diff --git a/config.json b/config.json index 9046bfa3..5701d2f4 100644 --- a/config.json +++ b/config.json @@ -7,7 +7,7 @@ // Audio processing parameters "num_mels": 80, // size of the mel spec frame. "num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame. - "sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled. + "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "frame_length_ms": 50, // stft window length in ms. "frame_shift_ms": 12.5, // stft window hop-lengh in ms. "preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. @@ -25,30 +25,30 @@ "do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) }, - "embedding_size": 256, + "embedding_size": 256, // Character embedding vector length. You don't need to change it in general. "text_cleaner": "english_cleaners", - "epochs": 1000, - "lr": 0.001, - "lr_decay": false, - "warmup_steps": 4000, + "epochs": 1000, // total number of epochs to train. + "lr": 0.001, // Initial learning rate. If Noam decay is active, maximum learning rate. + "lr_decay": false, // if true, Noam learning rate decaying is applied through training. + "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" - "batch_size": 20, - "eval_batch_size":32, - "r": 5, - "wd": 0.000001, - "checkpoint": true, - "save_step": 5000, - "print_step": 10, + "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. + "eval_batch_size":32, + "r": 5, // Number of frames to predict for step. + "wd": 0.000001, // Weight decay weight. + "checkpoint": true, // If true, it saves checkpoints per "save_step" + "save_step": 5000, // Number of training steps expected to save traning stats and checkpoints. + "print_step": 10, // Number of steps to log traning on console. "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "run_eval": true, - "data_path": "../../Data/LJSpeech-1.1/", // can overwritten from command argument - "meta_file_train": "transcript_train.txt", // metafile for training dataloader. - "meta_file_val": "transcript_val.txt", // metafile for evaluation dataloader. - "dataset": "tweb", // one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py - "min_seq_len": 0, // minimum text length to use in training - "max_seq_len": 300, // maximum text length - "output_path": "/media/erogol/data_ssd/Data/models/tweb_models/", // output path for all training outputs. + "data_path": "../../Data/LJSpeech-1.1/", // DATASET-RELATED: can overwritten from command argument + "meta_file_train": "transcript_train.txt", // DATASET-RELATED: metafile for training dataloader. + "meta_file_val": "transcript_val.txt", // DATASET-RELATED: metafile for evaluation dataloader. + "dataset": "tweb", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py + "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training + "max_seq_len": 300, // DATASET-RELATED: maximum text length + "output_path": "/media/erogol/data_ssd/Data/models/tweb_models/", // DATASET-RELATED: output path for all training outputs. "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4 // number of evaluation data loader processes. }