9BzCBR08zcpaf2xwBTMLTGtgYCPWgKbVe\nG9YvA+VFO5eqvd9AXLfBuKnoN5t3FvpYmHMX0GDJsvTDWXVuQyzbWkgryLEGOZ1tsJaOwoLL2lBY\n7RevkFV2AX2ygM9Mzvx5P9tfq/0EEaxFtNM2dj8Es5iPOisW0VgZuFTIt7khyykKc9bzOkcMZlqB\nur6fAQ4/anpQUzIg5885GvhZqcVzfrKXUPvfaY8iLo9aVvrOJc7yNQDbbAuBKgFQ1epStSSki8vs\nPJITru1SBura9X1D9Dor2+nw44d0GqzenxwOmEw5z45FJcHdnD5JY6AHsQo/XUvHpTZc1qbK7zw9\nIafmkziqPfuxlgGHSMJALPLhID8b3D9qk5anFu1H6jfF9wGNXOr9yMF58ubACrGgyIgI+SNGRHZ4\n/BnJnLLI7xQKQ/f8fA4GzL9LHJJcBNtWMPpR9wHpfvxauS9avDZ9Fj72S74egAOAsPDA09Ii4mHK\nfwDLw+vE/T8AqgCE8TBwTDXQPjxekGkqVucUhH82OpBTLrz/iSXKEcbnp/vx/THnTk7Q8M995qOf\n/8xedI4I/FGE4PPIponvlYG9lXDM/ux+6HT5j8a1GvLbQEy6QlN4NDRJxgOBtj8xds7myXv+wZFP\n1+iitG4H/fzzhxAkgFEK+m9h1XFgQGk/4gw2u8d0fXdEZ3Q9PYfdpzMO1EFUAKGag+HOjlOcSdRR\n8Wvmdb+Q5npnJk6m5B/FPWclg8KpvKYcz+QfRdoYRwFXf65wYPrAPhiVBNujC6TPyGfbQtonHm31\nVDBJ7JkQ2xva/xqFpgBBzs3PwADOUv/47/79sJ/S7EOfk647tBR1WMploO8TSI5+HEf755EoGzDn\nJyGl5KVnqLZP5tRBZ0Xp+ZtSwgKMmqCn6wIEu0xmGsvhvEi/eCqggygdum0HCEjTadQ+PO6DnoKg\nP7MK7olOVE5rTOgRW0zn/bWoo+zPpakLdn88DrpEsy//eHPw/mHA0jkULD1fZ+EBJo49qRAZm1H7\nXcGSEesvgic0HcrMqqmlR5UqHxvXGgi9kBgXBz4mG0GgYNKlaBqNlwB3RpyDTZHG6aCnlU2sraMP\nsspOEyhzpk0pA1wQ5dJzoAUxQtaHpz7N8/IMODwaF6/sVteh6bRXhtObc/DG15sGQ6Ym2LnF+khn\n/Pl1GUwE5uvdDnHRVDJGq5egJhL0DpAFr9zOoz9xpv6INfSz/eu2nyCCNT+0LqXj7+sGAeHeGUA1\nwSR93bJ08DPALwvoeQXadwCIBUkCE2n53GlwBBDQQ8d/3gejskWaaX59dljM/FmPFE+FdKcVB1oN\nO7z9QIRFrOLgzX2RozgU3yU2FDq8dqKyJ9Es+4w/s68Mi2QAcwMN428BqBL4S9ENGA1jHxDpeGpb\nbLbvpjHRRJ2pX9YNl68dqMpWqC8Av1REboGPxycOHCVqZ9wPpjGRx4iI8Fw1d7KQAgYYAmZSgaai\nIkz/4+UN//73V5RloPw28Pt9ijB6XvRI9YABYLk0XAdh3RaMRigyDc5aVOndywBN+p47Am54UzyT\nHwz+nrV07WPG4ZDPTR1C/UeOULrBGdcrHbV0DGIzTEqAO+frehk5B9Fq7QfmAKBGZaERtM1J0/+Y\ndlCLGrm8APf/qkEFVDFOnkYbCYbyJ2P+RjlXd555UrTLkAdzXrU7gKmmvKwdy9Lx7HXn7Tuv0HJt\niS6Z+4L9IGcBD33m3pMRLjPCP2SuDx0XPewrCdYygvK4EJsglqpIe191KOvF012c9prTLOK5SXBZ\nmjoP1TIs+4y+TKG6jxPGnS4GIo/YOUMdrvL9B0CeICLSfq8+X0QeV2fQzyZ7TrKoNtl4pvuzcS+U\nhNAA1KpRw9HpAJIAuo+5MzKjVDjM76yL4KuOCPh1UTExv97V1t7XZcfFStv2LjFfBZqm4OlJarhr\nn/oenvta4E7xaRz8PiN2Sfj7ukcE0g3wfTDeWsVzYzAxrmVEyd2tFdy7Mry88o8zdHKaSCWllRfi\nQ0UWdd4n24oJ2IbOzUqCawG+1oHnMowtgShlVtOaHwbeXoyp9ovRlVUwUPc77X99pTNFnG1VS4+q\nPMd5pi5D3tsVzHVg8xh185S9QoJL7XhZE2zQKu4m7JhBoMx88/WwFj0Xfl06/rbu+LJseLKc7/te\nw5kcBXgZjJ2VZXjhTDP2e3IW0lTvj/1ZgEWAhXw+zf9X6yMXffS5HOASgK/Ljl+eb3j+dUe9Avtb\nAhI7gZtEOqeDWYc5iI9No/iTtQYYC5Q0qq+MFCuzyAoaVVbdCp/LlTQX3qPt2h/nkp0092tyTQ+L\n9BuLkUmvr0AOg22/bX3uuwsLFiLsPqdj7wMuNmbUdLx2Vt0mNhYH294c+4MoQCbQVInn2vGytACf\niQStF2w92WFmB84vB2h1H/Sz4eMe54yNMc97y3sH1FZtnVOfDxQqYX/oehVcuAMLcN0XDEuXrQSr\nZkFxZnhfXS87tl5w2dYQZvS1eb6/aul2OmaTYbHWjhU9ouWlzupQhQeWMkKctrKCXMvaJ/gFYL0P\nXIvOGGdzLsauA9zmmedytfN+CoQeKf0Z/CHS1AsHKvKzOVBBTFhJ7YL13wTlVwZfGf33BmnAOCGT\nznzlIuBFK/eEwy8OiKS00axhhZl28KhxBcoFsa8DWl2q1IF6GeiWb8ZNsG/lAL7mMfOzZu6TquGF\n5Df86zf5Q/vlr9J+ggiYyOrCA5fa8WXdAQDvJob11hhkm+aydvATg75egMqQzZzMiijLUmtHbTN3\nLAvQ+e+XteECpc1eryoYeLsvuJpx50qphQSDJvUPwAHad7phHI6YQiwHKvFpvk/jlwA5ciQ+oxOf\nHSn/7gCCRzyyg+RG47lk1hDPxSUcmAiOgNphyjxAPksLgwrAl6FpDYtgvfToUx8vp0d+udxRnuYD\n8dcCulbI6zFWlAGf+FxY5KAIRuQKH7/ceFns+i9F0BcFEH5deuhbLDSVhf/+t1e8/F/NLKs7fnnb\nsHcrkzemOGb0Hwvq08DoXQ9KVkexGDK/lo67EIoZUxcWbCwRnVQKZkaKHaBBHMBrbeDVP+849k6p\nP9QIphlpcFYGgIgWlKJmQO6rDCX5/IpcX5nijccDW3NXPVK6sKAOmPFyjKwVEpQi4ALwAux7naXe\nSKMs8TqydAYGypAAEfaR2SYzAvqITRGRuyJYL00P4icDFe6MtjHe31b0O6tuChDr2UGTuH8TaOQP\nXIMjoyjK2Y1UlcReF44SaX+6IOAydA7sgyyS6gY7TClc4FTTYvewkGDYfFpLR106yqJjOrqlU3RO\ngMg0qH18z6khh0b22h9RM9K/xUBBN5CH7Y25jONnzQGEhQmFKSLi2Tmv6boAsO+M933B1o+lExUQ\nkDCe/yd7bxNqXbelBz1jzDnXWnvvc973/b57b90qU4F0bNmJGBC0oZggmk5apieJiGmoYIKNxCiI\nP0gQEaqlFCaQAvGPCFZDCVFIw4Z/CYKNNLQhWqZIUre++73vOWfvtdacc9gYY8w51z7nvfdWGcqv\n7v0WvJzznrPP3utn/ozxjOd5BuxvG1iHo7v6yIj4zrJi2ZUyHFlwiqp/PqVsBll6X0vtYFnyf2xy\nkdLXUL/3MlRFm3keqN0zfW2vLicWfO98bXIqv+bVHPKXEHVtYG3lF8KOvQSsVTtHFNY1KlCwMUeN\nNUSA6dKTggZV75rPuYm7vtwTD08UH2PBOag2e2ZGIkJlwRz098rYIhTW+TwZkFBF+9enIiaVqJaY\nWqLBurb42hmNWv5Whc+Pe6AIQPNF4DZWDIAj0QShFCQOLWkbDyJnDOpY9oQ9kGnhY8a7acN52rAs\nGnsQC2iL7VkXYaxF78sSdC+I1Ov93MZ0T6iLWGcpM5sLPO7XHRynAXBuDBnuVPP3pxsujyvig1ZO\nS+6mlHnt7Bmnkb8JKt79yCvjXkARIQRoN5vVzJL7PKBWIQd3anyoR+ZLrlr42SpbW9aecLfnaPN5\nLaHpzF2u6tfvLNQshFvV57ewtDHtK3QVYDUgIpCxNUpte+0O4FoC5tC9GnxtkKprCNu6vcSM5NKC\noOcQhAAz2xzbuGKQslQDUX0vYIuzfG0Y779/lj+fZuj9RlHI92x/boEFZ85YTB6gkko1RPTE0iUz\nkQQp6dqmCX4HcXxu3neGUrCY2roZQSb36bJN9xhw88L7mIRJIJUQ54JpysjWzStWbiyMca+qu3oZ\nNbD/M2uCf4rHwG09NQaFAy19v7J4KOnzjKlgvhSE9wxadLzUqyDfNFYoO5sMU/+OSEBRmbPB2LYe\nj47zqGSVTTRvNCsiFmkN41rI3ZirCVjOu3leQdkRQVrc523n/Rm5v5ruKUMxY7g/Aumswx+zH397\n/PQd34II6PQgp0Q9Xm5gFkzXhLUGnHNs3RLSUsDnCCwJqIK6HvX7YxLcg+qu8/ZjOe2NmjWdC8pO\noE/A9KIGNpndWEogVqEcj4b6D5RzlzIAR/ZB+xscKy1eXRmZB+PxOWrSmFBpYN1bV7m+fDwK9TY8\nGD7zrUPqUOn0v6lGOzMGwag5ZVa0VkSNn6qBKKEwpimDIiCbLsj8mBT4yXIwLfT3cSbEeCiQ0TeY\nRqfEkUYJqBs/k7ZM+t68tY1+DhWnkHFJO87fzYjf0Y1k3gouX23NaXsrY6/x/vlhBuLuiLQloUET\nz3nK2n8+dGpfsiRbTQE1aPWNzu+9JkMaxKVUDmaTozeE+nscx5ZX5xqtz/4fuYKNGkdEh/szPm8P\neEZTuFE76EfFkSra2R+DEZgHOaT3g6ICIa7b90DYk13XMwaSVqXyRHo8z9jGYB/vgYZ7AK00hCRI\n54K4ADShZf37Stj2gH0NSNduljV+ddCvy3rk8Pt+v/o9E1ibxQbA9Ov3e6WJVWh0b2dtCI7yEWUJ\ndMNHZ0roe1n1zyoVnCrKHvC5o5mpffYVHRTgI6b0+dejgw1KUe/vLrCWYr4ODWuLV6yb/4uNfwch\nAt4GhnJVE6xcAj5tE15yxLV4u1xjF+FIc9bP7kl8+IyI9IvTFaek223iimXWZDGlgpiqzrnCiLE2\nNtp961a/Hge5gNfr9ihnaM8afb2aQsaHh6uacpmpmAfRu8uroABSnAqkEk7zjuseIdwTMGXo2FpP\n/Z6o0Vyfm4IO2CwGIrj5YgcBvSKbgRyRGqV9mOeAjU39m5kL0lRxy6Pu2sY7V+TibdOsWh1UdhAG\nFs9bxzhHSZwddvca++qdlXpb4s++7eEQ0zmyrdGztU2MsSKmDnKM8oC1aFwQoSBCCm4mN+yF8HVd\n4G2Xq0gDXxM5i+U10AG4R4X/vu8z5/OG+YP6EtUbsK3qNl+EsG99TcilJ+6ldnDpXiYixtqJtn9h\n660Fz8uG7Tk0/XzT0xt1vUoHL4E+97w71dVAhJRj2/P2yo2dWWGtJEuAFDMmtZbDo5cLoEagL1nX\nj3T3bIms20nRLhUceknZ5592ZwqYTNz+Wi4IY9jVV2NyZByUqm0+vXNXIemtoIFWQPrc4fdfzbcr\nNmvXWSphCr0taq5vdxfxgtZk/h+7EDIDgdgKUT25dhCLjckUeZSKiBVBuJloeuwAeKyiQEglMbaD\ntj7X8cWtBWozRq39DUphBQ5mICaTPwxrkd//UnXN215C8/LwTifjnupHNGC4dTKw+UMEA1HE5vJQ\nLIianAPAdClI76F5AxFkLcifgO0pts5bIjgwDLVAAaS5YJ4ypq1ga90sDLTbA/Y9tDbv2n6TzNiz\nP3t9fwMoop6PgiisxqgEiDEfvRtYduPWOhrrfn6B83v7s8NEOBYJfpaPb0EEeCLcF7nlvFuXAMFl\nm/Cwp0Y3jxcBXSYgReDTFbLhkDUTa0U0htoTfPSe8H5Mp4J4VhO4cAHqi6CWHcvH3hO4gQhWnSqV\nUAtDaoVka/83OEy74/09WvjayFAjbqfBjk7+b5mlAG8n/b44jwDCqx7gFW8GLEDXxAImAQkdJYc9\nE2aBZEB2QX2yqsUqqKtWQWqlpkefY7ZNV82BnLImu4BPBHrQcrtsFSJ8qMQBMCZJD1grumNusM1Q\nN0xpAaDTbQF1lT7Hikso+N7p1jbuJepmepp3xEcCXRSA4nPBMu/IQRdtbFplc9pmM5EK/hx7Yq8B\nXsU0AWnVjXkKndqZRZkeiXU8+Lm7DjU47dpogJRISyeQgzGWm3ZqBdWeC3djxzGJDzb2HRzriP3x\n8E2piAZqa1XDt3WLmGI5bOTRKo5U6dCvurYEoxtPctB2Y2Cl7OUSdO6wNF13Z0e42VJPPtysy69n\npHRqZWwYK2SBylKRviST2QD1uSCvhJeXCdc94aGsqLtFG8PRTTFfywFGIHC8F96hYZQ6KAhhCclY\n1cu1VYpD7ZUlbzZWPSGT4dm15yaIgBm9KVDCwauW+Ozh3ixO+xyPkfb+owwWD38jx0TY31eDZqvA\n/4h9nKHdGbSySq/Wpub8z/p8S2WsOeJ5S3jaU0tItuoU6aP+3gNo/9lI8XSZiB+Xy4Y5ZwWeYsV0\nUkoxB1HpRLY9iB0MpGbqFqza5UCIrz0jb8UTIDe3dCaCB+q+t51SxsOHtRls5ZWxbxqIBqqIJBAy\nGUESSFU2WLL9LAj1vdKS2CLU9pIpeNLg9Hhj+pDgZK3ivs7cWjb6eFJZVcVeXePcr7fR1a2tHYBm\npObMDX8mLrMS12MbXT5yRYylrU1+NA8P6ayeoxTBEpohCfHx44nrtgdsluRl4TfbxY57LVGXDvi6\n08Y8ASHpmcS9NDC0mamRGs2lVBA3Z4IpwFThzA5BFbFuIH3dPFbD5ch4I3S9OGn8oqyyivMXum8B\nQF1F21MXZabs1uMeQAPDx2PsqDPec+0K0sG0nBlTKlhOO8J1HhLKI7hRhz3HDzeTvhbGtQQDqWIb\n935/hTQOYwJgr3PmpgPatYG1yuS4Fb33i+/BQyJVAbyUgFsOB3bdaHC9VZU2iTFvnPXQ2xgbO6Jy\nS5aDVC0o+D020ONmIA2RWDvGI4ige/br8b1XAoOxFkEgxtrOUd/jVhQQ8vd040S//w4KpUlBBDdn\n7a0TRyaCAj5ESpXv3W163FEqG+DUx4obHft7MYC9KOPplkNjam41mGRC58hWA1Ktxk5gyBoxzbkl\n8H5/xmOvanpYreC37164edtjpIF1JjV0sE47/3hMUY8MXALSWQHB+AiE9wEIDNkryqeC28eI9aaS\nS+aKKDqifJ8F9Cakc8X0kpFCRRE+dPC63RLW3Z5dDtoByNivpR7jinZdrLLeuvsINmnPqnHEeovY\n94h111bVDlw5w+EeaGv3WPAjY4Nvj9/5g4h+P4D/EMACIAP450XkfyLV4/0SgD8M4AXAHxeRv/7b\n/ZxvQQQAsIXPKXxxqqAoSLO2grnEHe6AHy4AnayibbR4ijhMfjX98/7B3Vl1ROniUhEfAUoEPgdQ\nKki30hLhsT2kgJCI23v9pEevHFOb+Z32aP+pgNe1SqtgvKbCjoeDB/7e3ShLqaeHc6Dh8/wjidDc\n++HaUnWy56DJsWvBWmu5DNRrVUAhK+2qZEWenUGQQrGkl5FqbQAAKhC+CKBT0mf2iu3QEeAQKkKp\nFnDVpsPzCmEUrep4UO7BmQc5jzHjy3nFFw8vLeFPFryGWDVZd9paIKvaG+W1UDMjQqOUvpYYtPOM\nFXGqWLYdOQcsOWDmqppMCxBUzqChz6iLDFxRgtEo56JJMOu49/vRNkvyUdjZOhJGl3WxKqdq50Oq\n4Ip2LQ5gjFV99+cQwIKtYIyK3ne7CsxsSqyVU7WKUUUFI7FeX7agIsSqsgwGHj5syCsj74xwnaFy\nj2r3xEh3FfYepq/lXrlX+nV/fbKTZmMjJK6YzkUDhO9MoClArjvqc8F2i3i+TQpmpYrRzCgwI4gn\n+AMIE7pBlAeqnhi9dQR7jtQC/9ruVamsBp5BsItgZmBjNcbsQCYhW2DUx3I1QEYQRLCEjGkqCCdn\nwwhKNraJV5js3nW/kH7unvA5kETDs/djvD7/dlziPGhpJqWiOlRA2gc0Q0m8ljcEBiJrJXFcm9j+\nnwiNsaEBe8SnPWEdpAzFPt9B3cgdHPUEdzLdahhkPEDX6E+njAlabQqzgGe0G5FvGrQDut61+2pV\n5FHSkEWhoMaueWOcjEOmr8sVSyx4mDfEiwKzZOtj3rmZtPp6nFjAqRqzDodrClybbGpmrdRPFtTP\nXHAKglsVhKrzaGaVMizmDu+Ac7Ws3Stckbqvi68XifQz9P2PC+Fo3uaU6NGc0PcDAFrNmwrSbNIR\ne169UqnymM50EmPp6B0tIgoAoAMbgALWa47YcmhVOx/vLotwSRnZ+FUqf78OAWErAVMxbT2j7YGl\nMqh0XySf524qnJrZnSY1rmsXIsxSjV1SMQkhsSdgdj8rNzlOsqSwS2i6xjx9QaBEqNeKfGNsOTYd\n/Zh0tWqnrQf+3r7/R1Jg2yvMiavuPaQSopQq0tLBHzfbTNL3Lp/vDeiBAjN7VcDPu8S8GLvGx47T\n5GHTbh2S5mwJ+C49UfKrKiKt25VCMmJj1RLdSnjJUSUzpIneeE9ulZBKAJP6oMgwP6toZC+gg3Fi\nsITYAYSthnauFTAmWgcI+zwf5INMyNXNeLXNJ1cGF2XVVqtaO9hR/T6ggwcgv3fd8G8OBXOo5tei\nkgaXLU2sZsrNbyV2QNCfaUoFdTsy+pKNRb2QjrfnytgK8LwnFNH7vNv88daaa2GcIrVix14Zpz0g\nUXmTceT745a10h5DvevgJG3NdMhIO7ZlVGMHv3BowByqM4mO4zOkini29zwRaNbeoXIrKM/AeosK\nZAhhnmw8uxdYhPooTcYceMo4vRhzzWNCUt+UmxkAu+TA9ys/Ru+kanI4XpR1SgSUjVEzsF4TAOD5\nOmsXkRy75Ec6E7V1LoHvibYf8et7/dN8aHbwjb/mfxfAvyEi/w0R/WH7/z8K4J8E8Pfav38QwH9g\nX39bx7cgAjoTAbDK604IQNMeT+aMTySaBEYGckX9tAGsySBYJ7/S8eVQ8ajDJG+Lp3Uc4IVBiUGT\nIMxKU1RqUm0ggqPDb7VNeyvJcI8EP5yJ4IlbXyQtyYcuCB64OZDgFLX7j1BqGLXEIFJnIcR7ONKC\nTK7HIF+R7v7+p3lHXKr2yY3UAARlJ+gJyg0oqyGnG2PfFdGuhQZas1WloSA9Fpb+AAAgAElEQVSD\nM0X4cQKmCHx9g2Q1r2nJMosBDtR+Rn79Qf0FmDuifv/Pr8ETTtU5e1VYN1OnrdVrBT3rhqCtQY/A\n0DEoc+2egSZGASxCmmwk1c4tpx3rTZC2pC2lmFGktz47Un3dxK82X4U4VVBSdgQFr4hqD+OxbVSj\n27NR+dmr91rtTaH0e8lK07ynjauz+DFRdApeqa8rAVPsNFEPhhUgUcr9mCRxhHXwAJbvVZRrxfaR\nEX5452VBajwJ9wwYkqdAPUloAVB1FoMGlV5F4yTqjzKZzvFWUZ6Bl5cJtxwxhYLpIYMTDLiSVmX2\nlpyABoVpcqlKZwONFXunvuZmLNXBK2dYKH1TwCKYSrGxQNgMbOGq919sEm+MJhnx5Kufo1aVp1NG\nOAE8EfiqQJhSwo2ZAGfn9DV0XH080NdqPw7riQcg42vHowog1MdLFQswK9TQnX29VW1uNbDKP16Z\nBvp8pwBt3+brDwgTKyAQudPCt8J4Kb0zw3j4uGh+GtQN2eagVbcMNlBFr2ds2+dmWZz8gn1cAIgC\n7DqvuT0D7m332r3ttGG91F5B/xzDw8d9DKVp7qtpX2shBWLLaykcB6BkpQmPHj3xsP55ItBrtB1U\n1fOeuFfC3bzUTSJ9jfMq/v3BNDARoHT2sQ3vQc8NX9t07eIgCLXqGI8OcIoxRroHSXf890qqg+x2\nTaxyluBzaFhPvQroVbuxjWcDKaSbHfo1OYCqleCAKQdMQenNbpZWq/qfZEsk98qv5sj4vjo+dCxX\nW/vdT8lZLWJjdg7VvC2codbvs/vkxFQwnQtoJkgW5GdgfY4mD6B+H4e90w3fDustG6DEABkQ69Vb\n12Rz4P798Gwc1PXz8mR9vHaXKjhASkCj+qcGykq790AHMndrw+zfjwCnzjWPwV7fdweSriVAQJi4\nNOmEH1WAayEEqwT4/BlfkythraEbF9v/DyzTN9ajxuL0dY87Q4gg1kaytwt3FoSf414741CZMvoZ\nzXMIyq70cT76tTgQ5mu62L32eBlwxmIHRd1LqQYFzaQMAAJXsBBQvdEjWhL7nHXMvdg6NDJq9iF+\n2isjF8btlkAGFjTPpTYnRaUMCAMb0O67rbm+nwLUZJpueEok+LRPGu9UAGytgUn9VhygDEnAi31m\nJEAE9aWgfKrYn9g8m7i9JwefB+aHYIxKToR4UmlIcW8H+F4VcM0RXiPMwz7Z3ncYh9UKcC67lELY\nb4y8Bzy/KEv3aZuavMWZL3l877sx2GLDV6Pz2+MbcAiAd/b9ewB/077/IwB+RTQx/B+I6AMR/YKI\n/Ppv50O+BREAgDqVrwphvSbwKk0r5WZN2h7KFvM9oz5l8ESgiUBr32Wchq+oZ5caeL9WQCczxLT+\nXNvMH5Oogz7KknsRAnzxl25M53KJ1q/d6EceNPvZjU70qBpUVNIqiW8GIwvBN4nD7RoAhDAACKM8\nQW+rBhdsVPDWpkn6YuSmTtOUES6AbEDdpSWqTksjVgChbKymRFkX4i0H5Nrb643eEzkz6g6EE1SC\nAkC20m7GfaLgwIIHlUWsKgSvfByDTg9sHJVeh0B8pHfVwkr7zIL96x1af4Dq4tbQ5ANujlMsWfTn\nnZ8JeQttcS/CymCIWiGeq25e0610toEQUu1JsSa+A0BiiXcIFWEWLxEBKAfHX78fLmkAdGzLAHJ5\nUhONhUBRQLVLJ5p+Fb0S3ft9D4aBfh+Gf+qWLwDiIYHRpMQDKFKgL1XQrJ4X4RJAqaIMniXtPBkI\nYu7vFji7UdeRVSMA1Njr3s9j5qLtmiaC3DJkr6ifCvYnrdQBwCntmL4EiAnlpW/orR2V3RsdK8co\ndZQyiNWvxE4hBIFIacypRuN24E2UwTFzxY24UeI9adX3lpbIBTufyMfgfAoFcam6xiUFXUZWjEj3\n/Pcx/5acoXkhkFfRx6S4/+4tQDRX6h1kSBeOSuqzQnK8Z/dmsq/Xp/6JI3Mqkhp4EonRN9UBPwDY\nfYwDd7RwsjmklfIlqGQJdQRLBBOru/i+BmXKFJ07qIT7tp8i9KYvyz2QS8BhnRVb9328eDXV/3Zm\nMaNN1dznZ8L6Yu7/to7uRi8uQ4IOVvDyuibccgRDMEUz9eMjkHAO+rPaWBKdSTCxShkCCW5FddQT\nS0v0KoBbZWxDNXasCEeqmI2JILb+7iY9KbVXVCsskTXguZu2uX9JX5vGw0HzPi4sARdnDJivCKTv\nV4zWlnGcu3q+fTw7oyFZhXVMUvX6VLrmIEE2sJlYk51cuHXH2IXABraWcnRhl2FcR64mbWGb5501\n590/lpCxFj48w0SdpZBSUVbASQBmVANk11Xvue9v6ulRUAu39UjnXvdX6eBtl3EkVoA4zAKu0lrz\nvjX2Owh2NAFse7F0ICCRIAbgKVPbp2mYw35uXjlfq3ZSaDIgGPgFQIvH1MACf6Yj6AIAVzP7Q+yJ\n+fj6IoS1apcYZrx6blkYtwwUdilB9yjwWOCt++JrbAMRMDKGyOaJ/twr1F5ZBjrQEgZQw4GbxMYE\nZG3tWEUT/8/p4h28cmaBFn50PooVIoLFHdOUsdncHQFRvbAKsvNzgO4pazL7UjTBLwYqVaipqkuR\nnLlx3aO26d07sNfNxi2mKgrkV+7Gje1aSNq8BzROmmNu8th07eynhN71IZBKhA5rujNoN0F5Fuwf\nCbenbvqs65WB87O3XfR/2tack73G1t3mA1LVn8YBcGVidK8gL+AIFIgsmdXDrQryC2F7Cfj0ccGW\nI553RbZ/uE7tfq0GwviYGaWVfWwfCwifY07+NB7yWdj+G3P8SQB/mYj+Pehw+Ifs578HwP89vO7X\n7Gffggi/3YOA1pZRhBoqByjaN1aLxWfSy4Z6FYQLgyK14NpbHfnhBjmuXfajrAR+EnAW0CqQLKgb\nTBunOiTv9uDJWoVWJrQnc18QvR44mgc1E7bBpRvowXMglRUUkmZ0RhaYj9VQACA6rgxelW0sBPKq\nHw6aLQcldoaacJEFyvaZXqWMDExLBp8IwgK6SfMnILLq+ARg1esG0Ix1NjOAAYBingrZNhZHevlE\nwHkCtgzsxa5VcJ+4vXVw8C4NQz9i6oHZxAWBNMG9VcJLCbjuEdfr1CtKhVpiOX/MkFJAQbA9B1xv\nU0uoHSDIZowjomyK9SVi27ru1scGB4ACEM+CuBY1DrsL3PScx9aFtuFZtWCasyXDAcjaCcPbDFHt\nBkIQH08eqPuc6YFHaGi6Jnyd4t43tPtx5EGEb8REcmDsxOhBujo9q+ZYIB6UWGU2cUWYAVoCKFfQ\nxKAKcOrdO9RvgqzaqMmpJgRaRU7kQTU1Wm9k1Z/6pmlTBVMsKp2IjPLVDtm1UleztvyKoeD9+yvi\ndydDlLL5SAQDMmq7ZhGVtfy4DbiZKMaKauCcUqaVwjz20c6ltMpiq6zaTScx4NCTLk8IHUQwSvQS\nM+IFoBNrkN/agMqxtdQd8+necJOHNcKTS//9+Nrx8h1sCqEDE9kSb8DWJyYEsdSSOpsKAjBpe8do\nLAyXrfjhAIJXaKdQkII+g0hKlxVYdxUGSARzcKq3PgyXvMyhYglq7HrLXcZD8PctePo02/Op1vFF\nJVIcKubHDFSlmzqIcO8qPx4+Z5i0c0w28MRBpvEgaHIYuTZ/kacfzljXiBgtOTAg1gHvffjsfY14\n2ZJWvKAgwRLz4TMSSaMXe7XThhoSd0q5GOPIGT7XQXd9K1r5mozx1Z/TKGewMWGfI3vEVkMLcEXQ\nJFgK5Kt8CKiISYP0MCtw7wnr2MLNz8X3RyEDa2oHo7jAun0A56ht+SLXpu/2AJzQk01hmEliT/b8\nCiPjkMS40VvNav7m672/QlmNbnwWhnf0561zFwQU2yzdqDORzpOJtQvVXLqsSmA/54rZzHbjUhFO\ngNwq8ielPG97sHVf1+VpyZgeKsoqiC8FbK0p25piCVki3ROiFRomA+Ap6n0S0QQq33q3hwb6knfd\nqAi1+yvMoRh7ReVtgUozxK2iBp1LqG1MJOrP3FmDDprdqnsH6XgmAhbuDCpfP1P7Kjgbbf86SJ96\nVVvH7CXofHJgqXXogYIQPltaDGfr2ZisuR4f1P2AxhgzkKCge2glr+oDUCPK7scl6LGA2I30ewYY\n48A56wScQ8E5auvJXEIDih3kHo/GLgmdhXlv5uwyzFx2VACxVN3DhcCi7TUd5GNC86Nx3xWXADLQ\nCkbO6nM2US4B2x7U9BTdkBg2DgJbtx+uTT7poL6u/x2IAboR7jSr0exoFokG0HUZlcdWWhAD5Fnv\nfL4xtquaIQYrUIRQMS0Z6axrkw8ImgDvidz23DfiAwfsO4usA3zj/lpF/dTqpsW421PEtgZ8vM3Y\nSsBLjhAQnnNsqbGDTO6H4CDb/T791vffHn/Xju8S0f8y/P+XReSX/T9E9N8C+Pk3/u5fBfAHAfwp\nEflLRPRHAfx5AH8IwFtP6scnQ585vhEgAhH9XgC/Ar0ZFXqjfomIvgTwnwH4fQD+TwB/VES++lHG\nEET0xwD8a/bW/7aI/MWf5Bx84QOAp3XSai/VlpACFUQKI0uuWuqvAJ2DTnI38bPJWoo7afekqFff\nBfstoJaK8CIga7FSNm6GOlthrfzYeY2BlbZDPJ6/G+sI8Ao1HI9AnZJWrTIgpImFf6/o4tjKZnxW\naPRk/+qBQaROMe/nNbIQLBu9e7/EQDxV8DmqIdbVHf5NH7YAfGKEXCG5QoomXZ6ANUdoUVQ/G4Iq\nldSv4l0E5gS8bCplMNDHn88oPXG9GWAMBM1SGs3SNxqnubXKPwk+VcbHPWLmGW5UBXQDLiLg/LJB\nZEeIFdst4rqnpm1UE6RB+yhKNe6ts7y6BKW/WVLHF0K8VaSnfAze+KhJbb8Lmswwmwb1TMr3dhCB\nvVp+ZBy0wCYIyLS5WoGg7uQ/K11bxCj/I6iETn/r49E1uXJA+z0hSlMxhohu5nutSEQWkHZKZQzG\nDDhFZdisNm8YRtMPA/ijQXUdPzsU0+omJHudV2+1Yqe+kwQDHkJp0on8UTXmgI7jd3IFkWD+UEEf\n3gFECHhpEhKAe9Di1aTUk/j7434uu0/HIQEi06DavKlV6bUTMxKzUk0BqPO1vo9rtVubz9ArL66J\nDo8MPgWACbwU8EunHDvLRBk69oztmzBQ9R1AcObIyHDq1cEB6BiOIk7VVOBKebbmmF87mOmtaseD\nGrDpQMJwD6kzC2bWCvspZVz3iMfEeEwbss21iSOCYJAt6IQleIKsf3teNtCacM4Zz1mTqSUWzHPG\nDz5egNXPS89zCgWnecf8mCFVGUuv2FFDmjiyUto6dFhrX98/pl4xD6GiFsbXzwu2HLQSTDLscXhl\nALzvmty/5NCqWu7F4Udi7azgtFoHOLxDi/s67AZQzFZFbIa8pKyE1bpD8PAoXRKyhAJn47m3yUuJ\ng1TQx11tLDYitF7tIWmQzjMgAQ1MPTIGPMnrLWB9P0tVsFVfrwiJKi7TjsuyYZ4y+Flw3ZPJFLx9\nJZlhnCAPTAGfz8nYDEsoOMXcvA58rffKqY4DNO8RwFh2clwbHABzRlG0IIGga9kctDLtLQW3EnAK\nEbeim/koZ4hJAQQ+MfLXFeuniHWLYBKc0g7vfDM/FsT3AL8IpqeCdbOkTPqzz+JABTUW2Myqj2/S\nHsC8jriZvPbyyADch878mCpjrwVqn6rJtoL6YkwCBfmdYeMyCK/cXuIOYNE5tAddQ6r0YkjS+U1A\nG2MlaGw1B8EpFMyhoK4zmhSGYVI73acSK/smkOAUOmjjz1S9I3SfjNz3WgqdTZIAZPL5qXR/n6PO\npnPWgjNOWI4VfpdDFCHMXO2adB4+DJLBzk7Qr5eU8TBv1lKxP6vGuBy+93XBvZFENOFuflOse8fy\nTjdLqYR1j9jB6kciCg4G2wgmVhNHX+smrjiFzoXQLcDaOA5ggBeQWtccOz/3doHJDs7TjmnK7T4G\nG/t7pXYPAV2np7lgPutr598oLUZg0thjauufXq9UoFwVFHPJAIBmirws2p2NWDBd1FuJZ9JiTVXZ\nNEU60FZG4B6AFY30n8sCHf9xn58m34EC1GVTIOP5aca6R/xwnS1mdvZBX6dG4GnsXOFyLJajKft4\nr3/6D/md8kT4DRH5A589C5E/9LnfEdGvAPiX7L//BYD/yL7/NQC/d3jpL6JLHX7LxzcCRIDyu/9l\nEfnrRPQI4K8R0V8B8McB/Hci8ueI6M8A+DMA/jQ+YwxhoMO/DuAPQNeYv0ZEvyoiX/1WTuZ5T9gr\nW2LRKwxJCLKLAghb0areHIC9QKqgZqOdm1Yf6BUlp5MJNDC4XSPkhVqLQrYA73nXqs/NquvBKKJi\nCGOt6tkgRt3aR9qboMsZhn/3R6u0MBoN9h5RPJgywr/3Sk//6snAvQ7Wj7d+5kfbfBxlZZOGUEde\n3YeCz95KSqlh4WZUfK6AmTyV4Z4IrJ/9DLB1Q5DrrvKR2MGMe3T3wCKBMUzqEQl2MzuXwPgimivh\n651BSO0++obvwa/rj4kUINiKaoE9wPFKIKDMhN0Qde/24WNJP8CYGQxw8PtdWxA1JiD68p78AUqL\n5yCKeJM+dMnord9ql1h4S6Z8577t98O7RTQk/W48jd/vFQZ29fvt76HX3eeNO5WzacvdcM7NIv1I\nbLR78ycof2eFFGX3sF17YGmmhp40RGMdTKHiVjrVVcd0bVUHfQ80DLcZFm0VZbUA5QTECUgPRcEY\nLfGo6WIKw7g2fagFBWPXjU5JVx1srh1QqdBg0CvW41j3c2rAG9/r13ulvrGA/B90bDuI0bXltbuh\ntfKTrj2tzdYA4OkcHMbFMO8baHAHIATuvx/N5jwhBTrIWcRUN6WzMPR8XxsqtvEGX+/kAFKMMp9A\nGvhOU8ZpywgkeJg33HLEVtgCRrTA0RNDQmfRxKBgQbGEwVvtRUsMP23pKAkia2kI4AO6lGFkrt0f\nB0YZcBgru+0vmuzcgX7UAc1tC3jZUvMfcM+RsduKs9EAbdu3loC1doBjKa5Y7wGnsy+eczqcuz9r\noGvOUxDTNvd9I8trTbrYdbrpcYJqlhNX7Fndwz3YHbsr6Pg5jgd2Hw+byKPsTb8en42y8vT8vPtJ\nC56p73nzlDGf9sYgKZVwpdheSzZ2/XPGpCsQYeGqidq04bxsLfkq1spOn42CAM7CCNQZd6PDfTNZ\ndfp90deO1fFqzyoGB4GdbeGsJVvvQtVqKEMp2NfYOii4XIQICiBcAlCLsamkjc9xH/L5x0R93tjY\n84JILWryeXhutvy4XMvBCyZB5tq6gThgsMTSxvIpKqh+3VVTr6C4y7cE70+3VnApQqCiDj+TgV5M\nwKOd483kJHtVBufEFeeYcZl23Eo0UMjudfDnpMDXrQQ4zd/jAH9eKgvS/88mqRr9PkrVc90ra2W/\nSos1BL3zUiWbL9T3fQfbHKQD9DovUdc4ge4hCqbArjNY1Z/bOZ1SxkZ6H7P0ue9shLb/eBxge1DZ\nOxOhgc0kiI/Agoy874irsn55WBv9/ZZY8JIrzrZwL8aKAND2Pth1Tqm0cb/un09rAlcv8ON02lp7\n3T0HS8ad4dj3i7avJn1/7wyTmNtzdWC9sWJ3wn4L2LeA6zXhuiec0g4OumYsF/2eWLsl8IlAk+2z\nm8UOTJC1Knug8KHlq8jgZUTdeNUPX3fdgwroucPTpxlP62wtUYMVuDowpeU+bVfeJZVvH+P6jrvv\nvz3+fz/+JoB/BMBfBfCPAfjf7ee/CuBfJKL/FJo/f/3b9UMAviEggl3Ar9v3n4job0A1Gn8E6iYJ\nAH8RejP+ND5jDGGv/Ssi8psAYEDEPwHgP/lRn+8Lh29QzeSpwBZqAhniKRlArtr66kSgJUL2olpd\n61PrWv12feiVZT+utwmbAQ1jBfaaI56yuvEmFpzlSB11s6VaqfVlds1Sp9R1NsL90VySLRCORGpw\nZYtmsei9BfsYK/MDTaoF4IOj9VDta1V4ptYO6FA1Q3/PRjOuojT0aL2yWUBRwOcIukzguYIW9aKY\n1oK8Ze1XXfVZ3WpsLs0AMM8Z4X0APc7AniHmcEsTg7g0JNhlI+5A3LwRIKCoJ8tBWhLuCVBibX3W\nHMUJeC4EIBx0lEA3HYpWLfaKcRY29NiBg24QtRdGZH3GTkVuY9buc92N9cYKCgTywMSRcunPyAIx\n1+Ex68ZIUzATJtg4NtbDACC0cVV1M+N4lIMEEuuNjAN15WhqNJw/0Npp0d0W5cERAITZmAlWQdu5\nYpJOaw5scoZUlHY/R4AJ5ZMn6EPVsbo2V1DYEyWrBKYdz3tsY7xV5KxK5J9FloAHVvCFGIiLsmXC\n+wCa1TAKVY2UsBdleQyD383IxsDK5UnFgrQDKGhAkVcmvSvJam3KnM7OwQAE11jy6B8hdtetRSJ8\n3lKTt7AH2Q5AxKqsnSko+wpdriW19432kelVkFeeCOjaV68++zoy/t8rZz58KgHB1zKCacoFlc0D\nAFrx9M9yMKFKN3uKXmGlN5gILJ2NMGWcLpuur0JYTjvi04zrHrEEDcY9UfF2g11rXvXv3+2aaIXS\nHO6npB0B3F3c70piQaqaFHGAtdxCY5jo2Oh0d5ckoVWCjuvL6IUwBn00zH0AWLfYDPU8+ff32jgM\n4Fo9+F/4/N8rvTJAdBBujhm3Eg6/G6UXbPd8CbW1vlu4t21tf+PjAZ0lNHOx+1Yxp4zVPASWgUHo\ntHVNclmZF/acKApo0uBcagfvRiBB7Ge672lHDKfhE9wIWCvVLv+JqWB6qBBRIGErAWGvHbgkwtCR\n9XBfJhY8pIwvTldcLhvSrLRmKXRIJgEFJ9xU8JRyA7Xb2urjhTqj6aj1tjWAtbKaUsZSuCUhIQCz\njeUY1BiODHm8PSVsxkKY54zplFviH95HLaRk0a48g8lip9cLUtXWoSofIiyhYpqzrmu7rStZgfUY\nCxh9H3OJho7hAu/OMNWi2nKje59SxmnewVxxSjvmOYNZ8NWnE9Y9IrB6VAVjvT2+ux3GN0Glq5Pt\n52cCvpx0Yn7aI54yY+cAgWBhfQ7vzjftzGGxgxZ1ulztknb1ErB5e8smB4G0zhleiDglMz0dAFot\nIBQka/foDEeCexsoY7aSsol8rikbpmJiTzY7g+HDvDUTwC0HnCdlllQAaY/tfQAow+q8IZqcUvJr\nZtz4PZHuP3GpqHmUpkj7XXhkUKyYX3akT7q/FpNTAWidyR6XFVthLDYeHuYN53mHVMLLZj4tuz7L\nacr2/hX0PHdvEZsXYRhDzsQ8Pe7gJCgbI62lMWCCAWqdDWUApGVLY9epRMqo8fvpho55D7hdE65r\nwtM24ZpV8nqOG+bTjvmL2t4vXBi0qCxattrYsmBC2QR1p+aPMvpjzCljMfnQ6FXhXi4+dwRDp7dK\neFpnPO8RRbj5HsykrAJvD5tYbJ0cgAv0vZ11adC9WnC34//0HxpDfeOv+J8D8EtEFAHcAPwJ+/l/\nDWXx/x9QJv8/8//lQ74RIMJ4ENHvA/D3A/gfAXzfERIR+XUi+jl72eeMIT7387c+50/AbuovzI8H\nlHsOpSG+e3VjmzukLzLCuwik0DwKirUb1Ml+DLR6FUIR18208w19FUXQ16LGXrfCOAev+A30MRmC\neOn09h4E9WqHoC+EfjQAgIFaLUiV3napkFb+Dq8d/g+MFTxC0xazt0vrVSzAqoetCmGJ5HBOgbvO\nECaCpkkTedfX0ymCTkkT3UsFzSvSesO8ZZzzhsAV112ra6Mm9/RuB79fgMcT8HxTcGRhIAUQ5Rbo\nOF0ekO6O7uPBfAc49A1mTP6avt0C4ltRfaUj/07D08pFweVxxfy+qG+A7Fg+ZmQLqL0Lh98Kp2EC\nQErZqHbWd9qML+quX7turp9fB4KcJaJBXrS2kiGqJIIXBqYAMre2g8njwHYRoJtqGSChFGerzkVo\nQOfAC6GdhyeaY+Wi97XXxGQr4QCWVEB1gvaHUyitIuOGV17NTLHodSzWflV0TnJQgGGvjFCVVpJY\nl/+9MhCU9nqy+9sZNdICKbYxXm08MwxomhiIjPR9gB4n0MVaPX59Q33eIasocGX3NYQK7Gjjzp/1\nvTypJWu1txesBjRlAbZNq4I63jsbQN3/FcjhUA/BTgMNHdC0eUwwkMVaygFKz4xBDdMo2dgYJvV9\nRxGgMyX8INyxDqivG/7zFuhQ/378e8AZXNL9Xmxd26s7z/e1TAhNC+xH+1w+yiU0AHQmgc4JTQY3\nlZZMFbUQltuM2SjZrSLe6MgGNBmFPj4IltuO5bk0KUwIFfGkVUsH4wDgFLJW1pYN4YRmJhtNYuCs\nme7V4WOSDqCbA+A+bkYAYZQ+eDCfS8AUNMlaYlagdZhz59uCjZSFx7N2NVhiQcoRpZFmvdppendj\nYpyXDS9balU8H3vNrI0ED7HibNKhRMApyF0rVV0rmwbdwTw7xxwYS8yaFJJXoDVJ2g0AUxmD7h9O\n6Vcpg1KE6Q5d71KOzmYYu04IuqbdK+wH6Q1DOwsM4C3Zs/LxF7mzBBWo09aXl7jjctlw+rApGHnW\nJ8fmBh9jxbT3CnUgwcN5VbnS3ltcClM7X694R9vDfE7Mtn9MsSAEwTLvWII+2/FeJ9bOM2AFXHLW\nFqApFpze7YgPgrrrnsOPC8AEumaV2JGo2b6D7dT16npfzJCUvJU2gFXfy0H8GAumWLDWcOwE4tIU\nS7xLJbiMfLKxPM0qy1pOGdNZAaZ1i/6YsBMrGDJlzJcCkRW7sW0IvcOSd115TFubX1miGvnBJDYx\n4/yw4QszxCxV97A1B40JQsXDWYEKZ5t9us5tLsbKrS1vDLVT612Lbm0IA1fsJNisaOTnIzUYYOrz\nXee/z1KXAE6hotTe3eJhXpGSgQh7wGnZVTJm0oHb4LURuCLN+myXNeFp6yzLt45mtjwDYZWDX4Ge\nk2hL80iYHgqm38zYS7DY5Rgzn89bq+wTCd6/v2I6FW2F/XHCdJvA0IEA9Q8AACAASURBVGeZ5oI4\nmREogG2NqFWB3632uCmE2sxA04MVidBbimvRwHgY1OM8P4htrIWKW+kstBAExfBMqQr0X9ek/lg5\nYi0KBk1TxvyhIn4nNJCWJu6UvGiyBds0j8zQHp8BGhOeUlaGYmWMd4+oAyhFdB76Or8VbnmDr2VL\nKBYf2WlwBzGdPaT/pH3vsjP/nJ8dKcPvjkNE/nsA/8AbPxcA/8Lfrc/5RoEIRPQA4C8B+JMi8vHe\n0G986Rs/kx/x89c/VHOKXwaAv+/d94VJA9UpFTxMuyVLhOeccHP33cpo5a3AGliLKHq4wfTr5mmQ\nwyHQHhkCpRKEnCI+IohHT4NsFGF/TRV1Etbz979Bo3KOhje+ofT3HuitRlhyqqHTlu5vt3dhONCV\n0JOCMTkgDJXGYdF1CuPnNh2vCIoAsgnoBFCgvnAzlKIeGThN7QHzaUM8Vyx7p+JtOSDzkHh/EAUR\npgj5qii1fNFKtXsifM5c0atUbaF/zeJvFUG2IPkhVjyXcGBXMKlz+ftpw8O04/TdgvS9YJ9RcPqN\n3LpLrHtsFDQmamMwsm9yHRxQ/XRF3c1xFwNjZABy7u97rwhUY3pAN7Bo51RxpKtXTxf0UOOe1w+T\n0M3K7o8RABv/D2iVfRfCtair8hRKq6oSKYCjJ24Ue1Jvkhac2q9jrECycRKCGoJlvZ4Y3PyyAmyM\nIqPsobJWl1Nu1VlCZ5qo2tCToP55TApI0Skp0+XxpDc7F8gPXlA/ZuRPAD9msLWEBY5VWr0XJgc4\naJw7E0HXApVvOOByXRPcpG6ksbcxwGhdRcakhrzKSgCLmJLYrofF2qmSyQw0yEeMoNCN3WRYixzM\neetZt/f14BF9PjSAYQAVxsTMK8piLAOnrAPOqhkAifv7CU+oPdF3w7Ee4DpoQWSdOkgT+HBS+q4b\nXMVPSvlOrI7h0ZIsr9a35MaqW+FCSE/qL+HgQjDvkveLGiJ4Ff/DvGKZdzy8u4EvBF4FcSpquGgu\n9CLds0PH5vD87q7bq0RtnrY515M5sj3u/XLD5azU+elUtI2tBarn54xQgnoQzIRpzrgYS8crp3x4\nln2MzUvG6Zpb21GVIvRuBRNXnAfK/GyshMUq5+dYMAX1PZmNnRBdUmQJcSBNtk4547xnnKJW4xau\n2Gsw8FlrZMyCaus7BaMIRwKuvmfSAahtBm52vnDAEH1tbRI+WNV5DyjXohJD6UDa6EUDBraqY7eK\nDD5C6sWR5oy4AOGBwI/B9qeMWnLzBypFgdEYK06XDfsaWzcer7R6xb6Z9xEAktbFRMet0a9ZK6ih\nja2hUssDC6Xo2nBadsyXjOm7Ap77noNFPWh8T63S5U7368A4bgNJYzs4M4RIrOWwdQBxacWwTzcv\nFkLzj4ihYll2TEtGcMr5UhAuACow/zC3ynQDibiCgmA6FZxvGy57hHcAcLNdZai5cSbhJYcGeE2s\nRsbpXPCIm3Y52QLWNQKYEFjXjuWUmyTP26n6USpjmVUbnyZNbMXvXyXwJqCsrQirENh8lcaYRfXq\n0uRvwYtStn64/IWZWsJ5Ou2IZjg8F0aas7JorZXDtFUUqRYT6nMKqWC57gjXpccoQCtwaTGBmvk3\nLwC9GNOTrE2vnzYRaA4Il9LMXb3No3dsALQIBKCxRc/fzeAFkCyQuqlBrZAC3lNFvAjiIwHICB+r\nzhEuSKxNzNsYsr2tt2BEN8FuibPvH3rUSqi7FiV6gj4w9khldt75QaWqoRUT3Zzx9LgjfiDw+6kH\n5T45VMepngj2cykGItShTbzlBDHqXlNsXPyoQyVKJlOi3sHF/TBO0eJQSAOqsnUu8V2l7zECeeMz\nNAH7MSfyU3TUb353ht+R4xsDIhBRggII/7GI/Jf247/l/StNrvC37eefM4b4NXT5g//8r/6k5xBs\nY/1wuTaUdn9hALFRd3giBRDM7V8+rZBrRd3RKEd7Yaw1gNFNFd2fIIuihq7lI7JWat5bF2+jvK6T\nHXtkY3it09F8sf5ROib/O6cUO/0XeB2cttfbVw+iCF3byDQGTUMCC6BwZy14QqAGkB7Y6IIs2fwm\nqrQP81Y3iqhoAojIoCWCFgYnNQaUaoY3OTcAJpDS5rCYc1Op+neXSeUnwyFVjfpGXfIBXODXYMNI\n0/fN5DEWXI27+j7lttl+mLcWuE+/J4G/e4GUirQ94XJam39GMbQ8cW/NRFY1cflD+/xKLUmWDbg3\n2vxRhzMviKSDYu2Nh83eXz/gc+7L0Yz90M11/O9R8aqy3o2YqI3NCmAX4FYIzzngaU+YY2n6ehZp\nGmbdvDVhi7WiELX5ww6KTKlF++GLCLkpNdDbIwUWoHbnfL1sNxHs9P8xOXRGhXYz6dcUQgVmHU/4\nzqMad647cN1Qv9qw/h1BvjKmKsDq9N83QASox0HJfJAy7M5CGIIvByFXM+3LTnkVk0EcTJg+D5CN\nh85/ox8HZbg4M0F7VrO+aJgyb7Uh9PPzrz9u7fGKroMK7jnQ7i9J80LwFmEEQuHujZAdaLojU4q9\ntn0eHJjo/yd09kOkrgGPk4KYUpyhZP4ZlsA6MFMd/GgSIYAWRjxrYOxJkLJDgA8fXpCetYrGQfD4\n7oa0VExfCngJYGupJ7U0F3rteKNV9kS9ou1gi+8JnwNoO2jsVWBNID98uGJ5n9V0NukL6iqYbpqU\nBxLMKYMWxnQquEwbLnvCLWs7MZdG+JEsUYip4OF8Q/j6XWNNjPNpigWLsYn875yh5W0HI6uZsXfE\nSCxNMuaV+JQqzsuGdznglDKe94jnErBLPYCkHCrIac0RB9MNl2wBJsGR12bEXYoBjOufj89SGesW\nEV6UtbJtKmOUw9jro7F1RBI5LLntIDTmD1dBfMrwtDcEBRJSKip5EK3WK6ij4JnKX/rzadI129vm\noOCpGtx1Hb5r9F2f3/aFCkgVc48vSO9UvgCgszl8b67SAGgHv+8LHOPBZFK6yC2BIwbmizIEp1gQ\n99oYLEBfz0LQsbznoNXjqAk4hy5L5FljNamdXeixkxvv1Z0aM2+KBUvp3R2YOmCYQsF52jFvM1LR\nDgLJPpcTsHxRULeCdFOJpFeMA6vEIz0oKFM3ID155wICFWXJpVnnPgWBFGWlue+Vy6v8vEWAgnuZ\noXfxUC+DStKYduRxpc3/iQc5JQNSTbpiSWXMBTyspcW8UMJUMU0mJYG8WnPGuVMqgQI1D4H795K9\nguagHkZ2rz3+an4epMyuE/ZmPB7eK5NIsiA9V4hknPZdx0NUEJgvjGRBCD2pWelUCoDQ9jofa35o\nHGVjwoDFcZyqWTqhrAzcXZMn5/5M79kCRGoQGVhwftgwfRCEd0mLWVvp3d4ON1PjJ59jUqm9t8cD\nrfNYkOZD5AzD0QftsJ6xAkJTKHBflWR71xJzk2A7szGyIMjrZ31/9ELB5xkq3x4/vcc3AkSwbgt/\nHsDfEJF/f/jVrwL4YwD+nH39r4afvzKGIKK/DODfIaIv7HX/OIB/5Sc7B02uYio4v9tADFw/qiFK\n2NT8JbGAZqtmnyaACfXXPiJ/EuwvndJWxEzpoJTkOlQLBUrdPocdBoTifNpaX9vEFaky5iCYLRAV\nq7xWsQVl2FiAgb46JGcCacyEt67VGVMekApGylnvwe4miu37N/7R8LvRHK15JQx0qHav4Z8/BHab\ngNf7BB+QrQC8g6YVmGILWgAAVnlKU8Gy5vb+gaqaMTIBt007D1wmbfX41UsLIts9tApA+1wHaj6H\nqhzul359l3ajiQt+/ny1pLfii8crTo870kMF//yXwHceQbcd/LThdNmRN93Ab2syV2dlvDRNe+yB\nRzPfK4S6W8Cxvs2UeOtokgcW6yoCZdRUgWwFtZiJj3QwxZ+xwNkwRzr7yFWo6jfagKyxIkVtrGmV\n3U95F3UFvllnEjVZ07Z8NEgknImhY829KTRED9H1EwyUAv7eGfKyQ573o3yAO+gj0Dk/RTMFQ6f+\nBxJzfA6t6uJaU4K1njwvOp6YgD0Dn66QHzxj+42K28ekge05KNNjy73KAYBt827eIYXbPetj8O1k\nvAq65mg43mKIONDzehy89TNpgBk7pdmznWqmm1lBhGIsKrljpvx42OL4+Q2IRK9sA/6xAqqKXxAB\nrdUeOTuky394ABKUfUBtTaK7qdwq80MVnYNpwP1ynz3RpHYfHVgaAZBIRv8O2laUlwIeqqg614DL\n9zPmp6IgzSxI3yVlslwSsBfwVMCzIOyWMAdq+uxIFTMzElslm7r0o7NXPk8ndcptjFoNu/w96hXT\njqpJRJw0mWKy7iMTI5zUMHK55eYJ49Vvxx+9KhuS4PJuw/y3VVM+S6fXT6ymaHPK+LjOSkFndVs/\nRWU7TK7TLqVJ4E5mAJhSgTuox6mAQ8UHq0JetgnPWSvJwcADEVJ/EPPy8K4zqr1HG79VOgDv+7M/\nX6BLSO73OQdOcmast6gMxBxb5dHBYIG6zs/BQXQL0IcKey2MslbwWayiT0BiBXnMd8UTSCKxn0tr\nO0wkbT0g6M997fYuK1IJ06osr5R0vQPc4d2v1ZkIDfGFZGB+X5C+JIT3CXROqJ+2NnTkloE1oz7X\nxsboBY3jIjOOz2DXQZNKBlEBngUxCeqqkgYHj/bKrSsDEbqXEQkQYCwqW0d37Y41oVrFugM/vqfl\noobF60tEmkvzzRhZGaOPiCdZOtdFOx9wp7nHRzIde0UtGWmLLZaQqkCdtk7We69rvQGUUdkM8Wz3\naO9BW971NTmr/8fWTPCgfjjWWpJJO59oK+LaQDFnDhXhts/cA4AKIKCZf/qhhnwqyy07IS5AnMoR\nZCfd2sbEscVU7PON7NnbnlEI9aW8ot774UwTBhDOpF4mXkg4h0a35UkQ99rGMgdoR4OJwZGRkCFZ\nJSVT6DK9do4VqDdLyDeP3RUA6z4jaHO0FEbeDK6TLsl0Vo+Pr7FrRuCKCUBIKpc8fc9kDBfNJ2SM\nY9VwSo2/BZ1W3OYONdJCv9fjve3FSl3DesvovdqeHnRPv0xbex5NlssKLrh8tVRCyMfYgeCxXo8H\niXTsOOPvZwdEEAi9lV397B3fCBABwD8M4J8G8L8R0f9qP/uzUPDgPyeifxbA/wXgn7LfvWkMISK/\nSUT/FoD/2V73b7rJ4o87XOM9nQqWX1DqI6cNDy8bzuuMXBW143MATjNwWYAqKF8XlKs5pnvSZcGW\nVxYBNBM5P87zDibdjB+/VKrr9qLaWQGhZutfb/rGlrDaBkriSeYQrNJrMtF9AuE6ViE1Y+l5c98U\nSjF9MY6MBcCZA91Zm9Arevc6coJYmyOj5LL2dQekoaWNtWCbmVS0FoztzK4ZYmZVmGNbbKWglYeZ\n1fTJQY8pZhNLC1C1aowvLkrb/8Hznc7tuIM2szuhtoHRnZGgJy9OsWcSPKQdc1BK7s9/92OjiJ++\nXxEuDH5IWrX+8AhcV/D7F0yXG0IS1AzE52L0OwaqGialUDDNuUkLWuW5aOU5JDGPgiMlb9yb+jkb\nGh1rM+CjRGr8Zy8g1gS5tzz1QIQOpj5OJ9XnTa3TANA36a7VHP7OAAcP1B1EGsepoCejFEkDxdSD\nZh3zd0yECM1o1L4f9OUD6LSi4gUcVCcbck8MHJRLtnn6Ru9tzpy6nrhiNvMiSGffxKmoieOc1G/j\ntqN+dUX9akW56jVN7yr4594DVVBxbYZnbmyZrPoDoLWkG7WjDrbdHx4Iul64tXey50OM5uHRnv0b\n79NBQQ3ClQrs9HwBTwCdUgfuGL3zA9eWiNOwDjSgsH3ta5IzAHRKDWAN9aTLQQRfR4gJEaYGYaOc\nc29P6dV5lb94s7fhGvF6DdNneGREhCSN7i63iroCtfDd+7ikRsd880Sx3ueUEvgxYJpLC1yVzQGk\n7yXEm/3sFMDfu+h9jYz6/3wNmjNCFQ18LWGuQfecmd0cswO/0cZoEel6ffL2vEdAOLGYwWPRqvIv\nLgqEG3AoawFtRlsmAQxwoEAIMzDNqr31gNorWU3GYEZ9FAXzOzG/BzWTc1r4OWqruJQKntbJKmAq\nVzjHjPfnG1IqzfjR5QwqNSpI0bTQXFvVNk56P9/dVlxzbBTfOCslmG1dBXqCgQoz7h18Y0i0Tz15\ny1NpbBtvB5tsnMFA0rZumHbYTeF8fXIzwUq6l04ORlUHvfQQIeSdwS+McKq2t/UEtBZte+hdepKZ\nODdjQ34NEvq4dC+J83mDVMJpnVBBmnjZfruY9MbN9JyFRDZZeSLELxj8/YuuBVWAT5ueQxHdm18K\n6k1QS+jgonRo+dUeZPOdE0CniHCpkGJ7wmNA/qpgmgrirTZ5yyhh0Cq6Ap3UgCNpvlQlc/MK6iwu\nauZ9npDfrsn2eTRwzFkZui51wnJK6g0yWyLvFVxAq98AFETYC+JzQSVWHXvWxJMnQoUYo9CS16Je\nE/EMhEdjYkLPuxYxw2eox5Z9rrN4tsFAugLNG0c7K6CBYg4++bJIrNIliUqVD0kODDZnefhRKiNv\nQRkrZ5V33Epoxqi+D/uzbeAwk4KiQ0tGP2QVSKzKvPF13pNZH79cwRcGXwZWI5MBQ6I+VcliGZNl\nkvldscUz8bZjHirs/mzdg6isgBRCXrkzPlqa3IHjGGvbnwE0U2R/jbN6fJyxFSAeFmW/zFNWGcP3\nE/j9DJojZM3W1c0KQOaJQHwE4nkG4qxx4JqjMYU07qzGBh2LiQ4m0wA0F4+xIhBOwMOj5hv7FpoP\nEqBy7D0HhF2LOcH9Icjj3bf3Vv9X5ejX8+3xs3F8I0AEM4D4HIb1B994veAzxhAi8hcA/IXf6jm0\n/tKzIHwxAZER1xtOv7Hh4bo1qhWdklLkpwTUZ+xfA3lVEAEA3CQnVMZaeg9rN5EDNIBe5h0xadUk\nfXDUUftFexK4GBpfpOuSeiLidMUeDLdKGzoyOCbrjmR6EF2hbdddy+m0YDc/7Bp7/dqSATr+88S9\nBexDNbFI1/My+mIzGqwxoemQkT156BtMfakAV8hW1TyPSCsfV0JeyTZq08Ujg1glAKiikpOtaND8\neAb23SrunSJ4HD9oQZBvf8R38gY7mgM1i1XvKh6mHedlw+V7O3jWCkT8uVl9HZYIpKjVcn+PCHDR\nBdor7WqUZdT9qAHS7UVbmrW2fob4czqioSM6fV+Z1AqztCSTguh5BQZysUwNrcrjm/moiSsDA8av\nX8eOtCpfq+YOYPphY7Sxp8ZPsERETdLGcxcB4FpmDxppMOyiPuaJbMCyAUczA9G6TtR+vuMYhlWi\nk1FhYygtMY+kATixOs/7+PZkNy21TSr5W58g1x3lY0a9CogJy0PG9HMMfP89cNtBawZRNr8BN2Hz\nQOo1M+C+UjPONwd1xtcRNPFROmyvjHzuuPen0AqnrTGeFAfoWsd00Lg4PVjvY2dpAIOe/Cc8WhJH\nDko6QGLPtNrYYQ38mu/Kb/GzGOOzH5gPDsSQjl/KQL0K1k8B2xaab41XXY5Aqc/R0rTYNLF1xhhB\nBAI9zggXXYCbBCYERWzrD3WN8bnpyZwc5QAKeDhYI28GbH0NBtw/IpIGwWmpiGcBPc42L6RT0Yu0\nedKe5zDB/Jx8TXAgjqDzo5m1nsm6KVTs3NunTrFgmbt/jd/DaIDUPGfEydrprUlBE7HELiqoUUpV\nunVS6nKYVUY4T8qUWAPbuLUkYwLCbmCwmZeNUH5jrCGMah1jqPTzdLDSadyBFRyZJzWlHI0pY2Uk\nodb1A9A100ER8DGprkLYd23/Oq0b6ksBTeqzVK5AvqrW/pYjSiXELaKshH2NKGVcJfpzagAkaRKX\nZk1Wlpg1OYgVYR6kSz7/nGXjCRNbMvj9C+i7jwrAf/0MuRXUq82Xp4z6LMjP2p7R/Vycbt2v8/V5\nggFaIvicIZsAkcDvZ/DzVSv0oTSmj/uWNJkKo10joIlm3rWl3p4DTtddu07Z/e0GwYytBvDek1f/\n/VtMnlwCythtZQCCmdVgsldYAE6aiIsoOJH3gLpnsLWTccYrKrWuUN4OWNa+YUpWxl8pjFuOuOWA\nWw7NU2Wt3FpBkxw9twLJoVvXXlXisJWAkCs2imitMs0PBVDQtAytRAQKjm1bwGm3wkHobIQWd7b4\ncCgkDDfTGXzOkMjPqsn3ayVjd4jFEk16yCZfuNkadSuoV/Ufq3vfkg5FoCoqeT1F0LRbQaRa9wxd\n43JmxMyQZ40N9i3oGLBCyVgsAcxo2GJ1b+XYikgk4NiBDi08qTySgyKY06mobO2ymBG7Gi7XFwUE\nMZG2UwX64m3vx5MZJhu44+xLJmNHZB3XHqs2jwpokQEAnDdEpIWB5UHllcFiSwDIGyNCgS0isXnc\n2Vr3cfJbx2917//dfAjwu6E7w+/I8Y0AEb4Jh2+4nAA6J9UlXnakueBh1mkYY9VEkEmr288rbh/1\nFtbifYh1s9ksaMiVmuvzqKGfz1np7QFKLc2CulcssSDbhjdzseCxL1if0zm7HgrD1/ujJ+3Hllqj\nZOFQEX7jo8bKor9+1NAdDdQUPHC/hFHG4Lhmq0w8EBCgaDwBDbKoQHn2jKeApgKeCPkTsD4HrTwU\nbhuy97AOsaJeK+iToq744gLME/B8hVyzMkfqvYTBvtYBwT/cv+MP3E0a6EHxedlweVwR35G27ZkY\n9DD1G31dNdF9vkKuO+qutGmnggK9ct/M0Arh5TrhVhRIWM3wxrsPeKcGb7vXgCv7Xo14OmKt7Ioe\nvDQ5QzlWJfwax3FchFvwyiy9suzBnKBVgDqgcby/4/eBgIUFp6AAWq8WeMClA4SGZOZ+DrBf03is\nu5oc5l7td9Tekx8HblLUxMSZFc5EcCdnryy2qhQpAIMqwHVF+cEN9Vqtygk1Hzsxwi8+Al9+ANYV\n9OkKotxo5RokW9XLwAoeEsPPbcgETbqK+Wj0KoFJXAqBqxgzqnf46GPCwZ1BE95AIfsMT0SGCom+\ncDiPO+DjRwUZ/rTq8P1b1+XX4+eggRCQjcKvPgTU/A1+kqpH/+zuw1KFmuFe+3zWtUeqYPsh4eVp\nwm1NyIUPa6Weo7T1y8+Voo4HChr0NYp4kv5CM+TFNGy7WZkAkk0uclRzHQLWe3mGXh857vrmoZID\n39sE4b0CQrIWnfPXjPpUUF80kMwGmpTCkHVDXTUR8goz4whOufTB+62DNEFw40Sv7k427tctHhzm\nnckSosopSnZjSmUKOUARYkXI+l5Kgwf4RMAnBQGnoIwHTzABmJmiSmLIWUpjcoMOSJYWLB/vXQPv\n0I0tCRqgn86bOsLPFemlIN0i+CoAJkxc7bkwgmgr3zTsa2Ms0J5lBWQTSC6QXZBvjH2N2Hd16a/Q\nts77TQ381j1a68fj4ZR/d2T3NrkpFaRd7yXPQF3RGEsiuv44wOkAAi2sAMJlUcnWVlA+VexP0AlZ\nBfkG7C9Bu8b4+KluDturux4DtWJGhBrTbgXgDEpsVO9ru5aesA4xhlHl2RgjyuYIWG96r7Yccf2U\n2jhdt9i6Jqwl4FYCsjEStMuDyvf83P2o0lkLs/TuPc7YAICysia5ruOs3WBvLwG4AsuT0SLgLD0b\nA5WM7aTMynqz6rjoXNzWgHWLuO4Rzzk1+UIRlf85GwAg9C49fSxncd8EZU5g1/G2lYBpHySSBmjs\ne2jJ4whKrFvE/hKQFu9OUxuo6ea4ox9C/X/Ze9flOHIka/A4gIjI5KXU6qrqy3xmY7Pv/1Jruz2X\n7mqVRJGZGREA3PeHuwMIkurpb9f2z5RgRhNFJjPjggDcj59zXDog4rFCkw1VQn4JAGus3YwkHRS3\ne52SrokA1NuoCmQH8osCLCLK1q3WRlKfHYakCjppFw+KNICf0fb/3q3D50cpCtR4q3SBXjt91hUQ\nSAsjTNyAqx7LGgANXTPdjyvNytwAE9KD+XPpBQL2Cn7KKE+6VoWzrquv1ycAoEkLRSl6J5bujeWs\nrd3af7oZs6DH+r7fN/lzUK8J3gCRDsCxySl3YyFsJTbjZvdn+tY28x7L8fv47YzvIIINIpiu2n7A\nWkGaThX3d3tDbSne6w627eCnFSVHbYVmgZr+qfX1HdBgr6ySVfrjwohn20jnAARdVL0ykBylHjbP\n1q/Wkd13El0f/8gT4XDew/f/DIqozqxuXvjPvL90+jA6gFAtkGhBwr0mxXyph3ZyAFAtpiir0f/u\n1YNi3xL2PZmjr7QWSS15fa4I56wshDtL5G+7Bs01vtH2A9Dk3De8f5AYjb/zav1ehyCkZWuiBjp7\nbReYLhvkosnn/pIsmCDsJTWzpDx0SNjWhMuuXUI8eGifEwy4rsZ2YQ0C3HRPgAOdEbAEzaomSuEO\nWpEsfLihbuaTreqRLfCqr67b2KqQGMfE7RWAhsPvdF4sQXBnlOcuo7DxStryzfFKkiKfLkBhpdtK\nPIBFhz+DgQfLscqijtbGGDA6uZ+DVxhlr0o/3iwBPgfQXUS4t44NH++NeULAaWqBvVMgqQVib5/1\ndh6HY9XhlYLyim3igRVXaIBlbZysCNarCujso/HvG1BjGmN6tTt4K9vXw8GBMUnwY9d1yJIIsTWJ\nFIzkVw9fAxL8yypTwV47sples6OO16xPeD+e0W+iGxMOCXHQILXegNvzhMttaayfPCS9x88Zjp2U\n3t1ABGciLAJKAfy0qWleCoAIqFSt7O6WxG+CumlSUorSl7tu/1hlck3ua1Dz9XhdIXTQkD/dIKuu\nR3JjlGdBvRHypl2FNFnV5Ci/BFyus1ZBBxdw339YdP2bTpaUZDms601+ZPRbD+CnwBCOVu0MTT7g\nc8+lcpMbwU2MVLSq2OnNfu2lVS9dfubnGyIAZ4OkoDpkHJN3N/9z0HUEp1zuMgLgTYYzM5YPjPhA\nSC8V8Vn/rhrdfRItKVYhJKtCB4FVyF2WYi3n5tqftwrt9uRabQdtYRXmElqwP7Y0HsfBP4D02dZr\nZFK2k4II/r5vqOV2HWkKKt8EVLL1vCF/BfYXS8S4KqixJgWIlljcWAAAIABJREFUrKLvwPMY/wDH\neIEiafvYOQK5NlmdFGmMQHYAYix6DCxFQJN25oh1mzSpKhEvl6U922tJDUDYWb0ENgSsNTZpAaDr\nZTagTI+VUCshIOGU1PDRJUT+mrxFlKeMMFsylhXgr5bwlzxheZ5xqllN8Ero8Ym1AuQNAAv259AM\nFbc1Yd3Uk+tSJlxLRLbruPPQ2tfWQi8ivd4PXPKQmbCRgwPKFiLqBn0xcPveYwhvvbyVhPU6gah7\nYYyDxdd6ap9bLhjeixoDtdaAvOl9jgtjbBfsUgCft3JjCAH5iwKs+Rqwr8rAieZ7sq4T7oL+XjYB\n1wqatK2y1B6XjAzTzAF1Da0rlgI+5v8g1GInr+SnuSLdWYExmNyTuokrmcypFUaC+sOkkybqwUJP\nvmTgkiFrRf6VUS7q+TAFBaEbHCjG5GBdbCihmUOPQPItT9hrwGa5hgMI9dW+qu9MrdjkbVXVwFPX\n3ts6QZjwss0oHPCSJ1xrbDFnPjzH73dn+K2N790ZdHwHEWDBgW22YEAuOxADZGcgaPudEHXzBaAU\n1Ocb6i8rmBejhPWNzR27qxyRPKBXNUbtmOyGUnPfOJ1S1fVO1Ch9PsRQ49KMFsdzchzy/eGJhCeZ\n3zLlGpOC1yBDBxII8Ruf1annZACImjaqr4JuLhOJGoxtFbhU8G7UWqPcilHs8hbtGlcNeA2l34s6\n755tUwD0XpRLRtyqMkvOJ5UyfL6iPutmrhrJ0BLMWr2KEqzC837iOSz3jUqXgmh3gdui/YA/rYiL\ngGZGeKlN7xgeM8IpgFdG/lvFy8t989NYS8RaU684GPWucsIlT7jVgCIaQAA9oaMEINsGPYAQmXvS\n2BK80dfA2ztCNy0pAs7Ur41XYsagRcyUzJBrnQf9eBqG4sfvKDjoQP8SS24Ten/yaE7jnpC614Mn\nrzLeGzme20EOEAj1r1d9louAObW/8eMdA9OYGOFON+ru/WGtmyzxn0jgzRVaQlkZshbQOSCegtLE\nHxcNur3afFvbYTGPCaF9tgEVbGaW49waE+Dxea5sXWBYK1KtRV21yhbr+/m98zmTPZkeqoJvntoh\nMUPQc0QgBWRqn3NvwDfp7/fe+7L0ueHrhn8fQO/5RHb5gf2HxIEWr1od16Qu7ehJt0AlXYzeNhSi\nydyh6myMnv0l4OWyYC2xB5xjEg+0QFMvjwGDAb2DjI0YFJyimVD+mptJaFg2rfBOVqXbtDJUrgHb\nNWE3+nKVDmJUT3RfgT/N0PT1+VA/3+iJpBnY7X/J4F2ffykKznJV2vfG2pp4rxH1wrg8nfC8LnjO\nE6qoTwuAw3ERifZn5w74+vBuAUS6vl6tz/wUuFWES1XKvredO1SdSTqNOKojPqBJNgU0I1gH1D1Q\nHidFY9SEvk71taC/vDDM8NXAT+rzze+qSkSsreIkiA+E+PsJdK4AKmouSOsE7/ohNuG0cmvPqWG1\nkVR2d3pQVmJ6JIS7oBXYXbp5YmQsk1GjoxrJjcm63+84JGA6J4/xggOVzQtn9Eyh7g8BdMCp+eVc\nVsjfn1F/WbE9J+xbagaH1bTUo9RunB+OTXuM0taOAH1e5gistg/dsso4cjQgbQAgeJDSGZCgLfUU\nJN5rRK5aeb/us3YJIEFhTbS8g4EfVyTBJaeW/LJosu2GmD6qKMA/dibo6zZh+xwQF03w8qoAj+9V\ne4243mYFjaK0Fo/OgChFNJkMCl4WAxmUgTDhWhKuJWId1iE/Bx7WM++G8TpGU6p7XxszK290qgkE\naf4O/lzHIO06Vbtfe4m4rdMx9oS3IO4y3ZH5ll+04ONeDgRt38gmH/Dn0M3IjyCR7r31qnKR9XNC\nyQHrNmHbVYrhxYatJExT0bjlpkwyUNbnaNfKera4yQtDu63ta43N28K9Mny9d7AFgLWPVFYA0HMF\nfeY0R6BAcO+ylIy1MAPYdY3lC0OeWL/PCoiUXa9RXNRU19kswgIiaoXMDgZ2VrIIsJaIqxnK+jzV\nuO9tLC5igMHuDBoFjdfbhD1HvGwzRAhf9gVVtOX2tQSsHLAzYbcak0DZgGxdG47SrG/nEd/H/9zx\nHUQAAJK2IXIFyi8ZNFFDMuNkbXCimbrsBfJ0Q/67AgzTiVE2apsaYEmsdCR+bA2VIitivWniFoq6\nNXHW4G23RU+dnmtLZsMQBHDtD62jkO11dlouZfaAcqzeORXNvQ96ldN/9zZQJ+AgZ+heDEdX1lG/\nDbibuK6R1co5Yj8nqL5UKf87aCqHlagHHBYs1wARbq2k9qIVGUYPNvS8CY+3TXWb50krwr9+BT9t\nWvGroSXv4+e8kTcEmC7/WP3wCrIbMqXAeNoX4HZqLa7cOTgmBlftYb58qAhTbZvj821pvZEdQNhY\nKwB7VWrmJU/YrWrXAjI/TgbCGahWDRcDoJwt8ro64Z4IahYJMyOMIHtj4Z7sOi3VKan9unybAdNY\nA9wpqO/htbpxt5dq8MEB0YKDdswmZXiPjTB6IuhnOwIQUT7rm4/VdGdFjElKIEFaGPFRk5hGWXUD\nyqgGaqdYMVnymFqlzoCAf3kAfTgDDyeVzLAA2w4836CmntoO1o9BTTH79XQJjp+3B4TjGLH/rSRs\nHA0gMJbTeH+anKSzDxpYCK/KvL0fnnBFA0xpsihhSL7+2fEK03nzs/F3NATn/lw5hTkBKFD8hqlX\nhl3vr+uRJ0CvwCT/jPEc/TOHz05BNfYImrzsNZoppSBUO7bhvXz9PCS7rotlNBPWEAXhpD3R109d\nKhQSEOeigakl8rwD+02B0d26lPS9o1PtO9uD3j3XdjxmeKZekV1HXi+Ml7/OYKbWFs810aN5a65B\nWRnrhOc84VKSzf3QJEeAgdtBEBcHJDqbbmQhUBDsBlJoe2PGpSigwCBsW8I010MrW0/W0lllf5Mw\nuBqIUNCSDGdgjewswCjvUf9Pczy2sv3GcPDARyLvMCFINufcxwWA7g13E0IgxBsjvVjLwSCILAZE\ndC8PIgcQVMZ1WjKWj+bafk6gU1K2RNixXNRrI5ohJxmwuTwWzF8rdqukJ+pGtUvo1zBmRpprA2NT\nMnPioOyYMHWDVO9G49VV08GoDOSyQn59Qf3PC/Kvojr/0WfGmVlDxZeHeXucl28BX73QBn4+76gb\nmtbb6fiv/V3IdOJRBMzS2HkxCIJwAzMIupe6pMKHM05am0Q/fjjooy1Hvd2fgw7uR+PskVoU+Iu7\n7vNlV/DDYwNAmRBY0bpkuIm3t3DMq17Py3VW4MSev72qD8KxCtz309GTgCFIVmhyGSlR90bIFidu\nFhvMBthXIdwll+wxwuA472abgFa9w01akesIGHf2jh/jfktIc1XTRyFM4y0f5ss4DmbVSUHr/WvA\n9TJjzxG3PLXYKhlrYisR9zWqJPQGW8sYqWqMVaoWZkapSpXQKvhE2sCdX8VL/r23Ig3ngPAQIazM\nhMm65vQ5rceeYkUylocDBrwCUgj7LTazXgpaKAv2Wt97m68UBCgG5IXj9XGWkRcJfIxMNbLXH+Q5\nTLpeFmB9mbBtCb++nLHXiEuZUIXwlFMD065V44udCZlVVggAxITX3ap9P/3tDIG8G9n+9sZ3EOHV\n4I1we6FG5y230HRrgaG0u9sO/rxif9E+2vF8DMQO7zck+WPSowtK12+GiVG3gMuAPp9jxFlKWxyI\n3r4/gIPWWPB+0jYOf02VXhUZdeu6oQqYjjpRlSJ0lN4ZV01z73ntO4j4e8PR3CWyOt2vRem2t0Gb\nz6RGWQlIUwXXzjbQ4+3mQSKpLZqZA36qL7oIPyx6UE8X8FM5JFiH6zImXkPA4aZn43iTjEKwcsC6\nz1ZhC6oNNhdv1+Z9wE21v5lwu0642MYYg8ohvFWTn9NaIm6GNvuGPc4BrhYbW0Aybu5euezn5j4Q\nVsmZlOLbGB8sh9aXrb0dtOLp1WPvDsFW1XCqvGrrNHjhSk1j2HSw78yBwhpkXEvEuSSj6r99nTAa\nO2LUbHZGCCyaYoB5oOr2oKVX+F8FL1FA5wkhFkRiSxxUoy2sm7a39iK2+x4AilpFoz//TjtuJFtO\nf/0CfH4B/3IB3U2g8wR53lrg7fNs7CW9bX6PqVW7vZI+Ps8CwrUk3ErCWgPW2gM9NXWSdu9GPwQH\nGb1qJDiyBZpJlQX5bggIZmBnNSPNaOZbb9q3oc+71/pJtqDGgQwxcJMdozAmAgsAAoIQxAGoBvLR\nsO68v7i8YUdAj6UIkGwdDhAFJcj/xip4J38G9BfnKSuoRakDHf439t4YknxlsYlJgvRnMTBoIWCO\nuHwNyDkpqBu1Ar1cM9JZ2Qp10ECvRWnXjQUkXj3t11beOd/3hiewRBrQ1hvhy9ezmhnOBbOZGVIY\nZSd2nbMmD2uNuBk7KpLgVFNjOhXWv6UZQADq09D6Ez1h9Epx4YA7o4az6LNZmXDZZ0xrxXIqKCW2\nJC9AgYDW1tDcxIsF5jVT0+Jn07Y7GAqgg6W+IbH0Fo/judra2u8rML0C5RuV2P5fNsKc9dmArZ9y\n6DFva4WvowOLxkH1NDHih4DwYQHOE2iOrT/8dFsRXvhgnjudGNNHYPpbwZRTMwwNDoYN7AOXhkhR\nFpiDqGQRvwOsYxKE1/OKRQGEf3/B9h+MfA3tvWPUThhAbaabgK8zR4nIoQ2svz9DwVU399wq6qes\nZpIG5ulz0Fk4I/gagjTAx583Bx/rNsMlGrvJujy5nkjApF1PxvaIr8HY81QaG+n1SFE173QTvNxO\nCEW18zlr5X8iQTIvEEDjESrKPphiBdBlk9uakIsmye7B4kUk77bg8h6BHn+wy6etRtFa4TpwWESZ\nMP4cNYYAUwNhGWLVeN3PJmML+D0DnMUk2EqEiLIsR3aiqyBT0P3Gr9+2qUxTmQgEHgJC76gA4MBC\n6HIGQZy0ar+vCbdt0msx3Hu/TluNKCW0+LvmAC6AFC3U3bKupx43eTW/t1uWVkzzeeqtXn14K1Is\nCVQYRLWDb16U8TkJN9YEeDMJxi1h3yOuq1b7l6ng4XFFSNoRJ5ygkuYUdK/1jjIB4FXNY72tst4T\nPnTicrCg7cHozKLGWCONzXgj5DXgtk5YtwlftqV12ygCXEtogFqxuOE14yT6/v3mqfg+fovjO4gA\ntIiXq7r9P32+aw7/HvhHMySSlx0IhPo5Y19n/PDnHTQDdDFqXQnIpmcdirJteOL58nw6JKb+WS95\nwktRLdK90fMaxcoSxXbYB8RfA59OKz4mYx7E6/F0ZPvQlvYfBKWuq/eEQOMQN+yzDUy6/q2wWLua\nIRE1EKWHUvr/OXh1iXvVUwhSdSGdztoOan5gCDPCDEy5YN6S9gq2hKnRKW0TjJPJJB7PQM7gT1fU\nF2lgTP/yBLvT+N8HGd4BcIbNtgrhaw54CRr4TxbYnWNRx/JU8VhXM8ALKKYzVuaAtM3ZN/vVKqLr\nYKLnnhqAJnT5Sph/p90mmgO1DFrUQeFbHUQQTZjctLDd4DH49vvjVSrqNPvqms9GI7bPsv7XIcKO\npx9Hu4YDY0QEyALcasBziZj2STd49M2wmSvtVp2qQ3VqqKqLI2G7tk7yyrAzSEbfhl5J0efGu1SE\nmM0ITpqukSuZ4aKRQq0KGSZopS5MCiDca+cP3Fbgl6+of/mK+rkg/lhBL7sGyLzo543PLHdDI62Y\nDRVn9GfSn9XCMNlLQBZvZjLKTDqIM3pZ1CEJ9ffz9/bqDhiQAK1ae+cOQD90r80xvIEUpp0dDTTH\n4Mt/5smTg44kyi4gcVBDmsM4ILbO2Hu2e4b2/9ejmzECr1s8OqhWDUhgIgSRxtDwQWf9y5i01ef9\nw4ZaNJC/21XUOppajaP7KlCbr4CxfuYAOiWUyrjuE6rrcI1qTaEgndgYQH0Nc0lTq5S+um9ugOYV\n1tdStgABgrE1rFrMO3D7OmErCedJOyUE68QRElBLQQoMAqnpJ1Or8PuaJIEOBm/+bFMk0OSXQdqq\nEwwIoKDU5kiMJZW2T/RKZ8Jpm5ASq4mgdKCHEtQkMbq0AcgvGpxTEGSjTBcxdpm1/hV3xA/9wklV\n9oLvp55c+Lrkz8fojTB2dfHzA8xw8sIIT9rykK9A2frzQFaj1QQfiOzdXai37ZwYdIoKINzNwFnn\nWkgB2CtoKQgXBlg7LEwPgvghaRvRvSDmCSlIkz82OUKQDiKIetWMsQNYEOaeVPk8dt26Lz6yFvCn\nFeu/M66f9djSpNXTODHSgzI0p7Vi2jSJd6+TcY15/dyyQM3yLjvkmoHK4JeC7e9qkuj+QJsB66VG\nMAeUAszO6IkMKgHBpHApMua5GDAV1IdDumFiIEBYuwAFItwnbVvKmbCj703eoee8ZITAyFlNLMe2\noCkx0p0Wf/AV7dh4SPSmKJi5thaD4zUeW8zXGpr5o9Pq/RoBxtS0OaVafehcF/S2uEE9pbyrTTBW\ngkvB2mdJZyskXfJ9BWlg0njP1GxTdL/JAbMVNjYODaCtokTR5oPBej7OJtmYcO+fzwHJWozW3NcW\nZ6C15D4qsFFKl3FMURmfIgpI1mqAB/dWmiIKPHBVD5ZrSS1+YmBoISkIVK3A02VpDnz5vRonLwWC\npNCkNA5YudTSgSwA4BxQbsDtMuPluuBln7EbC+EjgN/NjHRSADk8RoSzSTwAbV2uZwOViKnUzPcC\nXzMnAzIcLPDY3Nlyh2dNdJ6VTU2Dn28LthLxJU8NQHOmCoD2ni551vXSwGiLT8I3nu3fwhAATL/F\nM387voMIwxBRPfjLppul69ccwUyJ8eFyQwgEXjVoTR9D60kNmF7ZUNOxFY7HeF41eF6XrqclwWlT\nGtS1xKZF8oq2G+W1loM0GLMZcvu6j6sHL1p5oAb/C/qxeFWrVbjfIeiMGsYxsGt/R31x9sRP49ee\nvI7yCkd9x/8vsTZjP5oDKNSh4qBUY1oI4YyGQEhhnHJGKQHBotdrUX1jYUKkgOkHQfjxDvjhAfj6\nArlo4BzP1m86f3sReA0gvK7W+H3w4fS2IhGlkm66JJhEkChgiYpeL/eqf4ubYF41aLdarN23vqF7\ncuC04DkEVIkHXXrdI4RrS0z0573670k2O61TqHspzARM1uKRPfjsJj5RCEmUKSJAC8Q8iWnXapgr\nYK0iH2QhGBBxuEGeIAbCVoC1Eq4h4FQj7i2pfg/UGkEfHs5L/LM9mywV6XcEVGVbeG/u8b52TwUz\nbkyqa52j3sdIgrAIAiuY6MGxSnMY4QT1PfALsu3A5apsl7++oPxSwNlYf5XVwXs8j0Hf+3qMKct7\njJ6xWvw2pbXrbId10NIP19TN+d6jG4eoZlA0BT3HfWvSrtFzxJNFN4h0kMvXIV8vfJ0QYywF4OCB\nIO1fsrkiTboA/HNByrc8YL7l9/LalDCcle6+PK4AVtz9oaBcgZwj7tcFAsKcKqZYNahn1zZbkpnQ\nvE4octNMUyLQecJpecG2p3atpqkgTRpIhjsgvIgmQ0OiUr91cw/n3deLhgfacQVRDf9kngIUoIlA\nrLg771hOBacPRVvRBgDIePy6I9eA85QRFsEpqeHpSJv1cQBhEiE8Jkx3ezMGjmyMHqP4zlHXqfvz\nhnWbMIeqbYwDH0xpvZUZYNpzPz7WxDPcAfSs+/M01zfH1W+qftFEqruPoTv7w6qsNn9JRrJCT9ja\n29AA4kLXAK6EugHhWel8deuJuktsnP4eSX1VJiJIEMwORkZRAMY/YLY2wCmCbhkhbEAoCM8VXIFw\nAsLjjGlZMW8F865msA3c9NggKCCW7gV10/nhcgZnbdGZ1HneTOoO+5vdbtkq9r8x1q8Tco46Z34o\nOt8njX/CiXHaC3LOSt2HVt5HjPogO/N5WgBZi5rfMsA3wX7rIekIQr9ZpxKQzgygIMSAGEXlaKfO\n3AjBChxCIOsumiw2mwPhh3lvx9fAVnTZwvluN6lqQbzMqDVgLgwW7UYSHwkpEE6fsnbFiYJQBHOu\n2jFkVsmDmgHqB91WA5XM2yMlthjGWv6GoNIEYhQJjanpEsXcQD1jGZAyDjbWNXCUGs1DK2DfC4CA\nh6SdTCJp4eJhysqasGOKWVoy6kzKrURcqzI9R48kjSePtHm9x9IAcq/w+7We7sxU/GoGtLa2HLrQ\nTIJ0D0wT427JECZMU8E0cZN+YJ9RxA0OTd4yCfgSWuctLyiNUomTnecUFdD8lp+EHtMweYM+p278\n+noPGYsVXIDtNuG2TnjZZ3zdZxD6erh80PlDp4D4cdH1qTCoCijWxm4oFyCvUY1UzSfHWa2nVHHH\nFQTBigj37XX7l3Evdj81EcJ1nZvRqLNJtB27glJi61U1hmukzmb7Pr6P1+M7iPDO8MrcRrZo1qgu\n7pEh2xUyV0hVbRTdReBaAUh3sq+9rU5iTRAPARepoc9WlWYViVG4YI5qoLNywLUSVnZvhO6rMJrb\njGPU9kv7mYMAcmAbeMWlCpr5nqKNx8QTIoixm7AN6itbnnyTt//ZxqZggjS03d3h/fgwHF8gdaiW\nrYBvVSnUr15HCyHcRf0dqVdFyhnzWnFXd4RNzIPCAtFg1/7HqP3YTwvwf/9Ne3B7e7B/cB29Wi2g\nNxlMq2J7gOn0u8C4i9wohF2PbIH4nPF43rD8QZOzemGctx13X0tDqDMHeLME4c46OEVNYq8lYSdN\nsHzkHKxdD7UNu9Hh7drL8KV6fLuus2leQzDjPLuPdk56fr4Z9cq4CDU/Cf9ZFZX9hMjNdHGk0ru5\nXaOko3tr5DYf6fAlaEiBmhHxUSfbq+uEdlFEIFtB/DDp+XD3KZHDM0KtGulZgndH8d71IQKYtPLW\nAhwLBChSb3/49y96nM83yPOG8vcd9aZgVfiwQNYCoB6AFRq6r1A/9AHk6Pe4GaDa9dMERRojiO0+\nCZPdgx48F3Yjri5d8vdXoyTp97N22jhFWESifa1R3El7AI+kV3Lb3DAw0v0u/OVVBMRDpw0GMozW\nDdVcKs2YFGQSNkplnzMeuPb5Agum9V8l06jgqoqgstjc0zWq+BpG3rLKZB5Car66JEwfV8RzwfTn\nCeFzxvl5x/1LRpWAUyraJs/bkHrFHxja1W39HpNoRHyacPchmwRIn6+H3+1IJ0Z6BMISQEnp0HPW\n98/MYAoHIPr41av9/93wZNWf+8f7FY+/3xDPgvQ7QnhINuEK7j/tKCXgfM6IZ21Z+5gTdo6INTSq\nbPbqvf2fZgL9sCB92I1WzoikbY9T0jaNy1RwFxnLqSDnhDkyzlNWyvc+944Ww9oTvaVjUCfzMAnC\nfUR0rf+rQF5sLWj+FAGmK7Zn/xXb6nUiwG1NcQCMDsZ0r68pWL2NeFdJiq+L3YRP79JEyjxYxLtX\nDMdcdc2iQMpEsJtMMUDMx4GrVjeF+8GTgRRjsuCdFbxaGpb+Ob7mNI31Kahnz+DMf7iWRSArY3uK\nyLvq/OdzxfwjqRfEHBA+zKC0Y7pULLeCebUEjflQPPD1fxwUFKSoT+oJVS9o3a58r+jSLq/g274b\n9QtgxKIyl+nODPBmANiMEQfsew9zY4moZn76w2mzew5sNWCngFsNzRNnua+YfhBMVmy4XSeVMbB2\n7Yo/JGBJuPt4Q930GMumIMI8V5wesv79tYKzdl4oVVsNBnsu3L+is0kJsSgDMTGjhmDsPGUoxKrA\ngrOB/Po68Bqtmp8MyJuFD8nxrQoep9LaKe814HHRZ3YENPocUxB9KwlrhbWYNimDxxuDlFXsb7yd\nqz9P/l6BFBwI94ouB5ImXTvMjQTEDxGnh9wkTPOdFmCk9PdiAZKBpOmkLFUuBSXHN3IvN0uOQf0/\n5qlinkur8rt8yufEQUa4y6HD1uh91l4jBJC0rhu324TrPuNW1OvqYVJG6vmUkX4MCI8T6JTUjBmw\nNeB4zGVV09mtJJODUbtXd/PeDMBdqucxQQc+3Qi0S8E2Y/mIs1WiAk6ROgMmkoBLBEEBNsJbkGWM\nJXoh4Lczvndn0PEdRLDh0oIQNenzBbrUgJuh6zNr5wDaGRSB+b6CYgQX7SDAlZqRixsaelVlrBIB\nmhCtVXsazEFN9YCCwseEaqwYHvTBr5DfkYngD3ywHNg7IrxZBOR9enN/z/ev1bhgjDQqD9a9th6G\n93CK1dgqKxAw2QInz5u2ZPRWjzWY+Qy6Yd6SNOndK2hSGvBcilXhlC4boOj6XSoIP98BD/cKPDzd\ntP3YibT3rm08zdyPj9KQRpMvGkxpC0W7/q/pbtD7/GHecTFjpN/PWTfxUPHT/RUPjxvOHzLSvz4A\nKSB8WSFlxw9Pa+udXkTlDEoxdCBCK0UABrMuSzhrUD3wRbXBvSWc31NP2GHBmLr6q4M/Yyxfyl4h\nOwaWQ09my+ASn6x64UGnU4FdKgH4faN2LCOTZRyJ1KSMoPNgGisRZK9nmFfDNzwR7D3VkIhBhSHX\nrEmhtXh0aYUfb2MhyKB9LNZilVTL6sF2mNGYDL4hT4HROheUCv6PJ6X7b9X6vBvb5Y8T6E8fQE9X\nyK2o0zpTCyK95RoNDvZjAhWGeTA+ilNg7BzM7M3mH6R18wiRW4ux91JN3/T959rKLGj/7cmSkHfa\nO35rONPBj4NAb5K79j4D40mBS4JDIw2AFGnnPepTfb16j10wrlV0uFp9jfL16nW6JCBdWx4WpJ9m\nQAT0+zsAV5w+Z9x/UX+EeS5IVsVrfnBxkDicEvC8m6GfT0wBYsTpfxHCsmoAnID5p6D693PSubEA\n01Iwl4B51WqnMtj0uixWvWbRZ8XPcAQWPGkFTLdq/46J5TQx7n/eMf8pInhHkfMEyRWxXHB3t4Mr\nYbkrCGfC+W7HB6MlryG2CnM2an4Z18DzhPTTrFXYyKjSWQhpYtzRjmkpatp5EZxiwd2SscwFgaQZ\n0abEmBw8iSa7IrTqd3ickO4r5kUrz3PqRmfeM1410nazDXweh9P4/5F3j095p1r7vpVsDUiTJjUU\n+3v6M+zVbIEmvnNwwEplfy0ArwR+UTNh2itCUNAJRJARKMU4AAAgAElEQVRNq/R8qdieE7gGpNMO\nvmSUvQNSh7ks1D1vCCpZSLYmGWDQHooYkJasz9nhPWzf2xn1WbCvCTEypqVi+ciIv5+76eJZ19l4\nrpiWijlVTaYHc02VeJMTQ/rnMCBrRXnWe9v8FqI0H57X48ikA6IAMgniIkiPWnCgOWBGBUWCZMHy\npbSOCRIJgRWcmueCGLX4s9aEYMmVrr3GRLvX4z5xQckB867nR0mAJSF8OGH6aUXaBLwLwpVRcsC0\nFAXpPgbEewFvjHoD9lVlqymp6WWauUuKAqPU2DyUvCgVYDKEGjCG7FsNB1BZ5aXD82iAt9PfCXo/\n7lPG/azsg8IB9+cNvauHvn/wtVc0aV1SQSoJzzk1MPfwrDjebz+fUlUQoRUNBqbBbKytW21MLo83\nnL1AAaDHGfPvb5j2okybR0I4Rd1jaza2nTIU4qSM1XivsDp91RapKTCWyHBZnRolVkwAllNp63Rc\nj91J/Jz84Hlj0CWDlqOjYIsJ22Ole2kxI8i19Das51TwMO+4e9wRfzyB7mdlICwTUC12ITrsvdl8\ncnbzySniDDgFd9yIc6+hGZhHOhpsAmieJWTxm4+zxZbnWLHb3PfiXhXCioAigtWkcd9ibIxzgGyP\n/z5+G+M7iGDDF7I4CR7uVhQzbMm1P3DNbI9105s+ahWhXkQpRyVpZwXTuQM4IJvjcNR5HO4ifKCK\nHyqz1HsLV0+meusaPY/+mYS3TAQ7/EMl70BxHo5zZCW4kYpr7Bw4aJ9hiW2V1mAN1SjG46kH6p8R\n0CmYfK0oF2BK+kHMBBILNLJmkzRVfS/ub5DODAoFFAQPJWCOGgicp6yO+acZ2HbI06r37UyN7eCj\nUeSrVT54uLYFVtG2e8Eql/AKZjsvAB9Om1bkBfjj/RVTVFrjhz/cMP8eSD9OoH/7Se/N+RlTfsLD\n3zYse2m94ffqZkoqgUiB8bDs2Eo6IOV+v3KN2K76GHuSXSQcjNg668Sq+CWobthMFQEAuaqb8OB1\n4HpS7xiRmTBR12oHYKhGoFN5Ra+psyLYNpW2Jw/gVSRgCYJTZNyleqBjtlGBugVzrO+eEc5EaMwQ\nS+qxFYgvbYVRytTaeTqts5tDqf7X+8cfhk14CupwLwEtMEYFcN0hlx31v1bVXxt1On5QjWP4Xx+A\nP3wE5gT6fEMIjJQURIhT7wLhmvVW1bb7PPaEjtQ12qqFRHsNYECc9PXB2316xSjzsWIwgjBi944r\nIbK0pFOvwSDDYDQZxrekGP9ojPef0D9boOuHzhf133CQY6Qyd+PJDvJheM/3xjj/PQBioBlGufmn\nJkQzws/3+lycF4RbRrrPOC0ZpUTMS0UYjFKLUUv9HtCkbKkRcHGPhPivjzg93vSEp6ifYxVR/ssX\nDWzvGFwLlmtpQS8LkANhCqHp6V9TaR2g9YpkhxgG1oKZ0y73Baf/43iemBPotiF83bAYiDA9MMIp\nYnks4LpjLwlT1q4glQnrq5KZMIAUEX68w5RWZVNYApMSI06M6VQxPQjKqsc0p4rTknF6KK0iG6KC\nCbPpfadUteodlIFGCaCHGfFxx3zW/u3TVDBHxsK1yTag3nWtVSGl8M1JMoLdPmcY6p3x+jVO7Y1B\nMP/AmD6QJq6JwZtgrpok+jqmjCujohu7aqs64dn3nAtDckGwuUJpA1IAP23gp4L8GbhcFvVnmSvS\n54xtPTXw2ee/PlPd80YnnjJdxFpGHuYldxYdam9L2PxRNr1XzITlVHH6WJH+OOnc8fefI+QSdN2b\nlKZfmRCt4j4mMg5mHwYDdVO5Qc2h09Jd7w1n5Onn1Tp4TiTAtwtKQLgPalAXCHEOCiJsVcG5LSmw\nygGwbkopMdLEOJWMeysUvRTXz1v8dgqWOGakz1atr1q9JQN80h/P6h1xKQCsQ8eiHUvCB/O42CrC\n14LpcwUzKRNhZsSzAiBcrahRtOMDkSDniJi1g0CxPTnZelzxdv31vc2N9rzSHINggp7zxIz7OeNu\nzkgG+JzO3jkITXbR4k4Dqpa5YNnrseMYRkBa2j0WIW2LfpMmSenHSI4oHJLlg7cSBwUX7mekn0uX\nuX446UO4V8zbBUCGG9XGmRHvCfHjBJoLhBnyFVhCxR7s2hngG82gdT6rbKAO7AuXNrR422JQXgGK\nDGIMzDsvTKB3+hJCrWo6mmuw5199OB7mHT88rDj9yKCPZwUPUrRzMjfFQK17FgwMHTuVuJzF5UnL\nVLCX+IatNs4JHzF1I3eVJzDuk7Jc71Jp4ILfLwepNvZ9R2P7+HbqHZgKvw0AQb4zEWx8BxFg1XGC\n9qE+MX74cdP+v5cEdzkXUdp9mAk0EyK05Qu/VOSvhPU6aZ/iwRTLA1agV68BXR+W2NkOd/Yg9033\nGAh+E5G3xa78v3xmXaPsm4HLDrxKCP/eAQSBssZZmdzeqYGhiWNzW7cqGB/OoldXK5QdEcPgsbCL\ntcOR1mYwBEtqXwoQBJEzyDSwfBPwZht9FExLxblkTKWicsD5lIHzB00qn14gOysD4S42x33gCAT0\n60oHCYkbDnrV3ZMboNPqAOCHu9X6Dgt++uNFN7YFmP91Bn08gz7eA3/8Cajq5h2eNyyPL4grI28R\ny1owl4SdXX8vmCLjtGRsJbV7XcdgD8C+RaSkS1oWGtgsA6uFpf0dM+nNCtQ2Ma3edSCpsLWYqgnX\nGnC1Ob2IOT1zgFgipZ9HDRwaGRuasPckzinvvrlNQZk4d5FxnzJma3dYGKjHPMV+7iDOsU81FwB7\nBe41aJPnXe/vhbHvyeiAXTaSxZNrN2IzH4BXlT3XQCbrJ+2yJl7VFKx+3tSscwbivdJ7w493wP0J\n+PkD8PgA1Ap6XBDjChE+BMrRKgFxAE/kVYD4OihwLffhNRC4UWOo2o+8Oyt30zh/b71nYveFmqRh\ndLXXcgTbdcCb4dKeZuA5vH9jn/h1BIZKhoGL4muErkMMa+UoPSny6+HnK8N7N1aD9DVKj+Gd9RIE\nsc+g4T38mmJOwOOd/rvMum6cLwgnrRoCWqmLE6vpIHTNc60pYO8xRVDKStMV0mStVtC//QH0801f\nt8zAxx+AUtRL4z+/6vwpwJR7NXevQGYz+iRpLXIdXPL9wgPIbw0HhcICLBMj/NvvgQ/3/QUhAKWq\nuegkKhswOUs6VQUe1qwBeNFK1qWktp6zkG0eDPz4gNPdM+aLJZPWri2dlGoeHwPKf+ozMMeK+VQw\nPzLSHVvQrEDVEhV6nOba5AhKZRfQ/YLwY8byfAPNWlGcr+oar1IcAVXqHWiat0dpc/nYTWBcm47D\nZUPeojGSgwkKIMSfZtDDjHC/gS8FFBUIikHAEAQRpKjzb6KAanu7xwd+DOoPwJCwQywT4K8F5Vmw\nPSdctwkihOVasDxXrJvGG16J9P3I/VYQFZikRAj3CZIqonkFSEF7WChJm6ueAOq8teemaEJ4+lAw\n/SEi/ukB+HgPbNm6KvAA6verNzI3/P+wPaKxlpwlAmcc6j4eF2NokVePqUlbco0GZFoSP+ubhXMA\nnWJrkxfuJwPJM+K0I5jJIpGg1mheRGoOOU0Vp1RQmZBoPrDnaA4KWqWA6d83TGtVryxfD6cE+vEe\ntBdgXhHLiviZG2jXuvPsFRRvSP9RULP5J0wKNMC07CFW1E07N1EAyJYLN7H14QCBg6rKDApN6hXE\n13jS7g3Q/WsJKhtZUmmsKgqC6aTrTc3Uqvsev3liucwF58nABtDhmTms1bbXTEttDMr2GouVevcB\n/SuPZTw+qd4G8cPZPDxIL9DjWf/wtiM+bZhKwakWcFHGYLgLoI9nxLuCab+CsybZG6u3WGMbG7Vf\nwRtnEPW1wI/Zr6/7sfCmvjUAtYJNrgFw/wXpRSjAWUuMU9L9+eFuw/3vN6Sfk56LAwirGouKX6im\nA9K13uW1mb0LGVnRQb11KnfPBz92Z7EBHYQLCQiTdgyRoPdpCQqunKeMYgaU2XxDljKpQXigtvb5\nMx2Ga/WP9p7v43/++A4i2HC9YFiMYVAYYVJ9qFO3U6xadVgiaBbQ44L61xds1wn7rhXwcYFX6u3R\nFMiT1pP3hwVwP+VGX1uiYGc0OifQFwOv9gpTa7PmSdkbP4NvDDF2wGuKb/u9KHOhsxNUp9yPv1PN\nCb2iGPz49EPgpKaAo3b+cM3h76VVJimEulkAC7Sqan6x898ElCrCBOSvhP0aEQZTKG8dxMyYz0WD\nxucL8OuzBhZ3AVgScLM2j77w89CZoVHmNVlVOQMgdWQhDHr6YUwTY5pWxMQ4/ZFV63wKCH9+1KTy\nw722AWxUDFK6fNVKRAwM91t/0xO4BmzmkeFoNNvmoa3j6uHY+1cHiAoTStX2Wd4SqU2EokG8d6nw\nLghbDWoSyb3yUMy1XagnkaVVp6Xdu9dzbJTOOC19jjCncjbqpQW6sNewmJzEO0+E1jd7PL9aAmQt\nSglkIP9iVYYNjSHkz2ev0Adk1nmHbB1CWqCr4EIo2rbN+4/rbRPtSX3JqE8VNAPpY0T4eAL9/AD8\n9EETxXnSjg2slOwxWHnzXP4Tlf0xsNOAsQM3PrgSONCrueDVoqOBlCfkLmfw9p76RvbvXizAcSDN\n7+H7oIEP93JtspR/cogQ2CrwgbqpWqDjGjIGez5e4xxsQIUbfzkQqsUwBwulV8pSBKZ7vW/PFzsR\nDTqdLUJBwWStqPEhCQRzu7hEqo1FEb2GHx606h8CcD5B7u9AOQNPzzo/IiGcBDFrNbfUgCjdnLd5\nI6CvtcARcHpvBjnYoNIcAp2DgiUnA0pK1Tmai0qa/PpWQPYObLn0JsV63M+gBoe8MeSWQT8+akU6\nVsTaqb8UgHDW6JNzsPe0wPYOiKa/qFcBZ25a/zTVQ5RKgYBlQnhcED8qUKiShtJBhCEIHy5CmzCj\nm3oDizF2ALHnwPamkR01esQgKiuCPt5pi+J5RdxXpK/uM0Bt7xxBv2zJ3mTXRVtQ6pfsAmEGBQLf\nBPVGKLnHIN7rfSupeS95shOpA2rOGgKLJmCZAetaIFVp/rwyMMjOVNge9H7mzihb7gqmj4T48xn4\nYEDblgHmboyYdR39plmsdCNbBTaDdc+hnvibrt3lQM3gFh1scSd+KehsC78xtlfILpBz0laZw2vE\nPVU4gGrEvidMSx3mt32G6N7AG2nxAQCdEsK0IkZuibAUBtWqPhZTBBVGeN5bsurJMuZkrIWEELMC\n3u24gbAoOzLsWr5pbb93BlHoSbbtWZW1Q0o26SNsL8jc2QcsaGaoI1sqhiG2CN1sz6+Pr+nF3m/n\niJwTUtpVluSFrnfvMppsMkRdx/y5at45QigXINxXCHemgp9jZpVcigA4zX1NS1FjqFwU8Fwiwrki\nnViZLAZ60hyBOSL8sCN+Vb+VJfR77PFeX7f7nB3ZeV78cPmACIAdwNwLSt4hh6ux//xnBiy7kexs\nsq7z/Y7pAdoxzIBbAHpO1lXKWa/Nt8QN1Aemx8iA+Gbb9+E89LXWiWXS9sXOOvJ1fZ4LmCtqVd+N\nvcbDfhPgcpn3i5q/taHx1HcmAvAdRGhDmBQZviOkf1HEk5Ybym1vi05KrAZ/d9bLKgWsvwRcrzO2\nnNqCmJmwDdTpkXII6EJwN2ecpSAGxvm0w11TT4FRk27m86vqJAuhlGiUunigOHlF1ls2VmcYvHeu\nA9gwou5ezXsd9LfAkjobYVSG+ee0pMRySS9QeaLn5z6OIh25FSE1CTRjOBGlcq0vkx7Dsy6a01Kw\nrwn7ngwZ1o4CY39sCoA83UCVIZ8uTWNHcwR/2lBLMlMaAyu8dSBTu65VCJxV/1hzT1ybM7H0jdHf\nZzlnTHeMcK+aYyxJgy5AN4ovT8DlBvzyFfx5Rd2g721yBje86bRt7YP+dZ9xGVr7eeU/Bm6bbrFk\n36vs3VRO700WUlS+qMmTIgIapCsThJB3dQJWJkJvOSmHe6aSHQCHa1E5gAwpaAGBUPOd8HncDRFV\n06rPhgZIUdwMz5K7CvAOlD22uT4a7LG9lmuAZIYYGLB+Cu041uZEbMcs1MCYHHoFXkoPggAN8DVY\ntUSMugu1J1lSgOnPE+If7oEfH4CP1u6xVG33eLk12YPPF5dOtblTA/YcD/Ousyz6lWfR633JCdca\nsVa9Bo3NI32N2M152a/R+OXPrD+P1cClWkJL8DxAl61ArhmyMmrRuVOs9eF4P5zBxNKZAB64vqZY\nHj5fLCmmDkK6nwpY2s864wFNW/4eONGkBUNKfTh/O2lfmyYLmFtFdSJlCDxd9J5lZXUwBw2yuWuF\n/ZpXc+mXm1ZnOXt1TZMa7Jash9C+qFZg15agfKt6QTxiw6vq2Ktz9cepm4v2Z/y90eUWhPA4Kfsh\nFz3nLQN7UU+ap4x8jY1xwJeKclVGXm9B14N9v/elRn1OXnbQXg5AWauQ2XnxhbHfplZN8+OKHyaL\nigvCVanXAQoyeJIJ2LwMBDwsiD/r3IzzphKIakCgAV6HzaZUSK6QlbVXOndQ0td0/dLD8Napev3f\nAjVVgkkmSLspnAS0FUuKh/N/dVc0udN7RrDuHI+xmz/qCyDFKtlRWUuzdfeZ56qGgdJbFx6uMzpA\n0q6XA7HZ5ktWhozcuHnp+HoOaLWfM4FM7rD8JIh/OIF+vFcg7LYBL5tez6cV5VNBeVYXeZcMlBoa\nY+/AoPO9yAB6StpiF9AuOtMHdaT3xFdZHz3xdSYdZ92zfG7JzpBVCw28AfO8gxmQlZHX2No0bjnh\nks1Y7mLJY/W23LoWqJl2QF4D5qcKWnbQw9yurRY9SMGTryvoxwd9pm2R46JMy3oTyNMKmqx9315b\ne2dY++q4M3AG3NxGDOnkrOtxzgk3P+4yNZbrWiOuZrIIAFvV9nzaDcrYAMHbBlID5xdUrCWBSM97\nWXob831TYGWtGmfsHLRb2D415oKznkbj5T63DXgwyQlRbz3qv+dKWL8mhLmYTMPYNOzVdk1gebc3\nv1v62pkLcFl1P83cnm+V39hcKAycJtA5gWI2E0XtUuESESJBzBF4USPP9TaZ2WCXgqqCVs+nP1f6\nPNUcW6zvgJ17apUaGhv1tGTM1iJ6ngtOHxnx0Z6zp4seK6Axy1ogtwy5VpVOGLAYzQjSfVbasbC2\nfax2vXQtc7ahNOCmFTUdUIpQli6AXCKmVBGjsn6Y/RnrJp/ZvkZZoQJD8u7++79TMPg+/meM7yCC\njWbmMhHoj49AjEiBsHy5oBY1cYkTg84n0HnSxGsruHydzUCmo37+AG7V/rXgBOhOw3fnTUGJIDg9\nZE3qoAyFLIQS1Nlf36//bWVqbAQfHmC7vlgfeDUN/FawPZ43gDd6xbFi+a2/E/IqX2ckuJaUrYrj\nbSYFx8RFfRp61ZeiUQ0zabvIhk5L0+jnHMFCOC8Z256wltSCi2iLttPCY2LIr1cgV/Alm5P0CVIY\nfGPk7JuXMxCoGRk13b1teqFo9coNBg9BUQ3tWC/X2SjPGXJjMItq6D5fAaAFE/y8gT9tyL9q7233\nQ7hl3cBvBgbsNWC1itOXfcZz6SCBB/MhCvYS+qI/JNlVjGAgfY74eXKl/ovdKkm2GbYuIwYCAAON\nzbEH6R0YHLDgSpDQk+SO5nfQyggPYNHABxBkAS414pQTMHWJQmFosFvtuKzVadNk+ryHJnqyFzXd\njITtNoGZECOjSk8YCGIskw6yuBHZOPdZtLpBlsS0tm9Mh5J3vCfEf3kE/vA7rTYvs8pVnp6VAfN0\n02rd845SZhTT3JZNK6dU9Ni3og7426v719kcvePCc0kKKDFhq8Do9aTUZA22O2Pj6C3w+l8PNrxz\nR3N3D6TmlFsFb+65MDJ2rPXsO0BFwz7+N6iO8urlrYolx0DuH77H8PvQqmD9y9/Jf96qNYU1WGUG\nLivkv57AT9plIxt4sljL3wb2CVBFAV3eCPKiwS3n0F3ORYNE+vVJPzhGbQUKKKj49QK+1B4QF1gS\npuvTzr0/uD/7EWhMqWI/6/PkyAwhaEWQArSDwhwh//Wk5+v3d9XOOPlXxvXlDCLBNDHiecf1acLT\n8xkv+9zOGQA21n2tGKAgBdpC9/nWklgPRlv3kSrYv2iyAthctfOmB+1KEPYr4lLNJNGSlaDPbZfa\nEHB/sjO9IC66l07x2O5RGDi08i5srKbO1Ck8rCfQ/cuBN58nRys1NF8fXgVYiwEylqyz79nD/oyj\nDC6zUtBTgEo8Pi5qUCgKOMletSq5M4AKkYwP9aamzz9kpEdgjrXp5OOwB3qC17owMDThKgL2ubUH\ncNYngGv30fETLqwgcwwqd0h/WhD+/APwwz0gDPn0AnlaIZlR/pqxfdaEe1s12c0csHF38R/Xs9E0\nWi9uQFyAuim1P35MqLcjEDVezypaWOBKzYcGBWCIdndY9ViA0jpm3K4TNkvGL2XCU56QiuDLNrcC\nBsOAA+7ygH1NmH5lUMqIYVyDFIjhawV9voHuDGCoDNkFJUfUIgi7IP41Y6KrylOeMsoWUByoFaWX\nx0coYLrp8Qqrod66TbjlhK/bgltJuJbYGAc7awcvB5D1Zxb/2R4di/oWbSzmZcSQCL03OSEGwWPd\nGh1+N2PJaytWEK414rJPuNuzmmsO0iq9L8PzBl1/thob26IXDXRNyDXi5fkEohXTqWItWrDo8YR5\nF3mRIwULGgpw28GfrrofPRXUq6CsOlfrBqS1Qi67GtamYHu3NEDKP99lLett0iJVMaCGA7ZK2B08\nCCrdUjBPz4diny/+3NQcUGsH7pwVeyb1bJhPBfMP1tJxVvCJ/+OrAoVTAAxsllVjU2cBhQnNZ6R5\nHqDvh+umXk+XfcJWYzvuzNLWtlF2oosXcPeovjdxU08QCqI+HIIWi25F41C/Hhuj5TCh7TXHe//b\nGgJG/e9f9hsY30EEeAXdKE6tsqAtv8ICpNkodhPbzm+bwFqw72moMA70UeAQnIyDxYx1zI06LvoK\nR3q9HdSIPHqA2OnWQ5DtFROMScf7wxP9A2AwXov/Lkr/JwaDEOFeC8cs4puAhiUuqGh0MdjfO83O\nK2GBpCHWPqI5c7sh05Qr+KUgxKyUxHtjBOQNvFpFA5oUjmZxjOPi22ncR+p4r0T2n20lYd7MYfy5\nIBYB7QIKqwa0UwAqo34pKF8F25eA221uif02JAz6pcnvLtr2swEI0j//aAg0JE1DIte8K2zOjH4K\nfkO0A0LXJo6dC5ROR29MHcd721Dv4b5x+91bgMp/7iDbVjVgWSK35FnQr7/LI0bDI8YY2OmHuEFi\n39TD4XOdktfplcckdRxucETDNfYRolbRMJPSWU+zUi4BYN21kv1002B7Z/CVG1glYvRHDigARLJR\nkwczp+HaNQDGft77dP/jzXtcK/p96oDfm/shveJ7GIXNdNPABmNZ+bXzNe7/70Div6ty/DPkwjdr\n8fgfp5c+XcDPuwKBO1rSyay6fAdJ3HxUGQqAbNUSSXsexwN/unYUbkr6WZUhzytkH47PjLQc8BuT\nXF+T3IfgGKAP+8Crkwyh05kBtDkJMxvU6jyjbrBKHUBUwBth3SZc9wm3krpZMEkHKf35YSiNfC36\nvNpaerj2BcjXaMZpRq139FpF76pBp9r8R954cYxAwjI1ga7Lvvz17X39WniSX6XL2Bw4aOAXtWet\ngeRCGtHjLYDFGap1v+763ntt+5ceKr1hIvgpBJhWeQZwnjQRLbU1eZdAoMgIuyCt2hkhToJ0B4T7\ngClWxJDUd4EA4K27fPu+gRudPePMq7739WNu9wW2zt1NOmcDqRTwsoMvBbIzygXYb7Ex6TpQfZy3\nb/cA+0wz2KNsgO0UDvu/D9/nunEkVM9ua1bYFUDYbxH7FjG9MPKqnYi8hZ/vrzsHZAOT7/LU4qzO\nApQGVuQ1IL1UhA969F61F8V3tMPAdVfAda8NpIJ5sJTniniv3QX4xsqArB2M46wMOpX5GDhRlRHo\nhY7VkvrVYoOtdvkCgnnhNHBG54IXFYpAJ3IAUAMiWZEkKEiUcu0xVXVguL9XFZU0FPMpiCYxIbxv\n5Kefrvvbe0OEsBdrGRrEPi8M6ynaHvma7i9PK/hph2yC+iKoG1A2/VupykyRW9auB6/m2vj5lUNj\npjCgx/NKCso4xjDNBPKd02ryR4tJHLSISf2d0qKdIyhRY6axbeY0sbJQWFRitOu8DsaCpADr5PTW\nB2mvsclOizjzGQbG9Lym7+9atImT/iCYbwqgclBmMulnNFCie0c5w8Gv53gkr4sS38dva3wHEV6P\n5gQUQHcz4mPAdHMQAd3Rfq/gTxsu++8OJk1udBVJ2kL/Hp0/JcZyX1VCcQYQBOlWW0ue7rYqh8Ni\nqwayIY2+SDjFdzStG0+pvvOAv7cQjH/TTZEMNbfv/V/dKq1l3avNxDWl4/BqdhWl+/mvU2SEU0CY\nKspGZthGTbfvVKzVJAhEoqZ/JbaEN5CgcDDXWd1Ef3jaMc3WPutuAqYIrAXlSq0dpwdQ3nlhDH6q\nHYP7J/jGPOqQHdUGgK/bjL1EXNcZj+uKaVZAYf670sco6QTYniPW64RtS/h8O7dqiNLUQ0sSr3Z+\nWw14KQGry1aGaCxG1bSNm2BjBry6x4fKWwkHnTCvPUmU4RwDdI9T/Z17aRxBBg/E1RRJnYmF+6bq\niY++VjegTsMELkWT/UAJS+BjdcM8KbxlobMIXpsPKt1cN2iIJ016LJH4QPcdh8BYPTaxR5M6moGw\nBAUP0ZNmQL1TaNEWfUjRKtjmhPXLF/BfvqB+2iDWQ14q2pxjADmHFph5W9ixalfk+Ex6kl4EuJbQ\n2E3OOno9mgwAb5Pr8frra22uswbdKXGnVzepiycfHeBqx/nule1rBKDrhD//PnPG7hP/X4a/R4R3\nsaBmxqbJ2nBM7/w9i4JPdFmB24b6l68of83grImJrjvKLgBgHUsUMJqqAkNcCfxUgAhUS1oaCFwY\n9f/60m5oCyZZdenl0teG/RptbVMfD+3LrkDbzvrVssQAACAASURBVDb3QweofY95fQ/8mk4Bdj/1\nQsllx/p/ZkgBwlxBUZNhMLC/JFx2DcDvBZgvBV+vJ3zZF7zYWhSgPcWblMHWTBFNksKv1wPoGkhU\n1xuAegHW6wQWwhQZlS143cyBfYqQGIBgAMLrZ9blHnvRZy7FPtFtiGXobg7YdPOFIQMY5ut8a/fq\ncwHocgZ2yUtfb5xeT6R+K/ycgXDTJGCr6ulgz3WABv/+5r62aLtOwV1U2Rt9OAMPJz2vwiBmUFZW\nDN1toNMKSpqIpp8nhMdZW3EKYSsJa4lw89EY+OgLIVDDxixgo42rV4IeVi3h1XrObT8i0piHzibf\nfLpAfr2g/OWGctF1+eXTgtttauy1mzER1hobxX63tUoBCr1l2e4PAiGcVSYUTrog8EYmi+iAvo/K\n1P1biu09mZAr4fJ1Vjp+SU0GAGiSuNbUqvkvBtLtxjpoHXeg7LgpKKCw7Ql4AYAd4S63xN99GXgt\nwFoBvGhXiMKoF8G+pxaTqERsByWVKGxb6uuIBWXptINuguvT3P523SZcsoJ3X/OElQNuxmz167kx\nYfFjEmXQJAFgvhMbE0KNykogQQoKQG9MWEKyOMo6FwSVHgQSrNaNqYpej5eccFoXPMzZWAjidbT+\naA41iSqE1SRLemwdqKtCWPMEvAAPvB28ivw8qpAyGZ51P+VP2iI5/7Vgf7LKv7FR1m3ClLQrS/hS\nwZsxPwDI7pV1l6p2yepWVNainzlI8wRtrmq7cCsOLvZMpNfFJLTiS3/mtRtNnBRQDosgzKQsgxUo\nV0LZ1AsknVhbkwYogLABdVNwF4uaxEbzRUjuzWNsw+d9bntEZje4ltY57MDeMXaRVD0eBwnLHiEC\nXK4zRAhftgWFA55zwnOOuFbCrXZzbF3H+r1+PX4bnRl0fPdE0PEdRAB0o3V5QBHI359B51WN2hIh\n3cMq5YYYrorG73/nplXSAEuzpSkIIstA3zs+XA1lNxSQsyVLckxgC/eFABgqf0PFuFGyMVDA8Sa2\n6jReeetRMFYi7XK010bqP3dq52uK5yhn6P4JhCLmKC7H6qp+llbHiZSaSUtEmJR2qxr1ruM69BEe\nkv0RgXWTGz1XBRT+tD0b5ZEUnc4V/LyjbEM1dajMO0XNgRhPtlNhlZBgoIehV0V8POcJT/uMaWN8\n2CdtqRQZ9yc1JZqMOna9zp2quM9wGcytBtxqp7Qv9r0bGzqAUKRfkxBGEKHv7D4H/P74+ewcsBs9\n29v3CWuS6BtzC6yHG+YVx0QBWbj5C5R27andG8Aq7i5XMQ2dDK/3OVlEDEQAJgq4T7Gh6Sz6bHCm\nBiI0+jmOwYmej1aDhYF50WA+Jr0H33KwZ7Hqkk3cY4cUAEnNL3XOUmO7eFJGKQCfL6rV9Gv/+Yb6\nywa+2fO9eaDrlbruf1GFcC6hBVNHLwuviqEF3/rMS6NcexcLn7v+zPi5jfff58Rrs8MiobW0rSUg\nLXzItlVPrewOZ828Btv8+Bzs0OulRTCdj4JWCVVyervHQK+u+2uDzZmjFhNGDX87v8fRWsrJ6JHg\nv/sHoMWWwZ+uKL9k1JsmpGXvGu9sveabX4p/b/Kg8swIkz5He4k4pQqQPl/lrxl1A1oZ2qvVFZBC\noAqUjbDeUusvvnPEympsutaAvQIba1K7MWFq9NXj8+qXw0GUEG2+sqB8Krj8MoOcCTf1tbXkgK0o\nE2EqCduqgXajN3PvONSqdeiSIN6B+qWglngwAAvebXUNyCWqQVtibFtSRs4F4M8rgiKRCriBRrP/\nLnsIpCaoqwKz8ryhrGhJJ1cFOjR5q6Ci5y2VFUjY7XfoQNhR9oODnMFN5sa55t0ZpJCChE+7rj1Z\nKekOfnvAr12IGJEUWDoFwV1iNVeegzLkyPwyEoA0tQ+joJT0cFWjz/A4gx4XzKcbFpuPU1DNtxuh\n6XWCsbgEcjMjQFvDvZrOGWYcTW1NBcxsVjTJCSeoZvtvX/Vaf8rY/k7IawQz4XKdtXOQJWgKhmpi\ns3JoCa/Pl+71Qo2yTqeAULWVJ18KtktssohWiBkkVH6fpVrVfg3Yt4TbOmOvEXvRv984ItgastWo\nZoTi9Gz99ynHAz2/iNG1YZKwHJG3iPJUAQfL0EGqugF1qwixgpIaPm97D6tLUap7jIJa1feqkWmM\nCRK/qOHf0/PZ2JaEvUZci8obX4oVFqQz9/pcpdZquTGk4NVogtutEAiowC1YbGEPV2ZCIjTzUAJe\ntYcmXGvA0/7/sPemvZIkx3bg8SUiMu9SC7tJPj5KhDAfpP//YwYDCBAkEHgkm9VVd8klInwxmw9m\n5u55q5qPEubLvK4ACrXlzYz08MXs2DnH5q9i0XHP6cUF+ft1mxtjKdW+bgAgVZHvTXttskkD6caY\nl55WYC/IP8l+fP08YVsn1OqblGcvEQ/L3vywwpUBSvAHh3J1uKYZlzIJUKHn11ajJM5lZKEMvij2\nPXz3RHCz68A6oEaD+p2px+QAGojnJ/GZogzkJ8Z+CkhbxLZNsv+GiiUVHH2Bi1os2R1K0gPCd5Nx\ni0tYwSnzetqUMXC7tjrzx/bnTB55D5iTGk6r/9V1FZnaeZ9BcHja5e/X6nGuDlsVyWRSmYQHkCEt\nH8eLNMf5zkb49V3fQQQAY8RMK4H++yvc4uAPHnTtqTgTg8/CPa0/J1w/S6I4x4pdUU0PxuwrJi0F\nyEL+OmrN2SOcI5znFnRs64RL6S31bKNvm6oexC2QZ9Fkva1aAl23CSdV/7e0yjEIb90WnFYMWamR\nUMbAwER4exk40kCMISmQdzCTxDcVQY3ko5P2QZgD3GyIbE9WpBWY1NQnTzDH9+YwrEckA9iqvzno\n7Mv5YwDmCH66onwqoHo77UfaWqPUWSJdXQM1vpW0ELsmocjkcVHkP5H1dWe8KxHHKeM4FcQo7bns\nADC2gXPcGAiGiK/VIToBEgBtkee+fg7zXJDK7XfqVV+pzno3VC/Jqzaf2sM3EKG3W7r1WUgauASH\nZkBk/gIW3BR19GXmYX5+HXDY/Ji8dCIZwTZzmLZUyCqHpXY/hG/hv5W8gIGFQSthPjqwZh4SyDNc\n5a8YDI1tomYN41oDqTeAJaL6Ps2tvYiRY/lJKibSj14r96sYo/mjBxO1Sn7rqEJK9+b+7wbUMDoY\nZ899THyjJYeur93m6aGgZpeVfHtOSCLUwZpKqhc1MNXjTZTY/RA6w6QDbm/n3reucc9xAAqUjgzA\nwyGzBCn2/B13qYTDME/ozVxytt8pK2qoGnv0+e8wjJvdU0M5GEgF9LSjnDotvg6VrKzsA0k+ZRwM\nUGByqKswDMx40jSTLnrks1T6zaTX9lRA5HKcgfUy47IuN9WlRD2BMHDJM6O1+8LX62F8vsHmrwc4\nMdIXYN9jYws5363izXvG9kOhp/smmRu7AL1lsrTxuqjOXsfFfA2cQ/P9iVHaPrYk7erh/lYxpQ3w\nQF3lu0WnXUHGA84B2DL4moC9oHzK2F6F1bXmCTV7ULUKsINPImFwxOJXoYwgS5xLW38YzoAOdJmW\ne5xrDtJ610969iQWz5CC9v72WunS4Fu1e3KM+1ixmFyxELCm5s7eZBpmxmsDXYeb07HwahonvkP9\nHs0AVF4PZZkBpH3r2xoHmtdMX8uM4GQ+m7kb/XRB/lSxP3mUJMCPmY1a0m7ninUN2FtShjbOQN8D\nMkk1Frl2/5UKpL9VrNc7XPLUDP4MnKY6gnYeVAllFy8Ga3kpMkXX2BkAhirzwPQiSb4zOeS2X8hN\nWuGjFS6qRzp7+Ii2BwI6ptlhe5oaKJc2mYdR/TnqsG8wu8aOAJTZB4BfD0gl4mlbbjyZdmUEmNFf\nLxr1qrCtRe8ULLAzAcZc63ObNaYAdB9xjJoj7iKhsHxv57izZ9HjhpO2mJ61M41JqL51OTCuaUJQ\ndoPd+3gRS9eksbuI3a+NPT3tKJ8J158jSvY4nQ/t+e8lNINnawdaiof3jLwVzMeK7TzhlCacckRh\n1z6vAfYaTFkcY0BiA8NtH2CIzGpR5hNUOusknqjVwCWn4AI3uU26hiZNeb4csZUAgsO7ZcchahFt\nr/CkXka5S0GcnsFdetXXEWkMtulctHMS+Do+JEDkCSlivhYwO1zPM67bjJ8udw30qyygmsV06xsA\noRKaqfovgQX/H6ih/39xMRjkvhWJ/vqu7yACxsqZQ10Z6+cIHwjzu9qSCNNE0SkDBOw/My7nBXOs\nmKaCVHpt3iv1qL3/2yDbMS7rgjzQ7YInpBpwLgGXIjSiY+C2OVhi20yr2L0xgrndSGzLbrHXELX+\ne2jhKH8wxgCgRTTuxTSLazI5pbexGc6K26sD2LkWAI8fy4pwBMcCIujW59Wu3zwLPDtMkzj5PjDk\ngPYE4ojJk/REpiHh1UNzIg8/Af4YxLSLGPXTivTsmnlg14wPXhNDctR089U1912j+lsiZfMmaEBg\nZprBhQYiTD5KX3GvJjZsVbBeCbONWZBjQeQTOVRN2oNjzF6SLSFXyDiV4jFN3zZ48VD7DjKYBZ01\nQK4HpCztuUrphoq7yio26oi0gQgpeGQiOPQAwZKaoMAPs1N63e1842GOSu9hN/y504b763EjszA2\nTvv/NgdVzlAAugLxnjvDgvzwbPt7G6ukVjVlbPenYEUCvJ7aYtgpzsvBk1QcLwW0Eta/ql50IcSD\nVO/cDMQfJrjHBW5eQdo1wjsGvymFV/I3+4UBCm8vmY8sdHL2mL2DdW9gOKWFQqjiwzjL5ypQOPz5\n5h50XpTSdepMLMZxLFXNLimR4K22Z9znQWM8DIPcZQ0GBwAGMEIlodaiwek/TxoMmymnayDYbdeR\nb8m0xmsc6jHxHaUW9u9muspVOrJAv3MzGbXkgft+PLI/rMuHBXgA1DcjiNli7pKI1rnCM+JMqEWo\nzruam9m+MBqA2vf13BNgY5a9XWftew5/5sLIV3HQD9rD3drpiZyOFITpFW3iHpRKWu3an6MDrFOs\nCzLv60WroJqcWltMQJLbGCqmRejHtgeX5EFPDkBFuAdqlrFmh8EAdvgeuYLPCfSSkb44XK8zLmnG\nXkSb77y4sJfdwS+aqOsv2sd9zt1UeI1RY/uEw4Chod+CPNIqNORFMzZlHbkB8HPKDPCeUENtnxGc\nVwmgyFn8i8qgUhUwfUriyeSdeGacduQnBQ7ud0l+966tNyket+QXt75CFY2JYNITJpMpupu9UTxj\nRoQI2P5c8frpgPN1QfCEZS7qm9ATbTMdTrZW2LdK9rf2MmJlhFzFR4CLtM29fJpx3maRHgwgglHe\nrUpfisdUdK1VkQCZtDA4Ag+hrZ1NNv52za2lo+0jYlRYvJpFO+7xSJGDdKw4mwHt9SpUtXkuyCUg\nmX+AJ0Cll6bz32pofh/eyXlVlHUgFXPXWH6Zuzm3jdk/StJsG4X+7iCsGvmOff+YnNDeDRScCcKC\nAQEWb8LOZSkoZXI4c8BDRAOIGqBBpvLt+8NOAZ6MBXI77pOnG0aTgQhAB9QBgC6E7cnjepmRski8\nAOlCddV9MpPHMUZE7VIVPEnrzq0g54hLiTjpz6Ua2nqxMTZvh7GQZGNtIVJrRXo3idzIpQYm2j1b\njEFOWAklSeV/Wye8XA943We8ZmFEHELF/ZRv1hmzMNIMoBPQVYzGxRujd3ujYT5UFhnT2yLNeBHL\n+lz3CdNasW0TXtYFW434aVta4SaTw7W69ly2amtHts/MAiBUZT+O13cWwq/3+g4iDFfNDu7i8Ppy\ngA+Mh7qLu+ugMVwg1ZHtVejo7+42TBNhSlWCAjtghnRorHBYEvS0HfrnksOiyPVII1qrU8d2QaTv\n2CFXSdLEDMY1pFqquJ0ZYO1mJXDo/8boFd/Cii7afehrDbQAWj24Id7OCc20atInQSRrcOTa5iLe\nEBJwFda2VopmSm/2ntSESGJitgPw3dnfTK2WQxFa+iz0L9PaArf6ZCYvoIImIOHRwX04wN0v4MuO\n+lSRt29PeavAfRW8KxOh1lu/AUvEzUAteEJUIMHG01BsoAd0XimuHtxMigCtSrheKXXOquISbBgr\npTjcBGXXbcb7aR38CgxB70myvdwOnax0eq5K8021HVapBKVSK4BQPC5FnJ+JgcXLnFu1vZQxFERL\nKD2GLUm1eVmMks9dDpL12U/qQ3AIwEFlB61yAjnJqYqmz9oNWWAkwJnR/T04STJTNmB6p985o7dA\natXHzviA1wrsKnrp1maRPOoK+IOwCOzZyXr1yGfxStifPM4vi3icUIYPhPBeWtb5PzwC7+/hpxdM\nl1fEUOEUZIlRHOjtEt+GvubGNdjnqGq0PWMiGbux20XWxGuk3I8sD7vGaosFDF3SEJQqrEnXpYA2\nlsSudhlGqzayzI1edZQ1br4dpKAA25y2MVQASfYQRtA9xSpp1bnG+h/3ol4ZkXmVCa1KInpQhrSf\nYpS2jmUeBX1vkHxW0fXV2nhVat4gwXcBmrnrdyCr7+4tgeMOtJQSmq4cHnD3C3w43TxL2xecE6Or\nvPfgsBmWfeP1Ng+EvjpW8b5tdsXDz5qpYIwV01wRp4rpgcSTBwCXjLsX6SF+WLIk/F7Az5nFa4Ih\ne3r0A1ANqVqHxwDaagNlyfZpL0iE84x5qZjvK2oaZDfVoxYgXqS6L+vdAV67yNg3a+VVAp0y8hdp\n37ftE3bVvVs1MuWgbATpyMCpiv/E7pBbB4HbFqXWScYkgcAtW8FAVJM0hfdBWmYWAlDEbd0zaqLW\nk976sBPkrFoUvDEwjlYGfV6FbVEYbpbBdcconTROO/JPGdenSQzWjgV+W7Fud61bUZMyaXxwY2rn\nFUCoXRLGLFIAr4L6xo5SJkKToZG0W3z9dMCX0x3WHJVN1/et21akA4uFOjOxvpm7xvCoxaO+lCbz\nSWeP19MB+yCh2aiz5yp5JNL2tSXgwJ0laICU06TX9P2WMI5t6ox1aevD9jBAnu88yDus201Rw1ED\nYhqbiNBYqIAUhHYFCqxTlDGZrIWhJaDml1HYYy2xyS1sPxqNlO3svJF3Mb5J+7L9YXLcZLqmac8E\nIACOtYsWBEhjsAIJfS8fr0wOSXckey7CGuD2WgO/RcLQK+SyJ/crqodY1TPZ4i4A7TkxOdAG7OuE\ndZ+kg0O1+5N50JgaA8DrdB7EIlIfW+PGtrM90z4vGrsKFjN3JmAr3BUBYJ1MCGEP25bEI8PQASxz\nYL1K17bzPuM5LTip35X9XDsfID/vCK39J5EHkbCpahFvjp1CKzrd+HixeA0ZEEA61uP9GfNmLxGX\n64zn9YBTnrFVj5PmEd6xSmd70XKvbjhjNW6XUUYk/uq8ETbGrwdJ+N6dQa7vIMJwib5OEM+JCNsa\nm4khIAfKhyBVg32LKDU0amaM1BI/MdURA6XCTmi7cC0JIYa0F+KO9iYKmDwhaQU6kQTLe+2Bzk6S\nTAUyhkLf8H7Jmfur7/gP/t9Dgv1/BlFk7kwE83xgoB1aDk4NwDriPSbYMp7qHxFJEvxzN7GzjTl6\nwnQghJmESpeLmNJoMFfJY6kBk7ZvspDzECrC7w9wPz4C3oH+/Ix8/oUxgQWJvdLdEHKjTg6VDAso\nAbQAKgbCMVQsPqIyGl118oRDKDhOBcdDwuEo7asmT4gDmu4dtDczgfSwnjyriaVQYMMQZFhLvmua\ncF/2IbnR+4JRubnNR0k8+uHDiVpLsVqEdlmGBHFVMCsrgGDghlXr7XAxUKqSQ/XSlrMHtt+qesvr\nJzUYWwJwHwh3gTCZkag9Gz1Y6zD+dnDeGhypURcDlD1ol3mUr6Hpyy1AMcOvrPlNUV02Fwn4RJrh\nUZNH2Ah1d+1ZEwCQx3aOcC7j/DyjksdhypjfEabfOMQ/3sN9vAN+8wh4MWh1Ry9BIwgg3xzzTbs6\nVsydPT/XKelArzob2CAmTq4tKmYgswfUI8Oq+Pae47oDREpgXgTNVJRM3gFJqi8V5YImdel+JLft\nRL+1Zxhzybn+54qRCSFRMLHsFQyWe3LyupHyb+8nLQXRANC3/+/fRNUNSHPcg6xhjxPAxsrH3MbS\nT5IghEAC9nipoFliDQLqsKfb86vF3+zHAIBlQnxgLLkgaPJsCc90IMQ7RtgI81RRasXsa7u/hTwy\nC7MtODF9cwNTYPTvePuMPb7OMXwgHO8ylseCcATiDwH+PuqAJLx/3sAMLIciQPo5t/1jr8IOixpw\nih+Q3ocH3OOMMHiDAFKFNyZfnAnTXcX0HqCfFUzVRKub5fUHKlXAAUTQyxgj5SKJqO2hmby8D7FI\nMYoX9/vE0jJxZ5QckRQkHZM0Sx7+vctjqPYegzCNvAPmXaqUp4y4klKd0YwOJyI1t6NG+fdOPBro\nXEHr0MISFeGuwC0OdCHsnz3OJwEq4xMhroTTuqCSgF3mDwRAEo3qtVMFy71haN+rLfRqdghHjUca\nSGZMBAV2VmGJPJ+PzTDxYDGL1zVRxceB2aF6XQ86X5wWEYDOQZIEWoGG4pFfHdZXkQNs64SzarKN\n1bAPIEIx9kj1ypjqTIgOIDCcvzXStT3AhFGTJu/CfOtzrY2+nhNe56f4UAFe90Cr0rf2v/pzdnZY\ngaGBK8Zs4w4iBEctiS9vzjaLC40J2c4DoBlbA/LZ0anRZ2MO6HdqgFcvKphrf1UQ1aRQheUsMEy7\nMZ702Ynnl8kTJencqmtgWyuSocdtbU1y34GIBbyYY9XxCl/9vJxxWtXPaD4047ibWfM41iaz8w4t\nDkG7n/7a0d8L6OyqX+rQRBAvFzpXuCUDUb0VLKFHB0Hsua05opDH87ZgrRHn0hk1XVoiazcEamwX\nwMALYb66Kp4jlyTy132YX0Te8FR4d8v0eHsxOrDj8tSMck2mKj4g1jJ4mM+t+GPsWAGPWf/8dpyI\nBWj4fv26ru8gAnThkgNRaFTsSr45/a55ArNWTI9SlpQqAFqf1fG9jGI0eUYkhnPWz1cWemWP1xLb\nphed0I8nrfJacmZBTiLRgyetugfV399QLfnr7wQMGrnhUAA6K2LcC8wTwfwT7OAH3vwsRk2xgggs\nVUerNHonAWCwoETvRw5C8V1wGHR4T8B2jjg8lFZZIIa0urL3XCDVE8+Yy62Wd94n+F2kA8TAw5Tg\nfy+VYJzULG1XyYR5TdgBQLeB6Fi1KMUjBN8osJ263fXQgARsj3PGqYjL/rspI3rxx/jN3YqHxx3H\n9xnTe2B5KUiXhO06Cf2uCMrs0oTdDkN0He0SxMkbADz51iu4VI9TnvCwzf3ebgLjLnGx/yuslNPq\nxbX7kkAbISnab619zMzNggCr4o5GRCOVOmvgMBGhwmnVxZJMvplzla3S4TB7kWmI7IN1ffTKQNk9\nchYd41q7KZaHuRBD78ej7oC/k6p5/lm2tm2dsFapbO2K1u/ksA3VllSi6NlJe2ibm3N2oF3M9Yqy\nXQxkmq8zfGBs+4SH+x3H3xQs/xrg/+UB7o8fgWWWys7nV/BlBydqwU4hr5IamWex6r9ZgHG7lNta\nG30jso65VdVGY1FSBlPRAOFbVeobhoqO304BxxpQcgCnAtoI9QKkS8C+aesnUkCGTK//bbryeN9v\nrxbsabTrICgDmXeBebIwvrpvYzvYWN2AkhAQNDinLUlF/lFZ2FMWcHkNjrJ+ZmMiQBKDMBPCo4eb\nCfOrAIC5esxREmvzxPDs2nqw/dbAOMDYMQwQYfrDBD/n1oJ0/Dx4IJ4Jy1JA7JpuFgAmF7B4RvKM\nQ3BIxI2tZHNfkgyGdaQwCYLt/eMVF8b0oSD+EOEm35haSAUhE+7fJzCJazgAvL/bEDxh2mfkIBXA\ntwFr1aqhix7+cZT16ZniAT87TA/ce6V/UvZWvD0/Kcv8NV+MxqLQCSuSJTVIVP1w86wg16jA4vui\njuSZZC6vQNqDdDSoHUi4oYujs4Bc+7c3VGegPWN3kNbBPnrwXuArwd1U6m3uujZWZjoYtMrNlVs1\nnrLsQ3VlxHtGuQD7RWKQmaq0U8yirSc4RKKeWGiikAdpJZfczIpL0T2heKQ1YnpIzZDSACJbsykF\n4CxU/VOaW+XUOcYU6w0bYdIzqbJDKPGmp70lvWN8Yjr7lCLWV8Lr6YDgCWuepOJqDEtybQ8r3N31\n9yrP0NrS9fdlzKEieMIcqCVkk+PGbIoemDX2mLywkIruGXaL7fk7RowCIhA55Nzd/ZmFfeMnvtnn\nRsZhcIwpVGwlaBzUq8WAR2ABkgt9G4S18Y4KVhoG3bxsXDfTdDfR2ng/Pemmr/63P4/2ej27+c3r\nW9xDHtIZ4msJlbF2MjuwMn0kee7nZiXgONUODIzFG7gWp4jJcx8DY3UAAp5PPmIn2fMYrlf2W3yi\n3T2Gc6IM3h9mSCr7pcUn7iZulrgJ2K8R05cEcII7eqTB0yo4bgzO7mfhEQrhOc3YyDc5xzjOwQsb\nMUSCUxDB1f4CIgdmL8aQecJaA1brmqF7W2/z22MBGR979u7mmWTyQAGuCqIWGhgEro/T+Ex/USIx\n/J8ANzbGvxYQgfG9O4Nc30EEvUgpqSH0imMq0kv2lCZYC6XfJTmgcw1SST9U5E10pkBnIgA9MfL1\n6w3eDG6iA8gJncycg42FUDUALhrwiqNwwMK1bSDt/rlTu4GuJW7JGBmN8C26eLvobcO3xM+9ue+x\n5aT9z6SVVI9eNbUKuiHjPQGQz7SPnVQzu58irte59dbN5JuzckkevkqFQVzG5RAIQfpnMznMc4F3\njGMVveaH+xX48Y/A8QD8/VkcwKvr8pShSjCi0LY5durgLXVsrL6+RbB/c7e2w+vHuxVTqJimig+/\nXzH/ziH8cIB/f0B8WjE/JRyeN8SfSJLkFFuASRoDRi8A00OsmD1h0ypGe1ZK6zvvsz67Lmuxsa76\nLB2N96+a48rgROBEt2Zb7G6SWasmafe1QZLQqZY2V6smVpVGsMUkLBowQA4baQMtiZ5UN7wCZNwc\nnaWy22mI9t28cwqsGd3Od7dvx/j85RHOKRBrHwAAIABJREFUsQIjXteOTE6jwycCotPx2HuQP1Iq\nWWmGRs+0ntaP+tznqeLhx4TlTxPCvz4C//IReP8I7DvwdAL9+QvoJaGeuAEI+YZZ4Rv7Y2Ru2Jph\nyPeVhJCRyOFUxHj1WmR8J4/mqVBI6tTynXvlvg6Hu0OnoYoMoAdiWQEOqmhRgvWAb1RMWws8zrG+\n/0jQMmwajK+raG5kHHADqaw9o1Ut38pxEnUAoDKQKiNV2dcKMwoxMlcQJJ7MFGD5TtS9yOt8JTgE\nqP45emAOCB8D/D0h/OcH+HPC4brh/iWhFI+7uwTngONapLWjzvVZW4xZ/22d1fLVJfJG+G+/Qzit\nvZwDgFMFKqH+dEW8r5irSLUO+6RJWMAhVBQGZi8sBPuE1j6yDfEtWFu4j3WIBL/I4p1/Q5j+23u4\n3z7Kf84RmCbgdIW/JCwfL6oBlv9+3DbM14L5UgVEyhHXEvHiYtv/Kzvks8NcCP6HI0LcEAMhVJJK\n2wS4o8d0D/iPB9ApwTmhxZs/gpg8YqjG93kCLwkbE8MFBzcH+Tt3mVnrzKMVeDunbA2jqPHhCL7b\nOrM/8wiwjWZrw9jqHBZJgP7jFAHn4LwDnxNcyGp2iAaQjOy2q7IL74IC40ePkFQ2pSAKAFDuIIq1\nLrbv1LTR/tZM+CtjYchnuK0zFqVAEqD1EJiEj1jlhyQdBip5nLYFWwmIXlgUc6h4+LCrqSQwb9Jy\nb9Lq8rVEmMnp7K1M30Eaq6oTS3w1pYqtRHjH2EpsYOooHRxnup3L5kPitZq7xII5VhwOWQwOVQdv\n08nr3wWYl/E/BGlVOlUvXYdIzjQDQYJnzIcCHwXM3lY1z3YsTLJFWiPeH3dUEp8L2h3mQDhOBXeH\nhONdhg+M6z61RBOQ/dqkQtVbMkhwbC1q+z4LdKlicn6o2KPdzyh9bMxZXQ8B3MxliYE5AAfP7e8H\nT4jeGAcDww29cGCsz63Kvr/VLiezPX9MXgsE7F5rT27NmHieKqwNt4Aj3zZL9gFYltLnPbt2H3R2\nCE72okOQZ0/sMIeKQtIdJw3dqjygxtxe/aUId7E0sMmMsKXA1eNbUrBrP1UwVcT7ilwOrXPOrMap\nZk5qbIHoupFnZo1XHWHyMt4f7lc8vN8xPUiLR06A84S4E2LpNHkzPVytqNPAvN6aVMb363UvMZxr\nhU3LTbrJqYy7MYaqk1iC2p7jQAp0joA0oYMGQD//+VcDIHy/xus7iKDXqFGdQ2393MdAwhBgcwE/\nThlhYWxn2bS647Nv9DnbyIG+CMeWSsyiczf2QlIzkzEps0M+kVBKJ6+azjo6IHfkFMPvFhgxlP6L\nIeCnHkjJETSADW1X5xuqtW0TldEOOxA3vwTtGti+NzvcHHqVbk1gnFItd3U1njdhGNhhiwJcz2pc\ntFY4LwHnvmtQEIUOFifC8ZCwKKX14d0mfcTXDfzpjHzV9nXa1sy0jiONuxkdNqBAEnUi1YKzw6jL\nt2DGOXFkv79L+D2kFdfH317hJzHam/+vA/wPd8D7O6lazQHwFwA7jmvGtDvEjTCtB6FMk7/pwzxr\nC6+xBVElhwSpmp+ytCraybcKu+nBsyZd8Ky+BVLl2WuQ6uFEoAtjT1GSW+6H30iHt6TMKuHB3Y6T\nJfKZPEiZMnLP3f/CkswGcpBUAQ4BIAjb5qAdG7JG7KWIg3vRqveulDtA9PEGUKTqkbeAKUnQ96rA\nCmE4zJViWhn6GcDuIE7POYDJaJgyF6RKKAHAbu0Zx8DEM+7uE+bfefiPB+CovSBfTsCXE+jfXrD9\njx3l6lFzaKZ51oN8q7HtA9cyVkZNn60ACaO1u4sOeM6yv5h+sQeZ6m1ATturyRiJpKhfDuMzMYBP\nOEilanWP0KjlVZ9BBzxuA6Qbb4ohoBjxSVaAwMIjkzmM+4QBJRbEYdgnbM8xk6c+lzqAUNUPoei3\nrWygqRPPBRURF63mVQ18K2uEdH9A+EOBCx7402/hvrxiumQ8/LyjFo/lvoAJOJ4ziu9dVTwUoAzW\nw9v2dqnQ83mH+69/ArKypybZu9z5ApyucJ9X+AWY7ghMBfNVXkfcgehJA0YzIhXdd2camQa9+Wpw\n33fjwkD08AcPfx/h/uu/Ag/3cj8pS+auP+iihqM6zac7AlBQikeskvQ0Q1n9nEQB23nC8SUh/nAH\n71fxAlDduIuAm720J3x/AF5EfhVDRZwJYWFQlcTC1ts/vOYghpV6ja3lxotI13ARMIey7CfVOhqh\na/apJaxOAQRZJ5n7ON/6ijjQucCf9ha+817AaxE2BQ9U+yEuyFqdBZSifnTiq4AMt5ICJQKsm1fF\nfCw4bBnLLK7zZooI3Z+9s/a1HWRo+3ZSqYkmbUJrDggpIl9DY3EkS94dA/BY84RQCZccxSSUCPex\n4uFux+EPArpxYYQLgXaCD6SMwEWq/961xISgDvPDsxFwU/xDRq070M38xuvGxE5/VpIbARHuDgnL\noWC5K/AT42O9ts5XQps3uQbUL8DhcSogBpYSMTnGRh6n0gHMEAjTHSHeA+FC2NVPqRlnRgf/EPHw\nfkdJ3XBRvCMyDseMux8L4kI4nDPWVVpQmnxt0s5eBCdFEqgzvhOjXTmDuzdMZYdIt/Ox2Hca9zL0\nqrKxlsxTycHhXpmNxsR4nKq+jrFWj7GBt73v5BgrzPvIktIOctlnsq6pRWNa80wal6f3hHmp2iEK\nN59lz7ZWj3AEDg8ZC5dm/uonYSuFv4uk53VfcJwKlihdB46HpAUZDztsPABy4kMlyTfhLhLezUk6\nSFTfWJDjxfprTxH+Iua3h1r07O7rOJMwJc1HKjDjGGyM+rO694xDIHxYEt7/sGL5keHvPVx0oKt4\nt4SJ4FQR1uJT7gxS86ZihkplSWUJw1oZYu5C/T4asIpb1oJ3YjIq3WP6PpfIYnwBRIvHwKq+jQ3N\nS+3XImdgAMTfPRGA7yDCzRWCIM+PTlowbvuE3UkXgMCCOjs9XA7IWA4SVKYUmnlbIkEN7bCzSyZd\np4t5aLXOqR4JDOaOMje6LvdfhpR35/yxM0MHBf7Z6y36O/7sWz2yoZEjhUkcWUcKLaOaZANyFI0b\nDfOtaWNrUVfl0MhVxtxrBZl0E3063+k9sf4cI+sG/sGCUfWlsG81vyPgsgJPZ5S/rMh7lEB/AeC1\nKmzGZBjAGupafkmG3OBKrwcio401sSQke4l4cDvefVgxHQiHPzq4Q4Q7Rvg//Qa4m4UV8XIGrxm8\nFqlSwrUOIKZNtWdRWapblaXF0qWEBgRURWcIwKVETJ4Vqe7VZ2rfoR88Rg2Vyj3gd6HS7iW2OTyC\nV2M1SJIUq3jceh5IYu4RKSA60s8YkkpbA+j3k5Sd8OqBa3G4BuD91KvMAcIQyrWbKJlLsIMmx21t\neOQUUFcJOMbe0+N38Rifr4AcmXxzRe5mdbdrwxzHzbAreEZcCPFA8A+T3MRlB/YMftlQ/u2K/RPj\n5e9HCUIc41oiUpUk5q5EfV4yj6+DXIPQgRYBW7qhUWHGKbtWNarMjSpb2TXzSKtaGIBQCV+BmZZo\njrpOMzBjksRLzAK/IfkZwI72fId5Vt+Mn+0P7e/KF9UtUFhgvif27k2gYnvIyHgYq8f/6GIeEnsw\nxqo9OSdmUDEA7+/h7g/A/RH4+A4ggn9/wvxwBWWPeCcLbpkLfOYGIEoHF4+wAD5wG1OT2PBph7s7\ngkMAYgSWBdh3OO+BLYk3CSTZ9hHNlC14j+AIFtSPenyb1xv1zikjWGTrBxDKtZs93P0sXh0f3usG\nzsC6yT55WlXa9Oa5Ze2eQL753QSV39mc2avH9Trj8dMZ8b/wjTzBbtx5wB0nNUUU9lgIjLAw4iMA\nSHLMapQHaDXQ98OQq2j83XGCfwyIc0XcqVV0Qb3rRH/2DlwFECt79/Uw6vQ4ZyUI7qCCubYbUAN0\noCs4aeNKTxvcVUr6XBn1pYD2DiB4J2dic583mYpnLIEQ3kX4j0e4uwn+tMMvVc8FIHyM8BvJv9GK\neCTMH8TscPEVOwI8GORYfTSEoh0CIQQWRtEuYITRxzM57Jq8HS4TthKRyA/MSAeAsOaI4LntT0uo\neH/c8P73G+J/fgCIwVsBfJL2hpmbf0j0Hq52MMB/AxQyervNY7uiGXl6wuI9JtsTXGeImoeLPY9p\nrvCeMT8UxIOso/uY4DxQdwH9ttJB4Kj0+GMsiNo1KbgJsQowa8aHzjHCAoSPAW6u8J9VSmSzwTv4\n+wl3fyyo14KqTTaO+4RlKZgOhOn3AeGRML0mTE8VJ23j6CEMpuOUpbOAMdT0bPbgJhuzMdqrl7Zy\nXvbnsWBkv3p1WJL8yXeD60k7Qz3GiodYMalB4J15FJDMU+tcw/o+wTEeojAh6xvphXMd4B6B7Pch\n4VLDV+eAma4agwQYKua6L2eNueJvI/y9dkg7BDih3IHXAmDF/Fwxn6u0XdYOXvfvE8peUJ88thIa\nCGuAr6w9kbs8LAnMDitPXwFXI6Mrk0dI4o/mPausz7diSqkqsSGPa/FYgoC+Y6IOBzzGig9Lwr+8\nO+PwRyC8m4AlipdKyhihFitWdgbB2KXH1iQhk0FFbUq2rd32GgNHzaPLTM8B4D4SogOO2j2GYV4X\nDpWD+rXJbBjXnH6lm/P5+/XrvL6DCHqFIH1+lw+E45RQd2B7KsDz8BrPajhFOHhgeU/YX7xS/xys\nNZ6ZqAB9Ux+pwMxSXSalUC26mbOThDR6O1jfbGxKn5eExiqBtwfIv7eoO13z9rLk3sJQSTBYdcVo\n/9Y1ngO9qQVc/QaEqvxLWmzWvwv7Yrxn055bMlQdcEryf5bgTp7aRlrZYw4VhyjGhWZw6TyAT6+g\nTxekz1KRCFGSPqN3mUzBfrfPNLaBva5r2TvN0u5f5gVJm6kUMR8K4h3LoXeM0hbIO2DLQCrgP38R\nUOOFUVeH7Typ3jK0+TNWeYk9XnLEa444FfMaECDAObFgXBU8SKpXHHXjBhw4hoIl2u2MvVToSCp1\nJo3oPbX7vLIkxdr4hMlh4v48W1WYu6u60Op7VbpQp86PNLhdpT7BMVIEJm/JqUphBkDD3NMtsGmg\nBAYNdPLwQZgmxu75VmVrnPd7DdIqTDXDdlBT9QCqshdutfOABLUuAvW5wJ0rEAUQKp8rrn8PuJ5n\nvF4P2sKVcclRK34OxxKxKhjoHOOqjte5gSKdxdFoqywHeXKM6AQgKARkZ4d+p06aBKqBSBiCPfR/\nM8aAgFISwFoSN5oOSLWhz8vbrjB6rw006q1ebS8wDwQLTs33YAQTiKxq1HXUb0EE6+wyyrNIf5d1\nzI1WSXjDhkAH/azi3EAI7wQ8OB7A9wpaxgAcIsIi7+YnuQnTSaPYPFYjrIgb1/FMMh/5koGnF7jj\nQcCKlIDzBThdgOcz6CIafyb91falzo4aK4+yF2oCb+wcW+/DWFlF1S8Q/4PHRcw+L1cBD1IBXi/g\nV2kjWJ8L9hffOhE5x9Jr/byoL5AEswI2mi+HyOz2HLE9ecxPkkn1Dju6FwcPeAd6WlFODNIuQ34C\n/L3HFBm0McpFQIi3/SaYRI4Az8Bxhv94wPTuDKoFx9cCM6wzo0arvJucQVocjl1LupZYuhp1VkcD\np2DzuYNOosdmzLEIiHsl4EoN4KgXoOzasceJMV+jbet3mrxUgu9jlmfy8R6uVGAK8EtqwYL/eITL\nFf5+B7DDLw7h4wT3knGcCtxgRhL0nJ48qZml7KuUtV0pepV3qxHOAds+3fhJMKDdluQsiBDN+CFU\nvD/s+PjjFct/CnD3M3gvcAruNB8Lnbc2Dy3hf1usaPPTiS7cYorJEQ5R6OvHsGANjKmwGgRrl4v2\n3pJoNgDhrsr6hFaqreMIqbml7uEGOIdQUclhilbRlSTKu14dt7Z9zkvnkRAJnVoPAf+iR/jdAr9X\nhJcCykUS2yCvdXNAWAJcLGCqWH4ucBrjRE+Ypop5lo3EKugGHAgbxLezyNgIllDuCuTKvijrMeje\nWRgo3glg4hiTk+5H3gH3oeJhKgiOGiNCEsTQPV50Hex6FtzHgp0cPjnfDJutO9dbpmomh7tY8JIj\nRlYDW2yVA+ZS0bp56Bor1Lsz1OrhfzjCf2TpVrJEaXuaCnjNWE4nAKnLfSIhzoTlI2EuhJx2bCVi\nSYTsBdiw5HryMs9ipOZtNhZcLG6xNWNzAQXIKTQDzb0xMnvxIbNDZAEPjd0QlZX12+OGHx6u+Pjj\nFf4hAlMQCRRJi1OqaO3EbZ69HdvRfyjqvDWZJtBjsvGSnUAY1nOskm8oO+gxCrBwF2uPf0li0HMx\nM0tGITEkNcjCYog6fIZsB28+/D/s9d0Twa7vIIJe5pQ9/cYj/P4ILoTpbxv4f67qqi5VkelQEY6K\nUD96fP7zgmsSmlrSxXcd9LKZLBnltsESOzxEQqSuec9KhTqEoAlgpw0Bb/RIQ5JpBoyNiTB8p38W\nJbTA3q7/HTYD6xY1sgsATRiYMRYhrMLz1SbHVu332IolHLfMAAA4azXB6P2WbE2ecQgFH8k3VsJy\nLpj/ckL+qWB7jaLRPFaEBdhffNMnFu4HgP0ak29pqdkr9FaVt2SW9Tnv5PB8OcqhWHfcocDfFfgl\nwZ8lMOTKWP9HxunnA1KKKNW3/taVHF7ThEsN2hVB+pdPTqqNp+Kx1T6OlUQj7R1jqwHR98Sivkko\nZIw7KNA6PGQHTkIhTtU3hkvSJChVMVBaq9DqbT4tHpg9buZ1oyKy6JQl6bwFjgzEsOfvIEnhtYgW\nzznpTVyI+2Feu6FWA8u462rHJJjZoeweYbKgUIOkZECCa1VuS7AkIPPab9zfzLmcPebsFEzo9wyI\nE7dQWBnbk4JJk/ht5E0AhD2ZLlcCg00lMQA6/VGplOaUPDJIRvnPuC5HnxLSNWheF9bqSRIibsmQ\nvdbjTWKua6h6Y0CIpIEZoCTO1FY9ag74bYzG++xAZpNSDWCh7Q320TZnMIAJ1r3BKhx23yObaZxP\ntt/1/+f+md8IZgxAGMeT7J5KBbwHDouM8Zdn4OkMvmZQgrj8q8aLqFeWqzI3cg7gInPLWomlKn2+\n6UII/8+fJQhWRIVfVnnvzzv2n3vlOq1i5ltquFmTG92agZosKZHDqrKeEditxPCmaz4Abg7if8AE\n/M+/gk+bsgIS6CysqPQFOL9I62ELYl8uRzxvCzalhFtiP3ZuSST72Pn1gOOfr8j7jK3E1nJRbwh8\n2lH+siG9aicGAxmi00pjRdWuKqO7vuxRDNo1qI4B7v0R0+83cC24e05INQglfAy6yWk1XrxwSgoo\nVVrwmbwpVWv1iRujMZuvhNs2haIfJsxzgZtlIlOyexNWl/m4eC+MAAMijcHwGCvuYsXDkoSdcZiA\nJF4P4EnkNNED7+/gCsFNAeFS4A9ihBmYcVhyN4FmD8+yKcaBicEsgAYTkLcuydurR/Ri2mZ7UtJk\n0QC8TF4BWMK7JeHHjxfc/ZHhHhdh0p0T6FKQfmbsp4icAtZtVsPKDkY3EAa3FXOTYUxTVbYNMAXC\nu7sN2z4Jo8ERgrtNQi3JKSQGkpasixmlQ9L9+vBeWKJl89iKyT/FDO9cfKswP7J0H2Fo20b0s2xP\nEfuzRzhW+MfQ1kRlh5ID6qnAv+zwj7P4dmwVXo22SxF5XX0u8A+hsXGCJ3hje7F85ryowZ4DcgmI\nRFLdhsznvYgu/qLmwHZWXGuH2US2hpu22tE5HIPgblE9EOY3nSsMQGgstAGwJwauVaRxd7HgLhAW\n3/1uxMC2v5f93Fqt6m37fwewMnm8rLLH5BqaV1E7c0m7J+UId/QCuopBBdoiTRII+SDgAVXfPGn8\nQQ7342PG8Zo7E6FyB5AUYNxTlLaHeZJ1YMAome/SwEbVZ+YTt9dWhrZFDG2fzuRwDGqI7WW8Js84\nhoLfPl7w+GHD9MCgc4G7VsADvDPyCyO9eqQtIufQCiEet913GFA2iGuMKmOLjszPBsawa9Lk4AVI\neJyyPi+P+5iFiaNdXnaSc2erQT/XfRVLtnMYbwsR0lr5+/Xrur6DCIAeIOJI7T8e4P70g9Am757w\nkF4RP12b4dP0wPB3gL+Xw+20LriWCGa0g9O0bM6SJnSdkSGJ76aMR0hV/WGSIOg1z/iSRHsMraD+\no3v20GoL+qL+1mW0zIaiw31zsVuluf0cOn1pZCG8vd6yEm7f8xfun7/9f4W8OuP2Qy3rvW6tz25P\nZIymJf8nbXMmPSiXT1ekF499i5iXiulBKsdp7X13TTJRVUpi4IAFjpU9SkVDZ21TZlhw5FqV47RP\nuOSI4+WAD+dN2sFNhOVeAj6qDp8/PeLL9diq3fuQoJ5KxLmIeZElDMH1KkNjt/AtLbayBop8yzSx\nOcGaLLUDhqR/ckkeodZm5GXfUUwOBUDYqsOlMKo+2Dm4AUCxQ61XEsQk6qaI3auj3BNkuXeH5C3x\n62ZS49ws6h7eP6+3IrPDy4KUWj1Kll93c27jFdyhuVjL7BFAAfp+e1XN/wAU7VXMLpckenALiqwl\n1JonbNcJtXqcN/FCOMSCZSktsD0eMhYqmHehDRsAaGNt1YwDDWtYx3R0MRid+AFgCTauHTCy97Kq\nxAjW2NhbUmSVBHs2Bv447lIX64OY1tBMzFpLMEJbBw20Qg8o8Ob+/5mLmYWVADQwAcAbUPRWDvW/\nc31rLnZgzYG3AreKj4q7bsBffwZ/OkuSfxIneOfE6T6X0JhDFmCGFJHPkrSamaeD9vo+V9D//dyN\nAwnIrw41O+Q9IO0BQf0Urte5tblLFHAqAa/Z41LESDORgMtXBepSlX7elfgGULHv6QG4yTUzR3w+\nofz3J9BKmnhB6PckrKjX60H3UWFbfLoe8ZonbMrEMgM2kdKh+ZRsJeC0Ljj+W8K2T1iLdEQhk8YU\nBr/s2D555F38R2p1IvdIDH8fpIvDC2nCLUkmkxM/gySgFgABfI4z/G/vEF5eMc8Fy15AfBvOFF3X\nZXeAJXYKHBsAY0mDgyYMb+ZtPwv6Gb6EisOxIDwG8ScoVZgOjcGhlVpP2spVfZZCwKKW82LqVsHF\nw503YE3gl026TxyitGY0Oo9uAK1XPYAYKijI3BNJw+CDQB61yu95j8g7WoebvTpsXtpJewRsNYq3\nkoFiCuplcpg9MAfCjx8uePhdhn8vcpT6bxfUk3S7eP7piOsm7aqvacKlxEbr3qh3VxjPHvEvkURo\nWiru54xMXswIH1KTNEadA006o/GVd7I/m0zMF5mrOQXse0SuAe/SJs++eLzuEqNdNRF/zgGznrvW\nJUNo216fsZyBp33G/HQH5684ogKIzQR32yYcXzKczy2I5iKAvH0ukUf8y4b5vbBWykX8GUy2AAj7\nYF5kTjBrJZpd64SzlYBTibgWj5PKGZOCX9fapaTGPpy9G84LMQrM7SwwDb9T5g7jPhYkCgoYWNs/\nNFBprcApBzxGjyWQJMgkAMKldF8bWyuVBdSsLCwI6/RgoE2igG0Prci2VSme2T68k8OioCTvWdbB\nVmVd7AX0tIGuhPzEKJtvgJ20gnaoZ0J4dIgHaZk7spkqS3JMGred04S9BlxKxLWq51Lt89Q7Me6V\nNa1sxDxKPvVZUFCfKYn7iTu7xdb6w5JwvEvwgVE2IJ0kZvNBgMC0RuxbxJ5EVjoRIQaTanU2pYPk\nE6UGrDVirx5rDeKBxZ0N2IuLxkoU0DZG8WSQeeBxnPLgpSFGqMSuyTVMHiu+Qz0PYLZf/H90Hv9H\nuLhFKb/u6zuIMFwuQlo23Qvt1P1YMP3LBiAJlZKA8ODgFgcXHepTwTVNN47CRokcE62RgmRo+uOc\nhV4UKo5Lxp6kZdPsZxy8JFXTm6S9V0jUUdz15P3tNVbv5Gc0OXmTXNy2Cut9z8ef+9bf317/zEby\nj17jvFQ9NorwzI1aVRiI6IGcvI/SuEk2PgsArKIU9Tu8f16xXyJyjnj8uCM8OJQTY99j683c2+QM\ntPkh6DFX/lR7JdxaC7a2OZCN95Qn7Z8OfNiXptV9WBIOUdq3/Xy9w/M+6xwRxoEBIeficSkalGuF\nzGmVOfoeU44J4iFUYbwMc++XxrrRBi2YSwHTTih7b7VkFU4LVvbKzTQnDPPNKsU0/N605uh/5mFu\nAZYgC6Y+D+ZDx+hwCF1Ha4BVqzrpfTcDOb5NMG2NFe0k8O5hQ63irNzmmOnXB008IM9xzVP7syXV\na54wrWIA5R0j6OhmgoBFq/RwvuRJKzoyF+7vE473GdNdhQ/A9pLx+nLA5Bisut6bLht8yzqyy0yP\nWkKo43IfJVhQiK9VWOz5vV2jpslsf35z2bx3kOC81KBBmfRuH003TTdpe5z1Cm/7zfC8Gb1/+bcu\nRmeUCNVUgt63QAfwj4MV0eXq3HceBYwAp/4d/Z6ahEMrUYWhQRPAlwT3+VU8Sz6dQH+/gE4V+Ylx\nPh8b0OYDNaf11s9c953r64xaxYTTkhOqDmUDtr9PEuSqceWehG1QWRzFo7qEv24LXvPcgL5TCbhU\nj3OBMg6ERty8M4a9ChDs5+3YuOiapIr+fsb2VxJmBQF5D+27rau082OWdUgQL5Zr9cquA1wV4NJY\nM2aylsljzREvL0cUrfhuJF43IKF+1xNhv8wtEC01IJ0j4kvBdCjCSPBosonglPWxAVQh0hACcNqA\nx4NU8VuezTd7kzFnkCKWPQIoyCVoq1gzae0sPpuvjaUCNCNZq/RB5+XkCdOhwv9wL74AheE36Rzk\nA0CZGiMuaAvLQ8mtbfGk9GYA4NMuXhQvCXSp0n3i4OGPAU43fL4klM8EfyC4uKI+F5Q6t/0GAMxo\nMFRu7d+MBVK07ehWo7IlSRMqMXTdVAYHWLcaNED+OGXc/zYhPDjwtaKuGdsnj/0yI2ePv78+YCvC\nUtmqJLy7guBr7RVtA/8s0ZGmJQ5hYtwdE3IJOCwZ04FgrfLkXLFuPr51zkEFNh9wTnNj8LiVcU1W\nUfY47TO2Ku2e7Vxea8C1OrxmB2jCBEyKAAAgAElEQVRMsZHD4hmz12SOXDMwfU5LY2b9iDPSHpGK\njOOaIw6nCWkl3OcsnkYV2M4TLknOEp/ElO/uJcF7aQV4yVM70zadbz4I4HRaF6QSwOxwLREXbUX6\nJUVcq4xnJbnnvYqnkHW/qmTad26msV0S65CCw1qlTawARLJeHmKEyfR2knV3LcJsYD2pn73HXZxw\nHyruAiE4B6dAwnhZ7FQ0FipsLFw0eddevXolOBxCbcm7FdvMSHgrAfTpBW4JoFMWT5Nnxv7sUXJE\n2pVVlCKmUDFXh7QDaa24yxmUFYyhzhCQNsYCJLT9iZ3OV1kPdi+VGY4dshnMhgousXViKHq/YDPA\n7DGKd7LGH2ap+B+njOMhg6oXE/YUcFmF8WZtg0vxYrys7Z6XWHFAwTIVzCVi8mL+6ZXplsnjKcmz\ns8LTXqFGsMZM7M9D2GLyZR4Pu7AOtGNJJi/m0uzxqmtIzh2njDPWselntOyzvRvctxjG369fx/Ud\nREAPgp2DRMWnq1A/Abi7CeG+iG4pc5N48Ua4/rXr10btn9P3MydVu8wcCJCq5d2cEbXnsnOMuzxh\ncmYEg9a+xVBPS/gNOY9OAi2HkXp1WxG0yxa5JcCGJL6lKtlr3/7ZxscM2m6ZCb+8e7w11pF/4xsw\nw3pPz7EqIKPBP+S7T54QNdEeWQ9N69/Ahd6GbvIL9mtEzh7OM5YfGW7xqD8zUg7f/I5WJR/HprJH\nqlCK5kjhNlaCa62LdnK4lNDmgWgRBcFOUSbOOU+4KnBQ2eFaJFiaVPpiXTgsSJfgi1W6cGtq5CGG\nWg+RcFKzLHskN8m+68/CAuJEcpjNuaBqsOnbfOs698JA8L3H9qI6S3u/cQ459ECe+LamZ7p4u5iF\noXivLut30eEuDmwBndcmO+kVeqWycx8LbuGOJg854OFhR2Qgqw+BteMcq2Kj7nHNEXOgttYSieTF\nWp2N2s2dPJAnHFPBJUv7V+tRviwFxw8J8wcgvBcqZvhUwLzh8FJhLbgskTDQbmqVN6OlShAf3jAz\nvAOOgVGcayZve3UduBnm8wjGfMN8ul0GBgAOu5Oqcs0OoUgQvGapjozAXtHgxJIC23MsWWjeKgOQ\n8K0g4y2DyeixI8bfn/Nt9xjRdZpkg/W1+rlK7za2jO2L5tPHGnwbzZovGfxF5Av5f62oO0BZWs9K\ndV7uIUbC676gUDfZtP3nfFlaxWqvDvMw4fctNif6Sl6N3iTxi0opXrMAUtfSab7XKoDipsFcJpH+\n7NTPA1NnsibD5idBOp4GIvBeUD5n5KsAB2YmSiT+BHuOWEtsia4F4fsQkHr88nlR2DcwzuaKXVxY\n2uySmqpFAlWHfYsITwTnC8KjnqW1tyOj6kRzn0WqBAB02uU+iFEu6Cwicq3VcjZz40A4WFvm3Gn2\nO5khca/aAl2SQ/pd+14vv5skISwM98M93CaJQkQakC/C8qQtLA9iDEdV3ONbK0OdB/SSQCshfQHq\nLrRsFyvioSKu8rP1VHH9OWK+q2DKyK/AdZ9aW0Fhgcl8BKTbQKjcxn/NkyQNKpGz51W5P1tbtwAQ\n2DTd0qowHAHaGPlnxvo843ReWsLzWY0CAUlCX7NXcNxpC9rbM8sqmtJlRebd8T4h7hHTIhKEPceW\nBNm4j3IteGEQXHLUIo0kXqccm1cU9hlb9Y3dlkmAjWt1OBU52xJZfCEANiDMnjk4BAJesrBpKnu4\nT3LGSwIq83y6yBrZt9SMAs+XBa9pbnuC32fM67GZDa8l6vOS9ZEoNGD7lKbmmbOp1G2rHl9ST3CJ\nu7zQmEGWqBs4XaGVf9fP4GsRUHXycl4sQf7nGOzs72CuJKRdGvSSHWYfUWf5OQF1+nMlSFhssWVl\n4Fk7RvVn3os05+IBRP3+8lzsfK8K7CUKSH8pAAq2p4BaAl5fD1hz9/EAJC57mBIOKlkBgA/bimmq\n2PYJ1xpwLQIWJB3PRB4OwoCwNW/zI1GPgdrZyg7TVFuyfxM7wuQ1PZ4wA8P7OfU1Wj2u64w1Tzil\nCWuNcGDcxYKjdpYwuYcZHbeYIlQsnrB531kf5HAqQcavCiAqSg/WON9YVgIubCTAVM4C1tUUQewa\n6+1SZO08p4jMDpfi8JIEeEoKWG3GysDt2QPYc+9ywv/4F4O+eyIA+A4iABgooAzR+/2vz6JPjB58\nzUKlqpCKyi5gAl2Bl6cHNEo89xZCFry/1akKuKAIaQkteMxZ2y+RaxsIwVpNDTpyB01YRPcGyHuP\n7QDfXk4zfqtofotJMCaetnmN9w30qmBzZv3lAmOvPr+tiLbEVvrPCmIrAeXEFYe9NC2wd2aoxDgO\nOs/MTpxvPTAx31RWjR0gmk4JQJ0DjoeM8D6AroR0js28Ue6pb4KjS70kZdp2qvkNfA2wWKA2hyrS\nPcdNBjJeRl+0fr+3zrkiHbFArlP0+5YcXE/yDRUwne3jVLCRb5t7cK5v7g43ru6MThssJaAkj5xv\nWRmdWSDzLAZJ+Gcvif6sjAGjwN48Y3RTM7vsvnz7e7ekmYO87+PEmH3XdZL2tS6K/Nv6sl/GirDv\n2z7LqXuytuNac2yBsoFSvUWVPRs5wMUluwcVBKHQphretE6UBCWpTvwQCh6XhPePK+5/k7D8pwD/\nfoY7RPA5wR+lld0SqoJHYhRmQAlwm/A7fd72q+ratQrA5KSaLoaUsoa8jqvHCGZ2ZtFXU5Kg68vm\nhRl26VgPRmlJKzddL6tgAtmYa/7kHBxz++z/k2vcd8a1xm/+bpdz2mZR95QI36QRHg7B3371cYxv\nPvda4Z5WlE8Zp79M8F7AictlwUkri8EzQiGc89SMQ405U9nhkiZMgdp8ZXZSZVzQ9P/t++jfnZMq\nF7F4cphGvcniyExNJcB+62fR30/+Yp4ftt6CLT7nxJQsQbwCtCMOGWjLfd1XdvBsnSH0XvVzKgMT\nOkvG3t4kZEUNE8fnZVJAqmqmN0ub3UoiGfIXBtWCQ5YODUWDfpCCHIPhGADwKaGuBZwI65eIy7rg\nkiek6nsVXgPyQB73ObR9IZG1UjWA4JfD3rYP8sioknngIoDjAoQAX2hAtgkhp85CiJKMeZWrOB2j\nnQJiJdCFUE7A9WluAAizgFUPWYCJcvU4nxcccsahFqynCed9BsEhOmoVXmMJHUtpGufguFUZE/XX\n2BMd2Wvj5Z2cadNUUC/A9hLx+nLA67ZIa1pN9E6lt6ndrXJpiUsVloe9n4Nrc1j2WI+aHXwEQiU4\nD+zXiKtW4O3MZcZNEgqSzzJqemFhl1wUSBdKvbEK+rzdyAA5baXNwKXI+bFVu0drAygsQWlWMiP6\nOzzOSeQfWtXdtKPRaZ/hnBSGthJxypOCerfnkt2b/d7aNbN2OKnd06bJbUjuMSmoDwBbtTFkgAaj\nYmKQLkobt03ncDQGHITNNGsIdPHCPrEYUlidrJ2MBHTdqsNzBhgB72JtTKG388XmLjHwkj0Onm9Y\nuLamzPfAwSSiQyGnvcbj8mlCTgEvlwNKDXje5ya9yNSNJmXZFZzz1AoCD0tSeU3AtXbAwYBZQJJv\nOw9GZlW7V7ZxFBBhCQVpDy3+nt7EQKSx5+QsnpfYoeYJtAHP+4JLibjUoECtSWhU+qagEjFAAQiF\nEc0oFmjxpYGGV/WlKWTMZ/PC6i2fZYwEdLqWKPsGi/ToWiI+7YuMifqEvBZhnG0VOBdrOS9zIimw\nZD65Nkb23JnR2it/v34913cQAQCgxn47UJ8K8kuGD4C/g1ApdwmEKGvy5oHtHPF8PTT0fzycx0RS\nkja0P9vG95wWXMrUDvPgGVsR05+LVp8Aj8lRM1AMGqzaZ36Tso5bmpEbdOPEaJop23Qs2GuHwEjp\nvAlS/7mRvDE0Y9wk1DS8xt4vOjHEybsE3HOoQmXTzTk64GHKYmblIxJpxd0CLvQK8fg5pAG8DxWH\nhwLAI39hrNdJK9tjEvm1A3qrOmtwtlbT0XZAYdfqCLPDIRZhh3jAgZR6xq0tqCVko1Hkty7GLX29\nMyu0ykAGJshBstWI2dfWrUDe42sQSL5nfwhblcM2rhO2fZLAUKvMo1+FaKB7smpBGWlA2Cv73AAI\nf5NsDpQ39HEtRNh0bhxDnzO3IApUs9u9Ruz9/KD/s/dkli4ruXr8/fkBADQg1faQ3LsWiCGcfB+r\ncqEY3VeCuEqqby8B5xJaK7StevxmlsN89hUfjhvevdtw/9uM6XcB4Q/3cMGDTjvK33aUE6TFqM45\nSQx7tw8LXEbjyPbncW6wJAZrlSqDGW2auZKN/zj2b5lQbYz7VGgtQYv++1Yj0h4RorzCtKyW3Bbu\nia0lWXZ/7d/eBBP0D+a83ZvN2ZF58HZe3LIQvmZcvb1sLANuGRoj3beyA++M+lqw/uRxPi2YZ6kO\nXXfReRu4KrKj0ECoyQvb6BicGAkStQ4rAKRCeY9eWWd3E/x6MGIkpCwa6M66cTff4e13egsmdEaZ\nSDno7eAxg5Nq94efd65771gFDSQAgrUDM6d/u7qsrH/EHCqmQNhKlHa9lrDaawgA6R5/X8Fa4SvV\nY10nXK4zHtOOaSlISdZhcCwGtKton7MyCupLBm0V6eTx5ekBn9dDY4o9JPEnsUR08oxjEur/JU03\n+3jSNfKtxAHobEIAzTvBvk7dAWypTSh3iACxFBz0YnLgotKfFJCzGLmdlNK++Kqmna6xKez34EnO\nL88o2m5a7snh9XzApcjfLfkwkC8T4xBik6PMsaqRpFC5myxDn7npns18jd0wNx2DyOPpr0c8ne/w\nRQ02bQ5kdjjlzrxL5FSOp+dL7fuPmQD380JkP/s6IU6SmJZrxMvpiJOy9a76rOQc8CrHEODQO4+r\nfmfzYLBON5Vd82Owceg68Q5iGNOEwShVZvjkTc4g57uHtN992mdER40dsNeAuRK2Ipp6ADgEiU8u\nOkYjSD3ubd51uWtWxpFJQOwM7mC3jKUxvmD3rOegxBbf3gMJANn3tRgE9nqnzx9YgrAyGtCj7y2y\nJrS2wgJ+y7q+6j218dSzzJ7vpXhkb2wPqPx0MG5kB5hElLpciNFZnufTIvKuNKOyb/uuzHffxung\nBUg7F9kDthpwLRGFfYunPdDaRO8k+1Jm1xh6rU26rQ9b58xNBhCnrzXw9j4Ghti4Jwp40n3pWkLz\n47hWuX/rmGFSEjN7HEEJySOmJkOy7hXWYSUpKNbHbDAWHtaZxaqXGvCcFpxy9y752za1/ZAYuBRb\nK4y1sHpEsEokWIEMKHjFNx4JwjD+x+fxf5RL4vTvTATgO4gAQINh+n/Ze7MdSZIkW+yILmbm7rFk\nVmZVL9MD8F6AfCDA//8PggBxH4h72TM91VWVW0T4YouqCh9ERFXdM7KbQ/CpOw3IyqgMX8zU1FRF\njhw5h5AXh+1zwZe/TiACxinJvyeHnEXMxMSSjmcBAdbiqgqt2DcBIzM21TUgXDMALED8bYlXiV7Q\nqs9LEsGaOcs7J2cK2Eol00XLaLhXCvivBNUW1FsLQe5+Ljd/LPns6cHfHLMahF7//+2R9XOsb9le\nWyDb2OQL/MhIX8RaLvgsgSxa28bDuGAKCXeK/GfdKGriW6gmOEGZIfuQsXvcQAEIB6WEfpaE2fxu\nbVM31BawoKLb+FgEwGwRl41SLQ2LuTkQHu5mPB43mOKyaRUExxhdrqrZjzHV+cJMtUoenKgamx5G\nYUZQUMoR8BjlPUI9N1Veh+MW8DisSoe/Tdy6n9GSJhRgJe35d0WV1F21Byy12/66DcGC1F4nw4KN\nBkyR9JigS1Zr8nej6J+lD3VQMcaFGmPGqiyLWZBpxYxt/nCfcEsrSGGx8fSO8bM6ZfRBSQ+Q1OcB\ndh+lMtu3OxgTIbEJhUnv4arjP/iCh3HBux9PGB8LwlsHdwjAmpFfLth+3vD5z5N8bjIrNXNl8FXI\nq6ABU7Y+bKV7Frndy60AL0nuzay97NE1MM3G3eZx/1y2oLNVtQtf24UlJqHTLwHeF+0153r/083Y\nf+vI3f4qa8TrL7Z/bb2V1P2uvadPnMXSUda6fr2yv2/ByqKvZe5YNpUto/aIM4CVMZ8GrJoUSJLr\na9VrKw65gk6mDSE2fo5YKzFKD4Ym6LHAHTyierG7zHDFYdD1QKq9GSmJQF5wLGsiMTw5DJkwegkQ\nB4/azmDjGhXkE1q7Xff139zfiwBxIUJBUYtKs3SMUdrJ1iSV++gL5hxq5U3aoKhjypBaAoqy/v1u\nQTkTjjl+FV5RILixYHIbhneE7XO7t1v2uGwikrdn6DMnz/OcAtLmq54EAKQTMH+WyvjTLEFxregq\nAH1WLYfoGIdN7qcBDf2zlrvqo3Uj2DyztQHgCsrVuZkI/OEoP8+pTlJesrg1FKpiusauWJOvlWqn\nyS05wEVW5gtXkKkUh3XxiLEgG7ujiM7BqsmzjiySVqMNPF+yR1Db6L5lqjAaY4mAweUrFmOBtgfa\nel8czvOAj5cJX9ahVlCtGrpoe0CthHMDEKRy2T7bEa7ij6TJ8+k81PObU8Cvpz1O2VfLW0tC232T\nDWJGE1o2lkViAN2aL9fU9hxmA+daRdXGxW5t0xNo5y5Js8QbVxahxej5Hr0Q9CW3NcxB47Xu865A\nTAdsqbEOTFegB5J75y1byxrQxVefG4SoURlJ/ZpvAIIx2uTarkFb6mJAUIuREhinRBicMSql9cPO\nD904O5J2K9M4sLllYIrdnzr+6ABpBTFSIZzWAc/rUKn2xuBMRUQljV1o2gb197ndfwOPgLbHWWJt\n3y3jiKujzWkB1bfNI6oApq38JlTcF6AAaYWU1pqIWRkyR40bMl+DVYkdPHmMGhOapoKxErbVVf0G\nAyp68eRc5/Q1u47rmLc/c5bz6jVuPixtTApLqwzrmAljR/bTXMxOWY5+Ttk2Xfjv5w3fj3+84zuI\noEcuatlWgON5AhFXFW7rYTQFYe8KjsuAxRwBKKOQw+iuA+7oUBf/oBRzhmyIT0ohB6x3XgKeVEzx\nlWulxBYBS+p6mpwdhhASNZps9UsnACAwXVtg9e+VQ0EPElGZv3XYUmGLia1gBY2F0f8MQKnFsvIK\n4CJUcArAZY5Ys8fgc7XU9MQYfcF+3DCNGw4kvsDb5nGexVZT7p1Qrk8pVreDN8OC8U++7pDzvzFO\nx1Eo6DfXVpNM3cTFfcGQevl7KS0BscMolsyEYUp4v7/o5zk8DCvE25pxN64YhgSnQlV2DmvytSol\n6LSAIiLqK8HO4IQe925I9TwvimavKlI05lAVzb919AGTXI+IFw1e5rZdS71XhKqWbxVtp/MoEMP7\n1iZhsaKdX+8qYrTnpluh8wbCBLC+ziXL3/vQgBMZ/yaM1FfWGY227UlAl1xcHWNJeKmCOl8T2PVz\nuDFPRDuhgUotAUW1QTOwxBPjEDc83M8Y3xa4CeCNkT+uyC8Lzh8CXp7v8Ntxj8wCOMwaHCd2QJJA\naC2ktEbUeWeBlgU2FnTacUrA5K3dCfA1iGlWgbX942YOXFWwu/vmIOsNaQVuTQFuafoNBnLaYYmk\n3Qci8apX+lFdH2zeNGHNr4OM2981wLULxqkFME6BKnPVkfUElcYLOBQWcbTXxGdvgRmGVpYBXC7y\nPFJXTaxJuYJwtjZUABI9ONPW9EBiPUeDw92bBWlVNfFC2G1SxY6xIAxZglRV9DZr4DkDSyAUTf1M\nMd+RtlaQ9K9PnhGcuGtY8mCtMFcn6ghuIky/K3CjUzV5BumNjE+rdD2sHil5DIOIwe5CxHGTtXXW\nqulavOxvzBUw2e1XVcMf9L529zoQwgGgSHAPAXja6l7JTApeBMStZZ7ZQJzVoxTCunl4xygL4Xwa\n8PmyE8ZBXR+oiumdq2o545wColYrrV3H5ls/q78CPsgSkJYg1ddmQv75jLIUlFmAGAoQW9QzkNUm\nNWwipCmijmrbWQijM70KwMVWsCCSdYwL1bnhgwAJUSuhxojpGSv9OpzYgRWE9M7sbp3Oy/Y8mC7L\nazFBYV17s8Mv84iTVoFtLbWkqa+cWhJs7I4+aS03S7AlksdlqI5MlxTwZYvat67FgWIJlTlr6JrD\nJiKrLDVds3uNEplbN88puD4foRuL23vfr5MmRGzf34+76YbILGkMvMbsbDFEu/am6WMJnAn1NaDg\neo2yw2mMZyK/oVvcTLeIu/u8mC00pA0pawuc0dGJr9lfgIwLU1tH+jlh7DcD167bSUnjXq6vd91n\n9PFuP+b93JXXyTWsyihYyrUbVxMNVEZBITjXxlkYwdcCw5Z827ztWWmA7mGQ2MWSY9sv5yxCiEQ3\nNwM3hTjIPrpkgidhFYsVp8MldeNrOhZoItfWqnA7libSu2S7bmmJfS2aie5a28TmUIvB5Hl92nzV\nA0nc2hJb6xCuYl2nA+VY5x7Jd+VSJeIEsKdr5vE/9sFg/u7OAHwHEQDow5ZJKx6C9BMxeBHK98sW\naxXjoTh4xzhuQo28Cxn7kLBo0GmLQWEgkthWGTrbU1pnTQQNEVcR6682kf4I3UJTq476u34hlqp/\nSwIbsNEqsX+PiHO7sdwefeDRsxH6RaT/+bVARRBZsRp7mifkQrhT+xmLOSShlBOJY5LKzaIV7Cw9\nm4AofZ/moQpq/fh4hP/DAfy8IH9c8fxxxHEZKpPBNnGzOrIq+tU9gARkwHWl2P6YuFwBEIaCn94d\nMfiMXBzevjlLJTIUjG8Kwj0BBLy5LCibJC3rUappqzIsvPonR3JwJFWWQyi4DxmPMVULJq+/Ewqf\nw+Rk7vVz4yZm6zYFQ8MZa1GhN27BT+rmniWpc2rzZR8kebnV4eir0/0G3d/3vuLgHSEnRuaC59Vp\nDy5dqU0bNTV1n20bvMfN90PuHznG3WFBfJIXCoAnz4D0zfdVVL5q3bBgxf5tKw47/V1VAafWOxu8\nBPjpDOBISIusIU9PO3y87HDahFJdAOx9xklFubZCQIDSV2VdMGXn66Dk9ef0qkpWAHZGF6UaZPf3\nsR439wJorBtAAnFosLUVB795XQvFZ/z2cIoZfOv4W+vH3ztee+/fW5Nuj8pc6NZKmzd6qfX3zEBe\nWp+zeGcXre5ZwC4VqEAFpEGVWYcGKti4aZ3Yer8tAUgZu//iwGsBSqknwMrhXT8R/FlE7ABj/Aio\nbOwgByCH5tEebS8gILlrd4+rwN7+40hEgn8ocH+4l37+y9Kq6EuCO8wgt9a1KYxFWi1Wj+fzhDUJ\nUPuyBdUGofo8puwRhoKHxxm/ng41oSmsoLED/LsIdz9oW8VWk73K0Mkew+YVwFO2XdFWQ3UNcZSQ\nN8JFbSSrv3tpveUAqiBk0iRg3yUiVz3Yeu+/pfFjCd9WGqvFO+nfT58LlieH9RJAjistv2RhDIQA\nlEKqQaHXxIRAwOgLxpjgDg5uB+xdQtmAaZHrK5kw3mc46VpAGAv8UMBZnD0mFUSTw8OxtB5Yvzrp\nPBKHhYQCQnSx7qWpqB2yzt/bdSYz1fE1ATdJ0q/3FVOMTwzkbhBNk0O0Sdr/A6iV8KTf8aIifKcU\ncEq+JksmDGfxiu0fuQCZNAkqbe+2w5gS7R5abGL6He2e9wmX3W9jK9T3s5zP0mkZAQLkiSuFUxDf\nVbeawo0VsHVzzKEBxbZnGbvQ9rmtLRH1XLyrBD951nVcDQywn6NrgI0joaXL/ezA0PofPYdaXrb7\nI38CWfELykAUoNkpuNaq0tcPT3QtBpHzpfpdwoDhes4Gevb5uYH4s7YQWhHB3CMSt/aBonOk12iS\nvVrdcfQz880cqW0L1OaFAR5MuHogjsnjyzLWIpc5MfTMBptjheTfnbrAWKuAMQzsvsq4cG2BtZ9d\n3T/kVSawaRoZ/feZCGUPhFyNoTEUqIFKUixBHb9+vproaQ+Ymj6IsTaJjEUhSUYtEjDh79Qdvx//\noMd3EEGPXFwVbspakWOWPtVzClqJdNj5DAYrSk54MyzisqCUSUNB74L0etsD2z9fkqzSDfJ4vbBV\ncayatDS1f1kwXSe+puh6Fw0UkoC5/8zeQcI2dHez8ACA2V299rv/7GFshJ6tYEcFXDaxzCtMmMI1\nuscgdVNQwMUX5NQcHGIscL5gooRxSPUePv5uBu0O4M8XbF8Yx/NUAQQ7LHku+j23TIPCzVbR1Ijt\n10Y54676e/h9wnj/AnLA+CcPGhzgI9zbHbAfgMLgpwt4TuBLwvCUEH45Iy0OyxzURpJA8FrFIdyH\njPfjCrOxZE1+G11PxP4GV76y77u9ZX3yaSrWYndom3MLatoGLbQ2e68nUkcFrsEG4et2HRujXrzP\nfg8YawbYsoSIvgaWMuYFXLUV7N5YMNl/Tv/dFsAPU9KKroyIJBNWWRaGUHQGFKAGx/0hz6NTJoNt\n8vpsGChXHC7niJdnSbCMCv6kFEwRu9REkZp3emECqf1ZBfW6MbfbZO1J/Zz0zhxZWMesObgYqHW7\nl98GzK9pZTi0YHIrVG2klk6fxA5rOTGwg7mBOybkaq/71rpha8z/H4dRKBto0CcAAG6SBVsbgXb+\nzgPsTcy14G4/16DsoPask08gAvbq4mEirtGVKoBllHsTD12WgHLaEP+39wIgONcQuHkDLwnl/3jG\neE7IeYW3inn2IoqXTQ1cNClCsUpj01qxveKb7agaqdP9CHrcAf/rfxW11JcT6NMXeeBOs1zLeoFf\nCogS3AD4YcW4CsNnSx7jkuBpxOc1YHbNF10cPRymtwnjX6UlbavrI4Dg4N5OoMcd+OdncEf5Fttj\nBRJSp82C1i6WlQlm98Ta2BivrONdclGo2bb2iVrtIe7GrAcTqFvP+pTSkbhp+KEI2HIJuMxRmQOp\nnV9xcPrh5Gx/FmbaPmQ8xBV30wp3H4HgEPciFInE6gQlbTBuUgbBcwINHrwWPG4XsQPMXs4/oT6j\nuVvL7N+mUZhZsWNJrsVVZ6F+7QaE3WJijU3/w6qchLtQarW5Mcmk4noy4Ag36xa1v2vCrvd9KaI6\nb0miCFC2PSS/Mq/tdU5ymTMu4VwAACAASURBVBof7by4W1lLgdf7v+n7iCGidUQKtGi7ALqqtCbt\no7tmfFjhAfZdccOqAIIdloiay5YkbR6iynS99lpRKN2sr8D1uZjLi6tjyPp3+3fbB8XZi+p7V03o\ni477hq8BeBOf9SpmjCJVZe+E5WT33cbdCgxSoQZytjVIxbIJWF6594Xl/O5DvmIt9m1R9kz2VuN9\nRVzGQDasrUg1v8bJaIUgAeSp7U1swE77PoIAGoEAZKrsSwZfOVrN2eG4RczJYwoZizJlRB+rgR6A\nVfKbo5LTjMA0rQBgcMB9KGotWmqLK4GrgHNUALuN9zXQR3rf+nZTh46t3LH6PMl1Rp3P1rJTgGod\nLveoCTE7AKNvwKHFJwRS3S/g2i1MxtVirn+G47s7gxzfQQS0quN1/7BTpK5VauW1BEJBcIwdilS8\nPcOfB5hNiydCcIy3Q66b6xyMkSDBZbzZvH1d1IDs5VsGfegjiR5C7BBLQBZ4YRcQJu2bzYYCW0AN\nqRDYgjFoEhJdQyqvxqKOAdX3t99d7+a3CQK/+jvqNj9JMlKxZE4TrGOoqrRrFgTZzswoj24F5iUK\nQ8TG2RXELSECCEPG7n6D8ww4xvB7B35ZsP2y4fTbUAMuR4wxZLFWgiz2/TUGkipHVG2Cyk7okl/b\naJgt8CGk1WHaFUzvHNzjCPrTW7EJ9R447AAuwHkBzitI0Qm3c4h3EpCSYwzPBYMrGJ3D6hiFxZli\n8rkqUROZGKBD0XkgSLwFTbKY2ybiNchqd7TdJ6sA5hv65e399I7gIRvLPtiGJJ87eZnXQ1cNtaAr\nEGMKrcUmuoaIjw44aHO3BD9UP2P0gCNhJ1gCwGzMFQtGGvPFgsxcHNLm4TzjcVyqUnzhCY6AUxJ6\n81ocsm+MBEflinptm/OiKuqpuGqJZT2Ia3E4rgPOa8TLFitd2OasIwkQAvHVU1bvwU3gaHatdrMK\nE7IXWruDVLM8yXjfBdS1wJoBrKplAqxOg0CLby0Q6AMOacugGmTac7BpcJ+LMK7smux9dh3WSgLH\nGLpryST38vUtlrp15Hb90eCXLCDrPamh44KvgloLsk0TIbOv3xGcgUYayOGa7l/HIwIUGHf7Gfvi\n8PZPM7gAw6ek3uCEQV0U1ioc6GogHL0kiMZsGr0E88d5wA+fz4iHUar/QwSiiPDhMoOeTiD3DB8L\npt0G74uICTqx/Z0UwIber+yEMWIaBYAFiUC+Gk653tD/224A3r8Bv38HbCuoFODpBTivwJp0ggDk\n5B5xEYq+y4w4ZDidm1lZErb/AMApRZxPA6a3CcHLOma6BpwApAKKHlgTyucV26zJsTI+jFl12VpI\nYv9mYoMpe9Aoa3w/D6N63qfy+p4kavD+K80X2wdtbbsF2K3qZimZ99KiEn2GG2RJd6obkmFgcgMM\njKkEADEmjEU0ViafcDeu2B9W0DAAgwcFB17FIoCCLnKDB40BCA60uwCOwKlgOl3w5umCZRWnIaM+\n5+6ZsL0rZYcpbDBtBEmcTZytZ7C1icJALZrU9jQdlMkV/GG3YnAN7PeOcUkBT1vAxhGXLDR607pB\n9+nRcV2j+sNp0i2AMlf2jQHZLXGWGyRVcnSJkTxz90EAZGCq12bgLfTa74NUY4MzRXw5X9bfS3IH\nHELG5ASiXFQXxQof0UmbpQPwdp6QGDWe8SS6Jjsv+0qs1o2oxYGCvigkLhCDzkEThGyAmSajCgTM\nqktS3ZquxlES8TpWaPsCo429rZmJGXeh3RtJmgmbro3Ndplru4AAN6TJKFdgKLPs+YMTYMRObQqm\nNUEYwfhh2MAQ7Z2X1J5krSfUwsQUMvYpV7aXxc0M4Jy9UPyZMPmCyRWU0AAyo+Qba9Lu3eikiWl0\nEl9PriA44HnTij9Z7CLjnpjVutQjkLicLOUaUDK9pgpA6r0dHNcWicxtvzn4gt9NK/YhY3C5Fs4K\ni/7CnHxL5qnFdFEBGnte7kO7/5lxFWtZgcFBWh/3vmDns/4/XwEDFroUNCaLI2DKxghVsK3Y/iyv\nr5oIkLV3gbBovx//XMd3EAGyaFjFMcSMIWSsyWuVtqNtgetDb+J/Dz/Ooh6dCUsKQAJE3TrjTdxw\ndmIJ85w8PF9vptVLuNtQDTkMFvCiD3pl8xpcwVpEgyF7tT0sAIokxT1637c5ANfVqlsa47fEZeR3\nN7/8O8drVciim6H9DGjFYw51gxJLRflmCwCf16Fb9Fwde4L0jw4+Yz+t2N+t6sggJ5D+7YTjXwKe\nXyaYI8MuJtzvFrG9KoSNCGBSmnJPV7++L70gjwlQWj8bABHfPGW4O5LVPHhJFpwDtg24LMDTGfnP\nLyhLAa9A2YDtKDocafVXPbt9wjdnj6ctVgurwsA+lEpF7UEEE3u7ZVTYeNr/V9HI0ioClnAwlMar\nQXkko0pKArv3shkvCj5YCOo1ELT5Z4mxI6tSt3MiTYhtYxq8eHWH2sfeAt7bOfS3jmWVJe3N4SKV\nruxwUt2JzZE+m9f32b7Hqk4mtrZqT7BZMFV3FFaRIg0Oz10wHkl0PLxXn/WQqhCoX0PVRjEwKOv7\ngmvUUfksA6z0/9GCv/vI0ntJpsjcRKpa3/LXc/iWgXA7rpagGxOBnZy3nVMPqPHNvbBAsl8zbhOz\nnv76rfWkp8be/szcgp/b9aVVN6/ZG0ZPrkCgYB71eqHn5e8I7uDwFsJAGP+XPcppg4sbcjojJVeD\n+EU9ycUfXOZGcEX2jezhU6tgpuyxvHjsPx6B+wRMQyv/zCv46YJ8AUqm6jUvlTOt4uveVCmz3f0y\nrQ5jS93qXdRrdgRyBBwm4PEe9OUL8HICTmfgr59RPl+AJaGcM9LHgrIBy0tAnER8cblEzHNUzQdX\nrYhNfNSeh0/HHe6Pc3dPNNjO0rrBSwJ/WLB+KFjnEYBYGQLibJMLYUFT/7dk10AcayWId4xp3BAu\njAlS1VwKwfsGhtrf8ry2QsB1NU9BWZujtwAEt7nWr6khFPgdAAfEc0FSHYcQRHSZnAgriqaBtD6U\nnNq6RsA0bfCxSDvJnMBLBieG23swggAJ9WYy2G6yE12LYdDvLAWXLSDnxrQykG1j0QryW2mMDhZ7\nvUAiPtkDD5JEy/a7FcJGrl5z1MT4h2HDn+5fhPWnYCkR43QZMVwmvGwekRwu1Kyir5gERR5AS44G\nlxFI3CRGJ4y0vc96XgL8VMo5WjxDCiAYUAsA9zHhYVixixsGX+AgwMmnZcTTFmCifLZ27IOMy5yd\n9q+L3syg+9ujfp4D1zaeTKI/ElzB4bDg7m7BcRUFfV3ZcU4ek8+4jxv2w4b7eaxuAc+bry2SgQRo\nuGSH1bf7bfT827lMmsibBgMgRQzgms1mUebkGFlZg1tBBaMHZRg4yB5+F7iCEtJm2z5jcIw7zyBy\nOCWuYr42hmYjbGuNVcb3ntVKUZk8LLGJI8bjsEorzTrglyXWGMGmiRV7fthf4CBAT3AF0ReMQUDd\nJx3Tizmw+IS9BjAvW8Sptn4acCAx3uQZkz7wdyFjcEWZkxHPyTQ3uAYtFvetxWGFsF8Si0Vss4nV\n+2QAosZBGwujwfaf+1AwegFR/vX+BbtRQGPnGDkTti1g2DIcBpi2h9f5piFvbX2IjvHDIGzLzCJw\nGpSlWix+hVgde2LsfcF9SGAQ4hoqKGjrYdSYrUQZb5nzIpQKqFhqx7hhllTnlS7Hf5KDwfiuiQB8\nBxHqkYuD9wXjfcLjfMG6BlzUe9oBgPYr7UPC/bTAO8Y0bYgPkgwKtVsTZMhDuA+50t4J/iqIjwRs\nXfXTfnXVd39zjtYHO/qMmD2gUmZ9Bdj+rpY5LBtHLoLgOtfE4YzSVAUY+WsK/KtAwE0A/7faHqyv\nvl1no5FmlmrI+TI0SuNNZaUAKNozaQJakyqbMxMuanG4Xwa8SxdM04YQM1xMmD87fPx0h9Mmjgwm\ncrjfr/DHXU1U+8PoZ/21WPWqtwFiQ3F1Y9xWj9MvjN2SEM8v8OcNZGbMhVFeVuTPG778XwNSEpq8\nWXoBAp581mDHKieDY5yz2AM9bR5zbtQyGwMi1kDCqdND29ws1LC50AseAa2P2KropsxcrRP1/YOX\n5HX0wF0whF2ObK+na80OglXHUcVFHXf0URZQYqcb/z4AOy/BQ58EWuxsXAFLlKx3dGMgFa69wJsq\nub99fwYAzKeI/HQN1hW0BMESM7PqXItsnEGFm8w6zfoyj1lszBxQHRYKW2VMgIND2CpYtd+vWBeP\nz8c9fltG+fbilO7aqLiTY5xIxPH6YCp312vB1n0o9d+TI8yl3StjJNSk4BuMO2sbkXtBFfiRIFUq\n6pNukhel6PeCVmLL1SXr3ZqSbxJ5AOBXQEXN6a8O99UKpNfFNy0UaCriG7c5UyB2VNZG5XOjt0PB\nFk9WmRI7xMyAOzj4Pz1gertKBfinB/iPR/D8jOkpIS0yBqUQwjnXc7Xz9a7gcLfgvEY4tRmsuiuL\nx/rfvsAdpMWJnCbVa0E5FZw/ix+69wXb5nFahyrCd1Tb37mYj7yMQySZ+0uGWn21dUnuFWsSD1Ag\neYidAy4z8O+/gj+fgMuG9B8XbKofkhfC5WWowrW7ccOyBjwvI2ZVoAekUnpMDqfkcM4AgljgfllG\nPH7cy7kXOedcHFDEQrN8nrH8OeH0ccA8i6d78BnBZ+znhKX4ClBsFajQcTeKNjHCO4e7Dwt2x6Yh\nAXh9RvR+0HWzTBUa5fbs37YzVICs+zfvGMRtHWI9BxoJ/iFgXDcAG+KSEcbSYoBMiGOC3ymojSwg\nguPG6Ngc0ocV5QxsR3FqCHcb3LTBjQ40OdAo4sDpg2gFkSdsT4xtk7EtWfamJXvM2Vdg1/QfLltQ\nv3qnOhZSpYwKfpp2RN8zTlqht+ptJMZdKPhxmvG7uxPe/+EE8lwtr5kJMUriv58nbSsxsd4G2tmw\nSvIpYOsUMuLGMGvsHTHu4qYit6QMgtb6WdDWDAMe9iELu2PYcLefMU4J+90K79XZ4guUqULVOnT0\nBXdRmhyMRSHikR4minoIG97dnRFDxvE8Ynm5q60Ho8sYDxnDe8a/picsS0BKoqkSlrHGiW9/POPt\n5Yz5EnGeB/x8Oqi2ArDzGXdxq6wmAyG20n6W6yw1JjK9GnOjEnC1CUta4Yv13k0qwFoUGNkK4RAK\n9l7o8nO2Fl1534k8XpLQ/ZWYhPuYtV1StDFkJWWYk0Jv9QzIz4+hYGOPU5Jnp+n9EPbDht246efv\nr1oUbY44At79/oT981r1RoaHAhcl3n78dcD5POB5HpGKw37YMPiMIWZ8Oe3w62WH581rkUeAlNEL\nyC/zJeMuCpixJI8lO3gKV7Ftv36YE4TPavNcRNeM0Z4bANrexhgdY87GBJMCzftxw5thxfv9BT/9\n4QV+1Dm9iZ7SOstI5A4kijOjUJH7rDGQAHAF74YVg5N4sbCvT8YtuC6gTsH9sCEXwugHRAXk915+\nv6vAXbueT6sIQa+lAYx1D7Z7hj4WFvbs9+Of6/gOIqAFFT4UjO8JP+xnpDMwP0f4zwdYvyYAPO5m\n3D/MsoH8IJTPvFGr0mh1lwmYvAQ5kvgGpXu1hXnTHsBq3VgIp2wLCFdwwEHpTB3sNygF1H7fMN/r\nQ1lNDTk2lJLwtQBjV22x19s59It7//ftcfvvPe24p8z34n6nVQLKDNTgoQB1oyyuIBBVgRn5DPnd\nWRf/vY9I7DCehUnyOF9wPE/4cNlp1SGJmv6bC8JQEHyBT80XPVCjEDqytgauFT1bJPsl0uYNkfiZ\nv5wm+C8Fu7+u2N8t1TqtZEJaPU6nO/xyPNSAwSptdnxeA16SgAVCKWcVy6MKENgi/kcDlBzjkoXN\nYPPpdh3/qmoLozYqbV2rnlZFMOYLtDo+efmewYvOh1HtjEpf5xq4zlEubUbaPLOeRoJaWBJhiPJd\n91H6WefcRHuAtqG9tjfZy3w3J3NxuGwRj/kiVYPkKhBg89Aq5hY4EXBFGbfgCGje1mZndtwIx0Ta\nxkGVtjh6AQ8Ow4YfHs7Y3W+IdxL0pNOGUhz2xwMiSeIlbStcBZciMUbX5lV2qn9g97MDae5CwZK1\nsuhRNQEcNf2R2+HqpArqWBG1O2jOEAyjMnvkkuT5UEcJ08wwgEmomlBmBaqaNQNaAbk+h7qW3NzM\nW2EueyJ6/EOYDlzXrsLNSaboudt8YGor4WvkyoLW5lEBBkfAu3vQjwSMg/z/ywU0efhBkg2xRJQk\nhF0B4CCOIQIIDruMXdzgqemTMBPmJeLDf3MIobRe++JQSkDODssq7iohFCxrwHGNWDTBe9k8Tlms\nRS/J5icA3wCEtTQHn/56TbOkXuTpAnx6xva//4r8wsgX4PRpwKrfn4vDl9OEVMSHfFpS1fc4qzaD\nrRGnRDhnqVANTlqEXlLAX18OAIT+vWSh06eF4F8K8JLw4S+H2p7gAHjPGKaEt/mC8xJxXAbM2StZ\no60B1j9fioN/N+Hw+zN+Oh+RlJ11UXaIVxcRa4mz9dJAab6ZV7fzzhhTV1oJ33g9vd0hAnC7hLKI\nyxA5QpkZeUsIuwI/SkuIZ0YsuX7uugSUQph/KZiPAefzACJgtxM2nQ8FcZ/gxwROwPwkoRo5xuUU\n8aQWtoC0AJrzy1r6ZJSkHWmT52PV5NMX1Aq8Of3YsyDj3YDnyRUcPON3uwt+/8ML7n9cEN8TeAPK\nLHpGZQFCLBi80P83J+tndCI+6rgByVGrwtIOI8/LpKBbcAWHuGEKCXOW610ygeB03klM5Or9lf1m\nFxIexgW7acUwSgvJw8MsDJCNcL4MMKcJl6WYcwhb+64UMHlpS7tkYciMTmKDadww7hPikPF5nio4\nQ8Qgz/BvIx7/64pyXrEdCZeXCPcMBJ+x262YfiyYULB/2XB4WTAnj0tq+k+P0yxOK16AgpJlLSnK\nIjF3oZQdzinUKvQlOxSWuCVBFj1L6Gqix8I4sOLTXltrDl7EwEVnycNT0YKO03sj65oVAqRvX947\nl44lmWTtY8dXD1VmwpshYSmEk3NV/NGeQ0DsZHcxoRcT7I/CwPSvhOGyVkDN3UuLCq8ZLi6YnhLG\np4TzZcA0btjfrRgfM/afV4SPGcN5BwZhUItuY608xBV3o2iSiIbNUF1xjNFJzDCHBwOw7JkRpt71\nOFtsK6wIASp6a8/oGH+6O+HN4YKHH2aMP8mYcQFwYdAm+xc5lhYv/U5pzfGYibFSK3ABEGtvV+Ap\nYi5O3XJQHTcAZeyQ6Po8jAsKEx6WEebwMqkb2uQTMovNsLHsCCOG5HFKaqWqYCMT12caaMWAr9WY\n/nEPBsD8rZ3kn+v4DiLAJoR6zL8fEB5GjHPC+MsF4X88w38olVb58Dhj/z4haO/75f+csc4B2xaQ\nC6lnsQQ2RAIiWE8XNCklYvygStwExhTEn/uoqtc1kcJ10t7QX1erDWbNJwHS10nut673Ntl0gCop\nt3/8FsOg/9i/t2y8RqfumQlboWrVCGjvIXPdrM3GqSW97c8lCzrrScCHAqsGM06rUNhfNtl434wr\n3jycMT5mlEURfsfwhcFOPHCN0p8NYLGAn6//9HoTRcdu2QI+zyPmHOCPBQ/P6jKh1QFm4LhFfNli\n3XSMWspaaTlnhxelVW4FWJ2IdKauL62nhxpN7cPqv7JorPenA5H6a5H70N6zdT9brztB9AlGTWjb\nvaP6s93KKuRj3/vN0Lt9TmLGSIS9143Xs4qbUUtuLcD9m59m1yrfeU4BHz7cIfqM4zLirP7mNn+u\nlYn5q2pCu045EkvSdEqElyRVX2ZRWBcaZcIuJumnv1ux/0OBOzhwIuQXBjkJmgblJEam2strY+lI\nenQT05U6tLWC2HD2z2HfsmQaC6ZM/lXV/+b/bz+nwBweuCqRL8WLinxm5Mxg1YmxedjmlKVr+v+v\n3JvbdgY5J/4KQPh7R9/OYN8ta5fQ0rNS1F13P2vlWd/ouAGZUrEmcUpwJPolpQBPJ/DTjHJMyKtD\nWlxV2s8KGuTSUcSTbKUx5q+A1GUN+LzurjRorGVBVPOLtKnlXN2AFlXlPqmn95zFErSqZoMrgGDM\nI2augHD/PcJ6yKCPR+S/HnH8707YEWvA03lCyg7BF6Ts8HGZsGRJNiNFPG1e7RKblkAkoSqfk3z/\nIcizdckeH5YRdyHXCvdWHLYlgJ4TtsXj81H8ToIXLQQA8JHx8HjBNG/AM5DnsTpg2D22dTdnBzoE\nxD8mvF0uWJ9Fyygu45VWRa8FYRVQAQ07C1U09oHNLeD62a+MKG7gVS4O5cIwsUrvHby+kDMDPsF/\nsbY6vQ9FwOSSHdbVY1mDsByIa0UVQNWEcAD201rbWy7zUMfiuA54WZvTwqasj1nnirEwZI/0Fai+\nqJhrJGUiZadJUQMQAf1ZAdLJZ/y0v+B3715w/8cN/lGtQRNqO962eKyLfE9fVW5j37E8umcguIL9\nbsVhGVBA2MUNb+8vSMlhtySkQtgHXxkRV5avuF6zvSsoxWG+OLjFS8K0SYGncItrDBAO5EEb1IGF\nMfiCqWSp1mtCPmePy2WooM7oMqKTajUzIc0OPGf4txHuUEBDBnPCqH5+OTuUGfD3BH9gxJw7BxZp\nwxyHhGm3IQwFWe1Azd3DL1EsTotTJqSAuYuCRVZUMV2HudAVK8AT4Z5kbYxkYo+lWns6asmjuQT1\n94xBuGSJrd4OG34YCC/J1+dj6wobUI2twqI3sfcZd8Hj42qKClr4YcJ5jRjmXLUhbG5U1xSNjdx9\nhLuHaIKoPghvGSgMNwFhK5i2DaVIe89wyIiPBD8mvC8nAXCzhyePUIDRSfuKd4xBfLSR1I2NDXzn\nr+fpaAWN3IBI4PXYN1JjmNgx+YxdSPjp7RG7hw3xgWs7KydgO7sq0Go6J85nDCHhPoqeyaIMwHDz\npVEFtQ106NtCLO4k0lhlWuE943drrKKkd+MC58VpKmUPLmI9ftkCdpu0a65OwJWgm7hpiVnhoEB0\ns0SM/Z8HSPh+yPEdREB76Hxk0MMI+p//CJSC+PYj7txn+PiCtAp1cP8+Ifzo4d+O4MI4fRpwPI1K\nGVQf6GxbVqgBDGBJm9BMf9qfMYYkFky7Fesa8Om4k4DNeUT1hTV0lNBEvVOhuuWLIvt1ktsf1q7Q\nVxlqQNZlFv+Z7p7bZeI1sKFPWm9fc3V+Fkh3aK/9bcFH72JRq5TcHBM2mDZBqCJLm4oPbcXB+4w3\nhwvuf7/CRWB5circxEpplr8rU+IG5DAv3T6BYoZa7ihyTYw5B5yTtJkYDbfRaMVF4WVrVqCJoRUF\nE5wSb/g5y/eavgAATB2ab+PgiXEICaMLWArV8zbgoL+WfpO265B+am3HUMDG7q8JfRJYrLbMb9qL\nV73dr6Lzz3cbr4Ax1ze8oLk/9NaRFOTz50xfVY1z4VoRqyrI+jvirxNjr5Ujtwz4j+MdPBUVEHO1\nCnKtzt68ze1e94JDNpcY0l5yTC1pC04qGj/sL/jh3QlhVxD2gN8TaHTghbF8YLx8mGSurKY63+w0\ne4q1UUfreHX/3oNWmYVKXtho7PK7xO2+WW3AAsrXwMTKrmETAwTWwgokSOA4J7E6nJTqeLJxVoAt\nOnzVj3+73sh9ue5F75kI1+KJ/3lQwQ4HqowMO6RVo52YIwIXrbA5qcgWUiu2UwY+H4F5E+2Svx6R\nPiZsz8Dxy1gDLAC4aHuUgICN5bKcQgVzquihk7XF+s+rijca0LMPklgUhlaUlWaehTJra4IxDgCp\n+kiiiCsdCNt5GMa4IfDKonkwJyz/nnB62WNZA+YkrIfChFiKaq8ELLn5vT8rM2rRecGQ1iY7n7V0\nNOYCnNgjkHilrwoipORAi8fpKH3Mo88IENbQsgYMW8J4nxHGDfOy4bLFSgMW3RsBzhO7Ju71doeJ\nGfTnDft5FWbKFpE2B/BNu15H8831D9fWrzYX298GDtvvey/1lBzyCeBP5/Zm764yZnGKYbgVYAfk\nC2G9COPgZR6FVhwTQsjKYJQq4LKFGvxvqvcDoDoLrdnjZYs4Z38FzEn7iCSTJq5WQFiKuMI46myK\n0da7S1YLOm1tMtDaWgUehxX/8vsv2P+hwD96lLlg+YWxnT22xePlOGFOMu/F0lbWW1Ov75Na0yTI\nOlcDFewOKx6XGVv2OOwWHH5Y8PzbBE8iXm3AfmOTtPtgiXRMAXEZsV0aY/R32wmrslSe5lGEP5PH\nKXuck6v6Qj9qkcFpVb6uzQT8Nk/I7PB2jXhzd4F3zQlnzh6n5wH+3xZM/5LB3YKXFMxatgD3H4z9\nwwqAsM1trciFsELApN1exELTCmQVGtw2sZpdk8dxE3aOOWWck4AHl9wAcVmz6WqfZ8jaNhfCponw\nzotl4eiEfRS1TbSwCA8b41FiG4kLPkWPN9FhHxIeY3NPOWePzbFYmHJbdxbdk/a+IDptbdRzWjLh\nl8sOxuKzQobtO/LZsifxkkHRgS/iZoV0QX7J4ASkFyCvTrSoikMpRcDelwI3AtPDhvvLguG8ExBG\nW0K24nBJAcMW8TKPWIrHaZO4bevig751dfKliXwyAUy1yJSY61pBJKyN+5DwZlxwiBscMfbDhv1+\nxe7NqsxE4PIUsS7CNNk2jzWJoGJSFooBrA+jtFyYrsuLa/beT8rgmTvNGPtjwLIB7p4KYiwYdgk/\nlWNd58ZJLdI3geDXrPfX2mZKx+DiVoD8fjC+uzPI8R1E6A4KrLDdIP2j71b4Hy+Ytgs4ZZRVkgSz\nXSofFzy93NfqgVVBqqWUVclgwXUT4rvfLdgfVvHingqS+nV/XiaEDfAkVQUTpzMqc6A2caNjuNxZ\n3HQoZKAmfEJKLWbuVK3pmkb8LdqvHT01uU8CboN+oxu233/9nmTVwu6aHuJWN+d6TgREcK3gblqW\n9cTI1MhTVqndCiGRUPCXYkJNQi1787sz4k8e+XPGOmu1h6waLIJOljRKkkRXdFgbC2GUoFaybUEd\nh8Y66RdasyEzS8W555r+gAAAIABJREFUS9StKtK0Ka770p2iAWIZhSqyhyII9KgUvDdRKoYrxJaH\ngStHBqM517dfAQviJCIbZPudBFZSvTunBjhlJiAwvG/tCSZQaGMaVAG5uR/0yY9R8hhrYSDJ/F0y\nYfaijeAgm7Pe1u6zr+eZWZqSjpPRT6eQ8ds8wZGrlceedWHgiKNOiA0S5JpWAaEJmcbius1Ykue9\nZzyMK968ueDwryzBTmJwZix/YZw+jfj0vMfneVLabZGgS4O/SMY44tpCYNdYGQav5NOZgZckmgpL\naa4N9nTdthD8rcNEyizw6LVSkgbpACqQ4MlLWxUxslKWC1ENpOwze5vH/rsgt+vb7QtENRgDbO2S\nn6WlQ/u0IfO1F+QqDGEfEIOV4tt/S/+VV0Jt+hnlDJSfXwC8YP33FeuTw3qRQO/Ty6FqqnhXlI4s\n1UQLspBEwJWIlfYpX2jVRnfmK+CgzUXzB2dY29xV9fYGsrX39/e7UFPjtrGlWimSOcmpoLxsSGeH\ndfNV78eSLqcBtimeMwtjY7tKAqFVT2VvgLUHWETqjO1jLUCWwDOjVrgAqUAPXlgX5yUinjPiVEBe\nBBPjWdbtgiYsedVecNlEt+J+BNGmbghyb5hRx99At9S9t2qpWIJbZMyEzXI9J2+nse3juTjkhbD8\neYMxWsNB3sSrVBfT4uELQCTCiml1WJaAyxbwvA6SJKuuTfBSHTbnIWJGhoPZB5uDBeCA3ECRXuj0\nmllkoFxb13rWmLXBCUDewKH++RiVkn0/NmZVORUsvwIffr7DnALW5PFlGes6salux1l7xpfcwIN+\njennb9gV3D/MWJeA3WFFmESM1MA4p8+I3cdSr0PayybVUDLWoa2jlySAhhQUJCY7JY9LJjwnB7c5\nLAU4ZxGonrzM36UDYj6sAcckDFGzGTWrxyV7sY1eA37IZ9W9ICyngNMasSqD4Msy4uFlQXSSxNpz\nt3RxznhOWGapRKfshZ2yRtG4yB6fVMB3ztJSdlL2iAF41sZoe6aNUUq6PrAo9M/FY3LCKgoaIOw9\nV/DB9A6SFrsyA2tmfFwc3sSIH4YNe1/q3mBWyZmFvWnMusSEUwpVPBh1Dsp8/W2J2JhwH1IFQW/T\nsQJg+zmBBiCfgLIR1rPHfJnqc1FYGBsG8Kbk4J4Yh8dV2k06HQ1jIM7F4bOyVI9Jk3gmBU4bY8KA\nrsLCYNj5jMEJK+t5C3rt8gyFLm6cvABv94cmMDvtN8R9Rtkc1qPYQv/6fFfXXmOl2XPribFlhzEQ\nDrsFpHM4FcKXTVkTIHxYRCvslLxqyPRrQAPyBcSRNdR5xt2bBXkjpE2uPyeHk7rLmf7NKWlrrYJK\nuVyvMRanWDws7a+NQf39+Oc5voMI6DbQQuCXBfTff5ay/7yB5wQaCRQJcAVlZdA5A8eM85+Bsy5I\nQNd3ybYoa1vDDdU3sVQzii7aJlDklGoWXcHATaVXevWpJiOC6BN2PlfBF7G+s/RMnm6yTbvoIk22\nSNmij0p36oP3Oi6vII7959jxGgBhR/Vjv3pPYwpEV7CLCcEVMBOe1qFSYSWZYzzGTXUKpBdwdE2l\n3ZD4ds5SkbTq/uQT3u8umP7FgQIhnZqCvyWJULGlqBuBaQIYhdI2OC8gtPRT31z04bBg+JJhIkim\nrstOkore0s9+L0F5S+ZtLC2xiY6rM8KkFoMbCZhi8yK6gh/HFYwRx+QwqOtHX2GzJN4SLhu7V24v\ngOaqYKJ7ScWTCoCJZVMKBMAxBic9uINr7BhzMuiDDLu26CRoHZz1dItAlwNj0dXIAC5JFqmyRHSf\n0mvSe+QsMZWgYdwnPCwz9tq/Wpgxegm6dPLW6/MKOHnSpIXlvAaHqlNgVXjRQBDrr8SE+5AxxgQf\nC8rM4CNjOxKWc8SHzwd8OO+Uli4nvPel9lOuhcAkYlj2XNtz3B82zkXnnLFD1gJ4fbCsomM/2zw1\nkKWUrwM0yK2T5LOnMWtA1ycpc/a1XzQ6xqgCDQWaiHUgDOn9QAGcUdHRgMUCfOVRbu+1671ah65Q\nADk3D1lLeuYD0LE27OVMQBFw0KpGPdhlegE2p9IMuF9XpBfg6RdJDpiBNQWctoDMDsEVBCpqt9ra\nyYz6/fGyU3qwBHmBBNTaH1b4J1mIycnvklbrxG8+wRHjosmK6bEEEru5rAFg7tZ3W5+oEOAYa31m\ndEydrp/UBohXRlZBPmvFsCpsBcy0sggS8Nar1WoT771+xqHPy2NM2ArhJYUrQMmT6ECYFeIUMh6m\nBcOQcNkCli3geBYq/7Tf9N4oM8yqa2hJMQCUz3NdCJYnaQ9I2dWKft/yJknKtwNbA9h7cD3fzkOd\nitXFgRglE84fPNLmkTNhGDNClJtKrlWUfRTRz5wcsp5jKoQQhDk1TgkxZ5BrWjM5u7ovh5ARQkEp\n4jTj50Gf81jBkgzZZyLJ/mADVYiwDxnn7OraEJ2I7R1Crswrey6M8eiJlZK94rBbwAVYfy2YPwd8\n+bLDb6c95hza/e6AMWMhzPm6Mg7Y/tOSs61Iy9ewy9IyEBnpLBoiYq1LV8+3tVzY9y1Fq/Ik2kin\n5OvrTe/BYgVj/S2FcEoK4GeA2WHwwORknlsl3toNz6Q0crdXEUSpmq9F7EiPa8T6H0FcQ2LGtglz\nwFoOBEgYKqvCrmPRe5LYwT0LYHZJAUn3i1ktSbdC+LQGYUPq+vyyNUDPKuYy/m2+2rjbawWwlvbE\nUwIGJ/NzcA3gNweDJXfOAwV4SYRfFnG3sILObTXaViariH9YA/a+7TwmrggWgKlA2CsGZNn398fz\nz5LYns4DcnEVWKnfqXtCdKWCNszA/XnFflpxuoyYs9c5KTGetPQIwHRKvgJ3iVui3O8lrPHOXdxw\nFzcctyjsFxIb400LDpFk3dp5iWejuqeULEl6eSG8PE84rQOOa8SnZax7d3SltivLg1KQioAjE20y\nt1zBPiREEvbBpoACQQoJt8dtAWIrDvMS4UOB81zb2c7zgFnZLoWBpy3W1rSX1MS6TYvnFkioe7pu\n8P80IAIDzN/dGYDvIIIcGqikhZB/XbD+D0ER3QCUWQPrAhER2hziUrAdHT79usc5taq2oYUCFIht\nkAQj2uPPEtwyCJ/OOxH0eVFtBALW5HFOQme1freeyh+dODMAwJmDosIFiWVRy07Os6fcW0Wrp2j2\nSYNV8SU1uBmWb2WZN0e5eeMVLfuVz5INjusiOmiSYsjx0zrAkQcgPr7vdjMGn3GnVkqAVBomJ/S7\npBVBu1YTRryLG97tLnj3/gj3dkT+bcbyEtSuzUQUWytD9ebtztM2kp7K1f8/6/3d/ZDw8GGVRAAW\n9Dtw4cq8iE42bbsDlTYHqvZARCbmQ9ipoCGReAsDQHZCLY4adGYmPA4r5uyRSqhBv9xWrtdRuNEK\nDRCw+5OK9LtRtyZahcMCCcCq8Cqy6BhUSCuhpD3916yBHhABroPy6FQULjO2YhULws6b4nMDWQD6\navzhcHVu8p2MMBU8vr3g8HyQoEIrIBeIEJVchyRoiRoYMfqCp83rXGgsF0usJsdgL8/2miWhTtnh\n+DTi6bO4bMxJKKhflgFPSu2tY0ES2G4sgWqmBqYEaq0etbXBkjb01yfj349xH6QbYGGBsx19padn\nBLR2htZeYwwbO+bi6tpgzCG7t0ZDrc8dX5+vrDtagbc5ydcVXqLXQY6r1pxXjraucBf0NUu5XKSV\noZ5XN672GubWxsVJVO+PH0d80b59ItY1WSie0Ylw3zn5rjVHe8cBfFkG7INZP4rL6zgkTG8Tpl8z\nVhWoZBZveFGoz7jfLVXZ3SlwpXCJiI8qQBwVwLF105EmrFkCeBuXfv0CAPLtIXQqjCqaBIyBM6KX\nKnjcggbdkoyNrlTaN0CV3WTjSJp0RBJFfQfR9LDKtFOgxvtSxWzvhhUPjzOcL8DzQRK1NeKyBTws\nC6Im4kkrhJYY9P3w+SkjnYCyEL58POC4DGqjGmryZhXlXIAUGsB/6/JijJQ6p2x9b0Mq39n97J2w\nC+ZLxLxE5OIQFlGGd05owyk5kBPhZQLVVhjAmD2io7J/t8F54G5b29wvrbBAgUWckYCSgf3nVcDq\n8w6rJtpz9iCdn5EBaAziWBwGjknaY8gSSSfJzhoK4uZwK4jmSKuvMcF7xvEvAS/PEz5fdnheBxy1\n8plYEvU2RqZafy34afOwgtdsCbDDfIwYD0kYPKvD+TjgyzLitIVafTe9I9EiafFMUvDAEcMXVPci\nArSVRuaRV0Df2nKWTNVZRlgTwLnbC/q1xxPBweGXeUCggqXY/HLaKuc1XhGxxgISRoSyH0TzyOt9\n5yqIvSpbR+b4rr7eni9zJxHwoxO/RANnZH/kq4JBP1+lPUrBV314j0n2neiuWamyPLAyFxlrbp8z\nZ8aHRWLbH0dz7Lm+z1uROGIrMv4fV4c1tFYZi1UAa10Ulq1Z1G7l2gEFAD4973HZIk4KrppAstz/\nNu/uY0LMsi4vxeHLOuJu3gRwSR4nrahXHRkASzG3K6pszV442PaHxFAQSZxEPDF+W4avGH/WGjL5\ngiEklExY14B181iStI59Xkax8+xaLKNj7L2AM337anXjWAOWFGobl93qxFQtNOVz2r5m+7nt2wzJ\nR85LFE2fQjgu4gD0cRlryxMru6dw09gwMEna066F1/s4sunyfD0Xvx//2Md3EEEPZqkerB8Tfvv3\nOxQmTKOoqgNSHUjZiarsacNljgIEZOkbzho8GW3d+lkB2YhErKzRy36+7BDmSaxzCCp2U/Bli2Lp\npbTSqGJrmaUSP2jAt2SPoJvS6AiDF6uzBBOla09z7SMsrFZrLeHORav61i9M3/Zw/9Yh+sntsMC8\nTxZ6/QWjR5k9YowZ2+LgAeyiWH1BbR1HX/Dm7oJxSngsguouq9BgL1vEnHzdzM/ZDBqFivn7hyPe\nvLtg90cGloTtA2O+hFqJs76vzEYhbuPSJ60WeFrC2tsZWXAbfyC8fzzh6WUHswvMhbAUj+ja5+99\ny9Tn7BFJvbDtc72MPwG4DyKc6InxqBZaG4vasH33nD3ejCv2IWlAdX1veiCEqSWUtfrA4orR+1In\nNi0Irc57tQVzwJtYcB9ks5xVqT5rK0igUoEYoCmk23n0Fb/Bie+whc6OmnijHal0wFcHfhQGoHPI\nWkFsvlEAxrcFd39dsSZfgyfSpc5omMGJYnrSJHDnExzFGqgGh5p0EFi9pnXuOnnGn+YRH847nFKs\nbSsyv13tYbRxtXaRxkRoFaDBFSzFKwvAqh9tHC3wJojIpSlurzUhpvpcMcwK9mtQELgG9SwBZ50P\nEoA0azHS8bIqjtk79n/3LJP+OwxAKAoaXNFebn7ukzgLfG5/b4mDvS5rNGOBdEtOuAIIWymIJLSS\nzKxJsCQazLKuBptPAPIqtM7TGjF4EUhMRazwMhNiEcX5c60iyvsiAQdPOOnr7DmNTHCOEd8Q3hwu\nuCwRSfeTKYkq9i5uuH+YMZ9j1Vow0Mkrc8VGSJgIct7Rte/eyvUYf5VTOIAcgQaCHwse7mfcs+xp\nzoloHCBJMSDCpFJ1zEhMmNRm0pJEoTlL4MoasE4+4W5csRaPX1QkUL5avdPHgt1uxX0sOPw+IZ0k\nsZE5J8rzzIR7XmRNsnnmVAwRpJRcQnoBjh9Ei+jLZcJZ1e5bcieWk7NosFVA4lv6IHWq9XtVTSRl\nNto+CSgQ41n3EW3d0Aqpdw5AEsq1MtAILDZ1ISNuYrV2Ny443C0Y/+hBhwgKDtyhd7zIyVMg0C4C\njsBrxvB5xfCXI9zPjMsWsam1ZmCHtRRsxaPoOpsAHGLCXgVtAjllKUlN/z4kTN7jrLoIbU9rOkTz\nHPHl0z2+rCNetqDgjKssQKPA2/vmLMnHOYleRl27qIGlrW3P4XQaKiNzniM+nnY4bQGnJCLTxyTM\nBk+tmq3LvyZ42ooDOR8PWRutTdAQL3tt73Ak91rPBSYk3CZIhOyZayE8bQ7vBgFPFr2vBaLV8bTJ\n82LMDtMusDm86N4QiLHT7HMp1trkrj4TaNdoj3Sv8m/jzP3P3PZJi7lq25NeXynt/wtEw8jigN7d\nyNba2n6on3dWJ4bgJPk3TYY5s2o4WVwkAP05AYDEvf3nGUi9udbK2SfvdjgIy/eTJrnMVEFyABpr\ny8/CynQ4ZY8lE563oLoPAoIeNRaXAkUH1Oh8CdT2HtNLudXeWLPHELKAr12MY+McSGKGqEyNeYn4\neNx3rQFixWj3MjNVYCU6hmdCgDAnxYJYBFyfLpMCu6HGDj3b2US3RSy4iezeMkUAEf9OWuQ4JWG3\nfFxijUt6gEquuxWStsLQjuurZ7kfJ9t3/zkOadn9fnwHEepRWBLU+Tng55c7MAi7OWmFw1fU/8fd\njLt1VRXtAefssYcswKZO3FsUAoB4l7eHeyuEU4rShqBU0tEz9j7jaRP/7TnLwnYfWnVy0N7IwWcs\nujgJZZQbPdvoxFbhu0kWXltcCqMJchld9T8JJtw+Tpb41Yq3bWqwx695QwPAcRkQXcHduGJ0GQ7m\ntCDiS3Ff4HfyRevLhum4YV2FVbBlQXuf16F+z8Ow4v2/nDD85ODuAta/bOJPvki/YhOOcRX17dWe\ngVZ9dR2FG7AErL3OuwL/EPDmf1oQ/yMjbQ7OC+V1074z565HqBSH4zzggwr/ZBZqqOhhEEImPMaM\nNzHhLiYMLtd5uDgN6LPHl3XAoBubCVBZVbYPCivt7JXDkl3xNr7un41OGBFm8/huyNVZYCvX42W6\nHa8dt5X10duGLeM6eeAQxC7OCqeuAz1MQLQGTGTBiQnK6edvgN8B7x7P2DYn9OS6MUYwxAM8GI1Z\nN0TTl7BqFWmVRKzjWlK9sVRgXpLHl3XEOXnMRarKrrt+aT0CDiEjEFd/8QqCkNH3FZApqoBfnxMJ\nIW1Dl+ecMHjGvSZ9mQUQMdV5hgArm7vuIf//utWZVsZSCA6kCYQkkmu+pin3wasBFHa8to706xBT\ntz6QUWPlfUTU2AI3Pb+lm98yL7jOicxc1xkJsGxsJRgm1yrO8n5C3qRnWSrxpK0LwijJTNiIMTJV\nRom1F0BZQmK72dgvmaVPlwbCD386I50dSkK1fiUH+KEI4y0TdrPQ+V2ytdFrAqLj4YGFpCJkgb+w\naBgu3dCZ0Sq+NoBu7zG8KRjfb6BIVcODPKEsjOl5g3MFq4ou7mIS7YIU8GUVmzxL7J7hFGRs6MXd\nYcHvmPBhGYTpZWCUY7gI3L1fEd8SaOeRTrk7V6HPui0KsFBa8hWraFjnJHN2eHrZ4cN5h0sOuOj9\nMQZEKjJnlwq2NgG3+vz1cxFtXeEugQAAj+u9k1nZa1E0GILPKCpy2B99pdRF8bmXvu2Eadywm8Q6\nkA4j3NsdMEVQYUU3PbAl+cLggBiAlEGXFTQFTDjjcb5gOCW5VzngksyimCsVHwDGkHAISea8Me1I\nnofJ57re1vPurmHNHuc14v8+HXBOriZuJrQmvfF0lbyuRSrXaxGgycY0OKpj3NPnj8uI0zrAu4Lz\nGvFhnkTBXwUaL1nmwd5z/V5jwkhC2k5e9GEEoLVkyhBcAT2bGLNdawMT7MqpjlE0620ApQhIKMyI\nthdJLGdtFKH2qNs864G3SG18r9vXZF3tQXwDXuS11/FG1v29XoP+u+3xNp+JOpCdezBWxtL194Jb\nG6cljQAweKqfM2fGcSN4bUmcszAW1iyvT7rPBi/XN+uH59I+186zCZz2fxrgboUyY9HYmNn7V10j\nCoCd9wLEZ9E8sN/JvtrEaS1BtvEyliPQ1oceQLC5cUyurn/WTlzQACn5FK5/5hSQV4dfLxMu2jYh\nwHO/1uj4OyCqdgeUVQMIGLEVh+dVWmPm0sAmaXNugBO650GeCQa7No8NFMxMWJLHh2XARUHPY25t\nXwZK2NztAQTLXwywKNTmpBR4lHV0tYJ8P/4Zju8gAlBLX6Ko3CwavQrgnFKoVjpvipN+JX2or3rd\n0RTdX1Onb87VHX2ZoK+V/lNre9i6hcxQ0ir85wpCl5T24nAmGHdbhbQNs3m1Q6nG7Xv6w8TL/t8c\n7mbhIHpdjZ2v/s0SRfnXtUjgvmeq1WNAemoBCbhJZ6sfivhoc4b3BbFkxC3XZAAAHqZFAta93Mt0\nJGybw602gbkomPbB7SUTWu+0vO6V6ycGvEN4F7BfE/Iiiay0v+hrakOtfs5CGJ+lYrUqm6Kw9Qhq\ntdIX3MWEh0GEgqw3uCVPKhaUhJUi/X0WvFxXI1475NqkJ/BaVFJ/B6l4Tl4EmCYvCW/fqtAf9hlA\n23DsfG3uVYo1REdh0EBt8lphd9efWyDVAkYf6HeJowb4tYUjSXK0e7MiXmQc43FXba0qDby7BoK1\ntliAQxV4q8kgN6pg21xl/A1AIHAF9ZyTufs4yAQQq6nuO6nRZwM1MFGCYEhC8dU8k9fvvGzqg5PK\n+FpkDv4tn+bX5kBf0RJA4+v7GZ3YS9mzYQFGgfVRy7qWO2ZFn6j1gXo9l5vvue3lvVp7uKd4Xn+m\ngWUGIFR2BexPV3nrACmrAFnQXb9KqZ7lao1oc0DmB6vAW+eXrp9pAnb9uZYik2r4vUe8FGF7ecL/\nw96b9ViSXVl635nM7E7u4RGRIymyqojqRkMNqRsCBEH/H3qQHvQgCF2t6qpisZI5REaED3cyszPp\nYZ9zzNwjk81nMg0IhE/3XhvOsPfaa6+lbGF+WU08ynrWubiwpLLGIRTXOS2gV7WgrZ9b9T0qLb9e\n8yd2j1pBbzG3Cf1mA86Aj+RL0SE4B0iRzcVjTEbPInIIMJRKdmUMgOUSFVYt9PGcFdpktpuZamlc\n13alBETQA5jXToQeSz+pJq/s9xb3hSbEVu51BcpAAJeQdAP2G2shVaFS9cl4r8ye9fxbr+vrYz1e\n1+v+el1SFroutv0kZ4W1AvIbIzNFaWEsaAe2l2vuQsAYed5KswzkKpKhDHR2if6tlqys/t5q1KBx\nQySWn7lrYvyZ4N0UGvYYDVaV+62W63EFfH55ZFQroIzF8rNWyOv8axXvmlhQYpraYgSrdVT+bgEY\nl70sRIPV0o5SE0ZhkCyAxfqoY+75PlGSz/VDa797vm/+3JEpgG1LZJfPol5beb86hupn18pwLTak\n1b1an0cDpFafWd+jflOTTNPWtJ8+39pOVOf9ev1u515CzqbxUd7r5Vrf7sGLz1u0oeT7UE6+xheN\ndVbPQUnxJ6lPbYZhYTu8PD6NPz/9/VLEqeyk56yL9nersbN+Di8tQtdf5wIup/zpudSCTV1b2n1a\nnfd6LMYkrOXa+uJLTF9f93OHLszNJT5ZwI26vrVWm9XI+in2af1/EWVP7fmvWXR/Tp3wZWvkz4UZ\nMk7+jDf85fiLOn4BEV4cqSKcWQFi/fLoTUPhv4i69clOSRcFWpk4VYitJgSPflmqKo3QlqA7I0BB\nDTwTGh1XVnbrAJUi3lKYCNqIQFVdSGsF1GiFsPEyVa07vpjwzwIhJUrQ9ecvF8T1z+rxU0vE+nVr\nVsPL1z0LzpT0gzst/aNHb+l0YmttE8mr93UeLSkmulg8lifdhKuslWCtHwJ9H9Almd7eevTBQMqE\nD4GnDwPna09YiYqt2Qcx/9ym99xzfn1IEiWBIlph/uYO82VBDW63ECPMAXTJjOdAngKERD7N9B89\n9g9P0qIxWnion2mxQXPrAnfDyKv9lesoDIpcguoxGpKSas2TdxxcaBvjKv961nNeARFdvmkbfvn9\nYFKjqxbDEbYG9jaxMdI6szGpjbvn96mofhsZl6TFWcQoUTBe6yNkFFsrFSqAGycV9pgVHyZF1Itt\n1DpxXVdo6uemLL2FOcN0seQc2f4NIiR3zKh3ubhZJKEwKklcjFaolLGlKt3p1ND8ekifp24VjXNQ\nnENJrPMiNAWl3UgnDs6Lhkc/c3MzMk+G+9OWj7OTHtsoAphjVAUISOzsommQUExqcbao16yQNeZ1\n55mixuks1pOeZwlm3cdNEafU8IluSQXxWuC9up+qPB+jEq87j8K2Ht6ahIkSdU3+KNX9TEolKHuR\n+K/H5Z8TzK+PlyDDp5XkT99Q/0yks17/ngWSLqH8OsjMz0AwWAI3WcMloFTl+04v4pyZxSp0nBzx\nfKX/37+WN7Fa3H86C9MMl5n0f34rrASTcEXIE2DG0GtTKP00cHGdFNV11Ogyz5M8a7UKdlFAZ9B3\nW/hKw2+/khtxHVE/3MN5AjuS51GsFruEuST6bWDYB/yo6Y+BEEW3YT/1XMK2JFVyT8ZoiEFzeD2x\n/SFyNVKNdWW/0gPYrzfo24H4zRPhKoBuU1AvgXIN1utzfskQMzqRk8IXK+XKQGgWtfr5+KhjtSYv\nSklF2OnnCVMqiXDlR7wEDWC1fmphxe2/mNlcPX4U++cKDCgNftRyHzcZs1com9GuCAj2iRwUKSrS\noxf7OqsFXLrpUZtZgIOUZO8A8v1FAJ+cSZdIinLvjMkt2aj3YL2XGZ256SdiUjx4h1FLawwIi8Vq\nKTysAdmQhIUldpKaNetsncC/TAr/VOJY16EKTjcWonfiXlNs9mrVdP1W9RmuWRMN4HnxuS8dTV6e\nV9XfyaxsnanjTSaMUZ9+ZnNioYIvC6CeVHVfyW3sfLK2shIxXK3pVTi13uKXQqL1Gtfnk8s5toHL\n8kxMXsCQWNFeln2/tauVl9bn0u7tKp7rjRS5cnlWIVeLZtkl6nNV5X+rZF/Poc7rRWBZKwG+jVbt\nNXUsVYchhex5vVlaI+ua+ozdU+IyzzLWn8cXz9ke8kxyvQHtfmhq+8Dy+nrb617nk9gqT8mxt7HE\nIguIvC5O1Gr/0l5VNRbUsz3FlHu3ODss72FUai5s4UULYb2e9bUu+9OnRQpYnV8BpVo7xDK82tio\nY6LGhwJEFGei8gKjlzFDXj5LxtxP77t/aUcGcn4ZBf91Hr+ACOXQKqNLIlKP2tv6LIgpCW4qAfVg\nIrfdTMxim7NomQlzAAAgAElEQVQpnt9jMBz9IgRTewdrP2IVy1ofa/R7TbWuAnC9iS2I6srntPNn\nSSRk4QOoC5eg2hIELSi6rhFDu7bn75dWP1tTkj9BjdWnX69t3GqPf90oRBWc1td79Y5rlEr8JVgG\nE7Ctoq15eNpiTcQ8Lc9nLirgnRH1amcjXR8kcHMZ9yoT76X39vrR8njeMAdhOxiVqD22oSVuS8C6\naon9JGGu1WpF7YHLOBvBR/nBF7dw2MLNQYJAH8Rr6TrB+Qo/HpcyjgI3JEyJLAYb6UOiS4lkoNOx\nXd/akm2tPh4yxZVBt6rA+hm9BIbXz15DS4LnJJoUW5MW+r4SJe9e12chvuM/V8WwWkC0hELHhZFT\nHS/Wm1xIsLOSiA4687qLHGzkHA3/ph1BL0JMy3PJDQRp1cQyxuumO0+GabRsfzNJQhFFsDRk3ZLA\nqnWwTg590vQvWk6clgB7TCIkdfQCIIxRzmFrI52W3narEr2NbJzn7vVFkrFb0BtNPHrcHxJ/PO3o\ntNy/vlhrLZoXgTlptNLEnIsWgVRUavJjtcyhGzczaoNRlWoviddgql1dbtWy+hxf5tmtQqV49ndK\nichmHfs33YxRiXOwpGypKYNTog2RqHRWuZOVzVID4TWguE5S/ntAwstE8OXXy7Or9rW0YNkoRUT6\nTNcVubokqdW9qcVgO0AOCWekctsZea5z1PQmk7LMA6eTAAaVAoqAb1sbGIxYsYUkfdkglHD/BL1W\nsBugc7AZ5KScgzkQjjBfLbGsgdXCrB4LUXZJyNatVXLNJQHWLK48q0MZDXc7eHUjnz9N8ovJkx5H\n0uNMOmfCKC0XMWiir20fAhBZEhvlCVE3LZ653MgxWp5OA5uDLzR56c+vgLDSCjVY8tXjf4hczwNz\n1AXklHE0JY2LtjlcrJkI9T4ohYgy8qLK+yLhWicFWuVi3VqZfFLDreK6sATOSi3gpVZgtGqMvTUQ\noayi/40lh8wQclGPkw9OU0K/z+g+o3vQO41yGXQiJwEa5qvCTxb7biZ5RU5J2h52M6qjiGEibh4h\n4x8y8Vo0ISbD6dQTCpAuekCmWRiuk+iYFNZIC2R1HxJAShwCRBhT4pJaPVbUti0plNT2NtnDF+ZC\nrWbW+RxzdeMRWrgkxnUdkORDtX1HnJM6G4mjIifTnnenF1aWKa1gWtUWn+U5VyCigpv1Z70Wdl1t\nr1MKolLlvDPW1JYA9WxPWNP4tZK9yaoKqrJcR2mz7G2kC7EkaIsItm33swBTeYnP1na8Nb6DxWZU\nq2Vk12uyWn5SGUdVt6HGUFUrZXkOS4Kb6nMo71fZJFV/SKnludTnKjUAOZ+dleuqwtX1ULVQpTO2\nJNVGy7nuTH6mlyP71qIttDHLfWpMKgWmghtI7FNdC+p1rPNTg7B4U7lupzJJS+wS9QLerJ2YFLKn\nUzQq5DkuP2vXVGEWVferZT8WkGG5NtWemdx7sckVgebKjH3JgKgC1ZpFbLMv+4rVWVyA2rXnZVzk\nJR6vbmLrpL0l+3lhiC3jRIR0q0N8Kywp0IW1puuYQRh6RmVZ/0usbMo5N9ZmeZNcgAYB0P47G/sv\nx1/c8QuIAGVyZmwnfYs/1dddNyOnJdC0JaD8fHvlbn9hni3nuWOwAaMTc7B8nLtSXdFctIKCwFst\nE1dEzJ4HSatTaptITb5q1TsEjSmfX+l/9WgJovq0gle/jaXH7qdEUOrmU/3jX9ym9jc/9fN2DtCi\n2/Vr6utqz7IGpigJ3hg1mczZL0Oy0sjux771tvuk6U1sgohGif3NxgZe7UZ6H+iGgDpGro+O8eo4\njSKWJiI2QjfV8fn5rZNyn1UT7cssAcY6Ma+3ziphQ6RThO+e0HdeqKehqHp5D8cr+WkkP474bybi\nBGlS+FHUqAFCMAUkeF5RmqPh6TjwoQjsZGSjqmM0Z8WYpRdwfZ9z5hPKWtbLs6+bSA2ILsWbW5cN\nribwWtH6+QC2RosCcVGZXnrNJbDobCwsEtPAA12SvDVmNiVJxg8VSDCJXQPGXEsE1sI9CVo/nsoL\nNbYyEbTJpKR5vAzsfz+htGI6Ox6KndJzamBNfGsguljZ1dPcmFoRMIwRrqUHNJZA91U3cbsZubkd\nMS6JbscO7BuL2gyQMukc0J2i3wV6I0yL3gjoYFVNUKU/eWgAzqLXsLplL+bTQrHvy+berZwb5soz\nXo3Xl7j5mnqfWe5nfZ1oZSRuurn1aOooAcPaY96ronjPErCudVjq8ZJFkD9ZOZZrq79TqJ9Yb563\nWtWEpX69/n7dApOpyWVu4GCbBwdZODfOk7Ji4zxaiQPHoBMJUawX21hxxAlJ5klXtFwO3nEMBWgp\nJzgHw/WhY/NffkAfOhgsyklvUw6J/DhyetdxPA0iyBlN85H3RdSx9obXeTgvcgKNeVLnR03mqisG\nUEqEhQEB8I9/kDVpCsQ/nvEfE/EqHven40DOMAbLdrakWHQiwmpdTotyfF0np6j5eB3oP4QWQAul\nWJOiJl4C+n4k/OA5ft9xuvSMBTCo1bGUxcFEYUrl7VMmgtIZ2+fW8lZBea0Wa9+FWr4crthV1nFY\nx0YVlqs9/c8o4Z+My+V1OWTUoUf3loa6hUT2Ef04Es8eZaTtAashRHKA5BV+NFzOHSGI84T3Bu+N\nsBTWbYpaChspqcZEi0Xk7VqsFY3KHL3j6EVAriq217VsCratbzI/hPHUJcU523Zv67Vmlipu3YMq\neGAUDDrRm1zq+PX3uVVdRd292Bvn3MZkYyyUJMVp2NjAYMOqgl/Xs8SoNT7nwsbik6O6TCzsHzk6\nLY5O9Vk/BwBkzFYWiiotWFUUrrYpGSXvc2tlvqcSE9S2N6m2C9MsJkU/9aScGyDvtOyRC8Bhil7D\ncv51D9mYRVtozSSo5/4SQFXQ+umbDs0KdBA8q8yNcsMrOKIVLYlc7y2drvd0NQqSvP+Nk+c+xtw0\nABQLgEESlmFoP8/srcSll6LxY1Rldsja+RrRqHANKBJxwbQau4OJbFygL3FGzKskNy/AjM7Vyjvi\ndGl7CsssrkzICkYMOuGUKoyXUiQxYv3otMRXKokOT92DKiDss+jerMGaNRNHxDU1vfmpxtjCgipO\nT1ubGhCwtVEANZMKQzLTl1hIYrGEKbpEFQx1pWggrhPLfF8XbNb3oDMCjM/xeb5glQiw1pbRVBku\n5ZC4NxOUeg4gvNhf63P7a2EiyOj4xeIRfgERgLIwqozt6iaQ0Lmi9EvCZijVYhvYu5nBaH7723vs\nPjM/atx9ROuMtYltnvlqdlyC5RJsoyRV6issvUk5L/3HTgnzALMgliHX1kgRcsqlN2rnQmM6VN9f\no6rirQRWmYI+F52CGk/Cc9pfXSCe3ZfVOphW3/85JJ5aLXteNcvLdSepKs3JoNJCBay9mKr8nYhj\nuRao+KQZSjV+KirR9Z7O0bTn0z8F7k+bpnpPub7eRm63I/m8Kfdft2BsfazpYFAKh3q5L4aKxmdc\nH4jnhP94RbsrenOPGjSETPYZf5/xF810sTweb5tCu4+aa7ArBWRRFa700TEaHsaejOLJu1JFkMBt\nUypLSuXWglOrRFVgs17SGjWvtGdVNl9Xematz0wloKyVlIwwaE6h+q3L+xgltnPyeZmkl0DTaqFk\na6Q60GvwOtOZUjXWGZcz1ygbcvWpvgSNK6IXTi8bYh1LNXCp47Q+C1PGv1OFEYIkOd98+4rORELS\nXKMRGmahGK6fdAVN6rEzmbHkBdW2Tlw0xFFCWbHzu+sin92euPlsZPvvOtS2XybWHElnT/jRc/1B\nk7MmzIbWQ1rmIyzjLpWgqjeZFCurSDQPKBWSys45egHExjb+JVgfdGIolQMJiqB2VL3ERXOmDXCj\nJCUwGizyOa68YIyWnfNsbGBbACKXdBOxWrOKVFItAtaoZ2sGLOAC1CCkgqfPD7niReHhZRKxruzk\n1feSTGRMlEqouBjoFkjWILkyOtbjzLzpMK8Srz5c2PuJ7Z0neYV7H6nCfrrQQgWISs3OcGsi297z\nys+tKurVkoRdR8fH/9tj7Iw2Y6O8A4RJ8/C0b9awMQkbq651lyAAQrWsi1mC2ZZg5Eo5panyy/1S\nDXhWNeo7j/Dugen/ekc8S0J7eXTMc7FQmxz3Y0/MYue2nQLn4BrNHMo8qxW/FRAzJ83RO9LDYTXG\nitVt0ISTIv3ec//dhsvYcSpCZRtLYxfVfSJk/bN7jNHSIjDYwGAEQK7npoo4nc5Lldqo2r4gSZ4r\n4KawDESB3+nnyWYqideyBqmmgt40X65gj8LmULaDwdH8TmuZt1bq5kS6JsJJcT06Ho8brgUsr0WB\nORqyL212adHqqauVLxoQUunUXFb2sbWlo46RhcYse8y5CPLWU8pl32sEirLOVCp/nV2VbVktY50W\nR4dXBVSsf2N0bo4KPvVctaLXmYtelN7rudY5Omhpyey60FhkfWGY7Gyg2vP6lNuzqImgPNPMzqS2\ndqdcGEFFR+h+di25G8s8qmzDbdH16XQSvYekip2dau8/GPhqMzOYWO63AFs6CVNsZz23dxc2m5n7\naShgYmxr0dZEtjagFNxPHdfinFStG4VxkdgXvQqnnzPlmnYPmeyWvSJluE26fb8uIqUCEFWRxk5L\n/CoCmDLH6tpRWQdjUgw6t7EdM5yDKiA0vHaJwSQevCmOYcs+PCUR0KSweiQOg42JbIxqCWnIC4Nl\n0Ik3XSBkGcfnqBeNCXJjsww2crMduRl7Ol15tMv8G1eaA4NO7V4L22jR1shlX+20agCHKswKrWBf\nbBuP3vLgDS5lYoIpLUW9rqwxqegbOHKLkX7uqC0ETi/ton1Zg25d5M0wMZggNruFYVxFZXMW9pB8\n9qJHk8lMSQoQg4m87pYkNmbFxcizqPPZtsKnzLWh98QsgpN1vGh0YRzLPenycv5VhLQ+E9oIrSBK\nbiC2MBLVz7YR/nL85R6/gAgAZRHTTjyZD8635FMoxqah6dtuZred6VzEucjuP23IIaG+GfGjJ0WN\nLsJJn9+cOY0dT1PPU7A4JUlyFZ4aSmVSbF3qP43VkJIsfrXKIsGhABQQGCfHzvkWpG9MCRLKol77\ndmtfda3ivkyO2x34E3P/5wK6n3NyWAsrvgQQ1ockj0sPbN1cfUn0qh2OBP+C8lbBHF+8dutm4Ipj\nQaUbOy0UbCibtfNsXOD1zYXDZxPx33RjNvhC0a+o8hqrrYJ66x7Zei+hUKH7TLzC6V3HPIumg9aZ\nGDWzN5ymTqziCqAESzX0HA2qbEohI57GpeJYfZGrKnpIyz3aGQG7KnWzUuwq7b3SFuPq4VUgoDIV\nJFDJGCVw0rpSnFnsCKtVV732GhAICCGbibTRyB/VMbr0+Ql9uFY/6lC7xtL7mjVHI4Hx3qamBLyu\nsP7cdl1p+VZnuj6gTaY7R95fNi3QXY+bahNWK1BS0RJ71ZAsg0kMRtTWd84LqygZBiPA3KYIZL7u\nPDefjQxfadTdRn44BfJ5xn/nubwzPN7v+XjZYJQwNKptmTzfhe0hYI1+VnFd7tsSPNfA78ELqFbt\nz9bJdn2mksYvd+3l9FvP6fgssacF2FpJvzLIWLMq0df8KGsucbmP9XUqL33uLz+rshPaOb14lnWO\n/dTPXx5/zt/UgKaSK6qKQaVsSxBV/vbNFrYdh/k9kDBfvyI9jph/upKzIkbdArxLsFi1aET0JtF3\ngTf7C2Pphw1Rt6rMNFsezsNyXoqiop/b39bEISJOBTVAvkTR45iTKIyHMoatlupRbIHewgJZXzOA\n6soXH46E3z/y4Z8G5lmsboWhJYyus3f8WFg7qoBnH2fLJeoWUHZabGcvK8VzkP1lLOd9sKEB5PVc\n5ou0GX04bpszjkKYH0NWnL3FN3eF533Odc3TSqrz7q3m8P3IYeyxlSGDOFeIterzcaDaPlrXLtXW\nIQHr6jxcnF5+qsa0sFsU4azgDx6z8+iNRu9kXc8+kWdhdqAzzkIiEh7h+uQ4nXs+Xgdi1tjSmrj0\nfgvzzDfx5gW4AhqAMBdgdH1U+8JnzjpIO805COjo8+KQUCuptfpe15j6erGsE3+TnaUl5683Vz5/\nc8K4xLol+HLquD9tOQXDMYhQYmWSrTUaKkDodKZ3ga6XZLte32AUd5tRErh50SFY78lCA4eDi/Q6\nlaq/MKb2/cx+N3E6921+fbxseJi7xt667Tydjtz0M2MQVsfj3DEmjVGy3g0m8dXuzM12JATDw2Xg\nx3HgUgiG+35m+6vEznl+N98z+yLgHA3D1LNzntvtyO4w8fSwkRggah7mnilKfHNwUowaoyUkmYNA\nm4+wMAXrUeOBClZco23P0tf1IopW18FGnBJtEp9UEWkV0KC29pyDaUmlVtIaCRoT5TnduMBdF+i0\n5cFbxlhZcgLWaqU+2QN6nbnrInmGC7rpIYlmUuLXN0cAHseBj7Nt4FXKkJOMkd4G7r66EpNuDIWu\nC1ibyFnxeNxw9o5riadu+nlhkV22nLxjKvGhy9BnESTe2cChsMw2LtDbQEya95cN7yaLUYpZ1bEr\nMEJvMjmqxkqtgGdth6lfV4dWWwoztVXRaYnd3vaerY283lz58vMn3FZam3KCHMUdyE+GeTJYm4hR\nM9gIQYqEwqIREGxrQ/kMAWNPQXMKlqrVs2YTGJXZbSY2W4lnDuct2/IHPokjRFfWUZD573TmWtaa\nMWqM16v1ZQG018dfDQmhHL9oIsjxC4jAsumaDbjPDF9//8R1dFwmCbBOQZBQpzL73cT2bkY76N5q\n1G8+g+8f0f1UbP0gRY2xif3NiHMSjnTXAdCkXClMgb6oS6/Pw6rn/XNrupTVCddHjE1cx67YPSa6\nmJqKeg2AaqAAi0VQzCJkJ0wFob2tg7V6rBPJ9c9+ioqsntVwXt7R5Vi3TuQMPufSy6mfVYJTqZL4\nEkRL8JdZVx8p11fFZsiVum9QxS6nJuV92TD3nef2cBUbxi8cu/uJyVvGEozFrLBJoZVp5/j8ehUx\nLfTMnBekWveZHOBy6XgqlTyg0ZKvJTD0ebEda8XBUlHqtJzzWKoiORebsrR4Tgt9XDazoVQ6DgVo\nqOe4flY+LXRjoAkI+rxULKtDRVWsX2ipuvk/V5Emo8SlYWuTVKVLdeXlUZ9VrZKlLPR6t4oEFULL\nvgZhJQwGLlbztlet1SEkQeaNrjT1MrLK9cxJaKgSgmTckOgOiZvzyHenXaser5/hYr8n91Kb3OiQ\nH0uA0BLLEmjsvGdT9AZAqoMbG9AG0jWR/vGRdAF/UkwXy/3DLe8vG47eMZYE5+ACxyCe7FNS9FnO\n35QN/BKl2huSJCn1PATMAVYVjUvQLSAcC+PAsW5ByW1O1dcv6tALYFCrlrGgE9UeCkTfxajE0UtL\nlohOqjYv5yRVpLm0hVTgZy7Pbo65gW91rajzpo0T8rPKRf2+MnPgeWCyMKHy6uvn15TIzCmRChPL\n5WLzmYWJoAqFNimFS5BL4sTtFn79OeZmJ6KHb1+jv31HH77h5jQSvVgA+1mSBJMyoVRLjUponbl7\ne+E8dszJtEqx9LZmxmhbG8DLYzACuPUuoIKwZiqdvD7jOUmFsM6DAdErkLaczBRpQaxUhaQKX6v0\npEz6cGH8Y+LpMnCZ3bP+3UqL/zhLUtJrCUYfvGmAQQacUuysrFFHL3P1837pTY9VkTypZmsKwkY4\nXXpOXloqFLIH3mxHEcdVWbRxgogZs5qHqSS6KQuIYH615+bDE5/P55W7jMNFw6UIQ2gWFKXNZxaW\nlV7R5Ct4sAYu55jbmgdL65PPiPr6rLkepQVB64wbPNotg3s8OYxNaBNhgvHRcrl0HMeex7lriaFt\n7KlylitwoM7nCgxWULAB9Lm2fC1rWhUkXP5W2inXQsK6MOhq1drnBVSo/zst1U6rFIcCHry+uXD4\ncqb/bQfakMvEz3NmeByxf0x8d96WczNcS4N1WieJLLoDw+AZ9oFdV5I/hHb96uZKiKZV1qe0VObr\nYZRYYh+cZ995DpuJ/X6iPwTcHbxKM8oq0pzZ/+vE7nHHHGSvvB0mtpuZw+uJnESM93TsOU09Ke8J\nWTQ/Xt9cuP1atHVu3l/x37xBe7GR3gwz9ssB/dUNX3YfSMdIvII/aYYPGzaDZ/dmZvj7nsPjhXB/\nYj5qvv32hqt35Ay3w8TNYSSlRZ8jZ4hRY4wkkVoXe9CsmmV0TLr9f1rN4/pM673a28jGLHzTvROG\nx856BivV76u3AmaVtf3D1HMOfRHey2xM4ovdmZvOsb0O/Di5VQVeNyHMegjonflyGElZGBrHcgbC\nBorcvb7ghkT/PvBPxz0+C9u2inuCMI42/+OWL2/PwqQyYG5sc5W5+cMD04PmfOw5X3sOu5HD2xG7\nhVfvrrz7sOdx7Mv6J2oLmzJePr85sxk8m1czSollbH6n2JxFLDYuS6YUDk1sxayUwSMWx1OUpD5l\nWXt9mXu9juz7icPUMbQ9IvPb20d2u5n9FzP97wbU1kHK5NNMOgdx6XlK6FNuIN3uLGzIOUl8IMXH\nyK7zwtS49ly948frwI+zZYwLS21d7Bo2nt2Xge4p8vn52jR3bLG23vSeEMSaPJec5Dj2nL0AbCk7\njsFAK8LkZwWZn2uP/uX4yz9+AREo1VGVMTuF+fUNbw4j+TgyfXtm/83M5rhrldvDlzPdlwb92Rb1\n9Z30Op5msa0qyV+1iuz2AaU9h6DZHmOhkyl6k/hqf25JjjWJEDVX70hZEriaQG+N9ISFrOlsbC0X\n9ij0fc0i9tWXBY0k1OuahFTRLcNL1eEFAFizCdZCMZS/qJWK5efLjr7ukVq/vh6f9EYj7QDr6sLB\nCT2/etPLJ0iwM5iFJmjyoog/at3EXTSVmllFyHJ7/cYG3rw+cfO3Eff3r8Bqhv092+vcKj+mABWy\n6QqBXqlF8V4EueS8Y6KoTIuyv+khGwkEc6GjVobDuKoqhkSj2ZnCDpnKmEmFZtnGpKotBTUcLKFh\nAUcGE9l3XmhoedOYHFUoqLY3JLVoaiz9b7RzAKH/DyYWES2p0a01H6r9Yq8zX/S+VXKMcmxKT798\nbqHJxSLEU56n00VcsVDtrBJRxZjhGiRAd7pS0ytdVRK82t9XnQYq9bleS1b1NaKJYN9oXsWR4UNs\nydHBhdIeIu/Ta82sVanGCGVw23nSZbkvSkk/+7bzmFJZmeLz/uzx0ZLuFadjzxisCDgWxsnRO3m2\nKCgJVnixxyolugsH5yXxorpVJBJSge5Sbi0DWyMU3qqpMOiljcUVamtQ6z7xAkZqiHH1oWU81Tld\n56u0ilQrQUkilMqlbUieXW3LqtdilCh4Qy7K3Uv1UZeEtwKlWuW2bKRME9KqR/2+yMc8Y//Aqvcy\nK1FDz8+rxrqNhYVWWfthBUAQdsL6mhszyxry6zt4+0YED7VGXUf0my3d7YPYtU4JO0V2Z1/0C/Sz\nW9q9zrx+unCcu8KSgl3nGXqPHXuy0m2e+tKKArCzmX0/sxlm5tmyGTclyEt0uop4yRzT5b5W69UK\nsGq1UhnPy3PV5cZkH4n3nulombwtLROSqAnglJ4loracm88CYIwlsvZqxXag0sgzexvxSXFZgZq1\nvcm61PZFKJU6E9i4wP7VTP8msb/OTI+G+49bHq4DxyCioRsTy7MqOhZJod4e6P9d4PPhQhrBfRfZ\nnwbOs+PDOHCJho3R9FoAyK1NbY/c2jq3CvBSgLtYrihS1946PlZjl1KhN+KyME6ujU17jQUMAWMT\nMeiFkZOEWSjvl1uCvnOem9fS3rKbJoI3nE89IUp7wxgsGmEx2dKuV6uvFbRJGa4lgdwag7QELoJy\ntrLMWNbJrU0cyvOaV3POKBk4VknF9rafMDrx5vbCzW9m3G826DdvoHfFHnQmn2e4BkzKbA6eg/MN\nrLhGVeaiFA2aUKZSsr7sPN3bzOuHC94bnIvs30yYHkI4Y07pWfHAln2h07kIM0Z2LnC7Hbl5PeL2\nCe1AOYX9SsCMPAb254kQNOMkuhJ9F9geZuxeYr7eezaPnsPTyCVYnmYn98MmzF6hby32NvL2/oK+\nZFLu5Vl3Dl7tsf/LBi4T+eOZ7scLOV2xQ8K9Vuhf3aL/B4V5GnHvL3w+nZoexv4wsf/SY7YKtSnt\nj4VCmFMmjcuilzyEUWMnGVtGJ6bZYrV5BpavQUpTnqMrzMxX21GcrLqA6yLaJNErCZqUFOdLR0Kx\nuXZIu6jEJYMN3B2u7E8z9ri0K32cZfynXN07lg3u65sTGVXYVKYVIioLy2wy2/3MoBO+7GPzei9S\nGfU3b+m+nEFrqYBs+tKzMTPs7unuR4Yfr/TfB4Ybz+ZvLfqzLd3TxPCPDzx8P6DuhU13CYZDqd4f\nbkY2byP2VpN9RunE9mlmY2IThDRKlbgPbpxHsbBiEqUVSn8a6xqVOQwTt3fXcm/E+nUzeF79vcd8\n1qPv7gS0TlmEtwEVxVbXDhlSRPciavhqvNBfu/LejjHqIuoZONwJu+B06olJsb12re1BYiY5J6cy\n/S7ivnLYN4mvx8e2NvWvkoi/9opcdcJmGW/bH2bO5w53kXaOYyisuJiFLaZzG59RBt9fFRvhFyaC\nHL+ACNAmlN5q+OwG/T/9DqaZ7b98h/t/3nPz3Sg0Kw39bzv0r27h81dw2JH+j38gfD8RjlJtyVnQ\n4pRUQxNtEeipCLzTic+/OmJ3ot5sduIVfv1Rk76Fs3eMJbm1pQIZs6LrQrGKgs1m5vHaL9VHFqpm\n1hnXku5FTTlCURtWrddS/Rmz/vn28OnCWResvPq+HhWAWIul1cOUhLfXiVfdXPqyJPFWSvrpnU7s\nXBCwJNgmrGhKn7suFYtGty9fKy3B7dYGXvUTN38Xcf/pc3i1h+/v0S7jnOgndKU6k1Ecg6F2o6rS\nh55U7aletbyWKq4iozrQO4VzERvSM2ZAXp1T5lOq9586qm0hSOAkAb9s2FsbOGwmbrejMDqK7kan\nM7NawBT5QGAAACAASURBVKLYNuXlvHNZ7F2pcMWs2LnF7UP65ko/sYaDTWyM0PO+2FzpavUsCzUy\nGtXsTY2WwC9n6Yt1NZFVC8XOaDiYuinn0nerio1kZjC6zJWa0Fagrya6n25WVmeUyeidY/hbePPf\nRpkzJjL4yFhsWcdoOGrDpBW+9cYnbvYj9vFGxm8JVqdkmLxUZjelKnctvbFz1ByfBk5T1/rIKw08\ns7Tz1B7yyo7xLEwjWwCM22HiyXdFuCpjjPzfFQDGJ6FUDiY3sK1RnMtYE7tHSVaykfNw6jn4sj4q\noLMONpSiqDLL/dy4wOs0F2eG55ZrGhGlknEun1ODi9qulZRYyC7rxZqm/vPzoN7Fn2K5/Klix8uW\nhp9r3frJY5xR3pP3e5gm1MMjvL8nXz3JQy7TQ2k+mcMhaabJAjPDzrN9CJy9JHr73UQ3BPpzRMXS\nqpUzU9aNDrtxof2dMZnhGAvwoosmTtW9ka9VqolexpXgPWYB1Wobk8wXAU6EChSJx8w82dZfH9LC\nOGk9vCVhrxa7Ms7qelbZJgWgrFUunXjVTWI7W2jzuiZ8NmL7AnwbcTPZlcqxcxG3T9g3lu5uoH+c\ncP90xHybeZw7Ltq0sR4KwBmjBmtQv3lNdzuQfjxzw4T7GOmPItYIsDGWrugKDYWx51MqfegUWraM\n2ZGKjMi9rCD7ut2l/taqTNdHEVF9TAIcJ0VgYRDkvIAGAGiKVlKks1INrfdg81uFPjiIiXSJ7D+c\nSBHCRTNfTdNqMi4TJsV0dVyvjvvrprU9fJy6Bu4lNHNcQOjeisp9LAwHp2FnIq/7ictKW2FZB2Sd\netXPvD5c2Oxmbv5ni/67r+HNjQgGf/uBfJzIF0/86IkXSSai123MVCC2tlAKfriMJa3AbRP2y4Hb\nccQ/Kdw+0/3dQLqf2T7OpKQae6BSra1ehOUWLRQljIIHib9sl9huJ3LIokcRwZhcAH7NdXKYYyLM\ngd1nAUohoN9FDp20OMSsGK+OzQdPZwJ6bzncjMzBCqsoatJxxjyc4FefwaZHWYOeI3YQNDpdM/n+\ngrrdoDqD2lj6w1VEj73BuogewHzeow69ADJFNTVdIyAtAeEsAIKfjAidXjsRbPWWazmfqhEwFaab\nVtJeNBTL2KGOvy42od2cFbZPBK+JUe6NZokXQUSVx2C5210Ydr4xFnJjSzl8YZ9VJsWUNPvDyBdR\ncz87Hn1tu5M14/Q0AGMTMa9s02estKwENLjdLSLVIcLxIlUcq1E7h50z/VPA7UHtHGrjUK+2DPaR\n1+7KODn6sWcwjk7HtnYrLSzCeBUmQm3pUWW9W+8zbzYjWxvQamBKWlpAdGbSK/ZwCZIHE3n16sru\n15HN65OMrYPCvOnRX30mDj0hwv252X2nx4l0TqQxkzygJcbXA9x8NTMcA+4h0F8GzsGKA4POpIC0\nTuvExoXGZl23MtS5pvuMutugneHGnurGhX6zL/2v0rOaL550jahzpNsEvNd0k1h7V/2qqNUKECqM\nyfxcd+iX46/n+AVEoE6CMiucJX/2BlJCaY1LCfP5uWWC+os9vD6I0vX9E9M/jcxPmug18ywK99Ms\nt1XoaKnQLZOIpJXet+FXYN4M6NsBth3mNGH+cOTN8cJm7JiCbZsZyMdLzzcCIhw8fKz9jKW6wRL8\nKGBW0rNW0dVa5e1NEWrTz9P6upDCAhzUauBP9Ry3+/cnfl8X47CqREm1S5SJ9zayd57fvn1Aqczj\nccNx6shzj0IS0zf7C0YnLqNoC1idmILFzamIOelmxVmrHUZlbp3n7fbK558/CYDw26/g8Ui6v7Z+\nTmfKpo0kxXtrl4A66SYqtU2LrU+lfO6sBDTKKMxnA5vB472h2voILVQVanX6hK1Rg9SqVLy1CYJu\n1aS+9KX7pNjZUL6WvtjeBYbes731/Dpo3p+3XIJlb0RQymgYi3hhDd2q60IVTTq4wMYGQtLsu1kE\nfpSIJW6KOJhUygOdjoLiDyImFpOiC7axJ6xCelydsEZSFHbD1ogj8lzud1fO4bWLDFrz4GVMHGzi\nxiX2NnGOWlo7omJfVIzHuLyH6AOs/MSzJONVCV3fbfjy60eiVxiXuR4d50uHG3u0dxyKOr6IkBag\nYefZ2cD9bHFKemKr/3ptL6jjuPYRxyT/ZL7kwraQZy33DnbWN9XlR28xStpFnMpopKqw20zsx0FA\notV83xoRINWIMOXBJl45oaJqMvsilhayjFNfBKAqM2Fnc9GwUPQvQHOhI8pn7WxdMxQhZw5W7Nd2\npcf4OPYNhKlzI2fFzsbWHmK95tqqtooqzJnyMm/qdcm68NPBRoLSc/rp718Kuz4XaVzWK59yA8p6\nU0Q/V2hCBdgGI/dmMJn8eEV9+wOqv4fvP5LfHyVJejdx+eDISWwOc5K+9cpgkv5mxWXsmD9eBWgu\n1T+TFZuDp7tN7O5ntHeYKK4yvlCoOpO4u72wufHyXIJU6WvSVHtXjRLtkJAX8bFbm8rfaBRCTa9r\nqynsn2rPmudI8rIngVSojVFNFdyVtovaU+202I4+ekPOIk6Zy9iXfnkZ631WHFzkbn9lKgKN52Dx\nJdDsTMSW3t/dcSZnxc1hZHs3Mx2tgDMpo3qLfmsYxiOH08jhtG1AmS1rRoxKbA0fz5JcvDmgjhNm\nP+MuCTdKwtwX95hOa5wSob6tDUWwUObeZBUmamGoxEzWdQ+Qe10TqaaVWloFNyZhndi3bo+zCKYm\nYUgYk5oFZWUkKAu6h26KKC3gzH6Y6fvA5sZjf3MLn93IunWZscerBPPnmTwWzXsrEzRPkd1lJh4n\nDj+MTKNlnByKXWvL0wrOSkTtep3ZdTPD1JW9SDPozKtu5rP9hXNwxRWpjonFveBuf+H2q5H+a4P+\nj1/DbgNzgG8/MP+/HwlHSJMIc1b6/TwLu0VaKhY19ypgmpG56XQBsB3oz3b0ncF+GNE7i36zJX6Y\n0AacE9BlKDaKsFgOC7immaPmPHboh8xp7AjRYHTii/FI8AalDCForqPjcVxAptPckTN8fjlLr71L\nra1AK3nvj6cN8Y+a28uF7VeebiPW2kbJtfrvRvL4HhsKj2UMpOPMfDaE2aAeM9vphHt1Bg3ZZ+Is\nCXgImnTusB9HzMFDSMRHXyrjinAUS88wKU5PA9O8aIacpm4ltCkCzLVVsraz+NKS2MclxDeXgX4O\nXOYOW+KejQscx14YLcEylXFUAdhL1DyOPa8vlu3dzJvXJ0JxE3kq4qgi3Gjo6zwtTNz9buLu7Pkw\nuZXmhubH447ZGzaDb2O2ujc4JYyrEA28ewBnyI9XmALpcSI+hmUDANIo4FWcMuZ+Il8D5vMdarCY\nW0XfBa7eYct6O0fD5dSh1ISfLN5rvLetWND2h1JwUQoOu5FbndmePJfZ8f11w5QUSgk44sp4TFn0\n1LafB9yvt9CVe7lxcNgI6+DxTL6/Mv/zhXgt1+AFBEtRt7hUu4TZKtxXBr0NaDfiHhIfrxs04hr0\n9LjB6MQ4ucbw7HRuhYVe5xb3JY8ABa+2mN9YGD356uXmhySgYIJ471tr5nh2RTtnKVRUJsbWyDyu\n1p+Z0rI6rWHXv9xD1GJ+YSLALyACsIhskTKcR9TvvwFrxJ5v06O/0JCSoMRaiRLKw5H8+/dc3ltC\nYR7UPrUxyMS7eocpnq8xL2I4SiF9XvVIGWU1ei+CKqLUmjBao/Oi8lqDEhK4vSiuxixUNKkkLDZD\nDXygbOJ5saSp6v3xRSCfVWbtoZ6WwgE/EdN/ehPX78XzAF/lVZ9zBpKiL4KHX+zPvPqNJKfuXYT3\ne8ZoMSqx7zyvvzxjB3g1XYmz+Jhfzx2ba8dp6piSKYi8bo4N0st34fMvjhz+o4Hf/Vpu/MOJ9GEi\nzoVvYCRocKnoS9RKOmIVVzcHq2WDA6n4VfqwvAnor27Y3v0gweQ1oVQnTgQxYdWiLlzruVZLEldb\nD2p1pT67BGwLjTUmEZuqNntzMAxWrCztPvP2VyfUt/DxsmE79SSquFit6VYQYbH+iyXx3rggbTFK\nFM9zAaUOxZ1kKJUsGbeZOZhWRdalncMVtstgA8PGixp7KF7yJuOzqCNX1F6qqLGJGKYMty5y10lv\n+MdZEherpBqvkfHqdL2H1Su7uEaUlh5tEJptSOz/cy9Ch3OC/1YStFLNHLwj2lK1S2B0xg4izGXH\nYdmQG8CkWtXuWmjqAJ2L7JGWmLia21V1edfNjdZ4PTs+TIMwE0r7jI7FMtYlDp3YhVUVdZ80c6Ht\nhsIwqQKhb3ZXEeMrQeX97LAqs7U0/QKrhLkgAcV6Ite4QZXAvlSfVdEGKPOyBu2Hm5HNZmacHE+X\ngTGYppwuCbvQVa9ReuDreKhgXla5WZbBkug/WyvWIAMVRPj0WACI8gP10w4Q66PTNQlf2Cu6JDad\nlvPtNOTzjPr2A/nqCf98JJ4EiBjvDe/vdzIGjbTInL0rdqxy7RoYg+F439MPYnFYE+j+LuF+M7D7\ndkZdYPKWmFNrj9t2nptfzygL8wPkpET7psy5uajBA0STm0CoRuZQ7fG/RIuNudkiSkW9tH5pWfCV\nBWOkalV9w7ediAQbkwqNWZhgRmXebq6MUdNryyno1u5Q76FVoolwsIFXb65ErwjvNPPFSItESlib\nsAfQvWZ7numGwO7XEXMw+H9IhFFj7iOqv6C2Dr012D7KnCwAiAi/FnX9pEk/ntFzhMGR7kfCMROm\n2icuwFsDt0pLVVU/l2Rm9T/CgqpjR+wqF/Cg9jzXPnOjMsZlzJ1jhyddImGEHMS5RRdCQhg1pkuY\nDZhbg+4S9hJxQ0L38neqA/a9VFw7C8bAtgNjUJNHzUHiDq3hPJKngE4Zc5pReqI/BTYXLzbAU19A\nLcWspa1Blfl7KmKZU9I4rTl0nsPNyNup47QqVGgkTjAKNltP/7XBfH2Q8/rhnvz9E/PvL8+EOU9T\noVqXffLkbVsP5tL21Kbram638Mca1Je32I1Q4/MUiI+ZMBup9r+IUdZh0zVqjO84ecdx7niYusKK\nyly9JMR1nMekeJg7YcsAeuoIWRyRBhObRsBY2nyuUfMwCegwecubcMINNbbSTN4y3WvmR+iPH4Sh\nZBX+MfN4v2cOYp/ZPYoqvta56Rz4YBgn1wBwGIHIfLINyBivjhAMIYroX7W0VmQB6VYFk0WDhAYg\niMvCovd0CYajdzgtYHaNNXqTuBZgsYpUT0nYbymLC8LD3PHhcSeg7E5cEFJhFlTW2eJcIud1PPUM\nvWcwoQibLkyE+zJW79K4tLjU2FBJXJGA+M8fyXNmfp8IF8316BjHQWxeTcSUjSVGRc6eNCWij2w+\nPGBuDdnnYp0tbYaqxHQP5w3j5DhN0r5R20mruPHazlsrKd5tXgU2By8FiXeOSwFbjkE3NoXVim3n\nsW8M6tCLY8tcKGzHK/HbI+kxML3PfPx+R4qiybS+FqVKW6ZP5JRRvUFvEm6fgJnde9+0Z06nbtGE\nWemK1blW3WkA4qRJjxNm10l729ULSP7oSdeMf5I17PLUE6Nini1X75jLuBGRxWq7u5rPq/kobai/\nMBH+2o5fQARotkfpktDfPpD+yw+o3qD23UqtKktloDPolEn3V6Z/vDJeN+19fJQqdIiaKYnfd+1/\nhGUztSox/jGj343Yw4jqFarT5Dlxve64zB1jEFsmsQ2S81NaxB/TCHoLt4cr6iQb5mAMtlhzAUQj\nW7ZUXiTxhUV87U/ej/wpDfinhRcXI7aXrQrr6uCn97roIii46SdevbmgdwplFVsduQsXjlNHZxK3\n25HN7xz6bniGmm5/HLl5HBmfBMQ5XzoergNjUSseTORXv3tk+Pcb9H/4GjYD/OE70r89EB5T8xLW\nqlB3dSpVCJ6JWFV3jJf3QlgEZQPVCn77FZt//4D+l4nuPrCdpL85BEn25P1FYbj6f3uvuT9tW291\nQtHPHQqphIjatAh2Hm5GjMsSqM9SXTFOEOb+C8Wr6UJMis1lU5I76UNM+rlycm1xSBl6E9kOM30R\nalJK1NKNTi1BVSozBcNUEmWnExsbWkuDoojhkem6wLAPpKgIkxYFYe/wWjWhS1sSdKvgxgUONmJ1\n5k0/chgm5mj49tpTFZtdeSYvaXqKIhRZaMidFWponhP5/QXzH76AyZOfRtQ/PaF16S32UqkUNoAS\nuqGWpO71/sruvCv2iJld58VLPC0qxT7Jc7I6s9nODKXnMSeFteLYsr2bcTdg70Q7hTmy+8OFu8eJ\na7C4YFpCYnVCGxHxUipzmV1RmF+ENGMWanivM51JvPnyzHQ2hKIILswY3dxealAjlMtqSfh8Jlb7\nV1YtNnWOu0KXjEljXGK4DWy9x32MMqZLAh2iaar6olMhLUghKXwNXvKna8fL7+v0qhoH8NNAQgM3\n1z/L8Iw5nlfzcwUcrFsbnuvCFMHPkEgfLoRvrhz/bbHfu5y6liiJFVcuFTtd9AJ0c7J4ugzcMGJN\naswd+8ag/+4tN998Q/8h4EdN8DJ/rU1sb2bc32xIjzN8lCsTcDhgirp4Knck5lzAYBn/GyNtRkZZ\njsFIBT0t4pgKqdoqq1CDxb5S7E4z/RAwLomo6E3GbOXG+PuRzfdzq2zd3I50JnKaO45lXK6v+1J6\nZLc2MHyR0DsDPHH+xpUEXuGsAAb6bmCjrwJk/PqOHBL8w5EwadTHTDjOdG88eqfRbnnClT1Xj5g0\n8ceJ+EFA5/ldFp2H0XKdXKmM6jZvajLUmdgcRgLiiKOo9qS5Me98gssKYG848QqAUhr0zmE+35Fj\noh8DuRYYtIIp4L/zwkI4GPQXO9TFo88es4uowZCviTRnWZ9qohGSgAlWLz1wKRXK8whTAKNF0BCk\nWj8IKHSZF32G9bF9G7i7ytqSCgV92830h8AX6chplmeFF0WSUICXbh9QO9lz83/9jvDtlcsfFceH\nLT8ed43VUYU565yr7jNzkp76mpDZUt1NLDFBzpBPE+pGQWfIjyPhmwvXj4br2TFOjqnEQTKeUtFU\ngCoCfAoSGx2DbUmziEzrBs5vClvuFETkOOUl5oPFIrpqB1RR0zEaWYuTgo/w2WfHBmrErJivlnk2\nHO9ln+yHQAyax+sggsh1YToLyFJ1QGKWAtNcgOB5tsxhYRrkLO1yICyzjwUEkpgpc/Smfa+RpL8m\nv1UXJVE0DYJprITq1HCNi2PCy7qx0y8jObhEw/fnLTFpvuAo4sxFbFw+S461LfP7y5ZXcZL9jbrO\nymeegkZhcbp79jlqtT4DXP81crnvOJ4GxmC5egFmKtBgSivWprRino+ay9ixfxq5eTOhnegaNfZm\n2R9Ps+PsHWdvW0tqfaZroDohCVKKGt1Dv0uYbuLmYeZUmAuVteV0Jqfc4qJ8nsmPI/kaSKdAOmdO\n31nG68A4CStGWDrpGZCra0yTFDlk0jmQJxHu1kbYnnMZ58eioeaKxWU9D5NUWzc1RUbiYhl+mIGj\nuMfcR+IExx96xtEVcFtxnl2zGpYxJfNZ/qky1iojswhBl+fXWn3/So5fNBHk+AVEKEdCEY8Zvrnw\n8f/rsC6yeXVs0WyKkLxm85UnXwPhB8/ph45plh4lpRfqc0U3ZfPTBaWVakqt4r7/boePRuh6g6ff\neIyDx+vA0btGVbtxuVHGUpREGzJ5ht3rSYSaLlJBmgtVNiTV7BEHA50xqLba50Ydq6JjUIOkxUqr\ntkQ8/325Vw2prQDC8nUL3lf3tgq9oIpGgtxwcbsYZrqbRDpLD5jZaYYbT/8hMtjAZjuj3+5Qdzuh\nsFqD+vEBtztizzP9JZLnyO1x4uadUDxzVgwbz/Z/vYO/+QLe3sH7j+R//ZHwbiJcaOyRlBVkhY+m\nLZyhovzQKq6wSkQSzy4wp0x+/Qr9n3/LcPsD/f21WH2N5FkyIz1oVKcFoa5gyHnm7g8fiZMgxeen\nju60xWmxgXpzc+bwdsTtQW9E+CYHSFPk/KOT1plHjXud6G4Sm6OnL0JFvRY2QkI1hV5XAuAqv9SZ\nRD/IBnz/sC0VhdIHXYCEKRixvyoVnL6AIc6k9rel0Cm9wjdZxtg50ZlYaMWKTmtUFoptrXJ3OnLX\nB7HDOlwZdp7x7BjuJclv/tK6eF6vNihXdkel5WqsTqhekedM+MFj/k4oolw948lxHV3pr10E7bQS\nVwOjMvPJioKxDc0x5LAfCyhoWt9mV5ofBxPYvA6YDdxugjzf3qAGi7rdC31xKIH96LEhse/msg64\nMmMMg42kqNnezMSoWlU7lCB4TompUEVdYSjZfSZFaZPabSYO3pa/WYzpRDsk06cCIrzY3HXO6EZ7\nlJ/FLIlGpxPWRGFVnR12mLD7zC7OdGNoSfDx2qOaZWkRPtPC4vTl/dU6w0eEMOs6Id8vIeufaplq\nr199/ZKZsJIlJebcRCIreFbXpVpFrz2kTsmClq+B+aP0Qlub0LFUstLS725ybq4wlcpplVSTrt7R\nTSKwN9hIZyKqN/D2Ff3/Fujen8gXX3xXEziDOtygbgYID+h+wnYC7AF0JSKTtdrUZaPRVQeTOHQe\npxMP3mKiIhQNjYIaCxPBGdTGYb/YsO0mzGdDWYe0qJ13Fq4z9scT7u5KPI0kD92Xmu39I+EC1wcR\ng5tny2nqeHfZMGixfxxsRG809tcHbrozdx9GEoqQNF0fUIcO9fkB+9kebnaw7VF/eCdzN8B8NcwP\nlt08M3wWJYDOiyBnbaGxZaz4j5n5JGCMnw3TJEnYueybIVXrQqA8d2sSgw1ljywWg0WvowKVAnIq\nBlMhhUrBVujVubTj69coa0AXKL32bj+dseEDOWT0zqIOA6q3kvQlEc8Lx0ycwH5/Is+ZdC1sL6de\nEofIPuMfIUfVULPx5CQeUEjRIhrGKuC7Wt/sK8XtdEX9KBToOWn6LqAsbO88rx9GxmhLFVozlX1Z\nKcBH0rsTl/8aOH7seTwP4mhUE8i8OEPI3FxEV18yCBaBXIq2TybNkN6dUccJtCL+MPL0L4brpeMy\nSiFljALYARizJPAxL3MxoyhTuCWFzTI31VSbdm90O6dcANvMlAxOa7YmFoHYJZ6Zk+Fh6rkdi+Xg\nat0JwfB47aXlcZJ5eymAQH0PX8ZOsAtIUItEStG+lpWrsriKNXdWjXVQAfvmCsXynCvfsIoxU/ar\nCqaRFElRnF/kRYbMXECj+j4hV+0P+b4vDJNHb4GB/kmYVtdioViff2VWOSWiv0+za4l+pcH3jWEl\niX0FSureUfePaj95ue/48WHP2btmedrmBHU+CoDr5sgYLE9TL38fDdvtXFrPZNxXl5OwYvvZBiCq\ndi6VqZuR85kmy+bksduM7lbtamrRAKlASUyK8CGSjmf8ozCSxnPH9eo4FQZGzjTwDaozS2zFJVPa\n1PIM8/eRNCn8aJ6B/RUUDFnYygnVYi2nMp5FmwhgnBzdjwF39oxPlvG6ISbNu6ddWzMrMPc8dv//\n2XuzJzuy+87vc7bMvFvdKqCB7kY3QUqkTM1oZhwTtp/8/4f94hhLihlJQ5GSms1uAAXUdpfczuKH\n3zmZWQU0NeEIP1hERlQUUNvNm3nyd37Ld2FqyM3Cux8PB8u+qh799ufjT+H43ERAHoiUwJ8VoU+8\nudlhTWR7GCZaQvEI/6V7TxVHhjvF+VxxHiqZ3qb4Ec/X58BdeLAhbwxKwbvThtZbUYY/S4e6qUcO\no5uU3QFWZg7UwWuUS6gqEVqwa1h5gWoP3mKUQLcUeiG0mN/jJx58+DTqoIAvEh8n9k8RBh9Bk0k8\nFVGM6fHPL7vXSkkycbp2VKtA8yJi6uxLb2RaRu+h7QXqaQ2TWq8z6H3mt18GLtYjaZDrYa4MfPsF\n7DZwfyD919/jvzsx3EB/sAy9mbhwMm0XgaI2zJ3XIUrRW/QSSgBdvh+l8hvSmvQXf4Z6+Rx1avOO\nHJjsI6zNO1QuSEaPun2g2V+TOk86DOjf9tMa6r1h96yn+ZnBvFgRP7SE+yCwSSMNpbHTHA8N7u1R\n+KWT0F1OgMr1nk52vk+SWMvGZZzwoUPU04TmlK2jumAm+KRMNjOfWiVR56XoAcjmp1cKVSmUjR81\noDSzI8CYFGdvWVs/8TNjUOictJQEdZ4RPoYYlvVc/JkrG1CVBp/o7zXmb97J75wSH+4vhfOITHiK\nW0af768zAT9mW1Y3cvBW6AH7UQS7Biv2VEkKGUVi3/RUXxnstzv49jk0FZPp8+Dl3p860s1x4jNP\nNJAcA1yKVNbjvUZpEWC1JmCizu4XZkbGKLkSIWrGB8XQipI7yJTLIROZ2gn3+zxUH8P/nxw+fhpx\npPOEJETN/WElCJXd+OjnQhRIbynKlsc0RP0oNszfl/9/uoHwUxorTxsIT5sH5Ws/NR9Q0+ePCxxZ\nlBHfCy0NhJOtdProXEqzOGXqV6WlQH3oa85DxZoBk+kIKQeM9L/+B9ThiPJeTtItJse/+Q6iQNxN\nEXwNgkTwi71jjEriTCyTvZyUWzkHX4j9Wj2ibqAVNA61X2P/3MAvX5PqGmJE9T0MI9w9oLTCxIQZ\nAvHkMd9sMV9GquNA9X4geUlsL24M7fc2X3v5nPoEVmN+/ZKL/+uaIYjwm62iWJld7eDZHtYruL4R\nOG3mHMeoOJ7rLEYo3NyCKCjNu+UxnoUPfGhrnI5ShIV5Yl0aPKncW8RKsQqalZXuSoEjuzRb1Kmo\nCAsB2Lm8kAKtrIMYlECD214a26tGNJJSgq6HFKV5pCOqMrIwfRRe9ynSv09TU8Y2Hf4sTYFireYL\nSk4nEUpNUgRMmkJR0+Z45nQUXYA8iT9nGoEU6wndaOovIxex59TWNKOsu9CKkOG6Gdh0I/ejRURu\n5Xr4TjO+HRkf4N0POyka81S3FLmFMrJ8LpbHMu6kJA3EEretiqSgCLee8INHGWjfG+7u1tP7O2e7\nz9LULQ6aMUmx61CLHGXeK0ozIyRFVDOmadK30XISkVLgF2pWmn6u5GoxF91xtDwcxRpVBkMSw0NU\nIJxlGwAAIABJREFUk84CSD5QrlFptBS9CgCj5GfLkMhkysYQ9dQAKdd3cjtKHyNyYLGvpoLszJSb\nqaHwOF/7VD433Z/pddSjOF3QA0PU3I0Od1pTtJlOmUK6dOtxWbPiHAwMFWsbpqK3WDymVDHk/T8+\nOSeNDDuMjozjTEWQxuDcCfexnKdm4zxjMPjcMGi9haPs20I11Nna0k97S3mqy/33C1pFeHQ+iftz\nA9eCIq0aoXyGXMCnfM7ikiX77uEHQVgcjjVDEHHmPi6tw0WcsuQBPrsfCZUhYlwELU3Gh+uGEHQe\nVkb6sQgrxuk6GKUnNGCJEbp8lHxrNLSnivYEd8fVJFj6kC1Ly333Hz3Dam6aJ6YcOGQUQpjWV7Hg\n/okF9m/tSImUwr/+c38Cx+cmAnNyGUaFCgJjM1mBtvOGh7GauqC/6DWxiwIrz7DedeYxqRxJRe1a\nLWB+86YGuWGRN5ohGpLP/us5ESpwUZgLQhC+LFZhdhp/EFkPZRPWRWrnZ1pGTi5CMo+6keV4ihRY\nBvGnTYLErBnxtOAof+tTG9OS5iDTnPnnC2zZKJn0dQ+Wm9sN9dHzTJ3Qbg6SwWv892f0bYe6PqEa\nKwJG9wNpEKguVhAaemNQO0Skal/DqYW2J729p/9v4tM8tJaudQyjyeKVor3QBctplESs+Gd3QdHo\nxx3YcpSvpSQIAXVzS3r5BWl/AbstuAzVC7mgBNQwiM6Gz9DXyqJqm3GeScRzXJi4+GaV0CsDzhAO\ngeGmCPBIoTOOhmNfYd6u2V50eK+ztaQEfB8l0E9F1uK+qnz9lRaOb1152t4RgvAwxQJO/p5SiSZ3\n3C+qkV09sG4GxtGwMpHig6yN3FhVaZRPWQ8kocLjBVKmewdv0H1NzJvvyo3Y/PeechOXx1Kro3zf\nmIhuhBIURsW7v3WClDCJYy9IiqIFMC4+ap2wufMfg6bO3tqATB4a2A0dzz6MrDPH1unExa7DPG/g\n60vY7zLsOEgD4d0d8fqI/6Gl/VFoJ9ol2vFCLNqClSQa4UTGKA2hokdRPgotQUHWhZA3e/9hhfea\n2yyyVA6jI00z5sKjTNLUx4na4pld0gk0c0PIuYAjcHdquHtYM46ipl+m0Z2308QN8sQbPSmDl9dZ\n3qO5HfTx8TSO/FRcWf69f+1IaV4on4pd888hTckxTqKoIMJ4diHqJvdktswrR22i0JROKYttyjMT\nkiLee8ybD/CLb0n73RxI6wa8R51OpPcH4aaOEH3h+Mq9k2RtFmpdNtIKxxjIomYpNzeEgjU1cmKS\n5uWzPVxdkC7EhYTg4XCE01lUz89ZHT4lQVCVc9UK5YROl2yi6kMWYpQ1MwRN/z5h3hzQV1tWlwOr\nUyXTVJNQRkNlSbutNC3e3xGvz8SwLAo0p1aaYlUV6IOhD7P1bjmUSsSghNM8OLbVKOr0XqDnPpYG\njxw2XydrI3XymbomhV6tzWRrW/SClsfTwm265h5p6P7uPfrqJM3t/bq8EdlzRqEhpJjg0JEeevz1\nyHCjuLte0w/SvN51nbgudFZiei6ainBrKcBKrgFzAQdz4dhPcT+jCfP5piGh1wZ34Vk3A1XX4L2h\nP1uU9lgbJ0Hd8lpaCfw5vfUcHxoOXT0VxsW6GJji9NSEKdfpyTVM+Xkp/fZCb0gRYgeHN7JXns/V\npCPVRzPZI/uksRk6vAj9KOYGT+LxzStrf8rt0qxtYXJDlsW6kvNSdIs1WRq45fcPWdBQNElAG2m+\np8SEBFVq1p6ahJjz+QisftYpgPkZL+dX9sZyfYtVL2TU1DQBfxzTlrozGplGl5hckIhGMVG/yjUo\n9/3RvVo0YotW05gbMzdDRRHW7eJMGyq5kAjWBkGs5D23rAmjRJ9CKUGKDHG2vJ2QQ8garNzspDD9\nTGkMMu8jy6LXZC2fs9c8DNXCarvA8DVGhekal71RMzeO/IT8KOcCx0GsQQGuVu30DCwtn8s6OXvL\n7f0aoyO3bTOtl5BkMFDuvU8CdSj1AQh9ztg8OEOQR8dzjc9NNYAuWLZumDVjQj73fGMLlaUM6kx+\nRmISZ5thNByGKseYGe31qS01pRmNmxZNlk8NDssRPiP8/+SOz00EJCiJ2KH8vzzUJQDMXU950JUu\nHTo9c7Ny0VuC8nJ6UjbbyAwVrHSYNuM+6AlOVIqbAl8rh1ayaQHotUHpSHebp0ELmJdSSc5JPbZa\nUjnyLjeep4n6csJe/v+UxiDv56cT+Z+CMy0Df4kzWonQGIeGu77GjQ7zIbJaCyzQB03fWY7fxXzd\nB7TpQSd8q/GjFQiYidhVwDZCiVAuE2Hv35KGiL8OPPxY0fVu6m6HDKfrgsXmaZYkLSrzOXNCtniv\n5Z6U6Xd5H8kD371F3T7IRNoYqNx80dpOpn1tD4d2ttPpPeGt2EGlPjGepUDzMU8gewj3I6oNHL+z\nHI/1NK0qU54hGD4c1tKtHgUx0E/n/9jybXmUNVr+3nozyCaTVecLHFSrRDMpnge+2JzZbAbZ7LpE\nY6JYbZZr0SciAcJMjZi57CondnINz0EzxIqDt9lNwPOs7iee3XL9lc2sJFVquaCQJgK1RZmIcSO3\nx7UkI9niSmgMiVKWl4ZK0XJwdeB0yJP9krwEMFbh1oGXaxEztDlxtFWAaOH2BNcPk1BROo30PwTa\nG8vxsOU8OKyOrJuBw+Dy9MYI7DDTE5RKtFkJecw2eWXSt7xfJR7cnUT34iGjDZrM1R+ztoXLCdjT\n5/mnjrkRMU8xrAk4Fzm09cRFtTris7BnSfJTbli69LHuQln+T2MKzInHkj719Gfg47X7KQrD8mvS\nSE2PvvZTDYTleSmrp+pn1gORj6cFytN3aXXMgrhyD/pc4IUoQmvmn2/Q23+YNxitJE7EBPdHhr8/\n0H3Q9GfhgZ97od6kpDiOec1EEfYszbU1sj+12X5zeR3iotkASLwJeWrSD6j//luJRyHAh8Nk1xfv\nR4b3Eth8p1npo4iTHWA8CgJCW0X0i70xCTT3fFuh/nFgvXovDkJFKExDChF17lE3d/D9O+Lv3jP+\n6Om7BlcFYpit/EJSrP0o+gtRUWuJGxN8WYv+SCnIVlHcZYoOguzlc1Frc9OgCNvZpFgx0vv5ORvi\np+C66qM9rqzVlBShhfhdj37T5wa20NUK5y3eezBgKk/qPf7DyHAH53vHoZXGaWUCyaus1m/EPjBT\nrlIuOpWSqb00SPRUjD6ebs+q6dO5llt/G9HrSPJzbjB4g2kdwUu8EDh5muDyAG1bSZO6qzh5N+Uq\nT/Mhv2i6FcReia3T57QQVczXttIR7RLKwvFU4zNypQtmcgyaUQ/zPS2Pz7Tf5LWRt9SPmj5yjnra\nrzXLeDBrRJXPfZwHHFbF6TVAJuchrzNrwhQfxtz0GdV8jZ6iZxKyH3cZxh4XPyNrLRe0+RlQKqEW\nSLGCsigOWst9tDgDzQ0I+btWC+VjGdflNT8OiMscZ9nzb7SITfeTToSeKBNFr0ViLlN+25jAydsc\nG2bKQkFPWZUY4NH9XR5WMe1hck56Qhil3LQq17Dctyn/ztSJszfT81oaCTHJ91NufJShW2BetwXN\nVtx9ZM0qTqMIbqYk8X5C0sI0WCAINeWkHU7HaRBTpvzLJpGPKlMrpAGQ4sf3JIxCCRtznlrQGBsr\nTjBGRUEPRFl7y/NfXlObc72Y1ITWGKKhoD1hjhdLNNFy0DDluk/OsTRByn7+p6SrmD67MwCfmwjA\norOtpEFgtGwgLivjlwcQZPKv7Lyp1c6zXg9oE/HeyMOtI2p0VFkAyWqxqCubk1ERY1hwkbKwXu6E\nlgRmKeinEL9oPKhNhd2P9G/tbKGYRXrKNLMo+ZucOGilpkJ+mhg8Sd7/vzymBkJ6HJSOg6MdLQ+D\nmzaZAvcK+aPAi8ds31RXnj5zc0OSRk5lA7tVjzERVwWMjQQvqcs4OO5PzSRIU+BoS75lSWDnZPKx\nEvn8PmZLm+naRYjf3Yg4mpaJXbm4KUI8BGIHvoPxbEhRTQ0hsRuSIngcDW3vJneP4WghBsYOPtxs\nuO/qyfrusu4zb11xChbOkmzPCsOK8KQYX4rVlSQsRkUYFc2VJ8Z+si0sYqCViVzUPY311LVne9lj\nanlfKZHt6BYbTwcMcmGmtf4koRLHiwQI/LYNZqKN1Pm6qMV1l+R2LqKX96SsYWsjarNCWU19dQt/\nkCIu6QIL9VPSsUTnaAWuDtS7wO3NLIYVE/T3Bu0kWbzctJMnfEqIuOWPLen7M6fvDWOf1cSj6KT0\n3jJ4M6GCdJ8yhFVneyhRRnBO1urpVE+K3npKtqIgJVSGiZpIbWcRtQKV1QpMitPX12m2zvqpPb3A\nHOfpjwBidMr3zSRWFyOXQ8upFWGvIaNUimiYy5Ofp8JqOsyTuOVrpMX9Ks3GmeLx8TkuJ4lPj+JJ\n/lNHiXOfSmrSoyi4uCBGi77JNBma4cSfOrdSEIGgFioTGJi1VUBg4+ObgfT9Pz9+uQaUVoRz4va7\nhnNbiTJ8EKeZMReMB285e2kgdHntRcQyuAjbQUGqZC0KBaAydFyR+gDdCDf38C9vGP/bjXjYRwit\nTLwA+pPh7m477XVfjEdOh5pDW9N52WuqvAa7YLJitxR7Xe8Y3xpSaAGxeJ2E5ToP7+/hzS3jP9wx\n3ia6e0vbuQmyH1ELe7n0qKh/emgTJzpJUSUvaA2nhWBh1MyztiqiSiNBR5JWi3U706d4sioKP/rR\n15gbJMO9NFbCqNEm4tYjppZ7G1oRQU5eNBDCCXyrJwcnoyOVDRJLkzQ4lJ/XXmlwiFK9fC4iv4Vu\ntJxiz7lFIqg5hrU3BnU7Dz7Kz/eD5dxVGdKvp3hbPgYv67gfs4hohl+XaW05QlKQJ9OliVCmlmHx\njKSccpfbqZXwy5XlkZD0GIVy8nSPLe9PLf69nKDPk/2nTUg1NY/LsRRLfrSPL96PUyJwWlAGxGLN\nKu/f5OGF0J0KtaM4AKhcvM8DqRLLQlruYsu1luZmIGCmc3scp5YDmPJerJ4HTst4K40QyfpSaUyk\nOZ8t93NZGpZXKzlDsUwdssaDUF3nqXRZr8WdwahEnbWQYpxRHSY382z+XkE4lp24rLvp/uTrW+5J\nn2kTy7NcFs3WRkxM1DpM70/uyePC2KpIUjBSGsW5+E1PG0yPz2mMmrM3KCou6+HRfXO65K3kZqbk\npMV6c7pGi/u8RJtoBapQQ/Nzioelbl9MTA0JAK0f51XLpueytC3oIpvrkvJeytCyNNbK8/v02Vke\nf2y/nd/fH/+Zz8e/veNzE4HScUwomzu4ufCxJuCierRhmZoJ2qkRD9nN8yE/8B3VKhBGRXuqJggU\nSEe2cMKckb8/hIDKDgolqYFSLM0q62UzMHUkZdlzc5ULiQn6mMWHdEKlmS/rkvjujolJIb8ER5Vk\nAyrH06bCU8hcOf5Ycl+O5bZUYIQLdOw0IRyjZkTgmBo4jRbbizCONBJyMp7URD1ISXQqHoZqEiQy\nQ+Khr6bNyqiIM3GiBhRdC1MCfpyDeEl0HgXf3OMXTQmB9JUpR9kSSoBGQ3jXc/hnEfoqnNZSdBbl\n27CAgpYp9ENfTbaAm2rEZ+EdAD9qxjtD27ppSlMmUBd1ny3LpDg9jH+8KaRYWDCV95GRCGNvaJ5H\nmotRGhxKmjJGJVb1yGbXY6uIWSXsRpAXoc/wOzXbYAICyQ5lIDcrQOucq2gl0wpn4jQ9nJLXvLaK\nsJJR87NXlJ8Tc2Lv8r1RWgoLVRl4vqP65kj99zLNsiawrZjoQp030/lM1qkuYfeykRaaEUiDx1bd\nI62TPrsRKAXr9wPn24of3l/k6dEM2Sy/47JIoVKz40c5jMpUpJ3ndKonSK3TQk9aZ0RIpTVWiVVs\nZcM06XY6TpBQlYuw2KtHf9/khLgkzVPziPnZXooPFtHVGBXaJa6+blndj/SdnQTsbIxTUirOFopC\n2WqD2FIalVE76nGx/XHsmP+XnnxlmT9PjQi1QBkoSbYLhDJK/k9SsyZAUYVfJjjFxnZp+4jV0w8Y\nHamqgF1FbB+ngq3EFpX/bspnrXODd+WKlagiRj2tg3BK3PywnuIC5KZXLr5KkS7JneaYEUXAowbC\nEBeJYnos8ud0FJ640hOvvzA2k0/iCX5/M1n0+SDNzBDVpMXRdhV/OGwBcW6p7gJvjxseBvdIWHVj\n/cTpFoRKwntNFxz+jeHiss2Jcoa9D4H04Ux423H8TgsdoRWIcBPmm/xYaGy+X7IfSylduawLk3/W\n6Dg9V4UXDuR4vUTjpUfT7OUhVCy5lwrFgxaxvZBEWE2KVCm4xEo2iS6NF4HeoZeYXHtPtQqYURo0\neiF7UQqCch6VCaxWA+5KYYbIuh8ETQVZnd+IPkWOJ8Uxp9AanDa5sDBTcbUymiHO03WrmBBOzgVp\nYCS9mK66CfFQrn3JOXRem0VszSeFTjOaclrHubBPKuVmRMqxX01xOpGm2AIzZUo7yaUK7LxfUDZg\nLqALaq5Y7xax3XIeUcmHFL0LGP8SvZAE8q+VCJKW+FzoHyZmRENiogJs3DghTlVGykQl1885j63T\nZPsak0yoyzWUdZhQWiboWpfGxywsXIrPFNUjh5myfieL0ySlttMyQkiL15neX/53EYUuQqQxgUkq\nN+2BXKTG6XezxW9emwWFQ76Pmywi2GVXlvJQasUUlJ2SHNPl/XRdjdRjNbVqi9WgJrFyno3z034w\nRJ1FkuUeljA8iQsuCuOSI6iSK6eSg2UkgiY74whVsCB4yrU2StyNAPqQqPVCtwnJz0shLdGGqSlS\nGgJdFuCecwhBFVc6LP5W2RlyTlGaOmmmY9RGhgSNDSLUaAPWBbRJj/KNoj01T/yZaJpGz0jPIjBZ\nXKw0TM9KrSPO+ek6acWjTCTmv7nccOX18usunrlyn0KSvEvQuSVy/jQS+d/ekT67M+TjcxMhHxEl\niYSGlfM5YYwMUwMhF/QrUI1MHpp65Op1R/WNI54DduMxOwlaq0NH+K0mBCmEi3OCycXAqh4lGQh6\n2lhM4Z9N3c15WgJgG2RSdh7Ru4r1rqU/i42gyQbVMyxJE9KMRjA5sS5Qp7JVF0jc//B1etLpf3o8\n/danIKHLo6jll42tz0I0k3CNAggZlaBA6+nfIenJ4xiW0Dm5njs3EqzOCViG5lvPbtVz7mbOXIGK\nL4vdp4dSs7L00yAMEM6J47HmnBsgs9PD7Jqx5D2WKf0hC12traWxYRJsKhvROJo8BcyJVkabQE5k\nchItieUc1HTerpaToAI/LlC9yVXEa+Io62t1OWCrwEVGS9hVnLzPQSZscciQv3xNpwlZIWZmuKs1\nc4IP89ozKnFZDXnaJjZLjY6sbaAycbExzk21AsP8qZU6FYOXO/RfvOT5f3lL31lcFSbYbrnnMy82\nt4OU+L47F/CtnmGQo3CHQSgEQzCT1Z3TIgw2jjPsVqmyD8epgFoZEY40i2e5QKJBmh/uCuw7seoL\n+XwqHbMt3Txh0iSc89QZUbNboJisLmrcQmuZfmdZKPMYlliEkQq0szybVieJW71i9Wea6mUknDq6\na40fNGFRDIcgFJzDUC1i1vwaTxsIT4+njYOfOn6qQfb0a0+nJYWLvfz9aeqX8jONEm0SH7H1wHo1\nsL4asDsIvacyYgFqzWwDt4S/Atgmstv26FPiNFTEoHDESSfk2FX4bC/39H2FjDAQGlqcrsks4KWy\nlsf87JaCthzTzyUpOlK+FmNUxFNEfWjxHzwP31XcHDaPGrSbaqS2ntPgeMjxaJOEYnAaLQdv6XOx\n3yk9xZrSBCx0Dh9Eo8WdfKaMye+kMULr6a/FMhOYJ/JmLqpBkuHlUShRUwFmIqaOmf+8RMJIErzk\nOpdDpsaJmLsqJTaXIrXWUvDJvqGpxvQIXfXofBA0olkr9D3EThpGIZT3AkoH0ClbtYluj6nBriK1\n92zHgfV6YPN8wH67EUHK3Yl46tjd9JNobgxaNGtsxFZRvt5L06LL+0znjfC/k2aMkV4r+rzIlErZ\nTaOm8mFCHRQK1RCKhs484Sxr0jmhmZT3XAr2Rkc2TgrLgpIomkKtt4zJoaMUGU4LGk6aO7kJnKso\nrRAR3kY/oSokGhtofbm3jzfb2alD9guAKqpcjEYaE2mM5+TdtH8IJz7HSZW4cONEAyhNmKKNcfZ6\nsoXcrztBxYyGdnRif5efu2blqZ4lNuNAcyvn0Vix4261CAYLlU7jRjvlfgWtUH6+1kGaRcXmOa/h\ngvKS92wy4iBNe/2yGVGuW3F68EmazrUJKKpH0/Ai2F1ich8UjZmbEiEpTt6g8hDrsh4E8ZgErXIO\nki+FlAdpidzsUlOhvm0GzoPDKGmMmjwg0iqxXg+8MpH7c0PvBc0kTV15/wXlYlxB8cbJ5nx5/6G4\npui8L0oBvhkH9vkapCQoK6cjEXFiWFcDNhRr5PI9oSt0UeecQE8IKKOkHjjmuFicMkrsnxBAekY3\nCuIi5maWNA+A6Z42JrC2IoLcWEEy12uPbSLKQhzz8xvUJDpts76Uz0MXY6XJ1ebBmgwL5lgZJqSf\n6BXVjTQRQradX6J3JtrPgqa01KJxqqxJ8tphAXeQZ7SINH9GIvzpHZ+bCDAncCvQjeJi3eWvz9Nv\nkCCgNxq9sVSXPVecaf6XZ7Bfo64P6PUZtamgMpgh8Hw8EVrFcDYT9B6grjzrTeb9e40dqqlRUNAD\nEBcwqdxd3irUShPbgFk71t8k7IeB8aynBkFaoBI0EnQqnRhjImhJRK2CpGcxnqUwSukqLo8SWgr0\nqhxzUv5pOGhafE82ijm5nbubMcPiS7CUxKRMJJSGyoogVogy/aysnxJZp2ZGtxQtGSqWA3iZ/Dgt\n6vVX+zObFwPNh5F4KwWEcB8tY4w0OmZvC7kSlY6YpOgUVKKFQ4hlmpKn7JUiRhH8KgiKMlX0UU2Q\n3yWVwOlIVHralEzI56kSIV8LV4uQnYYJtgsSvxvrWW1GLoZeJko5KSrWZYNWWF00ETKrc+rk581x\nNdBsPcPZMB41thFnDG0CahEZ+jvN2NtpkmptxNX+ozWiXULXeUVFUUQv3fLp9ZV04b/YnHNBVufp\nkGdlPZUNXHc1TokTRClMnZKpYCkSyxouGpVKJ9KQt86vnrP75Q9sTh5VgT/A8KBz4mxoTKCLWpwZ\nVEYy7Cp2Fx3vDyKQVukgiUmGW39om4mbHhP8wgTsNrHqRqqHME3mC/olZBTEft9OCvTmYbuYzEjR\nojSYvWVzMRCjJnUKZ+S1fTBUY5iSM5eTAecESVN10nTqgsXlpoMPeppwV/n5sGrWrCjwxTLZmSg7\n+ZqGPFkxJjJ2hrVO6BcN+nlCrzpi60UDJAoapT9YQtCTDotVEas0GuGa/msNSvWJfz9NRJZxpjSS\nxAXm8XtYHpLcMSU+MhVVeSqqpolXac6wX6M2DatXJ+qrDve6QVUGZU/srztCFGs8rRLrTtZssTgz\nOuH2sN8P2B8C8UbRe7HvNSt5JgoXVQpcQbyAJIe1DqycFB2FylWobrXR9LFwntV035xO06R0ycEu\naJpyCWOSph/3nv6DFkchb6fYZHWiCoHKqEdTMxDHk7khJP8IiYmOU+7L2npWzSjaBn09FbgRBVrW\neIwznL80G1duZH0xoF1iHFu63k0OMeU5cUpQUUXUr6o91SVs3w4c+4p1Lli6IO4Cy/tfINaVCbh1\n1gmJihDjNGGUaW/AKNlnh2i4GWx+vRxbKFN0KeRsA+bKUp1Hopc46L24u9hauP5ogeqjFXpXYXxC\nNxFTe+rdkeoS7AuHev0cdmvsywPcn3HZ7jCdRxHsNQqqCmU1qTg8HAeG9x3+rBlag7vZ0vniljFP\n12udpgbicsJfV17oE2coyvXL4sHkYi94TdXXNCZkWHtgW408uzrhatmjikZU++A4HGt4uMi8ecMQ\nZT0J3SIPQlSe9uuI3hrUxtHYIAi83JDY72bxujA6wqI4anKTeWsDz+tuEurzQbNyIh65Wg+cTjXW\nhAnpU6heRiW+uDihdaKqPV0rOiSnQWwEr7tmGkA8f33GrKRx3t0a3r/fYoZE6y3N3uNerzFXA1/d\nHaUgtYGQmwH7Vc921wlV7VBPlMxjX0/PzUXTU1V+el5K3B6jFrHL5VBApem5KdaexsTp9Qoc/tCK\nI0BjPZtmYHNupqaZUQKxXzYfumDYOJ+fGfn+dddMzYYXl0fq1Uhz47k5r7jp6+l3xzjnLz6lyYZ4\neyHNl9vjmkNGMZWmx+pyYH85cHl35uG64TBWWQdMGnhSrCbcOmI28Pz+zKqTpmRB6CmdJm2r0+DE\n2WzrqXaReu1xN4GuF6RT7Ap1QJoR+30LIAMGF7F5yHB7t6YLBqcMLiZiEo+LRkc2zTA1WIu1YjkK\nKqI0lxUyqFpXorvSBTvd750bJ9rt/nmL3cjeoOts3a61UJ8OeXBghLprfKIeLa2yGW0RqFaBl+6B\n6kZomimJZsc56Mkeu4hibt1IcyG2rkonLk4DQ9BTs6k0QUKmlWmkCeLDLKaqVcXBa0YlFBHF0q1s\nRiUsbbj/LR9Sx3xGIsDnJsJ0GJ0wO4150fDFcCYNYvmo3qdpolLZgHmxQj3fUG1bKoD/9CsYR5SP\npNMAVqOcgU1N/ctAOo24W8/mdpx4/s4GNq889cETR8Wu7YhBM46aw5AnNUpPgamIPymnMFc14UNH\nOg2YrxrqusfeR4yTCUYYZVI4CeZFPUHxJ690NU/n4NNJeFx8vxSoT7//rx2S7H/cZFCKzFtNk7d9\nmaqVgNZ52Xg0ibr2uBimbnpVeULUnEYRsCkJ7tJHWCjOgiZxOrJad1w+P7P5lcJ+e4n52zvGoXsk\nolY43TYCXhSQa53yBqnptEwMlZbr50oh6IpasxQ2IapHwlCTgBBPIYgzn3MpEFSoDm4tG5ztw4SY\n0Pma1rWn3geuzJljX08bQJW7zJUWUTLhqObXy+2EUlw1W0/1RUIfPOcPOcmqMoxwkC7+cDbK+Tks\nAAAgAElEQVTc3a1oR4cPAtHeNT3bPL0QmyNZH3YDZq9FXLHLvEYWE3jIjY7IZjNQ155dJ7SM9XrA\n1R4/Gn44bmlNmqCzBV5qlJ4Qd0al3ABiLnzaEW4eYLfG/W/fQDuAD6i/v0HpiB89deepTaQJkWAW\n01ytWH8VqN8G3Ciwx+2+x9SR4ShUkiJsB1C5gH1uWBF4cT7NvEwbBdJcJ9yVwr7ekIZAeNuxey8T\nMJsTubX1GJdQtWH1tSeGPq/FRFUFxtFTZzSCU4naeeqdp/5CBPua40hzGrk9rAC42rWMo9BpBm9Z\nmUhnImNSGJ1RMGluJi2Pmd4hehhV7QleM7wZqPQghdDeoZtAGhJpTIReijLv9aTVUSCVcwz4GOn0\nKVRB+doECX3y/3KUr80+6o/1EYrgZhE9Ux+9RoFdpqlVqBRiQXi5x5XOwstn0A84/T1X35/xg5kg\ntqtjhoYqQRiV5rL9xR7l7vBDTzs6KQRWoGo1WcHJ8y7Q7YRAqy82PftNx3ontDgpiiN9MHRRszLZ\njiypKY7XOrGth2kaLeiEyBAjTqupIQRCMUoBuqOdbDlnG7rH8Nklt9blifOsgl9QTY8nWOtqYHUh\nriBD1nUofuhKIXySKLFs8JZaib6KqwKrnyn0vsLuWoabjvbgOJ+rSRulMSFP4WQSp03CvV5zdS+C\ntBfPJIbHo8JkqtG0lhXURmwM3ZbMYR+xGdpfhVmfAIRGcfaJtYl0QT2ixSypFXoN+uWWetVjdi3N\nYZg0EMxablAaZV9QtUG92GJ3Nan3mGPOEayG2oLL1r+VFRvOxoGzqJhhJ8ZMD0P5mh48evtAPAea\ndgSO3N+vRMMgSHO00MKc85g8QZ/ymGxVV98FBqUpM9SCKDMq0VyMEBUhnFi5ke2mZ7Ubab6MuF9s\nUbUlxSTvIybW709svzsw/HeZ2jdD9UhjqExufYIxSqNSXzWoqzX73T32LI3XdTOw/7bP1zwXbN5O\neUGtZZJ7UY282B+p6oCrg1DStgm71+irist+EJvN0XP1u5bzrZuK74vXA2ZvMFc1qR0Jdx3jTWI4\nauo3l6SkWFcDza/XqFeXEAL1jw+k//NE9RAEbfNMoX7xBaZ2fB3/mdgJ5CKcEvUPnvXVQP2twbza\ncXHfkdqBeI4c/qnDj3K9N88G3BXErnvU3Y0BtJlj2kSL0UIllIdaPvkuP7detI20SgyjoXKByxct\nu66bnm3XiHORqeOEuvVnGR6kCHFUtAeHur7iNFoSit2Lnvq1ZX17ZP9DS/12P62jNjv0xNxYNAVB\ndxFZvWhxvw+ou+3kJGJNxG2h+s8vcOeB6h/ueXsvBW0fDDoY+iDOErqG+j9e8XJ1RxpbiKB3RhyY\nIoQPI/4E7Y0lBi3r8lcX1DGx+vHE8K7l/MERPyjcGBmiYVONbF547JUGPaD3FWhDvB9w/3jgtmtw\nPlGFWWh1bSMX+5Z+sJy8m9blU9RqQUzVJrJb9WwvOpzzE23MmMjll2fcFuyXDvP6C1hV8kcGD/0o\nVt+nAaX7fK8Tm2MvlKksZuyjNMuqXaR6XbF6cyT2MiR56GvaIMiabkIgJ2obqF4qzIXF3Xm+8g9C\noYmKqvETVTV5Ju1fZeVvDq3lfK5wp8j9aCfh8YiaKEIh5xU6SYP+8/GndXxuIjBzgvTWoP78BfWv\nrShXv72n/sc7tt9JgW5cQv3iZ/D1C5TWUDnSZo36cCtkriGQek+qLXpXo19sSDuPW3Xs/qVjGKx4\nzleB+q8uKT3d1HvScSDc9Ix/c5IkMovr2dxEqDLnS12t0DER7wfMRudAOFIRCH3CjBHfatwoSZwP\nZprmjgmKD3RSwo2XrqIcJVESLpT859MyQJ+GLS0T/+Xn+XvzxCwgBeK6ku7sZivX2HvNmBNdpQRK\ntr2UpMIdpJHQbEasjZPmRCh8xgy7EvXnIJOuemTVjOxeDdR/uUX9+hVs1rjbv+Pi1OUiSCgUOsMb\n+yCpcpehXyZff6PK1VCP3pOqFHpnWTUj5158pE2Kmeeop6lz4VXrDGlzOlJrg04iXlRXflJ9tjbg\ntkD0DP2I0Sl340Wld70bqF5q6leKl+cDbVvRj5a1qdAIhHPUhjEtGji5qCoNHLeN2Jc1Zh/o7yPR\nQ/RClxh7sZBcTmliUhgdBGFgI0pn0bLSKNgozAspaNNpoPrRT8rFTsGY6zOrI9pENhvP7lmPu0jY\n5wa1coTbge2bkTEqjDJTI602CafnhpfA0Jl4ekoJEoEfbkHfoX75FezW0A/AjfyOFU0Bm2GFBSGB\nFoqQ+7Zh/5uOdpTJ/vrbhKo0+o00HrqocUhBv1oPmBcrzPPEi+ed2FqurIg7Pt/CqoZ1DdsNqh/Q\nv3/L87+7pzoFjoPLa3uUqWVMuNcb1v6ENh1+0LhG0Aar0dHoSGNkWm3XYP98h357Ql8H3LoXNELv\n2H3Zow2MR0V/ttx2NX0Wv3OqcBlzzEm5ETM953lyC1QmUO88vtWcrh2hH6meefRKk4ZEbMXDunsQ\nu9QxmIm3XnixJk+fSzyR5+WxReFPxZSf+vxxbJnRTVFu40eiUssY9LFo1IyMQmnSVy/FnhWgrlGH\nA+r+yPrlEX8KU1K/uimTO8MQM2XDJ/jFlzhgd7hlGGTiVRLfgiT6lNL4xbrj8psO99KQhsjVfcuh\nrTGjTAaDUcSk6XWaqUgqsWpGUhpRWfgSZoHBgujSSgqPhFAIltD1wqU1WuDAdfRUmaphVKJZCTqo\n1m4x5Zf7axfT4VUzUn2RSHHAe825q0RTRuVpvNUoOxfkTTOyedZj12Be71HfXFH/ylNdH2h+90D1\nnee+beijrCtnZh0QPxjUq0vWlaF+e0ZvKuw/nWjejNwfVrw/rwhJURvLmARZtloPmL1GrxJ2F4lD\nBM4MvZ3iv1AODS5qNjbkhuG8jkJuwlld0AEW9ecXuC873HkgjUGGB3nBhR8OoBWqsbBpYLdCdSNq\n08vE8dRDL3awAPHDmdR6aTo0diKHK5N1JdpRFlpjpw6ZqjRaK5oL0SzRXT3tr/JMyz3s+kIvMfKM\n1oHVl5H9TZc1DwT14rRw4q1KVJegN4rqWYdeDZiv16gvrqTZttvI3/dezmkc0Vcnms0dLz8cOZ+k\n6Ohys6oo+4vmgBQaWiVBbb56ztWv3rG56TE1VK8s+mrLpT5if8zoxK5BIQMHgYIHdtXA9nKg2kfs\nlUbvKrlutUXtV7DfiENSN7DavMX94Uw4ybVxr2r0l1u42qK0Qp8H7O2J5tCj//qO/mSl4fTiGfzi\na6gr9M9bLm7/hur3J9wHj2o07Nakb77CbFaYfoC2x10/oJtbzM5gvr2Af/dz2WOGEfNwZL/9A+F+\nIHlwXzr0yy3kxhExwhjkcxT3pgknHvP+Vv4/BtIQMedICrlp3ybqXmKTcwF3mairCEoouOZK9mYq\nI2sVSEVQZgiyZ78deH5sqXW2Ra7BfHuB+ZXDXR+p//YG32mih/vbNfdtjVYNPulpIk+E+n++4mpz\nh/qHIw99NdOvNPDVFUprHHD1X1tOQ4XzWcdALwYt/+mXuNcPAjeMSfbTHMjN9R3Vqad5d2T8ccB9\nu0b9+9ewarBth/3DNfXvbtB//cD5VNH2jnUzYK809leXYsm638Iwot/csh5uuXrb4YYqOzEIyqLR\nkfU3kZf6MNEFfRCEQZ9Rpktx4Y0dufzyzOrnhh0jaRiEsrOy6F98k2PBRj503iTvD3A4ow7SGFUl\nDlSGbdURTyPm+yPVXeA8ONbrAbNT6P/wivqbE+m+xb09s7/uMp1FkUY10RucjpjnNfr1M3SMPPvy\nHqUVyUf01YWsv9plWKeGUZ7r+g/3hJuR5s0I7+C6azgHw9mL09VYUEZ5Ay7ovz+V47M7gxyfmwgU\n0a0EzsAXV8R//5egNerdO9xXv+Pit28lgGsF33xJevUVKft869/9E7y7IV0f8O8H0gDoEbPrMd9I\nQqoai3U9IQgXUesEv/4WrvYk51DjiLq9R//+Hc/fXbO6n62+QCCqVmfv7lWNfg7xtifedotMO0/I\nFWhLhjyLz3mZYBeRsQL1zL8mHMXFxVAwJY3LBL6U0CJw9/F08Y99LoJqy+R9Yz37Xct6P7L6pSH5\niP8w0H0QGzmtEuvVQPM1qErhPgzC3d+DuxdLQnNKE7+3QDNDVKytZ7/paNYjq2dBaCe/fk364hnq\ncEStHXbTUzceOmlE2EX3VhKqudC0OgtTlvWS3/fEK/t6R7O9oTkJSqLAu0OKOK2na1AmKo3xOBMn\n6PLGjjT1KMW5EqiiXimsTzRnoS5YG4TXnxT1PqKvVuhXey4Pb6h/9JweKtadbLTFojKkmUZRRCJF\nzlMmZ+qiRhtN88Md41Hje0GyHI7NJASpFdRW4JXremS9HaguxDasMhGXExElP4haV1BbbHUQVeAC\nmcuLzunI0Fu0GbHrKAn+vpak0mo2bqTz5pFquEyOs6WVKk0EaYalCaufiNdn+h8Ca6PFv90HhneJ\n4SQOCikxiSc+sjO6HzFfr1mtO1Znga3bb9ZQW6p44KIaJhRFbQKbFx717TN4doENgcnWU2tYNfOD\n4YNUqbsVzfo9o8/ijioLZVmIB499vsbsDVUf4EFQLdaJ6FJjAo0NVJWXZ9xombIR0A7qtScETfVS\nmor2MOI+jGzeCze4ChGrZ3/zmB98l+NeEcG0KFISSoa7EJ7/w4+W003NeBbkSxzJ9qqG87nC56ZT\nZSIxhQkuWzzJl2iCZXOyPA9Pj/KzTxEMS0X1+VmabVeNynoUcdaHEqTBx3ZrT4+IgrsDnM5gDerc\nQtuKNWs/ShEeVJ5kJoplaLHqGoLB3yWcMfDlHvvigfWNwMHNVQ0rR209NhfCZI5wzLFmd9VTfWXQ\nVw3pLHGg6x1D1rmYxXXnJklMsNoM0+RoHGdbSZ9kGp1yzC6Nh5Sn0XbqtggaZuWk0QqwtYE+aNbW\n0+w925uBvbe4bImYkAm3IomIm1E06xH7VYMyPTH02T7XTDpDqjIkq9EmUDvP5lnP6ueGFJFYcXkB\nV3vUqyNu/T3rcM3uQ0+V7SvLMUZN2zlpSrx+jn11BYOnDtekOCCe7hVDEPSdVYJkqHcefbWSQikk\nTEysRo89RnFVOWvSQlunJN9qQQNaigKmkEinHrWp5bnf1DJUsFqe/8Gj7HHSRKAbwMpUXIq1lnDd\nEU4RXZ0Z7xPHdxXe28xdDhgXp4lxDBD6LBC3jtn1oTwwzDaRSTRzRPdGTrjZe1bdiO4FcSLXI+Be\n1Vy+PTPmgmhUGh0L9zlhnjvMq50gJF5ewrNLaGopeg4nsQgds21xl+1CrRY6R5sdqj7xTBfW+XRf\nL/dUf/UM++aA2tUSU9se+6JjPXp2556h7AX5vhRkCkiTSlkla2wI4gQSImq/kdgLqJVDbw1p9KLn\n03pSO6L0GXYrWU97cfZZfd2j3oyEUZGOPepwglrWqH19QdXe0Zw98RTgwwPq8gK+eCbvv5Wpv/n+\nQSgp7YgaRtjvZE/QCv1yg3ItsQ2SbzZOru9uA6dWrmtMYsV6kmubxiDvbZC9JI2QhkjqIrFPgprt\nZI0MWdg5JkU49eiV7Mu60bByIj4s3TDJca2G80ASQQV0rcQxaBSLyeFeU/ce9eo56nLLSr8l3vek\nLpB+00776dHPOgP9wbB+cYEDtne3NO8DQxDET+yB2yNsGtS6oqoOgl5Ss/BSBPwZ2KxlzXW9XN+Y\noBe6D9sGKit5TPcgucOqIe0v4KsvUfsdZlWzuf4Ocx1xJxl8pJjkWdys5NkNHcSEbjTOhIyczDTY\nvG3Yrxq2V4H66gF/VNxdC+onJnHPWepXrJyn+ZnB/E9fwOVWznvVyOvttiRjUCHIXuNzw+jUwqkT\n5GRpHK0saldjX+7g1KPre6o3R+7fNWIvrZHz369RMaKHQF3loU3eMwrVYspzrraw36G/fQkxovpB\n1p1ZwF6GUQYvbYc69egxYg9e0Es60i+aJiVfKNDGkOa64vPxp3N8biLkI0QtXeC2kwd7tSI9e4Z6\ndZQp3ejl6zbbUPUd6v0H0v/9W9JdR7gfOf9BkusUFbYKbE4PqFomBsGbLLKoxRmgqUmXl6TVCsYB\nVitUCNjtO+w5F/+4DAXMljptftD3G1TzQP/dKArHGvxJ4GgpCawNsj5A5nBHBEoYM/xoiAIrLGq8\nKgfPIv4ngmifFjz7H2AyfHx9J8ujWcxtbT2bZwOrv6jQ//FbSBHzh1vMbx9oTz3WRtZXA+4vn8Gm\nwd6fSWMAozHvz1zajvqDx496QnmMWXhw5Uauvu2wzzXmmwv4qz8jXexQpzP8/g3p0GcnAZlE+WJf\nlye3Q9R0QU+CTCK+NPPAxijuAGNSxC5iXr+kfvmB7blHHZl9z/P5lIBuM1Whrjxap6lQX7mReu1J\nEYzPCVKjsTaxxmO2iubQsjv2AkncKtTawfMLqv8c0fV71HcDzb1QH4q9mVHzDZupEznJzAUpu4bq\nlYUf5PWD1xM3ufAQnfNYG1ntRqpnCV0rYpuy2m8WqusjpvewzlMhyuvO106Kv8i5rTi3Fbu+Y+MH\n3OmM3onneohrEW1LSiypiq5EPne1KCDHNKvzA8Rz5Ob7Nd3tkXrnsRt4/4ct7ZjFKYPmfnAcvOHg\nNRsjTYnYR/ShR5sZNaI2FezXmHbkxe7EtneyUduAfa5lqrBZSzINjycLpxbuT6Tbk3T9Y2LoLOfe\ncRodWiVqK9fb30f0fUdqpTGT4qzmXooBqyLGyPf99wdSGzm/my1eYxRepdrVmLVD6fMM006zXV55\nrkOcLdh8VpseMw8cMk9zr6nvPd3J0Z4EDlxEKsfRMGauaxF/Kg2nmJ8PiTEz+iDB4t8/HUUK4eDp\nV8vvPf17YbG+UxInmpRkEi8845LclBg3q0q7/Jfj766lYNRKktwhkGIi/HDk5vcN42jFJlAl3p9X\ndMHQx2L5JoiN1e/fwaqSCbEJKBVQVxew37Burum9pfMm8+8l7m6cp36ZUCtL6jzx5AlBnH2GoOmC\nkVgUNV2YBQOHqLErgQenOHB80Ohx8RzkfWNMijjqiaZU9EeiFi2HfdOx37c0Fx5ziFwee/pouKgH\n3BeKq1tZR+dhKUQrArhioaZwTUR/s0dfDazGW86HMFHRii6Aqg1uPXKRWlY/F5i3/+6B9OGE2t1J\nor1q4KsrzHd3s3Vj0JzydPAwWm6PK372/S3qq70UgG0vTghG+L6T0v8Ur5XskU2mDfgIPk4Q8RTF\n7rAIQY6LBuOSHjeEAsXXhBPoPxxRb09SgJqMOKjMVDGHO4F/pC6gB3k+UuuJ50j/VqglwTtcFTg8\nNLw5bCbxvYKwcYtiuVgZ11k7o4jilgbZsas4jo7DaCax4SZKY3HTDZhjJJ4k/tk96G/2bO/f0556\nDn0FWBRq4knrqwZePZdp7UZ0Yjid4cMd6V+uSccBxkA8C71JVYrkE+2h4uHccNfV3Aw2x5QZz1i0\nJoZoSIcTahzhqyu0VoLecpb09p7USawLC1620WmytF17y/GuIsUBewjYzZnxCHHUaDOwfuinwiie\nA/420t9qxt5gPwTqNw8ogyDg7AxZSj7hB8PQWfxvH7DtiHpxI4V+41BO6IHdW43+r28xtyfUN1eS\nhIUAHw6M10HoLT8eqbrfor/cScNgDJJ3tEFsnw8BG5O897aH+7NA2xEkXzwMpC4QDlEEjcvzHRW+\nVwRviEHjvQh7DlkAsiA0zY+Ri74DEm47Yh4eUJUmdSXIg240MaMZ/AFin+0/veU0Wm7erWn+8YGq\ntvB8h3q+QTtDuu8wbpzFlHPM6YLh9mbN1e0RKovdzbloTIru1uD++g1670ArxlFi4mm0nL3hmHWX\nTjc12999J9f1cJZm7mmQdbecUPVemimHHv2Hd6j3t/DVC/nefoNeqUdaEuP7hPn+DnUWTbJ03xHv\nR/x9pB0dZ285jpbDaLLWDKhthX69xbweSbdn/P8h9IY+SmxWKmXRUkXtvDSOdyt4+VzWRBkwHI6o\ntpO84IfbaY8RheNIGiKxi4RDwsYBtXaob7+AdY85DdS2Y3WSRRBPifQv17KxtSMMgX6oJ9plFzVN\njFilOA2O8OEOfX+ShtZ+J40ZkAZninDO/297aAfSeSC+PeFvA/2dNG9P3nLyYsvdBTXlY9N+/P+m\nMPj/7fHZnaEcn5sISBI5BM34dqT6u+/RPsCzPVgLN3fSJRy9dA7fvM+B4Ej6zY+c/8sRkAL+dKjx\nXvhLAO2pp1nJRGccHd6L2N7QG/jnH1HnDrXbSOERAnQDsRdrvyLQB0xexaFHHvLnF+irhvgbL51d\nnYijQMym97TQA3CZSxgSDHrm1c7c5dlGL5WNl3mKOE0vF8dHquiLa7n8/9OfL17DIcG2HqhfafSv\nXsCrl5JsXmyx/J7tmwdMnai+0vDr1xL4YhReaNth3nygeX5HfdeR+kA4DAw30o1PEaptpPnfX0o3\neLcG51BvruFf3uD/8Rb/IdLdGtq2mugjbRam8UnTBylQh1hUg+X8y7Uo9nBjVIRDwn35gurfvWGv\n71h9GEXkMk+IlEqYWiytzFagHqqSK7X7fY/vhSpTXSbxbU+ijK03FrV2mK9BbSrsoac+DcQuklpk\n6nLq4NVz7HmgPt1hv49UUZSBRRdhFktL5cbmu6ScIgWZGJnXeyr9gL4eMXcjMbZy3jayuvSYDeiV\n8OpwRjY+RiojjgohKvwB9HWLiUmmHppJD0GQHfK6VXahuO8a2tGxOo44F1g1I5vnwyT6VpoeRUl/\neYg2RMIpNU1jC2y67R1/uNuJCNjuzN254eTdNN3upgaRFGXKynXx1yMxzBPddOpRuxWsHJcvHtiN\nnVCaTEJZI8nNqYPrB0kGxkA6j4TbgfEm0d8L+sHVgXofuHm44q6rJ0eOi3oQDmwvFqHjfWI8iyq7\ntrMwqIgmxklhvv0noZLc3a3ovWXTCIw8HFr0lRe46moO7YUjDvNkteh6lOmBVsJpLJxovdbor7as\nuwf0jwNDaxae4ElsAa00NoyJjKNYAJ5GS20sjZlf92nRnxZNgj+GRvjU8XQtPG1MxARVbpIpJdog\nTw+jZBDn8odW0P+mxfzwHeEEp2uHqwNuG+nvDT/cioVnlVE1N0PFECVGFKHDh4eG/d++x77egJf7\nkyLSdP7iki9+9R3b6x4/6CnxB6YpPkC8HQinOF2XyTc+lfOeHUUA3BbcqwpVDYy9oFGaYOhCmKDp\nAGFU2DWs1gNKJdbbAVtFlE1Uz8A+d6jVmvpDx8/NDX40VKuA+9UlV9sj+/sj430i9uIaMPaGm4c1\nrq8wyqFMgosN/OxLKq1Y/XjH8VwTi/Iskog3r0dWlUb/2XPQGn97RzicsYcfMLdHeHEhcdplK8Og\nOXtLnQJdkNh8N9Sc//o99XWL+XItNMAPo1B4OjsVnIWPH1OOD0aDzQl7SlMDuVj9SjNUAR6nHbUW\nq1LItKmkpsmkPyniEPnw42b63aryuLrDrSN2A+ODAi1is7zpJzTB2FtubjeTS8J+03EeHCfvpqbF\nci+1elajVySct9S5aTejCYsYsXqkaQFgvl6z5oy7Gf4f9t7ryZIrv+/8HJPmuqquNnCDGVJDI64o\nKnZDD3rR/777qN3VhrjSkmIMKQxmBtNooLvMdemO24ffOZlZDQylZw0yAqjqurdupTnmZ74G9Z00\nS/TOSFH+L++4eXdP19cwkNEIGYVRGenAA7z9Hh5OxG9P+Lc9599YvDPEaAhB1rK69tgq8nDa8ji0\nPOZCrUtLclEoaBFJNv03HdU//k6g/D6SHq/w9gn3Tcf0QTFcKi5jLUiJqNEhieCfN9RTRTztuPZC\n4TA6choafO6Uvrm/CILTRmyVmMaa87UVhEyC6juxzDy0I9aGlZ6N5npuOPcN/Arq347Uu47miw+Y\nVy3hnBj6isvZ4McB/asz7asjus376Zh4+E3LtRdE4P6bkc3uXlyOKil2+QGmi8VNhvY7x+bdd6hK\n4U9pRpiEUeEnjZ8s50vzrBlRqIUhK/UX/REZ90VvRRGeFNdMdWqsp64CWkeGsZrX8qb281rkgsHo\nyHFoOE0VXTB8e95T/UPg5fWB5hdn1G0rc+5xYupFbLk0bgKCgHzqW9zffcB81oqbWN7Hp2DEcvTv\nEnXrae8CvXvBNSfvXdYi6IPi8bzh7v/4mjTB9KRwg6HvKsapxlpxRrOV0CJNBXXfo9/9jjglqi9/\nj/7ZLRhD7BNjV9H3WRckaFw3UW2P8z0O3pCiOAxd83l0WbPGeE06jagv7uDVDepuR/sPX9OeHVtX\nza4NggSSAlO8Osz7kxQPMjUAH4hf3xMfJ9xD5PyuJiUlAp8bPwuUpghusLSjp44X7OurfAZS8LG1\npzvV6PtE+H9OMwLZbGD0OzovVIzFqhPOruL83ww39TtsP83FVy4j8bEnjYF4kTUlnGVtDKNQIt1U\n0fU1x6Hh4jVdWIqzz9YZJRTlP65Cwk8H/FREmI/OW65vLf58Qf2Xf6R+rdEHK1Xja5iz6Oo4oDYV\n/psz3VeJ8+MGnaGjwygLVTdVuKi5TDW7zvHCdUyTeKyHKF1z9x+/BfMtepuRDY1E3ef3Dcfzht5J\npbPSMSsVyw6cjgPqs4D67Ba7PxOEeiudbluCfDnZ4v89wzNZ/G0LpaF4BBcV6hKjluC8xOArlz9g\n6fqtRc0+PtaFhxL6hhWkubVeNB0OW4GpNY3AWn92oX5xlCryXSMwtd0WNpnTdzyhhgmlFeq1LNJm\ndFTHPie3oG5b+Nd/JoWgYYTfvCV+9Z7pq57+gyEGy/XacBlreieV9z4YrhlB4JJsiGOQwGzIHNnS\n+UyJZXM8apq6Rv2bP6P67IHqOqxuQkav1FY2Fbu6k86x+/SDBFA+ksaAenTEEAijRt/t4fMXsN8J\nvMwKbE+5wPQPJ+JxRP3T9+i/+TkcWuydmbvPzzyy1fNkrQSdSguEMR171OcvMFqjd+Cxk7IAACAA\nSURBVFfsUYoVGNB7i74VIS3qfP6DI51H0C5DTCNJaUKvcB8iaezRt6u26HweUqxqraeqAgxwnirO\nkwhkbnrPneskaCx0gwhGPa96r7vJPq0KVlnVT6vEMduetdYzRsOYrakg60WkhYpiGgkAh2+h7+oZ\nReK/6bD55onieoKoiE4RzgH11Qf8u4F3f7+b7dBiqoE6d51F12RXO24uA49Dy3GqspVUhhs2Ino3\n3SfGswSWWieqNsw0g/nyclIzdhalEt1Uc5pqXNDUNjA9AFwxhwVa+oe6BOUe/thRxpDaN1T/6iX6\n5kSThaySfy5iWAKf/liJWF22tqqy7gp6WSugUBzkH4nnHMp/Ti+hHIrndKpCkyoaCUJpSPOCUz4/\n67/N42ctrAhSOIjvFE+nLZep4sVmYN+N9H3N01QTMxTc6sTVmxlZAzKORm85/dpww1UC5yjFAnLH\nq/n3P6M5y/qUYprRKdBAiMT7Hv8YCbmBqvOzL3anhW9qMhPTqCQWeXcbrFbU3zqc01hnZ0qWUVLE\nTFEsBg9/4rndROwvX+T1SMvXOttbHs4c7IlULE/+9FPMl68x40R17GTe945wP8B/7qgukWqMhElL\nUPrlp/Cvf0n7f/9HtueJyplFqOvQYl7uBb2jFXw4MR2FPmXvI+brB5ovj5gv9sSrp3d7em+5eikM\ndF46bBdvePubW3bfj2z3HaZKDJeacbRchlrEKIPJdK6sor3mgHjp9gniR5Kyps5Bukp4r3kaG2od\naY0k5oUKWJ5JcJLUfP1wu3QrERX0fe047AZ0tmY0Ns76MiFqxsnyNDZoxMpQTmsZ8GVK+qyZkRBt\nnbI/66QYg3lOxcp0x2LxOWv0pVx8/mWFPlyJ00Q/SHGXycPrW5ovHrk99kzBoDJ9xOgkUPwPTzA6\n3P/7nvF7uD7V9P2e09BQnKbKvG5soLWe01hzcdKxHOIK2ZSRQEVk0UVF/60C9R69Lar0kf47jXci\nrjmM1fx5UgI1OUGSYsoUDZf8BxSJaz7/SkfGR1kDKx1prVAMz1PFFM1qD1E8jfX8/BoTeLntOQ0N\nvbdwAnVOVPeR/f3Iiz/tGO5F86N3Fh+0uHd9n8WbW5nr3x0PXJ2cSzu0VE/inNNaz3YzEaOaP6M9\nB9pHJ4gYtzhspFw8D1FxcfWzdWttTypwdf2s4D5lFKGPDVcvaFar4ryXDBmpUIq8RdOo3LshGC7e\nMATN1Vi+P+0Z/qni9n3P7s2ZMILrDJdzQzfVsz5ApRM+aYZgefqnikPXS5ML5mvxwfBwbqlN4MXY\n0Ttxbxgy+lNQsorLWPPu73dch5prjqfLszMqzfaYtQ3c7no2k2MaLNeuZv+bkZvPv8O+MYz3muul\n4di32eFLuurWRim8r4ozvbcz8svnvXNSGvfNSH37hPocaGrMXs17ccHYhFy4vE4149cX7P0D5rdH\n4hBFQ+gKT+9ahnHHFAxd1kWqdOTQjiJiW4lTmVAEIUWPqr+T+3cOoKTwOQziEnF+kvFSVYHtzYQL\nP6RpAnTB8P39nvT3F/aP70VEc5RCwfmxwYfFPUSKbCqPPxmHYzSzBaaLgtAqcdc6riwo3T+W4yck\nghw/FRGQRbvzlsulYegt177h5ruBuvX014pLd5ih3b+wZ9RG032V+O7bA6O3NNZTmTAjB8Zo6L1l\nDFo2I5i5+j5qXDAcvxLV0xQVSos4VbNzvH+642kUG66QFDvr88JsMBuIxxHzcILXt9Rf1oRHRxwT\noV/hijQoHUkxULswdwNDUgwBQDFmuDEsgfUPhcfkWCtzl/evv8prf+DePntPOY+0JDU+wuOZ9PX3\nqH0jEMqqQu9ykjsF+P071PEsvLLtBroeLleBYBUF66ZC3eVoyxiptsYk0PJvvmf6D2/pvtVcTlu6\nocaaMCdhnZfA8+wNT04W4jHTPZrMJb94xdUvSIpy+gerGK+Wm+8/CL/szR3cruDtsBQS5huXb7yz\nqDuBiqrJk44DqQvoKopQW525e7sNfP9Iur/O8LdwheQD8ZtAq79B37ZCm4mCdhlzt/0Snm8q64U+\nFbGmwaPeHIRft6kxryZMOcfaLtkXwOCIx4F0dcQ+CQ1ktuNScIUwJqrBkbIbyRQFYusitFo4l+3G\nUV8D16yoPmTkjclBzDUnDUaJZ/vVazq/UG+CLvZhSzFA1Qa9MbSNY4qai7Psp2rWp0i5W1egzkOQ\nTVJvFOaFZfoqcRlk7gFcf6fYxgt6o+mfLMFrsePymjdcIA7c/1PLrz7cyePOQV5rQhbolG5G5+1M\nozg6M6NbAOytBNDdN9JJ7YeKtnFsq4TOAXJZO1KSTlbwAqF0UdN5Q0w1N0wMpwrXiauHaZgtmsag\n6MJz6CFIouKjBGUpF85czMWHa8QMDn75Geb1LebpQvX+smjD5DEhKKDAdBWkhM0FTLeaQ6UrsqZJ\nfbw2lPUBCp3hx4/ynnUh4tkak69h/rdNWeNFybrDUnRIKGzKFAe/JHinafGYH72ly93LBFQp0QdR\nqJ6ioB1uk3Q1z6eW+t0VXUFwWjrjb8+Y2w8i9NZWEPMqWllU5j77//SW8W2kP1akKBDfReNFCphd\nUFzDcl+2UkmR+7Wvse2I7eKMNCmFMp0LOHqjsH+yF9G5F3uZ1yDJZIqLeJnV6HqVeO820pHOKuIq\nJuyuY/PrJ6ZJCmXXY83+63v0YQtffIJ9Y9g9jvTXWjjonRNq0MuDIO7enQi/PXJ5qkW9/KTwQfPi\n1HE4H0meTF+osiK45uxkbW614UO34XFoaU+eV4eOYRQk2ZQLCEPU9EHoH2PUxFH2kmR1Gfh5LkV0\nVOx24wx59pOhuQiSQ8ax0H3GuBR3yji7ekmeCq3j5Cpe+AkXNftmmjvcfV/RO2kwjBm63ZpAi1jI\nrguFBX0yJwNRI3bFUnyXhDHNxQtALBWj/CwlGZcgKLp0nQSC/ipRHx32+0DsIvrtE+oXL9E7y+Z2\nYtdNxF4xhRyn/L5DH0fcd563v5I4p3dWYhFv5nXY52KCdZGtFQ2WLsjec/ULZUor8ZsvyYdPiqk3\n8DbQny1aJ67XmmPfsq0d3STd6ZOrZr49QBf0Sqcizc9J59fk57KfREQkcmMCCcXFi3J9QWCOWby3\nHJUWmo6LgkasdJxpO5exFovgydJNFWM0MMFpqpmyAOh+cBiVeBwb+iDJ6dXbGYm3MZ5D7lx3GflY\nu4DJ7koz8nSml0pif86xoOiipNkuWud7sHa/kOGt8RGcVlyzWn8pRsa0oCsVaRYyLHTWVoubzxB0\npqJIDDt4w2ls2D9NM02zUK5KgW9DynaNmsfjFpXtN8taGpLs7+epIiHaTuvEfYyKIRdnp2h4urY8\nji2dN0tTAdEsGbLlY+WE8qMUXLqG992Wtm/5ZLpycx4Yr5Ypx3dKiWOXz3afYzTPCuKXfB1d0Jx9\nbjAoOH1Tc/BHqu+vmM9E5yxGxeBzwSGKCHjnNd93G+pf34qAsw0zMnn0Vgr+mV5caGHFTWvjxc4Z\nBAUZo2hTTdeANgk3yhzxTvTCKq85du1s5xlLbpGW+EacLoTa8Ni3hA+aw3XkOtQzjbbEXyW2dysK\n13rMXLzh5PS8p5fYIc3vLTTGnxLrP7bjpyJCPkJSAskNimMWp9s4x7lveN9tKIr/P+tOwlv0q0XN\niOgZiCBaSuK1GpNAqEtluWz6ISncZDh17QxF2wye3TAxeDNX+T8+zK0W3tTvntCVRf/pS9TNlXQa\nMX0OAqMkh+GYgEDwnn3lcakEFoZaQ62ZfwbMatrL8WNlgSX5j6jV9/nrqpO4hjCzej2lhSoRoiY8\nOkj3+HuH3mjMZURta7GQ6xI8Ttjzb0XhttIztzU+DoRzhnVWCr0VCLeyGlqL6kfSbz+QHnvc24mH\nr1vG0XKdanzQ1EllayE9d7TXHulGScJW5Q5KpRWHSr4v11ZpqLVUtNPf/jfUoRWV2yKwVQ4f5D8X\nSN00QziUVsT7LlsMILCyMc5Q23QeUe8ewBzxf/cd0ztBxMQA3WNN1QSmwZJiT/PFSJrEL9vHZWxa\nxezRXfKOmZqxFfRLvHrUuyPq5U6Si10zC4QRAun+msWUIuEaxf4xQeizqFxaFN+DU6RJtAGCK0Fd\nYmPEgbjKSvCHn3uCv2BOkdFZImp2YmhNYGd1DuqU2LTFxKFSc/LYZPV5KEUpJXSGFy2Huws3HxxW\nS8di30zsgzhwdN5yWxk0UClNraNoCWwqYMrzNCcUzjB9SNh95OHxkK33ZH6+dFdUJWifcpRAbLEr\nla+1EVeIxkS2SdHkJKA2QbihVqO/HTBm+SzTQHRCG2itdFy0Saga6lbgj7fXYV4/tBKkghsNfjLY\nWigjtY5sbeRgM5Im3zNNYswJ/sFm95aoCBq27SRdj/sO/dkoqtjbBrWpJfEtE/zYER97VJeRT9lB\n4tY7XteWPqi5oxPz2vHPrRvLkeZ1pByzduZHv/OjRYRVsaTQtsQHe/l9DdRGnDYAbLVYzbZG7ndT\ni8DmwXp5Xnl87m3FGBVtvradCWzrSTrNncXYiHearq/pfzPQTu8wb9pZcR8QZA+Qekf3NVyPLa7Q\n4Jx9BhctqIJWLxdaKVFkT+cRlRN/W0VqK7agWyNphlXiSqKKqu7kSb/7kAesksJlrrrEk2d8n2aE\nyeb1tyirST4K71YGs9y/Ks2+9udry+0/PtH0v8b8dY/eWeqbEe8CvgN7nATN4yPxvsO9HXFPin6o\n53XjPNbER4VSV2wTc7K8JOgpo+hK0jgFTUpL+FL23CZbmrY64Y0kRcpIQVZpBduICtmZpo2kJEKF\nygoyxJ8Dd8eRMXdrm5x4unzrd9YJNN2JaCMYoQSxQo2oJMK4WkSUqyrgQqYDWTgkx00zsd8ObG+k\nMx1yoVASxMUiuNLib19pEWX+eF6AoLnKOAEYY5VRPgn/+6sEeZW4hMSomT4kYt9RTYF4Fv/4yoZZ\nZDUlQWUpHTg/tDz1or4v8Hnp2Ku8r6w7+5ApF1rWnYNd9iFBPaZ5DlcqkaLCj5oPxx1Gx3l93tZu\nvla1ui6x7SzUy5R1f5b3tXn9LNbLazeodWxSF6SVUtj8viI6W65HIdZ40tmXJPR43ghsP481k6km\nPirQYlNY1n6rZH7YbLdZqHTFijnExTZ7XUAoh16NJavSXDCwRQqfhe7yMQ1mjBLfNdnZy2SB0DJf\nIS5oLMX8WjmDgla1wDa7GU1BEs51AamgIHR+LuL2I3PERUEAGLOM2xClgVDQDr0Tp6mCuGp0YmuK\nkPVC6yrPvoyDSqXZAjZmmoQrCNKocbGmzrSwEDSjt2IhqRK7arkPZR8KSYt+SY7RK5XmtbbRidO5\nxTlN896zf/9EGGGc7KyLUz47oXhyFfqyZ2NF5DDEokek5wJCiRGKc0I5VFnfo8o6FzVdJznFOMla\nJ/o01bw3uahJzlL39bM50ug5rCSmjD4Za0ZvuLhqXlfHsAhvy71Yxgp5VMV8X1ojYrPikpWeaVEp\nhTRl+GM5lnn4x378VERAAs8xb+QqVznrDC27ThUnV+ETVNoQHeiQiEHE+KaQre9M2eDTrMBfFrWy\nOZZjk7zQH7yh83aGgLmghb+UeU2wVJrHqNCHijQG/LsRG75H/9kb6fBohWm9BHs+klwkjR7t0uxt\nXmzFSkfOJTXbk8l5/3P9v4/uFx9BlFev/RiqofxOeb10JXtXMb5P6CdHd19hq8DmfMTeGaYPivFq\n8M5QfQhoE4kB6m2P2SSmk+Z6ahnGCqOTqMc2klxVbY+uhF/uJ831uuPp2grXPgdDwAx9DRkCOK3E\nE11clomYFkHF9XWWC9c6Mf5/Z6bzVVR9P6oB+TELXnq9wNXrQNUGhkuFNp5mJ5ZM4SpQweA18b6H\nx4Fw9Fy/MXz4cDvzIffNBEz0fcXw+4oXQ4ep4Opl/Fy94Ro0F19gj1DrhZ8o9mtKkoQpMv3qjH3V\now+1JAoxkS4T8ezpf5cYLhXTVOG9oao8TetJSXGa6hkeWa7bj5rUSWe98zYjPTRTzJuUSdgvNxz6\nnhAEXpiSwmjh2XN9fv9KkWfdSV93X0LK3Xmj4dWe3V92vPm98HwO2aHDjeImELrNHOyvx6W626DU\nNCuBG5WIQTF1hhQDH7oNZ1fN1nxutBQlux+D3xudqJCk02gJFkonfqEYiDimerXD/Nce08t7U1Ki\nOq7L+2QMaiMQ9noXUBp222kW0jI6YqrIOFicN+hROrNThiAW0cT5elnmv/g853GfoZ0pJNw3I7b/\nDfrNVgpkWi0XGxPxOBDuR9yTiEYOY8XkTUaeSFfJx+ddsrXF5MfrxsfHrJ/FD2lT62LCx4XK0k3R\nuWgWUpr9rNcisipCVGpOtNf32uVOIpDvYabDRHKXbhFnNCpRV4HLUHO9SAG6d5beVdyeKoiep79F\nhBZzAKu1m4tG98fbmUIjIumGPsi8OXvD1WuGjJwpS8vGKMII+l7ESJOX7pjLndSyniWdiEETRw9v\nL4THwNNvG2IU73LvNdaKX/g0VHz/eECpxL6Z+Pz2yPQg65E4U0C9DVQ3srZ2Q815qthaRf9gmU6R\nzf03mIMmeXCTQZ0T5oNH3Y/E/zZyfV8zTRtC1FynispIonN20qXjQYpYF2e5FjsxA30o9ARJOvog\ncHYgd0Xz2p6KU0GmnJHnkdYCy2is8P7v4lxNVbUS5MUU50B+jVpaFxGMTpgGdCWd90QJxFVOdBYt\nk3IU+0yAJipa67k5DGzvJurXiupmYPs4CQfeGUIQNIoPGmsiVeWpGxk7Mehn88B7DefdrANRqTTv\nzyEprl8r2uMF+8aQhkg31GxOE6aLhH4kOknky7j3GRXWnytC0DyctxynJUEpyS05MS78+4J2HEJZ\n66UrOiN4EM60zF2hX4hNcOK+b5eEiLxXJkGwFZFjiSliLkoUl55lBSnIDQ0ktejvlL29zImYoNXL\nulLWEmkiKMiuUBLDFdFgcNFyzBaanbdsrZ9fD0nGj80LdrFZLUlvKZT5qOa9cr5WFu2f1dJKcZUp\n2iiynhVXFD0XFWSsMqvMJBaEQmui6IJEnQsDCU9ukKjl+suaFPK9KAVMn2BjPa3xDF5E+5b9g1zQ\nkGtxSVFlVNem8vigOQ/NTBMoAuFVI8WqKRqiU8+oA+W/OrtXGf3coacc68KQiyKInTLaQpHog+E0\n1UuRc6rog6E1sh+nZGaURSkghSRaSWPm/Ls5mRaU2aVrOV4V3nU0G0c31ZxdxdUbXtbyHPsg0P9C\nOVlTT0pRT8ZxmgujRKEQVCZSr1AAMcnm1U2Cmr2MgnhpjawjJhchfNQEFIO38xgvcX55hiXmlvlk\nZmRPWSfX8UvuQ2JReBZk1LIWZm3a9JzyrPIY9j+2kf90/E99/FREoMD8ZRNWUXPM0EMfJakXlWHp\nSsdREatE31XcDy0uKjaVZxMdLiy8oiloupygalfxYaxJKLYmcNNMxCiiUU+uovOaSlvuguFhqnic\nDNcgAoi+zucX1ewfHb/1dP/o2Jr7Zyr4JbNPq5Z6yht75zVnrzl7ERsbAvTZNahA42BBCawDeFav\nrf7MsyTgf0QXYRZtzJvNearoHkVg5t2DBK8vTz2HFwPnpw2XQeCujZWEdfCGfTNxe9vTdzXfn3Yc\np3oOYmod8vcxd26k+t15y9nbmfsGsqieneVhskSgzwn30yRe1iVhfVVLcnX1MMy8d0lMWqN4XWu0\nTpzf1Xzz4TYjScr7lkCm/M2YpJu2s459M/HYi6jaq83AFxxFWGcUm6ZwdLgjXB9q+r7mm/Oes7e4\nqPhfXz8IXHKque9bemfZVJ7HScbrkzOcnJy38AgVrVnoGI1JgobY1ah65PyPmup9wDRdFn/STL1h\nHBpOXSsKvznJedGMpCRkx7OzXHy29Wvi7BYSnIgY9d5y9obHSQLxjRGOtv7illYr7lTH9ihWdSIc\nqFCPN5KoR9nYiXANmqcpd7UAZ4QDLErfCTcZ8WrfNJh/+Qm/vH9LmsAcxLUgnCeq7wO9q0hd+WxF\nHzRxjKKg//oe9Z10VyrtxRIqgRsMT1PNNSzQ12kyJCcc2NaEec4YFdk3k6AvGsd2N2X9DEV8up1d\nP0CKaPgeXt5Qf/KeGDwxyPtVcQNMMn4rHUWFfm9pt4k0RQ6MMwwYoNpHGucJVxHuE6VmcaF4mrII\naFooAW6GaEt3YQzCR/XBkLwIWt3/uqKqRjY3F5pPWMRRso6D6zRuFOGqbqq5+orHyfJu0JL4RZlL\nZb0o3YvIjxcFgGdCrj+OyVpeT+mHwo0uxlw0UxhdkBfzKlQcqWgtWKWkw5Lf0HnL/VRL12pyhKh5\nmAR5cMi83/eTZsxdlzbfD2OkkzpmLZvTVAmSZhAazD+8f/mDdaHAnP1KvV4BQ9R0XsuYd5qrVwwh\nkYW5qTS0Rovd5lMCEtEJuq3PNIAHJ/SfrZViXvPo8d8mPnx/w29PhzlpsSpyW0/cbgauU81X5z0a\neNMOvHq48O1vbzkODVMOjlsbeLUXx4bHoeV+bKSz2IstsX2MvP7ZheFk6fpabHifIm60PJ2EhqBz\nF3MIljZ6YlI8TBUgEPbbceL9WPHkBOK8t0In6zwzXPqUaUF/OgnM/mlq5te6IGPv6PL8DoDPNnkp\nQWvRuzAjMFKXEWADjE+ayyRj+P1oeXJljckFpaDRjdBDPjtcOQ+NdGiDpTWefe3YVC6PTXlem4M4\n75hKfmA2CftCYW5r1IsWqxSNC6Qh27tpSGPW1dFKEHh1tSi5xySNAp+I14n668Dp1OLiFpwE+FMW\n3Xu432GPkdtjj6ngMlXsB1lcjo/i7hJyMiUCd9Jd7fua0Vm+67b52SxJqyLNlICi71KoBSdnOXvN\n0Skep2W+1lpRtJB8BL9X2Ebu//uxnkUhjUq8bsUG93GyPDnLEBQ7G2m10HpqDSYoKQdmvZwhi/Ip\nldgYnaHWakZGFLh8QbOsueM+ynWEnMA2WhJwH8zcaBhC0dWRYsc2xyQuao7OzJoslY5cg8koA4WO\nC32g1pE2d61LATIklal+UswsFrKNjiJQDFnkT5BPRkmSXK5L54SudNBL4aagSmc9rfzkplxsmtfR\nxEz1K2iJmMg0HWi0WIQPwXDyVoZn/vWSFF+85uTEVrU1kV098d1lxzjJtRatihfNRL0T2u/FG2Iy\nM/VCHGgUZ694Wcs6MwUzOzaU8zIqMRlNq6MI+XrDi8bMHf8hyLiReypFoyKWWOsJoyPBCZXk6KR5\nUZLkh0m0VKYIZyf3epcH+mWqeJoazlPNZzcXTlOd4yzNm8ZQ68jF67y3ZHHmHMOUhkejl+aFj8U2\nPEpRSKUZfVEaKvPeHzVPU82Tq7ixntftQNN6Tl3L2VkpZOuU916hfQlNUdPq5wjoPujZeaL8rMxr\nEemUOWRXSJWQhA75fpDYuMQNfrWvi/ZQYvpjoTOknzQRyvFTEYFcvVVQG6n2NzpitUzq1gSBPCdZ\n5FOEFAqcKXPLlMCOaxukS5u7QVXeWLVaeGqymQrEca28LMndUrkvVdmyuQ1BkaaQue8917cN/j85\nmhej2OgY5sg6uUScBPae5oCVZ0Ji5VBKGjSz0nMua/+h4P2/d5SCxMfTK/1IlSEhieY0Wa6+kms/\nC5SriButN8NrtulrG8fkZIMvvFSB59k5OJ7F3ZACwZOzcwDRrmDjhWqy7mgapXiuCrFU+uV1WN9J\nbSLXa8P7vp03/FKFXnPBoUDZpIPjouZ+bOaq+N2pEyGuLMLlzzCcLOeLFBqGYDg78ww1A+JVbPsN\nO+fmDqSLz/9m+fpM+CYl2Nbo25rgJREoCU7hzRWoZUkiGh2kA5NRDQVmqBXYFsytwu4i/grdJeWC\njnAvfchdjqjgsEXtW9rbE811EjqB1cT7jru3g2xurpo3YZ0pJXL/E40ht9Cl0u+8Id73mJdXaGua\nf/8zGB0YTXq4ok8jWz1xOI+0l0BrJKgE8Geo+5H6FzW3X41MwVCbwO6Nxw8QnWab4b517gC0G4e5\ntdx8OfFX9r3YrZmEqRLNp6BvLPpQo+7uREfiw5XX3w1Ay1kJRDpEJRonPmB/eUtrT9jtJB7ZP3Kk\nJAmF/vM30E+YN1eax4Hd2wvDo6X5RUV166ne9fTnCnMWaKN0dgqqaek0kaG2ZV1YdySUlr/34SRC\nUNWHyKv3HXoV6KRVMKqU0BlK4PF8hvDsfc8QPc+uT14Iq5+V75UST+rydf791bxdz7OPPzMq9Qyu\na/RyzUJdek7nirnguO4oJ5Z1waoleGpNoGk91kSh9+RurlHSNfJe85THcjnPEuzbvFaVgHKmlaRF\nPE3uZbGJlXsY872ME8Rs6VuKVWG1noUE02TpjxXH44bvrjvup7roz9Ia6abWOWi/5i7V1ldEJ+LA\n92Mzw63VlJiC5qaZZjebsm/2rmLoDfV7j/OGwYsAqBtF66OovlcZmeOj7Ful4zpFzVlJwax003yU\nhKacb52dSqB0b1NWrFeZy166aeoZcCZdJ0nSQShv+UEkn/CPcZ7n/VXEGQXVsHTxFotiQQmZNy1f\n/G9XYn/J6DEtKum1OHNMFxHWNFVk83OFqpVQWKxG37YL1tga+V4pVIiLpk+xhpsnQljmk1KCrAgB\nLiO3+oj93ZXRWy6uwiqYkPHduwo/SFGxqb1w/rNd6UO3ERRmhuH3XvQnSoLhotD9xlDW3WU0lnvr\nohQgheq40ALX272aURplAkqybepcpI2KayiJdgE8Ld3m9ZG1c2fHKWD+mz5JB7V0euX9Ujgt48Lo\nlOOTZTav170yRyudXZUyNWNt/emSEqvmPB/T6m+aVbxVjmd0qzKGkE7+Wm8qkiSMS8xIhkLpkcf+\nXD/DZAqCUkKfqHSCIAubUAJdTrx1pjGux/HydOT/z39ezn9TZQSNiZiQ8Khnv/txVNfoxHY7UXWb\nGWXbB71oV9RLrFlio3WkVRCTbeNwvX72vqUIm+PmHOul8lzDgo7waaGqFkHAruSM1gAAIABJREFU\nkJNzYKZ8liR6XjNXF1TOpalEMPTkpJB0qCeJ31LRH5AinEvQqqWgVjSJCpLSKjn3REZWBoha04fE\nJhg2q5jO5usLeX7FJEgHsNxGPQs7zuMqLdckz1rWTQXcVJGN8TN9oVAZoICxZKwX5ILOM0OzfNa6\n8LSOI0v+oNViG/3T8cd1/FREyEel1yrNmeOYg51KpxkuBRK4TZkPtbfCA643HqUTtlpU1a/OUmcI\nlfDFBG5Ym4CthGtmnwWpzBO5/LQkhENUhPsR/fkN1RcN9TvP08OWTe9onhy2SdKprJbFOnk1n/ey\n4RWYpywUcyUx/72CRPixGtuavvBDJMJyHesk4A9qI7BWtlVzUl3gZV2GZ8lGKfC3zlu0ghfOzsIw\nUjnW8zmXxa7RwncvsNSzF59tSaae29PMAn1xeQblHIsrQProGlLmioFAoWMom4XOGzfPNpA1dKyK\n8jxssFy8QNAqVdEPFZs2d7GiElswv3Bj53tPhrPZiNECWbxkgZwxlM2xJIt5PKw3ynyfkk/QVOgv\nbjm8ecflQ8002Vm1WKlEUwX2evEub2rPZjtRtZHgRPizwPV0K8G1qg32MrF5dBxOjs5bWmPnYCEE\nBU8XEXj75IVwlTctWIN+deLmf38326SevSFGCeqK5ZroGUBQ8hyMyhzCR4/69b1Aln/5pggFkIYj\naZRRudYdKM/TXTTx2xP68wOvvrgn/V42x+Yvt9SDJzw6/vT9ER80m3aibgI3fx4wf/Ep5q8tTRlM\n5WttxbasuHL4gN4febm9ZiEyQTWEpHDvA+btA3x6K57hux7zKNaPukozbDEmJToZLoqbSW1RPmB2\nNW1zRVcT5hdvMFphv7jQfNNx8zSJYGVSbI3GaZWFDqWbQBQIq08JlVbjPir0RtO8irRvwyxY93Td\nYDI3OyXRdKgq0Q5oGo8ZI5M31FNNpUW49ePCVVkmyvqRVkFteVsJV9Lq+/UvfhynlARzLdwqPHUl\n+RnC346qBMzMdn3lkdldIrg1V1heMHn9L7zmGb6plgHU2kC992yeZO66PHfkfUV8lHkdEOR8Xg+Q\ngLdK0kHVKc5B3vO1qFCRJH+ch1x2CtAmihhXLj6s578PIvJ4GhsRKYuL7avOBY/JC3qu0Lku3uBH\nnX+ms4AYM9zcRc3ZSSG9ynPKRc3VV9yfdoQM3a5NENEvL4XILhjaFOfkYV0omUUkvc3UMtG3UIGZ\nytCaSGt87i7n/SPTGErhwc3Xn1FjoyZdJtIYSJPc9DQl4iiWetNZL5D+uBRhyhhc7wdDMMQMErA/\n38tg8JHN2nVjCuivR3wndrD6tkHtazA6a/ZU4nRxnYSCuNqM1LaSCldKQs8CUoikTsaWaq3YL7bV\n/Dv61lI/OuoP6503r/lRcfUVY2eohsiU4d8EeBpF3O7iTbaAlnunyliLy/2EpeAOzN1KWPQJSlL7\nP3IYlXKMsvxs3rdigYCruRBW9s/ytwufPCaFLS4kPP+s8gRL8aJ06ysdIS5FonUsEJKi5GfPHY5S\nTsIlnjB6KTDKmvC8ZFrEatdw8nUiVt5TDllfAJb926yuae0mU+K5SqU5abYq0piAURZFYms9u9rl\nxNHMKNtJfVR05blD18dVm6YS6m2tA7U2hCT78nrYFqpCyEiMqpHYtqz9U9RYJfa4yjALHZf4qJzH\nXMBArCe7UVwICqrDp1KEzvFGfk0p2deVf37uJX4rdD4pDGf6Ri5MlPv6MSVR9gEpitjsojLlIuXT\n0HDNa5Qv9DYle+rOCMrTqkXMvCThY5QEvVyrVWCynlNZC/Wzc3ieGwiSIL+W19y5GLW6L4Wi6KPC\nKxkbW+vnZhBuheRjXTgonyEFhKhS7rir+TNLnLxGIaQExDJPP96d/+c8JB/4CYkAPxUR5kMhYkg/\ntEL74aQoHR+NLK5t67CtdCBErMkRo2I7eGojNou1jjmoTXMCWIoLi0Ju/pss/LayAMUE4SzdWHXb\nUu+O8CgJmXdmhtaYJJubsgLRVatCSPGK/7Hjx+Z+1v/7Aez4DxUQfowOtd6wWH3/g47hHDBIIl4q\n/1qRhaaeB3f6o6q8nMdiuyaKxAsvbH2UAKQEP2szwjlgp0CjlwU8pMWnPSZIpSMojaSV+M/ze1wS\nh/na1Uf3g9wpCYvYj8p2glA6pzJebE6epUu6QArLNX/sE75+BiXZmgPkcmO2DdWdoulyEU1rmsyz\nL57MIN3aqglUW6Et+IF5c5oFtKwWVIFW1NsLm8rTToFKwVQ6EEmJrWRlJRi29XKyVUVVRapcfAMy\ntC4LQ6alk/GDezxBePIk56jvLrltZYjHiXgOhJ6Z+7skBuIVHR9H9KcH6hcIP9lr1K6FTYXRitu7\njpQUzSFgNmBetVlxv16U7WMsEWXmYKtFVNOYWVTK6oQKUhjwHSJg+OmtiL/VBlVr8DKHrY3zWE9J\nkYYA45QxwTmQaC26naAyIoDoA7Z3tNbTmEgdonQz4jykCOsuLaWwmMd6lHafuTVsW1Gbn4JZhN2A\nqGQdq2wuiNZyLu0QBIqrVrBhlbfb9Dz5nsf/Hxiv6+9/5Nc+6vCluZM0r1ssolCCuBAkA/l6Bcgi\nc11XYCpBn5VOeRHNFCE2Pc8189GaYZXMh7oKkjgETaPjsz6dzh2bqBI6dyL1fO7LMUPG8zry8dq7\nRnkpKwl2jAqdq8A/NjfketWcFH58xJwElHu6XmfX93rNHe4yAsylFTc7z6lC6Sr+8T/2OfZH9qGF\narYcZd0t511l1ESjI1MWry30iPL56aP5HYMiBUEdxDFCLAgOuZlxlchqneZ1XKkFrVISIhc1cYTU\ne1RtJOHPgpnlipRWKDtSstHkIqrQEEIUgd3TSDy6WUA45eTA7AYpqq6DgYCIDANmp9BbjTrUUrDw\nkTQJ1Wm9rq07yj4qfDSkj3yapcAuBaJSmgtJPWtsrJ9bSYA0JUZJc2JeZ32Asqd+PA7TDJYv57Vk\njJVOmLJA5HFQRAsVC/ImrOaNntcXKRpWeb+sVs8PyHM5zUlbEX0sf3yMUgAwSRInx/L7ci0RqzUq\nzI9CnsN8vQsioQgpmpiTSLmamQe/Pq9CfQPRUihjTM+vLaKMYs8oaABFos7PqDWBolEhqFkp6Jss\nKFybMKN2CpKoyvSTgNBLUlzESosNeEKh88JjbSBELQ01lZjK+qT5wVoS82eYamnAkRs8c1FVC2qg\n0ZGUFOPzUvEybnW5/xIfExNWLRblioUOZlXMY+Z5PD0jNXJSDFJskLEVZ/qIVUIDWReHy9g2SsRR\nTUE4RGZ3jI8bV2W82Twmno//XNRc/azcE4lF44yqWh+CnHk+dorwbRkjVi25RFmvyvOIKY95G8DL\nWFrfj7h6P5TCzFIknO9DRvuuF+f1tcTV3/vp+OM6fioisFQFqzqIoF1JsvLiUBaTSmfubOYNtSbw\nybbn8OlI9UIyHL0zVNdI9aHHOSNJgI5sLzsmpUVpuQqrvy3LdlkQyqZXlQ54Wjrl/QdDc+xRL/c0\nX5ypvpOg1U1m9qlPUQTWDAmyOnStwzM44cdJNTynMzwvEPz4e9doqpghxh9Xc8u9Lfdw/W/5WV6Y\ng5kVhkGSmDXErSAn5kRVJyzLwlkWzzXPS5Fmukm53krDzkRuK8+ukuS3NVHEcP5A8F1sMEvlvZyz\nbAq5M2l+GPyuk3mVoWnl9aXyvAQOCRFFE49gQZCkKOrCBbpcxuCP3cMS3P+hRTymJQAKSeC/8Rzg\n8Qq3W+yXWzbxSnWcCKNis3PYOlLdJOwrSWxVY1BWuLmp9+hHx7YWJebOW/wV7HWSZLgymI3AEtsx\nBzuUTpNm+ocz5nBFHyzqppEuXW0k6c90jZBKZ3SZCyXW9GkpsJXP9B1MR8WH7/a8+OZE1QbqF4nr\nO8s4tMSohEeYRSevIReZnGH4XWD36oLKInP+IoKl6iDIisNfHeXfu410ExsreMRrD4NbigghJwvd\nRDqPxOOEag2q0oxTzeAFEiniY4b+qYZfTezunmD0M+Q6xZSff6ZrROkmuw8O/fffglb4twOqyZoP\nV6QwU1uxO71tqaowB6r/3OGiTOiSsPlgRKPizZaXX5yp3geuXT2PN20kadtsJ+pNwO6yzoBxtIOj\n7cKMRDCrRCzleDHl+pjE/SoXh9IfXCtKEWA9RdNH75uFyCjIg+Xd68AqJQmgyUkhZV63Sq4ZcRLZ\nVZ62caSk2NtAH0qirHLSulCGrI5Ut4rmvadYb1aTrOcpI0iMSlAQBCoBekacKWT/aXVka4IUUqN0\nt6xWmChom+KyMguiaWSMZMtP8ffmR/sjBQmwVoFPGamQWAovWkGRT4sr+kUJmF0SDnRMdhYdnCHC\nGRFwdtXMA4/5cwp6wSepZhm1uLFIBzPRpPQs+C6okHkdJXFbT+zbifoahQZSaIQ6UcXEmAu2iWXP\ncKMhXhxpTPgrxFHhR0UMGpVRhkrLmK7xOQEq6v8L2ikk4Xdf72uic+jKYQ+gKqErAOKCoRXuAtNF\naAP6G3lvypH2dNaMV4tzNTFqzn1Dn4WcjUqzg0lxQJD7KFo/rQ00lWe3HwX1qKX4NVwqeid2pF1Q\n876lVMpUysXlIsRFAFD4zhodWBT6TUEELvSQgjQwLIm5KOpHdlmJvtjkDVFLs+MHyWG2hZzPTcZv\nKUSAEj2C3PltdWRjnosklnEh/HufkQiLiGOjRbn/6KQjX+WEtcpWjq0JHCo3WwpXGf1osijKkG2F\nWy3F8ykYXMyCfFHLWEbGruxtNY2REsnGxFkfZ42C9Dl+aXWcf65I2d2DPC+kMKAAlRRbG2aNpxJ/\n7qwTNGCwWC3dZRAaWaWjrPe9JNPbxlHZkFGMGWWU7SqLBktMilEptibO1Noxi2KWNaTdOKbRznO1\nWkHuS7GxWEimpGhMpNpHahNojUdh5hjH6IiqYVM5dl5+LppHyzMu8aatxSGnzvfMqIVCUudrL4WX\n2sg64L2MiVbbOVZycVUMUCLA3U6e1lh2uche4u+jE2eOoNR8zpUWEWzNsi4VtCnIe8aoRC8tQatl\nHCyFqrJ2Zdpc/ncpZrUmcsjxaG2KxeOyRlsVRVw103ekyBeFNln5TLeWgtGcP6h1QRjZz9oJmx0l\nyroAgkJZIzFKTFqvGo/lOddaAYqJZZMpe/kf35F+0kTIx09FBDI8XEmX1VayyWysp7GemCy3mRfW\nmoDdCtRv2zg+jx2/+F+eaP7VQSCGALdbzOiwx57q5iKfP8Gb88DghXtY1wFTpbzQBhKyqGyMpzea\nbZR+U4FCgSxA3aVm/5sz1aHF/uKGF2+f8IOeCwiqVIGbhM5oR50rr6W7UBaJGcZblIrXAXn6w4tD\n4eytI/qUk4Ef3Ne0fP6aChFiyte8cFvLJlbU7AlLtX6NHCjIjqgE4i+8yDh3OiTwLToUy/M92MjB\nBj7fjPzs5sx2O2GedivhoWL1uPDGJUlIcxV5fSwdFTBNysWeRUin3Eu59h929srGVXyCq7wJOye+\nxikJTHkc5d+lq7wxAauk26CzfVKxtKJ063TKQfqawpAofMgCS5seFPrrE/puQL/ZUf0C7OClc5bt\nNNVtC5tmaceNDk4D+Cgds/z8pqi5vq9JfqK6c5iDIU6SvPhMOxmjXHkMig9fbXKHI2Kt2JxVdWD7\nyvH+6RXvug1nLwKRIYkA6BCXwguklVdxvq5RM1wrvjkd+OZ0YGs9r3cdD5mfqZXAkR8my8krrtm5\nIkZFf6rQf9cRnWLsKy5di//qiPl8C5VBNWax4pwC6TyhrhPxfqT7rThSBK+zNZMWzRS/ZQoHdpXj\nsBv43emG74aaixfht09acYzohwrzt0f5bC9dcTSMR8Olazlnbum5b6jeBS7fJWztebi/AWC/G/Fe\n88ocsa8u6FaLQKeT6756SSxcXCDea7j2FJdxIvfaEK8R86Vl8zc7mseBu+OIz64ZupIuuNlJF1Zp\niNdIdD9EBwFzAmZyG13rpWsxrwt/YP2Y+bMffex6+16roJfguKxnVheV7eefWbqpZVibO0s1OF5u\ne27CxOtXF7avPb5TvHoYuPoKn6lTG2Nzl1r4qrUNmNc1N9PI9KBI94oui9FpvWgtPOPoI44RZb5u\nTeRNO3DTTDRDy0Vb2qBJWLTSdD4R8ppeCiYg6KUY1Tz2ynqWVs/YRaEnXZyd+cGloyyfl7uQKrI1\nsh7tbZDPzveyytXlkC/G5cKAUWBNxJjFrmzKwmkgAXHRRxgyv95YWe8PlePFdpjFb4u9XikM11os\nR0vh0Ch4uRm4eTnwqhuoxprNVtT7emexqmKIDTpKcFwA8d7Lh6Qo88sNGj+JR7w2SUQP854ZXeRw\nP/E01tQ6URslSIDMS3ZJcTq3nM4t3113mZIoOg21CZJYNo6u2zN4SWbMQ8x7gOwNp7F5Vig/TtUz\nLZ0ifivj93nHv+yDu5NYeQI0Oel+HFuOznDNApQ0zAWekBQpSmnNGukuW50Y8poglIU19VE6oFbB\n3kpSJEly5FBN1EaodNvasd1OKC3itlPQ2VbYZoTaD4uBScveryzgMtLHymtbE3lx09H3NVMoAnD2\nGQLR5AbOy81AsXJ86S1GRxrraWo/U6+KNWbvKkkiTeD2thch3gTDWIk1q5e/cT+0GJV42Y68/KRj\nc3L0Q8W5b3gcGhSWIcLtbc/m1mFtzHtLYl87ahPopopt7ajyfb5k2kh5TiF3dffNiFKwm6QANK9j\nKPb1JN3jfFgbaDdubjAYG6m3gRRBWRm72sD+gwgeNwePrqG598SomEZDjJp+rOZ7Vgp7u3qaC8Pd\nUPOUxyfA7lPPZvQikKoiemxX6AspmFpVz5SXjfXUX1he3V9pLp7rUM/iq1ZHzMHwxRcn7s49l2uD\nL2LDESIinGlUojkE9mHgZdeyzZTJ8uxrI7bNWiUGbwVx0YoQ8ku/NISsisRUZ5SBFIc2B4etIk3t\neRM0baaPHs8bxqjzXim7g0YKWbYK2FwYKA2qsiZaLfdxynvPbRV4UU9srOec53+Z523RUzJBitTG\nUxkZs3UV0DrinIhQzs9dy7qys46XtegvNDZgNonbu44QFTbTWq+u4mBlHI9RzyjefeV48apnvIpm\n2H5o5/2zWHNWubhVHC4aU2xlRUy2Ug33k2EIYg09BIXNm7LsuYLarRfhlJ+OP5LjpyICEpzsrKd9\nFTG3mr9uvhcfbCt86c8u5xnK3fzllhQTn990fK47qn/3C4E1T146kYcdaI3ynubLk/zs2PEnlwfc\nYPBOs3s1UX+m+TI88aazOCe2f8ZEDo8HztmPfghi8dUFPfMC+28U5uYR/cUN27/ZEs8TaYik4kGV\n227JCWqi2kb2tYhg9UHzVNWzsFDZ4Etg+3GnL/xIoW0Nyy/vW77/4QLysfTOuhK+rx3t1nGbpDpt\nrWz4IWpOnYgJGi1VVO81+7Fm30xs9xPBa164zM/Lto1DtrTzmWoSEYGaWkdeNiOvb668/HlP8yc1\nyUU2v35k925ie9xzdhUXbzhZO9u3iZqzJFjFHrHQO8rXrRGf8c3GsTVhpi58XDRYd1HEQ9uzr5yI\niEUt4my5WBXyBl86gZWJ7HYTX3DmpRc9iNu7js2byJvqImJuQRStT7amD5qdkW57GTuFy7aGuPlR\n0f8uob4d2P5rcWrQB7GoY5MpBtZI4WAS5fB4HIhnR+oj/rxYGMWk6Loa5zT2IbK9ddmOTDbdrRH0\ng9UC0e+GmuPQ5O53tt4ygdfnjsGbGaFT5qfR0K7GktXZsjJfjzVhhQgRbnVC0Y4NQ5AKfAniS4IS\njYhs2uzC8PitFDbGyYpC+3+17B8uVC814SyQ4dBDmCRJVzrw3bcHvjrezEEOiFhd4c7GpNhaQSAU\n0S6B1cr1Fpu98ztxKfFes91PNIeAn6RbltGcYhXb1Uze0jaO49BwcRX7oZFg5dcK/ZtIu/E0B09M\n2zkpaHWSbslqjrqYZq7+XGREBGbdMaHfXdCvt5gvDpgvoBoz7lurmbfN4Em9Iz4GYkBQV9bzug7s\njGKK8t9cNChf86Nco6LWa0n5M//csbxXzc99/XPRRVgSsTU6SATaJEna2YT+4obms8SfvDmhGiP0\nkqYifX/mz80HhpNl6Cu6oabWkSmK+84UNYeNaNU0P9dU356ov+5o3zrGwXJ4OeIGx8tH9wz2WgLF\nKq9NL7YDLz+5Ut0kXn7TcO1quqnmbhAF7vOsUi4aFnuTMDuoYqQNEgi33rGbPDc+cFcn2iw0VrqE\nVkuHta7j7AW+MZEXtfx9gJ/n5P+mmaiawCHzqsv5fqzu7qJmtx9ptp437opRIi5Za/Ei31SOpvZ4\nr9lZjwJeNBOvtx13Lzt2X4o90Ov3V6be4CYpnALiLOKWdaxSidevL+z/2vIvtg+4i2b/V5qbc89t\nFhNtvr/j6iu2U8XGGO5qz2bnULVCZ+i8rgNhDGgjBTH7JiOtNMQu8PJ9J5ZpSVEpO+8FLsHOBOng\nesu3fTMH3gXSf6gch1qeR8jceZf1e8rP+rCgDgpSqBRG55mgf1h49gmIGpfve5V552qSJGAMOfEx\npTCVuNkOdFOVtVjAR81hL4nmFAy7qcKoZl4vjUpsTeDFy47dOGUrYSlUbg6O5i5i31hUlSkcty1q\news+EB97mv/wntOx5aHb8KrfiCtCWHQVUsr3sfKYO4M5JP7yxZGiSL/fjbz8N4FwvPDifcfL9zse\nug0nV+OjojWa28rzxf7Cz/7sKHabO0Fj6a0RKt2m5vNrL4gxq0mdIz5KBVTVCv3ZXgrgVpNGL/oU\nfUccIt1XieDERnf7bw/spkDqJ8Jjx9M/VXRdzWWsuf0Lj/3TW7aj5+7rd/LZua0bjgmzV5g7i9pU\nxGtPsTXw917oMBHq1xpVK+JwlXhtlYDpGzv/W7VC+1PNZuEk1gaaCvppoc/5QPX2TJoi+naDvm1p\nr/L8khe6bZoGQfzlxTVNQXQ4UDAFwv2J61fiEOUmQ/NXe6gMn7298Or7juv7SmLVSs5j7CxPpy03\nV3HxuNv0mC9veLHpOHzfMX7fwW+lmHizH9Cf7bn5heHQO159e8H8X5HeVVynirOraHXNy9pTf6Jp\n/0yzf/dB7oEGvZH7hRVUJDERzx3uQ6T6xKBbeHE58/PjkdBDdIrTQ8u5b0Srxwa2/9KidxUvfJTP\nalpwgZe/O1L/rec0NFxczfeDFH4+3fRsP4+8GS6zUGJjAztX0eiaWlfsrez3d7XiF/sLn7860+4d\nLz4Mc4PP2sh2N80WueZWC20xJmIXiWMi9DCdNGNfif2pSrwA6k3g1WAYBxGovbkZqD8ztH+94XDf\nSXF0iOj/KkiMp7Fhm9cmgE92V/b/yrCbAvt3T+x/O82iwe3Go03ENrLY6EbyhtKEjE7O6el+i1Z3\nXHI+cvW5QJj/hri9KTr/P6qK8j/DEf77b/kjOH4qIkDmmwXspxXmL96w/7cCCQbYnHtuilJyW8HL\nW8nTz9eMX8qc6H6Ur85DU8t/n72SP3Dbs/n5E03vmZ6gulPYf/cLbv/ymjnTUcSTLhPm/zyyP7Vc\nxoansZ4ho40Wv+n+XBH/s2N3esD+bIc+1KQmQIgZLimVgTAGkocUPtIS+JFr/0PHujm4hsmWZGD5\n/nnw/vzz80bID19sG0d7F9h+IvdeaeG0u4eE+VYcAKo6sP9EgrLxqKWYcyPcVqV66iqIw4M3jN7O\nfNxKRxG8NIGbw8Dd3wTM5zvUi1vYt/B4pZ3uuR17rkM90wVCUrMP/HwfMg57/lkpupQOY6vYvxp5\n8TBl7uzz+7EUaSTYq01kV0nXorGBENXs7DFNCxIBoK491kZ2ryb2n06EEYiK5lOwn2+pa8O/+NUT\n04OiP1f8/v6W9v9n7812JUmyc73PzHyIYcceMitr6m52n2YT4KFECAIE6BX0aLrVvZ5GEARBAgHq\nEKTIPj3WkLkz9xSjTzbpYpm5e0RmNanb7vJCIXdEeHi427jWv/71LzdN68yo0Ahd2yW+d7ZXuqMI\nOgbbsnjTYm5mUXcXiL1nuPfYo4iPdW2BUiVlJQvorqulXrIXwS4fSlxj6HqhXr60Cw62pPNSVnSB\nStojagTKco5hl8pfSVRSp7JdORf5PF0kB7yzM2q0aAjkw6ao2+D1aMT7BPD4OOWaFypS1g7vNB9e\nNjSzMbTarbBWs94PfHh/k8AaudZn64a6dhyHiuOsrCdAH8KZaJREL2qh+nopZdV5oSfXtSPEksNx\nISkLtuCqL3nFibYrpeya19QpamS9GanPnS94HkoOrmBTOIom0NqCxcGz2g40CYzM5bPmoKEiiS9l\nJsC8bVWk3xn6fwqsvtxhNhq9LiRNRSspNYfkhYe9wx8izWNB1xbsTkuOtkyCp+I8zGtK53XkPwJC\nZiXrT60d83Mv2VWfyue/FD6DCQtRClnvNyvMzUqAs6SMr9qB8uYEpDSTqLjqLZ0vUpqJwlojYPHP\nvkLfXlEV92w4UW8di58oqtZz8/0wCsfm+zdK0iZ+8csn6i8UxRdLKDTX/oh5CJhjTAKzahQICwCZ\nSVBrCgLBelxSMg9jH0/6DyBgbKU9Tith1KW84HXp2Cx6rm9bYlB8jTi669VAufJc1f0YzQbOKrbI\nWlmwvLHUX2spD3sfOLUCRA7BUJUSJQS47geuq4Gv3+zZ/NRibgzm6xvUoqBygdg7wktH/4eOfVez\nsCUx1gxBpxQSoe7rX37G6idWOnCzxJw6ivcHFu9anvc9oVUstGFh5FnLlQdtREOiUOglFDbmvBf0\nIjGMXCT2MaVTqREQngsd1ykCL2krSalfSW53qSddnxxVNlrEDTPLIiJl1oAkjDcJQn5qnOf3bEg5\n7Pl1YkWYdB+Fmt7L81wR2dz1DEMhqXJB09qC9euBYgPa7Hl+WQOMTButIqvCc/VLUIvAK92KMORy\nBatKBGPzhqa1sNQKmSv65sj6D98RY5eYLyWtNxg1lbX1UZhfRgfMXY1D9pXrAAAgAElEQVS6WfCL\n8CIMpesCfbdA3dxgXhqK1x1wQj9GwklKPGsV2ZQDN5uW+qeF3Numhs0yIYMG6gpVjLVXUacWfWjA\nJnrjl6+m+Z3bOQZ0N7B5857w0gEF6vPr8RztPK/vnrh+d+R0X4iA8Bc3UGiqv3o9LSiDo3i7lbXy\n1RXcrEW0OggFy3zYEk89dA715grWC0xZkEQtZguTOX9dSKrf2XtKg7Wp7JGHwaFbC4NHrSv44gZV\nij6R0lraRZ9TT8fXzsPhRPFyYM0H3IvFNRZ19zm82lB8dUvRWRYZjNGK8NKy/NBTficpWCdXUFUO\nqhX6v/8FenfE/O6Rz08H2qaiXlrUIokpA8WrE6//+J7jtsac5Ll2tpAUg4VG/7dfU/8ygyQJKMlj\nb72Uxzi16F+/R98t4fUG7bw4Nc7DoaP6py3rhx7bF1irMZ+v4etXkvaXx/CppSgNN388orby9iEJ\nVVeFp/zVhlebhqu3j9hG2I7lQSqb7BKDxEdJafj6zZ5X/4NCf3HHVWtzvhvKFLBYi12Vq6+ECIND\nvT/CzhIHceCL0rO4dpR3UHy9RFULscVai33XSQrQ6yvUX3+B+bqX65w6rt49MwxSwSxXA4oolkuL\n/qs7WFYsfzXwk0NShlUKtVift+vcIWgGwq6juO8IvmWz34z7l6TpSDpcQISvbYgp5eHH4y/p+BFE\nYCbepRGg4PpKFqlFLYt/WRK1FoZB38t7ALsj8TfvoLWEkyUcHYRkqGwK9M/vxDjVgqAqp6R6ggLK\nEm5W42agAHXqqP/lLW0TUENMOYmS71eriCmCqGw/bNi9eN48HyUnM3mEMSm3hAHcUWE7je0Nx77i\n5Apab0anYa5e/afaZW7gz430OYggn59f6IciimHGS14uLPXPK/RXG/jrn8i5bUf53SP6H57RldCM\nzX/zU6grFtbJ5gDQDiybgbteGCCx7fEvDt9EggVTQ/XLlWzmmxu4W09JxF1Sui6UqJonpzJp/Y51\ng22Yl7X6uK20kny4MERW/92a/7x8oHsSWnuOigNj6T9dRoqbnEObDNdW6n3HAHar2D+BGSoGr1ne\nWDYbi9loil+9FoPNy/PHlwZ1t4LbK+rPr6mejqzujzT/R4tuF2Nuo/FZlT7VkGbKldMFhFZxaGu2\n3yy4/tBTVQ5jIt6D8yX9sOTQV3S+GHNo16VjUw0UOrAbKvaukKoQKdrW2kIo8RGe+pqDKzh5RZdS\nTWKEKuVz5gobIATCsS530HRBj7m9ovJ8yZU5B7F0KRuwUWHMi5Z814BRUovZRXXmYBkVKeqIKT2N\nK3jpq1GtvLUl/iglSN8er2gyRTuBVDd0whRIUcQMHDRuKu1kVKRXIhYqc5kRUCl1oF6L+vWpqxic\n4eRKbNAsTwNdX45l9CLxDKiY5wnHkHOdhRbeeTOCIYeUytD5DMRMoF6mTRda8uAVjE6Q7Q3P+xXD\nO0NphLZ8fduiTRShuiBaLNYucU5zGip6Z9gNFc9DyfMgfScAkJr11flcmq8b4TJnYdbPH78TP5qP\nZ2XlLmyiS5alSVoMOoDXirhtpGV8mAllRsJTw7CV/PbMRDhaAWeaFCF/bpb87Lst5vNbKAzq9Zri\nMKAXDvOzK4rS8HfDwyjsCUI9RoNZQvW316nEqQHnKW5PFFs/Cv1mwTyb/rYpLUitDMVdhSp73B8g\nhJw6lMefnJcjvGUp2iSvftpgaklJ0WuN3pSolUQ5b9teBFe1Qq9XLH7WgmsmEdYI/hjZva1p25Jj\nX1N9rih+dUfxK1i8O7D7xyPmWSKMi2UCikvP5k1PeacwXy7QN1fEQ58iwhJVVZsl5m7FQj+z/L2j\nSxF7N0a8IrbTsgYuK1kPAdYL1OuAae2oLxNgZEHpEsIhU79TxJi0X1qw7y2hB99DfyjYnRZsh4qd\nNRyc6AlM+hVJ9C8BKwI0yCcEoRErV4zl+8oo+0ufnOhIBgTSOEhaIBnomssPztNf5ul0Uq1lSsmJ\npEoWmfUTp/PX/7mguj3iW+h2BS8vK6rPNeZnV9x9PbD8rzuu33e8HJYMToCGuvAUv7iG11cSDIFx\n32FwsGvGyDrFSZyQugTrJHLZF7QJQGi8GatugIzhPig6VxC7E+pNQfnLG7nWqhIHq+3F8VqXaNOd\nMcwmhX0mxCz/3yenrewlUDC4c8c7BWx42suiF6LYe8nRRmvU6zVq8MSTFb2gxFigLtE/vaUsD6xc\nRzwBh1aeezUTBs4R/saiTJMoc8nMDhGW1bjOjveVKviMkU2lJRiVPx/c+fWdZ8xXSo5oTHo68TCI\nM3oYMJURcCUBKxgvFr/z50CQTUzDDLSkIzpFfDhOAsjrBeruamxLXbxgek/5LMEaGxUhpEpHX76C\nmyv0VwPLVx9k3Jaynuo8XgrRTdL7OIL74/8vDpM3p3n/5b9z9aO6SkwKJttwUUK9hrsN5a5DFR12\nN9DuSmJrUdZNqZmDk7ZGUsOc12PlNZu0mdTdiuLVmuIXA7G1LH59QH+TSno2y6RhI8Dt+o1F//Jr\nuLtCjQZzAohmwAHHfuwz/2Jx+8iwF4BCKQETzMagf3onz6MVSmmqu0f895ImTW+nMZHWwjnAm0EE\n7wXc4mYFyxp1e0WiUk73lH2aEBMoFYjWQy829dAVNCMLwdCFVJKeaV//E67En+HxoyZCPn4EEUAM\no6hxT5byD4+o5U6czpu1LL43G0FsnYf7B+gt8f0O97s9z/9WoZOAVtevsNZIvqHxfPbFA9VNoHxj\ncC+e0Et6hNKB8psHYpuiKaWoshMi0SkGa+idoXGG1ueoZWRxbfFO8vee2wW7f625XvTUtRsp2UoJ\n0u+9wnmDteKYtF7ysEeFfiYQ4dKxAM4Mkfw6G/zzKOL887Mm/YEVJefiKgWLK4u6u4bXG2nnopB0\nkLKk3nUCAKwr+Ox2AnQGOy7Io1+gFcp5dNtTDm5Ef7nbTOr4uxNx1xLuj1JWb6Owz5HDy4KXrqZJ\nztrRaTovxljnR+FtbBChuLkvIu8r7B7quxX13xfUmfJdmalhtFg9qtCToZQNi2wgnDr0v76w6sV5\n1CpS3kH50xXqiw18fidtlCMH+98LGHJoher4xQ2m0JRlh+knMSGV7vMy+guMlDaA/VBxslPZsCFM\nDnOuiXx51NrTpHFl0+aVxYHsLGIpm7HYbz1ieC+XllXj6LyUjVJzPYx0XOpQ5DGoONedyGXBzBLq\ntWianFyRaspLCda1d2O5s4UuxpFoVMQsp7z1XMbLRQE7emeAiiYJhuXfbFxBZUvcTARptGdn97fQ\nMZWl8xRKonL5tyoTqG4Cpho4HCV9p0/t7lI+8MRokMaoCkmZqQqH9ZrNKMgmFS2klKcWDYnEQrBh\nKvk31nceUwCkX0TtWcZ3TOk0gzPcNyt8Al5uD+uZ0NKUvpFTe/rkNJycofWMv/un1o7/P+vGvJ0/\ndW4+J6+DRjGWoQszh0yuIbohKim8D/+yB73HHaDdyTwoa3E8Hx5uRpZT5w1PQ0XvRcj05BQP3YLj\nv3jWwx8wX1+hKiMMsS45Leua+u9vpvwwrURDZxZVjIdeyvj5QGgjzhb0QzGycmyYmAg2JtqFC6jX\nS0wQ8b6cVjQKApMvH1m/Grj73GKuC/Tnd7L+aDVFllPkNuuc0PRQGIqfzho9fVa2A+ofHqjfW8qD\nnz6/WaHXC652bzHlidOuElBvCeZ1SbUuYVnKXge4dy3RNqhyqjigbxZSolVFEZeMEvGKUdbg7XbF\n9X/5gF6lNnZBnAgXCEcv4oKJ8TOybKzov7he2FimDul9jbeKrikZhkJSDWzJU7tga0t2Tvo3A+75\nMCZgnIiYRXJdobm+UMzdOuYbZ1HDEEX8L79fG0lJ6H0cc9XnYzmnGVmlRyX5MgEUOS/duIKIiBrK\n52oULFR3S6p1RRw85UOPs924AesvNixcoNj0VN85uqak70XvI3qNynvTy4nw1BB2luExsHu3wPtJ\nYE/ryPpmoLwKPH+75P3uiue+5n1XYROImPePzCp76WuGbwaq+CK/oRTohth73JMTvYQA7aGiyWCq\nM/RBcRhKtvsl5b8eKJYNSjWo4oVhLwA+CAXcdoaiDtR3IujnDjIWlNoSvWJoDNVKdK7MlULVkhJh\n31vsVhF+vcd2GlMElm+CBCWspG0d/iVQffNAsIryWlJfVa1QWtHfB2yjiXFAmz3FIkhAZClBkegi\n4eSJA+ilQl8Z4hAI7aQzlEG7GMDuxaFXRUQb8L3oCiktAQpv5bX8P2l9LP/wRHkjC4Eq1Sj6mQMX\nIO+HVoIYwQoQ746K7lhyOta4/7OlvnlLeaswd6UEfLSIo4anhnAUFlTnChqn2TULrv+fLVfud+gv\nriBEijXoXcR2hvafW/qDpVp56q+S7s+pZt8Lo7HxGmMN299X3OpviIOkEMYAw8lIgEZHVp87zEZh\nrgv8XoJ30b8QOijutLBO71aoVYleD6hDYOgN7T+fKL45obRieIpEL4E9XcPzy43Y1QlAjFGxHyri\nw160oQqD2hiKNx31k6PYi45A7xnX6OgQmywESTVBUkboHe5dQ2gjw7Ni97RksIYYK3xYiNPv9Qji\nxXhCFT2LL0+oVSWg6WaFqgvCKRC/PRF+I2CCrhXmtqA7lhy6mu1QcbBmBJ33zYI3/+8L5uE0Ai5x\nEPAgniyhC4SToJK+lXnne4W3CtsXHI4btu2C913FwQmrcfCcMQyNkuBI4350rP/Sjh9BBGRje+wr\nnn69QP/GsT8WrBbPXN28o7oOlJ+l/L8kIGZfItv7Bc+HV+yHikKLAz9GAb1EJ1/tr7mtJBe/qjzW\natquot46wh8t25M4DsvSsV42rK4G7j/c8PZ4xcsgonJbq2kc2GiobqE/+FSju2Q3iAiO1AeOKcIK\nGinpEqJi8IaDLdjbgq3VpFLmo/Ml9OLzaGCmHLswGf5/CjCYv/64ivvHRxYkc4MmHnr45gl+9yCA\nwZtrMWwzqHIaUN9+OOcrJ6ecIjnjxkwUwGp2Qw87aHvCU0P7zy3Hp5r98YrBG15tGtqu5OG04rtm\nMebd7i30XtGHSO8lvzSDCD6ep4MYDSuj2T8sWH2/k+hJRh3mYhMpahNjRB17eb8qJqszy6JHUik2\nEUKLDgGadq24fDNAwn9zIPQBf4LqpyX6bgGD59RKGszOFuzS+Ml570c3AUcLk0qfRYlgbweJpuQt\nIEePzxSmZzRdgEFrDm6K1vmgwAg4EROFVwQVhYXQ+jjqPVy97vlsaAhRHPss5rMwjiEsaBKY03mV\njGw4uaxLEccod9Z5GLxB14r6K/h5/4x5d4fRgetVx3rTC/jWFTzsrnjok9hSokjrGsyNodaeQp1X\nGbFBYwfNyRt6Pxn4Q5C0gqMtxrbKQ1PDaOzfllboweXA+65OEURRYFcqUtxoijso34kzti7tqOg/\npEoOjVeAVKuoKkdZOspSUiGMjmOuZjGnnUdhcrSJAdI4lQQUz53wDOqVehqONglDnmzJ81CMgEib\nRNMyIJWdJPl+GFOBGq/YDqK54Md15t8HET4CFM7WpfPP/AxBmIu2ymthmpRKSboCaozqzpeQ2qSK\nLV7x/jdrDm3NU7ug84ZV4diUsli+b5d0I31f89CbFPkVdsy6qPjjd3cs3zs+/+LA8quAKgWkNIcj\nxV2LWpfjDyutRJzTBRg8w3cD/Yumbwq0gRgqnnYrntsl913NwUmb7m1WQ5d1qX/rqcIJXKQ7Fuwb\niaC/WMN2yOUXYXCFOM/XBWpdSYQpG3uxE4AzN1CKejG40QieBraWMqJaoVM1AucM7XcKwgvmixa9\nqdErQ33n8NbirMHuAqpI4O5hIDQev4u8/90VrRWNF+c1N8uOz77aUqwiH043vO9qHvuCnVW0XgGK\n7w4b/P+l6ZzB6Mhm2bO5bjClsBTet0uehpIXKwDA3pa0W9FqOTZirI+lJNNae0rUZZB5/TIUPA+G\np17JmhmmtB9RZhcATYRrLwCDUZgwCyJGloU7WzfLJEi4rC1l6WW9jEkg08v1cy61NvEsneSyZKb3\nml1bSwlW6qkqRkwsuad21C/Qq/SMHwLFaUfxZU20Ab3U1BsR0hyGQqKx/7oH9vgTfPjmin13lRz5\ngoMrztIvSh25e7RcVwNP3YKHvuJlMNx3agZgxjRvZfx+Udd882+3VL91KegSGJzhOFQpFdGiVBz1\nEB57cTA7rzg5wyEFUpSaqjn1/lyvQ7SMRHOkMIHeGVzUY4rbEPQoblwnkes3N0e6fsGhq9kNFZ03\nFDqy/sbyN/dPFHXguF1wv92gFJySEF6hpXpCXbqURlbQz8QyjYqsCsebqwalowCEwwTa98EkwUVp\np2zPARyt6IvkUoCNK87OyZpCOZUy/175diqTPJVAnSLV8yOP10UhgnonW3CwJdX2miIB+8vC8eXt\ngap2qRpPwPYlj9s13x3X3PcFN4crhj8art4NfPbZjuVnEjxrjpWIWD5pvjlcsSo8X74VPafHZslj\nX7G3Be97zaHQ/Pb9K8xDlNS4VKEqpwcWCm6/HUR/ZNGzqC1dX7JtFzSukH68anj99XvqzxT2JXJ4\nqHncr9mdlmNK1sGWEsQvHIvC8c3harSbngb5rVIv+dv//YFq1QjYtJFysafdgud2wfNgUsoxnBw8\nfHvFa7slBnh5XOGcFlaOrdnbu1Gct/F6jHXlEp459XFhAi9dze124MuHPYurvVTJelMQu8Dh2wLv\nNO+ergko1qXl9rrh/nnDd82Kp77kvtOjttcf9xuqf/SYpOt17OtxvTskvRQbVEpxnNsy0u+tFzvv\nDyeTAmzxzPaSsQi9D+ztjDXzZ3/8CJjAjyACIBvbfVfy+8c7eq95GkQ8a/XBz8rJyMJ8s5R8zXfN\nikPKV811doU1IIZ7AB77gpuy4qlfsDRSUvDkpFxO4w07a9BAbSKbwnFbDYLg9yV7qzk6ODlFn8Ig\nemO4+spxt2852YLtIOIvrTdjhDzTKNfBjaKANiZHzsPJkqienFVKALEr82Yf08Yv535MHQ4/ABZ8\nHB2crpcjsFI5QPPwsEH9wx7bB5qmoqpaNp+9UL8RdNydwHWavhH1+RyhX62GJDwjG5kuwFSBYj37\nXQvb7xc0bcWxX7MdXqW+kY39Vbuk85rHvuT71nB04uSeHAw+MHgxENelpJoIFVyil/koNVwViu9e\nbnD/2xGtIoulRafxkMuHOSuK/TFKhFlKDZ0oykBRh5GuedpWvByWPDZLhmB484ca810ghg7oxrZV\nCtpumQQAK5a/try+aajXju+Or/jQlWytYW8VWzsBIK2LIyA0GKHv1UvLK9vyrlnRzoywIZWLzLTg\nvFxWyVCujRg0Y6QXWFeW29uG4DXDYHjcr7kqirRB6XFMOadZ/KLgq88bPt+d8D3oKrFoLGz/qRYV\n+ahHh17o/HmQQfTQ+Tj2SzOU+FOkfGO4+lXkb3+ZIlyFQq9Log34p47i94H37RIXCjqVtAwCqErz\nn37+zOrdhud2QYiKr+4O9Ima+8qV41w3KvLTzYHVcuBzfxoZHeP4NoGiDKOIEhriAN1/Kah0zcEa\nQCq1qIVG39R8/ssTvs3jveB4ko0+AwFZXLFeOK7/RkSh1FLx5rDFPQX27yqWG8v6pafrSylNdrhi\naUwqT3jO3HAhjiUKdYral3qigZvEChmZEJDWmewMTKr9Uqea0XkKab70XoA4FyKBCZyMs0ViZHx+\nKm1hDjCk7+fDxTCxG87WmTT3lKJASrcZpShTCbeAlBoVlrLCKMXJKH77dMvBFTz2BUNQrEzFuvBo\nBQ+9lDOMUQSkHvrJGXIhUGrNYntNbSJfNks+/9BQV47n45LSiCJ3XTqMmYyOEMG5gt4tuD+9wQYR\nTaxSdHo3lGxtwR8bw8GmtUnyGPAR1oXi3e+uWXwvztbD7oqHTqJFD73haRDgrdTw0tXcPNTE0AOW\n03OFTZE2iYZBWToK4zGmGUW9TBEYugLvtZQqNoF67SlvI/2TZvu84t3hiqfTkvo7KTP2+tWR9ddC\na/dO8/B8RbXzI0i2PS3ofEGM8NjXqdSppDRtDld8ddjwatnybbPkvivYWTHOWxexEf54Eif1mCLO\nX9SW9bOjSKVvv2srXqxmOyg6H3lclLzshE1zSCVW56l5EUXjJM0vrzWix6I4Odj2cXSC89q/qC2b\n647/cd0LVZiJjQOMZRu7tNd/+dkeU8g6r02kepUi10lfRJkUJQbGkiFzEFoG/KhFAoxRZVzkzeOR\n5qlk8XiNj2vedcL06Lzm8f/WFKUXtX4Dz/sNz/sVPmjurhoWSygXEW81p1PNrq052RL/T5qTLTkM\nJQ99JZU1Uh5059VYdhpy6eSKq2LJ0WleBsXOKp77QC6DnNlIIbXl287wX3fXaGCXBJKz7sd1KRUv\nQNaco5NyvJ2XaOfeKJ6t4akvc9OkykjCAssgLciadNVIxYU+CTqPDKmcNoKs3aWCz45XyaYS7Qob\npG9rLZFyKQ9Z8DbpfrSJtWiUCOouTUxBCHk/t5FRIgR816xGHYvOTzo9NpwrYmTRVxcZhWlTFk5K\nC8xlMSdXRqe1wagJ1IKJPSlsmGkPuCwlKs8pIrxdUBycZqHjaC+WGm73V2P5v1ViHW5tydu24F0L\nla44OINRkTfHNa/ue1bVwMNpxS7Zq9+2FUsTeBlKYlS8WMPLYDg4eOigNopNsSJGxcFNOh+ZyGU0\nLE3JykhVm5tUrvvFGtpUovP2tOKL3Yaf3RxobcFzK0BFnhc2pNKmSXS4NpH3neHgFAer2A3y3FoZ\n/vGPX45jKQcFv99e8/vjirdt1m2KHC38y+MrbvYbXFA89NW4tnVJXHS0u7Mtl+ZPHrM2SB8sTcmq\nWfDtcc1NZam0Z52qfzy1S1zQfHNaEBGg7OZwNfbDzsJTn38j8vtTDdzSJ+DsmMrYRxiFt2EKFubx\nkgMifZBxft9GBh+wYbLp5/uyDZFDEvn98fjLOX4EEZDN7bFXfHNa0AXN1moxqtVEC8/Rh58tJSr1\n0Av9PS++MS3KNoih6aNseK0vODpNrSX6OQSpByyRWdl8jIKd0eysnPs0aA42R8NFQb1wEA4es9F8\n9tUJHzTdzjAJdU2HGPdBIq0Jja91pFAqGb+Tqr0N0yIwBw2AkdJ9acAH4ifzl88ihzBWSBgdhIgY\n8IALYkRs+1qqCthSIhAfPLd1T2lEJK73Zqw7nunkUuYwjtRzmKJAuS2yA5ZpwF1CiyUCDc+DOJBH\np3joxUjtfOTkAj5EbAyTaF8qUSfPNDmLg5fvf3Na8X2zpHH6zO4b22LWVBnxL/WsfjHiPGgVR3DJ\nR0Vx/xoXtahup+eNUQy4VaoAcEh5+reppOG7tuJpMGytYj9ETm5yFocwPVOImq4pWd8MXF13/Lw7\nsOvqFKXQY95uoQREk9rpEiGSkm6pqoAtMark6DTLxcDyVqiovpcopURGFtS6GFND9l0NdEKtXkXK\neVs1ogh/cIWAcXEWPWYymIQNEPFpA3/ua473JRttMXcGtdCz/IL0vwaTlJRtlDGxt4bju4J1sCy/\nUnxV7rh+7uiHgru/6oge3EnxRXcYVYx1Gcf68FmYLYuaRhcltVWJErhayBIbO8913aeop8Iow8mW\n2PeOMggjwawjpQ2Y7cB2v0rCk2KkWC0RpBCE/kpdSNT39Qp903KtO8xaUd12+L7DHiUC0gdNH0pK\nnZgbamKjZAN/COIgDSEb+Yqq8nx9c2DwWhhWQX/k19SpznWlPevS4qPG9FHWO2NwSQPDxoifAQky\nl5IBPGcUXAAJlzj/HCgIpOsRxr/lnBR5S2r0RdRUqqREcymuKDXPIUbD27bm5DU7K2tk4xVHL0bf\n1k4R1SFE9kNKgUhA41NhWJgCBbwMhrftglJHGqepU537uWp1jjxnOmgGKAKKWkcqHem8GNAfOtgP\nAmo2WQ8lQogFv09VQUAc3xdreBoML4PipRdjzyjF+26B//AKey+lF7Nivp+tn1VS+s+vl8ZzXXpe\nZkwUreT9u8qyMG6krGcQPUTYbG/425cthQk0Q8kf9htA1t3G6bNxdHLibLkgufJLIxGvm67mbVfw\n0CmONjIEWZtDhMdBUzrNIdmqna8wqhpTAV4GAU63Q8SFyNZqXrqahREB2xx1yxV88lGoKbI7aCl/\nqJVKQFEab4o0pqFcBOqbfvy+NgKA+l7hBmHy2KQDYIpAtfYClBqhsAOyTqSNMoY4skFUBhIQGvf8\nyODBKAYZoLyNLKxluUtVIdIcPnn453dvsEFJLfrC8tAtRp2Cer9JLCnpz/1QsUtaBnsrgq17q3mx\n+oyNcZkaZRScNOydofOwt3CwkafOn4GDcztD5ok4dSc/OYk2wt5NbIrOMzrjNo2D1sDSTzoLY/Wh\n0RaYIvKg2Gvpazv+/rQOSIngqXTwU2IHnDtWci0bFqxMjY2MNqJP9yhzyFBrUgrHjO2Z3LJCydpo\nVEwpbxMYmZ3/7MiVSrQf8ud5/onNlq6n1Ue2xUhWJCaNjdT2s2fJz3UOjk1tl0tDn1xkXehp+1Sw\nHYTdlUERnfrvqYf9EHmn9ajL8TwUXLUL1oVPKW4y7x57RakNeyv9d3Ky1u2HyFPvqbTmvjZoBY2b\nGAhzB/egUilIrblN6VFHp1JfCACys4bnQRz5vdUj2JNtwc6Dzto46dlOTsDal146dWEKfntcjH21\nLhb8tJN0p7ddwVMCGY2CxkXedgL+Nl6xTfMm65XMtQszZKSVpMnm8sS9V6lyk+KoNc/WUHcpvS4B\nVbnP7/sCqUBkWJmCg5N+ODnG+y+14qHXrEwl2khB0bhpTHR+GvuXYykfQ4h0LrIffAo+5L128g9C\njFgCx9jyl3HEjxfnv9DjRxABmTwvA3xI5f1OLtdLVuPCK/NGYZRsfEKtk/e0kg3Q6POJKItpxEV9\nljtUKFns+jBFATPFqfNwsIrGxRHt9zEyBMXuDxWbrwfKW/jS7HkZWSQAACAASURBVKnvHW0vednZ\nYNEqKXGnUlQuaJaDIMdKnaOgPk7gwGUkLz+HUqCjIowUUAEC8mp+CSaEi79loZnO8SShv+j53WnJ\nc1KTzflbAPVpSaVDQm5l4XNxMuCMmvL17dzJvFgI85HTEWSzlmscU4kaGxStE0N18OLs+Bl4ksED\nn9FXlejRgEUird+1BZrJmPjI+blwvrImBEwpEpWBlYkjYyRGqPViBEAknUDu30V4VcmvnBJS/zwY\njKo5OMV2UOxtpHGy+F+CQyAG2fa4pCgC1dLx5ed7PrNGRPqi3J/ScSznlPMv0fEsl3hdOBovlL5h\nKHCdxqR7KwpPZYJECZFNy0d47JZs/8uOeu3QteR5xrwmB+icSZRVzSlZrtmBy+0ZmQAwHyPvu4rf\n3b/i+qVnVVuurnq5fxNxQyB4jbUL9s2Cx6HgoRdna21K/nh/x+Zl4Cd/vZMsmdKPEUazBF1G6sqN\ngpjZyI8SAiM0geijpJ84cSaiA4ioXA8dpJSVK1IKiOKhXfDqN1csvx+4+myQUk0RXCsq6icnoOLJ\nSXRtZwtetitWf9ihS4uuWvRai6K8BU5RWBVaSrsuS0uhFmPbDWEyWCc6YkyiomDTuO98gdKRzW3H\n360HQhJRFOVnzhgXOtFlQ9AMViptLIdK9BUyiyTGc4PjAoScMwry/PgUgHDGYEgAQv5b/p1F+sfP\nJI3oovDD+D0dFTZGngbJIc3AlY9xFNQ7OUbDaVpH4vh/6yK7QQBEl0DobPDWWhyGbcoM+JTQYzbo\n5X1R+88CnK0LtE4AgSEEWXsRx/a7tp7YOcDBSQR+P4ghbEPEaMVDX8xKJU4GeU6NkHvVyaCVz1fG\ncF1GcfDOaKsFK1OxNDGBcIpKZyo1VEPB3n7G0ngiivddkQPmiQo7Pb9oqczYKFGo2XureegkGtgl\noCbP9aNLIHxKc8pMqwwQ9V4YCIOX75wS0HldD6PuyhBknJpEI14YSTfIeiz3jUTUiyTGmvdAgK0t\nJJLvO8rKn5W781bjrMY5zb6v2acUseXTmsXRjmWctYl4p7HW4JweBWkBWWcSs8l52ediEME3pWQd\nKopAtXBoIwJsrjd0bcG+r9nagr1ViXWm+O1xQRcmcCrvJ/Ntu9IL1kVIOkAC7NyUUwT1YKcxQxrX\nspbHUVuF0dFPaUypUzWKOZCQj5MVcC6nqkFe46frhChsJhnHKSrqZV6GKE7yp9KhgppERSGPj48j\nrfkZxmeL4O2U/lTqzM6U8fU8wF6pkR1QZT2VZJfkdTYDsfmefHbSlOLo4hmYOe1lCq+m90JmdcXJ\niZ4/A2QAZDrOhbIn53jeNvPzp3mXP4ujTSRzTth+We7ToCS1LvXXWOHJKw5WvrsfJsZO5wVUVcle\ny1H4NrFKWp/nLLRe5roLIli3twULEy/ElKf7twF8AvkyqDGEqS+iiwxes7XVCPTIXJ/2wN6rMYUP\npO/m6ztIcGlrVUqfVOxspPELhqB47AXgBWFPuBB5HjQnLb/XjHuJtG0x24TmfTP1XwKWvMywGME5\nAXhczECUTiVcYW+zoGNia3k4WnkON5sYeyvga26f3k9jyWXm3mx8KM41YGwC92IaX9kulrGT7DMi\nPgY6/ZcCIvx45ONHEIFE7/ayqRVJvKhIRnCZgIEo/gJ7q0eEOIMHoyN7GTVI5rFLRliIErGw6Vrz\nBX5uTJU6UhlQAfRsM/zN/Su+OJ64vW0pF571pmextKIq6/QoiAYITTWBC/0ofifXzwi6Qo2Gk4pS\nRzvMUPqPAYbp2T5l8P8QTfkTpAUAXgaFDeaMEh8inJTQkC9znfMmmTepbAjne7sU4mP2PcjtLVJY\n4wKe2hoUFKDS74a0oeaIQMylKmdosg8Tgn1dZqbCuW6CUAWnw8WJpZEjDwHp645E2UyG/ONgxnEn\nJbymsXhwcp82pjGYDMMMPI0sCi19O2+HfP/fH9echpKreuDNq+NIY45RoU0cgVZvpyeIUdS3rTM0\nfclzEiHaWsOvn++4Oa6pTGCRhP+2fc3zUNI4lQAN+Kap2f/2J+N9SJRIUarIbTXwtl3wtivGyEAe\nY/M5AhOYpRTc9wZ9WFOdljRec3CaUsGm8GOkNG+c953kjB9t5INR/Nt+g1GR53bBVSWaBI0raLuK\nq3VPtXAUVZASkkFKqQ6toe9K2q7ipV2Qy0gKXVBAkD5FH66KwOtq4GmoeNcV7C1sB/i2qrCPrwC4\nubcp51Ucnft2yfuu4iW1gY/wfVsSn+/4zfaG2oRUN12YGxpxgpSKUjq0ktzcgyt4HiRy68JkMIc4\nAYSoaZx4Is99xW635HrTUVSSS2mKMJb1jNlQi5KT7b3m2FX0tuBoSxo3lebMKUC5GsanUqPy8e+l\nNMzPEeM/rUsXIARM65KwfAxGqdEBz4fJQoFK0fg8J+PIDstzt5CGSlouEqVzyah0YVqPQIDhzDDI\nEdFyJpMCqWQc50DiFB3NDCXZeyqtWJcaGyKlVyMrymiJhuZ7BtnDbN5rZu3wPGg2RaRJTnw2/uPF\nejB//sAUsTu/PzHWG5/TO+SaiwRSDwHe9waNUJoPbnJmskGdr6RSjNeoScDWR2lDkPfKCJVKVWbS\nPllMZe7HSK84lUkMP0XyIIMXci9VZVlGJ1oIs+epU7piSBoJi6QxROpDdHaiI/ddQflyi9nGMR0x\npzhJ70kAQsA/WTe/aeqxL+SeRZdBMwHh4/uz8Xm5n8m4lOdc6CBVVRIDr9SBozM89IZ9Al/6ADeV\n7ClSjWSKfitkT+kDRDQLO7WXMPz0CL5nuYzcZzmoMtcaySK+aMUi7ac+mslJj/O5ywjwlDrOnFg1\nGxsp2m0mkVSQNKWQxm52oJiN23lbzcvAik7ANI7zeFQoLqoenkWJlWZ0/kZ9l8QiiExBoHzMAxr5\nvubO45nNMuvbvK7Mvzv9PT1bfq5PlQOVe5wAh0sndR4Bn8S0pzuZsxRMVORfKi/swnzke6oNLNJ6\nmG04EIfVqWyzTc/3caUcxuh7Z7I2SWRhpnMv2yyvKRM74xwsyg65yU5uzPbvNCoKnRkbGfBVUCSW\nWBI4lnuZft9HRrFVkEh/vh+lJAA4mDiuddMzToBF/s185HNzOnEGrgYt82FeoMIjgEH+XmQCVCCm\n31DUZgoqdl7A18wokbQimcnFJ0ofXx5Vsp+GQtZhE9XILMxHjND9hQXm/yP6b38Jx48gArKA5MWv\nNOeq3jlf7PKIyYHJBXH02fnT62w45PcUskCUmo+cZEiRfpXV06cNNkT442nJ23bB5sXzZtlxs+jI\n4ic+1SD3UaoynFIqwBA0D33J1kqeJ0h0ihBnvzMtzpfIfkagRxRfyT1OS6z8HYijVRwjoyFqOF+k\n5k5E56NEsWYXG3Pgz5zFqV0zMJ1ZHaX6tPNw+TecR1+zo6Aj42ZVBEWhVdKJyMI60+9dOuEqvT+k\ntiz1x/lk+cjt5i6Hkp6upWbPJhoG56BFNqxQE6oP5wyYIm/IBeRoxOQ4TpEbrcS4fd9VGBX57HDF\ndaIpjwZ6UPTBcEw1h13KWc3f91EijXsraR2lqinbaozA1kaM6b3VwopIDfjQS4RgHhmKSF8uu5Iu\nqISsJ2YI0/icG0c5EhUR2uPzoFFKxnkEWuDki4+dIz9FGhqneOjFydjZDTqfF6HYXbEu/Jg64pJx\nkseGpMNMGihj1CGej8Gt0Tz2RthEVgQuOw9PvSbEigh8n6i9JuVoCrtEc3Bq1H540BobSxm3xDH/\nd2Emw8hFAUKvSwEkPvSSU+9CuIhUiWETR2dJjfPhbVdin16xeBFRssqEVDkjRVwTJX3wRsQzvaRi\nuSj5lrLWTKBF8sHHifApuyXG+JGTDx8zEsb5xTk7Ss49n1wqRkqtKZXGaHVmvGrORRclF3UG7MVp\n/pZJ20R+X7EqYqLGM5bI1EqMrcg0pvXs3vJ6k8dEvu/sICk9mST580IJwDl3LhVqXHtPThzmemaR\nZqem0hLZ1Egkee6EjOA1kwGQtV3NrI3z+fLvpw0mo2JK0ZP2AwEzQrrbzBgYgXkYxTnFQZ+MeJja\nPTsWE/tMPrchsi4mwzYyXdtooRRnMMEEiXY+DgWv2iVGhRGog+xwKdo0dl0QgdjnoUz050mINOfz\nP/YKUgLWIVGt57nnuf1zOiMkEdvZujsfh5dzMp/zw0cWl9Np/Mr5pZI1Y28VnQ/jvWe6cv4tSaWK\nslepiaWXgZtc9tXObKCcFz8BX1NgwM2eK3eIYvoNM8vDF2AhYuL03PlrJl3XpMFtjHzm4rSHAWP0\nP997BoizXsAYrFFTlHR+fyZODtzobDPts3lOZsAgO/H5PucpHHnfqmYgdT7Of/u8g8c0z4u2m4MX\nZ+eqyzFyfr35HiogZJ4zMxhFTc8a8nmcHyG9l0FQraa5m/vQzK5T6HReiFRaYWftkOfEfLxHcirn\nBZioExBoIgujxufJ62K+zlkA4cK+ymtGGoBjC+X5QWLhzK9VXNxjrrXiTWRIg38qBT31o072V5UA\ns/MKXpFCyx68MOf9ZGZjbW77Z2BqtkVOwIb5GBzLY1OAmWkN8lHacFAkwHlqG5jmSs00Pi/H5vyY\n1g1J5e6MjAeTQIv5fivzomDhlz94vR+PP8/jRxAhHYMXum8VICrEAFOZ5jPN4rzAzXPZps/kvPnm\ncIkY52iyUedbQYikfGVxGjovNNl8fQW87Yp03RJ9WLAwkWUS85lHCHwUSmI2Gp4HUZk+WKG55ij6\n+NsXiOL0/sQuuDR0Lg32S82Ey/c+9b3OF0mnYR4z+NjQml9nzuAYrxmnyF9+fb5hZtru9MW8MYrA\nURwZJYOfxJ/E0cw05Vm1itnzHa3kWjfunPFwiaB/6p7h/DuZbmaD0Mz6WdRwnqMJ80jnFF3JY0By\n2MQJ7308iwLltlQKPvRmBEnu+wKjpg1gMp4n9kP+3vz59lYi5Z2T0mJzZF6rXFVBsbeBxgkd+2VQ\nLD8BHFlFEqQSB+lkBWjK4zU7/gIoqbO+OLrJmbIXbSX3osb2an3OtRUxpNqIE5QpsPl+SiXMlPy9\ny7kxZ0jMxdou+7oPkU5Lv7ZJ3HQIkd2M4TGBDpOT3fqUauNjon9D6eS+XMwri8KkyIiZPcOHXlNp\niUDk1JYpTWcyLCaa+jQ+vmsMB5dyg3f1OOcW5mNgLl8nM2By3x0Tnd6FOGqr5P6aj6UfYhqcvTdS\nl2fr1Oy8MP4bx9SJ/LoMRvQQgjpjIygloOFEvS0+AlJdWr9lTk65r73PkSNJZ6pNTmVSo3GsFeTa\nBi7G0aGEc4P43AGQw87mfOuk71wQbQkBj+RonMIbcawl4qQSlTULZ4pixNHpJCKZmSjn+1S+J5jG\nQQZQL9fNfORr5d9UyUHMgpu5+EPW23ApEpdBFzfbO+dORn7dh0jr4OTCuP6IeJmh0mpkLZDar9Cg\nggjjdl7arXWiX3HfaXxcUSanc5EELnMt9SaXqE3CZ30QdtluCKNGTj4kj1ueJdOe1bjyTmtfTkPM\nd5j3pHlbZ7Aq9/XkTJ6fd9lX417np/MUJDFI0fVxQSqUdL4Y7RX5nUw3jwyosR8suU3j6NR83Osf\nO3OXs3WiwTOuOXDuNMWUKiTUczU++3wejHMoxJFhU2rpV0ggoJocw8sxdDmn5sfoWM6eKR/zoM38\nvqbnmwClnMf+qXbK95J/awI2pt+bO9I/dC/zcX55j/n88/6YGFqlPu/D+bi7/O5lW4Uo61YGJMc2\nUbNxmoItUplA5pvRIgJbaXVm5073eF4yNdtaonsy9W9r1Pi783v91Bz6VP/N14b8Oq9Pl8+Z+1hS\n/uQ5sohtoRUnJ+K8+ZuZNdJ5WZsXhaJUsg63TqVAxHnbz8dC/t3cJNnWzGNuFJA0U5rLp/ps/pwh\nSlnq1jFqe40sWmQ+/kdYB/P7ne5J5mDrJsHxT+3pNvq/sHSGvzDqxQ8cP4IIwBAD79oBGyoWRSrF\np9RoMM/zi5ZGIlg+TPlveWLHZG5dRqyNOl/UsqM1zFcDsiEQ6H2gD4Eu+PEeDIrKLMZzJdovAjUZ\nCZ0feZHyAfY2crCBk3O8hIYCPeUmE4hJCVklMbKoAipqvBIrJUuXnV1fTa+n/OPzcy6/I+fINTWG\nTfNz9oU+j46l9ixmD/RDzluuLDFGDi82yWIWqRGneGJBZDR88IGTEwEoGwJNtEQCjoBXjlVcYpTG\nRk+f3II4e/arYcVXQSo95MgrfBo5/6gt4vm9VlphQxjH1XWlR8Xly+etjKDggxfBRMjjLNI4eaYm\nOIZocYSzvokqYGLBXXN35iBfpl583HfpWZgiN40TcKDzYYyS53OABIYF7vuWEx1LapbFGqPVlDeb\njZI05/ImeLCWJtpxvLbMhMyYO+CBUt9JhJxM654aX6vp2j7KXGhdoAmOm6LER6mNPvg4m8sy1/Mz\nz/s2X7PSKqWTROZm2PwaeVxm57P18lyeSIgLTk4efs5gMEqiup2P7IfA09BTaYOP5Wg05/XHx2mu\n5PEwAQOy8W8Hx7PryCNhfuSxXMakdI6nOt2xG/S49o1RQHMuRmdmL7KjNwRp3/u+xeKwyuLkaeU8\nNY1FHfXZ2qHRn/x3FoaXex6/489fq4/fL2ONoUSh0VGj078AJSUqvXczyFxwqU0VU7pD6/w4nkqt\nOFjPEAI2BnwMrE1J78uxFNrcEcnz+rJ+9hwEyUDGfC0Ayf9+6geaaPF4ejWMIEgZS667G4xW43yU\ntSxwtJ6ncKJXPRrNuvsMG/TYPy7E/5BRXhs1Go2XxyLNjc6JOsXk2E9tkPfEuTOTAQeQc8WAP18c\ntYL94Dl5SxsdpTL4GPB4bFgzJKrxpWMmoIY40I33HMNA4xfYWPIy6HEIlboYv5/zwLMBH2ICwqzn\nZbC8hAavHGNVj+aOvpb0mCxQnBmDOaViDvzKOjHNyct0njzG5kDFNEY+djwunzefJ+NF1v0810sK\nrtsrIrOKnqk/Kq0YQkh59TG1jRod5FUxlRO9pO3O+yufn/stRJlDnQ88+wb3CdsgqsBVXFG3K2oT\nR02EfL2JHTlpW9gYWBjDyQmXu9KalTFnTL1PNOHZMYE06pPOd25joyYgeT72FWoU2RTbS03A9uya\n+Rl+qN10snfmS8L8uS+PjwRn/wSIMH4nnq/PP/T9+fmj1o1SY9vnCjafukf5bVlPDs7hY6TSmpM1\n4zXGeZJsFqPONQcyONiHQOc9u9hSoBnCmoM14/ia991l20hfMI7Xy8+zI6xRLAp1NubnbSGAVaAL\njn3sAFhSoVNwJTv3hVb4KDbEo2u51jXLwvA0dPS+ZpmCA5fz9FPHGagQJ0Ch0ppFMT1rvuecXlJq\nNerF5D7rvKz9TbAcVUMdKwyGlS6xoWTSeJulEP2Je5vrgQ0h8BROWGXxuLN9PP8bVeA5fvvDF/zx\n+LM8fgQRAIflKRwxw4bS6tEpmyjoyehVioU2Yyk0O1e7J54txDA5+pIrmq6BYmF0ihJ4Lo8mOLo4\n0KqOXnWjs1TGipvuTfqtyej4FE033w+IIbO3A/vYcdQH9voBo0pCFMPeM5Vk0WrmmKkEM8QJSBif\nCw8RYgxJQ+DcSZVn97PzPwYTFJovwxcsXIFG0gjmEcpST/dyqbWQhV3k/7yQfXyUSqeIhRr755yC\nFeij56gaAoFedXT6KO0SLR7LWt1hKOl1g43NtGASMBTcqC9ZDF9wtJo++OQuxbN+yBUpAEwuNReF\nPOfS/ZRoam2wUTaxQKT3C5RSY7WI+fMuTcHKGGyM4zgySoycYxjYqyMntcPqfuzref9pVfKTdoNS\nAlzkTXae3w0fAzP5vUzz29uBJg60qic2dyNAlr/TBTHm35nv6OOBJTdsuv9EqfQZs2C8NoqDt+xj\nw1EfaPWeMtYEFWjjjkziN7OaDhHPdff3+FCTRdjsJ5RzdYqW7kPPUZ3oVENv36DUCmBsxzznr4pi\nHG8SUZ+uWSg9jtlL3Y85NTa/Nkpx8o4m9hz1kUBg1X+FTQ6RVJqYxk5lxCjYup4H/UgVKmz7is6X\n43N0XuC9Uglbpjb67DqFUhyd45kDj+YdPlqZu0Amxef5X+nVOE5uuxWtK3HJQMz3VOhzXYHsAM2r\nuQwhjP1tY0dAjI4YvcydKP0V48fOxaeOGP0ozJVfT/2e5mK8WJvGcwNG12g1r/8xAVCFqtG6pKDm\nq3aTKKlZiFSe2cVAFx0eARprSvbqRKsanOoJOnAXPsP31/I8aV7PAbdKG7owKdXP17NcivKS3RGQ\nyM6DfqTVe1zsGGbK17W+4lX398yF65rgOMaWoz6w0/e4KCDCqltyPdSypkSPj4HL1JG5ZoVKjI2F\nNrLHZYN7dn8LXRCINMFRoKi0GaNR+dzMDKmUGZkkljDes42eAo1R+mxd1iie2NGoA4NuMZQjMIT7\nGY2vzxxfz6Sb0sQeqywndaI1ezr/Fb654Xm2n8wDBJ/aW/IYftJPHPSHcfwqZSjt39H5VaK8f7pK\nUX5Wj6QC1trM+n7aE+RepnXpnOZ8ft1PpfqM953O7YJjr0486u8JWFbccd3+HBv92HeBSK0MpZr2\nq7ynKKXG9libUlgZabz80D1d9lsg0mPpVMuT/m5su8tjoz+n7P4qAfTT6J//ViDSqQ6Hx6qBpV1y\nUic0mqVfUruKc1jz42PebvO/5+N9/nuRQEkxzks3m7OBmIDYSEkxgluX+73YBuYH20vsgfO2m1/j\n3zv+1LmX/fEpYcsfKs+dr5mDJhZHTYnoU01r4uV99wwc9QGP5drfcuVW4+dKKYZoCUQWqqJEYwlj\nu1kcXjla1dLpE6fwSKlWOPtLSluQq+9c3uP8OQyGOqkX99GdnevF5R1B6ethgY3nFX1A9pJW9bSq\nodV7miAlolf6Dtv+XGyAtAZVFDgCR33gWX/Hhjdc21uezHt6+1NqW55d/wcrCF0EQqIKODxeORZ2\nybKvp7UyjbsCzUJVLLRhCH58FqM0B07s1DOt3tHHI6VeYSi55g1d+3pss3wtAK/cGDyEKYAon8me\nbdVAp07s+B4fLCG6cQ+PF3ZWa18+Obb+LI8/hcD8BR1/liCCUup/Av4XJMXzf40x/s9/6vyA56B3\n1L6iQNOmiHOewHnSF9HQhXKsOZ7RZpcMovyd+Xfz330y1jWKPlbJEf7YgD6qhkYf6dSRITZjNK5Q\nNTt7Oxqo2UBT6uPNZP7bMUb26sRBv3DkiZP7gFF1AgjCuBio9EzxbEN3H70nr8+Ngk8a83+i/IlS\nkru+r0/0QXLBy1DMDCtF6fWZ8So5b3o0RG30aYPwZ8yAeZvXQYyMHMmef54je73uaNSeSGCIDYMX\nB8+HnojHmgaFwYUeF5rxuWIMFGaJNiWHcANAr4ZxoznvD42J4ggV0czGVcQqGRcmGgpv6NVAo49i\nNNuvKJMD1c8cmUDAugWdN/jZ2DNKM0TLXh84qGea8IILvThwaeFXGCIeo2oew9+Io5SuqtAfGR6f\nMrymPpaxddQ7Oo4sfU0VJofNRk+nBLx68d9i/ZG+OLINX1KmjXg+X3L/7NWRg3nhFB5p3ZZSL+WZ\n/XFq0+QYZqfxxfwCPSSALYYxAibnpI0Wg8ez1VtOvDDEI6WuWNqCAHRxGM9xBAZbjW3zkcEXFSYB\nAJeGVXFmHIjhpZTiwImjPtCwI2DZ+VcEZPwPweOYKhAYr2liz4t+5jl+S62uMLEgDhtKZcTISwZE\nrQwKRR+0AEJpbBUo9rFjp5/Z+3tCtOP4zfPdh/6sPaUt/wprV8LGwU/GZTCfNF4v59RRH9j573Gx\nJ0aZSyP4FgOXQMCn1or5mvTvHR+tT7PfMrpCJwMzv58dj0LXaF1Q6BW7ODAvHZnnmleOVrd4ZC0s\nqTiqLX08YmODD45gPMYXsm6oc9BVoyl9iVV2NCXnTWgoMNEQ1TTG8lrR6ZYd93R+jwsN1nfj9zqz\n4Fn/9dj+VlkadeSkXujijtY+j+v3h/pLmihrlFUDQQWKmKLxKozMjNQ4aR3Q1L4a17N8f4FAgeHK\ny/hoVIuJhqWv8XgG3LgeOzxeO+pYo8LHLDerB0wszpgneXxt9Qea8IL1zdh3Cs3KXDOE9Xit/Py5\nzRt9wKqeLu7p/RFjSkpfUvpiPPdsf0zXnY+PAcdRH9jylpP7QAhuvL9t9TUhROa2wdwZANBRJWdA\n5s5qliecncxxDKZ/L/eny8oj4944+635uiQOd8teP3Nw94To8IXjJbwZ2UD5KENJTUXPII7CbP8c\n+85vhPmhLE7JijI/72zMpMNQ4HH0qqNhx969HR2NM2YREMrAE3dnPPrsSOUop8fRqSMudngcpVoy\nxCNKGWp9xSJejd/9FJiQeEefvOexz1WYMZjkvypWGIrxvUggaPnM0hMJFNRUsRrfz0deJwzF/9fe\n3QfJcp31Hf8+3TM7u6v1vZIsSzaRgxRQjF/ARAQFisKhDK6IxCVjMBVRwSXCW5zCASpFBatcEOAf\noPgjIcQFcZCRU6ZwjFMOSogtLFK8VFIKNrJFJGSw7BhxkXXftHd3Z2f69Tz543T39r7ce/eKvTNX\ns79P1dbuzPbsPnP69OlznnO6Z9fz/X3WHl811WWTIO37uNhze//H3sd7B6r9OPaWRVteiScUSUFh\nU5Z8Jf4NY98+jO+3JGPM1GNfI0tfztRe2v2/hITCYvJziRWGvhRX9lhoem8lORNKpmTVBpPyHKPB\nS1garsbz3Z73E+8CtHvlWeoDhoxISCit2LV9TUllZVfuE79+1yx6WxaBmoxxbDeqTabl8wDkw02G\ng1HzmngMDXxIaTmTsM5G/gzT4Tpb6Q1MyvOMBqsMWerqUhtDe/wEdvcPE9J4lvWSQEnlOcEDo2SN\nFU6QMqSmbFZD1Qx9xIpfx1I9iqsCkqor603OMq7PkNdblNU2g3SF1AZUS3m3NDQQqMi7sutPIgIE\nr0mS9tPP4qRD4VPyapNx/hzuVexLeqC9nqp/rg7hOF3O9QKCAwAAE/VJREFUcG0zs+8Efgp4NXCX\nu3+y97v7ge8j7sQfdveHm+evaOwMC5hEsDht9R7gTcAp4BNm9pC7/+nFXlN5zrnweUISs4Db4dye\nRmbnwL8uuYllXyNl0DWIJQVZMqb2ct9JIbGU4DWFj6kpGdkaJ3k5AKXFE1LVDCSdEAdOxfNk1QYh\nVCTJgBAKlgYnOLn8Mqqm4W07o3s7QHv/f53E9zMuTjMpzlJWF0iSEbGO1Hgo2Fl+V19y8H+UDGN9\n5UwsB58wsOVu6fGQJUY+6jpppRXNQHzQlXeeTOIghXpngNINHuKsUWoDEoYklu7rfNVekvuYvNqk\nqLdjWYWcsoorEULIwSsGg5OYDahDFhvINomAkyQjiuVtVpdOktmY3Mddw9sO1tsZ3zSJg7SUAUba\nnQwr8jiz3gziMt9gWjwfT2ujKs7CU1MkUyrPuhPzS7iZkS9TW0Vm26QMGfky02SbTX+O7fIs03Kd\nus6aRr/73MFY/skKZ068ikDd1cO4X3bXpxjzkMSTpvOT7uqAbfAck+o8ZZiyvLTGiJXuBFpZzpQN\nxvVZnh8/hXvJcHA9F9a+nJKcwqbd32w7eEbCBX+WcX6arDhPHaYM0pc0g9HtLiKzhBDy+L4InL3+\nlZTcQkVFZTkZ433vJbW4rH07nGdSniWrNhiurrLq11FayUZ6nqGPuo7Hsq/tHGs9badkyePgYMho\nX/2O3YXdr93w5xgXp8nLDdwDa2s3kdc3UFrJlq3v66hs2zoXimcYT59hODhJtrrBxG7DSKgsp0xi\nAmDZ11j2VYb1kCyZduU/8mU20nOsV3/BxuQLBK+A/kx9M0voNdYNtGueu/4WVu0GCot1zkhJbdit\n/tjbEerKxXMy32Ar+yLb2TN4r77N0+5kxE4CGBvEe14k13Fu7TUEi4OE2ioKn1BTUvqErLwAwDBd\nI7UB0+J5yjClrCaxU7VakgxSSs9iB61ZxeQeGCarDG0F79WH/uqK+NGKSTdYca9ZSW8AIPNNns8+\nR15eoK7Hu8ozSVY4d/LVlJZ3bdm0PM+0XKco1/GQxXbdEi4svYLMYruW+3hXu9Qdd73VHm1co2Qt\ntoV7Vq0NGFFyC4UVbLPOdXYDhedMbTu2z551bVvt8ZzXtn+VZ5jFtrHyPK4GYUjY05k9N/0sWfk8\nIeSYDXEvMRuyfOIkW8kKgbJrC/srXbJqHfdAXm1R1RN8pSZJk67T3L7fvR36pLcyJ3hN5pts5qeY\nFqebc2QNJKwNb6FKYie8bJY8t+eX/rHeDnxTBqzYye75OHgquzIe+HB/Iqe3LcTjrY2vfzlgt10z\nCCmZMinPs5U9Sx0yyuUp55ZeSsa4+39OYJCMGPlqrDvN+23fQ+0liaVUXlGSU1pO5bGd6Z9rD5oI\nbwesWdgkqy4wzr/Y60/sDDjwimQ1YWN0M0B3rLUDveBx3wYvyaoLVE2ic5iuUIUCs4RR+hKK9IZd\n5/y92jrdnnPTZLhvVV7/mGxfs5ycYOijnQFeU6f7q6qWk5NUxMFl4W2iq+7qZMKwS0fuvRz0oJV0\ncT/2kjT0Ex67j02/SPu7d/v+dntj6JdXvy1KGbJsa5SWU/iE0CSQ2pWZe9uvyjPyepOs3CB4xfLq\nSQqmZIy7996uiFpOTrLCCQqbxoFx01fKfUxRb5NVF5jmp6lDQTnIKGjTuTvH964kRrOqbWhxxn1g\no24wvrN/K6qQ4R5IbMjIdup97TvbtXG07yUrzgKQJiPywaQZ3Md6mdqQvB6zXZxmmv0VZTUhH26R\nFee58cTt8Vhs2uU2fgAPO8dP299r+yjBSwqfUtZj3APVIMeTmoRhPKeE+L+XbKU79qa2TWnx2Ki9\nZLN6lnH+HGW1gXtJkoxIbMTK8Mauj9e2P8Hrrj7360Rgpy1qj8EijJkW6xTlmUtPDmJg8Tbriy+u\nOLzGPQF8O/Af+k+a2WuAe4HXAl8CPGJmf7v59RWNnWEBkwjAXcDT7v55ADP7IPAW4KIF4R7I602m\nySZlmDAuTx+4nVmCDVJqK1lmrcvOtg1u6ZPu5NB9Nm7TcGT1OiFUlOmUJB0ytOWdE1M341+TVRfI\nqo2mIQgkPsK9pKwHTGyr66AZCSPisrF+IqLfuWgbyjzERroO09jpDaEZ5Dp43RwM+6/hu5ocJ/cx\nlefk9SZL6XWMbI2hrVJ7SWVV13GtrGxOb82A2qbNa7NulqM9KR6UYU8tnmD6s0bt/83KDeqQAQnB\nC0K93ZRDnEGpqg2wQTMIr7vYAUJdU1RbZKMx2+EcZZjurFToddTNdi5oaJMbbT1pO2htfHm9SVZt\nAJAvbVFbbPCLMN61nDlJhrid7GYCUotLfiesM60vMC3XY0IkTA9MDiUBMotJj8rzrgPRntz6J1iz\nhGB1M9hPuzKu2albVT2lGE1JfKcznjEmC5vk1RbezEpX9TYT26TynDJM4k1CSXZ1lPJ6k7zcoKq3\n8FB0y109ZL1rH5Je3YVpWCdNm0Gu11S9+ye09aT9X1m93hxjY6ZhvVmKWZH7TnlXnpPsGVjt1N2m\nU2VDhj7qZnUhdvzbRF/b+WwTiXm9SVFtUVYbQCC3CZktU1hBzqRbGQRQkZKFuL17TlVPYkdrOO7e\nUxGmcX919wpYpqSgW4tggWlYJysvUIft5hgJ3TK8/vHuvf2dN7N9cSVBzcBG0CSSYoXYXR7tIKYi\npwzTptN2bSQQYO9Khfb4BLyMyVMPZGx3A8O2Q1d5TlZdIC/j8bg0KEhtQFZtUNWTLtGYV1vk6RaV\n5xQ+jSsvmlUfVZpTJ2XX+W07ooknTbuQdsdnt3rB4wAkD2PKahzbpD3l6R4TZWWIA7C2LSurjS6B\n0L73MkxIkqTr0O+9RCQhIbSX7HXt1O6ka9vB9Gbl18SaGf+wyTBZxglxcNAkNELTrrgHSOMsZPv/\n49+sqUIsm3a2rb+vit77dsub2a7YZliSdJ36xIbde3ICRbUdz4f1hDpMqT0OhNuBcrBk1zmyG7i2\nA7mm7SjDJNbjUMQYmnNCHsYM01Xc624mOd5rY2dQ2M4oVp7jNqJM8q79b4+TtqwrUvDm0po9g8XE\nky5hWRO6JEDw3avv2oRFGSbk1WZsN72kquNgrmwGuXHbnKVkDbfQDXICgRDKJvZYN9Mk7pPKs1jW\n7LRNbZ3ta9vvdtBR1Nv7ku7dseeBMkwpfNLNdHbHRf848TK2J80KnNDMgiY2ILUBZTLad/43S3cm\nEZrubU3aJJuGBw6C+/2v1IZYksQJH1Z3Bl2Uu+P0nXa33Z+xTpQYKQPbGbTvnViI5dyvL/tn+Hcl\nEXqTIP3424RL/1iuvSS14a4kwc4ky+79161K6xKr8SMx2v5sEcakybAbCNfNPgmEbgVJ8JKi2qaq\ns5i4ChOq9ASV7wyi20kaoKtXbVIi9gOm3X52z6nrmIxtE4T9y/Bqdl8KF7zELTTnqKYMekmHbvDv\ncb+Uw7yr1/3ycQJVyCnrrIkjTk7EVXRl118BqCylrMeU1SS2c3U8n9d1PAfEQXrZHTfBdydI+/r1\nvQ55lyTrLv/r/a3aS0hgkCx3/ce2PQjEYyWEAvcytlnBCElcUVwm+a5tu//ZS7jslGtvpaKXhFDt\nm0i5uOOQQHhxcPenYP8KYuJ4+IPungP/z8yeJo6b4QrHzgDmC3Zdh5m9Dbjb3b+/efx24O+5+zv3\nbPeDwA82D19HzNrIbNwEnJt3EMeMynz2VOazpzKfPZX57KnMZ09lPnsq89k7yjL/Und/2RH9rWuG\nmX2MWE5X2zKQ9R6/193feyV/wMx+D/ix9nIGM/v3wKPu/oHm8QPAR5vNLzt23msRVyIcdMeZfZmS\nZke8F8DMPunuf/dqByaRynv2VOazpzKfPZX57KnMZ09lPnsq89lTmc+eyvzy3P3ueccAYGaPQHN9\n/G7vdvffutjLDnjOOfjD2S67ymARkwingFf2Ht8KPDunWERERERERESOhLt/ywt42aXGyFc8dj7c\n7a9fXD4B3GFmt5vZEvEGEg/NOSYRERERERGReXgIuNfMRmZ2O3AH8Ee8wLHzwq1EcPfKzN4JPEz8\nCIL3ufuTl3nZFV1jIn9tKu/ZU5nPnsp89lTms6cynz2V+eypzGdPZT57KvMFYGZvBX4JeBnw22b2\naXf/B+7+pJl9iHjDxAr4IW/uxPoCxs6Ld2NFEREREREREbk6FvFyBhERERERERG5CpREEBERERER\nEZFDOdZJBDO728z+zMyeNrN3zTueRWNm7zOzM2b2xEV+/01mtmFmn26+fnLWMS46M1s2sz8ys8fN\n7Ekz++l5x7SIzCw1s0+Z2X8/4HffY2Zne/X8++cR46Izs+vN7MNm9hkze8rMvn7eMS0KM3tVr/5+\n2sw2zexH92yj9nwGzOxHzOyJpj3/0cu/Qq7UQX0XM7vRzD5uZp9tvt8wzxgXzUXK/Bea9vxPzOwj\nZnb9PGNcNJfqo5vZj5mZm9lN84hNXhyObRLBzFLgPcC3Aq8BvsvMXjPfqBbOg8DlPk/1D939q5uv\nn5lBTMdNDrzR3V8PfDVwt5l93ZxjWkQ/Ajx1id//5149/9VZBXXM/CLwMXf/CuD1XHp/yBVw9z9r\n6y/wNcAE+MgBm6o9v4rM7HXADwB3Eev4m83sjvlGtZAeZH/f5V3A77r7HcDvNo/l6DzI/jL/OPA6\nd/8q4M+B+2cd1IJ7kAP66Gb2SuBNwDOzDkheXI5tEoF4En7a3T/v7gXwQeAtc45pobj7HwDPzzuO\n48yjcfNw2HzpbqpHyMxuBf4RoOTAnJjZCeANwAMA7l64+4X5RrWwvhn4nLv/xbwDOYZeDTzq7hN3\nr4DfB94655gWzkX6Lm8B3t/8/H7g22Ya1II7qMzd/Xeaeg7wKPGz6+WIXKKP/m+Af4X6inIZxzmJ\n8DeAv+w9PtU8J7P19c1S+4+a2WvnHcwiapbafxo4A3zc3f/PvGNaMP+WeMINl9jmO5olmR9usvxy\ntP4WcBb4teaykl81s+vmHdSCuhf4jYv8Tu351fUE8AYze6mZrQL/EFB7Mhu3uPsXAZrvN885nuPm\ne4GPzjuIRWdm9wB/5e6PzzsWufYd5ySCHfCcsm6z9Rjwpc1S+18C/uuc41lI7l43y5BvBe5qlsTK\nETCzNwNn3P2PL7HZfwNua5ZkPsLObJYcnQFwJ/DL7v53gG203PjImdkScA/wmwf8Wu35VebuTwE/\nT1zm/THgceJnfYssLDN7N7Ge//q8Y1lkTWLy3YDuZyOHcpyTCKfYncG/FXh2TrEcS+6+2S61d/f/\nAQx1E5erp1ne/Xtc/j4VcnjfANxjZl8gXhL1RjP7QH8Ddz/v7nnz8D8SrymXo3UKONVbZfNhYlJB\njta3Ao+5++m9v1B7Phvu/oC73+nubyAuRf7svGM6Jk6b2SsAmu9n5hzPsWBm9wFvBv6Ju2ui7+r6\nMuB24PGmT3Mr8JiZvXyuUck16zgnET4B3GFmtzezK/cCD805pmPFzF5uZtb8fBexPp6fb1SLxcxe\n1t7R2MxWgG8BPjPfqBaHu9/v7re6+23ENuR/uvt397dpO56Ne9AN/46cuz8H/KWZvap56puBP51j\nSIvqu7jIpQxqz2fDzG5uvv9N4Nu5+KUlcrQeAu5rfr4P+K05xnIsmNndwI8D97j7ZN7xLDp3/7/u\nfrO739b0aU4BdzbnV5F9BvMOYF7cvTKzdwIPAynwPnd/cs5hLRQz+w3gm4CbzOwU8K+JN/bD3X8F\neBvwz82sAqbAvco0H7lXAO9vPo0kAT7k7vs+hlCOlpn9DPBJd38I+OHmOsOKOHP4PfOMbYH9C+DX\nm6Tw54F/Oud4Fkqz1PVNwD/rPfcOUHs+Y//FzF4KlMAPufv6vANaNBfpu/wc8CEz+z7iXeu/c34R\nLp6LlPn9wAj4eJOffNTd3zG3IBfMQWXu7g/MNyp5MTGd40VERERERETkMI7z5QwiIiIiIiIicgWU\nRBARERERERGRQ1ESQUREREREREQORUkEERERERERETkUJRFERERERERE5FCURBAREbkKzMwP8fWF\nZtsH259FRERErmX6iEcREZGrwMy+bs9THwEeB36q91zu7p8ysy8DTrj7p2YVn4iIiMgLMZh3ACIi\nIovI3R/tPzazHDi39/lm28/NLDARERGRvwZdziAiIjJney9nMLPbmssd3mFmP2tmz5nZlpl9wMxW\nzezLzexhMxub2dNmdt8Bf/P1ZvaQma2b2dTM/peZfeNM35iIiIgsHCURRERErl33A18C3Af8JPCP\ngV8hXhrx28BbgT8Bfs3MXtu+yMzuBP43cCPwA8B3AOeBR8zsa2b5BkRERGSx6HIGERGRa9fn3L1d\nZfBws5Lg7cDb3f0DAGb2SeAe4G3Ak822vwA8A7zR3Ytmu4eBJ4CfAL5tdm9BREREFolWIoiIiFy7\nPrrn8Wea7w+3T7j7OnAGeCWAma0Afx/4TSCY2cDMBoABjwBvuNpBi4iIyOLSSgQREZFr1/qex8Ul\nnl9ufr4RSIkrDn7ioD9qZom7h6MKUkRERI4PJRFEREQWywUgAO8B/tNBGyiBICIiIi+UkggiIiIL\nxN23zewPgdcDjylhICIiIkdJSQQREZHF8y+BPyDejPEB4IvATcCdQOru75pncCIiIvLipRsrioiI\nLBh3fwz4WuLHOv474HeAXwS+kphcEBEREXlBzN3nHYOIiIiIiIiIvAhoJYKIiIiIiIiIHIqSCCIi\nIiIiIiJyKEoiiIiIiIiIiMihKIkgIiIiIiIiIoeiJIKIiIiIiIiIHIqSCCIiIiIiIiJyKEoiiIiI\niIiIiMihKIkgIiIiIiIiIofy/wFsArIQZrQqfQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xm0pXV5J/rvQzGJQxwqKgEimKAJ\nTezoLackV3HG4Uq629hgtOnolWvaIVFjxJiIIW1rYneMSUxW11ICGa4TnRg6i4Q4Ru0bFXCKgEaC\nKCUqArbixFDnuX+cXXo81tn7hTpnv2cfPp+13sV+h9rvw95ULeo53/f5VXcHAAAAYJb9xi4AAAAA\nWAyaCAAAAMAgmggAAADAIJoIAAAAwCCaCAAAAMAgmggAAADAIJoIAAAAwCCaCAAAAMAgmggAAADA\nIPuPXcBmcGAd1AfntmOXMUzV2BUM0z12BQAAsy3K/1slqW2L8fO/pdscNHYJgx1y+DfHLmGwQw/4\n+tglDHLFFTflmmuXFuc31kCPedht+5prd2/4fS78+PXndffxG36jfaCJkOTg3DYPrEeMXcYgdcCB\nY5cwSN94w9glAGw9C/SXHc3kW7kF+m+1DlyM/7dKkv1utxg/9Lr+Xx81dgmD/eSrPzJ2CYP9+l3f\nP3YJgzzicV8eu4QNcc21u/Oh8354w++z7dBPb9/wm+wjTQQAAACYopMsZWnsMjaFxchEAQAAAKOT\nRAAAAICpOrtbEiGRRAAAAAAGkkQAAACAKZZnIhganEgiAAAAAANpIgAAAACDeJwBAAAAZrDE4zJJ\nBAAAAGAQSQQAAACYotPZ3QYrJpIIAAAAwECSCAAAADCDJR6XSSIAAAAAg0giAAAAwBSdZLckQhJJ\nBAAAAGAgSQQAAACYwUyEZZIIAAAAwCCSCAAAADBFJ9ndkgiJJAIAAAAwkCQCAAAAzLA0dgGbhCQC\nAAAAMIgkAgAAAEzR6ey2OkMSSQQAAABgIEkEAAAAmKaT3YIISSQRAAAAgIEkEQAAAGCKjtUZ9tBE\nWDB94w1jlwDAWFqOksVQ+x8wdgmDXfPz9xu7hMFedOr/O3YJg1z4jWvHLmGw81/0f4xdwmBPef+B\nY5cwyGe+fe7YJbDBNBEAAABgqsru1NhFbApmIgAAAACDSCIAAADAFJ1kyVOFSSQRAAAAgIEkEQAA\nAGAGMxGWSSIAAAAAg0giAAAAwBQdSYQ9JBEAAACAQSQRAAAAYIallkRIJBEAAACAgSQRAAAAYAoz\nEb5rYZMIVXVGVV1VVZ9Ydfy5VfWpqrqoqn5nrPoAAABgq1nkJMKZSf4wyZ/uOVBVD0tyQpL7dPf1\nVXXXkWoDAABgi+hUdi/uz+DX1cJ+Ct393iTXrjr8i0le1d3XT665au6FAQAAwBa1sE2ENdwryf9Z\nVR+sqn+oqvuvdWFVnVJVF1TVBTfm+jmWCAAAwKJZ6trwbREs8uMMe7N/kjsleVCS+yd5S1Xds7t7\n9YXdvTPJziS5Q935+84DAAAA32urNRF2JfnLSdPgQ1W1lGR7ki+PWxYAAACLyuoM37XVHmd4W5KH\nJ0lV3SvJgUmuHrUiAAAA2CIWNolQVW9MclyS7VW1K8lpSc5IcsZk2ccbkpy8t0cZAAAAYLjK7t5q\nP4O/ZRa2idDdJ61x6qlzLQQAAABuJRa2iQAAAADz0EmWttw0gFvGpwAAAAAMIokAAAAAM1idYZkk\nAgAAADCIJAIAAABM0W11hj18CgAAAMAgkggAAAAww5KZCEkkEQAAAICBJBEAgPVXflqz3mr/A8Yu\nYbBnXXzx2CUMdvolR41dwmBnPfxnxi5hkJuu/OLYJQx2wNKFY5cw2NLYBQzU3WOXsCE6yW4/g08i\niQAAAAAMJIkAAAAAU1mdYQ+fAgAAADCIJAIAAABM0UmW/Aw+iSQCAAAAMJAkAgAAAMywu608lEgi\nAAAAAANJIgAAAMAUncpuP4NPIokAAAAADCSJAAAAADMstZ/BJ5IIAAAAwECSCAAAADBFJ2YiTPgU\nAAAAgEEkEQAAAGCKTmV319hlbAqSCAAAAMAgmggAAADAIB5nAAAAgBmW/Aw+iSQCAAAAMJAkAgAA\nAEzRnexuP4NPJBEAAACAgSQRAAAAYKrKUizxmEgiAAAAAANJIgAAAMAUHTMR9vApAAAAAINIIgAA\nAMAMu/0MPokkAgAAADCQJAIAAABM0akstdUZEkkEAAAAYCBJBADWXy1Qp7577Aq2pN0Pve/YJQxy\nzfO/OXYJg539k68fu4TBnvfAfzd2CYP94Bc/NXYJg900dgFwK2cmwjKfAgAAADCIJAIAAABM0UmW\n2s/gE0kEAAAAYCBJBAAAAJiqsjsLNPNpA0kiAAAAAINIIgAAAMAUZiJ8l08BAAAAGEQSAQAAAGYw\nE2GZJAIAAAAwiCQCAAAATNFdZiJM+BQAAACAQRa2iVBVZ1TVVVX1ib2c+5Wq6qraPkZtAAAAbC27\ne78N3xbBYlS5d2cmOX71wao6Ismjknxu3gUBAADAVrawTYTufm+Sa/dy6jVJfjXLS3kCAADAPukk\nS6kN32apquOr6lNVdWlVnbqX8z9cVe+uqo9U1cer6nHr/VksbBNhb6rqiUk+390fG3DtKVV1QVVd\ncGOun0N1AAAAcMtU1bYkr0vy2CTHJDmpqo5ZddmvJ3lLd983yYlJ/mi969gyqzNU1SFJXprk0UOu\n7+6dSXYmyR3qzlILAAAArKE2w8yCByS5tLsvS5KqelOSE5JcvOKaTnKHyesfSHLlehcx+qewjn4k\nyVFJPlZVlyc5PMmHq+ruo1YFAAAA++6wJFes2N81ObbSy5M8tap2JTk3yXPXu4gtk0To7n9Kctc9\n+5NGwo7uvnq0ogAAAFh4nWSpZ88sWAfbq+qCFfs7Jyn6JHsdmrA6VX9SkjO7+79V1YOT/FlVHdvd\nS+tV4MI2EarqjUmOy/KHvCvJad39hnGrAgAAgFvs6u7esca5XUmOWLF/eL7/cYVnZLKKYXf/Y1Ud\nnGR7kqvWq8CFbSJ090kzzh85p1IAAADY4naPPw3g/CRHV9VRST6f5cGJT1l1zeeSPCLJmVX140kO\nTvLl9Sxi9E8BAAAAmK67b0rynCTnJbkky6swXFRVp09WKkySFyZ5ZlV9LMkbk/zH7l7XhQQWNokA\nAAAA89Cpec1EmF5H97lZHpi48tjLVry+OMlPb2QNkggAAADAIJIIAAAAMMOSn8EnkUQAAAAABpJE\nAAAAgCm6k92bYCbCZiCJAAAAAAwiiQAAAAAzbIbVGTYDTQQA1t/6LkfMRO04duwSBqvf+PLYJQxS\nbz187BIGe85Jjx67hMGWvn312CUAsEE0EQAAAGCKTmWpTQNIzEQAAAAABpJEAAAAgBl2x0yERBIB\nAAAAGEgSAQAAAKboWJ1hD0kEAAAAYBBJBAAAAJjK6gx7+BQAAACAQSQRAAAAYIYlqzMkkUQAAAAA\nBpJEAAAAgCm6k91WZ0giiQAAAAAMJIkAAAAAM1idYZlPAQAAABhEEgEAAACm6FSWzERIIokAAAAA\nDCSJAAAAADMsRRIhkUQAAAAABpJEAAAAgCk6MRNhQhIBAAAAGEQTAQAAABjE4wwAAAAww1L7GXwi\niQAAAAAMJIkAAAAA03QZrDghiQAAAAAMIokAAAAAU3SSpUgiJJIIAAAAwECSCAAAADCDmQjLNBEA\nWHfb7vgDY5cw2OXP/VdjlzDY4//NP45dwmAX/9sjxi5hkB+8fHE+06WxC7g59ts2dgUAbBBNBAAA\nAJiiI4mwh5kIAAAAwCCSCAAAADCDJMIySQQAAABgEEkEAAAAmKJTkggTkggAAADAIJIIAAAAMMNS\nJBESSQQAAABgIEkEAAAAmKatzrCHJAIAAAAwiCQCAAAATNGRRNhjYZMIVXVGVV1VVZ9YcezVVfXJ\nqvp4Vf1VVd1xzBoBAABgK1nYJkKSM5Mcv+rY25Mc2933SfLPSV4y76IAAADYepa6NnxbBAvbROju\n9ya5dtWxv+/umya7H0hy+NwLAwAAgC1qK89EeHqSN691sqpOSXJKkhycQ+ZVEwAAAAumszhJgY22\nsEmEaarqpUluSvIXa13T3Tu7e0d37zggB82vOAAAAFhQWy6JUFUnJ3lCkkd0d49dDwAAAIuvJRGS\nbLEmQlUdn+TFSR7a3d8cux4AAADYSha2iVBVb0xyXJLtVbUryWlZXo3hoCRvr6ok+UB3P2u0IgEA\nANgSliKJkCxwE6G7T9rL4TfMvRAAAAC4lVjYJgIAAADMQ3eszjCxJVdnAAAAANafJAIAAADMYHWG\nZZIIAAAAwCCSCAAAADBVmYkwIYkAAAAADCKJAAAAADOYibBMEgEAAAAYRBIBoBajq7z/UfcYu4TB\nfuiNXx67hMEu+cQNY5cw2EXH3X7sEgbbfd0VY5fAmHpp7AoA1lUnZiJMSCIAAAAAg0giAAAAwDSd\ndI9dxOYgiQAAAAAMIokAAAAAMyzFTIREEgEAAAAYSBIBAAAApugkbXWGJJIIAAAAwECSCAAAADBV\nZUkSIYkkAgAAADDQaEmEqvrRJA9IcliSzyf5UHdfOlY9AAAAsJbusSvYHObeRKiqg5P8UZKnJdm2\n4tTuqjorybO7+/p51wUAAABMN0YS4b8m+fkkpyV5U5IvJblbkpOSvCzJN5M8b4S6AAAAYK+szrBs\njCbCiUl+s7v/y4pjlyV5RVUlyfOjiQAAAACbzhhNhIOSfGiNcx9McuAcawEAAICpuiUR9hhjdYZ3\nJHn0GuceneRdc6wFAAAAGGiMJMLvJvmzqrptkrfmuzMRnpzkcUmeWlX33HNxd182Qo0AAADwHUuS\nCEnGaSL8w+Sfv5jkWSuO16rze2wLAAAAMLoxmgi/MMI9AQAA4BbrHruCzWHuTYTuPmve9wQAAAD2\n3RhJBAAAAFgoVmdYNkoToaqOT/JzSY5IcvCq093dD51/VQAAAMA0c28iVNWvJnlVki8nuTTJDfOu\nAQAAAIbqlCTCxBhJhOck+e9JntPdu0e4PwAAAHALjNFEuEOSt2ogAAAAsCgszrBsvxHueV6SB41w\nXwAAAGAfjPU4w19VVSf5+yRfWX1Bd18296oAAABgb9rqDHuM0UToJNcleUWS/7zGNdvmVw4AAAAw\nxBhNhDOT/FSS1yT5ZKzOAAAAAAthjCbCcVlemeHMEe4NzEstTtyrfvKYsUsY5Bu//Y2xSxjs8l+5\n19glDHav9184dgmD7W4jnVgQ/lsFtiJ/tCUZZ7Di1Um+NMJ9AQAAgH0wRhPh95P8p6oa494AAABw\ns3XXhm+LYIzHGe6U5NgkF1fV2/P9qzN0d582/7IAAABg86qq45O8NsuLEby+u1+1l2uenOTlWX4A\n42Pd/ZT1rGGMJsJLV7ze20OznUQTAQAAgE1j7HEvVbUtyeuSPCrJriTnV9U53X3ximuOTvKSJD/d\n3V+pqruudx1zbyJ0t8cYAAAA4OZ5QJJLu/uyJKmqNyU5IcnFK655ZpLXdfdXkqS7r1rvIsZIIgAA\nAMDC6GReMwu2V9UFK/Z3dvfOyevDklyx4tyuJA9c9evvlSRV9b+y/MjDy7v779azQE0EAAAA2Byu\n7u4da5zbWxdj9UMW+yc5OslxSQ5P8r6qOra7//d6FTjKowVVdUpVfaSqvllVu1dvY9QEAAAAe9VJ\nujZ+m25XkiNW7B+e5Mq9XPPX3X1jd38myaey3FRYN3NvIlTVf0jyB0nOT3Jwkj9J8udJvpbkX5Kc\nPu+aAAAAYJM7P8nRVXVUVR2Y5MQk56y65m1JHpYkVbU9y483XLaeRYyRRPjlJK9M8ouT/T/q7pOT\n3DPJt5JcM0JNAAAAsKbujd+m379vSvKcJOcluSTJW7r7oqo6vaqeOLnsvCTXVNXFSd6d5EXdva5/\nxx5jJsLRSd6bZGmyHZgkk+UnXpHkFUn+cNabVNUZSZ6Q5KruPnZy7M5J3pzkyCSXJ3nynqmUAAAA\nsMi6+9wk56469rIVrzvJCybbhhgjifCtJPtN/uW+mOUEwh5fT/JDA9/nzCTHrzp2apJ3dvfRSd45\n2QcAAIB903PYFsAYTYR/SvKjk9fvS/JrVfXgqrp/kpcn+eSQN+nu9ya5dtXhE5KcNXl9VpKf3edq\nAQAAgCTjPM6wM99NH/xGknckef9k/7rs21/879bdX0iS7v5CVd11H94LAAAAklR69uoJtwpzbyJ0\n95tXvL60qv5VkgcnOSTJ/9fdV8+jjqo6JckpSXJwDpnHLQEAAGChjbHE40Oq6nZ79rv7G939ju4+\nJ8m3quoh+/D2X6qqQyf3OTTJVWtd2N07u3tHd+84IAftwy0BAADY8sxESDLOTIR3JzlmjXM/Njl/\nS52T5OTJ65OT/PU+vBcAAACwwhgzEaY9SHJQkt2D3qTqjUmOS7K9qnYlOS3Jq5K8paqekeRzSX5u\n30oFAADgVq9jJsLEXJoIVXVkvncpxx0rH2mYuE2Sp2f5L/8zdfdJa5x6xM2tDwAAAJhtXkmEk7Oc\nFNjzpMcf5HsTCT3ZvynJs+dUEwAAAAyzIDMLNtq8mghnJnlPlhsF78pyo+DiVddcn+Sfu/vaOdUE\nAAAA3AxzaSJ092eTfDZJquphSS7s7q/P494AAACw78xESMZZneGiJHdeeaCq/p+q+oOqesII9QAA\nAAADjNFEOCPJqXt2quo3kvxxkqck+euq+vcj1AQAAABr6zlsC2CMJsKOJO9csf+sJP+lu++S5HVJ\nXjBCTQAAAMAMYzQR7pzkS0lSVccmuXuSsybn3pbk3iPUBAAAAGuTREgyThPhmiSHT14/PMmV3f3p\nyf4BI9UEAAAAzDCvJR5XekeSl1fV9iQvzHL6YI8fy2QVBwAAANgUOklbnSEZp4nwq0n+PMkrk5yf\n5DdXnPv5JO8foSZgne1/97uNXcJgn/65O4xdwiBHvOrgsUsYbL/3XTh2CQAAbIC5NxG6+0tJHrXG\n6Ucm+fYcywEAAICZekFmFmy0MZIISZKq2i/JMUnukuSC7v5Gd39trHoAAACA6UYZYlhVz07yxSQf\nT/KuTFZkqKq3VdXzxqgJAAAA1mR1hiQjNBGq6plJXpvlgYpPTrJyOsX7kvy7edcEAAAAzDbG4wwv\nSPLfuvvFVbVt1blPJnnRCDUBAADA2qzOkGScxxmOSnLeGue+keSOc6wFAAAAGGiMJMLVSY5c49y9\nk3x+fqUAAADAbLUgMws22hhJhP+Z5GVVdc8Vx7qqtid5fpZnJQAAAACbzBhNhF9Pcn2STyR5R5Zn\nUP5+kkuS7E5y+gg1AQAAwN7NY2WGBUk6zL2J0N3XJNmR5JVJDkjyL1l+rOIPkzy4u78675oAAACA\n2caYiZDuvi7Jb002AAAA2MTK6gwTYzzOAAAAACyguScRqmq/JKck+bkkRyQ5eNUl3d33mHddAAAA\nsKYFmVmw0cZ4nOF3krwgyUeSnJ/khhFqAAAAAG6mMZoIT03yW9192gj3BgAAgJtPEiHJODMR9k/y\n3hHuCwAAAOyDMZoIZyd5zAj3BQAAgFum57AtgDEeZ3hBkr+oqp1JzkvyldUXdPe75l4VAAAAMNUY\nTYRDk9wzyQlJ/u8VxztJTf65bYS6AAAA4Pt1kq6xq9gUxmgi/EmS7Ul+KcknY3UGAAAAWAhjNBF2\nJPkP3X32CPcGAACAm60WZGbBRhtjsOLnIn0AAAAAC2eMJsJ/TvLiqrrdCPcGAACAm8/qDEnGeZzh\nMUkOT3J5Vf1jvn91hu7uk+dfFgAAADDNGE2En0mylOS6JMfu5fyC9F8AAADg1mXuTYTuPmre9wQA\nAAD23RhJBAAAAFgoVmdYNpcmQlX9cJIvdPeNk9dTdffn5lAWAAAAcDPMK4nwmSQPTvKhJJdn9tyD\nbRtdELCxPvfUe45dwmC3vXLsCobZ/z0fHbsEAIBbr66xK9gU5tVEeHqSf1nxWhAEAAAAFsxcmgjd\nfdaK12fO454AAACwLjp+FD6x37xvWFXvqqofW+PcvarqXfOuCQAAAJhtjNUZjktyhzXO3T7JQ+dX\nCgAAAAwgiZBkhCTCxFof/48k+fo8CwEAAACGmdcSj7+Q5Bcmu51kZ1Vdt+qy2yQ5Nsk751ETAAAA\ncPPM63GGpSS7J69r1f4e1yT54yS/PaeaAAAAYJDyOEOS+a7OcFaSVNW7k/xid39yHvcGAAAA1sfc\nByt298PmfU8AAADYJ5IIScYbrAgAAAAsmC3ZRKiq51fVRVX1iap6Y1UdPHZNAAAALLCew7YAtlwT\noaoOS/K8JDu6+9gk25KcOG5VAAAAsPjmPhNhTvZPcpuqujHJIUmuHLkeAAAAFlS11Rn2mGsSoaoO\nrKq/qqqHbNQ9uvvzSf5rks8l+UKSr3b33++lllOq6oKquuDGXL9R5QAAAMCWMdcmQnffkOSRG3nf\nqrpTkhOSHJXkh5Lctqqeupdadnb3ju7ecUAO2qhyAAAA2Aq6Nn5bAGPMRPhfSR60ge//yCSf6e4v\nd/eNSf4yyU9t4P0AAADgVmGMmQgvTPK2qvp6krdl+ZGD73m6pLuX9uH9P5fkQVV1SJJvJXlEkgv2\n4f0AAAC4tTMTIck4SYR/SvIjSV6b5LNJbkhy44rthn158+7+YJKzk3x4cq/9kuzcl/cEAAAAxkki\nnJ4N7uF092lJTtvIewAAAHDrYXWGZXNvInT3y+d9TwAAAGDfjZFE+I6qul2SuyS5cjIEEQAAADYf\nSYQk48xESFU9oao+nOSrSS5L8hOT46+vqqeMURMAAAAw3dybCFX1s0n+OsnVSV6cZOVimJ9JcvK8\nawIAAIA19fJMhI3eFsEYSYTTkvxJdz86ye+tOveJJMfOvyQAAABgljGaCD+e5M2T16t7LV/J8owE\nAAAA2Dx6DtsCGKOJ8LUk29c4d2SSL8+vFAAAAGCoMZoIb0/ykqq644pjXVUHJXlOkr8doSYAAABY\nmyRCknGWeHxpkg8l+VSSc7P8UZ2a5D5JfiDJz45QEwAAADDD3JsI3X15Vd0vyW8meUyS3UkekuTv\nkrysu6+cd02wKK749Z8au4TBvn233WOXMNi9X/SxsUsYZGlpcT5TAICtZlFWT9hoYyQR0t27kjxj\njHsDAAAAt8wYMxEAAACABTSXJEJVnXEzLu/ullIAAACATWZejzM8PN87a/KOWR6ieFOSa5LcZVLL\nV5N8ZU41AQAAwDBmIiSZ0+MM3X1kdx/V3UcleVqSryc5McltuvvQJLdJctLk+FPnURMAAABw84wx\nWPF3k7yyu9+y50B3707y5qranuT3kjxghLoAAADg+7XVGfYYY7DiTyS5dI1zn05y7BxrAQAAAAYa\no4nwxSRPXuPciUm+NMdaAAAAYLaew7YAxnic4feSvKaqDk3y1iw3De6W5cbCY5L88gg1AQAAADPM\nvYnQ3a+tqq8nOS3JY1ecuiLJM7v75iwHCQAAABtvQZICG22MJEK6+w1VdUaSw5McmuQLSXZ1t68F\nAAAANqlRmghJMmkYXDHZAAAAYFOqWJ1hjzEGK6aqfqKqzq6qL1fVTVV1VVW9pap+Yox6AAAAgNnm\nnkSoqvsn+Yck30pyTpZXa7h7kv8ryeOr6iHdfeG86wIAAIA1SSIkGedxhlcm+USSR3T3dXsOVtXt\nk7xjcv7RI9QFAAAATDFGE+FBSZ62soGQJN19XVX9dpKzRqgJAAAA9q7NRNhjjJkIsz56Xw0AAABs\nQmM0ET6Y5Ncmjy98R1XdNsmLk3xghJoAAABgbT2HbQGM8TjDryV5T5LPVtXfJPlClgcrPj7JbZIc\nN0JNAAAAwAxzTyJ094eyPBfhXUkek+QFSY6f7D+ou8+fd00AAAAw1SZIIlTV8VX1qaq6tKpOnXLd\nk6qqq2rHLflXnWaMJEK6++NJnjTGvQEAAGDRVNW2JK9L8qgku5KcX1XndPfFq667fZLnZXmUwLqb\nexKhqn6wqu61xrl7VdX2edcEAAAA01Rv/DbDA5Jc2t2XdfcNSd6U5IS9XPdbSX4nybfX9QOYGGOw\n4h8leeEa554/OQ8AAAC3Ntur6oIV2ykrzh2W5IoV+7smx76jqu6b5Iju/puNKnCMxxl+Jsmz1zj3\n90n+cI61AAAAwGzzWT3h6u5ea45B7eXYd6qqqv2SvCbJf9yAur5jjCTCnZJ8dY1zX0tylznWAgAA\nAItgV5IjVuwfnuTKFfu3T3JskvdU1eVZXtDgnPUerjhGE2FXkgeuce6BWV7yEQAAADaHeazMMDvp\ncH6So6vqqKo6MMmJSc75TondX+3u7d19ZHcfmeQDSZ7Y3Rfs27/89xqjiXB2kl+rqsevPDjZPzXJ\nW0aoCQAAADat7r4pyXOSnJfkkiRv6e6Lqur0qnrivOoYYybC6UkekuVYxReTfD7LwyDunuVOyW+O\nUBO3Yvsd+2NjlzDYt466YewSBrvXMz8ydgmDLS3tHrsEAAA2uQGrJ2y47j43ybmrjr1sjWuP24ga\n5t5E6O5vVtVDkzwty+tb3iXJpVkeqvjnk+4KAAAAsMmMkURId9+Y5IzJBgAAAJvbJkgibAZjzEQA\nAAAAFtDckwiTKZIvSXJSkh9OctCqS7q7R0lIAAAAwN5shpkIm8EYf1l/dZJnJ/nbJH+Z5PoRagAA\nAABupjGaCE9Kclp3v2KEewMAAMDNJ4mQZJyZCLdL8o8j3BcAAADYB2M0Ef5nkoeMcF8AAAC4+XpO\n2wIY43GGP0jyp1W1lOTcJNeuvqC7L5t7VQAAAMBUYzQR9jzK8PIkp61xzbb5lAIAAADT1WRjnCbC\n07MwQQ0AAABgj7k3Ebr7zI2+R1XdMcnrkxyb5YbF07vbMEcAAABuGT8KTzJOEmFNVbVfkjt29/fN\nSbiZXpvk77r7SVV1YJJD9r06AAAAuHWby+oMVXVtVd1vxX5V1TlVdc9Vl94/yZf38V53yPLqD29I\nku6+obv/9768JwAAADC/JR7vmO9NPeyX5AmT4+vtnlluRPxJVX2kql5fVbddfVFVnVJVF1TVBTfm\n+g0oAwAAgK2ieuO3RTCvJsI87Z/kfkn+uLvvm+QbSU5dfVF37+zuHd2944AcNO8aAQAAYOFsxSbC\nriS7uvuDk/2zs9xUAAAAgFuqIbE+AAAgAElEQVSm57AtgC3XROjuLya5oqruPTn0iCQXj1gSAAAA\nbAnzXJ3hsBWDFLetOLZy6OHh63Sv5yb5i8nKDJcl+YV1el8AAABujRYkKbDR5tlEOHsvx962ar+y\nDl9Nd380yY59fR8AAADgu+bVRJAEAAAAYDEt0OoJG20uTYTuPmse9wEAAAA2zjwfZwAAAIDFJImQ\nZAuuzgAAAABsDEkEAAAAmMFMhGWSCAAAAMAgkggAAAAwiyRCEkkEAAAAYCBJBDZEHXTQ2CUM9tT/\n8faxSxjsT3/8yLFLGG5p99gVAADAujETYZkkAgAAADCIJAIAAABM0zETYUISAQAAABhEEgEAAABm\nkURIIokAAAAADCSJAAAAAFNUrM6whyQCAAAAMIgkAgAAAMwiiZBEEgEAAAAYSBIBAAAAZqgWRUgk\nEQAAAICBJBEAAABgmo6ZCBOSCAAAAMAgkggAAAAwQ0kiJJFEAAAAAAaSRAAAAIBZJBGSSCIAAAAA\nA0kiAAAAwAxmIiyTRAAAAAAGkUQAAACAWSQRkkgiAAAAAANJIgAAAMA0bSbCHpIIAAAAwCCSCAAA\nADCLJEISSQQAAABgIEkEAAAAmKJiJsIekggAAADAIJIIAAAAMEuLIiSaCGyQ/W5327FLGOxP733E\n2CXcDLvHLgAAALgV00QAAACAGcxEWGYmAgAAADCIJAIAAABM05MNSQQAAABgGEkEAAAAmKGWxq5g\nc5BEAAAAAAaRRAAAAIBZzERIIokAAAAADCSJAAAAADOUJEISSQQAAABgIEkEAAAAmKaTtChCsoWT\nCFW1rao+UlV/M3YtAAAAsBVs5STCLyW5JMkdxi4EAACAxWYmwrItmUSoqsOTPD7J68euBQAAALaK\nrZpE+L0kv5rk9mtdUFWnJDklSQ7OIXMqCwAAgIUkiZBkCyYRquoJSa7q7gunXdfdO7t7R3fvOCAH\nzak6AAAAWFxbMYnw00meWFWPS3JwkjtU1Z9391NHrgsAAIAFVDETYY8tl0To7pd09+HdfWSSE5O8\nSwMBAAAA9t1WTCIAAADA+ule3tjaTYTufk+S94xcBgAAAGwJW+5xBgAAAGBjbOkkAgAAAKwHgxWX\nSSIAAAAAg0giAAAAwCySCEkkEQAAAICBJBEAAABgBjMRlkkiAAAAAINIIgAAAMA0nWRJFCHRRFg4\nddBBY5cwyCdPO3rsEgY7+nkfHLsEAACAhaCJAAAAALMIIiQxEwEAAAAYSBIBAAAAZrA6wzJJBAAA\nAGAQSQQAAACYpUUREkkEAAAAYCBJBAAAAJjBTIRlkggAAADAIJoIAAAAME3PaZuhqo6vqk9V1aVV\ndepezr+gqi6uqo9X1Tur6h778G+9V5oIAAAAsMlV1bYkr0vy2CTHJDmpqo5ZddlHkuzo7vskOTvJ\n76x3HZoIAAAAMEUlqe4N32Z4QJJLu/uy7r4hyZuSnLDygu5+d3d/c7L7gSSHr/dnoYkAAAAAm8P2\nqrpgxXbKinOHJblixf6uybG1PCPJ3653gVZnAAAAgFmW5nKXq7t7xxrnai/H9hpfqKqnJtmR5KHr\nVdgemggAAACw+e1KcsSK/cOTXLn6oqp6ZJKXJnlod1+/3kVoIgAAAMAMA2YWbLTzkxxdVUcl+XyS\nE5M8ZeUFVXXfJP89yfHdfdVGFGEmAgAAAGxy3X1TkuckOS/JJUne0t0XVdXpVfXEyWWvTnK7JG+t\nqo9W1TnrXYckAgAAAEzTWWP6wHx197lJzl117GUrXj9yo2uQRAAAAAAGkUQAAACAqToZfybCpiCJ\nAAAAAAwiiQAAAAAzlCBCEkkEAAAAYCBJBAAAAJjFTIQkkggAAADAQJIIAAAAME0ntTR2EZuDJAIA\nAAAwiCQCAAAAzGImQhJJBAAAAGAgSYQFc4/3LUbf56ozFqNOAACAQQQRkkgiAAAAAANJIgAAAMAM\nZSZCEkkEAAAAYCBJBAAAAJhFEiGJJAIAAAAwkCQCAAAATNNJlsYuYnOQRAAAAAAGkUQAAACAKSpt\ndYYJSQQAAABgEEkEAAAAmEUSIYkkAgAAADDQlmsiVNURVfXuqrqkqi6qql8auyYAAAAWXPfGbwtg\nKz7OcFOSF3b3h6vq9kkurKq3d/fFYxcGAAAAi2zLNRG6+wtJvjB5fV1VXZLksCSaCAAAANx8nWRp\n7CI2hy3XRFipqo5Mct8kH9zLuVOSnJIkB+eQudYFAAAAi2jLNhGq6nZJ/keSX+7ur60+3907k+xM\nkjvUnRfj4RMAAABGUQsys2CjbbnBiklSVQdkuYHwF939l2PXAwAAAFvBlksiVFUleUOSS7r7d8eu\nBwAAgC1AEiHJ1kwi/HSSpyV5eFV9dLI9buyiAAAAYNFtuSRCd78/SY1dBwAAAFtFSyJMbMUkAgAA\nALABtlwSAQAAANZVRxJhQhIBAAAAGEQSAQAAAGZZGruAzUESAQAAABhEEwEAAAAYxOMMAAAAMEMZ\nrJhEEgEAAAAYSBIhyb3u882cd95Hxy5jkEc+5eljlzDIoZ+8bOwSBrtp7AIAAIDNTxIhiSQCAAAA\nMJAkAgAAAEzTSZYkERJJBAAAAGAgSQQAAACYqs1EmJBEAAAAAAaRRAAAAIBZJBGSSCIAAAAAA0ki\nAAAAwCySCEkkEQAAAICBJBEAAABgmk6yJImQSCIAAAAAA0kiAAAAwFSd9NLYRWwKkggAAADAIJII\nAAAAMIvVGZJIIgAAAAADSSIAAADANFZn+A5JBAAAAGAQSQQAAACYxUyEJJIIAAAAwECSCAAAADCL\nJEISSQQAAABgIEkEAAAAmKolESYkEQAAAIBBJBEAAABgmk6ytDR2FZuCJAIAAAAwiCQCAAAAzGIm\nQhJJBAAAAGAgSQQAAACYRRIhiSZCkuSfP35IHvNDPzl2GYNsy4fHLmGQm8YuAAAAgHWniQAAAABT\ndbIkiZCYiQAAAAAMJIkAAAAA03TSvTR2FZuCJAIAAAAwiCQCAAAAzGImQhJJBAAAAGAgSQQAAACY\npSUREkkEAAAAYCBJBAAAAJimO1myOkMiiQAAAAAMtCWbCFV1fFV9qqourapTx64HAACABde98dsC\n2HJNhKraluR1SR6b5JgkJ1XVMeNWBQAAAItvK85EeECSS7v7siSpqjclOSHJxaNWBQAAwMJqMxGS\nbMEkQpLDklyxYn/X5BgAAACwD7ZiEqH2cuz7Hi6pqlOSnJIkB+eQja4JAACAhbU4Mws22lZMIuxK\ncsSK/cOTXLn6ou7e2d07unvHATlobsUBAADAotqKSYTzkxxdVUcl+XySE5M8ZdySAAAAWFidZEkS\nIdmCTYTuvqmqnpPkvCTbkpzR3ReNXBYAAAAsvC3XREiS7j43yblj1wEAAMAW0VZnSLbmTAQAAABg\nA2zJJAIAAACsl07SZiIkkUQAAAAABpJEAAAAgGm6zUSYkEQAAAAABpFEAAAAgBnMRFgmiQAAAAAL\noKqOr6pPVdWlVXXqXs4fVFVvnpz/YFUdud41aCIAAADALL208dsUVbUtyeuSPDbJMUlOqqpjVl32\njCRf6e4fTfKaJL+93h+DJgIAAABsfg9Icml3X9bdNyR5U5ITVl1zQpKzJq/PTvKIqqr1LMJMhCTX\n5StXv6PP/uw6v+32JFev83uyMXxXi8N3tTh8V4vDd7U4fFeLw3e1OHxX6+8eYxewEa7LV857R5+9\nfQ63OriqLlixv7O7d05eH5bkihXndiV54Kpf/51ruvumqvpqkrtkHf8710RI0t0/uN7vWVUXdPeO\n9X5f1p/vanH4rhaH72px+K4Wh+9qcfiuFofviqG6+/ixa0iyt0TB6mmPQ67ZJx5nAAAAgM1vV5Ij\nVuwfnuTKta6pqv2T/ECSa9ezCE0EAAAA2PzOT3J0VR1VVQcmOTHJOauuOSfJyZPXT0ryru5e1ySC\nxxk2zs7Zl7BJ+K4Wh+9qcfiuFofvanH4rhaH72px+K5YGJMZB89Jcl6SbUnO6O6Lqur0JBd09zlJ\n3pDkz6rq0iwnEE5c7zpqnZsSAAAAwBblcQYAAABgEE0EAAAAYBBNhH1UVcdX1aeq6tKqOnUv5w+q\nqjdPzn+wqo6cf5VU1RFV9e6quqSqLqqqX9rLNcdV1Ver6qOT7WVj1EpSVZdX1T9NvocL9nK+qur3\nJ7+vPl5V9xujzlu7qrr3it8vH62qr1XVL6+6xu+rkVTVGVV1VVV9YsWxO1fV26vq05N/3mmNX3vy\n5JpPV9XJe7uG9bPGd/Xqqvrk5M+4v6qqO67xa6f+ecn6WuO7enlVfX7Fn3OPW+PXTv1/RtbXGt/V\nm1d8T5dX1UfX+LV+X8EUZiLsg6raluSfkzwqy0tpnJ/kpO6+eMU1/ynJfbr7WVV1YpJ/093/fpSC\nb8Wq6tAkh3b3h6vq9kkuTPKzq76r45L8Snc/YaQymaiqy5Ps6O6r1zj/uCTPTfK4JA9M/n/23j1c\nt6wq73zn9+19boUXEAUEoiRiur00tuAttkqrQUAjagtibMUrja3J4yWPgEYhSBKIUdtLq42XCAZF\n0Sj1eKEoSXxMR0EBL6CxFRWLkhKkuCgWdc7Z+5v9x1q72Gefvdf77rPeb+y51hq/56mnqs5aZ675\nrcucY475jjHwPbXWj4vrYXKUfjz8SwAfV2v9i0N//kjkd3UmlFI+GcC7ALyg1voR/Z/9OwBvq7U+\np1/E3LvW+tQjf+8+AF4F4BHo6kq/GsDDa61vD/0BC+KEZ/UodBm190opzwWAo8+qP+8NGBgvEy8n\nPKtnAnhXrfXfD/w9ajMmXo57VkeOfyeAd9Zan3XMsTcgv6skOZFUIozjYwG8vtb6Z7XWKwBeBOBx\nR855HIDn9//9swA+rZRSAvuYAKi13lFrfU3/338L4L8DeODZ9ioZwePQGQW11voKAO/bO4qSs+PT\nAPzpYQdCcrbUWn8d19eFPjwnPR/A5xzzVz8DwK211rf1joNbATx6ax1Njn1WtdaX1Vr3+v99Bbpa\n4MkZc8J3paDYjImRoWfV2+JPAPBToZ1KkpmQToRxPBDAGw/9/+24fmF6zzm9MfBOAO8X0rvkWPqQ\nkv8ZwCuPOfwJpZTfK6X8Sinlw0M7lhymAnhZKeXVpZQnH3Nc+faSWJ6Ik42x/K7a4X611juAzrkK\n4AOOOSe/r/b4cgC/csIxNl4mMXxtH3ryYyeECeV31RafBODNtdY/OeF4fldJMkA6EcZxnKLgaHyI\nck4SRCnlXgB+DsDX1Vr/5sjh1wD4oFrrwwB8H4BfiO5fcg+fWGv9aACPAfA1vSTxMPldNUQp5RyA\nzwbw4mMO53c1PfL7aohSyrcA2APwwhNOYeNlsn1+EMA/APBRAO4A8J3HnJPfVVt8IYZVCPldJckA\n6UQYx+0AHnzo/x8E4E0nnVNK2QHwPrgxGVwyklLKLjoHwgtrrf/p6PFa69/UWt/V//cvA9gtpdw3\nuJsJgFrrm/p/vwXAz6OTgR5G+faSOB4D4DW11jcfPZDfVXO8+SD0p//3W445J7+vRuiTWn4WgC+q\nJySxEsbLZMvUWt9ca92vtW4A/DCOfwb5XTVCb49/HoCfPumc/K6SZJh0IozjtwE8tJTykH4n7okA\nbj5yzs0ADjJbfz66JEnpeQ6mj337UQD/vdb6XSecc/+DfBWllI9F933cGdfLBABKKTf1yS9RSrkJ\nwKMAvO7IaTcD+JLS8fHoEiPdEdzV5D2cuKOT31VzHJ6TngTgJceccwuAR5VS7t3Lsh/V/1kSSCnl\n0QCeCuCza613nXCOMl4mW+ZITp7PxfHPQLEZkxg+HcAf1VpvP+5gfldJwtk56w5MmT5j8teiM67W\nAH6s1voHpZRnAXhVrfVmdAvXnyilvB6dAuGJZ9fjRfOJAL4YwGsPlfP5ZgB/DwBqrT+Ezsnz1aWU\nPQDvBvDEdPicCfcD8PP9unMHwE/WWl9aSnkKcM+z+mV0lRleD+AuAF92Rn1dPKWUS+iyjf8fh/7s\n8LPK7+qMKKX8FIBHArhvKeV2AM8A8BwAP1NK+QoAtwF4fH/uIwA8pdb6lbXWt5VSvh3dogcAnlVr\nTQXdFjnhWT0dwHkAt/bj4Sv6Sk8fCOBHaq2PxQnj5Rn8hMVwwrN6ZCnlo9CFJ7wB/Xh4+FmdZDOe\nwU9YDMc9q1rrj+KYHD75XSXJ6cgSj0mSJEmSJEmSJEmSSGQ4Q5IkSZIkSZIkSZIkEulESJIkSZIk\nSZIkSZJEIp0ISZIkSZIkSZIkSZJIpBMhSZIkSZIkSZIkSRKJdCIkSZIkSZIkSZIkSSKRToQkSZIk\nlFLKl5ZS6qF//q6U8oZSys+XUp5QSml2bur7+8yA63xdKeXzjvnzZ5ZSmiurVEr5qL5v9znrviRJ\nkiRJsl2aNdSSJEmS2fN4AJ8A4LEAvhXAZXS1u19WSrl4lh1rgK8DcJ0TAcCPoLtnrfFRAJ4BIJ0I\nSZIkSTJzds66A0mSJMli+d1a6+sP/f9PlFJeDODFAP4dgH92Nt2KoZRyvtZ6+TR/p9Z6O4Dbt9Sl\nJEmSJEkSSioRkiRJkmaotf4cgJcA+KpSyqWDPy+lXCqlPLeU8uellCv9v7/laOhDKeX9Syk/UEp5\nYynlcv/vnyilnD90zqNLKb9ZSnl3KeWdpZRfKKX8wyPtrEspzy6l3FFKuauU8mullA8/rs+llIeV\nUm4upby9b/O/lVI+6cg5P15Kub2U8gmllN8opbwbnaPkuPbeAOCDAHzRoZCPH++PXRfO0B9/dinl\nG0spf9GHh/xSKeUD+n9+pv+dbyylPPWY6z2klPLCUspf9/fsd0spn3vknA/tw03eUkq5u5RyWynl\nxaWUnVLKlwL4D/2pf3Kozx/c/92v7e/320op7yilvKKU8plH2v/g/u88pZTyb0spf1VK+dtSyn/s\nn/2HlFJuKaW8q5Ty+lLKk478/Wf2f/8jSyn/pX9md5RSntVyeEySJEmSTJGcWJMkSZLW+GUA5wE8\nAgBKKTsAbgHwlQC+B8Bj0Mn6vxXAdxz8pVLKvQH8BoAvAPBd6MIkvgnALoBz/TmPBvBLAN7Vn/fV\nAD4CwP9bSnngoT48E8A3A3ghgM8B8DIANx/taCnlo/tr3gfAVwH43wDcCeBXSykPP3L6+wB4EbqQ\njccA+MkTfv/nAvir/jd/Qv/Pt59w7gFfDOBTAfyf6BQcnwTgBQB+HsDv9/36ZQDPKaU89lD/Hwzg\nlQAeBuDrAXw2gNcA+LlSymcfav8XATwQ3f36DABPQxd+skJ3P5/dn3cQovIJAO7o/+yD0T2vx6O7\n568C8IullMcc8zueDuADATwJwLf15/9Q/zt+qb83vw/gP5zg1PkFAL+K7pn9JLp35NtOuGdJkiRJ\nktwAGc6QJEmStMZt/b8f0P/7CwH8LwA+pdb66/2fvbyUAgDPKKU8t9b6FnSL4L8P4BG11t851N5P\nHfrvZwP4MwCPqbXuAUAp5TcB/DGAbwTwDb0z4usBPK/W+i/6v/eyUso+gOcc6et39P391Frrlb69\nWwC8Dt0C9nMOnXsvAP97rfUlQz++1vo7pZTLAN5aa33F0LmHuAzgcYd+00f0v+Fba63P7v/s19At\nwh+PzqEAdM6Sgu7e3tn/2S29c+FZAG4updwXwEP79g87Ug6cIH9dSvnT/r+Phqjg0D1Erwp4OYAP\nBfAUAL9y5Hf8aa31QGVwS6/o+GIAX1xr/Y99G69C5+z4fAB/cOTv/3Ct9eAZvayU8t4AvrGU8n/V\nWt9xzH1LkiRJkuSUpBIhSZIkaY3S//tAtv9oAH8B4Dd6+fxOr054GTqVwcf35z0KwG8fcSC8p9FS\nbgLw0QB++mCxDQC11j8H8N8AfEr/Rx8J4CYAP3OkiRcdae9i/3deDGBzqF8F3W74Jx/5+3vodvS3\nwa2HfxOAP+r/fcvBH/THXw/gwYfOezQ6h8I7j9zbWwA8rF+E34nO8fKcUspXlVIeepqOlVIeXkr5\nxVLKm9Hdg6sA/jGAf3jM6UedCsf9jrcDeMuR33HAcc/sXujUJkmSJEmSGEgnQpIkSdIaB4vDAzn8\nB6DLEXD1yD+/1R9/v0P/Hko6eG90C/w7jjn2V3hPZYEDBcSbj5xz9P/vA2CNTnFwtG9fC+DeR+Lx\n31Jr3R/o3xjefuT/rwz8+YVD//8BAL4E1/f/IEzk/WqtFd2i/1UA/i2APy6l/Fkp5atZp3pFw8vR\n3at/BuAfAfgYAC890o+xv+OAk57ZA4+emCRJkiTJjZHhDEmSJElrfCaAuwG8uv//OwH8OYAnnHD+\nG/p/vxXDi8W3o1M33P+YY/fvrwO8x8lwP1wrl7/fkb/zDgAbAP83uvwD11Fr3Rz+34G+nRV3Aviv\nAJ57wvE3AUCt9c8AfEnpYkgehs5J8gOllDfUWo+qBw7zaHS5IJ7QV5YA0CXKdHT+GO6HTjVx+P8B\n4C+3dL0kSZIkWRzpREiSJEmaoZTyeeji3b+n1npX/8cvRZcY8F211j868S934Q3/spTysFrr7x09\nWGv9u1LKqwE8vpTyzANVQCnlg9DtkH9ff+rvA/g7dE6L/3yoiSce095/Rbeofs0Rh8FYLgO4aGzv\nJF6KLgniH9Ra381O7lUJv1tK+QYAX4EuTOBX0PUXuL7PB86Cqwd/UEr5UACfiO2UqnwCrs1b8UR0\nSTRft4VrJUmSJMkiSSdCkiRJclZ8VJ+07xyAvwfgs9Al/bsVXZb+A14I4MvQJVP8TgC/1/+df4DO\n4fA5vcPhuwH8U3SVEZ4N4LUA7gvgcQCeUmv9W3ShB7+ErjrAD6CLl/9XAN4J4DsBoNb6jlLKdwP4\nllLK36JzTnwMukXzUb4BwK+jSwL4o+hUDPdFl3thXWt92g3emz8E8EmllM9CF2rx1lrrG26wrSG+\nDV1YyK+XUr4fnarj3uicA3+/1vrlpZT/CV1VjJ9Gl1NhDeBL0eU3OHCy/GH/768ppTwfndPg99Hl\nhtgD8IL+2T0A3f2+DdsJqfyqPoTkt9FVkfhKAM/MpIpJkiRJ4iOdCEmSJMlZ8eL+33ejS5T3GnQ7\nxz/b73gDAGqtV0spB2UFnwzgIeiUAn+KziFwpT/vHaWUT0RXgeFp6HIkvBndQvfgnJeWUj4TwDPQ\nJeG7AuDXAHxTrfVNh/r2THT5E74SnXT/lQD+CY5UA6i1vqaU8jF9e9+LTrr/1/1v+aER9+bpAH64\n7+NFAM9Ht3C3Umu9rZTyCHS/998AeH90IQ6v668JdE6M29A5TB6E7nm9FsBn1Vpf3bfze6WUZ6J7\nPl+FzkHwkFrrH5RSvgh9pQd0z+xp6MIcHun+PegcRt+Hzln0TnTvAiuPmSRJkiTJKSiH7LQkSZIk\nSZLJ0TswngFg90iViiRJkiRJzGR1hiRJkiRJkiRJkiRJJNKJkCRJkiRJkiRJkiSJRIYzJEmSJEmS\nJEmSJEkikUqEJEmSJEmSJEmSJEkk0omQJEmSJEmSJEmSJIlEOhGSJEmSJEmSJEmSJJFIJ0KSJEmS\nJEmSJEmSJBLpREiSJEmSJEmSJEmSRCKdCEmSJEmSJEmSJEmSSKQTIUmSJEmSJEmSJEkSiXQiJEmS\nJEmSJEmSJEkikU6EJEmSJEmSJEmSJEkk0omQJEmSJEmSJEmSJIlEqBOhlPJjpZS3lFJed+jP7lNK\nubWU8if9v+/d/3kppXxvKeX1pZTfL6V89KG/86T+/D8ppTzp0J8/vJTy2v7vfG8ppUT+viRJkiRJ\nkiRJkiSZM9FKhB8H8Ogjf/Y0AC+vtT4UwMv7/weAxwB4aP/PkwH8INA5HQA8A8DHAfhYAM84cDz0\n5zz50N87eq0kSZIkSZIkSZIkSW6QUCdCrfXXAbztyB8/DsDz+/9+PoDPOfTnL6gdrwDwvqWUBwD4\nDAC31lrfVmt9O4BbATy6P/betdbfrLVWAC841FaSJEmSJEmSJEmSJCPZOesOALhfrfUOAKi13lFK\n+YD+zx8I4I2Hzru9/7OhP7/9mD8/llLKk9GpFgCUh5cydCvq4A/ofBbDlDLsrykWfw7vx6ZuhHb2\nR1+Hw1+9c+t7DR6/gAv8KoaIlj3h+V7GZdLG3bSNTb06eLxKz87xbBxttEJURFMr90z5vewcPha1\nEimmjJuVjt/D391BK+Nx3LNW3rOkXYbfs/VKmTeHz1kL8/dKGUdIXx2jmQL7qtgYopyzMbTRtTNs\nn23Ax7P9zfA5zBY5uNKyGH7TVmWXtnBuNWzTKm/z3fvvIGcw+z2Ut9Za3/+sO+HmMz7jY+udd75z\n69d59av/+JZaa9OK+hacCCdx3NdUb+DPj6XW+jwAzwOA9ep8vXD+QSd2ZFP3Bju6t3/X4HEAOLfz\n3sPH1zfRNhj7pJ8AcPnq2+k5V/eGB6kqXIexu3Mfes5D3vtTB49/GD6EtnHv88Ov+FqwQO68zH/v\nn2z+cvD4m/ZeS9t41+W/GjyuvGd18+7h48IEozkrkrOAGt2DztD+nNXFwePr1Tnaxko4ZyyKg2B3\nh4+b+5thB9+7L99B29iQNpKkFdhi5t73+kjaxv3X/+NwGxs+f18q5+k558t68PhacFayc6TFOznl\n8obPm1fq8DmXhcX95XKFnnNXedfg8b/BW2gb77hy2+Dxv7ubj4n7+39Dz5kTbO69eOHv0TYecuET\nB48rzrnX/c3PDh7f3/872kYce39x1j3YBnfe+U688rf+n61fZ2f9v9536xcZSQtOhDeXUh7QqxAe\nANwzAt4O4MGHznsQgDf1f/7II3/+a/2fP+iY8wUKVoLxfRLK36VKBHJcOWezmc7iT1nsnKvDi50L\nO/yeXSBeAsWJcGHNr3Nx/9Lg8V2ycAOAnfXw7o/ivNknToIqLYam8x4lRzCMI8q3ycY8ZTxjKE6E\nHYMzQ/m9IEqjJGkG8u3tKIv7OjwXnQffdWUOAgA4txru6+4qxomwT05RhFerDXHwVqERQWi0TxSY\n51bDtgjA7RHFkbzZH8wXt+YAACAASURBVP49iqpiTkhObwzf13VV5iL+XSVbpgKY0Hprm7TgRLgZ\nwJMAPKf/90sO/fnXllJehC6J4jt7R8MtAP7NoWSKjwLw9Frr20opf1tK+XgArwTwJQC+T+lAKSvs\nrE6eWPfr8EfLlAoAsB5oXzmusIKiEGijqudqxV+9i3V4MrwoOBEukssINgou7fPrXLpMHB6rYSUK\nAFxeD3v2HQoBSUVCdlSWZhw0BbFmHQ4AxSnKxiuHE0GRQ+8IBnMhRtdKWFTto6XdnSQ5mULe513h\nm7mwYfMZHyMU5ztzIuwIEzQzAzbC4n1DpjRls2HF5O7EyaCyIbKJd5PNF4A7ESSlGXMSGRSrU6II\nTjPmJNhJB0EyMUKdCKWUn0KnIrhvKeV2dFUWngPgZ0opXwHgNgCP70//ZQCPBfB6AHcB+DIA6J0F\n3w7gt/vznlVrPUjW+NXoKkBcBPAr/T9KzwaN4lKJAkCIH1uznTvD4l5ZmEuKBxqXNX4yVDzdl8hk\neNMO78dFMvsrToS7hXH9EpGQXsT70DYu7wzLFBWYo2F/w+WStQw7EQpxMgDpaLgR+HfHF8RFiMtk\nBuLOWlDNkDaU+FAWWqO0cZ7GmAJ7ZOxdEwUQAOzt5a5bMg3Y3Hq+8G/mItkxvbDik6Li5D9HJmBN\niUBPoTAlws6G/5Z1GW5kLTgRyNTbQfYSLtf3ok28i4ybu0J47RUyPjvCXqeEYlszJ4GmREjOnppK\nhJ7QN7bW+oUnHPq0Y86tAL7mhHZ+DMCPHfPnrwLwEaftVynDToQ1hj37yg7xDvH8Dikh1OtUQYYu\nhW3QwVCZtZlMkS9U7kWMIaYyAIBLO8MTu+K6uVu5znr4pJv2uRPhbhLrWNf8+bK8GJIToQ5Lt5X3\njAaZJjcG+TY1FQFxIggOPjaerQUHAEMxypQFEYsz3RESzV3OXbdkIrDEiRcq/2YurYhTXFIBKk6E\n4ePnBQc+cyIwlQGgOBEURQQJndzjHXHoRK/sc9vq4mrYHnmX4FhdkzlgQ/IzLRG2IZkkUyPdXuhU\nAENxgswgrmvuPmZOgrUQY8jW7hvFiSCpFYhDQ5HVs7hMYbfz0nrYgrhJeHuVc2g/BAOCGUw37fHf\ne/c9ETonIMw/++thVczemk/s+5vhShJVUCIUUybqRSEE3rJwBUWGykIRmIMA4AoATYkwPI4oSaaU\nBdFV0pdzQnLGu9jvSXVOEoCiVmJz6yXhm7m4Ozz3XhJUgJcEB8A5cg5TKgBcAVCFe7ZHTJrdFf92\nd8gQoCSJ3CHhHQpXN3xD6hJRK5xf8/DLu9Z3Dh7f2+fj99LUCgwWEtPRVPWF5ZJKBADpRADQTcxD\nToQdpkRY8Y+aGdVK/C9zEuwITgRFAXCVLET2hPANJqtW+nFpZ7wT4ZKwe8+4W4jtZEbVTULc9ZUN\nUSs4nAg73Imwt8+cCEr5J8NkaFAztLJwU4x/5QGz+H0lTIh9e0qIwG4ZjqtWkrdxJwJ3RFzYCEnE\niDRbMZjZrps0JrLxOUi908o3kZweKSExkaJfrPzbvEjmvItKKKFwzjmyOFcW7zycQUisSIbeq4IZ\nwZwEa0ESoS0ihzt7dcPfkUt7w++IMgcwBRcLdwAgOV9pEzmeJcmZkU4EAMBq0FFwAcMDai18hmE5\nD1ZCUpYNG3CF+UdJ4MjkkEr4BpMiKzJktjC/tOaTh3IO426hDWYwsXAHALjKZIiCIbO/Gl7MXFnz\nvAtXqaNBCKtQpIx0F4JfhxkQdOEWhlI1gY8BTGmgOOfYIuOc8G2yMXFXWKhwpyj/Zm4SkojtkfHq\n4ooogMDzJjje90p2VF1I3wRxaKThfjYUwUnIvu9LxKkG8LmX5RrqzuHvCAtX2FVsGsN3s0+SL14V\nHPhrEhOhlatUfstwO5eFMJJ77Q+PZ0oOp/OkbPnlq8OlwgEefqmMM8p4FlG2WtkIZGjlSFuxaRZM\nRYbs9qQTAd0u4VDIwnliqO4XLslasVgo4X3cK2S3S2hDcyIMGxlKTDxzmpwvPPnPBWJgXFAW90Ko\nCW9DMZhIOMMun2D2K/HcK06EOrwgury6i7axtzs+J0IxSBmVqic0T4ikmmiDlfBtsjKgSkIs5sBj\nDgIAuFiHr7OrhGcRlCRTlwpfEO2RgVH5vey+7hP1DsDf5xIkU9WMUPbtCX2dkZKoFZRKIkwldEFQ\nMzjmXtYGAJynSgTexg4NZ+AwkQBJrQSAOwl2WOIFaEkiWV+vCnH3l64OvwOXNtw+Ywqu3R0+rjJb\nQpm/tZAINl4pNi2p8iOECjNHg6ZESZJ2SCcC+nCGgQXcbh02VM+B74Y5WJNF5tXCa5mfK0I4g5Cv\ngMF2Vc8JO4jnyYzKDBAAuGgIZ1B2VFgCxwuCdbBPwjeUCp77+8MG5OXyfrSNvTV/jxhXVrwk3mYz\nbCAoTgR2zmbjiLmM8fwr+QzYLqMiQ2UOvIsb7oi4QL7fXcPUsiPs7FwUFD57xOpmDhGA33cl1wh7\nV6PigxUnAv32FOccU+hJzgyHE6GNMBIl5wlDGiOIE+GcUnqRTEXnhcW9Mj/TxIpSOINDiTB8XOgG\nHa1cC8R9YkvcLTgrWPnNS8SOAPhco+S9YomeN0JVjI1UFpGNV8pYxNTEQmUk8g4oSoQoeyQZIqsz\nHJBOBHS75hdwspG4Sxbv+4I8cEMMqj1lhUigagdoAx1TKyhGKPPKXqzCJEV3Q3g/lHMcbZwjJa+U\n+FC2w7ARFlWXSTzkRcF5cxcxDvZW450MALBPnF7Ke8bkkBsS3uHCITFUVEK76+FnI4UikEUzcxAA\nwHmiNDivhGeR47tKdQYhERnbqbxwdXwICA8BAvY34993htKGpCQizrcqqESkKi4j0e7Z8C5kS/Jg\nFgbIlEgAd9AryQrZOZoSQXEiECWC4CBgeROUxIob4khSyjOyfQKlnLQSk8oWmpIChDgRLggKL6bg\nOr/maga2kbAvqGY0xeJ41SNT1yp5gCxOhIbGqyRJJwI6JcKQ2oAZzPuCA2CP5DNgTgaAG91skAO0\nZGVsMKyr8QkcleROF4hxcEHox4X1eOeMUhObyz/5dfaJoXJV8MqfJ309vy8k3iPPRpksNyz0BqBb\nN1LuDeI4UxY7raA4Edjuz3lw5xxzJLHxDuCSaPYeAtxgUmKImTEMAPtkgXBpT7jvxDmjKG+YlFWp\nrsOQnAhCMrMNCdFzOCuiFu/8Om3EVAPcicCcWQBwnigjFVUccwA4HAQAV/ntCHYR98/zfrDqi8pY\ntCLzs6u434YsRKXnS6bFi0rIy8DGG6Cp4vZ3hh2rexs+FzFHBCAoFoOcCLzEYzoIJkMqEQCkEwFA\n5x08P+REILtq+yTcAQDWhsGB5V5QErtcFQY6OhgKs+HuikgqWfw/lIU5N4bPGZQI5xXFA3N4GBY7\nV0nyJwC4TNJMnxMmZWaEXiFyWUBzNHEHgKJEGB7CInZDXShGyC5bIBDDDsDgWAdoMdPMSaBIpivb\n/ZOcCPQUmjRNUU2wEJDLSsJSskC0KBGEXAWao2H4HKYA6trYfo4H5fvmeVM8YwTri+LkZyjlVy9s\niBJBWGSyMAOHg6BrZ/ienRfmERbOsBHmTTYrKg78FXF4KBV6FLUhc3iwZ6eco9grTMHFbEAA2FkN\nK7gU5SxTNAKCYlFwRLAQXaWvzJ+lOJIzT0zSEulEQK9EGLgVuyy+X9i5WzNDRRgX9knslyKFklQT\nZFBWBktWFlPxdDNDRXEiXNgxKBH2lERUw8/3gqBlvGqQkLJylBeV30KM0KvCDoNUKYQMP5I6h8Rm\n79NYSJ4wSYEt3pRrKE4EKiEVFD7nyPerqAiYkbkjaXdJSTTBiaBIs1mIsKQ0InkiLgthJIVch73L\nLhRDlfWFzmfg30QrSgTJcG9EiaAszKiTUBjuqBJBWNwzB4HSzq7BiaDAHI3KNQp1NChOJMVxTkIR\nJKXJ8PFzQpjYeRLGy3JzADw0cq/yhLWKc27FnAiCPcpgNi+QiRNnQ0UqEXrSiYDOiTC0G8UG1M2G\nz8pXWSyUkNxpRSY6xYmwK8S6scUMl2RxWbUySVFDZoc7Ec4bnAjnVsJ1iMODJaoCgAvkHRDyJdGd\nWck42Ay/I1cqj8vdCDuizGDeVzIzkwXxSnAieEozDU8oyjV2Cr+vrFLMBeHZXCT5SrTEa8Nj0a4W\nADyIkqlc+a7Yd6PszJ4nJdFYzXSAvyPsXVZw7f6zWGQpOSMNZwiqRmEIq1AUHg6Ys1FJjHyRmHWK\n440pAM4rOREEBwBT+Slz75rlRBDmTaZW0JQI5DjvhnQWUyzeLSW0ZGEzQkUqMkaw3DsAcBXDToK1\nsLhfrwS1ArEDFGUVY1eYv9OJkMyNdCKg2w8bUhswg5h5hhWUDLMWJ4IQesEcAMruLqtYIRnudGEu\nhDPsjjf+pOsQg0mRfzIlAjsOKMkohYz3pDzjZWG3W1ERrCoJExLeM3YdTYkw/vt1SJlZLgqAKw3O\nSwofYkAaEq8p3zcz7iUngqREIOOI4FhjyXWVZ8cca5bQG+GeKQtitphV2qA7/AZ72rG4dzhEomDl\nGwFglzw7JQSIzVeKykAJA2ROgvPC3BuhRFgJ11ixzMgCUppQMjCeEz4J5gRS1AwsmfT5DV9Us9BI\nWtYcmsqPbSasFVuDPB2lJHEyF7I6wwH51qNTIgxJZ5msVpHdsmQ4O0LcHsjO7Upwua/Jwg3QvL+M\nHTKgKvdsTRaIa8GQWQnn0H4IDgC2lhGKM9BFk2IssesIPgQau7kjTNrKhKo4GhiF7WaGOf7Hh0Qo\nSU/ZfVUEAGtykvRtkjYktwy5jFIRz5HxfEf4vlm5SeXZrUhYnLIGYW0obBxOb6FyRrEkimQrIqUE\n3HhnxtqWFm8cK2XsJR9OETYb2DzCKp50/RBCEci3p8x5rA3lu2J3dSP0g52jzd/jS1pK94y9I5K9\nQuYRydYk46ZSrEB4z+g4IqjA2HimfJuF3dhMd5BMjHQioBswh9QGbFeNOQgAnrlXkdwVliBKmDzO\nCYu7q0StsBIMyF1iVCtyZ1a6SVEI7O4yKSttQorLZPJPxThg90Spzb1DzlHuO4uJv5soFQBgI+zM\nMom/lr9j+Jy1kMCzFc5JKqHh38N2hwBglxgyyk7lLnmNlDADqkSQEoQJeWCIg1bJ38DySOwqZX5J\nKIqkRDAYmVolIFKRSAk1ClJW8H6QykgmlYHj9zLFEivfCAC7xF5R5hE297Lj3TnKvDn8bHYENYOy\nmcDYJ/ZZMagdtFKTvB0WWsEUnABPrKi9I6QfwpjIQiP3hA0tJbyWhU4q3+6GOCKUOYCFMzhCK5Mk\nknQioLNThgzJXfJdMyMVEOrDKt5yRa1AUBQ4eywzt+BxZcmdtAzRZGG+IxgYwjm0H0JeBWZUKRP7\nHsuJICVMIlJHZWFGVm/nhRwgymKHhefsKbtuZAhTHBHthDNwhwdL8rorOPjYollZVLMxkR0H+Jin\nKCKUxQxTaDGHCADskuenJLRki3dlMWvJ36FUPSHy3h1BeeFQGtFrKNUoyH1liwMXykKFOxH4QoWF\n5zBHM8BLKyq5CpTKSMxJoGwUMCdCFewmtnu/J4yrDhQ7kNlFbHHfnTN8XHlHWCgZm6sAvtmkOAgk\nRyO5r8q3yUIr1hu+nEoXwUzIxIr3kE4E9DkRBgZEZswqBjMbxXYVRwQrD6PsqisqAiaZlkomDbch\nGe5kYt8RDIyd88TAEMYBxVnBjCplsXOOlXgU+sreRWWHmO1UK7vd0vhKbomShGiPGBlrQ5hBFOeE\n4ZiVI5RyjZBbooxn7D1SchWw8UoJVVD6ynLASd8EMcx39/mies+QEyHC4QXwbOV7gnMuoqKBxYkQ\n4OwAtL4ySbTiaGROQMWhzc5RVAbKOcxJsKvM8WR+Vko81g3ZIRayGjvUCoqq9SqZXKV8FTTnheKI\nGF869wpJ4lyEcUaBqWeV8YypGpUwTw+5eE3aIZ0I4OEMzCurDPyMfWFcoOFUihROcQCwerhSG6xU\nFW2CGiHK4n5FwhkU1sKOCuurJP8kqyopBIScoi0QidNsX8ggbTColPdsTTwR+0FZ1VlSU8Uhwhxv\nAF8gKO8Ib4M2gR3qWBViiB1OBOEcsj7QxiIyninOKrYAVGJ7pZ05gnIdVi1IUUTEKBEcVSKmY5RL\naiWDSojPZ4rKQAg3JOdIakMyPwtDEaqhmgxzVii5lXaFd5HaRVI+A0e4CruGZ86jKKpHMl4p4xkP\nnRRCL5RkE8kEqDS8fCmkEwFdIrkx4QzK4p1ZxIp8jF1GUSKcF4xQFnO3UiYH4ohQfi+bLJVQBVr9\nx6REYH1VdgdY9QWmVAAEqbpBIq4sVB0VS5QW9tji3RACFIWkEmI74oZQBEVFQN8Rw+Jeef5KUkSG\nsuvGHGvnhTwhbLEqlfk1OKyV6zDVhDIHKNehbbCM6EIb7SgRxl9HWXSxMYCFKnRtEBWgQWUA8Ll1\nV6iutDKUeFRCHngb46+hnOOwNVguGWmzgSpeeCNXWOlMU8UDplhUxjPmwGXJd6XrZGLFZGKkE6Fn\nyEZ0OBGYvFsZtFnuBaUk2h6z3CHE1AladceOKc1CrDgRmJUpWKErJbbTkFjRkXWZ7w7QJizVSBwV\nS6RlJFuYTcjzvxacCLyCh3Kd8W3Q90wJZQ1SIrCvxpHNfC0s7plaQcma73AiKNdhKBUeHNUZ2D2T\nVBVkHInaUVoZwlWUMYIn1x1fWWFXSngovM9k3mQOAkCbnxkboq5T+sHDKrhDRMmvRZUISl8N6iw2\nxku5dQzVZhRHAx2LlMTmtEKPUmpyOvZIQsicCADSiQDgIJzh5OPUgFSkX+S4lJzRsLPDdrsBYJd5\nhw1yZ22hQgwM4e0tPA8VRXFWsHdAkweSNgSpCcsjIUnVHcaBsrPDFC+GRRVLEgpouxAMKv+W1Dvj\n41A9SRGVRQZpI0iJ4Aib0NQbzClqUHgJ47tDDquY7UzBw8J3AEEB4Nh2E8rIseu4qjMwFIcHgyX4\nBJTyjMJ1mApQKVe4M16JoG0UGKpiBKztlDLe+9IGDduwGK80kXJWGcIZ6HylJHFWoK8rNyZZaKTi\n4EuSuZFOBHSJFccoEZTEPayGsGZ0j5/plEXkFTKwbwQ1A1cijK//rOQ7ECoEURRnBcsQre12Mgmp\n0A/DDoNjl0JxijEUpTq7rUoMOa2cIix2FIPJ0YYjySt38I1XvCi7YWzNrNUqH+9oUhyazNZVdph2\n2HumPH/DTlaVtt3GOzyY0sixPFC+TaYAcOQ0UlDUG+w92hGcVQ4lAt3tFkIVlN175iRQHATK/MwZ\nXwqaJXBV7CYlkeSVfRYqGqN63KF5r4QxkYx50l6EIdlsUcq0k84ocwAb4lOpMBEqtPjxBZBOhJ4h\nQ5IPuIrxT44b5L8KkgKADuzjFzua7JoZGLyNolyIsGLWAZR3RNhhYMnbLCERwrOjUnWhDaXkfSPz\nJZu4o7op3VdDKAJbZDhCIpTdTpYPW2lDOYctND0hIMqzY7J6YUFs2TJVYkDGhwk5wiYqTfA4PmzK\n0U8FJZyB4XA0WuYRZaGqOADI3Ko4COhmgrB4Z98Eew+Vc7QKD/QUYcNCUE5SO4H3g01XjtBJ5dFp\nTkAWk6xkNmfhDIIjIp0EycxIJwIOlAgnf9zMyFBid/lO1vg2FKSFCjEQ1lLdZYMTgfRDURkUZZXB\n2pDiP7evRNB2B9g1aBP0HC3hHT+H/hrJ+Ns+URO/9k04nHOORTX5NnkT9F1V2lC+CdaOls2c3Hdh\nXF2x99nQDx8Ghwc5Li2pDb+Xzt+GMEEFh+JBU+ew4+NVgEqoghaKMF5tyDYTqqJWYskZWYgngEp2\nJhWninRf90gZUKX8pmEO4HlxxtuJwm2XFB6c8fmXpOSMbZg0yWhq5kToSScCug97aNBkRqZSzs6R\nV8FSEk14768YHACW3U4yGUo5eRxOBCmcgTmaYpwINCTCsWCS+sGvQ3czlXiGRhwN7LNSHC8WRZPU\nxvh3hIe88GfHNuZcTgRm3GnyXyZl5bA2tP000oYiMlDWzIbPis1XjnAGJTSDhiuZLHuqeDHcVKW6\nDp97FSeCI+Hh+HMktSGbn5VNZnbOrqBEIIsK6kSEplagdpG0qbV9W0Oz8YaPK+s0RRlL21BMDfL9\nKpsN7JxUKiRTI50IPUMTL5V3S5ldSRuGHQYFJWyCSpUNsmtHLeMoJYJiyLBdBo8DIMoRwRxetAlJ\nrcLyhEgrGWbMBjkZ6G6nkr3f4ERQHImWnUpyjhSlalC8KH1lZ0jXMSQRY6eEyWGVJhyfpqMcpaEj\nNOmpKZyB51YZj/Sekd9jmUcMoQoAUHYMczyZn5XNBlY4oQjxzytia6wFyfxmf7xSVFIiMKWJZR5R\n2hgfziDlTWAOTWmoYuGm6QBYDBWpROhJJwI6M2Ro4mVDg2K4s92BfWHysIQzSLsQwxdSdn8su9nM\n467kkTA4EZRVBitVpShN2I7oWjBk2HvmSFanTLjabsjwccW0Z0lNiyORiIBjl9ERFhUXy8qOjw8z\n8IV4GeJ/yXHpfQ94R5TqDUp8N306kkho/LfHkplJkCai8mM5lBdx4QyG3W5JiTB8XHEAOJQI9BqK\nDUB+74YlgRHaAIQNC8GJ4NlsGD7ucEQoKiFDISjPO2KYe5NkaqQToWdcOIPS/viEdx4nwvhzeNQe\nH1AdkjvJQeCIqVV2Q6jhptQIH597g+9C8TZo/g6TaobLEIUQH4MjgmVmlrLZG3Dc16g2mE0mjVWG\n8CxJicCyahscqw4HkAJzEmgKkCApguOzYYsMJZyBPv+YcAYHUtk8w/fNnK9K1QSp4h1zeisbBSxn\nntANdkukKk8kFIEpFQCg7CnJF4ldJDlwxzsRuEOTNmGxNaTrkJ+jVYEg13DkPDFUmkiCUJJxLoB0\nIqCbQIYGKxq67djsNgy4SpZpi9w5KJyBeuWV+254OIohw3YHtOe7/ThF5W5Qg0powzH5K2WX+D1x\nLBAUyfTwcZfjhasIxie8i0oC6lB4aYtmg7KGHHdkzVdMEkdImwJX1oxfmjkW3YoCiF3FtfhnfXHk\nb3SMq47EipLfRcqbwE5QrjN8WJm/K1EJaMoLdg1THgmmWFQSMNMcTrSJoHAGZSPBo1aIQFGKJcmU\nSCdCz9A8wxdmgoeZXd+wy6wN/IriYXy8M3d4KG2wlZmhIwrKbgj1yis7DOS4wUmk7Lqy5F3SOySF\nvNBTKBHGgWL7R+wyAy7DzSDvNyxU2CjgUiIwHMOIY3Gn5BGNSrzFjHeprrohT4gj1ID9FkvIhIJF\nSTh+jFDmkcIWmVJOBHoKdwBIOREMcjSSm0Hy8LG8CpIdMd6JoMzxDiVCRJLfjTCwKkpB6khUkm86\nwtFGt5C0Qc2cCD3pRACAMmzgsQ/fIRFXSmZFSJmVcxwxxNJExwzZIA2xch1qdEk7xOPbYET5wS2K\naek6zIAMCng2EGVgODZDHA5NriFRnGaGb0Iyuod/kNJX3o/RTfhKiE3nsxlN1OZg1FDkcCQ78hFJ\nzndigWpzPDmuLBANeaDoPRG8hJKtYQhnoBtFQeraVlAcmvvUKZokyyOdCODhDBGb2Y71sGtj3hHr\nxnfVlTbGKxEkI4Q2IpwSMLErON4zR/iO4xzF6GanODYZoxKvSd8VeRmjwhkcoVUOJUqQ0Mh0nfHy\nfse3qbzPrK/KoorJjJUEj5aFCBkEInIZAB5nhWNNLYUaUQc+74flHGVMNBhGLNRAUkSQkAhFmUET\nAIKHPGgbNOS4NH4bFLoGdZZkS9LSuEpuFeFCI8kSjxOhIs4wbJx0IvQMGbQ8HlYZtInxT1sQjAOp\n9F4bigdLwpyobGaN4EiI5biONmkL1yHHlfJO7BSPBDEosaJyTsBCJErez0qiS7Jrw7PRQsnGt0H7\noYQIBC1E2eat9H0zhXiQBIB+v4Kn0XHfHTan5nwfPm5ZZBrakHAoHhTVsWMb2dCGY/7WKsWMVyJE\nbIy5Kh44KkHxnDa5qEyWRzoRBGiVAENlBWXXlTkJlDlbSyI2fJKyqLIsVFhyp6BVl1IFghpuynUM\nuwN0Ylf6wdow2f6Oe8YWog4cZfNcCZUcz8bRBnOcOhIeKniERm3sRDvk7orTLKrayFRoyc/scM6x\n+VlamFnmXn4Km1stIYtKP1j5RUmJYFAzXOXn8GdjCGfg3TC9q+OOA6r9TXIvSJJFQ46XHHtnQuZE\nOCCdCOjDGcjxIRwLM0lFYFh0CaWKheoMvA2HfIyHMwQpESRZpiGcwZATgTu8HMkZaRNSUiW2mFEW\nVezRRE3Zjl1Vx66LtENMZajjFQDSjhorvcdbCFMi8B2z8UaoI5xFQWtjvMEcEUOsmHHs2ShhFQ40\nJRmbNxWHNrvvhnAGoYqA5GgwGFe0xOOElAgOzXyU0oRewxCe5cqt5PATzij9UpLYSCdCz2BixQAJ\nqRanOoxWumm8akJbqJDjQhseOWTMNpNj0o3AYedoCzfB2GXHDSEvSpgQQ7JBmTQ/SJapJHmNiBJS\n3jOaWDEqj0jQ73XMAWOvocK6Ii3eHR0hKN83M+5dYRURqnqTACCGRjoilXg0xO+w6zjms+46ARsW\nvBtcjWZQ6LqShTOhgSMRsGYnMMd5Q7KoZJhUIgBIJ0JPHRxULbFf7ATDBKPtZHH45DD+OlIbbGXW\nkg6VYKlGYXq+DMuGitARRygCu05EuANgSpqmXCdg593jNBUS77E2pOvwc9jiPCqcgTG3FC+ORJKt\n0Mh62OKMtOxUu25IRGB9JkBrllaGM20eIQ4A4buKskeSJIp0IgjQxV1QFlq2uFd2IS3lKA0JwFox\n3F1bxEocYgtEVWdwqFWUO0qT8yk7DMxXJfSjFZ+0llRrPK20IV3HYKk2M14RXNUZ+BhvcGYZlhAO\nR0TYeyic48gTM/YagGc+szkaxmIJzjdIRV0VLQwhizTkRSp7O+54kkyWCpRUIgBIJ8I9DIYzkL8r\nxaqT44qk0lAN6QHEhgAAIABJREFUybKbbZH/SotZlkDIpA+cEQ55dxQ0b4YhkaQWMy2cxPrhSIpn\nkdVHxbIyx+p4NEOWn1MDzFlHPoOohIcOR4OjwoMjhlhKZjahMdHhWAmZ8YIcBJbkyTNTIjicMxGK\nprAwMeEcmmvEUG42VQbJEkknAnhiRUvJOxq7LeQzYG0oOREktQJb3HGYcT8lWa6rJvZYohaIvA1O\nVDhDxM6dtHMb9D47LsN3oXgbDscqzYnAuyHhGIsixiuPwoujfHYRBrPjm1laMjPN0bj9xIoS0rwZ\nElsl9MORxHnkNYQ2FBzflWuOT5J5Upc3+ZxAOhEEuBE6XkWgEBXOwH7OjvBjLBJiqpcz7No0lHix\nlUmZG5mNdHRmhHwzaCi+29CGQ3ljyTOhnBNk3Ee00QrS+05imZWQiKjQi4hQMk3uTo47HASAZ9Hs\nqM4QgWngdWxYOMIZPOWkyYaV4V0FuFJQqfBIQyelsOZceCbzIp0IAFCGJ+eIzNwOz6804DaSz0CS\nTFviMoN2Mkorlsp0iMiJ4Mhn4IozdxAzFo2viuCRzHsMSIYrx8fY60xJde0oE7k0HI4Ix/fdirM6\nCqk6A71pMXUELaEKE8nPNDXmNH4nBjInAoB0ItzDtudVnmdACUUYr0TQQh6GG4qqzkBpRYe8MFy3\nvZXqDJbSbPmanZop5e9gRDkzot4zWs5M+a7S6D41rYwjvIxgUEeSZEZYFPApo08aIp0IAg4FgEOJ\nwJwE2g7i+NALi2oiKi7TQSuWXTJrWnnLLJJpaRc65hc7conkEJBMhVbClSyGgiN5ciOLLlfeJIdd\nNCcHbpKEU5FKhJ50IqBPrDhiUNViv0gbkuG+/YRogGlXbXwTMeTqIEmapKVPs5Vdc0vVBOG3tPJ7\nk2uxJM0zlACczgQPT6IYaTAyhF8GPV+GpXpWQ+P3rJiI0yxZBulEEOC7auPzDFjqrhsG/q4v4xNJ\nOqCe+5b0v42wsJ+b3ACOnCat4FAZJEmSjGZKjpVkuqSToAFqetp70onQM7T2cijuWK4bZXHPqiJI\n4QxSBlnWBodWeFAcHpbdgfFtOEo8aknixmdMZjjUoQpSuArLzGxI3mZR1Sg7t+MvIxHySSjnGBIr\nTmkKbsU5FzTkWXIiOPrBsPTDFFbjGTcN+YgC5hFJmm+YN7XrTCT5RtQ9c6gIJFtyPBbb2mHTBL0i\nqc5I5kY6EXqGBiI2oDrif7WQiOHraEkTx08OWq1qfk4IzXQkhoiQF9eGi6M6QyuhnVFKIgcL+yQo\nURuIjdixSbIslI0Csrub3+bZ4Aq9ys37xErmRLiHdCIYUIxytniXFvdBXtuIElGWuMwkSa4h/QPX\nE5FEzDImjm8iSSxOMVcSwLkglYncfjcmRTqrr4c5Mzb5FiUTI50I6BMrDhyPWLw7HBEO5Z9yHU1m\nvn2KdOMN1lBq0M6EVlSoLRHxKjqqzUjXsVRNyJck2T6tTAGWykiKA98gR9PmZ9rZ8W0obMYbaPT3\nSvdMqZ1K7DOhjako5+YWzsBwhVYlAaQSAUA6Ee5haGK1ePYDZOaucAZHJQmaRZw3Ma3dEGXynwku\nu27fkGmeteFA+b0OuaQjB4SyqI4w/iwhXqZ+suenJZsdT0TodhFe1jojba80F5HjLd0OS8VDNkac\noj+jcOxqOFaRUd5oS21sfkqEQytKWdXKklkZN9lAEZVvKklaIp0I4EoERxIaNlxKiegMCZOkhDlB\nybuSeKKefxSOvAoMxQaNMg5Cdn+Ec1qp8JBG2dmgOZK3/3BqI+9hklCUVzU3N5NkAtS2vM9nSDoR\nBBwZ0VllBUUhsEOdGZyoxHohc2GUt2NCq+qIHQRtN4zTygZScjZM6LOiaBVrWHJdxZE8/qYpbbBE\nc8n1tPI+hyiNJqUSbOTBJM3iUGelvZIskXQi9Gx7nnGEM7BTdgRJ/VoYLKnyQll3U6n6+Ng/iQkZ\nENWwc+eYyHIuTCKgIU/T+XQnhWIw5xhwehxj75qF3gQJwC1JjR3lk1spWROl77ekcJpO0uoopWAr\nPtFW+pGMJKsz3EM6EXqGFvmOygpsBpGUCCyhjqm2L1ci8OtsiKdBipdzbIkHqRXmJKue0U8xZBlo\nx44F+O/R4lAjqhUoC9U5vWnzYipPxpFHxEUrYYDtJFbk59CJ05HQUKCSNqTqDNQRYbjv4jljkcJr\nAzbGFFpxNmdOhGSJpBNBgBnEmrx/fBuW5IyGxGuaEmF8/gZ+EcfuQDujumN3IGJDxQU3VIJ23cjx\npW0eZMWD7cDGeOZ4dVxDvo5hyyxirPEko+TntDJuttKPpmgkLo4t7qNGVe19zjHeTYYzLIx84ADS\niQCgG3SH5iHHxL1DF3eeygqMVnYqFSwed4eTwPACOLoRl7xvfInPqMoKvC9tvMsKUeuDVnZMWxln\nHBumYd9mzGUojgo9yfU4XiO+2WCwI1wqQKoAaCTvkSMXidCPKpV4HN0VfgnDZpOr5LiDqZR4TJKp\nkU6EnqHBjE3Kjh1kxUFAFRFKgkdhh4klgWQOEQDYI8elycMRL7kaP+Mqk/+kEk1NhGZKPG7/EjaW\ntlOphFa1wpwM2XQQbIdmbitdzJoGmkY8mmyOl54L7Yfn6TJboyhhEwtTIkTkImjFXkkiqJkToSed\nCD1DjgKHx5WhDEAeJcL4WLdm1imNqAxagj875fkP46jwobTjmHDntmM6ldd1bvedYVkLjW8ijKU9\n3+SMaGXAC/rANeVFRE4bzzlJksybdCIYcMgDHUoEKRZOcJ5FzJfSYjbKO9MIEXGKE7odEg5HRCMh\ntUnDRIyJm6hv0/BNzGlHTdmlVPacQkorCuc4EiuGdMRFDuDXsDSVQRTsNVrYa7ZssjrDPaQTAd18\nOCqcQbgGWyCuC38hHUoE5Trs9yr9YJnXm1nMzszl7nBEOJQ3ikOLdbUVeWArtnAUjXTDxsbwi0IS\n+AUZocr3u++4juFFijDMG8qtm2yDhqo4OfAIMB2KRcOmFnN48SYkHGOv4/GmnyGZG+lEEOC5CAxJ\naIIy6s5pzWxL7tQIm+pY7LTxe5XdvalMqFE7DLmTsR2mlDchAmX/xPEuTuV9VsaqKTkaHAlLeXll\noQ1HTJtjjne8iBOyIxwo5XcdJXrZo3ENIY6cCA4lwlTGxEQgHyaAdCL01HE5EZRdV0OsepQSgV1H\n+r2kq5KnO2LeVhIvupIABBAREiGpDAzviNQXenz8SxRVDisqrt6yyJjRwtxS9tbRD0MbkuxeOIf5\nIh1hQgqtKBE81UiEBL0B/WipvB/dCJiSQoCVeHQYToZ+SG0YlAgKUUqECJTHS9OVTslbmSRIJ4JE\nhANgHZRR1yKFG9+EhwntDigZk6nixTFpm86ZE3VCC2LHs3HsIPE2pnNPowhJJCqc4whViEr/luHu\nSQgTsiUck0DEWlWzVyZ03wkOJUKNKCORGKhAzZwIQDoR7mFoDnGUVmRt7CgKAaWGMOuHYKnu0ASO\n43fuJCyJFQ2NTKjEoyOpFjtHMQ5WgpVC+ypNqIbyXqSNlpwMOW35cYQAOcRKjsSKc7NBI5wEUYkV\nlXHE4eBzwMsImuRoDth1HB+FpYwkP6c2Y0cE2XgE5cktKfQqSVojnQgGHEoETVJpCGdQFA+jr5Ik\nyTZw2JgZznAtyrgaElkVVDZRCjVivzjIWxGhRAhb6xrCGRS4I9lwERchJS1a+sHbp5UNDQctFQFJ\nknuoSM9TTzoR0FdnGDpOw/YEJwJZvLdUnYGrJvh1ro68BiBMhjNLrMgUAFm66Xr47h+HzQWOvArK\nLuSEXtXkCMo7wuYApWIUXVTzJsIiTRyvM+uqIw5ZsQVb+TZb6YdEUD4DpoqohgesKC9qkLPCkvPA\noGql1zDkCkuSpG3SidAztEBj8m1Nyjo+J8J6NV7MvCpr4ZzRl2niGjYm1dlhHDkRNONg/HVaKfHo\nwOGISNpFGiJYSVOhiQxnSZKJMiE7YmkOgDnZGkkQitd/AaQTQYDtmksqAqZEEBwEnsSKhiSQUrzc\nRDwRpol9YYrJJFkUnuz85LjDEaHszAvTCEu+GBV60QqTUitENOKSzAfEXkgqAkdpZEvehPGDgJaz\navsf55SiKqLGqlbGiCRxkU6EnjHhDMo8xxwNysJ8Z2e4jSpk5pKcFRblxbhrSI0oUCNFKXg9nZE/\nouySo/w3IHxXBsM9yviPMkL4WOR4/m2s/qL64fi6HbG7UtlEcty1N8Ku46jwMCW0Ms7bnycs+UwC\npOwA4lZMEYkzWlr9TWl1TmjltjqUCI42ssTjRMicCPeQTgQBGs5giHdWFvfUqF4LKoM9wVlBjAyp\nhnDEAsBReSGIpS3MlsaUStG1Yrg5mFKeELbIVL5NNkso60OpCoTB2GXzovJNzOhVDcOiWHTEmim0\nEju5NK+YgTnNI63Mz1niMZka6URAt7s3ZMCxSdmRz0AqqUPaUCR5Wiby7SsRLIkVFQyNSBJDRyXJ\n8U0kSbIFIvJ3TMkmjzJ206ReNpq833GhgHCGIDvCYTcpG2O0jTYiRMJQHBGtOCuSsdTMidCTTgQB\nmgFeMKhYuAILVQCANVEaKO+0onhgTpE5JdSZ0iylFaPYfvm+IFtoVmhy6Bl9VwtDeb5rQyURWmlA\naEP5NmnYjODyYPPi0vIqOAhz4BuiAMOqJy0snMFSnWFCCq4IosIZ8q4ncyOdCD1D3z8vvSe0byjf\nRxURQjiD0ldLNYop1apOkmSxWBZVknlIysgJC3OHgy+zjCcRWFQErbSRzJooZ2U6RWdEPkwA6USQ\nYEamUh+YKQA0JwI9hbchhF6w3yvtZKXPtUnSnEqSs2GHDJxVkBGwUdWRnFE5J0PItwN1vkttjN+w\nSBIGT57NacUeSedrktwY6UQQcKgIWIiAFM7AqjMIg5xWSpIdN8TLOZwMrcglwSWGabgtG8VpXSWT\nKt+j09JM7rZ8dMlUiEqsGJGLQBh8mWqiGmwNJQxBug7tx3wq9ETh2FTOjekFUaF5/RdAOhF6hgZN\nOvYreQbWJLGiEIqwIm1IiRWVJJCkHOWOVIeYnsKJCKxXKjwEySHT0ZAsiSkZqszp6QhF0NpgIREx\n91QZmpemVqiG58vQcquQ41HfXSuhCFGbDQxXDGcjORHSXkmSJJ0I6CbdoTmEDZYrYfHeyoCrOBEy\nhDBJ3sOUdhiWltCylXVKS9dJkrGElXh0wDYCgrKoUzWD1IahH46wV8u4qtiaDb1HI0k1WrJE0okg\nwAZDZYqijghlcU+eVlVke4YEjlpcJjseFc5AZmVbvWtPM0l7OF4RxRGh7CJbSm+x44YqII5Egy2t\nU5it66g04MjuLd31hu7rnHAoDRhaUYTxiaDZhVzVGWjyRYuXUOksseIaGox4wsqY/FoRKN+UMic6\nxu90ACTvoU5rd2mLpBNBgDoAhDZY5QQWqtCdw5wZiiKCnsITKyqOCMNiJ6RGtGsgCNjsiEq+6Uju\n5biOJN2liUAmYi1By4ngeM1YG1q96/EOANbG0vI/tGTI0nFkWY9G+ia4Y206Y9GkiCjxmJwJLEQI\n0OZEZia08opsljawJpMnnQg9Yxa9yuKOKQ2YyqA7abwzQ3FWrKkTQbgQoRlP+MKUCFFx6NLzDehK\nSwuzpE0cDk/Hxuy+kBmX50QQdu7CxgAi71YyATdCQxvR86KVGzuluKhGcFRnYLiUCBFIyZPb6Gri\noBXP0xmTTgQBhzyQLd61xIrDxxUvptJXHs4wobwKjRgHkqPJoACxyN0toSitvABtoCVEm084g9SP\nAGcl4Komw64x+hKW/G/SL23E9mFOBgCTsrojlAaakpAcF0InabiCoyNTopUPPIiohXnU3kuGMyTJ\ndkgnggAteahMymyQUsrysDhFQdel9NVh3EdlCZ8KSuWMZL64SjxOJ5xBkKHOKJzBos4yXEcxdB3X\naUVp1BIR1RkWh5TPgLUxofveyO6mEho7JTKcIbFSEZawtXXSidAzWJ2BhREoO8RUiUCb4LsDwtP0\nJFZ07OwZBkvL7kCML7yV6hzJtGlFibA0IvKEOHKA5EI1oaVE5zYXOXIitDLoOVSPDr9LgKIxklQi\nJMl2SCcCgG4P8OQRgoczjK+sUBQHgOBoGNsPwCSr9wTEtUGQo8FBxA4C30F2XWc+bSTzpiWDOQJH\nlMGUciK0Qth75pjyJiTftzCh36KEtNA2DM6oZnJjJclpScMQQDoRJOjOvGN3X9mFMjwtR4Z/yTYw\n9INfRLB0oko8NgLbQfCkiIjJieDYHcgdhu3QSk4ES76DoCGAjVZr5V11jM1RiXHJo3HkRGipCkgr\nKhBHKEpI6UUFbRAgbSjXGT5JqRRF3yLXxxlw6yPyyEhttPFJAcgiIElyHOlEMKA5ANhqR2iD6pAN\nbUDLmxDCdAQA9L5aEloakjMqRIWrtGJ0z4mWjK45QVPaKG0E5U1IrkUpEzcVZvf85zRgtfJbguym\nqBAuRitqBsmhOaOxaNHUml6jnnQiCLDF21oom0iTM0olHkceB7QEjoRJJU1spDrDnMi7kSR+cpjZ\nDtxZOaH5bEq0srpzMDM7IiIvhuMa7dwxTq4pkyWSTgR0A9XQDq5lB4ntVDe06+6JdcsRda4oT1bJ\nzcDaicpnkJP/6cnqDNciVbyjvycmBGhOaFVPxr9HWm4+x/tqSKzHEis6lIYthTMw5uTMSM6MCDuh\nWuovJSFkdQYA6USwIM1RBicBj1Nsx+jOkobzpaUnq5RFHH8Nx45KS3dtPBE5EVxEXEcK3zFUeKBr\nqqApIBMrng1aWL2j8tH4jih5BCywvEeKsd+I903aTArYcIp6z+aWJzRJlkY6EQCgDA8QLJOt4tl3\n5DNwEOWUtygR0tGXBBARM61dY1lWikPN4EAJz+J94c/OUVqzIcHaopjTAiJKJViFrdsZ3dbkCEsb\nq8IUjcyIT+dsDHmfAaQTYXFEvfepRDgbIsovul6hGHlgkmyfVExfTyoNTg+rWBG2MItQTs6Npf1e\nA60UAWmFsjjXSzJ10okg4CnxSI47SvsolRcMVQKUHUJPCUd2PCBZxcSI2L11zetLMxAYmZuhXRzV\nGajBrPSDhkS08xKxBXE6GbbDpMZVpUxzxDX2iezRcFMtZSKl6xgamRCTet+TeVCRBltPOhEMROVE\nSG4ANqNGFVY34HiFNOn2+OsoMeIpZr2WqNeMOkWDFqLM4eWKy80kr/NFKqvWSALPVvKieBJFhw1W\n/BzWFy0rptafIVhfpY0iR64Jw6aWVE563HEgZp9IgTk8AVAZbyNmYpKEkk6EnpZ2cG4YUw4BFoqg\nSOZDwhlaGrWZr6KhpJcRKNUZGK3cMYfDuaVXtRVayYmQTJeo6gwOHHlRwnIa5YB1LXk/To1iU1sc\nWuObSJJTUptXIpRSvgPAPwFwBcCfAviyWus7+mNPB/AVAPYB/PNa6y03ep10IiyMWSlIo3YYDGw2\n4/uReSavJ6oMZASt9EOpeBHhAHDdj1bys7TRizgyXOH0sHumvMvsu1Eei5IUkdLI3Cv1Y3/73Ui2\nQ44ySXIstwJ4eq11r5TyXABPB/DUUsqHAXgigA8H8IEAfrWU8qG11hsaBdOJ0BNRKm40OVpeSytG\nSnJDRCyaW1mYT4lZqLKSpIeFEUxJ8eJQ92cS0MQBmye0cAYWWqf0QzinjYimZE4opWPPkFrryw79\n7ysAfH7/348D8KJa62UAf15KeT2AjwXwmzdynWacCKWUrwfwleg+59cC+DIADwDwIgD3AfAaAF9c\na71SSjkP4AUAHg7gTgBfUGt9Q9/ODck0ztpwlsoh5aLZj5J0yWB1LS2cITkbznoca5GInAgRIdXJ\n9Wg5Ebbfj7kRZmvQwHphfnbkRDB8fOyeSa+hIZGAlDyb2CNTcqw5kJLaWq7jaWWYthe3yam4bynl\nVYf+/3m11ufdQDtfDuCn+/9+IDqnwgG39392QzThRCilPBDAPwfwYbXWd5dSfgad3OKxAL671vqi\nUsoPoXMO/GD/77fXWj+klPJEAM8F8AVumYYVw3fNHA1VuYYgq2dSZUnuTI63IjGWvImK/pM04whn\nSOZNKz5CTZW1LCPTATfM+X1v5R1RyOoMp0dK8JY0iSUERIHYGlq4yvi8VxFMKO91siTiqjO8tdb6\niJMOllJ+FcD9jzn0LbXWl/TnfAuAPQAvPPhrx5x/wz+mCSdCzw6Ai6WUqwAuAbgDwKcC+Kf98ecD\neCY6J8Lj+v8GgJ8F8P2lm32tMo1QHM5DZT0snZOj8jWkYZcE0MqOaaoZtoPDMKfx7lI+C/58He/i\nnJwErVRW0KreBLC0lZugiKBKBNc9m4gSwVSMwkLE6+qparWw7yoZRa3104eOl1KeBOCzAHxafc+E\nfDuABx867UEA3nSjfWjCiVBr/ctSyr8HcBuAdwN4GYBXA3hHrXWvP+2w5OKBAN7Y/929Uso7Abwf\nTiHTKKU8GcCTAeB+59/L+ntaRlEAMNtPMTDZOVL2fubwsCR/MtXezBKepybiPVMyokeY5a04CBQc\nSgQtaz7bDRO6kZwJKZg9PdJYlO98MhEiFuZaToQ2lHM5Xy2Mxh94KeXRAJ4K4FNqrXcdOnQzgJ8s\npXwXOsX+QwH81o1epwknQinl3uhUBA8B8A4ALwbwmGNOPXhqJ8kxZJlGH1fyPAD4H97r/qPeBkk+\nxhY7lnAHzzmMMKmbo4iwy0kQQDMhHkHMSeBhiXRsZOfGoUSQEqK3PQeHM6UFpDKqbhy5ZMi7qLxD\nPGQ+ZiBSFjs8nGFCL0myaJR5JMo6Y9dxJCzNLzNpjO8HcB7Arf288opa61NqrX/Qpwz4Q3RhDl8z\nJuS/CScCgE8H8Oe11r8GgFLKfwLwjwC8byllp1cjHJZcHMgxbi+l7AB4HwBvg1mmMTlM20MOo2oS\n1S4AMXHT+KlOSazIEsBJyX9YniploRqQdfngSmOv0wrjo92XB3/P0ixLhsnvqmEcAe2WjQLBMKJt\nCDa25bc47hlvgtkaEcloAc8tS5Jwam1eiVBr/ZCBY/8awL92XKcVJ8JtAD6+lHIJXTjDpwF4FYD/\ngq4sxYsAPAnAS/rzb+7//zf74/+51lpLKTck0yjYvsFKFQAGFYGWUEc4x5BYMYSGVAZZOcNP42N0\nsiDo572wdzXDGc6GOam3wpDsBPJG5/x+HY7NBgeeXAQx5PebzI0mnAi11leWUn4WXRnHPQC/gy7U\n4JcAvKiU8uz+z360/ys/CuAn+sSJb0NXkQFumUYkWmWF8W0sTTLfkqNhLEsz3Kdkt7GuBuXUclQI\nmxTKjhm/Z8vyADh+rWFZFsaUxhEHlsSocxokpkQjL6vj8SvvIZ03pesI51hK8A43UqYUj5aMJqwa\nS+M04UQAgFrrMwA848gf/xm66gpHz70bwONPaOfUMo2uWsfJAwTdmVcW5gYlwuhrQKu8wMIZLAnv\npvT9zWhil67Txs9NklnBhjzLFDClcXVh5LNpmAlNeqURB4+ngsOyAgEn9JoliUQzToQpoyzMI0IR\nNCWCcs74cIZmQh4YyqgeZP2x+97Kzl4UUzK66QLR9FuCfI3jrxFUnUFy4AYoDZS+OgzISTlfDdBE\ng0u7IQKTmXuThOCS/7OxV7pOwFCjlHhkCVpzRAwi5x4A6USQ2BAngZI0z1KdweGIEIzupS1WKVo2\nwtE4EivSazgy7xv6sTSiwhmSZElkFZAtsTQjYEIea0eFLcbSHn8rbNIFkEyMdCIYkBbve8R7KOyW\nUUcEuQYAbPYFFUFAOENyPRFKBMcuVRoYSXJ62Jgojasjr6Gew+aaHAOSZAuk4XRqlhYiUNPRcPZ0\nMfBn3YsmSCeCgbklK+Q5EQwL0ZndM0ZUyaSlkXf19KSaIUmWS6pwj6GVlajQD5YTQcmZQEtB8yYo\nDgFnK49FwVMlIsMZkmmRTgQBx6TLkzMqW0hkcW9QGajnTAZaiFiYLoNS3s8pnEGJMXTUiG7lTXX0\nw5JVvRGiZObpnJsuURUeHN+mI3VOKwsiS5y5NCcqA7hhErCs3gL6ITkIBPuMXoc2gUJCcKWqNwZH\nBM1VYGhDacdh4ill4JgDIJkQqUQAkE4ECyxnAiDEsTnaEFD6SvuhXCfi+2rFKhOIqg+8orWbx5fE\n0xZuMT+YvgJCVw1NhOGwdaeCq/Qidc7N6J5FEeUAYNfZKAMrcdDb8pWQdqTkmyOPJ2eIJXtfsg0c\n3zh9fC0ZCkkSRDoRgvBUViBqBlN1hlk52JjSQNoy56absoOQ+HG8q3N63edESyFPjsUbG57zPZw2\njrGomVwTFj27ovIj5ziUgo4Hkw6A62glSXMrCj5aSQZAjvIzodaZLZRunHQiGLCUTXSUeDSFKvDE\nijmhbgO286ooABy7ro6wCinkYeRxQNj8Ed7VCCNEkzHmpJRsH4fKXHlVl7ZrHqFECMNSSzbIJRJh\nzGciietgSZodoWZRezPNfHdJMjHSiRBEZfkM9pTqDEyJ4HEibFj9dtqCUAN+brFhNNlRGiHJMK2I\nWVrpRxSt7GQl0yZCiaDFfxs6EqVEcBAxYIXFI47PvaAlVhwf9uh4z6Jy2nAnfkw/lja3zppUIgBI\nJ4KEI9EgLc+oKASIk0ALVYgZxSbzfbkSK04EZeJPr/yyUb7d9Xw+iUlhWagaSjwm19OKEsFRxndx\nOBwepA0paeL4XjSDxQ+lnNOIWmFOzy5JVNKJ0DNm4nWECDjyGbiqKjgMSJ65N+AiwKxiGaWkiDTx\nntLG+JCIoGTWIYm5JeM/6DXjISBRz9ewC2VIAqpg6SttQ5kDRncj5H0HYpKIOYZmReDFpkWXw3sq\niwjpPWwmOUPSKo5xtZUNixmZiUkQdTI7pdslnQg925a0UhWBMCBbwhkc1RmUkAjyc5oJZ7CVeBwf\nH+iYyBzyQMdCVcpnMPK40peVcFNZqUFNQjx8kqtcpWthvW208XT8C++pZx4kqW1kyHMwp98SxYwE\nbT4sdX5AQ/njAAAgAElEQVTJKOAoayUpFZQif+w6ShlI1ga/DGvDk8/A4bwVzpH6MrorSZIcQzoR\nDCghAqy0oiR1M4QzOEIemtmksGh7m/k1yREcuTeiqHTR7OnnVJKaRj0X5R1Zb70XGmzsVYaz3PyY\nLvnskuRacnF/LVqFh+TMqcgBvSedCD1DRq9DAcCcCCspKSI7rigExidWbAaLttcjqOOefcM1gjz7\njFZiEAFlx3si77LIVJQIc6MV2W1yNkzpq2NjojQH0N3uoFgzB0qmQUfiY4eqQoE8wKhy0+w9cvRC\nCXtV1IbsDEeIVyoikiWSToSeMeEMDgUAczIoKG248iYwcn9/2WiL3fnMqFoJx+3jCpsYS1Q4g4Pc\n/EkYyivC3viohQrDkhMhZTOzJizEa1LuuSQ5RI5vANKJYEHZ3WeLd4eq3pVR2yG7nRXSTkYbKxFL\nsqPc7V40UzLsJLVKvs9JAziqYihvcishXs1k13UYLGHyO8PvNaSRUGAqgaicCI4KDo18MahZFieZ\nGOlE6Nn2xEtDIgyDhy2cYSJx1xIsXCFK+ifIJek5BrWKpSqGidwBbhNtLBx+j1rKiZAkQ7QzIk6I\nRpzmkyLv2XUs7ZbQpNVpFE2DWhe4m3o86UToGRfOMH5hXia0cFcWCNxp4uoNgUk8NhntfBRLwmxD\nP6RdCMMOQ0Qogitesp1QBEcb0xnzHEwm18zCcIQqRNHMG+QKZ6BlnIQ2pqI0ykXHqWnJOmPzc4oI\nkiWSToSerSsRaIlHITkMmSwVZ0ZUToRmcCgRLCUe+Z4pk/8p8kD2jlgkhiaTmqsiFvauGogKRWhl\nB8lhZO5I36bhQhOC/V5WFjVJmglnUHDYRa38FgFmJ2gOfGZrKG3wcxiOzYalje+JgfQaAUgnggUt\nJ8L469C8ClLlBeE6ZPEmbTAI1wmBJpuIKQDnCjWJYEox8cm1hIURkFdkHfQqO8aZVr675GyY22gX\nMn7nqitJkmTxpBNBgBmZjgWiw5BVSk0uDkcJR0MbSnI35tl3yKGjQu4s1TcN8n6lDfZkFKdZKzb1\n0pQISbswx/ncwn9Trb4FpKTG5BxH1mpHaQ1HG0o7wi2jJamVHE40lFBogyZnpE3MikysOA0qgNrM\nTunZkk6EIGiOgCAHgObwCOjIlHAYIQZcmYppG0HSv7ktIpZEK0qEOSGVCt5+N5qCVgoS2mhlPmul\nH5NCsdRb2TxxlLXKReSp0TYbDFWryPH90VfIxIrJ9EgnggHFkGGJE5W5g40vUfOPQzItKS/aWLtL\nSgTu2eeXcZSiozkRgpLmSWWX6HWENgwODxbfHaWqcJSqUvCUAR3fj1aQco04dswMO/OOHHJRj85h\nD9M2JrTmmtM3Y4PNrQ4lgsK+YQnYiBKhOAYjA0HVKi1oyZXH55FIZkJFeoV70okQhCOfgWMB6Cjx\n6ErMPBqpI23kRIhiSokzPfHs4447rgF4SpVH7arS8CzBoNoQj+XKYFFNKVeB47lEKRGiTJ+pbKpG\n2YKTyiXkYEpeE+ascDgqWkIIV0hOx1TGuyRxkk4EARZqsK+UCVwNmwdSmAE57qrOEJGcLSoBXNIu\nUzHLWlIiRBCVV4GNAUo/puQ0izAyXZfITZY2UR5Lzq3JWBR1VoSqUVOJCRtwAZ9EKhEWRk6SANKJ\n0FG3/z4wR8NaGrSH0VQG9JTkRmhkBrGERDiMA6kf4+9ZRDhDS7QSzuAgq4D4cY1CWeJxvkgbCWko\nnB5aTloJi4xJrOiAlonMJL/XMaW+JolCOhEE2A7SvpDYhw0eDiWCC4dE3DJ9TMmOSS1bEkAr4QyO\njzMqt4ojlMwBG78d4SxzUyJw9Z2gVvF0hdLKPQuhmZjGhmgkAXMUU1KBJYmbrM7QkU6EIOjCXGiD\nRe+7whmaIaKrSqyjISGSI7GiUnZp7DUUXN70qCoQDEfutqivakk7GVICT8v7bMg1M7qF5Dio+k5Q\ngJUgB68jLwpD+fzZd6PMAXRH3LFjrtDKdaR+MCWCMEpYlAjCN8ESGirvCEviLJW1Hj6uVPlRhBeO\nUtA0b6bQjySZG+lEEKA7d4aFuZarYBhpJ0swQ9gOYVjMJf3Bjm1ZpYTUsnZULAszQz8c19EklQta\nmU8ILcHjshI4Lo1UIlyLIyfCpDYSkq1Aq0kZHAAKufBOJklWZ7iHdCIY2BcmZebFVAxZxy5yFI4K\nDxYWFmYQEe/umvjp7oDpOoyIHURXda8l0VLOBE/ohaEjQbSSE8FRm70VldCUnn8Yc5JWNaK8UFSP\nDrgSwdCG1A9+jqOUZCtjYpK0RDoRBCwxtSyWVRhxcwfhjJiRoRP1U8JCERpJrDijV6QZlIW7lEsm\nYNx0+Cq1XDNB+RsaMYgdYSKN/JRkykQ5CKIIcDS05ARuhZI7BfMhYxgBpBMBwIEy5eSPm+6qB+1S\nsZwICoqx60isOCsm9IMjFCCOBHCAqeZ9I++q4zqtiGaU38LLavFGWvmslPHb8nxHHleIyncnzSPj\nL5MkyRkQtdal4YimUpMrMsa35N9JkimRToQgmNHVyo6a6zo8nYGhzFRUNuSo5E4G5hTOILXRxm1P\ntkAjn5RElCMiyvHSikOL5TxoxREFtNWXJnAMzlLiY8OMxJIW7wuBM42EM0xq4EyugTk7APB4lRyH\ntk+tWQa3J50IBpQSjwwp4WEjScSa2WGStt1Ib11bdzmgXIPDjrHYoBnOMFlcn12GgSVDKO9Q1Pet\nJIqcDJYYH0fdqgkxIzsiYkMjSZKzJZ0IApbqCzRjMm+DzS+KoaNVZxiPZS5sxluRJPPBEkZCxhFH\nfH9UTK1jraO0ERF6UxvahmplQdyKAkR7Nm0kJA7bZYuqsBTBhBwAjuSLEeV1XYkVk8ROI8POWZNO\nBANKsqs9olbYGBIrbgQjRXNWBJS0jMqZ3UhIxJQqayyNzKp+Ldq3uf2bYkusaOhLM20s7F1sBclB\nT54NzyPiIeQdmZs6rxVHhAODbGbFwjsmhsPR4Kgmxc7JkpfJ1EgnggCbXhy7blJMLUsOY3AQuAiZ\nksN2S8b/mihJdda8T5LT0UqIV5Rj1aIyH9/E7EhnZJK8h6hwRAethCPmuJpMjXQiAOiEsyePIo4S\nj8yA8Bh2npGQOk0sV+HUHFEny5QM5gi5s8tIoeNIlMKHoPQjLDzLoZwyVD1xVL3hCWuFfvBTUjVx\nhFbCGRxUQw4niVZWZgosOeOUEitOCMcvyd375EyY0fw2hnQiCDAnwb5gpLJz9isfCveJJaPEqDkk\nwq3EmGoXYokVTZ6KgPhfh/HnqAIS5kQKekeWtoPIy4DyH0ylnQbrMCz+W1KBsTY4LIGnwxGh9ENL\nRsmOt/FRtNGLGZJeJD8NBe9b5P0BIZquvDhT8bukQySZGulEMKDturWRMGlW8/qc4hhNzCkTfUM2\nV7IFLKVkDSFcrThFlSbYbvasxvfkOnLGSxiOpIkOB8FKGNE8yRlHNyE5K6biiEgCqIHJZxsnnQgC\njp15LkMdnxPBtS3j2HWjO1mKkM2yG5JmVzKONB6uh1dnaGeC9ZTGNfSjkVCTKNgtW9bdmBi5JZos\niFaSCSfJ1EgnQs+QkchjWYXqDKzigRRmQPohbN068jcouPIzDBJVmy3I4xihIgh5LhPDEavOcDki\nImLilTGilRrglqSIYYqIcceVcxylJgFPMmHaj/FNSOSGUTIZWG4GYFESPde8yZqJKifMiKrgkhjI\n/UkA6US4hzGJFbWdeUdiruE21o0Y9i4siRUnZEFmGcizoZWcCHOakySnqOE6UlWbgAWvlKyQqrPy\n+z8tUQkPp2TcZ4WeLaDECCgOgAgUJwPpqqEJydHsCUVogwX5dpLkHtKJIMAMVS0UYftIu1CGIdez\n+ze6CZNkQngygjeDnaI4RKizypR5nfajkWk5ShEf4SRoKUkgfc8E489SWSFIAcCdwDE5bRyvQCtu\nBlcCR0aGEl1LWJRQlEeTJj5u5I1XJnBH6KRkjxjkSMxeCVK0TUnRxGgogi8JIKvHdaQTwYBjF0qp\n8MDjkMf3Q7mOgmVAdWhq80ufLFGe/VaUCHNiSveslaS2ljKRSj+Ec1qpvrA0JvPduIyN5Foc4Qyp\nRDgTUomQLJF0IqDzZA7Nd/uktJ6jxKOUV4H0Y0eYfxz12z0igkZGXJcxRM5xKBGUe2ZRMwTkCAD4\ne9TKOkbbVR/fxpRg76IjZ4LmnB2fkNYReuGorNDI6x5GK99EVKiCch3HPWHvcyvjqg2LLCo3G1rE\nNUawdpTr8O9XCItqZMxLRlIxr/jTEaQTwYBjd18zQqeTEb0ZonZDWrGIJ0TesTZRFuaO/CtRc7Bj\nWAxRERiSIk5p81fp65SG1VQ03QB0x0IZJdbjrpGcGY6EhpLigVgbyjDjcERw9caEBrwkQToRmiFq\nZ35K82kzPhGDJavkZWKJFVvJiB/FnOZT13dnyUdCjhOTXLtGK0qjIKZUIqyhgjSUiH64Eis6EmfS\n3BtLc70qEydDUiKMv0wUhfyeKvxedlvLStlVHz7HMX+3UjWhLRpJ4LlgKjJS+oB0Igg45LCWWFbS\nhkuWacm9YOkJu4gh2ZHSxp5ynfHhDPwSCzMgBZi9pNwxbqjEyJCnxPg7JlzDkCcG8CRFnJO9IMU7\nk3P2Z5Q0UStpOqXrjG/DU0vW8NVICQ3ZTZvXoqsGxBtWek89tJITQQtn2H4/NOY0GyVTJ50IBpaW\nY8gh25oU0g92JKPc/jSUjojT48iJkFxPxPuuEPVNzOkVcch/W2Eq/QyllXviKK0YpUSg/VB+C++I\nQ4lAEysKSoQIZaTL9JqTqjFpgMyJcA/pROgZMiQjEiteFTy/V9mEKkxASl/ZgmhPmDvYOVIOCEd1\nBoakZmjDS6QsuhxyWJ6/Q0lmx3EkVnQkAWW/RxGiOHCUCbTE5kvK/PGJFR23VVMRjM9Hw8ZN5R3Z\nZ6IooR+8yo/QD8M74mhDwZFnQAkjYDhUfo5whrAQv1Y8XlPKiTCl5IwzUka24sB3dIPlbjg4K0la\nIZ0IPUMDQIS835MhfPwiszuHXKeRQVuilRkm2QqTehcXRCsGZnJjzOmzYg4Ah5MhSZrBoUSQyjOS\nHE75XSUzJm3PjnQi9IwxeZXFOy/xyK/DY3s9u39akrBxSIuMCCVCQzgWXq2UeNRUE+Q4v4wFx2vU\nyptoqRSjvCPUgBTasFRNUMqebr8N5ac4hjOH4VINjcxs6J0MjvnbEUZE4/IBlCgFH1MAKGEEEUQp\nFSb0cXqqMxg6YqCRbiRJKOlEQGeYDS3y94i+1zFXOkIiVpIx7MjuPl41EQZNrGhKEMUSKzruu2Fh\nPjci/EwtKYh5+Mb4KgGKqcvGGuZk6HrhkIg7Qnw4jvfMofBi/XCFGTgqDTiwOFYNfXVVcODXaQPF\nSRCC0g9WTsYVshhBK/1ITo3jyWXuhumQ1Rk60okQhCOW2YEj7tZBfn/boRWvfBS87jJvgy28plO8\nL1k6yp6rsi7n34TiSCYl4Ca0dxfVV8dVJrUOnVIegQgcE/iMjABXiUceWmEo462cQ07SciIkSTuk\nE0GA5kQQ2qAJk4TBgyUrLKadapq/IchICUmsKJWQEnZVSTNKySRHWaVJGZAB5P24HnZP1gY7Jqry\ngiN8w5Fs1rHbncuphNHMeBYWqmC4TjN1M+eFkjchAkewitLGjHwzyViyOsM9pBOhZ8z7oNUzH0ap\neMDDGca3Abik9+OvYXFWRKQIh1aJaizaPWOhN+Pl367qDBaJuHAd2oYj3r0hJdHoayi/he6omK4T\ngOPTjctnQPohtNFKOIMjRCAqrGJO4Qwbg7M6jKDyyk1cQ8XQF2avOGT1luSMDd12RlRfS4SxmSQi\n6UQQiHCoa46I8YkV54SU3MlxIYMSIYqI3QFFYih59tnxoEnZUUYurK8xlxlNI58DAE8CT/YKtGLs\nusIZ+DcR84Mj+hHlIFDwhDM4dt7pRZSO8HN41tPx14lSIkQpL5JrUGyeQrwiitOklUiT2oqxuXDy\nMXSkE6FnaBFvCWcYeRzgtcjXgg7ZsYuc38528OxUbt/YdSkRHExlUZ3Mm7nZ/hHrriijnPVDcRB4\n7sc0lAoAPB5e5Zw5ZZJrZZVpUSrEqAjYOa75PWLDQnM0zmyiSBZPOhEMRDncHUqEKId6MzB3YUM/\ndir2lEuJ4CDCWdHOG7K4qqcUS3WGqE3G8U1YruH4vdp8RaqABKkZLPkqghQPEeWVw4iK8UlOz4y8\n7zP6KZINmOEMbZBDV0c6EcBzZDhiplkuAqU01x55a9eGMpGAp5KEI3YXLHZTqonGOmIq/2Qo8Wi5\nZ+waUWX1hHZaWRCHVCNpaMKhdeSFNhyhU60smDzfhKEfDb0jyXRhr5H0nrUyOCvQjQJh0eXQJrd0\nTxI7fPNEUDR5upIkzZBOBHSf/tDHzaRODlPY4YhwKREYUVNlSMzRyjSsNxIUvWlkQZRcSyOvBwBu\nDElKE0MeiVZwlBFr6PFSlHfR4Uh25BFoJYwgqh8R79FUFG/J2aHlGTC0weYiKTkjPcViw9PQi/yu\nlkMF3+RcCOlEAFci7JGXRSoRRo4r1RnW5JyrpsoL3FlBm4jZyHDocvf2hTYEbwZ5gLVyZwWtihAk\n/2VE5dRyVEWI2u2OyqnlUKtEKBG0MAPhQoY2KrF2tYo15DjvRojSSCEqfIPJ9xUnQ0Q/FFoJZ7Dc\nD+WbMUzgUuJjh1KQ7e9OSWXQiPe1FVtjaawm5Y5OknQihMHmBsWQZSEPkrqfn0KRdrLamAs5Lvcx\nLZkUc0M8ya7nM5Fpsdvj25gSPNEcZ5Xbmdcwt3ckgpaqIiTXkmHXZ4QlKaJSkppVK2hjQJvba5jT\n5jyoyOoMB6QToWfICLTEu7LjjvB+oR9K7gVHUi1L/D5bzEodMSRWFB5OpUqE6cweLOvylHBkb4+q\nEJZyyGtxObwsqgneldE4DGZp39YQzqAQEUYQFVbRCpqdYFBNeCZwfo7F2DAM4BG5kxz3Q0BRgPBz\nFEfEcBuKHeGwNZRwNPZrpEIiWneSZFGkEyEIqqoX2mDhDJqDoA2DWcEhqaRIckmO4v2PgHm6oypI\nOap7OeIUW0nw4Ho9HDsZU4nt1N6zGCN0KjtiSj+FAK4kGWYyUkMTSu4kVhZRiaFuRYmg/Fwy9jry\nKmiOCHoKL0dpKPOaeRWWRJnUxuA2SSeCAUc8rPI+Oio8WGLVLXGqQR9gUOC14v2PICKcYUo5EaJo\nJSeC4zoOYyisbKIwcK6JAdmKEiG5nla+71ZwVL1pyvh1KAVDyuvMS4ngYCo5nJIk2R7pRADQ7UWd\nPOA55IF0CjLkD1qbLF1Hhv8QolZuBqqwC5GTrp8JvSIWtHfIkWhudBNhtFJKMkkYU/quKFP6MVPq\nayM4lAhRtDIDOKJ3kgaomRPhgHQiGLA4yxX5N82JEJSJPuQqQQTpx1j8oMKcEh4C/H11JEVUyHl7\n2URlvKf9EM5hKuOWKjwkSRKPI7SylcSaURZPVMLDDGdI5kY6EYJgNpcSikCvMTPDLsTT57KGSV8V\nJcKcmNmrmJwSZfd/SgqBiEVzI3b74phSlQjHe9jSDnHSJrnLenrSAbAs8hvpSCdCIziMA1IgAMAC\nB7pG9OxRWbXnplaIwJG5OXdmzwZPFQFDI40QlVhxSvMIzwEyPqmacp0oWEiTFPJEneK8CcsrIuUi\nYOcY3HOOSlAuSF9ayc8URdRYlE7eJLmedCKgM0SHxl3H1EBz7ijJvWipsvH9aAlqDAk/prCJPcid\nOKf6wFN6hxTYz2np9/KQJd5ZXhFNyO49Ia1JS89vSczpvkf9Fm4nzIxWXpIIB0BLjgiCEs7gULSs\ngt5oGkYg9cMQJjK6haQFKjKH2QHpRBBgL4sy7DsqK7Adk6vCJLU2VBlqZd63pLM3TeyVPMCNIbGi\nY9CKKvGpXMdRBaSVREWKJDqCKBOUOT1bSaoehSNrfpJE7Koq84ilvLLjHEtFA0NlhajSOY2g7K1Y\n7JFGltWt9KPMabcpWQTpRBBgHleHzKkR1T2AGENGmpMnlEeA1l02eO0lm4xMho44dFcseyuLKr77\nNx/jcG4ozqqIUcQxB0TJZZVwBsc9czijHXPRlJxVFjtgfBPJwmklsWIUDiXClEK8kpHUaa1Ptkk6\nEQxIu1ABCxVHckbAY8iEZKGN8rwI57DQipQ+Xc+S7BQtMduEVjszopUEj47qDFMije7TMyWHSDMx\nIJZrBKkZDLaGAynnRUA4AysjCcSF1qVIIEmuJ50IPWMMScWwi6jOwEImAG1QTs6GOe0gSfk5Rh7v\nrsOUF22gOAm1MaiVX9QGynhG65kb7mlYaUVy3OVkyISVfpT7oYQbToawjHdzumltsDQlQjoIktMy\no+ilUaQToREs4f3CwK84GqohgSMjzMBsKU5kJFFqhqWpJtgCP0p2reCYuHg+A2VhPnxcC70ZjyOc\noRUlgoM5OSKjcJV4dKgJWRtVcBM1Ml21o0RopbRGI9UbAEE5acjh5EDKreQI0Wzlm0mSiZFOBAFP\nQjt2DaENclxRM6yCjPvFEXDToup7L62OOFsgtKTeaWXHpJmFigGHEiFq485xHUdOhDnlKtBCjdrA\n4xMfX+IxDEm+sf1uhNHKR9EIUeEMjnl1ShWLkvEsbbPtJNKJIEATKwa9S3OaXyalQFQ6G7CKyEFr\nOziUCAzX+x6xYxL2bVru6/hwBgdzC2dgLK36xpQIUdZM6eE6+jqzrWqWCLoVJIeXgQiF38FZw/2Y\n13uWzJ90IgjQEo9BGZXZ+LKvyJAntBClP8dhyToSJgH0ASolHh1YJsOA911px/J4c04+NVOKAMpw\nhmRJTGo8i/I0sTl8JbjWHKEGYfWEDWEztK/LGhNbUfhlicfpkNUZOtKJIBChRHDEEEfZF8rPbSYv\nDy0TYeqpoZmYGMOtXyL0OomfOUnVFaJkqGyXaUoG5NLekShmdU8kBZ/hRXLM4ayNfSUIKDktrCS1\nwpxyIqQSIZka6UQIgiZMciRWNDn+Z2XIBCkR6p7YnxE4JtyWYHdVqvDAco0IrfA2OOzJhG3KNdJG\nkrSCI+GhA2WOZ34ky5goJc0TLjS2I+o5tI0AJYL0WxxtzGcAz/DL63E8marU30y2Sq3tOJ7OmnQi\nCLApKGqopEoExRHRiEEVhkOJIOyWLKkkUk5hpydsUy7ttq3guK8OpYFjmFH6weq3O0oSRxGVOJHN\nrRMSmnj6GlbiMWDyzYG1WVpJrJgkSySdCI2g5UQgCeAa2qle3KC8ICfCgn5qc0R8V1OSqrdSOWNp\n34QU0jah9ygCx87VnO4HgHktzpkzY5MhEWeFY3xmr6rDmTG773u2lFTa9KQToWfo46UZsSVDdviF\nk0o8BoUzMJQmFif1CdieZ7uDLthPUX6qdE5AUkSlDUf+TmZguL5NR0iTox8O2CQ8pVKjjs9fiYfd\nEC+SYixL1zGE+ER831HKuimVgZxUjHhEOIMDRziDi1xpXoPyvjtUvHxMHF+dYU4+tWQZpBNBwOHF\npAaV0AaTkCoSU+WcnKKOYCjxuFrxuxqxaGqkWqWNOb2rrYQzRO0gRzkJHGoF9k3EhRlEXWca4QxT\nWtxPiTAlYSuJFWleBWXiDFIi0BDNNr6JKTmBWyH9Q9MhquJa66QTIYgIw9yRnFG5TiNzVBwTKvEY\nInd3nWOwhdgpShuO993Rj6XhkAM6SjwmyVRwKC9cdoKFVCKcHoskdfiwI3fflOTeiwu/TRIT6UQw\noIw/3AHAB/59co6yOxSVN4ENylFl1RI/LYUzOEIRphTOkFyLojJg50Q5eBzlu1g4g6sfU3kXW0oU\nzNWGQeFo7dwSzlSUCA5aejDklkUlimZDUdQdi3KatfQKJCPI6gz3kE4EAcf04lhkMOa2UFmad3gq\nnvsphTssjSnlRJgSljwhnvpeg4cdyhtgXmFCc8LzfQslHrMEz5lQwwxB1o/x3ZgSUbZmKhKTuZFO\nhCAciaq4EoGPUFpOBNZOmpitEuEdXZh9kSQhjrPx6Xmn5QByODyUnAgtqRWSZDSNfOTMGaU4q1oh\nqnJKI48uGUnFdDb9tk06EZLEgWGVkYmIrsWRZXxKzGmXYmnPLgo2QuRdTyIWKmE71XMaFBdGK+V3\nkyTZHulEEGhFvu0o7zalOB5LX2mgqmANGeSBUbSSWNGBljdj+z94bokV2eu8Duqr45NRdrvWEzFm\nHbfdFc7g0KI5QvgiwgCnhCciRnlJDBdybM1KL6slC+D4flhqlsa0wZxAUUlvk2tpyU5IhkklQkc6\nEQxI1X8M79vScgSEoCRlCirxOBVc/hKeVEmo/xwRvpGJFZMAWgpniPDfOtrIUIXTIyneHJ7iKMOI\nllYUZixmXDl+i1b3lp9jaIMlTkxV5OmJet2TpCXSiSBAk2pNyEk9KyyBbDFKBEeJR8fEruzus+u4\nlAiOCh4r0oijnn1LEz97W1sZIlpyiPDYXaENeg3eRkO3hNKKEiECm+Olkd/DCFMiROGorBChRIiS\nijaiRJgSuUGXnJapKG1KKf8CwHcAeP9a61tLKQXA9wB4LIC7AHxprfU1N9p+OhHQjblD4ztbNKUS\n4fQou8xsIpPiMh0GRioRzoQ5KRGWhnQ/gj4JR4nHVkLaomhFiRCBKwQkAs1Z1chglPKrs6ERJULm\nREiSs6WU8mAA/xjAbYf++DEAHtr/83EAfrD/9w3RjBOhlPK+AH4EwEegs2G+HMD/B+CnAXwwgDcA\neEKt9e1DnpRSypMA/Mu+2WfXWp/Prz2NRUArOx1zy73goJAXSJmULQrSSe13JmeBY1d9KrvMU8Jx\n3ycwjTVHS+/q0ubNyeDYKZK8VdP5gh1OAq5GFNpQFItad4bbmM6jSbZNLajT+Fa/G8A3AXjJoT97\nHIAX1ForgFeUUt63lPKAWusdN3KBZpwI6JwCL621fn4p5RyASwC+GcDLa63PKaU8DcDTADwVJ3hS\nSmgbEQgAACAASURBVCn3AfAMAI9A54h4dSnl5lrr27fZcccAJQ2WQe8sG5SjBlP6kTpCEVqyIAlL\nm8RaCWeYG47xakKfDcUSlh2UfDNqCFhSOENLTEZtmA/vemZ0T5hSQWpjQkqEuGTR5PhkBoAkiPuW\nUl516P+fV2t9nvIXSymfDeAva62/d+S9eiCANx76/9v7P5uuE6GU8t4APhnAlwJArfUKgCullMcB\neGR/2vMB/Bo6J8KxnpT+3FtrrW/r2/3/2Xv7WNuyrLpvrnvOfe9VdVcXDQg6prEAxUR2lDiJCY5i\nJcaAkE1QyB/GtpJYbYTSkgMEx7FsE6zEMQaRKHKMlMhOy3QEluMOthFuKbZaENSRIvGNLeFAUBBB\noQ0xNP1BV713P865O3+c86Be1Xt7/N5b48679j5zSK2uunvX2uvsj7XmGmvMMX8gIv5gRPztrN/y\norC4LoNWbgbZq7LMt1l5iklY0qSbgVHSGdYGRb1tQBtqgbgk8ubU3qElyfcVGkmLM5DiS7kfqwO5\n8WTA6kWGS2jEyUlRlHKSqB0Q+SrbMXhWlQr0ZDBF2qf60WmavuhZB1trPxgR73rKoW+Jwyb8Vzzt\nP3vK31741wxBIkTEF0TEr0XE/9Ra+90R8ZMR8U0R8dmPJRbTNP1Ka+2zjuc/i0l51t/fgtbaeyPi\nvRERn3n+6q0HCSrYWdIAhO6VgauQ7v1Z5k8VQRYSsKTXbJS+Vt7tk8hSKw1keZECRDSoE9Z0QwrP\nj5HSGUpp8OTxJBWYzHgxXKNwOpim6cuf9vfW2r8UEZ8fEY9VCO+OiJ9qrX1xHNbFn/uG098dEb/8\non0YhUTYRsS/FhHfOE3Tj7bWvjMOqQvPwrOYFMywHCUh74uI+IKXf9udj4bM3EsRETkTUFo6g8P9\n1LHaMcwwWSo1bSJ35686RqUzvBXjLN7njy/pvrOdrNu/TpaBJ5HMqh1CVK1OXWOQ4d11nQxjfXKN\nUcYIC0bJ4csq8ejoi+GeOdIZyofgrVjVt3niGLk6wzRNPx0Rjzfdo7X2ixHxRcfqDB+MiG9orX0g\nDnYAn3xRP4SIcUiEj0TER6Zp+tHjv//dOJAI/+yx4cMxXeFX33D+05iUj8RvpT88/vuH1cUzjBVH\nGQxXxXTWiFwoPAE2sfV/N/XpFQr5WFLlxUJBwWLOOIjEJ6tKW6HQiX8Qh6IEPx+HwgRf29PYECTC\nNE3/X2vtl1pr/8I0TT8XEV8WET9z/N97IuI7jv//2GHyqUxKa+1DEfHtrbV3Hs/7ioj45t7+LWX3\ndiRPBF3PHuS7G6R9k1jtNIc5I0ADJR7Ve7Yk+WAW1rSY9RiA9ztVOwKdkZQIGYHbKORsljHXqfkI\nVDrD80PNvRFVTeSuoKpJoTYS4hUXQeCoamNRgdUbX7gDTNP0eW/45ykivt7V9hAkwhHfGBF/61iZ\n4RfiwI6cRcT3tta+Lg51Lr/meO5TmZRpmj7WWvvWiPjx43l/6bHJ4m2CDJZq6NiA4G8jFqKkDRLs\nWtzK+5vQINsyDo1pFZIvJODUFl0qPiSf1JpCspF2qRQZMS3IAE4F7oR8L7wJ4GV1LFTTIGOnnHeE\n3DOZ5mlJvwQxrYHQ1m3IJoYZNx3dqOIMy4El3XoFGIZEmKbpH8ehNOOb8WVPOfeZTMo0Te+PiPc7\n+zbKq5LFYjqmU0ctem2saEgQHSjJVE3cjkmZwLFTncWpnFpufuFuIHeykK9C/8JcteH67tYkmz81\nkkC/q8R8w9OXQuG2wchmQxWIQVYCzWFYUSiYMAyJMDKkWR1oYytO2oDxSbVBhjhyHYsBGOhLN7Ii\nXcOuS1YqQsYG4Zp2zNcGhywzK53BY7xFVGBKwZUju1a/98akJCssF3JnNqcby8KZ4a6otEbEnIt+\ngJRG5ljq2L4XlwC39Iz8HtmN9QQTS1JNFPowxdjGipkoEuGI2/64VSCLdrLEcZfLuAx2dRMWpFRn\ncKgZANB9d+QQJiwQXd/KUibUrPJPawLLZR2DeHPAMvYafq5LDqvWB3vSRpJZvUKlMzyJpXg8YUgC\n4LSoF0saiYEgYCkRIi4G3ya5jsMTwUHwyRi+IonCwlAkAkDGwuscjEB7IiMQ2BqC3WGm5KxYaBD9\n/toWVRltFG4HOrgD6h3D+5y1+2Mx5hLHEe2SNDYrkoAYOC7FN4GkCTqIBrJAuFGlNbt7sUKcGEng\ngCYa+hfvKEUgwSiYXQe0YZjzCivBVJ4Ij1EkQhLU+p/wA4RoUFApEaQvWbGh+kgtngguqHQGwOyX\nqc56YVNveJqZhcMRO8tY0YGsEmHq+94kXAO3o04YY1hFWFP6Vdo3YZC7W3BqTDJJnRTHJ0vlhe4m\nCk+Bw1vHM1MUCh4UiZAEtTC/BwZ+xcqSYOkcXGcrrrPTl5Fg63+lhzVcaE0RJgC670nXKfjBUi/W\n83BG+S0ORYTju3OtuaSpLWhDejwsRKkQwdQKan52mLyWEqFgwULEG0vikIp4OS3UWHxAkQgA2tlV\nt6FIhHNkuiN25k1qBmU0tgE/eL+mLwwZKyb0Y0EYxUeA9GOUCg5ZpVUzjBXJLbVUATGQJo5sJbLI\nJAaOvf1wgXgeLAXDeDOQ90xM4g4nelZJBFxIYUlOcyolYm/4IshvdbyMo9zTwi1hTaNzYekoEuGI\n297RcngiqCCULIZI2oTBekFiMiwhJ0BUqJSHpkyZItDETvoi2xhlMZt1HYfZkaEfWfGyA7Xb8SRI\nzO0YzzLqmZPvP+v5b8QgQIZNma5iWFNltUGg3boHGeALbwV6oXuvkfT8T0wG6KjQsyxUOsPdo5Un\nwhFFIgDoxY4eoLQSQfdDBkOmgDrDyZbgZp+h/yW1jMAkpXJIF2SK6MAoG1kNDfS3/2zITrUj0PE4\nVRv6Ac45E4ME6Qd7R/pL9CpTrQ0Y8OTYa2DvXG+7IqRJV9V1HPtpjvWSa82VUeXBMa8Sfx6LTIjA\nkSRuqUm9ICWCxSVQeTjpJpZEaDs2rcb5vaVEKIyDIhEAHEG1TBEwBKEkNsja3R1lV117IniUCAqE\ntRxnkiqMijXV1XZglB0mllbRT5o4+oHWKeL4msJY1z3TRGGZ674F6saSQMLCJC1IiZDAnDmUlSxt\npr/EI+qLSmkzXGNJ2TuFPkxBlGengSIR4rBonvu45U4WeJdUacUJ1dSdP74TngmkjQhNeGxBI0pE\n4IBjokNwMPutv7NZE50C2yEmpZn6839HKSWpFhC2/H5FJOom5PMjZWAVSOinxhmHyoC0w+qZi+Po\nmxCeNrIFpmjR/TD8XoPnCTIrFHfFscRwbP6SdkZJiUfPP8uwpJQIT2JBSoTCXaHSGQrjoEgEAxwm\nchavAiJFAMhgSy3VGRwXGqlMpMCavCojcnbdHMaKzJkdduiWMcpuCNtByrlpo6gVLItqy5BIrjPG\nPVMYI1kpD6N834VlQ5NEpA2Hciorda77MoXCEyhPhAOKRIiIQ8bUswczjyeCOoekM6hdGc9Lra7j\nWPxZBvWVrarVpOzI3SZwKG8cj5ftdvZ/V47dXX0Nzzm6SkC/yZTFvwMtVOePuzwRZBvgHKXOICTw\npC6UNJ6h79ewq55R9WRNBEEWTs2fZxgMshlRKBQKLhSJAGApESbP0ROMTIkwhVSapO6X7g6DJIOo\nkgcuF6OUq4zISd9IS5tJcs1XcOyGsYW5mkdyfrBFMQ2uo85BBo/i+KkpEdKgjIJduWbyRTOMRo40\nAkdaRd6A1n2OI14ZRalAgAyJ02b5whJQnOABRSIAOAYymf9rUCLcgDYcAWQWP6DkQsi8MSudIWFE\ncewgjSLtjtBklGNRNcq0nyVDLtnm7UBmkoE2ZIlH2pkMDNWZwmMwRVO/0mgY0psYHp6JHHE0f4vr\nOAweB4kjyHUsJauBR1ehUFg2ikQAUGsZnaqgVQQ3IGo7F8wumW+Z90K/rN6SraBIhIGMFZt4wMME\nZQbUQrUgU15INRJLKcl+k0+WU6sWZoAEFsdvwELF8+31p/g4zChPjajIWh+60hoLK8ZCJnGXA74u\nAgI24BL6UVgGpqk8ER6jSIQkqGDXsbgnVRMIFjK/MKjA3DSqOwgNi8mQ9DMgOfPqeD9pFqHfefIa\nqjZIlZB+VwWTYTa4jtwRN1wnS0Lq8EQgcAyLjvuuhiIyBzhASG+lAlrVHJGErOoMWonQf42halGO\nsjLLKBO5IIyUzjDKeCXVaOjnrqnAbmHpKBIBQMquQRtbw060Cv6UUiGC1rvO8IAwYCQlgiOH0EAA\neCTxBmPFpIWKY/HuKM02Sv4+MlZMcMRG1xiEybeUiQTXcZTndHgzsjmgH460OGl6yqLuQqEPoxAV\nC4IjnSFLiZCFUfpR6AdJHz8FFIkQEYfQ+3ZfCMeumsNYke3u9st/Fchg6pALpaU8GJAhj3L4Q2Vh\nRRkgi8Igjx9hlFKEo3wzrgriDtJEgaz/pwWRBGr+zVpAWN7FNQ2+RCGQ8Z65PBEGGWxGIQkcT25B\nYWKhMBSKRDDAsetKJKbnZ2Kou9Ez/06eQXZ3ybBtmGDEcUQQOMyOABxkhXqPllSayyHNR4SHvMYY\n0m2mEOi/zqmBBKFkbFVQ75kjFSHr6ybrpQyjefS+L2fIS4FFaWaQmbMLrWhAcxAALhZpSQaOJ4S6\npaeFBfHbt4oiEQwgCyaZigAC3XuKRABoBuYX5Yir446gO+sjNqQzZBEAGddx5arLtAnSFwMB4Pg1\nWSlAS/FEIMaKsg10zxx5t/ocmWpE3qIElgilKqD3TKnRdCPonqh+qM5WJPcWWAxLRylXOAqySuc4\nVqIj5d8NAofS2DHUSP6nWNPCwlAkQhIUiUB2yxxtEDgkZo54Wcr7iZxOljICO8Q7Td4oJcINcfhL\nAAnsR1kQO1IvUK66YeI+sZhMjhFLkoc64naiRFDvmSOdyfUentr7XHgScl4cabc7ozzjDpjZqVgD\nxBEWWFQTugl1W1m60vxAU5VGCiNiimbz61g6ikQwALldi+MyVQGcQwZcomS8Fl1xBJiLkn4ZfrDD\neJEZwN2+OaNDeXO4jlARgOtYXPPBdXr74WrDUdHAs3sv3rOkEo8E0hgX3HjlR0NIBPk+G2TmbLeM\npID0HY/wGEmO4kO+qPnKAIsSIUtuqF60kQgPBcfvHQRZiyzHdRyPH5Em/ZeJaUlGX4XVo0gEAEfQ\n7VAROEgE5pvQv7hzBO4W0x1prDBOgGFxzbc47+fszDvyzNXijniAZEzJtbO7bjjmCEswbFAARazL\nV88B8v3uE6YJlEYiq2Ik6LIzsRRTRFesIUu06DZqHVoo9KGqMxxQJIIBJIBUJMEW7EJtxDlbsBxi\n5r/zHwcJQmQuqwFkInQoAEaBxWjQkGdOCC9CRKh2WK66MCwFz99R3tvxmnn8DHL6odvoN1/N+nQd\n7+rGMd6hEr3994xUPHB4jRRxtmIs6eGORHisCI70q7SMFwdvlrBoLIuXwtJQJIIBjoBq0/RKRp1D\nxvQ9CHYdcvZRsCTGXT2aZpA7O8zO0HWS/AzU72EGcMuBR2lScMPhR+OoNLEnaSSGb/PU1pBZcufC\nHUExyWh3fxAfCUMbjriJkAzqHHTLQF+kSAS0ob5fRz8Ky0GN5wcUiRARh0SAF38j2E7W/BCD0hk2\ngkQgQShYiDahy3TsmBJI0x3Cmhgm9oksEBJmB7K76ygTqQmvHCXCFqx2VMoDeVeVWiGtvnvOZQov\nAPUeqbSaCPBNgBdAj3lgPAM0kjQ9RQat4jghIhLM6kcK7KWPRNLcK7GkcoVEauboh1xlDkQiKBNI\n0oTInfJ4FfQTEa7r6Db0OZMY0Ba051UoRESRCBaghYqSw5J0BrXoEiRDBJNkqesw87b541mmag5I\nk6kI+YOzSjxqY0Xdhq7O0P/8yTmM8OiXd6uvJmvX1ZGugvxKDN+3wzV7lN1sx/hNvAjUdcjuny4B\npjtCcvcVKZKVzqDe51GMFwlG8cND/XA41mZBskQ53RiKjepE1rualVfumK9qgV94jCnyjENHR5EI\nBqBdV0ESoHQGYaxIBrmzff8+RVb8ICVoSD/WeZGImPb9OxmELT8T78gNKUdpUSL0ExEOtQJTIqjv\nSjYhAxmLlLm/CRtkXv0g3/co/SBg1UhEPwymiGgOMHiNZIVPSwrcHb56hTcB7aqLt4SUVlTztyEG\nIP1AJafFB0zaUB/WBEpS6xKPBmNsMNI4xgjyaTpSIvQYUYNEYVkoEgFASwz1h78VJIFKVYhgSgOF\nHVA8EJNHBS267ZepERLBkqc4CLLUDNKbgShRwHUcihfleYB29/s3dyVGes1GUSKMAg8p1k94MTVD\n/5gI1gegug5JiVBkVf844lAijPRtOpA1TxQGRdILLf0MUBvzx10ZIKOEgfVlrgdrioF6UCSCAWxn\nRx0nDLQI/g071QRMympYIFYw9NzQKgISuDveEdLG7TvAEzJDkoQmcyeFLNPLgh8OYs1RRpCliVXw\n80awcsO3348sIINex8s6Sv5GYVhkScIz1Ap5nphL0mcV1o4iEY7okc5mGSs6FogqJSJC/54l+RlI\nZFHdBpCYzEFWeXwVNFTe9d5QOpXsmJ6J7ZAb1IY4YaB4WgVujkoDWXBUNCDwrKnEuAq6qdJz0Luq\nL6OJNdCGA45weZRdSO1nEXGmlFXgOsMYtGZJsx3myQkGjyzNgKjADG3IvsomPMbX6hpJE2ctywvP\nhWldxHIPikSIw8Q8N/FKAuBMT9vSEwEs7jeGdIYNcNXKWkQqeCYpQ+L1SCZSA4AZa/YrTRABII6T\nBaRceIFgWLVBNv8cpfccJBGBfgfAs3MY76X8FvCuguvIdxE0ooZvkhJBvgnlR+J4VwlGMVZUruqF\np8ChRCCVFRzI0NUPshmRBULwOvyIHKmxBNoTAfze8jworAxFIhzRI50nMmQV7JLqDA7jPUfQvSgo\nAyFgdkSqMyjm3lF3OQsODxBHKTJPFRDQD4O5t1Iz7LNcqJPkoRa3a4N6w6FEIL/FQVYpr5k9MTMT\nx9fGd6pvb6TZLGN9YEklzIoBBlEiWBQAg6gZEBzGioQAMGzyaO6G9EOeoscRQlYYHq9sY6gRrfAs\nTFHVGR6jSAQAmXdtkF0TlYHcDQNEBAkgtON9/+IO5aGK4H4i226DjMktSWOq8l2HkboGUbwQ8zZD\nG/0bxHJHNCs9OM1806BEUMh6Vx3KGmJG6xhXFXYk3d2gJMtSo60JZKFyY1HW9AOVNZaNDOJIOwiZ\nYVllRphWxPoU2YSIvxhnImI80g+kABDHDVUgssiMQmEkFIkQh7luOzN5q8CcBH8qXeEMpDOcbQTj\nDkYgpHgwSHcdOcSnZjSnSSLdhmMXSt139L6Dc3Zi4ma7u6If4JtQG8CWvEzQD5SrbjG97DseoQMm\nhwKEIEtZpbrKvon5MX7LmNX5NgxlUSOIMW5/uopjHlkSUYFSQCxms2oO0G2AixgaGQiDGGcQxWLb\njNEPy3UyFG2kH4sKNUfaCjpVtKrOcESRCEmQploOY66BUhVG6UuaxNBgVHRqkAtAIBdz7IhnTAVk\np2NjKK3IZKjzx5nTSP8O0ijpDASOajNq3cX8O+Qpw0Dv/oE2xPExZpk8pJkapzlnKhmYgdHMMkUU\nqZET8KMax1ixPxXBMRe50hn2hnKU2hOhvw2WzlDBZGEcFIkAYPEzSFhUIyICpTyo4zmBjExncIy3\nNhIB9KXwXHDEsWi3U73vhtc9S1WzpHSGJW1mqr6ydIb5QUIpcw79UIaH/WRGhCedwaFEyAAxTWRT\ngFIKgs5Y1DniEsTldRSM4kVgSXg3xRqONgzxilrgq4U7aYN0Exkryn6Q6/S3UVgP6nkfUCTCEXPD\nkEMBoFIRmCeCOD4ImRExToAo4QhSwDnIv2EQOBaibGdWSXf7F0RoobqiyWBNxoojkQyOsre6HCkg\neMVCxTXujnTvRwC5H2qj2ZFGwAigFQ1oWYt3Qz+k2tDRRnierzSCRqaI/S90hrLOhVo0FgpvRZEI\nR/Qsrtlix5DOYDDNc+TEO3Z3CRxyOTkpIyOjMWaPUVJEXESUJxXBIDOXecj9aQZEyVq4Gzier0ON\nRtIZlH8HIiIcvhrdLeQha3NXIUuJUHh+oHSFDJB+iOBqlNRJRyqCI+WJXIfMzzqFD8wjMqbV/SiM\ngfJEOKBIhDjM23PjsgqYiKOyMk5kaQZitzvppc6qza6AdvcNpRcbSroT10li9h1Q/VhbaRtJzqzs\n96rnd2q70I73maSrOEqnjrLL7FinWNoY43akwWFYisjorEFgkPKMKb4KpHQK+ChQO53XuQHlZvc3\n85Ex8QFSMSsTovRXVnDsJVXWa+EU8VwkQmvthyLiZyLiT0/TdPWmY78zIv6HaZq+1Ni/ISBd84kB\nnAogCYkg2AwldT30o/8cEl6MEuw6JIZrwihEBYEjYHakMyznjq0LLE815+noUqL9nggN1IHNSkcb\nBaTikGxDPDtX5b2l7CI6yg1bSkAmwaIySFIskr4u5d47bhkq32jqi7yO7Gt/P5ixYuGuMcXJLR2e\niedVInxJRPzbEfG7W2v/3jRNv/6GY++IiN/v6lg25oJEFbiRQUx5HiAlgiIRyARkMMQaBUMZKwqM\n4ongIJEc6TsR2nip/DsKS4FjXCVqBrnLrLsBy+v2HXehyRtL1Bv9bYyCLE8EB9GQhoR8FaJY1BsW\npB+mcwQcKQ86tDIYK5rCM6WKKIVAofBieJF0hvdGxF+IiB9prX3VNE0/Z+7TnaBn4YxkqINUPCAY\nhWFTEwxLERDHyewBEuaUxBCx8oJoIGoVzz3rT2dwSMSz0iZGCSAcuZ3MzbofjtJcS4Ia41k6Qz85\nd2rIUCIsCcyPyEF6dzeBJr0Uz6JR0hkcJQBoOwoJxoqOqgmONiI83pvqFEc6w81S5EyF1cU4L4oX\nIRH+SUR8cUR8f0T8cGvtD0/T9EPebo0Fi1u9WAAS5l+mGSxFQpAISzpDEqsiJzpSu1mcg8ouSQOh\n/lxHcg4SmhiCAwVLP8D92JBSc539IBiFRCzcDizBruE6p/auIsXirffCAyS7Rw0N8pJYyjN2Hg94\nXx1lPmQ/br/6zuGc+evswD1DmxriuGOOr/V/4RTxQsaK0zR9tLX2ByLib0TEP2ytfX1E/LS1Z6mY\n7jyHH8nlFuLKmwWyqE6JhiNi2okm9pol0uw/6IdhhzgjrnO2sxacWhCS5WfgIMVGeVctebmG37um\nsmpos3sQNYMjbQZtWIySzpCkIpAlDx0EgCP9MrSyhmwmOaoE6FQEYM6YoGY49KXv+OE6/WnNSlm1\nJtXU2lFP6oAXrs4wTdN1RLyntfZzEfE/RsSHbL0aDJbyjFJF8Dw9ul1os7r+3N1RRBNsR2WMzrKa\nybefRuAIDlzXqTI7y0UWcatSDUg/tkpJllTmN2vcXMr47QC672TMM5RGVn3ZJHkiyGsM9AIMU55R\nYCn9pHCkMzjgSEVgxGrCd8VcbW69H4UCRXeJx2mavr219n9FxN809GdIJKjHCi8A5JjtkBiCkkpL\nUYGwckiDBAeGNtBOhsMDQl5DNmEpA8GCoflzNkm5+UsigDyqauVXktMPglGUCKcGB3mjyaqkwSgr\nFcGhM8+o3+cwZwz9ZMhu9ijxypqKZ3lSJ01ylcKtYprKE+ExnpdE+PyI+OU3/3Gapu9rrf2jiPjt\nll4tDKSywqlhlI0KGT+4Hp00KtJNOMovqtrNe5ACos5x2UjIR4PUDPo6a8KSSnSuCY7xzKFEUGCm\np7odx7Cpv2/QiAGWNeYg4lWHmsEBmydCAtCCOcGxlvWj+zLsvhuMFVP8LHUTaf4sjhHAE6+UEqEw\nDiSJ0Fr7L57yt2edPkXE/97Zp+GwFJKApEQQh3/tIk57NHONQYIyBDKxy0A1JxVB7qobQjvHbjc9\n55TAns2CvptB4PFEuP37fmqeGIWBISb5tHSGE2OJkRJhkDWkpzrD7VfgIudkCV4K60HpQQ4gSoS/\n+JS/TfF0wnOKiG/t6dBdoEVfWaSs0lwO859RgAJ3wwQTYlcd5SkaZIiOygpsx0xcA7Sh/AxcrL3D\n81L1FWSiWJybZZAC2iDO7DnVGQy+Gv3dWB1S/EpAGx6/En2djHKkSLot++GZv9Xvcaz9kH+DNN4z\ndMQFR1lEZeFvMVYEbagyz8J8OSJgeqU4ATxf9Xv3+/74bEdUj4b5m1WcmkfWHK+uU/NmYWkgJML5\nU/6bRxHxeyPip+w9GhCbs/5P2yExdEz+FgMwUhPdYGamgFhqS3UG1J1uOJhsS35/QhsRpK+yCQtG\nyf8eZSfDQYoSI7osqEVV4a2oO/Yksr5NZaxG3uWsTQ0LMgbXJMbLsYlD3jPHyOqJNcRx0EZSQYth\n5vjCelCppQdIEmGapv0b//0NqQz7Nx87VZCFuUqJGGp3YEWQkjuS20l23lWJR0vd5f7FO2HtlUqE\ntOHZHejPy0REk7qGbEHvypAghSiEddDVf99LifD8cMhuHdVImMpAniLP2SM1ktiZTfK7WxNYJShx\nQlZ6Zpaxoiqb59goMKxmSbSM1Aqd/Tic06/y9Gw29F2DtBHhUTQ5VJ6aqzqxAa2weHRXZ1gDprj9\n/GwpVSeLWQPRsCb2DAXdFsfknIFdmSKi0orSFLGfAHAQBK7ryNQL0A+Ha75lVwacc0oYaYGo0wj0\nu9rES0LayDCRp+fINgZ6fmuBZa/BQGjbjBUNL7Se40kb/WkVjnRTC+FhSGdwVHFi8n7lq0Da0BjF\nBNKDihTuGlPUU3iMIhGi3xMBXWMQJQIr77QMKGLmcE7f8YiIRiZ/kUOYRd44zI5GqcyV1Y9Tg3xH\niLLK0I+0dBWDSmSzEO7VUdKUoL6r24GjxKMFjsFZeRUEWJzvweQrrkNKNIdQCRCFgFIaoDbId6Xa\nAVG9GgP2ex2Qqr6STQD1aJCnEVIiqLio31uFoMbNwtpQJAKAWnhnlFRywRFAWlx3yXWkVJ20j9Ig\nfwAAIABJREFUIfphkhhKY8WkVAR1zrVQO5Bzrl3pDIYgRPWF3bP+fqhghwQPjtoMaf4N6rhBmp8F\nNp6J4+S+i8tkmZ46VEKOHUJHLrOjPKPDsPbQjmgoKVCQvgkjVZuSCgDdRIra0NAPFK/swDuyFfFo\nUl/3k1JOkjZuXwUYYfHeBOkMWd9V5T6PgCKEDiAlHr/gTX96bCL+Oa21T7z5/GmafsHRsbVhFAXA\nKP1wgKUzqDQST1+090L/DqEnT1E2YakAkKVEyDJm6oVjkRlx+2lXhReDw0jUAZfSKKMk2ihYkix1\nQ1RCjjk+TfIwCJb0EgjY0iZ6++FIzzJ4/CwJeUREoeABUSL8fDw9Fv/+Z5xPKpUtCktRGqDJY5BF\niKM6A4HFhTiJ2VeXUZ4JETk+A9eEEDEEEMwEsu8aEWDBpJuwvM2ONjwkkb7vi3KAN8AT7GZUTpFN\nWIg1piJRCoAx3iGyr5e1UFFr97TZ28AAsfLJYzDJlvLZcmD1EI1KaTABpYmnilPf8QiPwivrOhnD\nVVvKYuPk0YZRUt41CInwtbfeizvGFH07fGcjyQMFUCWJhAUCW2QmfKQmlzFPeSeDiiCBRCDPjuQy\nyt+rm/AYKxpy5h2mS6Owr6dGEGRBm2/mkGZZapZBOAKJNe1kpiGr3Azqy/xhizGyYyPBFEeoz1eV\nCT1c5/ZVj44YD8UR+pQUU0RGZiyDWC0UKEiJx+/O6Mja4Sg1uCYQJYJazLCyav3pDA7vBccuI/m9\nOmfa0YZsAro7q37o6zhyphVG+jIz+uJQIjjy3bPA1kP9ubsesqo/cLcE3WneG4Yd8UHeMwfIunyY\nTISkvBmHn4E654Z4Jwlz5RtxnJ6jgEpSKxWgQfUIfDVB6UUNx+KdwFIFdEVj0SnjsPF8170YA2Ws\neGIgaik1fRACICtd4ZTASsD1KxEcaQaOHQREvMjj/caKS8ohH0ViRyTijsUOIiMTxiLyrpJ8dnkd\n2Q/QhuXbBNcxtDEKaofwbpCRu595nVGQYbDtUCw6zBkP7QjSuz7vQuGFUCSCAQ75f9pkmbaDpAZ2\n3RGH7FbL9kgb/dchzL42VtT9cMj75Q6DTWKoCA/dhvaAIP2YP+7ws3B9dillLw2L+5GUCIRIkm0Y\nUhFUP5TbeYQnBWikZ9MLVXlhaVBv0dp82XVlhf7B1+NnoJuQFZqSlAiENJXximGzgaU0zh93zN8R\nLk+EdY01hT6MsmFz1ygSIQlq0G6bnAEqy7fFoUQYJjfblPIgLyNZ+dtfDNFzdBseWfUpYUkxyihV\nIhwGf1lGkkt6vgqj/JQzojQaprcrQh4DqCFlM6AJRRIaTKsdFZpIXxBnIvqSlX7pIHgdyPJEKBTW\nhiIRIkI5bSrjRLIwbwbzxWbYhiD92JzND6mOvMxh8jZNGKXqhUNiqL0KcvKumRKhvw2FNe3crg2O\ndIZhyEoAXaucLFT0dTJIUQfWpkRQSCvxmIWEKhBZ1ZU8bYDvVz1f0Ia8hsM7CVzHMX9neRFY0g0X\n9GkWCgRFIhRWDTlokwnXoBJxkAzME2H+OCIApHmbhkPK6Pi9WX4GlhxyRxpBBSnPjSyFj3JNz6oC\n4qi9Xu/Z8wP5ERnGgCWRYosBWdxbKjSRc/pTRffKBDLJ8ySjwmcEUJoM8smcGim6ZNQceECRCEf0\nvBBkd1/tDhCVgUWJYNjJGMU0Ma1UmcETAV3H4IngqCOvCAAHQRChFzMooLL0o+8aBA7ZfYRHdjkK\n1LuYpVYiiy5H1ROHsWLhSZxaOsOiFHwJKoPDdTqP03ME9PzteXgy1gBxoqOvjs0GOX+jajM586Zj\no0CBjGeFwkgoEgFA5Y856rvnEQT918mC6uuSdlwcO4QOn4EsEyKy26mVCOA6hjYcKFb6+THKgsiS\n/4uqgDjKMzrKr+pzRoGueW+Y8wa6H21JE3TBDrJ4z0hX8aiVcpSEllSF/iYKJ4RpqpjvMYpEMAAt\n3gVJkJXHSFQTjsW5UissyWU6K4fYAcdiR6oZDATBoR3VD91GjqFl/zWWBBJQOb7fUZQIDpB3ZCN+\nT1bATKCrUZzYRwGgCADHLmOWClCp72yfpoEFTvEzMKgRUXUGg6KRhG+qWtQe9EOPERpZcdOpzeGF\nQhaKRADwGCv2HXfBoVZYkgLAgVE2hxymiHlKBHCOIQjJyN0+tVI+WQRfVv53xnjlIOc8/TgtoLHZ\ncFOyFAIp357DfGUU1jwJoxgnE7AKD4b0S4fHizpuMlYsFNw4tbjwWSgSYUlQKgJHcLAgpHkiGMyO\nHK7pbGfeUEc+Ic0gwmRGaCAiMjBSRTRHG6emRLAEu2IhytKVHAatGhmv6yjPl7zLju8KbTacWlUj\nhyGNQ0UgVAKkDaUiQCUPURnI+ePkPVNtEAPmjFRC9PgtxorAV2GUYKJQGAhFIhzRE5w5yjdaQFIV\ntsAAbHP7JR6JIkKVZjs1oBxDcZyVbuo7HmGqiqCbSDE7GkVC7oIe6+q7e16w/N/5++oImB15yIVx\nkUYiWEwRB7mOwzTR0IYjVSHCU51BGzD3E5pk80XFEkvyeGEGj47OloPDCKh59IAiEQBcg/9tw6W4\ndPgzLMnzwAHHO5JRas5j8KjbyPJE0EqEnPJ9WcH9KAHTqZUAlEojMGZq+a9DYuxBRulUAvVdEUJT\neRGsqXrD2oCqM1iu42jDUG0oTV3p8E4Sxw1tuLxXTm2+KhSyUCTCICCT2JJKPKo2HCRDmjfDIARB\n1oLYgSxPBEdepgMVhBQykPWeOUixDBsB0k9CNMjr9Dcx1HV64Vh0R0TKpqqFIEha3JM4QcU9KG3C\nUApazt8DxRqFghNT1Hv3GEUiAGhjxZzRUgVlhGRo2zGMFUcxREMgaSLinKzf4iAadP5g9yUQHIGM\nQ0VAfu4ytEo+qKEmS5nhyDMn8JQzm3+TsoISV55xBhxKBAVHDvmSwNIMDBfKqr03SDSfNy+uZ7bR\nmwCem7qU77dKvBaWhiIRDMiqrCBB+rEHzRiqUYxyS7Kg0hmYn8Ey3NuzjBUJLBUeLBUc5pFkIm/Z\nMUM7WYIUy/KiGKX8KvsmDOargyhvCneDrBKPWXCkKzhIbynvd1QzSKqaQKCMEx2eCCMZKzpQY2vh\njVhSxZbbRJEIBiAFgEoRIAoBQ5nIs40+R6ci9KsI1vb5OZQIoxhJjjL5Z5XQcZgzrs01fQSQe+px\nvM9SCY0BRvCtx3xTviPL+SkmpRlZzI4xf9vSJgpDYpT0ylGGAFIlolAYCUUiLAmKRCCyTER4sO4s\nAUtiCx2GhhmTsusajl1VBwGQAZvhnWFxJ+8Jknff/neVZd7nqGigzPsiIkKpN3QLKWXVCJBfySDf\n3ihwkGIOJYIl/XKUyYiAlE1UZSIdagZDmWcXUowVB3n8WXD83kpnWAbKE+G3UCQCgFQRELNCsXhH\nCgGZiKzbIOkMqmQl2bnLGApHyg10vCNKieAorUkwSllET3UG8q6qgIoszOfbIM8lK4W4cDcYabwa\nAShgFqsq9e0eG2EdWgDY4k6Qs3vDYAQGK4v3Amij1ArrxZJKPBIsqa+FAkGRCAYgTwRgziev43DM\nPjWzghXBYzSYU0bOsZPBrmPIqV3RImNNGClFROf/6ndI8cRZO3eo/GqGYWF9doVCofCbqHSG5eDU\nlDbPQpEIR3TJBAFBIGWK5EkYPBEmoETIgCMPGRnAqdrNSaU1l4QMw0NyTpZiVi1WmSeCMhr0rIgd\nMYZjQZzxSSxpkkbvakKViIpBCxZkvUeDvK+lZrgbLGmMHwb1shYGQpEIABkKAGQQZnhazWCsiKoz\nGEiCJcl/pXlbTjdSsLaJf22/ZwRkmWI6YCE0DbL6Jd2zLKzpjuQpTfqJc3kNV4key3UMbah+GDYs\nlhTPLAnk8aodfua/JMbviiNOCvW4DygS4YiRpLO3ihWRmGzyUMf1g28kL3MQwzOFkQY+1ReSZuD4\nPWv69NP8LAw3TS2aiToMlSJLSPEhyCq/uRSYLHwWg1H8agiyqjM4Sjw6sKTvKmO8QsoqcXyMJzsW\ntAVI3bXCslAkwhFzg6YKQpFSwWCK6JDVO6ozsBKPsEO3DMuuDFJvzB9fkxKBYJDYsPACGOXbdWGU\nEo8OaIPWnIeHpjxDV1Qb5Brqju2zyswNch20YJarHcMqE11HN6ErKxjIO1LhIalSzCmhdvcLI2KK\n+lYfo0iEI+aCkcVUXUkiIgjULuIo0t2s+8HiKYfpYX8b2vDQ8+yW4olwamAeELffDxccSgRZ4jFp\nXbakHVMFNK+uaBHhqK6T9o5ksd6nxq4XCoXCilAkggFkISo9EQaaTFWJR0edaUe9a88OAzgJKBEU\nBnq8EktaIGagbkfBASlGI7440q8GpGcllYp1jHnq9xAVSZbSYCkgu+pp+Xej5PkV7gRZn+YoGxby\nGmtiTVeOelIHFIkwClCZyPnDbQMkd6iSxPw5WTsqDjjSGbLMcEmaiIKDnPFcYz1L77VNFvLbW8+j\nWx0MWXEI6hvPIhkyPBHOwAu/H2QUQKVzMz5gNG86Ngr6z2Fz/O3fM9c1lqJGsvjzgHNGSXkgBECV\ncCysDUUiRMRhan72x6125gk8FR6WYwCmF5oO2T2RIQsSAf1WMjmAZlaCUVJRIkz3fZyfU3gDyHvm\neBfTSprWezYksnb/ssreajNh0EYScV7V6p5EFkHgyOd29PXUvJN0qmh9EIvAdHrv7rNQJIIDDhUB\naUON2QN5IjigdlTIJKbYf2aY1C8RJikgSprr4JAcIcpISoQMvxJyiSbOcqh3XHCY1alhxLGDTN4z\nh/LGcdsd94wsZi3PzjKOkDHRUCpYmRrrJvS3CdpwKBFGGgOWglFIhrVtEizJTLbwJEjVqkIhC0Ui\nxCEQue1BVXoibA1RaBJYTd0xoqGsXZmMIMPBfK5t+iklwvPDsduZcc+ylAiFtyKjskLhrZDfZk43\nPHBUZ0DXMaQsOuZWqXrsv0aEVhGQWFYqNB0Kr6RywyjlobsnnlhSoTwRloEpFjYW3yKKRDAAGSuq\nO01MtQxRmYPFRAZghnQG7aqu++FIZ3DshjhIqlGUCCPBkibU34R8NmzHFJwzSNm8DCXCSNDP1+A1\nQ3b3xXVs75k4juYAQ0ULXZ5Tt2EZN0kpyYT4n8xXnhQ+0Y8T0/IuKc0gq/ScYxE1yq56Vj8USVAk\nQmFpKBIhIqKpEo/9skyLI1aSEkFJ/B1KBA/T3Z+K4EpnWApqiiosRYlQWDeyhHUWBdepDZyeFaI+\nRdY97W/DEScQqDZci3t1HZI6qfv6XF16ehv9TZzed4dQe+AjoN7NA4pEOOK2Xe2VigCpDAwlD0aR\n5hOoSZe4UMs2CIkwCNFwYps/w2Bt0u4MZ/0sTwQHiErIUa1A3TPya0d5Fwd6nQvPCUuVgIGMFy0b\nBWrjBLQxilkhU6uo4442ZBOW9B1S8cDSV6ki6MdNEQSFhaFIhCPmdsZTdqIH8TsYCVLNsLJF9Sgm\ngVlQi5kl1XfPMudbShsOjOR3IFNAUBv9QahORQHmjOC+jvIerWladFRW2KHFjiNdobsJlvJwQmsm\ntLhP6EeEiazoPE7PUXCQFZZSoqAR2UY7oQ9i0Wg5pXQXgCIRjujZ9VrbYlYbBC3n45GyPaQycPXm\ndEAWEA6SwCDOkSBO9ApZC/OsMnKnNn+qxSyREGfcMtc1ZPYduZCqrHBq75Dh96KFWYIBnAsZxsee\nBSLpR386Q5r3ghgp9qAf6py0xb0+pVAo3BKKRCgUBNAOQkIR+KyFqMNUjRAEGdfJMl7L2nU9M8jq\nHTg1Y0UFx445q/Lb//yzFu+afDut8H9V6WjktyRUXiCweCehNnCXupBlnNgLVF1H3LSR9uWH6ctI\nLOAJYwmPobX2jRHxDRGxi4j/dZqmP3v8+zdHxNfFIVT7T6Zp+tCLXqNIhCQoaV8jk6UjUh1mJNSw\n5O2J444dBhcc1ShGAVnMqN+DatEbFiKyjryBiGDu/fo6DjiqM5waZGUFoETYns2fQyTklrQK9C7e\n/jfhIDxUPw/XWc7AuaDp2QJP2kR/GxlwVNYg7TBjRdEP2YJJ0WYAM/peRlWEUfpRWD5aa38gIr46\nIv7laZouW2ufdfz774qIPxYR/2JE/LaI+MHW2hdO0/RCez9DkQittU1E/ERE/NNpmr6qtfb5EfGB\niPj0iPipiPjj0zRdtdbuR8T3RMTviYhfj4g/Ok3TLx7bsDEsFFn5gzJdyjSZOhbNHtOdfmPFrB0G\nByvpKGeWAZtk2uCJkJPO0I9Rnh0BuWdL+j0K5LdsVYUecB1dnrGfNNuABcQGLbz7+vH4rIIXzPDO\nkI6oUgRMJs76OroJh7GiUhLubzQ9p+MVDYcpIvE8cbwjMhw1WGIQn4E1gTy7wt1jikUQvn8yIr5j\nmqbLiIhpmn71+PevjogPHP/+/7TWfj4ivjgifvhFLjIUiRAR3xQRPxsR7zj++38dEf/dNE0faK39\n9TiQA3/t+P8fn6bpn2+t/bHjeX/0RRmWFne/W4GqMywIo5jmOSbLJXlAqPtOFhlbwy7kxrDI2KB0\nhv421DlbsL2r7ivph2Nn1iKrH+R1R+qNJIWHakKpDCL0OzKBNrYicmEkgjxFnuNogzwWh/JCgbwf\nWUTimowkHVE2mp8FAZC1CeDYsLCUVjSYbzLCg/Vn9jqnxREUCpn4woj4t1pr3xYRFxHxZ6Zp+vGI\n+JyI+JE3nPeR499eCMOQCK21d0fEvxMR3xYRf7oddIpfGhH//vGU746IvxgHEuGrj/8cEfF3I+K/\nP55vZVgwLIw7CZgN+YGGEo+stKI6DoIDQ3UGR+1mZr7Y/2yUzNixqMpaqJJPQi54UE4EuJCAJRVB\nXQP0Ay2qwDmF5wN5vg5yThHVhHhT12FpBv0VHEbxERkJlkVVfxOWqiZZG8DSFDGLiHCoGQyxRtaG\nhXq+xFhRmzP298NhzkjPGQGVzrAcJL1Tn9la+4k3/Pv7pml63+N/aa39YES86yn/3bfEYX3/zoj4\nNyLiX4+I722tfUE8PdR84V8zDIkQEX81Iv5sRLxy/PfPiIhPTNO0O/77G9mSz4mIX4qImKZp11r7\n5PF8zLC01t4bEe+NiHjX/VeedspvIisnXkKtIAxkRoSr/I+YlEEbGbWMUQ3pQcZ1FPwn5ExvTIt7\nVa6MLO62oi9koHcszLYyd1u3kWUC6fCRWBPYPVVKE/3Cn5+Jc8A3s2nzX7BPiaB+r25EtUFIcUms\nJn0zBKovjqBzmC+XxBGGDQtHGwRaRdDfhguO0nIOc8aMuGiY9x2AKUCW9IsKA+Cj0zR90bMOTtP0\n5c861lr7kxHxfdMhJ+jHWms3EfGZcVgXf+4bTn13RPzyi3ZwCBKhtfZVEfGr0zT9ZGvtSx7/+Smn\nTuIYZliObM77IiJ+5yvvmnokr2nGPo48RTLQyfzAQZQIBk8E8lu2STsIxBApA9LMzNBGhGfw2YsX\n2pFGQNpw+FmUyuBJOHZUXXAoEdQ5NwZzRqSIkGeY3udxHl8K5NwK7seazHUdcKgIHJWTPCbO/bv7\nh3bkKRJKaUCUCGoTQM3Nh3PmjztMEyNMJTwTWJMbwM6R31u4fSzgKXx/HNT8H26tfWFE3IuIj0bE\nByPif26t/ZU4pP3/joj4sRe9yBAkQkT8voj4d1trXxkRD+LgifBXI+LTWmvboxrhjWzJYyblI621\nbUS8GhEfiw6GZW58GGUnWsK0O6AmXZbO0J9zZzFnlCkR+rcQU6UMOBaihKhwSJmR0kT2ox+kH4ok\nQOqNJOJFt7GUwSoPjjQhmYpAPBHEOWSXaiMGPeRXYvBFyfIIyKpYsibIeZOo7xxpBugcR4pmv4og\nwzsJLYgNfbXEZ2jx3nc8wmTOmJRGlEHgndVWQsGH90fE+1tr/yQiriLiPUdVwv/ZWvveiPiZOJR+\n/PoXrcwQMQiJME3TN0fEN0dEHJUIf2aapv+gtfZ3IuIPx6FCw3si4u8f/5MPHv/9h4/Hf2iapqm1\nZmVYeP9v+woQZODfgXMMu/cOplu3oQdc1VdCEGxvcqQmnjKBYpFh6IfPEwGcJODI8JEkAlqYgQsJ\noNJ7/ZdZDLLSLkiakFp4y1SF0CkPRMyk2mDeDPo60uPD0EbWuyxT2pKM904NrHyyOt6/M+8wZ3TA\nVeLRkc6gVF6OxTsjTXI+rEojKDgxxfiqsGmariLiP3zGsW+Lg/9gN4YgEWbw5yLiA621vxwR/ygi\nvuv49++KiL95NE78WBwqMsQ0TVaG5TFkvtwOTFJC+9XAk1DpCjdXQNa1BzK13fzSzEMAELlcfxtZ\nLsRL2UW2BP8DSfPVK0Bu6SgkAsvvHnzmMmKsdAZFzvUrEUhArd5FVYoywpN6QUqRKZ+QrJQISc4a\nxsQsWIwXLVvE4DqO8oxZBo8W/yWDQiApnUESa4Z+WLwqDKkKhULh9jAciTBN04cj4sPHf/6FOFRX\nePM5FxHxNc/475+bYTmwSs8eNJX8j+XDiwCSVGdQ0ZBpYh8FDnmgQ4lAAghtANY/0zFX9Xk4pNuI\nIDCwKg7FA/JEEMfJT5Hl+8Djt5RnNLRxanCkALB0BqFEAOOMQ4ngUCuQNlpCLkK972+FwzRPwRVH\nSCWCo7KCgQDw9EM2YUlnILAoETqP0+sUCsNhKvLqMYYjEUaExUFYnAPMvSUr62D+Izyliiy5booz\nsZSJ7A8OIjymSmrx7tipdigRkNGgQT5IWnCUPSULIgW160oCKsezGQUOOexIxnzaE4GkM4jx29CG\ni0SQlRXAYCTTolb0vruQUeKRyfsN/SCpk4Z0hr1QV+73mmqSKZzIO6k/biIpmhYPAGmKSPrad40I\nPccXyfBWqJinjBcLmSgSIQkqqYJM2nJYT5IYOsCkymMMhmTy10G3QYlgyJl3lCsEGTGeHUJwnRvB\n8JFYWP1eAks5O1M+e0YbI1yDQn17hPBSz3cLCIDzzfwkgJQIhuoM5H1X55A2FNm4pFKjJH1D5V2v\nqkJLkqIxa7cvQ73h8DJwIUWtspzPG0EKgZHacL4RMs4UxsCCRN23iiIRAKSsHqyqJOMOWHsVYTiM\njEaCztvrb4OZ/3jUCgoZKQ+OXUiiRGAqAkcb861sQBsOnwFN3owTUal3njxfh9LIAUeZVwJpWIrk\n/X3XiNDpDKoE5KENxxhAUqvEt2nwRFiSnwGBVrT1X4PNZ47r9PclL43Aob7s78eOGElajBVFP0iq\nqPSA0I04TE+XZJq4pL4WCgRFIgDISYoM/IIkACo2GWFkpTOQScyyeBcRosPsyJGqEBHRRDuORaTD\nRd6xgFDl3yjUogk9G4vCox/qtxB5KMFidioB5HdFDE0NQRn6rsTifLsBqQjinA2YR7QSoT8lgpxD\nCABpzgjGEa3gcTx/fY6SbkeMs4uYQeAxc0ayuSLmeJLOIHyNHOmXqCKV8l8CQZ4jtiLQMR5pY/44\n83cAF1oIkNIoQQFSuH0cfPTuuhdjoEgEgAzXfJTOQLZVVRtIMr2MrwNVVpDVGTw7mfKOGUwRHYZo\njhKPDg8Bch1yzyRZRfoBzukFCspuvRcMSJYpnl1WZQXHdZBxpkhXUAQBOWcDcrdlP0g6g0Gt4DBW\ndIxFDriCQbXLqIhmF7RpHpEaqY0TfdPYpkbf8cN1xOIdmCerc9hmg7rvsglWccrwvjqqZznmXpW/\nT3buR0mbYGaUg3S2UDChSASADNddZKyo5kLQxg0IVDWzr6+TUYeYwMOW93siEMjcbYPcmfTzHCwy\nHHAsEByKF0euowIiMwyLjJG8CDJgUSKQiiXqODFFFCTCdqurEW9280wyqhJh8E1w+Co4BE1Z73tW\n8K/KfGbl1WelPXrSGfquQc4h992hRGBxUf874EhHU+ocUrLWEZ9loXaeC29EvQ4HFIlwRM+OVoYR\nYQRxMgZtOHIdDZI7lMusjhuqM6AKDwY5pCM337FAcEiZgbITOq/3v4w65aX7Ekh2rUC+zV3StORw\nzV8SHEoy1cZmA4gIcc4Z0Mwrc8ZzYvBoqAJBvl3tEyKbGCRBwGOsOApI+qXEKLKpJDjiJhdB4HjL\nUlQEhs21LBDCo1AovBVFIgBYnGzVxA2CUAWHgVAEMMwZRIlAzH+UUVGWfJDAYd6mzkFSZvUiAR0y\nkSo7Fneqq5Z4GXxY6n0nvqnEa0K9i6M43rN+jLFEZJ4I82H1Gfiu1DkkJcJhzuipRiGbMFUsEcd1\nN7qvEeHxRECkiYGwHGXHlJWSNHgWSRWBhla0jWF4SPqylHTUCDCema4jlcCkZK1D9SaeXUPmaIUR\nMMo4e9coEgFATnRoa/b2NdHTrn/SjtDpDGThvRN9JW2oxaxDzeBSIqhzHF4UWa7q26QgRF2HBBCT\naGPnSBEAPdmJd5WoGchCpfD8cDj8y29zC3b3z+fPISZy0leBqAwI4eGozrAQxUtWMDhK0GmpmpD0\nYxzzc1Y6g7olbMOiX/VI2lB9cZgikjfE4YlRKBTuDkUiRERM40zwPUCsPQhUx2HllZpBPzS1iEQT\nOwog+gOZZiCaVPBvkSEb+hHhM2jshfq9OlNdtwL4PfQ+j7J7r2ApvWh6Pxx5t3LHDHy7TXw4SEWg\n1EqyBegBIXcI+30kHMhS1TtSFTbom1DXWcb3H5GXXimVCEnlGT390HCkz6rxmcRFeoNG90N9V1nf\nd1Y6w1JSngrzmCLPPHp0FIkAsBS29AZopgmJoFn5fqwtpdJSi17JncEuo1rskMW9THkAD89BIpCd\nShWoWHY7DS8rIUxuwJb4IEONBRlVb7KAlEbKE4H4Kohv01V9x/FtSh8Jg7dKlvh3lPKNBI7FrPRf\nImoGQ8lph3+Dw5zRsXHCduY9RINsI8njoRdZ3zeaew2BvmUcUX0dZUFSOAkUiXBiWNL4YjFndARU\nhnvmCO6zqjPIc8DM7si7Zoud+eMWP5Mz8INFZId2bpEngmFxZ6lo4LhGfw45gSOdQaXS3QhxAAAg\nAElEQVQRnJGZ1EEAGIhGVJ5RPD9HhQeiiBhl6Z6lRCg8CZfPUwYcCk6Hf4MDTBEh2rj9DF6MUZwG\nSomwHqxBve5AkQgGIKZb6Jkdgwsp3zgKRqkRviQwY8X+NvQCQjYhyYzDOf0kgjaZkk1IkPxftWGG\nFvdJ6QyafAO/t7sXHqzKRIyQc4ZvxkFoLmemKdwKDIrGCK2M9HgEyCZiJwztmLy/X8HpMHpmRqHq\nvus21O9R1Rsi8ja1ZF+TOrIkRVOhQFAkQhLkhErs25OggkxivKcWiCRHXC1mLSUCDX4Hh3PEdYgn\nglQiyCaAhFjfM1UCjtwz8mzUdRwkQlZddbWs2oCobA8eMHHFV1DPJsvx3qNm0NA+Av0Lb+RnoDwR\nEInQdzzCUyrWkRLhSGfYkEoxFoPHfsVaVnWGwpPIUio4YgBP5asxiFVSfUWOm+CnOOYrks6gkFYm\ncpDne+ooJcIBRSIYgMwKBUnQBtp2z+iKQ4ng6OcoJfEIiHmbdFUHbShVDJksUdqE6AtZ3KnrkJ0d\nBdLETknzwXWyyiJqeb/hm0gK3EdZcxECwHMdQWYYxghyTlZ1hozHSxY7ZDXjeBdHMVYkfgaW6xgW\n3o7KCg5PBEepSbapMX+cpcWpfvRjJCXCUnCGckXLE6EwDopEiMOAacmdnruGmmCuAWsrAkSHyzgB\naSKDAECSO3EdV3WGjN0Oz+6fDmXUTyH3Q6kMIjSJQBaz8r4bguEbh/wbtQHeIdHMkkixJSHDBNJS\nncGUzmAxVpRKMg1dJQL0Q35X6/pm1K9xLMxJihcxRXR4FunKSLKJ2FvSGdQ1dBuqNLYLjhSQNe3E\nEg5Y3TOmIlrRTTthTFFP8jGKRACw7DCICRWRh6INVO+cSFkNMvOMANIhmc7CbZNUjyHTGcDzV7th\nDpXB4Zz598xCIhjegD34OB2LHYIMU0RHG8xIsu+4CydXJQK04ygV6/BnUTnEjneEtOF4Q5i8ewxp\nzZK+CQcR4UDWdRzpDKOYUcpqUkkbYyT+VuMm4X8G+bwLBRuKRABwqIMcsj1HKINSLwaZYBQcSgQX\nHLn3jsBNEkA3eglBCIDefkRoMgKRCOoE0A/1vq9t4ld3ZGNoIwsk5WUpGCWwXxKyStU5rkNIEx1r\nJC1UDbv7jsoKDh8BMjfvRKBAVATqHEcbEXrsJeZ9qo296fn2tkHmGUO4Msx8VlgIpnUpcXpQJEJE\nHPZVbndy1guRnJxLokQYBZ7cv/6c+VFSzByu6kRFQOT7CkytcPtKhBtAmqgzWCm6QV6Swlugvolp\nEJaIpTM42jCoWQzpDIW3QpvzkTb6d+alcpKkM2T5CKjFO0mrEPGfY3FPUhUcHj5k/tblKMF1Oq+x\nNDiMEzVpUnRGYVkoEuGIuQHPsTMvDbG6rxBxswcTnSFP0VHuiJE28/eMTFJ7Q3Cg8iUjIqYEJypW\nnaH/Oo6yeVmLmUKhF2sLdhVK8XDaYJ4I4jiY7lA8Is7ZAxL4WpxD5vhrERftDG0gTwSH4gXEVqov\nJzYkFgrPDWIcegooEsEAsrsvS4QZEpXJpM12MtTxfomhA+QayKxuEMj8QPKeGcwKHXfM4QBPoKWd\noA1DWoUCy/9eDjL6ijxPsnbVpfVGf1KtYw5wlIEl7Tg8EZgpYt81lgZ1V8kiUy0Ql7TX6SC8POaM\n/Rsn5L47lAiEAlBnoA0ah2pGHCe7/1nlGbUyVl9HVb4qFJaGIhGScCbu9Nmmf3DZXelzPCWTNDJy\nVVk5pPlGyA4Dy5ntn8hGSTXJCtyaOIflEN/+KiItkO2+Sh6W1FcHMlKaHGImRx46acdRio7cUl16\nDzRigOP5O74ZRng5ZNeGRbVh8U6gPA8cqaqOmCdLAUSeviO2Kr3Ckzg1RdspY4p63o9RJEIS5MRO\nFpCywoNnknKYBGZgFKf6kUDKamVglB0kR04tKvEpA1kNMilZAmKxIiJy2DWloliCAfLdiQtZFveu\nOUDm1es2tIt8DrGmdhlHkqU6ctULTyIrTliSKiaDBK5d90Jh/SgSASCDQUYl4gfZqc7C1rDCVwZ/\n54YqAi4Qv4peZC3uHfdsSbnbSwrupczckHrhMN4jwX9WtpLjXfQoDQxu9v3duHUjYooFfXYnBzKO\nqEpApMqPmsP3YDByeASoVJNz0I8slefaNk8yYCGJ1F5iPZnCwlAkAkCOPLBfieCCo2yaGnBJLWMF\ntMgQ52TlXROodIYMkqFwO1hK2dQ1IkM1gQgCER/e7HQTyvcGOe8josFBNnY3UXgTsna7dXUGz3uW\nkiaUVRZzEGKNwFFZwVOtIGeQyLiOJYWX0EijlAs7cdRTOKBIhCSoIPPmOoeBdLjmb5FpHu7Ss/ux\nos8UBe4iMHN4JqAFlcGrwLFwc/R1SXDkmS9JUrskOBQATcwBS1LejIK13bFR0hl02kxOPxgp1n8d\nR+qNAvNW0uc4bv0o69AmpGSuxX/WdRQsl1Hyu1EebuEkUCRCEiSJACorKCD5IDBwPN/Md5ZI1bci\nYia12S25jAaXcXadMQZuVZ2B9FM9X7TpaqjOkLV7r525+9s4NSNCB5BKaBCikSgRiiO4G6gFBKsS\nQUxeYYduGaMIoolyzrM47/fvkOQN6gc4SYB559z+QFIqorvBpJjmiHEGmhNHfSMHFIkAoBY7JMC4\n2Ytaxjs99TvK9znKURISwZHOoNuQTVgCqlGqRLIc0/lJaAfqyMnnL1vwlJEjC8RJXIeUzJLGioby\nXsypXJ6SUvWEGCuqspgZ/cyEJJpI7CcGNIdEnLRxaqk1DmNFy243acPwaHTZPMN7ZlIIqHb25H12\nGHiqfoA21DmONiI846LuK2lj/jh7/v3ziINI9qQigHXAIKR3oeBCkQgAjkWkYuUJa6/WZef3EV8u\nz1BGRYREUOeQhYrEacXCCJIAQCkR/fvm5DqKFCMeIBn57iQ/3LGTtaScWgVHWoWrnJ3DBFIBLapk\ndYb+fhCMopoqFDJAxtWML2IkNZqjLxmz1aml5xXJsByUIOSAIhEMWNJOtZJ2kna2YIGofBOAh5jG\nynbU1KBE3jN1jly4h642SnZ2yHUccOyYqd0uMlmonR2y07Eju9ly1w3sqqo2QCCj1CgjqQhGgVIr\nZHkinJoSwZHOkGWjpVUROWmPWdCpZP2KB6bwun0VgUtpRlQCvddB6pz+bhQKhYWjSAQAmWcuPAQO\n5xjy+1U5pHOy+wtKGqq0CVQVYR6ONIO9oQ0XHESSow2H+aIDRFYt23AEfzf6TVPB37Whjd3U30aE\n3kHagpdIEQ0b8OgsJQ8NhAiBpbqOwa2+GeaAUcAM4MQ9M/SDtOFIZ8jaIdwYSIIMTwRXdQYHJBFB\nlGTyGqQf88fJG0QIAqWMY6S3uMaCfCQcIN+3YzpyzWmFu8UUYymL7hJFIgAo+SchCNQ5rekl8Zl4\nWiDdfZiVN5HUquBgFAMpApdfhYKjDKRnd6j/txACYCfOITm1aoG/BwTAzrELpU/R/g1oB8mweFcG\n0Y7FEDFWTNpUl3404NtdUvWFinWfBPIJSSAaRipJrIBUYIMoAFQbDiKCkcTk98pTJGT1DdDGKATA\nKKhUhMIpokiEI3qCUWR4J/wKzoBbXRNPazLUGY/Ik6IrqGCITMrq2WQtQhxlER3PxbGDRBb3DiAV\ngSIRDOkMWaZayHxRHHe8zowAGGOMIBhlUZUBlK60ovtB3lSdwree++GCIqORmXSSqa0jFcFRWtOi\nzsoy1+1vovAmWHy+CotBkWgHFIlwxNwLIRei4C5u7ovjL+k22lZIpj/Vv1AdCY6yeWeGXQoHHNUK\nsp6dY2F+AwgAdQZJI1DnWFIRAPFiyYfVp3gqKxjSGRxBd0YbWXB8myONzaP4/Dgk4g5VVJ7cue94\nFpiRaD8BQHbmtbLK0YZsQo7fO5caDZwjr7OQ94x8dw6VkOXbHcY3pVDIQ5EIR9y2EuFMkAhnL4Hd\nXXUKIBEck/8obscOuGrRq3OQEiFBAYJ2OsRxohAg34TKrNmJsqgRmiQgqQjqHMdOFlMzyFMscASQ\nhGjoxUjpDKPs3mtl1Rj9jMhZqDiUCKQNor1SZU8rReT54diZd5CzKJ2hnu8TIN+MnBbBvInmAEVW\nGcZNtWEVEXEmxiLSRmEATDWeP0aRCABSZr4FC0TlZ3AvZ/BAO+IGY0UFJFPsvgrph6cd+Y6Ax+to\nQ4Hcd6lEQL4L/Z0lKgLlieBQIhAC4FrcE7ILRa6jQL7Nc4PhnTrH4YkwlkpIpRq5enP7GEnx0AuH\nEsFlrCirBMgWxglM5W9BaXH6OmoucagIHN4MjvHbRSTvDYGRHL9J+oZoxUHeoN19FEuOoURQKsDy\nVSgsDUUiAKjFG/EzUFDlvyJCjrioDQDHbpYa1tE11KTMuzPTD3JOzsBuKc+YoGYgElMHSNClUg0c\nbWQFkOQ6Cg08m50IZBrKExrDzGxNGCWF4NTA8t1BO7INsMiQhqVjwFE559BO/xjgGL+lEgGRGaqN\n/n5EeDZXHOoNBfS+OzakLARffz8cxEthGZiifEUeo0gEB5DWcf7w9Ei/kpOaDcFbTXbMzkQZSFUC\nMiJiK85x7DIS6VfWrpsiIwgBoEuJ9u+YZhEijiAzK5c1ozwj2mEicki1owIWojJwR54It/99EyxJ\nQrwktYLCSKkmvVhKP11g1XUcJoH91QhYKVF1PEeJoM5hZLTnHIWs8rprQsYtuamlaWFhKBIhCTdX\n88enR4BNVUQEIRHAQnQjzjkXJENExEbJf2ULbBHZCyL/dqQiOIAIIFlKFLShiAhwz/aD7CKj9A1p\nrKivcy1uybVLyiruawORjgpm2atsSFdQx02fVMY4gsbeBZEI5BtfC3zlV8cg1kYBUyL0t6HJaNmE\npTyj+i0ugkD1hcQ0ZE5TWNP7zJRGK/rBhW4Uz3ZAkQgRceBln/1GKIk4Cg7FoL17vX93YPuynhmY\nEmH+926A3lmfA9z7pUcAkPfLMzzI2OH35G4DEkm0QZQoJOpOWdyBc9QCnxEAog1wP0gAqXZNSSWJ\nnUrPQq9y//uufm9WWTUCqd5AhrX9ebmnlvKgbomjggeSIRNptkUyvZ4HjJQIFh+BjDZkE2lqNEUA\nKPO+CE/qRQZc/VDfnsPPgPVjHlMpEQoLQ5EIcZi25xaBKYZ3+/5Gzs71OYRE2N6bdxs43+iBTqoV\nyKKqzZtNOAgC1+I/I43AoUTYbrSTxEaYfGzQwo2kAPTfM7Xr4lAiMGNFdQ3ZBCIadNqMbkMpEYBY\nyVITWz0b5Ihu6Ad6zwyEpno2SPGkCG3QD0USRgAC10AikTQC7a3T3Q0bTmmn0kXeZfjrWMrNkusk\n9CMih1grPD/K7+C0UHTPAUUiAMhcdMNq1rFA3LzsmZA352IhCtIZSMqDgiq9l5Xfz0o89iOj1ryn\nSkT/oov2pRfkLVQ7O3m7UPocdUpWX9UikizuHMEw20UW8t8kgk+3QaL//t/CSBPVhmzCQjQ4IIk3\nNCYCvxKLEmEMqG/GQc4ertPfhiJF89QM88fJ0x+FABhlgUS+zSzVRAZJcINcjQuFcVAkggEkgFQl\nHrcP9OChlAbtJVAmAsxAZ+fzfTknu9kiUCV1eVVKxMawCkXBcNJOpQTSmefszCow867541kqAp2K\n4AhkZROwxGO/JF7fd9CG6Gra7l9SOoOjxOMoZWBZGli/EkEu3mULnjYUAZBFRjuwpB1kj5+BwVxX\ntpBTWcGhMjico75Ncs8W9CIVCoNhigmluJ0CikSIiGjzwYoMukgAeS78DF4FQdl9sTP/QHfk5gL4\nJhh2blTePNmVUWIGh5Q1a7fMIXeW9b8i4mY/3wip7329nyejduJ4RMT1jX4X1TmeNvTvvRTnEE8E\npWYg/SBEgwqqyYJo60hnkOZeGrokniedwXEdhawqMKMApZoYdmYLzw/HwlymGoHxjJVFVClNGhnl\ndZmx5vxx0g+PEsGxCeA5J6MfhULh7lAkggEoFeHt8wuvdq4baQ/mH5cy7oqIaFeiTESA3F3mvHbr\nIATAmmrNEwd4GciAhflOnHMliIoIRgBcCjLiApAVF6qv5Pca5P2qOgNTIhB1Tr8TueoLCXY30s9C\n90PX7vbAQxKI44qZidCpCEjNMH9cmeJGmDwgkpQIhSfBXORVG8QEVIyJhNAGfVVGsGpsJtdxpEWR\n8VsSEaY5QPVlJJ+QUaDVdzkx7ZJSmgrzWJIq7DZRJEJExHT7L0S7L0iEVx/oNrbzUeb0yQvZxgSK\nFetSkv0TuyMIcRAEpA0SdDEp+jzUIgLtzIoF/m6nVypXO7W418MGUxHM/x5CAFyI36tUBhE6+GOV\nFRQRob87NgbNn8TykJVKSENWVkBt9N8zR+znSIlAubtigS/8TCMi4kbc+FG8SLJAFkwLqqw5zM6r\n6gdLVzMoEQZJaXOkIjg8byJyyFdLG4O8yxGAfAVxIJmPMqDSVSpVpZCJIhGyIAgApTKIiIgzEQ5d\n7mQT0yVYzFyL3QGwE612s9nELqT5lgWEPoctzG4/MidKBEUSXJHdfYNC4JKoFcQ9UwRBRMRDcc4F\nqHqidsPQLpQqRmJQCBCg3T9xDttUF2kVhDRRxw1jBGmHfLuOMr/qKjdJnlqDxMKLAiEilFOQo6IJ\nQcZchFIiDCkvzBdl/jh53dV1WKoZuJChDdVXwEVaULvqz4+sMaBw+6i3/4AiESKkJ4JFDuvQmO3m\nw5Sb17Th4c0FkMtd9+eq70RwT4J/xw6Dvkb/b4mIuJZeBLoNrQCRTUjPA6UyiNBpBo/A4p6oCJQS\nQREEEZokuCIeEBYlQt/xCJiHKn4OM+aaB+mrUs0ThY/jniFyRrwDSOED3iOJhC1x1wJStTOKJ0LW\nbqdnd5cQa/0mgfIaBu8Vh3FuhH6PkI+AOA7El1pZZdhscKQq0L70okzj7gY34AsvpUFhJBSJAKDk\n+yhXXW1VPrrWjVzMKw32r+uO7B/py+yu+431lBIBERGGfEkFYnh3Dvq6FyqRPVgQSxKBGEQJkkA9\nlwhNACCzQqAAUEoEQgCocxRBEKFJAmaKqNIMdD9QcKjKUQI5uyPYVeaLKJ1B/Raw6GZkZP/qXcq7\nwQ8+S5htCdnh2EVm8u7+Niy7u/1NDAOH0siRioBK5xKCXryvzM9AER66DZl+aWgDDe8Gspk8G7Wn\n5fju0L6Zes/AfJbFd2SkEZwtKvnqdDHFWOk6d4kiESJSPBHiel4lMH1cr+6V0mD/uu7GjRYrSNLE\nYZiUVbtZ9ZUM2jugM1a7ncQDQgZDqI354ySwU4sMx7OL0ItzsoOkJfG6DUd9b8dOFgp2DcGfw4jM\nYe4lnx1SM/R/E1keAaN4Ebh2kQv5YEojRQBkpVWkXAZUVuh/3x3KKtscII4T3+s1EWsOkDSDSt8o\nFN6KIhEA5MBOZOYPRSrCI7BQFSSB8jKgcJgqZcCyGwYmBgvhQdQMwPRQQctQuy8xlPuzg7fPMPhz\nBIcREUupJOggMxw7iIdzhH8DkZmL73cCyhu1BESKNpmaodtwGEkuqeqNGiPUDuOhDTAGqGYGmTcJ\nHOkMBOquWsyTk8hoRz8s7RCT14R5pAHWVH5X5D0znLIn1WYMyioyjhQWgIyN54WgSAQDJu1nKEmC\nq4/pNnaP5sOh7X1DMvOJwVV5QUmmSRrB9dV8KsJmQxQRyozS4O9hKO9GQAgCx+6uY2de7YYhOaw+\nRd4TVkqyvw3HMKKuw3KZDc7rZJdR5FbsAYF7JnJrbgARodIVkPcKSYsymNpKs1HdRErI7cox1iaB\nYNw0jEUOck6mMySZnjqqIliqzaB+iO/b0A/SjoPeqSjxdkAIy0JhSSgSIR7ntzz743aw7opoUARB\nhN6pvvcOzWYQF/EzkfC8ASuIrThnArOyqmd+BlaQjlJ0KIdYLcyIEkEsVBzBnwOEIGBEw3xDGySJ\n79+WyTBFRAsmUtFgFE28AbK8G1EIoG9TvWdAjaQW74QAEKlkDiUC8zvoh4OMHAUssDcQp4PcM8c7\ngsxIDSSgx9BQt5HhZ+CovBCh54klqYTWBBKP3lSe2GpQBpcHFIlgAPEZOANqBYXNdn6K2b5Nt0FU\nE6qc2eZMT3WbNn8OMTvfqDJyugm5yHTZ2Dh2VBSJQII/ZViZFWA46rcrEiki4izBVMshh3W5XVvS\nJgz5v45gKC3olrXoCYkglAggFelMlNe9IaVzxXWYb4ojR1xDLe6WFE8j7i7h94yyQHSkERGM8nsd\ncMyJEZpIXhLPrFIebPJ/WW0GNOHoh3g2Z0C9k2HwWChQFInggGFrx6EQaOeeSKepmuhgcacmMjSh\ninPIDqIatclvIYtZBUvgDnY7tQxVNqHloaZc9VFQk+5y4VDekMWOxfRUVl+RTehrmBZ3GUqDLIM/\nx1zErtO/ICJ55KcEomhTd4zcUR1r6DbU9EwIAnIddUscGyPoniUsZonyzkHQk89OCo0qjDgZHNTr\nd92LMVAkggFEibARI/v5y5qJOLsvjr+sSy/egDKQamFNFu9boUQgMepGMCuMRJiHgyCI8OyYOPwM\nrsRuJiqtaajOgHaz1XGUdzt/HFV4sKQigJM6+xEBg8yVwGVGKSu0EBmqOg5IBFU6lxAR6joobYoQ\nHuL7JeV1tTpHNlGB2h1Bl030DEQq1mCbDfNtbMH3rcZVUmpQXWcP0kAd5rqoMo6hjVHgMHB0jDMO\ntVKrEo+FhaFIBAAVuE07MtOJie5V0MRLYoDZAlMtwngMIiFUuxDKdyFC7/65fqleiIIFsVgAEALg\ncj+/UCFtXIlz1PHDdfoJAOFDdzynPx/WsU5RAYTLAV5ex6DwIbt/S4ImowzpDKg6w3wbRBXlMLxD\nxoqyCoTnOr1wSMQJMXcOLqSy/MjM64CjxKNMzzPNnKNUetKpdaANh5pBn6Il8YY2yMJcemORnFUB\n11zk2OSR1RkcfUXiWvFbShKRgrrNBxSJEBERbXZ3VZIIYCJsW7G7/6p+FO2l+XOmR9rw4OZCniLz\ne8lOtPYI6N8Ny8rLJFABhGNXdQdypq9u5kkEQgBciOs8BAsm8o4olcAFuM6VuGlXZHd3kNmA7aiI\n40kxubpO1g6ypcyrwbAUGc2Jd/UMRP9qPHNUq4ggC1ENqd4AbTjgSGcgJKBU8Blq0Y9SnQG1YVi4\npY0j6nipZt4C9U0QUlSBfDMotjJ8m3KFj8bVeZyVEqGwMBSJAKDzYXUbTUQqiiCIiGhCabD/lOax\ndw/lKXF1Od+Xy2vdV7WYJTviajebtEECZgUkZ1flzAw7d+S3qHt2Ae7ZI7F4J4t7pRCI0CqBC7At\ncyn7qiOMK3Ed8vx3IoJ0BZhnYhzZg87uRUBF3rMzEbkxV/X54yQVhZlAqjOISqh/HJEVPAjhJd53\nks7gGXv7v29WjlSNiUBFYukHuc78OVkpT9qwtP+bcbQRAVJeUHUdlXoD+mEwm1WXcZX5VWM8GarU\nu7gHD0+97+SbccCxQUN+ryL4WD8c90SN31n07GnD8yyXjyIRjpibJOSuOjG8U9tQYBCbHl3PHr/6\ndd3GxW+cy3MeXcyf83CnX5sLIatXctkIHRyQhSoJdhVQKUnDwsySziDOUQRBRMSFuGdEiXBNytWJ\n4w9BmtCV+G4UQRDhKQNKAkQHMnZ3LbudhsU9uaVZSgQl3yaL9+1m/mUkQai6DlErMRKhX43mKN/n\nqOBxatDEC3l2/c/fMQZ4xiINdU7WuzqK8gLds/r2nhsqJUIdLxRGQ5EIcRgw5xa1iiRAztxX88dv\nXgepCK/PB6Gvf+yebOPRI3DO9TyJ8GivX5uHu3kSgS3M+nfDHCQCMXA8F3E5Uk0o0zRQ/kf9XiLv\nV0oDlUIQoRUCETpQuQQrc0VWEF8FBYf7MwkOHakIaxJDOggC0g4y8FQpbeC7amLYVCVeD/1wLO77\nFVwspW3+OJPEjwHybUq/CjCPqCEPEWvquKFSkEuJkJI2k0QAqGoELI1En6N+L7CKskCmCVlUoP0+\nQYe+qBNAI1IBQjxt9GUKy0A9ywOKRDhi7n2QSgSyq34prv/resv06pPzwd+nXnsg2yCL2UciXeER\nCHaJbF5hJxeIOSSCIggiQk4wjtQLot7YiQWCR4ZM+tEfMBMZqgy6QT8cO1nXhi0kEpgrQou45otK\nscwAzLDLLOXfllQFDdKEXFQTIll9VwYVgTJWPbTRn45kacPwjrBUhPnjap6JgGlCKsVHNyHHK4d/\nBxu/b1+JQs5BioeUtBndhqPKjyPlwUE0oW8iIX2HIOu7ykhnaIDgLRRGQpEIcfj454JvR43w3UMh\nQ73Ug8fD1+dVBEpBQKECVRJAqkmILBDUIhL1w2GsCGYpZYqWJSFWkyGqVpAky1SBeVYOsUxnSJKh\nknKjimjIumfqTRxFQnw4p38MkPJu8H2reYSkIqhzmG+KgdAE912phNgiU5AIJG1KklX9+dCHc/r6\nEUEITUM/DB4gRM3i8V6QTaSkzZD77hjPHHAsqglknNB9BQbHd0W+b/17s7amy/PgrjFFPYXHKBIB\nwKFEuHo0v0P0+mv3ZRuvXc6TCKjOPNC6qcWMQ3ZNSveMkh/mYPaJasJRnjGj3jFJ79gAjeEk3kVH\nzWxUWlOwCCSAzIKjJzJgJrJMS+WUvuOkH4dz5kGIRqUC2qF0pX7PE03wesxmFQnMCIC+a0R4dndH\n8U1w7HZaDEuJGk0ZuJqUCBZfFHHcQWgSON4zBwFAqvw4SBOdziCbkBhpoZaRvlHVGQpLQ5EIR8zt\nEslcR+KqfTW/QFQpBBERV2KR+bbzeePFCG3uRa5zjjwCbn8GIYaHqqtZ8WWWhFQtqlD+oCQRdBtM\nEt/fhppytdOIBxYFQH8TMAg1XGgQZCkRZJoQSUW4FmazKBVh/jooBUSeodthKSB9x8k5Dl8Fx8L8\n0BdFipIUL0Vo9mOk/VJNRhry6pMITYWscZfszFveowQlgkMx4cI4SoTCCBjp3doUd5AAACAASURB\nVLxLFIkQR2PFmfdByxT1NW6kq7YOIM/P5nvytpeE8UKw2r0qLeIBICKkxFC2oAOMDcm7FzEICVJI\nGJNRnpGoGRzBjlq8EyWKqEYaEfr5qjKCEfr3NkMkk7WTicYRw6LKYUSmXoG80nv9i2bHt6mI14iI\nc6G9vzJ4Ijiq3kTodAWHXwl5R3R6lm5DqyqIlNmQioCIiPnjJH1DKicN5ptZ75mDrGJqpX7yxlHl\nh7xn6jokXrFUkgDXyUCWn0GhUHgrikQ4wiHRn4NavN8DC/N72/l91be/qkmE/bUOVB9czF/n/kZP\nH9eipKVjzCYS4klsvRNHXSIwU8+XTHQOLwoSuPWC3A+S8nAjZRGIvpk9ijwxK4B4Akz+e/s7pi5I\nJRnorEp5uLrRJMJGrJgcqQgjGd5ZSu+N9CItBCkpT4ZrRHi+zYzSiqc2R6ztu1OpsY7KCo7021FS\neAsC0+mNCc9CkQhHzL0Q0liR7GaLQerlB6IGZES89PL8Oedv14v79lCeEltBEmyFIiJCqyaY8/r8\nPSMpE3KXyfDsIsA7gowk569j2dlxBFS6CQRF3GU5YisQgpH0dRQ4AmZHqJNhIkfOQcSbofpKE2Vv\n2Y5pv8KLOa/3HT+coxaI/c83K5AjeeZqcCVNZLBvWWkGjt1sR3rWKMG+Y+7NgqNsYpZSAVVnNNxX\ndU/I80VjQKGwIBSJEBEHm79nf93aEV2PDPfuzSsNNkJlEBHx4NX5c848xRkKtwCUdysCN4cSwWGI\nplzXIyBpYpAZOxY7BT8sJmOmoFtL4vsjO1ZKdp5EIGazSkbuUiLI1CoDEeGQ9ztAdv/2xAhYlizx\nENa9IPGKg5wlc4BsY0Hj9ygEwCDdsFgEarUiw5m6Kw7vDcO3W0qEZWCK8sB4jCIR4vhCdCgRyMS/\nFSTC/Vd0OsP21fnjN0BlsL8GAZMKVA2LWZaXefsBM8ntJQO7Y3dXGUWi4F8RAKAfVyJCvCJGomSB\nIAbhK/1JyMXMDnSEkBUKWROKzHdO6UWOMRdqA53TL5lW2gsynql39Rz5iMyDjRH95zASYb63zFeh\nP21GjTNp3+6Kgk4HEUHPkW2I4+wdEcfX8+giwuPfsSZY0pkTUkkLhdFQJMIRc4EmWTQrbM7nR+XN\nS7qNJka6q0/pfl481HIFZax4AUzELoG8V0EHsv2LahL8I1m1IZ1ByXtJ0K0W+BdgYX4h3CgvwPa+\nw+CPkQgqz7y/r1kSxFF2IVAAaZB2yn70NxERHiWCY/Eufw9YmCtvBjQmonPmjzsqK2SphJoycAVt\noDlADBQk2MpYvLGymP1kJSOSRRtJBL5FeTGIvN8BMudlzFaOIl8RHkWDw41fkRWtSjwuBqdGtD0L\nRSLE4WWYk1ariYyw8rIPZGfntfm39rVP3JdtvP4InCNIhIeARHgEzlFQwe4FCIYvxTlkINgYJiCP\n431/8H+pylWEJgkIEeEoiXaJriOIF3Dj5eNNkl0jcydDP6SZGQkgDQGzpaSloeypY0GEfotStIEm\nMtKVIjykyV7cNIs/i0HxtCSMsrjLQl5ZxJzrKJBuZKRNjHI/CJZEziiMspFQKFAUiXDEXFCkjXtA\nQCXSCHYgFeH64fzC/OOvvSzbIKXIHu3mXwtCEDwCi1UFRSIogiBC78yTCXkLfoqqRkAkxA6jQUUi\nXIEfrBQAV6AjzDdBpTP0pyKQ57sxaBnVgolcQu2YRkQoT1NQJVCXCEvyM3CUs3PsZiNptuxHP/PC\nUiL6x0QyFql7T+67Uk55PE9AGxbvlf4XTRnnRoyT8iAVAoi8ISqCfoLPUkpUXcPiAUIUjfo6DhJB\nzpvgPVS/F1VGEscdu/8EnrQa8lEUSbAGTDENM1bfNYpEiMcmGc+GlKqDwG13Nb/wVscjIl5//d7s\n8d+4nD9OcSlWImQ3mxmNzUP6GRhkuT6oHUI94Kigm5lZzSNLhuzwIiCpCA5kBCrIE4NMSg5VjDju\nSEVxtOGCQ0Uga8AjRZO6Rv+4yhRA+hw5FhmuU6X33opT24kc5fFlvEfre1dvvw0gRiwUCneIIhEM\nIEHZ5eX8rb661iTCJy8ezB4nZca2hiQziwnNyuDYqXS4mWdgpOc/Ul/mkNXPDKOyCFVnIA+WVAS0\nmO33PFFLJodRLGkjjbwRx8mruqZUBALH7tZZQoWHtcGhAuy9hus6BKovRJ1FKpacEk6NADx1jBKP\n3zWKRDBgDxbv15fzYfdrV1pF8Kmrea8CEjxslR46NNGgpPsREVuHkY2YpEjtbjVZunYHVDtEEaHk\n7MRkSoEEMmrHVB2PiNii4s3iONjqcNRuHkVSSaAXGcAjQDrekwBSXUM2IfuhTAQj8hbeyqAVGSta\njGKFOsugNCLnEGVVhhKBvGdaut3fj5FA0mIykFXmVY1XzBhZHNfdkOe4UhUcxJr+vUlpBClXKRQK\nt4UiEZKggswrksws8Mr5tTxnu9HDtqpG8fKmfx8SGQ3KoBsEsmKVSbIuyJPRqQhksdM/caurEHLn\n3qZ/oUr2GXVJS30VRbw48p33xKvAQHgRqN0OR6BKujqKEsFCEhmuM2fM+5v9EAOJQ63EDA/lKZaF\nWeFuoDYTLDJ0Mm+OwWUsCiOpFQrPB0K8lFphPShPhAOKRIjDkqhnYkXGioaShw+28/t/rzy4lG0Q\ntcJOEBqP9vq1aeI6JNi9EvfMseh2MeE3hioQjt1dZQJJatFrkkB3hCyadY64bEKC7O5O6sajqgk5\nwYG6rUsK3B27zKz0mmP3XhCaBkWEox+ue2ZJAem8hguO6itZdeRVVwYSRQ2DpghcwzXItLmk/H1H\nOgOpJiT7ocYZE/muVG9IOCmNJPuVsYXC0lAkwhFzH7ejxONGpBE82Ogp6KXz3ezxV96uSQS12I2I\nuBLVGV7azffjgPk2iCmiwn0wImfUiI+IUHfEUQKOtKHm3HPkiaF2ITUcO1VKEUNwA6LujYgQlSIm\nwmMQhnYyBiERRqmJjiqWJJAVDlNEFLgnScSX4s/iAHKRNyxmiHFqRtnTrG9TLe4P58zDMY9Y5iJk\njDsPkmXiUN8R6FRR1MgsyKJaEREkXGFx0e1/v0hdayJFCneLKVhseQooEuEIMuH14J4gCdTxiIi3\nvXw1e/zB23U6w/WFFiLf284vic+Br8JebO82ELqpwNzjzUB2mTXk5DDIeEOmMBVQbRwRRoRFVyt3\nB0BXVVBG1DuybCIJZAfJZR4FWbnqJNVIe54AEkG8BESJIHf3dROWWvSoosWSjAQKzwVHSkQESb3Q\n35U6A5XOVQtENI8ImBQvS/msHHLvLMLL4XvkIPBZmciFvACFk0CRCEfMyZHVN6tUBhERD+7PL/Dv\nP9C7+/dfmT/nbN53MSIidldEij5/fEPoYcGJOAZctEBUC0DTwk0TGsR4zdKV+WuAc5ZUVs1h3uaA\nY4OBtOHYhZI7d6ANmVZBYiFDPyzjCKMJZ48yRcQYJBFTIvTvuqlTLOaMhAQeaLzKgMMTwZICMMbr\njuBIeclClln0CEAqIcN1iEJAEQ22Ms6FRaB8gQ4oEuGIuQFAyQPlQjU0SfDSp2kSYfO2+eO7T8km\n4mZP/BtEwGyRmYNzDG0QifAoUPPYDZgtHcZrqpLEjpgVEqM5cfwKJJlqmbluQwHtZIkxII3MyLlM\n4U0ggaxSKxBllewHWtz3K4lQCohFJXL7H86SHOIZ0Xj7IDEPakdex3KZbhBCRH0TZKHaknbEM8wZ\nUTpD0kJMkRGOMWBJpFmh4EKRCAAO07TtvflhavOSbqOJkfD6oeZtLx5pucKl8ES4utEpEeoc4ong\nKM2mJMIuT4RRVAQqOCClJq9E9O9Y3Efovl6BSEea86G83Nuf/bNkqh5vBo1RqjOwahQqRzzH8E4n\nmzlynTUcKoI1LbyRTYwBxFdB9SXN80QdN/l3lJHk3UDPecCfZxDK2lJtBJyjvt+RSkEXbh9LmgNv\nE0UiACi/BJIzfabK5oFR7GbeEiEevX5PtnFxqUmEq938EuEaVJpQu26eNgiJIBYQJuMeshBR0FK3\nfuJFEQQRmiQgbZCdDlUW7wpIL/Tuj+6HqliRQTJEeBYIWU7ko8Bxz7JiP3kdR07tyuJYWdK0JKWr\nhkOJ4DBWdFRXclV4GCWdob69J+FIiZhqaVpYGIpEAFAeAGSiU2kE+9f1gLy7mJ+GXnt4X7Zxtdd7\niBfinAtRAjIi4lKQBMiITJxDjMjUOcyZnSze54+rcoYEJDhQSgOHEuESRDo7RDSI65D8DQFtrKkX\nKsQDxBG4rUkO6fLelNcB5yiSFzlmG8gqNdY4FE+EvGPqDdCZlSBNMm8w1iPziGqDpCKo1Jod2ThJ\nSr1Y07hZOG0Qw/HC3WOKItEeo0iEI+YmTYcZyvWlkPdf9aciPLzSKgOWE68IgH4VAemHI51BG3N5\nIhBdQxggIRhyLCBIigAxTVPnWHaIV7a7a1ErWMpdzWNJ+ymO94zJYcVxA6HpkJCPBJ2KkLOCROVX\nZWlcMCaK4xZj1e4WlqVWInfM8RY5zBlH8TNYG2TxLGSKOA/HnIeUCI4fUyiYUCQCAElXUNjv5oeg\nPTA8VKkIZHFPoHKIRwF7Lsv4LQS1s/NWOHYR1QJhs6J36BSR8fTQDrE4PhJZlQGHT4hDATISMgg+\n1EZSGoEDGYRGlrKqcDtwjAFLIsYLhSwUiRCHCWI7MxM5XLMvr+Zv9UPgVfDoGtRwFCDS7K1M3yBS\nxn5aXu3ckV0ZFdwrv4sIOgHdfsRErjD3HkdEbEEjO/HslIdAhKc6A7mOCrrZ4m49JIFHqdDfRhay\nfq8a8hxEcxZ5y6ra9B1fElyy1Ax5KxnPVLxC3lWHDxSZW3W52f6NAocnQu3+3w7WNI4QY0VZPruY\nqIVgKiPNI4pEiMMUNDfxOsoZ7YQS4fJaPwqlNHh5C8pEnunVnSrheP+s35udpCIo3Dd8xMzNnJQq\n6odazBACYCve1XsGW33HbllExEbcNHLfHYvIk9sB7jwe4XG8V+8Rec1IX9V3Q0jiyUJWzUNXb/D4\nKhDI8rqOaziqkaAUkOV84PLbNJAI5H13tIEW7+I4GQM2ohEQ8sgNCWSeLb0odD/Iq6qayaoEVPAD\njVW1eC0MhCIRIuJQxPHZH6bavd+o1VBE7Pbzt5rk5p+L2fDt9y9lG7JKROjFGynxeCaSO0mJx40q\nqWPYQSbBMBmz1SnEBFIFVCRwOxcRxAOw2lFnICUKeDZb0VfC9KqF6B5ES8pskuQyO0CUNTpQBc/X\nEOxm7Nw5FkzkHGK+qbLNCJmhd4j7x7ORRCS1UHkSZK5xzAFKjcYIAPWuyiaQEkHNJQ6VGFNEqDzz\n7m7YoLqS9d2d2lpWxSPM00a0UUkTi8GSyOnbRJEIcQi85nartLs3mNgF0fDSud6HUiTCK++4kG2g\n+s4iYiYVHhSUZD4iYjvNR0PktziMqJhqYr6vF4A0ceC+CCCJ4aHqqSJ3IiLOwVa0Wrw71CrXpOyS\nmAwI4ZUFuQsF2nDsdsr8ftKGwYzU4VaPFlWgLwrqOll+JkvyPMlYqCxpMeRIZ1iSEoERiX3HI8ic\np9twlHhEJLB4YbOUCBn+fg7izXUdB6SSrBWJUFgWikQ4Yo4IUBPm+bmueafOuXdPpyLcfzB/zkuf\nodvYa7GCJhF2/a+NSpmI8BhFNlCOUoEsZtWkvBOESITeYSCEiPKzeEB2u9VxQpqBe6YCM1bhYf44\nCZZkgAheoawSjw7JrJT/6iZ06g1oQ70iqp8RrkVVv3qDwLFD7PAAIT9FtYPIKoNaxXHfVQWHG5LO\nYkm96P/BJKVNxitA36/OIXPiuUUlRNrov2fq25yIclLMvUiNSFSPoitkLlqKB0RWFRByHVDZOgVZ\nysjCszFFKREeo0iEOMzbcxPedjM/fGzPwaT8YL6NzX2wMHtl/ni7D4LhT4LriN+j7kdExD1BAOwM\n08MVmC1JIKNAenpfpIlcgwBSKSt2xARSLBFAERC5eLtBZDkxzpSJE7oNQ3Qvc/PBNeTi/nk6NAMV\nMLNF9fxxRxUQIiJRr5GDIIjQqpgNGEdUyoPDN4eod1RfCSGiFkwROo/ckfKSpYhQ7xkpE0mIBgVC\nAktyDjw7NedlkQiO1IstmGskSQhetI0Y43cGE2dCZpD5Wfo3oDhhHuTbVPFKFjlH4FBNqDiB3He5\n6VEL08LCUCRCHNMZZgK4rZjJtvf1THfv0wXj/k6dItBemn9c0yOgRPiUJgAaocMHAMl1VHC4qkeA\n3R9wHfVkiG+GuiXIiEycQ3YpUH6gvE7/pEz66nDZzZKiS0NDh5pBNyHbQLth4jhZdKGFt9ztlE2k\neA2Qfjjk3yhXXTfTDfJ8l7TrpitaEDJy/gmTijUOJYJKvzwHJIJSxUWAFB9CRCQQq4S8UWW6mZeQ\nhmrFsWNOvs3K339+ODwR1LNZ0pi5ZEz1/kdEkQhHTLGdyUVSO++be/pl2rw6TxKcfcZLsg0VId58\nSvsq3AAL8L2oJLEDngg7kUZAUhXUOWQ3RE64prJq6teQxY46RQUpESStQjYhvQqugbSTLN4VSXAF\noiHV1x1Yzaq+LiiFPK1GvMPNXBEiJPh3yLvJotpR5le9iixXff64I82AIEtm7PC0GcoVT0B/E2R3\nX+3Mg/dMEA0bQXYczskh+BzpStpXgRBAakyUTbBys/J4v68CgTK9rF31QuHu0Fr7VyLir0fEg4jY\nRcR/PE3Tj7WDpOY7I+IrI+JhRPyJaZp+6kWvMwSJ0Fr73Ij4noh4VxzUh++bpuk7W2ufHhH/S0R8\nXkT8YkT8kWmaPj53E1pr74mIv3Bs+i9P0/Td+vp9SoTNfXWFiLOX5hfe7b5+FNP1/Krq5nVQvvER\nWAAKEoEQAJeigoPDE+HKQEQ4FgcEWddRC+IrQJ5eiWdzARiCHbiOIjRIXxVJQPqhQHahlkQ0OIJQ\nrUQgbfQbhKF0BrVQAc9XyarJolqRCCjNQP5esIDQl7EQDdJqhKS8nNg6RN2Tc0SsGdIRxTl7MPei\ntAmpmiApPkqJ0O+r4FAzuEhRR5lXNTwvyXz15JDhaFkQmJZAkv03EfFfTdP0D1trX3n89y+JiD8U\nEb/j+L/fGxF/7fj/L4QhSIQ4sCT/2TRNP9VaeyUifrK19gMR8Sci4n+bpuk7Wmt/PiL+fET8uXjG\nTTiSDv9lRHxRHMbSn2ytfXCapo/PXfyQzvDsCU+WRUQatPk2pkudijC9djV7/OoTuhtXj7SK4PJq\n/rUg1Rl2IshgSoT5wZK0oXfeSZ4qyO+XZ2g4pJ17YeCodu4jtNcEIiKAikApEQhZsRd9IQO9KovJ\nFsTyFIklLZhGiTFZ+ka/EsHheaD8Shz+HqhkbfdV1gUyRqA0MENfFCxKBEOJR6VUiKClFW9fJURK\nuEr/DtkCSRPzxBqyRK9sIU5uEEgzRk2BrI2U0ovC8Jgi4h3Hf341In75+M9fHRHfMx1e6B9prX1a\na+2fm6bpV17kIkOQCMfO/8rxnz/VWvvZiPicOPzYLzme9t0R8eE4kAhPvQnHc39gmqaPRUQciYg/\nGBF/e+76TaQznBk8Am4u5j/sdvVItrH7+PzK7NEn7sk2rq/B4v16niRwpCIQSbxqg0jzVboCkV2T\ngpaOXOXeaxCohUyEXtyrhXtExDVYEeu0if5UBMcOMdlBUm0QgoDsRKs4Jq1UlaENS5kxwyKDfJtq\nh5D0Q41FZIgYhbxxgDx/R35vVuzvqCOvwOT9QjkJCAC1cbIBBC9KmzCUklT3hKmV5o/vDeaMJK3C\n4WnjMAk8NZbBMW+i8ey0butqMUVaus5nttZ+4g3//r5pmt4H/9s/FREfaq39t3EIhf/N498/JyJ+\n6Q3nfeT4t+WSCG9Ea+3zIuJfjYgfjYjPfsyOTNP0K621zzqe9qyb8Ky/P+06742I90ZEvOv+K7Ps\nrjIaBOmBcfO6SEW40G1cfVIszAFBQODYdRsFlh0GciFHFQgp7ezPQ3XIMh3O7AQq5/LQGUc+bH8u\nqwogliQPdVRncATDBI7rOHK3SRukTJyCWjCh8pzoHCHvJh4vKgUEfVenZSIm7zuoI6/SCO6BktQb\nYayoykCTfhzO6U9nUMq5czAHXBvSSNQtIdWmycaIGkbIMKNuq8W/YV2fpkTeHF9KgxPCR6dp+qJn\nHWyt/WAcbADejG+JiC+LiP90mqa/11r7IxHxXRHx5fH0EOCFv9ahSITW2tsj4u9FxJ+apuk3ZtjS\nZ90EfHOObM77IiJ+1yufPc2VZ3Esqm8ezh+/FARBRMTlw/7HpfwdIiK2YquZBAdXIti5AcyLKhFE\nZIqKLXQEOhERO8MCQZMIuh/3xG1VxyMirpW8X6X3hC7/dDxr9qgyqjrAYGYFrqLgqFbgQJqxngqY\nyW5Y5zUObQD5r3rP9GV0mUhCIoh+EP8ONRe5CD4H+bqm3c6ssF16IoA5YC41M0ITBOQcmeIZjPBQ\n52xBnKDuCVG0qaoXZDxTpSSVUiGCkd4qLiJTrzrH4ZtCYgD5WwaaNy1VL9YzJJ48RqhOMk3Tlz/r\nWGvteyLim47/+nci4m8c//kjEfG5bzj13fFbqQ7PjWFIhNbaeRwIhL81TdP3Hf/8zx7nahzTFX71\n+Pdn3YSPxG+lPzz++4f1teeDszN1l4gSQVRFuL7Uovm9oLIfvKR9FUg5SoUHF6CUpFhUZ+1UqjH5\nnqFmdoR2qybpG44d0/sioHoApAhKlksW92SHsImtGyLvd0AFKqTUpEOJgCgTi+Fdv6w+gzRxlHCN\nAPnd4LtSO4SkhOuNgVhVUxHKdzfUvEdkhTpuUPhkwbHIcMhfkTRfEABkI+FMtLEB5jpZ6QyeNm7f\nWJGMq+Q6SvGAKjyUseITyEpnsKByIgoMvxwRvz8Oa+AvjYj/+/j3D0bEN7TWPhAHT8FPvqgfQsQg\nJMKx2sJ3RcTPTtP0V95w6IMR8Z6I+I7j///9N/z9LTehtfahiPj21to7j+d9RUR8M+nD3ISnWPdG\n7qKIQoja4f6D+cX7296lF/ckGmptnvF4+REoJSlY6HOQWK8qPJAyU8po8MFG3zNCIlwKs8mbiTgr\nzOM+6McDEfwRuaQKqLaAkifB0KWIVMjujyIrSBuXMvrvV1UQ6J1b4ACOHP77jhMsKZ2BQKURkDFC\nkW+OcrPIvZ+8I4ZUBAfhJa9hMKs7A/d9j8w3BXGOxt7544okPrQhfi9QIqiYh/hEIe+FhAotjved\nzGfqMsTPYofIZrVBA4jEEyMJMoDmIlNJ8cJdY4oJKK3uGP9RRHxna20bERdxTN+PiH8Qh8qGPx+H\n6oZf23ORIUiEiPh9EfHHI+KnW2v/+Pi3/zwO5MH3tta+LiL+34j4muOxp96EaZo+1lr71oj48eN5\nf+mxyWIPmiIRQOS2eUnsEL9DL2Y3L80fP//tD2QbhC5tZ5ezx9/2cP44wdVOL6pVWsW2gSoRgkS4\nfwbKXZFVswAxo5T9AEHZy0qGCuawc7HVcR80Qs5R4htCAKhzLkDuriIAHEZVrA19jjYR0214aqLP\nH2e7bmr3r3/BdOhL/06lwgNQNk+BVAG5FITWy+AFIKVxr8Qpl4jw6vdnUSsztvsnyBuUEgNgUCMp\nSTwhq1QJx+29fhJhC0r0sFRB4d8A5meVSngNgn2V5ncDdl+uxfPfgu/bkfJAPgnFi5O0CnUG2RhT\ni2qV7uACIfhuDKyoJDQt9tmFQsQ0Tf9HRPyep/x9ioivd11nCBLh+GOf9YV+2VPOf+ZNmKbp/RHx\n/ue5fot59lYpDc4e6A//TKzvN6+AAfeV8/nj7/402Ua8rgmAzaN5QuPeS3piv76ab0OZVUZExHxF\nSwTlIr0FuzL3t5rguRapJqrsFgIgPgnRoKB2OkieKlkgnIuuEtXElYiGSCrChXidye6+fDamnVvV\nF7Iz61AiePwMcqBk1eTbnMTzZSlP89e5EsqrCL2YuQ9y1e8BvkPliKOdWSm7BgsVmVql++FINSL5\n3YqMcCiNiCeCet+Jn0Hb9qsZyCLSUjlFfd9gSnR4gEjTUwPBS9ppBj8ih7cK2QQYBYgfSPg9yEy6\ncOeYIq06w/AYgkQYHWrN1IBbXXvl/vzx++BRvCKYiHe+otsAiyr1e87OdTqDyru8ARLxc7GjQuS/\nKvgjkkuS26nyUDfANU3tRDoCKrKoduxUE1m1LnesGwEJPClwSLez5P2nhjnT3AhaJnL+OHn+98R4\n9uAGkLPim2AeL4QE7B+LpCeCbsJiZrakxY5j7HVUk3KAyOqlUajBOBXtiMvvm/RDfDOyBQYHCVzz\nxJMYxWagCeVsoTAaikSII6s0s4CTASLYqmzvfHn+hFfF8YiI+/fmjxNtJzhH7bpNIHFPkQTIuVeV\n90JtyFMkiGpCBRko+FPBLpDmq99LdAqKnCHkDTtn/jhRIigJKTG0XFuZuF4g/meQhZkj5CIBteP3\naEUE2N0Vx1GlCbRDLK6zoEWIHBPJtJk0RujqDP3pDCo90wXHbrallKjuBqjgQhRet69EiQCkCfEJ\nEceXtJQdhQBQhtQElc6wHIxQnWEEFIlwxFw1ATk2kIjqbUJF8DZheEDwa5+Up0yfupDn3Lw2v797\nfaFlt5dX86/W9bVuQ/kIqBSCiIidaAOkXMbNXu93q56QYEiNScokMiLiUvzeC3DP1DkXYGFOFu/S\nzwC08VA8GlVDPCICeHxKOAIZ0g3HgujUIIN7tEAUxBp538U52ySjJqYiUPdMI8NY8dRA3lWlAiRG\n0JNB4jXK4m5tyDDGzeqHg5x1jDOLelfVD17UjyksHUUixOGbm1ugyQnVoR/bgdXso3k/g+lXf0M2\nMX1KeyLcPJofhHbXYDErSIQrUc0gImInFrOqekMEC+4Vrnb6M1FKBCVljoi4iv4KDmrxTkiEhxYS\nQZ4SKsODXOdCRCFXhCQSx5ElgmFn3mGbkQWZieK4BhpW+xU+xBNBpQFN4q/WhwAAIABJREFUYFmt\nSEBkrCn6eo3SlRwpTbIJIBHXbYwCshNNDBr1deaBvDcEiXA2b60UEZ7v1wGyHiri9Pnh+DYX9PkO\ng1rfrwVTTMOMkneLIhGOmPu4ZaoqWam8LhQAoOLB9ImHs8d3//R13calHsWuBRfx6JFIq4iIR9f9\nJIKSxJOKB2T3XuEe2KpWJAEquySCUBIsqWoUaGEuzhG+mxGh0wwiNOHxCKy8FVlBVAYyYELGa33H\nI1j+t7olJDVDpgkRszpx3BErkfcd+WEZ1BuKJCBjURMVacgCUYGkeBGkmG8a+kGenWqDvKuIBJRt\n9H8VDhLB4YngSEc8nNPfhvo2yVflaEOnX4J+GEgTR1Yr6qs+pVAorBxFIsRhApmbAG7EzvskC81H\nTL/22vzx13Upgt2vzRsaXn4U5MKR0nuvzwe7D6/0Vsbr1/PnsJx5kc6AdsTn2wBihjgHpoiydI/B\nZIrsdqp7okrERUSo6l2XIKJSVRMiIq5FJHMByAqHHJLU71ZQt8TFWavgj9wPRxCqbhlbmPcdp+eo\n4D5rsXMzzQ82aIxQRKNsIW/n1iGrlnnkJ7a1R9LiNuciFYVEfY/mD0/Ea8Ywx5M5T4+JwKBXphL2\np+ehbxOcQ+5JBsboxThA1WaSSlYWbhdTRNwkpR+OjiIRjpibJG7EYma6Art/H59XIlz/miYiLn5d\nLKov9eM8v69XZvtdvxeBWrw7zPnI7t+1qnhAaqYDpuHBJMysDFUgSM60LJklW9Bw5Vyqr8YhqXSU\n5iKQu5D9l4gIz5rJEcZkKQ0cuDGEu+q7YukMyrAUlApOityllzD6NudPQgF1wjviMlaURKLFnFPP\nAWeSRCC5KGMsdtiuuiIJdRtSiUCUZAaC10ECkzZGmQMcyPIjchgnFgprQ5EIoasz3IhF882lXphP\nItPg0Uf1QvXR6/O7+xvguqx+S0TETpAIyqwwIsfh39HGDrRByApZi1y2ENJmmuRuq8UOqTN+T913\nMOOC1yz0UoVI8///9t4+VtP1Ouu77vd77z1z5sw5x45rO46d4kDitFEgBNSWFCJoU1XNB6Rt0ioK\nLQJFTYqqKpWIKDSlf4DaSoi2rkJE0xahYgEqYBEhV4GmSQlR7SbgxIGkthPsY3uOfc6Z2bO/3u+7\nf7z7mPHhnPt3jZ81z7x773VJls/M88z93O/zcd9rXWutaznXaYMcon1qAdcHvOhf+6ZY7Vfh+VoR\nRKvNK57SGY7OAK2bzjpD8Jwd59nA8T35JrxMFBgjKM2cnIyIDg/Oe0aoTocmMGnIRpCkjWMnQEaD\nQ6xF2AmUweesMxz0wCHMudIYhsYLjoFDMJlh/F76JqzyDj4F4RAEEbYGltZlnf2VQT6rHZJEkKQK\nmQjUrpArEbSB9MD5OZcIrEFHYDpjXYXR1IhmQ2aFJ8z15K3MrXGNffnMnQhSAQPCaQE3G7bPmVne\nPQhzGU4mTEMSG0OTIKOLQMaB0+Fh3IfSoLibrKWaHzCPiBaPMUZZTG02gdYzT5yxe7RzX1orRrTv\nCyl36D7EXoHuq5O9gZoHjnO3gnfV6r6zH4ECj4zsdlxiHSBnTTQqJ5F8tYi1jsf3CRHZlVGZgr1g\nXxjcREJJIoTAaYdEm7KzLlD/54NnjVaEhjLzZtUeZzrm68ygBMDJZsDovmNBgtPskB2OmNUYvGbH\n+KM74pQzTGGuRyPeLsfwbCbGjZ8ZRibpM3gGZPu+OtEf0oBwIvOOoCHBMdyIrBga3h0qc+9NomoM\nHK2BrmM4BN8Io53OmtjPs8Eyob6EFeH4Phn/fZTnOGQ0wbJXNvCugkioZGYiwDu/drR1MAOge0aT\nMw+O7nfXVXDOsTIAMDunn8j8vsDRMyAjva+Wlol9QM1MhEskiaCdk9BKJY0QQxlM22NMZ7yzjyA0\nO31n9xaBkrTdtE2zWyecekEGBLVvlHjTHRor8rC074njME0GbKqSE+EIYtHm7zgqh0ASOBvdAu7r\nLCA91DnHSu2Ec87BGJakCgQfHJYkjcgIMZ6/s8xEtN4j4iyifZ9x2/ur74frOFkEtE4cjgwCF8Y4\nWxsML8ApV3LOGYKHQHoH0v5kTRAi9A6iwNkbTrpK93lUIlYdZ9fYA9CZ5cvECCvCGFa3IRrDaXts\n3FgaJ0K/wdOR6F6+E+FUR2gVhOiiBAQ9aor1Ja4YkkS4RBfFW0fteDRrHz8g9UZJo9vt44O3wAmS\nlS83OmkLOMwO2l0iJGm5ajvvy0H3SIaVUhuwS1H7RkmagPM+NPL7N5C94RjlRDRMjNtBDtPY2SyN\nyVINuJNCOgcyamWIYlKJgBP8o5/r0HteKQIIhfaUZk5+ikPOofBeT86dcx1y3pwI8Qz2ibnV9rZ9\n50dBpWakvRfTeSHmnOsEzN4wdI+MrRVBZUJWNxJLW6X7dbBMCEeIaQPbR+tFB5nt/s+CMg2I4JXk\n9T7GecBxI3snIusx0Q1Vu1yERJIIknYvhJOu9mZwSITh8yCKeNcwuo/aY5TbwFRIqiftLhESt4F0\nMjMo8k6RLkkagGHu1EOzcWDU9zuRu4ByBjbccAiEY/xHKNFbMSRyvIwNNaIHfMR9pTviRW4dZ7bb\n8d1cuqOP7TOsC8ieCCsOgYx0yqY2QJpFZSJgy1ocoR+yamgMQtE/pwTIiXZGlFYgGWkxmt3nQeUM\nTqmCJUYJq5GTRRDRrYB1FXgM+i1Rzt91KiOIkBKyShECxrCIBhojgojo6T1LJBwkiaDdZtfaRMi5\nK2NjAXr+AMYwwgczSHddsxlT50YnCQgBWx0e4BxLITzAqcZIh9OazSCYyOiOKIlxlKojFOCpzMDq\nVoFn8PMlzQTnHGeMiPTQq4Sr8nOiInf03VhZEwGCd2MgEWZD3o7p23PIqjEq73EmgkOaMLHGCKgS\niiHeIspzjD0voi2m8XgRtDZHCZpi9B5HcNozOlkT3ZFZBF8KR4B5A2tvhGiig4wpJx4PVdu9UuR5\nekgSwUAlR8RY6QrlTBNBIKGV4hAEMtpRbiFZwWnvhKnqRuouIaL9kwMv46G78cfX4HMoo8ZrIQVE\nRIBxKLHx5+gqLJHw4HnE1IfuB5y5kuZBiDHck26+146yfdzRgCBYWSSQiu5kPLHD2700Q4oR1wzJ\nREDyhsfoqyICo5nGAh6SfRMQ3iWbJ8rpilgnInQVul7jquE6kRVXCUiK9kabJBIxSBLBAC24lP5v\nwendfNpu4bi9d4pjrO8ze7Y8aS9kF3MmPC5W7XOc6D4Zu05EfAFkRZSzQ8TK1GitSUSDE1FZwj05\nN8gbGmNhqOZFZCLMjXeEhBMvDLI4gmgi9JXK6vySkK4nHa8hGSJTAQTB7pwAHQl4o72yKBDGNcQZ\nR+v2lu2sq045wwiWVmxpKkcEtPtcLdIMHrAhMyCv2rH7h4XZGwHfJokmSmzzOMR6RCnCvjjv+yIC\nKxkdSxzdowhNk4isme7TCIGT0bRFXQVjDMy8MT7OALIy0R2pibBDkgiXaL0OKxAJ3C64W8H2GML7\nL7fFDCVp86BtZC5ewiG0XhiO90WbADhfTnCMCzB2u2hQfHEMIxNhYZReEBxjaA6/dzIxskQATukF\nESvnRhbJHMag6L8UoxDtlCLMgSRwCA+aaoiGQFA2A0eIjdnCfSUH0kFEqzIvi4R/L60Tg9o9LTGi\nPMupd6e63E2QWU7vmaUBAcaukwFCp0ToKvTlIDqfFX17A0fPAsZwSATS3nA0EbxyBqrv3o9ShH0S\nRdwXYiUCVPLgdHgIuY6TKXqN7nsiEYUkES7RMvCIRNiw/6/6YptEWD0woq7H4Nyfs3PvMNBL6AF9\nsuRMhNMVRMwCor9OWj1F1Z0N2XFmn4ff60RuKPPCMTBornQ/JGkOjrdz3yOcyIXh2xGh4TnmbThO\nRoRh54zBQpKGABwZ7k4wBI6vjB+D/c6tdmcOsUbOrKPx0b4pTnnWYtleI5zIHa0RUVk1WEZgjEHZ\nChFEhCN2hnoWOIIrvtg+7jgqdE+2DoELMY1NO6Fxdw52vYkpJWRBw+5jOF1+6JSbVhIRUWpkiRrD\n8WFPuQqW4GFASSrOI8sZrgSqqrbZjlNSkgiSdmx3yzFaQpR5dWpsqPfbi9T9Vw9xjJP5tD0PY2Of\nQStCSVqCAXEG90OSzsCoDiERAoT3oq5D7dkcEiEixZDuq9fvmogIYx5WT+z28YiMB+eWUvTPajWI\nETWG1XudzrHSzLuXzRAsA7IHVfXddSJ0UdrHac2UpAJtfJxWsgRHJ8ZxZuidJ+FFaX8yAAjWt9lT\nGDLklsDaW43sLCrPc8pmIjSLjI7UBhlpzBWu45EZ7eMRTrVkkFURY+xJRoSzJ+5LG9iIKgJHjDLL\nFRL7hCQRtFvcW47iEhzE5QVHoeZQInA85/aMlAHgpf4ZBkRAXf0cjGonOkBwNnZyRK20e8MxQ9V0\npzc7EDxO5I4Mc8ehCjEw+JQQsxxbojmq+fB8rXckQkeg+xAhwZIIUT2HRIoQtHTWEZpKhDHslFZt\nV93LGchgjtCIuEpwvpmI98x7n7u/SDSClYkAXBS1b5S4XMET6HVKjWAeAZkITlkUkevOGGt4/tY8\nAvQqPBKBMpqMMai0ypgIlStYn1REFqBzGZiM0yaS1oio8o3Ek0d2Z9ghSQTtFqrWhkcO4nLRPZV1\nDiUEEm+WjsPkIELhn6OM3Q1ZZ6MjI8XZpIYB0U6HRBiCwpfTR34M13FE1cigcogoq/Ua/By6Hw4c\nATjq0Opkb5BB5RjUzk2LEEWM6EZAiBAI661W3clkDZhLHx1rHDhfFXdF6KeMADs8OGMY51wrUCaC\n49xhmUGMJkJEOQM53hEZTQ5BFKGrYGki8Cmd4ayJdF+tPYBacPdQQrCbB59DwooRsIQVE4k9QpII\n2i3KzXIGqg+EeniJDcgIp3pqpMNOB0Y5A9QIO5FKNP56Yo+x21XQvuC0TSOQYT4xSlFm8A7cMlTz\nqC5vEWBgSNIWfKaIVEYn7ZpOKU7qLryMDpnhvIwV3hFSzJb6cc43PTmZDpxSIgLV3jvEGq3xXkkE\nnoLwBO+6X4fu2SDgx1gtHmkvCiKRIt7XiDGIJPC6M3TP4POCyN31DOjbs/aiHgiAqNT8ENsJLlSM\nyZJOiPMu437WU9aUc0sjMvSwsULW2V8R1OzOcIkkES7R2iQc1p1AWQKOIUMO4nMH0AFC0tggGmhT\nPjc0Ecg4cJwdgrPBYHqoMcbU2LUpS8AyDiDy7rSAuz1e8YUAs0Hbu/eEFZ2ymfbxCGc3Iu3WyUTA\nNnKO0KDxkuxLKnovRrcxj4g6Y48UhfXbGGMN5KyjaTMZtn+NV/Lkmcxd4RArXeE4ZhHlWU4ker0n\nynmkE2roiCI8sdnuZJVzRyMyEWgMR5uBxnD2kY3T6puH6QxPi4JKIozfElCaEQHnvlOpgaNnQPdk\nbaTI96XPkkg4SBIhAEMw7CTpAM55Zs1tIkl46y1vOcExrP7OYMw6pRdkqE4G3S0Zr9MAdWfgBXlq\npNU7pQaESq33RnyNW5M2ieCQGYdQVOu057Ra3iHRZDjecB1Hv+MEuq84xgGVCDiZCJZDvCf2A92R\nvkoEIjK4RgZJOILv2/m9awgBkxbNDu0xnN9SjFLOCAIPMxECvquhccsouOe1ieSTIt7niDKSPuo3\notahiLJHmoqnq0CZRgw6h2rq+wSTN90JgH1CH/fe0TNg4tzQxYG1KEmGJ48qaRvQGvo6IEkEA9gz\n2yARZodt52465Sjz9Kh9zsHbDafrxHBE5+0eUBcrbvFImFgGcxsOiTAs3btEkM7A7jrdBYLoHCeC\nGKHwvqYe4UHR8IioOnXFWAS8Zw6wvt8Yw4ki95GHYAm07omd4qQ7R7yvY1jjne+O7tnZltdVWiOI\n7JA8wpPWVqdMiAgAo7IKM3gcfQ8kIowxRgbTsIW5OkQEkY1WWQWMYWki0PGgbDQ6J6JLwL6sVX3h\npv1eByh6eJUYkURij5AkwiVaNgI5b06E+OC5tpE5mLEROjgCrYIJR123F0xWDOH3OAbzFEJEERoC\nDli52SEius/VyQCJqN2OAKUhOwak83zpHEfxHkVPjedL5RkhXRMc4/+G2TExaeb9EB7knB8ecCYZ\nRZGdTAR6j8ZGTe3UIL2XWyqb4LmSiOvIyGgip9oRLKV5RESqpZgSvgn83oGRaYKaCAHZiFa5Woig\nIY8RsY5w2SOPcZVwVYiX7rlZ5nWs8pyACyWuCVIT4TUkiWAABcCMjX0AHRyHdwxlbljpNveZIFjc\n52V5Me/eSWK+aY/hOe+Q/hvgZDr1/Y4xRBHxtXHPyMlYQtq9JC1Ar8LRs6Dn6xiQEenQjoNwAr/n\n/pLv2QW0PPM0INrHndZdXlutgFp1TCEOGCPg90a1RCMiyTEOSUtmOjPIWXDe6duVpCV8m1YXGINo\nCClXwXl0F2+zShFIWJGHsLIVSKzOmStlvTktHiu8imtjTaRsNIecdfbniBaP2IEJRzDS+wPIDAcR\nc/VIk+6ZkxHtGftyw6icIYIgiLhnicRVQ5IIBrCOyendjJqHHN1fn7WPn7w0xTHmc06ZPV+2z3mw\n4OucgUHsGAdkZC6M+06aCI6D6KTuknNORpkkjeBCTgu4M+gUcmKUopCOgNWuMACOoXqybp9zbvRE\nJ0c0whjyxL32Q4k6QmjOU1Vvw7nvEW1eHVC22djIJKNzDi9YFJUixA4c5520FUYGETEGr3lpvO9c\niuAQEe3jXoeH7tlXEaUXljMLa55DRGA70gDBWontAC+boX08qrUiIeOSicTNQTV8tpuAJBEMYDR7\nxYbdxavgmC3YQTw9azvvDy4g3UFeKvoSeu9R9FeSziBi5mzsFLlxjJRzrO/neTjGHzveBokA92zp\nkAjrNklwbLQjpWfnqEw7oHdxaVhlc3gH5gHrfIRrHyEQJgVFTKhdYYDh7kXuIM3cUrvm69A60VfH\ni+G0PdnZjEkEIngdkmHoCEkCSTACrZndOe3jVGYgccmD55i3T3LmYWUJIVnhkCbt+26VIqzAMQfi\nVXLKDGLKiHAd4SEwO8sRmkMNCGMe+wIn48V5n7uit3aVxjn07TnddegD3zolnHtSsppIRCFJhEu0\nFlVyqpdLI0V80Tb+Xj0/wDEoiuw4qo6oFhkIF4YzS857hDPkREPmEJVxIh3OpkxR8wi9g41BmlzA\nfafnsjunewTRUrOGe2+11QpIh41ovxrxPke1miNEZCLQNCJKIhwj1LlOlBBoC1sj42UId348YcaL\ntBksvRLDYKZMBGcfId0ERyOAvs2R5Zi3jzvft0NWUItWJ4eE5uLsI/QuOkQTvUdReiX0/TplUbRP\nRKxFIaRowDyccyzShLI3eurOEEHORHResO57DyUgWyPDK7sv7AOqtleKWnxySBJBr7XrePMNjyJZ\nTreCC4gAv2KUCFC020ntdJYfIiMWhsFMjmaE0+WUIiwCUtUdZ4Z+j5VCPOoeNicj00sxbR93MhEi\nHNGINHTnvo8pZdqw/llnwIh2Gi9ahPnQRxTqKiFC5HW95JdkAK1ih2M2SiawRjjZSg6oI5FDy5BD\n7JSJ0SfhfJsRHR6cudK2aJEIcNwhiYhEcMovObofRCSTiK8xBl4jYC+KIMX7gkPO8Zpn2AkBu1FE\nJoJjoNHz6ysTgS7jOKbZ4jGxT0gS4RKtz46caiIIJOlkNWmPYUSIMS3XCrjxdUhHwIlmUwZAhHHg\niKpROrtjDI2MzYGiLkMjcjeBSOTIUFUnYbUIwcO+EvIi5krq7hKTCA6JRO9iVLSTnIgIAyJCA6Iv\njj5CeT0CywXvAUTwjadGJgKQCHXevQ5dcpzI6wPH6XIEK3mMzkNYpQj0Li4MewVLOC1dhQDC2slE\nCMgA4PKs7gGaiCwDBxGZCNnx8Okgo9tXA1XK7gyXSBJBuwWzFfWkiLdTRkCGW4TqujdGd4fYiUSz\n6jKPQYhIZXY2baObGY7jEADTo7as9q1zbiN366LtZDilKEQ0GR0+vdTNgHeeIgjUMk3immjnHZmD\nh+A4bhT9fe2sFpxIJZ3hdJuh5+tEXek1csaIWPOsTgMBqvlL0L2h1rqSNB6375pDVsoggQnOXcds\nBic7C74rh3gjIjHCyXSu49x1uidOKcKGxIQD7JWIUgXnHCvjIUB5H0nRAAIgomuCO84+oC8iYl9c\nOYt8p5OM9SwzDRL7hCQRDHjGfRuUVu2kXZOdOjWM/4lhZC4HbSPDSe1EgypiHTR2jwgH0YlmR2A0\na/+go1sLHOPZ8/Y5jvE3G7SdnbnT3st4NhHEGX03zvtOTqTTJWJgRAgJjtbECKxupwSEtETWxjww\n+mdwVSx21Q+c9Z1JBMMxo1aTG24TSSURpJlgn1OhG4Uxxhj2kbGx+K7w+8YhjPp+x3Fzsje6l03Q\nz7FaHsJa5HQKYjFSHGJvnDurDSgcj5BV8bR1umt8OMBMBMMeLagk+hgT6oAQbQbHeSfi3CLNwLZO\nl+yKoKrW7M4gJYlggRxRx6Dawgs3BYNLkmZwynNTdjKduY4W7S4PjoNIjmZEJoKTLknq/VHdGVgQ\ni8co8DXObrGT8fzFefO4kxGxgO4MC8ND9CJVkPFgiAxFlDyQ0+x0I+EolNGdwyp5oKwoHmMNk+VV\nRGh1RZCi1jQC1hFHE2EIzruT7rwl527F3xWJL04nvEY44nx0ztoQI1hu2y/jxlhYSUvEWmdgqs5+\nNjLICpqL5czCOU6bXyJeLCICsxFjymZIONEjo9u4SoTHviBGV4FxVbIqEonEGyNJBO0I05aNcAj5\n24cTbs11qPY5M0NU72DcHuMtz53iGFsjCjF50J5L0SGOwS0Pu3sQToQ4osWjM1NymlaG8VfB/h8e\n8GRvPTNvj2GQCCtqz2kIa0YogDtGCraJdNpigjCq856RQ+QYS8516M47hNcyojgbTHcnI6KvdNcI\ngU7KRIiomV8ZJMJk1l4kLBLBqlVvn7OAjkUSk+8TyHaQ+LuyBEuptM74aCjzRpK2wABEEJ6eSGD3\nkicew5kHn7MvzjtmgARcI0KMVIoiTp/8NfpCxHbmtF4kIUmnhSudMjBsgMR+IPUrdkgSQbsPe9Iw\neGZEIkyZRDg6asf3KE1VkmZ32/MYv9WIEN/nuvoIkNikV5fZPmfutJqkqHpEOFRMIjjO7HoO6b+3\njBTiw/Y5gxE/f+oz7pAIzsZORqYTMV0t2/f1/KItaCpx5oXTR35KDpGx0hol8RrCvY95n7uP4WlA\n0Bh8372e6AHaG1RGYBgUK9gmqJbdAZEMkqffQCnv0wG7VeScFxnEKj0747vCshnjvg+Mb2IObIWz\nJtJaQ3vi7hzIANmjXvX0ayIyQLbG+k3riNNemeC4HFdJ0DBC0ygCfbV4ZJ0QQ3wTvt9iBRKevLhy\nIuEiSQTtjNlWKvEUSIRbRq36rXe2jbvhXX4UgztH7ROMlbDOL/CcyUF7rgdnTJpQtKM44nzwe5yF\nf4VehhEx58vgKE4d6vKibVQPjBZw+wJHnA+dyLVBIgAB4LRfnW/a316IE2qc49TmD8ATcUoiImId\nIckMAfCMv/Zx57eQ6OFozBPhWnV2qinjYTQ1IuaG9gJ9V5ONQSIEiAlvoAzQa71H2WjGszPes1EP\nznmEkxkSud2T79+BRzS2j8dEu/mcCA74KhERhAiCwLqOcU6EcGYEkiTYB1TVkPykq48kEbRzZlqR\nZBKiGs/4ZRreAQfxzhTHoN1w8wUmCFYPeAFaXrQdr7lRI04p4msr3b193MlEWKA2g6P+jKcYESQj\nkgX33UmZpsgdRe6lmHIGJ7OGsFgarVMX7UyDB0v+rihbxUrNx64JPEZE2zSncwp3m+ExlnDO0hHN\ngzGi9Eqc30Og95kygCRps2477/XCWIuQjOS9yPk2qcuDo3mxL0RTX4gw7UkDwClFcM7pCufb9ERe\n4bjTbAQcTef7J22GCPo+qryDHOuItrcR3SgiSjP6cpjp+Uv8njnPbgU/eFOY4E0k9glJIlyiZRSx\naJ6xsZ+3l5i6ZAJgc9Ye4+yz/DgXc07vvpi3ndlTcNwk6SygnIG2DyIIJOkcon8RHQIkaQAigM7v\nvVi077uT7rzEyDy/I1R6YaWqB5QzUIaAJJ3A7zmB+yGxIesJHnY3dqx2ZnTcqnfudlxyWqc6hFf7\n+D7V5WI5wx0e40BtA3FjdPigUgSv1MjIeAFS1GklSSK+S0M4dQj9dcfGbyGhQefbHRsLGiVOWRlt\nOIajRwPBBoOsjFhn9gVO5hXdkohuUk6WgZetAOU5AW0iIzJNYjRA+nnPnDURZxLxjhirRJYzPH1U\nSdXQ9LkJSBLBAC24lIYuSdtPtSNEyzk/itOzdlT1ZG5kMxggB+HhikmEhyASFpEi7gjRUY2446g4\nmyG1GnM2Q3LeF0YGyDmcQ+SOxBkeUTW1tATPDdLkFBwv6s4hsZE5MyK304AaASdyx5Gb7uhra6Tr\nOGRGXwYT+LIaHPALgEKDpxyFon1ivYgR5oogEcgwd5x3OsfqrEElIFbXBCfzApy7gO/bIQA20OnJ\nKyMhR4URcc51coecL9NJkKZxiGTYjdE9myGi1STZVn0JTTo6QLgfBWRnDQzNk0Rin5AkwiVaGyuJ\nGZ2dsvO+AOftvkEAHC/bzruzls4MdX7CqRHdvQBHNEIx3XFmlz2RCDxG91KEuXHfT6GMhMgdiZ13\np72XA/y9hsFMJJGTdkvRzIjUTgdW673ulwlBH2SGg4jv1yIrYNkshidaZqAzcJ+1Zpbt5itWNoOj\nV9IHnKh6RKZYRKlRRETU2XlpT3My2sbQWtMTNY64Z3xO4ksRkcEXgQjnfV86TThw5sEEgEPeXJ0M\nnkQLNbszXCJJBO0M3pZTS5vu+ZLF2x5CCcDLCyYRyLmLiOxIRtu8njIACA6JEFEPHZGGOjHImwkI\neC6NyDxGsgL6e0dlIpCDH0E0OenOlEUyNZwuijJHGdTkeHkRJIrb/39FAAAgAElEQVQQ8/PlMXge\nxBEFNU5Bs82qM4cygbo0SgQgW8EpiRgdg/K+QSJEwHF2iDgdGeUMjthoH2M4iCjPiVh7I9YIFJHj\nITwNgCQawuGVb3RfXEMyEQK+zb6ICNSRCLjOsLJLluUKiX1CkgiXaEUBaTNcGc4dERFOFJLgMb+G\n443REMcR7T4PMkKdpTSiDdHQuBI5VbMRpyofztrtFx0DcgKZCE67QlQrN3ZLj7tp/56x8eiIJHAI\nAMrOcbJ3aAVwsjecrAnKd4VMZkkcmTUE/nFN9IgmSlXnEcbGSaMAvQoiETYnnIhcQIB3cMRZQpPD\n9hiLMxzCApYiGN8EE038XEZUVmF4EBEp0yHlDHwZXDctEhizs2LEhCNA995ZRYj0rFYdCRzuKYDM\nK0A/z6avDg9EZjjzsAhrOD4wLjQMKPGhb29grBKpibAHqFKFzkE3BUkiGOhDZZpEqHaAHrMBRpkk\nLakVWUD6p0UAwBjOPCzHDBAR25saJMLR7XarUOf5UueMtVFzR8a9k4niGart62wM656ijA4BcAjn\nTI0xUDfFuGdOmjEZEM51UEjSeOGpnZ3j3JHx74gz9pUcSiTC6qHxrk6gze8d3o7HzwCxujVaL64C\niFVDznwCa56XSQalVQZrRu+i1WnCeNMoqrpxhFMDyHcuReheRuJlRDAitBdQNb87h+B1PIBz9qVU\nwUFfidoB8QrzOt3fkQhbMpG4bkgSwQClXY6tVHWqU3RSO9twnB2HrFhAZkVIn/mAMZx59CVTQ5vQ\nZMzG/fR2+5xS2iSDJN0x2iISZkBE0PshuSRCdwOSMitmUCKyO6d7WyVydgZGpwmvwwPFqvj7JiJp\nbTw7kgBworv7Uh3qRJmpteL81Pk17fdsNjUyXg6AvLnorr2yO6d7JgJ1tBgaLPAQvm+nVIFWq4ia\n6iiElDMErKv0aByHyiklpHOoJZ4zF2ceEc4sEgBXyAmNaDVpXSdCS6j7EFYr0YgIP2boZp39FUFV\nzWclKUmEL6IV5T0Yt42/wwkLYkWAIh3PTNvp8JKnqj0sB83jjiFDDpEzBhl3TlkFpbpZaap4Bjuz\nA+e+t2+7ZmMe4zm185lnp4Z4GxARKxDNlLznS86M1YoOjlM01IHze6l1phOFGhrkjDEKnkGGObXE\nk/i7cnQVYtLM+Rz6aiLacy4XRoceyGYY3eL1e3QXdHGODBLBIKzpy9oamQijdZvAGw2NLAIQk3Uy\n6+j5OkSE08GBhdd4DDolSo8G54FkBo8RUTbhXad93NJmgOP7kiGwT6DyHQcRXSL6Qox4MtjFpbu9\nkkj0iSQRtHMSW0bCCBzACaSpOnBSDCmL4NlnzjvPQ+KUeGojuAM4ogHGkOOoRGx0jgFJtfnWNKiN\n3CEPMQHjvgzYUZkuu/ez3wQ4xNRmTmKiwbnva/g9hW+ZEUGMyYmhcTZG7+IRpIA7lVXoMPEQRj10\ndyLCAUW7Je5o4ET36T3bcqIR/uDBxCBWDdEL6oE9MEoihpSJYNx3FCIzxBmJKLbKGZxSQfgogEOy\ncJViX1YJQA/h+SgRyMSXYl8yEW4aUvMgsU9IEkE7g7gVSSbBu1vPsvVXRu3eXHdXbHZPbkNZxT/H\nj3N7yundo19/2Dw+fIW35YfQbcLpNEBYbjn6R6n3UUaZkzbfFZbw2lH7+Hhp/OJN+7fUdU9suSMS\nCFPZGEJzi5P2fXVspTW8Z9XJiDDIuc2g/Wyc6B+VZzniTlcJmK1ifLvDEZBzhpO5hoyW5amxB4DV\nPbjtSLPx78Ua4pWRAQA5wpY4IzBaVoYPPBuHiLIyEeC4o0TfR3cdJ2CB5QxW+jeDsgicTIR0RB8f\nnHmxHzc1ahYxWQTdxyBkOcPVQBUT7TcFSSJol87YMqyns7YDMHmOV5fx29otHsut9nFJKncg333K\nrSYH947xnMOTtud1d3mBY5DhtjAcJlr414aIHGVNRIhMSdIUHJGt09ECHF4nVbkctp2IQv0Mpd56\nJhWYirNGb08ha+LMSe8mhWgn44UyIpy0a8epgnT2ALV6r4yESlFwiBBEvKqOTsxw3L7QCEgGSVpB\nyctqYbT3WrTLkQZHhjjngUMAwHpmkJGDBWS8GPedsgCdZ0fnOG1gI9onR5T4RIhRRhARnrgyn7Mv\n6GO9iujOEQWiGh2bJ2KufbV4jGhHSdVXV+l9TySikCSCAUqrJrErSRp8xa32Cc/f5okMYel/cIpD\n1HOuiUeRIcMhxppKYwxqz+h0GoiA11cb1NtXHCGkSOTA0EQYGhFCQiUL0bjtxdm1iURY8G9ZPmgf\nP7/P5NzFRfucJdRlS9ISoszO+05jSEycOTohdI41BraBxSHwHGw1Km675cDSiZm0zxkZ36aAe6Vy\nB0nanMJedMcpzcBT8Nt0xqASkL6IJoLjDHmp+d2vQ4N47ZXh27TaPNM1cAjr+6WMBifjIULPoA/n\n3dmZ9yW26WQi7Isoomef0Ty6v6sOaB7XLQvw+qKqGhl9NwFJIlyiFQEgY8hZ+euiHTEtr5zwGBdt\nAmD9G0wiLF/hxfLiuJ3RcHI2wzEeLtqOmaOrENFmyukkQHD2DmyLaPzei7P2PdtuOCV+cL89W0fP\ngJToHQyMVGXC0ojMnp63y2ZOl0wiOA4+gQgvx5B1dBMiooxOlKkrnBRx4pmoh7jktaOkYUbGuzqC\nMqEKJUCSNL5of7/OO7KCLhDDh7xGFCc3f0+8GdYzcDQR2sdHVmtkPEUFXoEYnRAn06i7kGSEK2N1\naCHNC+e+o4PI6N7zJuaeOcVI/ZBvTqDoyc8irsUjXccg54AB8Egi0LQxbC/SCkrNhESfSBJBu+Wy\n9emSqraVMv3xts7A1tBEXBy3F5jTY3bu10ZUlZTm718YJMKqTUQsjFIEru3EIbQ0rkNwjK4pRDPJ\n+ZOkizncM8Op3sB1SDRT4vp+B05KPGWrOETTGZwzN6L7NNcDw8mkd8QxqCOijM53RddxWjxG1DKj\nqrpVQ96PsUvZZtSdRZJm520HfzHn9301h24FBokwcIQVYZitEYThMiEeg56vQ7ytA953pwVcRAbA\nEN55K828pw4OBCt7Y0/8nQhnlcaIijHTPduXDJ8IRJWA4D0JeA+v0W1PGEhNhB2SRDCwhlT01UO2\nqBb3wDF/wNL7JxDdd9L7SVRNkhbgeL1qRHcfUv1vQPTXqctcwnW8iClf6LkAw40IgAvDIT4D8uYM\nnovEhEeU3UfG+9wgM+gcJzJPDuDK8JiIaHDeDqveGcsIjOwcOIeOS9ISbsnCkKJfgpcRVetKKx5m\nmkka3Gp/e0NovShJR9u2QG/9HA6BmUQrQ5xx6Iir0jxA70DisretQXhx+Q6PQUSys86cG+dcwDu/\nMG77GDYkK3UbjjtEBBF8zjqzNiZLJU0RnRW8MbqvRQSrHa1xnYiONNS16iqVM0TAIwm7z5a+ia1h\nnyMjsi/MXOJGIEmES7SikRSpXC/ZwDg9aaddv2pE98/WbQfRiZg7QlTU9cBxZskRidiArD7UdNyY\nh9Nqju7rzFDnp7RqR4xyDpkm58azIwPRi4bhKUZUvXtk3gHWKQYQTQ4RNTB+C52zNYjEiLkO4aY4\n6d/07Koxj7FxHRLOGxndGcpRe+0dPM8k8GTWFkU4XHE62sUr7TVgY7RejGh76wRhKBOhL9D3G9Wd\nIURYkS/TGR4R0c+zi4gQY7tZ5/fCIBECgM53FyEAGAFnrn2JIvYBZw1AzZOA3zKs6ZJdFWQmwg75\nxhoYQL9rx1iiKLOTgsiLlLFJWambT54AiADVfkqS4Pd6dapGOQMQAIcH7SikxC3PFkYWgXVPOsJx\n3B1mP6I2nwx3x/if0bMznMzDUfsch+CLUF531pE53LOxcc+WVMtsqdl31zxx7isZ5kNY3yWpjIB8\nuwOiCZLK7XZ3nSlo3kjSdtk+Z2MQ2pawYsAYLKxo3Hf8vruXGjnvqtddpXvWG+Gmma370tEggniL\nQi9EU8QYe2InOvCyROj7dtYRIN8tVYxEYn+QJMIlWgvzaAwOghMNgzGoRaAUE3WdGPXdtBhG6Aw4\noIXd2aRmAdEwx8g8gEyDozsGiQAK8BsnpRaIBk+8j1LmDYfY2JUjskSoFMHRMzgYwrMbs3M3hutY\nvdmN57uALCHnXY0wEIew6NFxSVqC8+6oYTsZD5MAZ7YCK1agJaIk6W67A8/g7dw6d/Lw1ebxzXGM\nSxWREbuFB+i0xaQMrrWRWTWDvdUpidgYbCRpvDiOCpXoOaQoZd5sjND8FM45tCzH7mUTESJx++LM\nRpBI+wTa0/bktlvwMifhuGFr0v48NUqFmUa6aVRj/6iq2uZ9lpQkgqRdOlzr46Ye4QM4LkljiFRO\n4bgUI5jjpNWT+B6VO0hsmJPBFYVVTzs3qYRPbhsK8M+3N4dnNMcxiGgYGiKgSxjDMbqdcyKYfSLF\nbk+YvDmctEmCyYS/GXK6lkunFIXPKeBlOM4fiU06IoFjuNDYsMoq5iHjEJZTRUuAtRZBdx0dG8q4\ns3ZJhNPmd/SORfN4mTARUQ1NhAo9/iziZQvEmtHRYgR6RBODvBkP6H3n+zE21rMJjLM1XmhKirHK\nouAcJwQQUZrhrCNcnhVQetOT806X2ScSIUTPICKzZk+YBqd0jr5NQwZItPROCuwRicSeIUmES7Q2\nXiIJqP2XJB2ct52Z20bXBCqboHR4iTMiJOn0rK3fQE6mJBV4tfpoMydxVN0xUpwMEDIQhrcMlvod\nt5rHZ1BTLUnPDdrOzOw+R9VXSxASNd5Vp+c9OW9Dw7gnB//gyMgiOIRMI+NVXZ3D7+Xuq967CM6M\nM9cRGPeOo0LOe0R7t75CWRvD+tue0rrJD3hAFvPbn8MxytvuNI87ybD1nL+JCu0oi/FtbiF0NzJS\nTcar9n0fwXFJGga879Y3AUuAccvQE41Iu048GfRRMx+FiKnECCs+eUFLbx4MmotD4HM5g/PtZgR8\nH5CaCDskiaDLFo+Nb3fYLmXV6Hk23Y5mEKm+dYZjFHhao2djjIeDF9tGZnmJV8tzSMtyItURoOs4\nKWgOiTCBlNliFJqXO+0XbXjALPVs2n6PJieGAzGHfvZG/74tJ00g6H2XpMG0fV/LzIq7NY/WC6Pu\nGjyEteHsWGr1kEUwHfB1loP2daZwXJI2sIFOQsJu/Yh7OdiCtP7mjN+R4fykeXx0q03eSpJAV6Hc\nZYFHDZiMJJQ1ryNDaCW5JWl+SUO470QQSJxpQKSaZNY7R2gvwHGPzGifszK8HdIRcQRNnTavg4Cu\nCBEBiX1y8PcBfXWJiMhG7AvIeTviqxF+Z3ZfSOwRkkSQJNWmQNPwCCKm72pHhyRpCMaflcR0BB0c\n7j7DY7xyjKcMP/rp5vHBkKNu58ftX+SkdxOsOnOIiFNkV+I2Y5I0HXPKO2IIZNRb25kKkjSAlOjB\n0pgnqSIaacgxUsWOpQpznRukyUk7RXxjMCJlBA6EUf/tZBJRJ4GhUSNOTpWT3j2krCjLYequiO5k\nXtBb5NTmEzbMAWu7aD+7wZ2HOMaA9gDYZyRTvwG+32IQAIMFpNXDcYm/G+ebodILR5zT8ZciukDQ\nVEjvQOJvL2IMS5DYOMd4E/cC+9TOsI88E4cA6kOvYp/c5ZB3AMZY79UvTrwpalWtV2X1erJIEkG7\nzb0lbDh4Bm7T25/Ha9Tf/NXt44dGTcQMDEgjgjj41Kf4nAdtkmB2+jKPMW6XbyxPnTpzEO5xsgiA\nRKBe5pKXmk+GKkUyJUln4KwaDoKO4JxbhmnXV5oWie858ziBWnSHRKDMC8PZqQEc0sCIiFLk1WlX\nOIRylIhyBk+rgOruY1ri0bfpEDwFe6/xPVudtmc7usdk1eB5IHDvMtGoibHtAylajFA0ZV85WkLU\nGckq4QsgzZxshSF4Gc53RS6iM8bEyEYiYFtU5344Hafg1nu8S/dshkGA4NS+pN4HcFUW9oVYiSBV\n9sV1r5llkLhiSBJBu0hEy5AoU4juHXAaan0GshWODBIBdtzykLMMdGYIgBECwhBWmzHapfqpiAgR\ngVy3M5klSaN77ZOsn3sA6r4G0YSWnTOGI5tPMLIm6qvtEPDmcxwiXt+HUoRTfv7L8/ZSSjoTkrQw\nsnOWQAA4avVUnmO1moRzSIvEOYdazUquY9aG5T8E8F3Li/azKff4fR/ebWcrDKgVpWTmiHe/r5Wu\n47SBhXOcad60ytU+UsCt+x5wTkituuFm4qvak2+3L2UVG+MB7wsRsS+ClbkW3SzUfJqSkkSQtNtk\nmqnxlN59xjWmg3v3YBLGCnQMnuhnv8BjnPBcty+1o12rl/njOX+lXc6wmPOrR867U86wAnVvqyTC\nUeaGCPD6vJ0yL0mrl9pR8+HpAxwDnR3qISbF5JgGtDveXhjR3Qft53fxkAuFVivKVjFKXiBbZWU4\n98uAcxzR07N1+56cG/OYw3XmBgGwpFaiAUJVEq8jxYiqFkitoHIWSdqCgOMCiChJmnyuvUaMp8xW\nlkOjeG7ZXgSqUc5A68jWqaqA98z5Nun5O6SZ1wKu+3VwHsY59Ek45RvkmEV0iko8GXjim09+HonH\nh9MaOZHYJySJoB2j2hLg2561I0SDz7Z7d0uSPt92AMlxl6TNy+0Sgc2pYQwbbWg3wDOcvMSZF8cn\n7bT6i1X3V8+KmIKR6ZAITiTjzrRNEqwXRqnJg/bzW75qONVz6KxgRMRJrT6qPSeN45SRXKxAe8Po\nJNEHIt5V5xyn/eop3JNz576TQ2yQCFTh4/CqTlstrIl39BuARIAugpfXaR8nkkGSlkCaDV7ikojh\n3e4sYZ0bQqFzElbk61A5mrNGrHpqWUvfuMPfEpy1l74bJ1MB9R1wBM+ZpXNiBP66a170Ve4Qob3h\nwJB5xjMiNBGwSuwKIePSNwk1uzNcIkkE7TbmlvG9OYEygnsGAQCt9U4/xY/i/KztmDsO8dERR8TJ\ncLsPBIEk3b9o6zc4zk5EmuKCIlk4gmcwHY3az9fSXliAY3bBEcSHp+37fr7kMdgYdqJ/eAq+r47j\nvYG5RERcnJrpCGM4hkTgMYgkODeyGSjTgPphSxIFs51HR727Jf5+B8YuWI7a383wttGO9LhNRi8v\neCJEEg4fGOIcA/bey6R91xydkA1sNVvIAJL6yfBx9iIq35GkBZBATolPxDywI5Gxfl+lSHWEndD1\nGomrjb6eL+5FvcwikYhDkgiXaDksWzCG6jlHZVb328dPHoJooqSTeTsDwGPt+SQy3I5hHpL0ECLE\na8MYogXVcTIpIuoYGK3OHS4c0TyCQ0Qs1u1PmlLZJSZePOfeSRGGchUcISYrgiLRY6c7R0Dvpoj7\najkZSBJ1nwc1zdiNwecQQmpqDSai3GqncA2N8ODsop3itf087yMkJrsFIlLyCAB6gNtld7HRrcF3\nEBnpfP/4zQTodzjXiShncOAEEwgRnSacKDO+8cYY9CZuA/Q9IjIR+kJEpoKnRdH9QhHZDBFw7lnE\nfpW4HqhSZiJcIkmES7TqBAsFKgwp8u0KareN9P5zcBCdvfJi0T0STfOQpIsAR5RE05wxqHbbwdYR\nEgQ4ddcEK72b6swNh5ii2Y6T6RjdROD0ZXRjOzMjE6Ev0Ewiarct2Yzumnkh6EvMqhy1idPyHHdF\nGMPDmS64FIE6PDjwOolcDYvZebYUeY9az+i7cZwQcrwdPQOC19KS2mL2gwhxxn1B1G+JyHqLEJKM\n6IqxLwgR8IwgxbsPkUj0iiQRxN0ZBtRZceakd0O9u1G77YimEfpyzAgO8xuRhkiwyAxjd6Bo9mhi\ntJGDxzua8xjUAjCiJ/pVSrlzfu8ESIKjEXtdh3DO1qlCNdYAiv6sAnrAj4yoG92Rvt4RJ0BIDuAG\nCF5J3G3k7S/gEIOj9kYyW32ax/hMuxTBaV1dnPINEpLkITSckiaC8a5ClshVWos8jYAn73lZ7RmJ\nWHV0FQL2b89OaOMqObMOsGlVgNnkjOFoq14n9NF9cXtFyNtEdmd4DUkiGMAe4WNHvK1t3Xl1iu15\nOMaBU99NDrGTuj2FsIsTlaGrWIZsD0aZxM77+JZhdAFZtd2wM3tw2nYyDg1Hld4jJ5th2BPhRcYs\nEQSSdDRu39fbk7agqSRNgURwOi8MZKieApy3ne6rkyLO3fu6W7JORoSTMk0G8XppvKtz0BE44HI0\n3bndPDw440yE8frzzeMb0F2QpGLlovMpeB2wLhwhckf0sg84hHaEM1vgOs48IogI7M7Q+QqX41DZ\nRICd4KwREQ0N2bmPuWt9kATUkEyShgG/h7IZ6HuIglVWAetVSGldbzk+iUQMkkTQbmNuOvFk7Bir\nh1P/SSACYDbiMNR00n0iI8MxC3HeA2rmCVEZEeR4De8YGQ/Pt1OmD0Ysivns/Lx9DePZLaFcxSER\n1gaJEOFo0jdxC7pmSNLhYZskGE+716qfnrKOyCZAWNERvRwT4eWQkXCKo82ADgSOYFWSIeaGYOn2\nC2fN44NXjfarb/+K9vF3vhWHGBLRsD3GMaqhZxDSKpbm4ehmBJTFrbHEq3upgjOXCBFfEm+UeI3w\noszddVOcFq0UTLCCDVdEWDEqIyIiE4HvGaOfcobunUQcRJSARGQqDJ13lTbOPlImbjyyO8NrSBJB\nr7V47LASUaqrpMkz7Rfu+eO28ydxC7Dbz3Ak6+A5JhGo7vaZOUdMaR1bGJFZcoichZ8coiiRQMLg\nFn9qg3c91z5+h9+ROwftPvG37nMnERREM1qzOT3gCU6gYwiNQoa3jcjdYftddJyuzTH84Hs4BBIR\nEpNVA8dyBzjOO/WzdqJ/U7D+nDaRh0ZWFBGa58Z6tvps2zmfzD6DY5QlfFjP38Ex9NZnm4cHJ0ya\nbU84s6Ziew0jdostPPuJulFk3iGinHPoPesvqkqlKN27zYyMIMHE8O7oDCuzCn/OzXKqIhIeHD+U\niLUIMqMvhGgiGN/3EG7a2NLfwqimMUYiEYMkES7RKhXAHuF3OJX14H3tD/8d72Tjr0zbzs7gKwwj\n1Fi1159sR9XesmRHdPygvZBdQPcGiTUgnKjrHNL3HYLAaZtHgoZOX3VN4HN85/M4xOj5tsDbiBwZ\nSaKNbGtsUo4VQtbOyMipjlCZWkCd+SvtKLQk1XWb4BnP+PlP5vxsJiDA6uimULcRIggkI5vByc4K\nEN+wyhngOHU0kaTze+13cX3C78js+FPN48OvhUwFSbp92Dxc7raPS1JZGmsR5DM72gt0jhPI2Zeg\nmqclA3aC4XhHtL2lzAtc3xUT7R5YUWTI3nBKmnpIM3cQERF3gMtmRCaCExCPiLz3dM9oHXHcbia8\nuutNJa4OMhNhhyQRLtFpPbxjGG7vbhuIVgnqEM6asGOuM45mD8/akaqDe0wiLObtMZzUbYLTeXEN\nBpMT/XVArROXn+fJjl5pZxHobXd5InfbddcaG++I47xHIKDrhc4h++YB3FNJOmm33qvwPUjS9qy9\ngqyXfE8pdVviVGUnw2cO58yNb5O6nswD2uYtjTEsNXO4JUQ0StL8vP3d0HFJWsOaeEsv4RjD3wRE\noqHPUw55rnVBLAGvZxE2FmUrRJQAORkvzjdB72tEizinDh3najyXc/i+z42yCmcNoNfMuWd9CDBH\nIKKzhoO+0vv3RaTb6yQRMUb350daEx5pms5rYn+QJMIlWqmImM4MkUxvAobjRlbZBZczaMEOEcFS\n9yZhJkdFHurdrSgFMA0Oh+AYbgswuk5e4pr48a+2M0CGx/x8MSvm0BDvG8MDdqyUCCJibYQ777cj\nwNvPM+G1uQ+iiK/wi7Y4ad+z8zO+705a/QIcXkevgn6NY+xS6vbEEc3Da/AYTnSXsiZIFFVi425u\ntM5dLOC7+sdM8B4tv9A8PnwL1PdIqkbGC2VObedGVH0BdfWGoGUE2UzLlaPfMzbOIQ5wECBY6iBG\n4K2NacA3I0ljykTgIbTdk3SVvjIR6Nn0Vc5AnQQiOqdEucv0TVhkVUA2wwnsetmd4aqgKsmcHZJE\n0G5xaBnfy5fBCP0Mi1kVSIl2DLvtWfscrmPl+m+JFb5PX2Jn59WTdnbGw4VRhwwGpMOEn0PU1SlV\ncPQyZlCbfXzCxv3wk+0xJp8zSl5Km2goIyPljgigiLI9CdfgrdF6b3EGUXVDNG+xbBMvayO6j9FO\nI9p9bqTVn8E5F0Y2wwX8HicyS0aX882Q+KJXEcPXmQzaDrGTdj0atV/W9Tk/39MlZCvd4+d/96JN\nNBy9hcsqSEfEwaadvCNJWs3hm5gb7zsQaw+XvI8cQwnQQzguSadG5J0yEUIIAuOcM2OtwTECMhGs\nqpkAgb/rBMf/J7IiYOsNie7vR57CDjGZCBEdh0iM8qa98YmrjiQRtFOJb6XvXRy3jb/Br7Nzd/5y\ne0d99f4RjkG1u5Mh79pvfetDPIe2oVeOuXzj8+dtS5UMO4k1DxylajKGHIfJwQuT9r0/MzQgBO/A\n9j4PcQ6OihOp7kv8l9qaOnMlIslxZqkO2QFFM51uBeTcS9LpurtxfwHnOP2/I0iEiPTuiRERnULZ\nzMgQZxyNu0cdjsHhfbDkbKUHi/Y5L5wa4qt3mAGYHLTXM0cUkUp4LozMGyKbXzbI6Jfm7TXx/pJ/\ny+naIRG6v9Bj8BCPDIutkiCx4Qw9hOTKEyP50pEBilgDaD8K6qzYGVH7ZkRXG4Kz2tGzi5iH8+wi\n7qvze6kG3iG0N7BGLB2xmcTTR01NhNeQJIJey0R48wWAIiYDI9353svPNI9/5pRJBHJEpkb7PqeM\ngNpAHs/Z2OWIqRPd7a7ePieHyYl28ikIZ6O7AGLFiVS/Co4K1bI7cBj5iJrKgC5yIYaMk6Y6gW/P\nuWfk3Ev8PtNxiUkCj0ToXv+9CbD+vPZ8UHphkK8DIBqcdZXu2akRQaayKRJ4dXFr3SbGB0P+vUsi\nEQxildY8Zz2jBL2IVoTOOV5rRXAyLP2G9nHuZiCdA2kyN99Ry0IAAB0RSURBVG4I1X9L/SQEGzxj\nL0RDXw5xX+ijrMJBxHWc3B3awyOIF6uc4Sq9JIlrjyQRLtFaICjqsjU2dnQQLWMIxMyMPPP7c+4k\nMVsBiWCkkEZETDnKjENoEeAwOe29IkST+Pd2F7xzUl37SHWU9odEoNp7p+5+te2eQuwIkdE5TvQv\nQgCOCACPRGofd5wux34ktfqxQyLATkn6LRL/Hqc8i57/xYa39BODBCZMxnzPFksgAIy1iPY8L+Ol\ne5mBQ3jR++x8V9hJxPi+WUW+O/Hm/BbLqYKbHyISaHiZDtGA1+k+hAWaq8MjRtT3VxhkuFcFDU8e\ndD8kXmscEiFC4DHRDVVSTU0ESUkifBGtjzsi3ZlSCGOiu06dIrtVA+BlHR0BOscxmDFiaowRYdhF\nIIItd5xZMrqciKnV3wngfDMRNcJoDDk/BetyeRAqZ3B+q0OaRLzPPEZ3YyhiHpYmgmH9R5BR9N04\n3ya31uw+Uec9c8jIpZEp1vU6Tlr9vsB5MiGtBJFo6p7x4swTWwD2tG9a3Vew/M5Yz2CDdsaIgEXQ\n0x5/hb6rvtCHuxdiz6RjmrhiSBJBrLO5hag5HZekdUBEhZxm52FSezcHTtYER0yd39s+7qRlcuq2\nIwFvOAhwS8ZGpLIPZW6HvMGUO2MMy+imMaxoF1mQPEYEs99XL3I07gPIyIgsAotEIGFNp3MKn4Jz\nIdFESRqMgUQw0vuJaIjo725lMzh7AGgNOCUglMFHe6IkrckhxhGMdcZyurp/4M56Ru8qyy9LywAy\nKsJn3ifHm0Diqn2t730hRDdhT8Qm+nK7I95nsjWcTAQiiTJToQ/U1ES4RJII2pH/rUWVnCanvddp\nQDkDGuaGs+s4gCx41712m8oMJDZkvMgtLbjdx3DgGN0YubOeXUSqekAki0/B5xtx3x07h86hFoGS\n1/KM4IywBE/TEXcbwA/uKzuHEEFESPyejY3U/NHt9vGD+6w0dziCMjFHfBUMSHK6JWlplN7QWhPx\nbZK+g8R7jUW+wzti1e7vSamys+cZfFbIdQiO0FyE887ZdxHCuZ2HCAOW3wVcw9m/A5o4I5xvKqIb\nhQN6j5x3hL7NgUNo9qV8nUgYSBJBu2+y5Sg4fcQJUxDmumVEw2hDPTRUxp+dLvEcSru9M+bXBuv7\nA5xZx9AhAzFCDEeSDoAkOJzxfV+DjoTT4YHeAcf4p3pYR5nd6+9NZ3Qv33D6u09hZ58ZWSSHo/bz\nd4xhake6m0v7nMOho5vRPu58mxHijOQAOt+dY7jN4PmOobOKJI2eb695z2z5+37Htt0ZZ/gq/+Cz\ndXsNcN4zp2yC9jzaIyS2dTdGJOdg2z7H2fOWIGrjZIBMDS0Cep8jMnyc952y4hxMYQzn23QiokRW\nOZYX3ZIIXYUIOGUGETowIToSEdkdPc2jL5eZswB5JifQtnpoUTP0gWeEvB9kJw0pSQQLI3AQHKeK\n0tkdo2wMxvBtiHRJ0t3ZHM8hkbBFQEnE3Ehl5VZ0RtQNjju6Cs5GRp0xjm5zG9BKJSBGd4YzyHiJ\ncO6d9N+ISKUD6opwC75dSToataPIB8Z3NQZnxnl2Y0OwlIWZGFtqAee0xYRTLHEvWAKisgWxF72j\nvXDQfn7jd/Hzfe6ovQYcvPgqjnH/C+32uhGiiQ4cbRXaF5cOEWHP6MnCmUeE0xThEPVTrmQ8f75M\nL85qRDbDVUJMbX539DWPfSk1iZjH0BBHT5IgsU9IEkE7I7K1AMwO2k7GeMYf9TvBoLpzwcbfwbg9\nj7vPcY/wgxfYqdpAG/HJPR5jfHyrefzhih2mY3CIF4auwgAWZSPIbJFER+BoHr6V79nwTnuus3sP\ncIznX2m/A9R2TfJ+L2FjpCqTKJ6jeE+p6JMZEwCjg+6b8vqi/XtPH3JXlMEJWyGUAu60vLsqBrMX\nVedzqMXfxTmvRXdOoOXhEW+lwzvtLIKjGa8RkzunzeO3XmKSmFoWS9IaiGJHB2hJ7RmN7gwEj9CE\n48bn75SJUPZNRBeIoZGaH+FT0TwihFMlvifOWkV8htVakU9BcIYAX2VfSskcRDw7QsQ7FAXsrmO1\nRg6YSJYr7AFSE+E1JIlwiZYxMjloG3cH72HD/ei3QEx8zcZfmbSvUw6MKNSMH3l90J5LGTFZQZGq\n4cM2ySDx5jAubIRSlQhlO0hSMaruplDOUNhP0eBO+6TphB3iydvgnK0jzdUT6LYaVkih/puQ/i9J\nIi2Kc6MF4KvtF20yN56dkTUxAuJlXwgCZx5DMN0dh8lJ3SbD7cHZAY5x++PtNXE45UyjUTuJQCMg\nEZ1zbg34PZs+5Pdsed7+bhwiYgPfleNUEULEaI1zHN2EEMcbrlMdkd+A/I0I4dQIHQnrOvBzHSOX\nrhOhIXiVXL8IqdGId8Txl0NaQQeQVV55La0RvNCkcGJin5AkgnaLYSs1fn7ajiAdrNlwG9x1RLM6\nIkLeW8LV0vHLiESwlPcDlLnJ+IvoViBJ5xR1e4kdhJmASHJ+cEA9bNkXT9TqmQzHjZ2dMm9Wp0bp\nzUmbALp/wo7qKxecrfAyiLi+bGSaPIS6TKtzCn5X3aNuK0skEk8RcK+6d87PZvPp9oXo+5ekGZBE\nX3HnBMc4eqZNRg+M1IwNPH9J2oA+i5NpRCU8p4bGywlkKxzDPCXpAfzeh6yJqXNjHVnCCx2Rmj02\n1nd63x2QQKujeRLRKtYBCisGkCoRW2KUeRYxl4gdfl9KbzztDXNCDRCp7bzvC2AJH5Z2pllin5CZ\nCFKSCJJ2i2HLRjg7azsIs0+zFTI5aUfvqxEg3kCwaz1n62E47f7izx+y8XcM0b1jo/77IRmhhgF5\nDg6R4zCREJ0kfRYcwNv/5DkcY/Ri+9lERO6uElaGo0L97B0leuqKYYlRQjjM6b7yEMp3JOnlZXuc\n+0ue6xk4ROQMSTFRVyb4Yt73GTjWLxqlZFRa5TxfOuMzZ5CqIOnZl9skgiOc63SKIdB3J0kny/Y+\n8cAgER6s2tchQmx3Dhxf8ntmkQgUZQzwZGaGcCrcMgtzcHYooiqxQK/E37ilVg9wsggirtOXkGAf\n3Sgi2hk686DreJ2gHH2W9vGITBOPOG+fc16YSE4k9glJImgX8W45pJ86fqb57z93wqn5D8FgIiNV\nYmdmZihVPzdhwoOE5DaGatoDIAleXfLvfbBqG0wna57HOZzjtMRzHKIXL+j3QI84GR0tjPu+CFC8\n76/vcvv4NqDeOcIocwJ7rETPY5wbRCI5RKdGawVyiBwHgQw35/euQHnfylayDMj2t3nPIF/Px+0H\n7JVFtfGq4f3N5u195NbIKM0wymao24iDCyBWTozfewJEMa3vkjSH931h/FRnn1iC4x1Bio0NT3UJ\nv8dxmGgNcLKEnN+77qGumFraSjEkQl+gnxPxW5x1leDMI+I6IftERFmUQyLAhVYDLotL7ANqnPLz\nFUeSCNql5t1rZJL/k/N2lNlxMl6BNONTw4GgJWpi1BkcjQyV+ID9lMTMzgzj7xiiTBRR3c2ju8Pk\n3Q5y3g0tCkrvtsSsurcZ2xdEqIhH1A86tfl0hjMLx1E5AxLhxMgzjoiYklHmGHYRTtWqsge4hbZZ\nL7McjZaQreLUzGM7UqPe/QLexQsjQ8DJ4Doctsdx5kqv0dwgRel1dqLd+L47xn/AN+GAxnDM1gJj\nDIzMKooiO905hl5Pi+bRvpzZiEh0X+iD8IggACKeXRR6IYmMS6zA8VzXJBESVwtJImhnZHzm7M0/\n7lujtkF1y7iLJ0ASOFFmgsWEGgYEldVGCOY4ZQRkIFq9qgMcFSdNkUoenEjlCAyzvno396G67MC6\nToDmBV4i4L7vS93m7hxwMqwb370+dIiaJ85Cw04zRW8N3UxNA1pC83rltNbs7mRanQag/+bUIBHo\nKhGlZBR1lwwioieCwHFUtzAXZz+jjkTOPCZwktOKzosQ0xj744heJ0SUPESgr+fbR/DE0kQA0nut\nJBGuClLgcockEbRbYM7Wb/5xv7ygtmpOq8HHntYTGcOqMQvI/IoYg36uIzJFDLRjdDv7HJ3jpMwO\n4Wv0nn+Asdt5BK/1WgT6IDQitoqo1l1k+3ndCoAACKgxjYATPXJaPJLiveNE0hmOeBsZHQ7hRanZ\nVgq509IQrhPx/EmvRuK9dRGQVt/XHuCAnq+TeTEKSN3mUrP9QYRDHKBFiejLb98X3sXKmsF1Zk9+\njGIyL2hPG6ZLlrhiyDdWO+OuZWhQJOPC8BD2RVHXiVTG9PftXlNJUSYrvR9TWXmMCBbbce6oOmO0\nJ9EDB/vC0sZkEXS/jqNm7jh3c3hhHVHEJWgROI4Kt2Z78qndkpd9JcgCGxplYEtwZodGZJ7egYHx\ne0FX09ojnLp6cs6dfYR+jUO+U8nahVHSRt/MfGO0vNzyOese1ryN0YyeNECcbYS+3758uwjHzEEf\nW+s+6S70UWqwT5oIEfOgvcYh3xegoL4t+0TPJdrIZyUliSBp9/EfN1ofPAuih2RgSjEt0QhWb/aA\n3dKrVe+uRUBEQ4QariPstDIWi4MC70hA2nVEtLMvTYS+NvY+EJGW69RUk3MvSRdghCwrC6cuwave\nFEdnAEQRjW+GDCa6hsSp25I03ba7L2wWd3AM2ioj1sQIOIb7yNgoiPR0dhH6tSSsKUlnsHGebfh9\nP4U644vCohgL45yNjF6RgAHod4zFXY1mm7a45sCIu9O3F7FGSLxO9OZUUQkflPdIPNeIMdxx9gHF\neM+cfYIQ8Y4472rEdTalvUacrD7b+RqJRJ9IEkHSRmu9MnjlTY8/s2gboY5RRg7CxnBmY/oddx/D\nmStFZRxnZ00GhrHwk7GzoTClvM3jcHvUPL5atsU5JX6+Vl09HneizPvhvPdFInDJS/ea6Y3Y6I5w\nZpaDCxxjWdvtZh1niIy/6ggewjpSjXtWwOmSpFlpd9cZbnkbXM/bjpkThaJ1sy8ROaeenUTxnH2E\nIndL4x05U/t9Px1wS7SLwUOYR/t7kKSVcc7G6dMMGAIZPRS3xZwM2t2iBoW/mS08m62xRjh7K60T\ntEZEwSFWEPD5FuO+OyjG93tVEEEiOHtNBMjejHiHFuts8XhlsCd28tPGtSQRSinfJunPSRpK+gu1\n1j/TOn+jjc50/02PH2/vtq8Hyt2StIIN1XGIR4bBTHCUmcmYXRvG/QoY1/nAMMrAUHGcexzDUndn\ng2k1eKE9xtaJdrZRjd9Lz8aKEA/6YfZDDDe6RkDUxnnP6PeuDMGkZWECYFFP29fZ8HdFCtBbg+Db\nbruvZzXAQSCnS5JWw/Y9ORzyt0kOorMmbgbdnUyC8747EUL6NiP2kcWASbOz8qB5/Hz75vv2F6+z\nbpMImy1/m2vjnAiHiJ7NYMAkwmjQzlYYFB6D4KwRzvdN5zjrSB+I2KuinH8axyFWiaCNWJsdRFwn\n4h3pwxZxsIS1KpFwUUr5tyX9qKSvlfTNtdaPPHLsRyT9IUkbSX+01vqhy79/LN9ZuoYkQtnRve+X\n9PskvSjpw6WUD9Zaf+XN/s22LvVw8+ZpRA+Gzzev6TDu5zrGcwgUQXCiFA5WtW3cOQqyyy05O+ww\nEZxI5Xq7bI9hbGKWkTn76vYYAyPzAogXp/0PRcycKPMGHMS+0NfGTkZZNdKuyZBxjG4nCrGEczZb\ndsy2+D4bRllAFgEx+U7mTTFIhNGwnYkwu80kwnzQXs+caDa9A305TM53FRE1pQjhYtO+p5J0vnq5\nPcaqTTJI0nZz1jxejQyCfdF48RxRIiLamZUOLOfvCt3X64SIskcZwZV8dl8K576XQTsjtRp2QmIf\nUK/C+//Lkn6/pD//6F+WUr5O0vdIep+kt0v6qVLK11wefizfWbqGJIKkb5b08VrrJyWplPIBSd8h\n6U1vRFXVuuHUroZto3suNobmtc0wOobdAEiCKKdrWdsO/mprpH+C4baE4xIbKk7kB8cwDJ2tcc58\n236+4+EhjkEkgXPfaQyHEImIDkREXULGCMjesRxiAJFZkppr0D89p/0O1C2PsS9RqAg43+9m0yZe\nnO+qQlmUQ/DROX19d04mQj8kApNmq3X72RBBIHkE3lWB945A6eSGv5mI0rrE00IAiZB4bFj3lPaJ\nTJFPBKHW+o+kN+yA8h2SPlBrXUj69VLKx7Xzm6XH9J2l60kivEPSpx/584uSfsfrTyql/BFJf+Ty\nj4sHZ7/0y2824IOzXwqdYMLGC5Laoag9wcsP29O8Ej/i8XBlns0NRD6bR0Ak4L3jn+1pJvlc9hj5\nbB7Bnrky+WweAz0+u3wuj4keOYJ9eTZf9bQn8ITwIWndrmGOwayU8pFH/vzjtdYf7zjmOyT9/CN/\nfvHy7yTDd349riOJ8EY07D/z6V4+iB+XpFLKR2qt3/SkJ5Z4PORz2V/ks9lf5LPZT+Rz2V/ks9lf\n5LPZT+Rz2V/ks3myqLV+29OegySVUn5K0tve4NAfr7X+zTf7Z2/wd1VvXAeHtNd1JBFelPSVj/z5\nnZKyb0oikUgkEolEIpFIJK40aq2/98v4Zy0f+bF95/2QJI3FhyW9t5TynlLKRDsBiQ8+5TklEolE\nIpFIJBKJRCLxNPBBSd9TSpmWUt4j6b2S/h99mb7ztctEqLWuSyk/JOlD2rWp+Ila68fgn3WtMUk8\nGeRz2V/ks9lf5LPZT+Rz2V/ks9lf5LPZT+Rz2V/ks7nhKKV8l6T/XtJbJP1kKeUf1Fr/9Vrrx0op\nf0U7wcS1pB+slyrIX4bvrFJTDTSRSCQSiUQikUgkEomEgetYzpBIJBKJRCKRSCQSiUTiCSBJhEQi\nkUgkEolEIpFIJBIWbjSJUEr5tlLKr5ZSPl5K+WNPez43CXTvSynfUkr5hVLKupTy3a87timl/IPL\n/6Vo5hOE8Zx+oJTyS5fP4v8upXzd05jnTYC7XpVSvruUUksp33T553eXUi4e+WZ+rL9Z3zw4z6mU\n8u+UUn6llPKxUsr/1vccbwqM9evPPvJd/Fop5cEjx3Kf6QnGc/qqUsrfKaV8tJTy06WUdz6Ned40\nlFJ+opTy+VLKL7/J8d9SSvn7pZRFKeWH+57fTYbxbP79y+/lo6WUnyulfEPfc0xcf9xYTYRSylDS\nr0n6fdq1vPiwpO+ttf7KU53YDYBz70sp75b0jKQflvTBWutfe+TYaa31Vp9zvokwn9MztdaHl//9\n7ZL+o33poXud4K5XpZTbkn5S0kTSD9VaP3L5Lf2tWuvX9zrpGwjzm3mvpL8i6VtrrfdLKW+ttX7+\nqUz4GuNx9/hSyn8s6Rtrrf/h5Z9zn+kB5jfzV7Vbw/7XUsq3SvoPaq3f91QmfINQSvkWSaeS/uIb\n7R+llLdK+ipJ3ynpfq31v+15ijcWxrP5lyT9o8s95t+Q9KO11t/R9zwT1xs3ORPhmyV9vNb6yVrr\nUtIHJH3HU57TTQHe+1rrb9RaPypp+zQmmJDkPaeHj/zxSNLNZCWfPNz16r+S9F9Lmvc5ucQX4Tyn\nPyzp/bXW+5KUBMITw+Pu8d8r6S/3MrPEo3Ce09dJ+juX//1/vsHxxBNArfVnJL3aOP75WuuHJa36\nm1VCsp7Nz722x0j6eUmZvZMIx00mEd4h6dOP/PnFy79LPHl0vfezUspHSik/X0r5ztipJR6B9ZxK\nKT9YSvmEds7rH+1pbjcN+CxKKd8o6StrrX/rDf79e0opv1hK+b9KKb/rCc7zpsP5Zr5G0teUUv7e\n5RqWmTtPBvY+U0r5KknvkfR3H/nr3Gf6gfOc/qGkP3D5398l6XYp5fke5pZIXAf8IUl/+2lPInH9\nMHraE3iKKG/wdxlF7Qdd7/27aq2fLaV8taS/W0r5pVrrJ4LmlvinsJ5TrfX9kt5fSvn3JP3nkr7/\nSU/sBqL5LEopA0l/VtIffIPzPqfdN/NKKeW3SfobpZT3vS6LJBED55sZSXqvpN+tXXToZ0spX19r\nffD6f5johMfZZ75H0l97rV/2JXKf6QfOc/phSf9DKeUPSvoZSZ/Rrsd5IpFooJTye7QjEf6Vpz2X\nxPXDTc5EeFHSVz7y53dK+uxTmstNQ6d7X2v97OX/f1LST0v6xsjJJb6Ix31OH9CuNjIRD3oWtyV9\nvaSfLqX8hqTfKemDpZRvqrUuaq2vSFKt9f+V9AntouGJeDjfzIuS/matdVVr/XVJv6odqZCIxeOs\nX9+j15Uy5D7TG/A51Vo/W2v9/bXWb5T0xy//7ri/KSYSVw+llH9R0l+Q9B2v2QCJRCRuMonwYUnv\nLaW8p5Qy0c6ISAXmfvBl3/tSyt1SyvTyv1+Q9C9LSjHMJwN8Tpcica/h35T0//U4v5uE5rOotR7X\nWl+otb671vpu7Wogv/1SWPEtl+JluoyqvlfSJ/v/CTcCztr2NyT9HumLa9jXKJ/Hk4C1z5RSfrOk\nu5L+/iN/l/tMf3D2mRcus60k6Uck/UTPc0wkrhRKKe+S9L9L+r5a66897fkkridubDlDrXVdSvkh\nSR+SNJT0E7XWjz3lad0IvNm9L6X8KUkfqbV+sJTy2yX9de2Mu3+rlPJf1lrfJ+lrJf35UspWOxLs\nz2RHjScD5zlJ+qFSyu/VTljpvrKU4YnAfBZvhm+R9KdKKWtJG0k/UGt9U0GmxJcP8zl9SNK/Vkr5\nFe2ex3+WUaJ4PMY3872SPlC/tFVV7jM9wXxOv1vSny6lVO3KGX7wqU34BqGU8pe1u/cvlFJelPRf\nSBpLUq31x0opb5P0Ee06aW1LKf+JpK/LUrknD3o2kv6kpOcl/Y+lFEla11q/6enMNnFdcWNbPCYS\niUQikUgkEolEIpF4PNzkcoZEIpFIJBKJRCKRSCQSj4EkERKJRCKRSCQSiUQikUhYSBIhkUgkEolE\nIpFIJBKJhIUkERKJRCKRSCQSiUQikUhYSBIhkUgkEolEIpFIJBKJhIUkERKJRCKReAIopVTjf79x\nee7/8tp/JxKJRCKRSOwzssVjIpFIJBJPAKWU3/m6v/rrkv6hpB995O8WtdZfLKX885KeqbX+Yl/z\nSyQSiUQikfhyMHraE0gkEolE4jqi1vrzj/65lLKQ9PLr//7y3E/0NrFEIpFIJBKJDshyhkQikUgk\nnjJeX85QSnn3ZbnDD5RS/nQp5V4p5aSU8pdKKYellN9USvlQKeW0lPLxUsr3v8GY31BK+WAp5X4p\n5aKU8vdKKb+r1x+WSCQSiUTi2iFJhEQikUgk9hc/Iuntkr5f0p+U9O9K+jHtSiN+UtJ3SfqopP+5\nlPK+1/5RKeW3Svo5Sc9J+sOS/oCkVyT9VCnlt/X5AxKJRCKRSFwvZDlDIpFIJBL7i0/UWl/LMvjQ\nZSbB90n6vlrrX5KkUspHJH27pO+W9LHLc/8bSZ+S9K211uXleR+S9MuS/oSk7+zvJyQSiUQikbhO\nyEyERCKRSCT2F3/7dX/+x5f//6HX/qLWel/S5yV9pSSVUg4k/auS/qqkbSllVEoZSSqSfkrStzzp\nSScSiUQikbi+yEyERCKRSCT2F/df9+dl4+9nl//9nKShdhkHf+KNBi2lDGqt26hJJhKJRCKRuDlI\nEiGRSCQSieuFB5K2kt4v6S++0QlJICQSiUQikfhykSRCIpFIJBLXCLXWs1LKz0r6Bkm/kIRBIpFI\nJBKJSCSJkEgkEonE9cN/KulntBNj/J8kfU7SC5J+q6RhrfWPPc3JJRKJRCKRuLpIYcVEIpFIJK4Z\naq2/IOm3a9fW8b+T9H9I+nOS/gXtyIVEIpFIJBKJLwul1vq055BIJBKJRCKRSCQSiUTiCiAzERKJ\nRCKRSCQSiUQikUhYSBIhkUgkEolEIpFIJBKJhIUkERKJRCKRSCQSiUQikUhYSBIhkUgkEolEIpFI\nJBKJhIUkERKJRCKRSCQSiUQikUhYSBIhkUgkEolEIpFIJBKJhIUkERKJRCKRSCQSiUQikUhYSBIh\nkUgkEolEIpFIJBKJhIX/H3l9ReFMtzw7AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -540,7 +25955,7 @@ } ], "source": [ - "sentence = \"For many decades, we've enriched foreign industry at the expense of American industry; subsidized the armies of other countries while allowing for the very sad depletion of our military; we've defended other nation's borders while refusing to defend our own; and spent trillions of dollars overseas while America's infrastructure has fallen into disrepair and decay\"\n", + "sentence = \"That's all folks.\"\n", "model.decoder.max_decoder_steps = 300\n", "alignment = tts(model, sentence, CONFIG, use_cuda, ap)" ] diff --git a/utils/.data.py.swp b/utils/.data.py.swp deleted file mode 100644 index 0aadc631..00000000 Binary files a/utils/.data.py.swp and /dev/null differ diff --git a/utils/generic_utils.py b/utils/generic_utils.py index 3bcdafdf..9221d611 100644 --- a/utils/generic_utils.py +++ b/utils/generic_utils.py @@ -48,12 +48,26 @@ def copy_config_file(config_file, path): shutil.copyfile(config_file, out_path) +def _trim_model_state_dict(state_dict): + r"""Remove 'module.' prefix from state dictionary. It is necessary as it + is loded for the next time by model.load_state(). Otherwise, it complains + about the torch.DataParallel()""" + + new_state_dict = OrderedDict() + for k, v in state_dict.items(): + name = k[7:] # remove `module.` + new_state_dict[name] = v + return new_state_dict + + def save_checkpoint(model, optimizer, model_loss, best_loss, out_path, current_step, epoch): checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step) checkpoint_path = os.path.join(out_path, checkpoint_path) print("\n | > Checkpoint saving : {}".format(checkpoint_path)) - state = {'model': model.state_dict(), + + new_state_dict = _trim_model_state_dict(model.state_dict()) + state = {'model': new_state_dict, 'optimizer': optimizer.state_dict(), 'step': current_step, 'epoch': epoch, @@ -65,7 +79,8 @@ def save_checkpoint(model, optimizer, model_loss, best_loss, out_path, def save_best_model(model, optimizer, model_loss, best_loss, out_path, current_step, epoch): if model_loss < best_loss: - state = {'model': model.state_dict(), + new_state_dict = _trim_model_state_dict(model.state_dict()) + state = {'model': new_state_dict, 'optimizer': optimizer.state_dict(), 'step': current_step, 'epoch': epoch,