mirror of https://github.com/coqui-ai/TTS.git
use tacotron abstract for multispeaker common definitions
This commit is contained in:
parent
26beea0e1b
commit
1d782487f5
|
@ -536,6 +536,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
else:
|
else:
|
||||||
num_speakers = 0
|
num_speakers = 0
|
||||||
speaker_embedding_dim = None
|
speaker_embedding_dim = None
|
||||||
|
speaker_mapping = None
|
||||||
|
|
||||||
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
|
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
|
||||||
|
|
||||||
|
|
|
@ -27,6 +27,8 @@ class Tacotron(TacotronAbstract):
|
||||||
bidirectional_decoder=False,
|
bidirectional_decoder=False,
|
||||||
double_decoder_consistency=False,
|
double_decoder_consistency=False,
|
||||||
ddc_r=None,
|
ddc_r=None,
|
||||||
|
encoder_in_features=256,
|
||||||
|
decoder_in_features=256,
|
||||||
speaker_embedding_dim=None,
|
speaker_embedding_dim=None,
|
||||||
gst=False,
|
gst=False,
|
||||||
gst_embedding_dim=256,
|
gst_embedding_dim=256,
|
||||||
|
@ -40,39 +42,28 @@ class Tacotron(TacotronAbstract):
|
||||||
forward_attn, trans_agent, forward_attn_mask,
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
location_attn, attn_K, separate_stopnet,
|
location_attn, attn_K, separate_stopnet,
|
||||||
bidirectional_decoder, double_decoder_consistency,
|
bidirectional_decoder, double_decoder_consistency,
|
||||||
ddc_r, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens)
|
ddc_r, encoder_in_features, decoder_in_features,
|
||||||
|
speaker_embedding_dim, gst, gst_embedding_dim,
|
||||||
|
gst_num_heads, gst_style_tokens)
|
||||||
|
|
||||||
# init layer dims
|
# speaker embedding layers
|
||||||
decoder_in_features = 256
|
if self.num_speakers > 1:
|
||||||
encoder_in_features = 256
|
if not self.embeddings_per_sample:
|
||||||
|
speaker_embedding_dim = 256
|
||||||
if speaker_embedding_dim is None:
|
self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim)
|
||||||
# if speaker_embedding_dim is None we need use the nn.Embedding, with default speaker_embedding_dim
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||||
self.embeddings_per_sample = False
|
|
||||||
speaker_embedding_dim = 256
|
|
||||||
else:
|
|
||||||
# if speaker_embedding_dim is not None we need use speaker embedding per sample
|
|
||||||
self.embeddings_per_sample = True
|
|
||||||
|
|
||||||
# speaker and gst embeddings is concat in decoder input
|
# speaker and gst embeddings is concat in decoder input
|
||||||
if num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
decoder_in_features = decoder_in_features + speaker_embedding_dim # add speaker embedding dim
|
self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim
|
||||||
if self.gst:
|
|
||||||
decoder_in_features = decoder_in_features + gst_embedding_dim # add gst embedding dim
|
|
||||||
|
|
||||||
# embedding layer
|
# embedding layer
|
||||||
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
|
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
|
||||||
|
self.embedding.weight.data.normal_(0, 0.3)
|
||||||
# speaker embedding layers
|
|
||||||
if num_speakers > 1:
|
|
||||||
if not self.embeddings_per_sample:
|
|
||||||
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
|
|
||||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
|
||||||
|
|
||||||
# base model layers
|
# base model layers
|
||||||
self.embedding.weight.data.normal_(0, 0.3)
|
self.encoder = Encoder(self.encoder_in_features)
|
||||||
self.encoder = Encoder(encoder_in_features)
|
self.decoder = Decoder(self.decoder_in_features, decoder_output_dim, r,
|
||||||
self.decoder = Decoder(decoder_in_features, decoder_output_dim, r,
|
|
||||||
memory_size, attn_type, attn_win, attn_norm,
|
memory_size, attn_type, attn_win, attn_norm,
|
||||||
prenet_type, prenet_dropout, forward_attn,
|
prenet_type, prenet_dropout, forward_attn,
|
||||||
trans_agent, forward_attn_mask, location_attn,
|
trans_agent, forward_attn_mask, location_attn,
|
||||||
|
@ -93,7 +84,7 @@ class Tacotron(TacotronAbstract):
|
||||||
# setup DDC
|
# setup DDC
|
||||||
if self.double_decoder_consistency:
|
if self.double_decoder_consistency:
|
||||||
self.coarse_decoder = Decoder(
|
self.coarse_decoder = Decoder(
|
||||||
decoder_in_features, decoder_output_dim, ddc_r, memory_size,
|
self.decoder_in_features, decoder_output_dim, ddc_r, memory_size,
|
||||||
attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
|
attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
|
||||||
forward_attn, trans_agent, forward_attn_mask, location_attn,
|
forward_attn, trans_agent, forward_attn_mask, location_attn,
|
||||||
attn_K, separate_stopnet)
|
attn_K, separate_stopnet)
|
||||||
|
|
|
@ -33,6 +33,8 @@ class Tacotron2(TacotronAbstract):
|
||||||
bidirectional_decoder=False,
|
bidirectional_decoder=False,
|
||||||
double_decoder_consistency=False,
|
double_decoder_consistency=False,
|
||||||
ddc_r=None,
|
ddc_r=None,
|
||||||
|
encoder_in_features=512,
|
||||||
|
decoder_in_features=512,
|
||||||
speaker_embedding_dim=None,
|
speaker_embedding_dim=None,
|
||||||
gst=False,
|
gst=False,
|
||||||
gst_embedding_dim=512,
|
gst_embedding_dim=512,
|
||||||
|
@ -45,38 +47,27 @@ class Tacotron2(TacotronAbstract):
|
||||||
forward_attn, trans_agent, forward_attn_mask,
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
location_attn, attn_K, separate_stopnet,
|
location_attn, attn_K, separate_stopnet,
|
||||||
bidirectional_decoder, double_decoder_consistency,
|
bidirectional_decoder, double_decoder_consistency,
|
||||||
ddc_r, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens)
|
ddc_r, encoder_in_features, decoder_in_features,
|
||||||
|
speaker_embedding_dim, gst, gst_embedding_dim,
|
||||||
|
gst_num_heads, gst_style_tokens)
|
||||||
|
|
||||||
# init layer dims
|
# speaker embedding layer
|
||||||
decoder_in_features = 512
|
if self.num_speakers > 1:
|
||||||
encoder_in_features = 512
|
if not self.embeddings_per_sample:
|
||||||
|
speaker_embedding_dim = 512
|
||||||
if speaker_embedding_dim is None:
|
self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim)
|
||||||
# if speaker_embedding_dim is None we need use the nn.Embedding, with default speaker_embedding_dim
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
||||||
self.embeddings_per_sample = False
|
|
||||||
speaker_embedding_dim = 512
|
|
||||||
else:
|
|
||||||
# if speaker_embedding_dim is not None we need use speaker embedding per sample
|
|
||||||
self.embeddings_per_sample = True
|
|
||||||
|
|
||||||
# speaker and gst embeddings is concat in decoder input
|
# speaker and gst embeddings is concat in decoder input
|
||||||
if num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
decoder_in_features = decoder_in_features + speaker_embedding_dim # add speaker embedding dim
|
self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim
|
||||||
if self.gst:
|
|
||||||
decoder_in_features = decoder_in_features + gst_embedding_dim # add gst embedding dim
|
|
||||||
|
|
||||||
# embedding layer
|
# embedding layer
|
||||||
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
|
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
|
||||||
|
|
||||||
# speaker embedding layer
|
|
||||||
if num_speakers > 1:
|
|
||||||
if not self.embeddings_per_sample:
|
|
||||||
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
|
|
||||||
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
|
||||||
|
|
||||||
# base model layers
|
# base model layers
|
||||||
self.encoder = Encoder(encoder_in_features)
|
self.encoder = Encoder(self.encoder_in_features)
|
||||||
self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
|
self.decoder = Decoder(self.decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
|
||||||
attn_norm, prenet_type, prenet_dropout,
|
attn_norm, prenet_type, prenet_dropout,
|
||||||
forward_attn, trans_agent, forward_attn_mask,
|
forward_attn, trans_agent, forward_attn_mask,
|
||||||
location_attn, attn_K, separate_stopnet)
|
location_attn, attn_K, separate_stopnet)
|
||||||
|
@ -85,16 +76,16 @@ class Tacotron2(TacotronAbstract):
|
||||||
# global style token layers
|
# global style token layers
|
||||||
if self.gst:
|
if self.gst:
|
||||||
self.gst_layer = GST(num_mel=80,
|
self.gst_layer = GST(num_mel=80,
|
||||||
num_heads=gst_num_heads,
|
num_heads=self.gst_num_heads,
|
||||||
num_style_tokens=gst_style_tokens,
|
num_style_tokens=self.gst_style_tokens,
|
||||||
embedding_dim=gst_embedding_dim)
|
embedding_dim=self.gst_embedding_dim)
|
||||||
# backward pass decoder
|
# backward pass decoder
|
||||||
if self.bidirectional_decoder:
|
if self.bidirectional_decoder:
|
||||||
self._init_backward_decoder()
|
self._init_backward_decoder()
|
||||||
# setup DDC
|
# setup DDC
|
||||||
if self.double_decoder_consistency:
|
if self.double_decoder_consistency:
|
||||||
self.coarse_decoder = Decoder(
|
self.coarse_decoder = Decoder(
|
||||||
decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
|
self.decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
|
||||||
attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
|
attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
|
||||||
trans_agent, forward_attn_mask, location_attn, attn_K,
|
trans_agent, forward_attn_mask, location_attn, attn_K,
|
||||||
separate_stopnet)
|
separate_stopnet)
|
||||||
|
|
|
@ -28,6 +28,9 @@ class TacotronAbstract(ABC, nn.Module):
|
||||||
bidirectional_decoder=False,
|
bidirectional_decoder=False,
|
||||||
double_decoder_consistency=False,
|
double_decoder_consistency=False,
|
||||||
ddc_r=None,
|
ddc_r=None,
|
||||||
|
encoder_in_features=512,
|
||||||
|
decoder_in_features=512,
|
||||||
|
speaker_embedding_dim=None,
|
||||||
gst=False,
|
gst=False,
|
||||||
gst_embedding_dim=512,
|
gst_embedding_dim=512,
|
||||||
gst_num_heads=4,
|
gst_num_heads=4,
|
||||||
|
@ -57,6 +60,9 @@ class TacotronAbstract(ABC, nn.Module):
|
||||||
self.location_attn = location_attn
|
self.location_attn = location_attn
|
||||||
self.attn_K = attn_K
|
self.attn_K = attn_K
|
||||||
self.separate_stopnet = separate_stopnet
|
self.separate_stopnet = separate_stopnet
|
||||||
|
self.encoder_in_features = encoder_in_features
|
||||||
|
self.decoder_in_features = decoder_in_features
|
||||||
|
self.speaker_embedding_dim = speaker_embedding_dim
|
||||||
|
|
||||||
# layers
|
# layers
|
||||||
self.embedding = None
|
self.embedding = None
|
||||||
|
@ -64,8 +70,17 @@ class TacotronAbstract(ABC, nn.Module):
|
||||||
self.decoder = None
|
self.decoder = None
|
||||||
self.postnet = None
|
self.postnet = None
|
||||||
|
|
||||||
|
# multispeaker
|
||||||
|
if self.speaker_embedding_dim is None:
|
||||||
|
# if speaker_embedding_dim is None we need use the nn.Embedding, with default speaker_embedding_dim
|
||||||
|
self.embeddings_per_sample = False
|
||||||
|
else:
|
||||||
|
# if speaker_embedding_dim is not None we need use speaker embedding per sample
|
||||||
|
self.embeddings_per_sample = True
|
||||||
|
|
||||||
# global style token
|
# global style token
|
||||||
if self.gst:
|
if self.gst:
|
||||||
|
self.decoder_in_features += gst_embedding_dim # add gst embedding dim
|
||||||
self.gst_layer = None
|
self.gst_layer = None
|
||||||
|
|
||||||
# model states
|
# model states
|
||||||
|
|
Loading…
Reference in New Issue