Merge branch 'pr/gerazov/642' into dev

This commit is contained in:
Eren Gölge 2021-02-09 11:43:39 +00:00
commit 1f0385a343
8 changed files with 293 additions and 528 deletions

View File

@ -1,8 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Train Glow TTS model."""
import argparse
import glob
import os
import sys
import time
@ -14,10 +12,12 @@ import torch
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import GlowTTSLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
@ -25,18 +25,15 @@ from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, setup_torch_training_env
use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
@ -468,7 +465,6 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
@ -567,81 +563,9 @@ def main(args): # pylint: disable=redefined-outer-name
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument(
'--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv
)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
check_config_tts(c)
_ = os.path.dirname(os.path.realpath(__file__))
if c.mixed_precision:
print(" > Mixed precision enabled.")
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_type='glow_tts')
try:
main(args)

View File

@ -11,6 +11,7 @@ import numpy as np
from random import randrange
import torch
from TTS.utils.arguments import parse_arguments, process_args
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader
@ -18,7 +19,7 @@ from torch.utils.data.distributed import DistributedSampler
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import SpeedySpeechLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
@ -26,14 +27,10 @@ from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, setup_torch_training_env
use_cuda, num_gpus = setup_torch_training_env(True, False)
@ -524,86 +521,15 @@ def main(args): # pylint: disable=redefined-outer-name
target_loss = train_avg_loss_dict['avg_loss']
if c.run_eval:
target_loss = eval_avg_loss_dict['avg_loss']
best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r,
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
global_step, epoch, c.r,
OUT_PATH)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument(
'--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv
)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
check_config_tts(c)
_ = os.path.dirname(os.path.realpath(__file__))
if c.mixed_precision:
print(" > Mixed precision enabled.")
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_type='tts')
try:
main(args)

View File

@ -1,8 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Trains Tacotron based TTS models."""
import argparse
import glob
import os
import sys
import time
@ -12,10 +10,11 @@ from random import randrange
import numpy as np
import torch
from torch.utils.data import DataLoader
from TTS.utils.arguments import parse_arguments, process_args
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
@ -23,15 +22,11 @@ from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
init_distributed, reduce_tensor)
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
gradual_training_scheduler, set_weight_decay,
setup_torch_training_env)
@ -61,7 +56,11 @@ def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
verbose=verbose,
speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None)
speaker_mapping=(speaker_mapping if (
c.use_speaker_embedding
and c.use_external_speaker_embedding_file
) else None)
)
if c.use_phonemes and c.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
@ -491,7 +490,6 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
@ -636,84 +634,14 @@ def main(args): # pylint: disable=redefined-outer-name
epoch,
c.r,
OUT_PATH,
scaler=scaler.state_dict() if c.mixed_precision else None)
scaler=scaler.state_dict() if c.mixed_precision else None
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument(
'--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv
)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
print(f" > Training continues for {args.continue_path}")
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
# setup output paths and read configs
c = load_config(args.config_path)
check_config_tts(c)
_ = os.path.dirname(os.path.realpath(__file__))
if c.mixed_precision:
print(" > Mixed precision mode is ON")
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name, args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='TTS')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_type='tacotron')
try:
main(args)

View File

@ -1,5 +1,6 @@
import argparse
import glob
#!/usr/bin/env python3
"""Trains GAN based vocoder model."""
import os
import sys
import time
@ -8,14 +9,13 @@ from inspect import signature
import torch
from torch.utils.data import DataLoader
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import setup_torch_training_env
from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
@ -439,7 +439,6 @@ def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch)
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global train_data, eval_data
@ -506,7 +505,7 @@ def main(args): # pylint: disable=redefined-outer-name
scheduler_disc.load_state_dict(checkpoint['scheduler_disc'])
scheduler_disc.optimizer = optimizer_disc
except RuntimeError:
# retore only matching layers.
# restore only matching layers.
print(" > Partial model initialization...")
model_dict = model_gen.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
@ -556,7 +555,8 @@ def main(args): # pylint: disable=redefined-outer-name
model_disc, criterion_disc, optimizer_disc,
scheduler_gen, scheduler_disc, ap, global_step,
epoch)
eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc, criterion_disc, ap,
eval_avg_loss_dict = evaluate(model_gen, criterion_gen, model_disc,
criterion_disc, ap,
global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = eval_avg_loss_dict[c.target_loss]
@ -575,78 +575,9 @@ def main(args): # pylint: disable=redefined-outer-name
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument('--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(
args.continue_path +
"/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name,
args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='VOCODER')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_type='gan')
try:
main(args)

View File

@ -1,5 +1,6 @@
import argparse
import glob
#!/usr/bin/env python3
"""Trains WaveGrad vocoder models."""
import os
import sys
import time
@ -12,14 +13,11 @@ from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import init_distributed
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import setup_torch_training_env
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
@ -54,6 +52,7 @@ def setup_loader(ap, is_val=False, verbose=False):
if is_val else c.num_loader_workers,
pin_memory=False)
return loader
@ -195,18 +194,19 @@ def train(model, criterion, optimizer, scheduler, scaler, ap, global_step,
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict,
scaler=scaler.state_dict()
if c.mixed_precision else None)
save_checkpoint(
model,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
end_time = time.time()
@ -247,6 +247,7 @@ def evaluate(model, criterion, ap, global_step, epoch):
else:
noise, x_noisy, noise_scale = model.compute_y_n(x)
# forward pass
noise_hat = model(x_noisy, m, noise_scale)
@ -254,6 +255,7 @@ def evaluate(model, criterion, ap, global_step, epoch):
loss = criterion(noise, noise_hat)
loss_wavegrad_dict = {'wavegrad_loss': loss}
loss_dict = dict()
for key, value in loss_wavegrad_dict.items():
if isinstance(value, (int, float)):
@ -415,87 +417,14 @@ def main(args): # pylint: disable=redefined-outer-name
epoch,
OUT_PATH,
model_losses=eval_avg_loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None)
scaler=scaler.state_dict() if c.mixed_precision else None
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--continue_path',
type=str,
help=
'Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default='',
required='--config_path' not in sys.argv)
parser.add_argument(
'--restore_path',
type=str,
help='Model file to be restored. Use to finetune a model.',
default='')
parser.add_argument('--config_path',
type=str,
help='Path to config file for training.',
required='--continue_path' not in sys.argv)
parser.add_argument('--debug',
type=bool,
default=False,
help='Do not verify commit integrity to run training.')
# DISTRUBUTED
parser.add_argument(
'--rank',
type=int,
default=0,
help='DISTRIBUTED: process rank for distributed training.')
parser.add_argument('--group_id',
type=str,
default="",
help='DISTRIBUTED: process group id.')
args = parser.parse_args()
if args.continue_path != '':
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(
args.continue_path +
"/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
# DISTRIBUTED
if c.mixed_precision:
print(" > Mixed precision is enabled")
OUT_PATH = args.continue_path
if args.continue_path == '':
OUT_PATH = create_experiment_folder(c.output_path, c.run_name,
args.debug)
AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios')
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name='VOCODER')
# write model desc to tensorboard
tb_logger.tb_add_text('model-description', c['run_description'], 0)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_type='wavegrad')
try:
main(args)

View File

@ -1,9 +1,10 @@
import argparse
#!/usr/bin/env python3
"""Train WaveRNN vocoder model."""
import os
import sys
import traceback
import time
import glob
import random
import torch
@ -11,18 +12,14 @@ from torch.utils.data import DataLoader
# from torch.utils.data.distributed import DistributedSampler
from TTS.utils.arguments import parse_arguments, process_args
from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.radam import RAdam
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.training import setup_torch_training_env
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.generic_utils import (
KeepAverage,
count_parameters,
create_experiment_folder,
get_git_branch,
remove_experiment_folder,
set_init_dict,
)
@ -181,18 +178,19 @@ def train(model, optimizer, criterion, scheduler, scaler, ap, global_step, epoch
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
save_checkpoint(
model,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
# synthesize a full voice
rand_idx = random.randrange(0, len(train_data))
@ -448,87 +446,9 @@ def main(args): # pylint: disable=redefined-outer-name
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--continue_path",
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default="",
required="--config_path" not in sys.argv,
)
parser.add_argument(
"--restore_path",
type=str,
help="Model file to be restored. Use to finetune a model.",
default="",
)
parser.add_argument(
"--config_path",
type=str,
help="Path to config file for training.",
required="--continue_path" not in sys.argv,
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="Do not verify commit integrity to run training.",
)
# DISTRUBUTED
parser.add_argument(
"--rank",
type=int,
default=0,
help="DISTRIBUTED: process rank for distributed training.",
)
parser.add_argument(
"--group_id", type=str, default="", help="DISTRIBUTED: process group id."
)
args = parser.parse_args()
if args.continue_path != "":
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
list_of_files = glob.glob(
args.continue_path + "/*.pth.tar"
) # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = args.continue_path
if args.continue_path == "":
OUT_PATH = create_experiment_folder(
c.output_path, c.run_name, args.debug
)
AUDIO_PATH = os.path.join(OUT_PATH, "test_audios")
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(
c, args.config_path, OUT_PATH, new_fields
)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name="VOCODER")
# write model desc to tensorboard
tb_logger.tb_add_text("model-description", c["run_description"], 0)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_type='wavernn')
try:
main(args)

207
TTS/utils/arguments.py Normal file
View File

@ -0,0 +1,207 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Argument parser for training scripts."""
import argparse
import re
import glob
import os
from TTS.utils.generic_utils import (
create_experiment_folder, get_git_branch)
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.tts.utils.generic_utils import check_config_tts
def parse_arguments(argv):
"""Parse command line arguments of training scripts.
Parameters
----------
argv : list
This is a list of input arguments as given by sys.argv
Returns
-------
argparse.Namespace
Parsed arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--continue_path",
type=str,
help=("Training output folder to continue training. Used to continue "
"a training. If it is used, 'config_path' is ignored."),
default="",
required="--config_path" not in argv)
parser.add_argument(
"--restore_path",
type=str,
help="Model file to be restored. Use to finetune a model.",
default="")
parser.add_argument(
"--config_path",
type=str,
help="Path to config file for training.",
required="--continue_path" not in argv)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="Do not verify commit integrity to run training.")
parser.add_argument(
"--rank",
type=int,
default=0,
help="DISTRIBUTED: process rank for distributed training.")
parser.add_argument(
"--group_id",
type=str,
default="",
help="DISTRIBUTED: process group id.")
return parser.parse_args()
def get_last_checkpoint(path):
"""Get latest checkpoint from a list of filenames.
It is based on globbing for `*.pth.tar` and the RegEx
`checkpoint_([0-9]+)`.
Parameters
----------
path : list
Path to files to be compared.
Raises
------
ValueError
If no checkpoint files are found.
Returns
-------
last_checkpoint : str
Last checkpoint filename.
"""
last_checkpoint_num = 0
last_checkpoint = None
filenames = glob.glob(
os.path.join(path, "/*.pth.tar"))
for filename in filenames:
try:
checkpoint_num = int(
re.search(r"checkpoint_([0-9]+)", filename).groups()[0])
if checkpoint_num > last_checkpoint_num:
last_checkpoint_num = checkpoint_num
last_checkpoint = filename
except AttributeError: # if there's no match in the filename
pass
if last_checkpoint is None:
raise ValueError(f"No checkpoints in {path}!")
return last_checkpoint
def process_args(args, model_type):
"""Process parsed comand line arguments.
Parameters
----------
args : argparse.Namespace or dict like
Parsed input arguments.
model_type : str
Model type used to check config parameters and setup the TensorBoard
logger. One of:
- tacotron
- glow_tts
- speedy_speech
- gan
- wavegrad
- wavernn
Raises
------
ValueError
If `model_type` is not one of implemented choices.
Returns
-------
c : TTS.utils.io.AttrDict
Config paramaters.
out_path : str
Path to save models and logging.
audio_path : str
Path to save generated test audios.
c_logger : TTS.utils.console_logger.ConsoleLogger
Class that does logging to the console.
tb_logger : TTS.utils.tensorboard.TensorboardLogger
Class that does the TensorBoard loggind.
"""
if args.continue_path != "":
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
list_of_files = glob.glob(
os.path.join(args.continue_path, "*.pth.tar")
) # * means all if need specific format then *.csv
args.restore_path = max(list_of_files, key=os.path.getctime)
# checkpoint number based continuing
# args.restore_path = get_last_checkpoint(args.continue_path)
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
if model_type in "tacotron glow_tts speedy_speech":
model_class = "TTS"
elif model_type in "gan wavegrad wavernn":
model_class = "VOCODER"
else:
raise ValueError("model type {model_type} not recognized!")
if model_class == "TTS":
check_config_tts(c)
elif model_class == "VOCODER":
print("Vocoder config checker not implemented, "
"skipping ...")
else:
raise ValueError(f"model type {model_type} not recognized!")
_ = os.path.dirname(os.path.realpath(__file__))
if model_type in "tacotron wavegrad wavernn" and c.mixed_precision:
print(" > Mixed precision mode is ON")
out_path = args.continue_path
if args.continue_path == "":
out_path = create_experiment_folder(c.output_path, c.run_name,
args.debug)
audio_path = os.path.join(out_path, "test_audios")
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(audio_path, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path,
out_path, new_fields)
os.chmod(audio_path, 0o775)
os.chmod(out_path, 0o775)
log_path = out_path
tb_logger = TensorboardLogger(log_path, model_name=model_class)
# write model desc to tensorboard
tb_logger.tb_add_text("model-description", c["run_description"], 0)
return c, out_path, audio_path, c_logger, tb_logger