Perform testing on example sentences

This commit is contained in:
Eren G 2018-07-20 13:10:25 +02:00
parent dfd0bc1831
commit 20c3085695
3 changed files with 33 additions and 158 deletions

View File

@ -28,6 +28,7 @@
"checkpoint": true,
"save_step": 376,
"print_step": 10,
"run_eval": false,
"data_path": "/snakepit/shared/data/keithito/LJSpeech-1.1/",
"min_seq_len": 0,
"output_path": "experiments/"

View File

@ -18,7 +18,7 @@ from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from tensorboardX import SummaryWriter
from utils.generic_utils import (Progbar, remove_experiment_folder,
from utils.generic_utils import (synthesis, remove_experiment_folder,
create_experiment_folder, save_checkpoint,
save_best_model, load_config, lr_decay,
count_parameters, check_update, get_commit_hash)
@ -116,14 +116,6 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
step_time = time.time() - start_time
epoch_time += step_time
# update
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
# ('linear_loss', linear_loss.item()),
# ('mel_loss', mel_loss.item()),
# ('stop_loss', stop_loss.item()),
# ('grad_norm', grad_norm.item()),
# ('grad_norm_st', grad_norm_st.item())])
if current_step % c.print_step == 0:
print(" | | > Step:{} GlobalStep:{} TotalLoss:{:.5f} LinearLoss:{:.5f} "\
"MelLoss:{:.5f} StopLoss:{:.5f} GradNorm:{:.5f} "\
@ -217,6 +209,10 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
avg_mel_loss = 0
avg_stop_loss = 0
print(" | > Validation")
test_sentences = ["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
"I'm sorry Dave. I'm afraid I can't do that.",
"This cake is great. It's so delicious and moist."]
# progbar = Progbar(len(data_loader.dataset) / c.batch_size)
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
with torch.no_grad():
@ -259,11 +255,6 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
step_time = time.time() - start_time
epoch_time += step_time
# update
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
# ('linear_loss', linear_loss.item()),
# ('mel_loss', mel_loss.item()),
# ('stop_loss', stop_loss.item())])
if num_iter % c.print_step == 0:
print(" | | > TotalLoss: {:.5f} LinearLoss: {:.5f} MelLoss:{:.5f} "\
"StopLoss: {:.5f} ".format(loss.item(),
@ -297,9 +288,7 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
tb.add_audio('ValSampleAudio', audio_signal, current_step,
sample_rate=c.sample_rate)
except:
# print(" | > Error at audio signal on TB!!")
# print(audio_signal.max())
# print(audio_signal.min())
# sometimes audio signal is out of boundaries
pass
# compute average losses
@ -314,6 +303,17 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
tb.add_scalar('ValEpochLoss/Stop_loss', avg_stop_loss, current_step)
# test sentences
data_loader.dataset.ap.griffin_lim_iters = 60
for idx, test_sentence in enumerate(test_sentences):
wav = synthesis(model, data_loader.dataset.ap, test_sentence, use_cuda,
c.text_cleaner)
try:
wav_name = 'TestSentences/{}'.format(idx)
tb.add_audio(wav_name, wav, current_step,
sample_rate=c.sample_rate)
except:
pass
return avg_linear_loss
@ -408,8 +408,10 @@ def main(args):
best_loss = float('inf')
for epoch in range(0, c.epochs):
train_loss, current_step = train(
model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
# train_loss, current_step = train(
current_step = 0
train_loss = 0
# model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
print(" | > Train Loss: {:.5f} Validation Loss: {:.5f}".format(train_loss, val_loss))
best_loss = save_best_model(model, optimizer, val_loss,

View File

@ -10,6 +10,7 @@ import subprocess
import numpy as np
from collections import OrderedDict
from torch.autograd import Variable
from utils.text import text_to_sequence
class AttrDict(dict):
@ -159,142 +160,13 @@ def sequence_mask(sequence_length, max_len=None):
return seq_range_expand < seq_length_expand
class Progbar(object):
"""Displays a progress bar.
Args:
target: Total number of steps expected, None if unknown.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=30, verbose=1, interval=0.05):
self.width = width
self.target = target
self.sum_values = {}
self.unique_values = []
self.start = time.time()
self.last_update = 0
self.interval = interval
self.total_width = 0
self.seen_so_far = 0
self.verbose = verbose
self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
sys.stdout.isatty()) or
'ipykernel' in sys.modules)
def update(self, current, values=None, force=False):
"""Updates the progress bar.
# Arguments
current: Index of current step.
values: List of tuples (name, value_for_last_step).
The progress bar will display averages for these values.
force: Whether to force visual progress update.
"""
values = values or []
for k, v in values:
if k not in self.sum_values:
self.sum_values[k] = [v * (current - self.seen_so_far),
current - self.seen_so_far]
self.unique_values.append(k)
else:
self.sum_values[k][0] += v * (current - self.seen_so_far)
self.sum_values[k][1] += (current - self.seen_so_far)
self.seen_so_far = current
now = time.time()
info = ' - %.0fs' % (now - self.start)
if self.verbose == 1:
if (not force and (now - self.last_update) < self.interval and
self.target is not None and current < self.target):
return
prev_total_width = self.total_width
if self._dynamic_display:
sys.stdout.write('\b' * prev_total_width)
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
if self.target is not None:
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%d [' % (numdigits, self.target)
bar = barstr % current
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
else:
bar = '%7d/Unknown' % current
self.total_width = len(bar)
sys.stdout.write(bar)
if current:
time_per_unit = (now - self.start) / current
else:
time_per_unit = 0
if self.target is not None and current < self.target:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = '%d:%02d:%02d' % (
eta // 3600, (eta % 3600) // 60, eta % 60)
elif eta > 60:
eta_format = '%d:%02d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
info = ' - ETA: %s' % eta_format
if time_per_unit >= 1:
info += ' %.0fs/step' % time_per_unit
elif time_per_unit >= 1e-3:
info += ' %.0fms/step' % (time_per_unit * 1e3)
else:
info += ' %.0fus/step' % (time_per_unit * 1e6)
for k in self.unique_values:
info += ' - %s:' % k
if isinstance(self.sum_values[k], list):
avg = np.mean(
self.sum_values[k][0] / max(1, self.sum_values[k][1]))
if abs(avg) > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
else:
info += ' %s' % self.sum_values[k]
self.total_width += len(info)
if prev_total_width > self.total_width:
info += (' ' * (prev_total_width - self.total_width))
if self.target is not None and current >= self.target:
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
elif self.verbose == 2:
if self.target is None or current >= self.target:
for k in self.unique_values:
info += ' - %s:' % k
avg = np.mean(
self.sum_values[k][0] / max(1, self.sum_values[k][1]))
if avg > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
self.last_update = now
def add(self, n, values=None):
self.update(self.seen_so_far + n, values)
def synthesis(model, ap, text, use_cuda, text_cleaner):
text_cleaner = [text_cleaner]
seq = np.array(text_to_sequence(text, text_cleaner))
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda().long()
_, linear_out, _, _ = model.forward(chars_var)
linear_out = linear_out[0].data.cpu().numpy()
wav = ap.inv_spectrogram(linear_out.T)
return wav