mirror of https://github.com/coqui-ai/TTS.git
Change to GMMv2b
This commit is contained in:
parent
48e4baf434
commit
20b4211af5
|
@ -159,20 +159,22 @@ class GravesAttention(nn.Module):
|
|||
k_t = gbk_t[:, 2, :]
|
||||
|
||||
# attention GMM parameters
|
||||
inv_sig_t = torch.exp(-torch.clamp(b_t, min=-6, max=9)) # variance
|
||||
sig_t = torch.nn.functional.softplus(b_t)+self.eps
|
||||
|
||||
#inv_sig_t = torch.exp(-torch.clamp(b_t, min=-6, max=9)) # variance
|
||||
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
||||
g_t = torch.softmax(g_t, dim=-1) * inv_sig_t + self.eps
|
||||
g_t = torch.softmax(g_t, dim=-1) / sig_t + self.eps
|
||||
|
||||
# each B x K x T_in
|
||||
g_t = g_t.unsqueeze(2).expand(g_t.size(0),
|
||||
g_t.size(1),
|
||||
inputs.size(1))
|
||||
inv_sig_t = inv_sig_t.unsqueeze(2).expand_as(g_t)
|
||||
sig_t = sig_t.unsqueeze(2).expand_as(g_t)
|
||||
mu_t_ = mu_t.unsqueeze(2).expand_as(g_t)
|
||||
j = self.J[:g_t.size(0), :, :inputs.size(1)]
|
||||
|
||||
# attention weights
|
||||
phi_t = g_t * torch.exp(-0.5 * inv_sig_t * (mu_t_ - j)**2)
|
||||
phi_t = g_t * torch.exp(-0.5 * (mu_t_ - j)**2 / (sig_t**2))
|
||||
alpha_t = self.COEF * torch.sum(phi_t, 1)
|
||||
|
||||
# apply masking
|
||||
|
|
Loading…
Reference in New Issue