Remove AP from FastPitchE2e

This commit is contained in:
Eren Gölge 2022-04-19 09:19:07 +02:00 committed by Eren G??lge
parent 4556c61902
commit 231c69b12e
1 changed files with 547 additions and 69 deletions

View File

@ -1,48 +1,297 @@
import os
from dataclasses import dataclass, field
from itertools import chain
from typing import Dict, List, Tuple, Union
import numpy as np
import pyworld as pw
import torch
import torch.distributed as dist
from coqpit import Coqpit
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.utils.data import DataLoader
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.tts.layers.losses import ForwardTTSE2ELoss, VitsDiscriminatorLoss
from TTS.tts.datasets.dataset import F0Dataset, TTSDataset, _parse_sample
from TTS.tts.layers.losses import ForwardTTSE2eLoss, VitsDiscriminatorLoss
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
from TTS.tts.models.base_tts import BaseTTSE2E
from TTS.tts.models.forward_tts import ForwardTTS, ForwardTTSArgs
from TTS.tts.models.vits import wav_to_mel
from TTS.tts.utils.helpers import rand_segments, segment
from TTS.tts.models.vits import load_audio, wav_to_mel
from TTS.utils.audio.numpy_transforms import build_mel_basis, compute_f0, mel_to_wav as mel_to_wav_numpy
from TTS.tts.utils.helpers import rand_segments, segment, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment
from TTS.tts.utils.visual import plot_alignment, plot_avg_pitch
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results
from TTS.tts.utils.visual import plot_alignment, plot_avg_pitch, plot_spectrogram
def id_to_torch(aux_id, cuda=False):
if aux_id is not None:
aux_id = np.asarray(aux_id)
aux_id = torch.from_numpy(aux_id)
if cuda:
return aux_id.cuda()
return aux_id
def embedding_to_torch(d_vector, cuda=False):
if d_vector is not None:
d_vector = np.asarray(d_vector)
d_vector = torch.from_numpy(d_vector).type(torch.FloatTensor)
d_vector = d_vector.squeeze().unsqueeze(0)
if cuda:
return d_vector.cuda()
return d_vector
def numpy_to_torch(np_array, dtype, cuda=False):
if np_array is None:
return None
tensor = torch.as_tensor(np_array, dtype=dtype)
if cuda:
return tensor.cuda()
return tensor
##############################
# DATASET
##############################
class ForwardTTSE2eF0Dataset(F0Dataset):
"""Override F0Dataset to avoid the AudioProcessor."""
def __init__(
self,
audio_config: "AudioConfig",
samples: Union[List[List], List[Dict]],
verbose=False,
cache_path: str = None,
precompute_num_workers=0,
normalize_f0=True,
):
self.audio_config = audio_config
super().__init__(
samples=samples,
ap=None,
verbose=verbose,
cache_path=cache_path,
precompute_num_workers=precompute_num_workers,
normalize_f0=normalize_f0,
)
@staticmethod
def _compute_and_save_pitch(config, wav_file, pitch_file=None):
wav, _ = load_audio(wav_file)
f0 = compute_f0(x=wav.numpy()[0], sample_rate=config.sample_rate, hop_length=config.hop_length, pitch_fmax=config.pitch_fmax)
# skip the last F0 value to align with the spectrogram
if wav.shape[1] % config.hop_length != 0:
f0 = f0[:-1]
if pitch_file:
np.save(pitch_file, f0)
return f0
def compute_or_load(self, wav_file):
"""
compute pitch and return a numpy array of pitch values
"""
pitch_file = self.create_pitch_file_path(wav_file, self.cache_path)
if not os.path.exists(pitch_file):
pitch = self._compute_and_save_pitch(self.audio_config, wav_file, pitch_file)
else:
pitch = np.load(pitch_file)
return pitch.astype(np.float32)
class ForwardTTSE2eDataset(TTSDataset):
def __init__(self, *args, **kwargs):
# don't init the default F0Dataset in TTSDataset
compute_f0 = kwargs.pop("compute_f0", False)
kwargs["compute_f0"] = False
self.audio_config = kwargs["audio_config"]
del kwargs["audio_config"]
super().__init__(*args, **kwargs)
self.compute_f0 = compute_f0
self.pad_id = self.tokenizer.characters.pad_id
if self.compute_f0:
self.f0_dataset = ForwardTTSE2eF0Dataset(
audio_config=self.audio_config,
samples=self.samples,
cache_path=kwargs["f0_cache_path"],
precompute_num_workers=kwargs["precompute_num_workers"],
)
def __getitem__(self, idx):
item = self.samples[idx]
raw_text = item["text"]
wav, _ = load_audio(item["audio_file"])
wav_filename = os.path.basename(item["audio_file"])
token_ids = self.get_token_ids(idx, item["text"])
f0 = None
if self.compute_f0:
f0 = self.get_f0(idx)["f0"]
# after phonemization the text length may change
# this is a shameful 🤭 hack to prevent longer phonemes
# TODO: find a better fix
if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len:
self.rescue_item_idx += 1
return self.__getitem__(self.rescue_item_idx)
return {
"raw_text": raw_text,
"token_ids": token_ids,
"token_len": len(token_ids),
"wav": wav,
"pitch": f0,
"wav_file": wav_filename,
"speaker_name": item["speaker_name"],
"language_name": item["language"],
}
@property
def lengths(self):
lens = []
for item in self.samples:
_, wav_file, *_ = _parse_sample(item)
audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio
lens.append(audio_len)
return lens
def collate_fn(self, batch):
"""
Return Shapes:
- tokens: :math:`[B, T]`
- token_lens :math:`[B]`
- token_rel_lens :math:`[B]`
- pitch :math:`[B, T]`
- waveform: :math:`[B, 1, T]`
- waveform_lens: :math:`[B]`
- waveform_rel_lens: :math:`[B]`
- speaker_names: :math:`[B]`
- language_names: :math:`[B]`
- audiofile_paths: :math:`[B]`
- raw_texts: :math:`[B]`
"""
# convert list of dicts to dict of lists
B = len(batch)
batch = {k: [dic[k] for dic in batch] for k in batch[0]}
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x.size(1) for x in batch["wav"]]), dim=0, descending=True
)
max_text_len = max([len(x) for x in batch["token_ids"]])
token_lens = torch.LongTensor(batch["token_len"])
token_rel_lens = token_lens / token_lens.max()
wav_lens = [w.shape[1] for w in batch["wav"]]
wav_lens = torch.LongTensor(wav_lens)
wav_lens_max = torch.max(wav_lens)
wav_rel_lens = wav_lens / wav_lens_max
pitch_lens = [p.shape[0] for p in batch["pitch"]]
pitch_lens = torch.LongTensor(pitch_lens)
pitch_lens_max = torch.max(pitch_lens)
token_padded = torch.LongTensor(B, max_text_len)
wav_padded = torch.FloatTensor(B, 1, wav_lens_max)
pitch_padded = torch.FloatTensor(B, 1, pitch_lens_max)
token_padded = token_padded.zero_() + self.pad_id
wav_padded = wav_padded.zero_() + self.pad_id
pitch_padded = pitch_padded.zero_() + self.pad_id
for i in range(len(ids_sorted_decreasing)):
token_ids = batch["token_ids"][i]
token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids)
wav = batch["wav"][i]
wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav)
pitch = batch["pitch"][i]
pitch_padded[i, 0, : len(pitch)] = torch.FloatTensor(pitch)
return {
"text_input": token_padded,
"text_lengths": token_lens,
"text_rel_lens": token_rel_lens,
"pitch": pitch_padded,
"waveform": wav_padded, # (B x T)
"waveform_lens": wav_lens, # (B)
"waveform_rel_lens": wav_rel_lens,
"speaker_names": batch["speaker_name"],
"language_names": batch["language_name"],
"audio_files": batch["wav_file"],
"raw_text": batch["raw_text"],
}
##############################
# CONFIG DEFINITIONS
##############################
@dataclass
class ForwardTTSE2EArgs(ForwardTTSArgs):
class ForwardTTSE2eAudio(Coqpit):
sample_rate: int = 22050
hop_length: int = 256
win_length: int = 1024
fft_size: int = 1024
mel_fmin: float = 0.0
mel_fmax: float = 8000
num_mels: int = 80
pitch_fmax: float = 640.0
@dataclass
class ForwardTTSE2eArgs(ForwardTTSArgs):
# vocoder_config: BaseGANVocoderConfig = None
num_chars: int = 100
encoder_out_channels: int = 80
spec_segment_size: int = 32
spec_segment_size: int = 80
# duration predictor
detach_duration_predictor: bool = True
duration_predictor_dropout_p: float = 0.1
# pitch predictor
pitch_predictor_dropout_p: float = 0.1
# discriminator
init_discriminator: bool = True
use_spectral_norm_discriminator: bool = False
# model parameters
detach_vocoder_input: bool = False
hidden_channels: int = 192
hidden_channels: int = 256
encoder_type: str = "fftransformer"
encoder_params: dict = field(
default_factory=lambda: {"hidden_channels_ffn": 768, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}
default_factory=lambda: {
"hidden_channels_ffn": 1024,
"num_heads": 2,
"num_layers": 4,
"dropout_p": 0.1,
"kernel_size_fft": 9,
}
)
decoder_type: str = "fftransformer"
decoder_params: dict = field(
default_factory=lambda: {"hidden_channels_ffn": 768, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}
default_factory=lambda: {
"hidden_channels_ffn": 1024,
"num_heads": 2,
"num_layers": 4,
"dropout_p": 0.1,
"kernel_size_fft": 9,
}
)
# generator
resblock_type_decoder: str = "1"
@ -61,35 +310,39 @@ class ForwardTTSE2EArgs(ForwardTTSArgs):
d_vector_dim: int = 0
class ForwardTTSE2E(BaseTTSE2E):
##############################
# MODEL DEFINITION
##############################
class ForwardTTSE2e(BaseTTSE2E):
"""
Model training::
text --> ForwardTTS() --> spec_hat --> rand_seg_select()--> GANVocoder() --> waveform_seg
spec --------^
Examples:
>>> from TTS.tts.models.forward_tts_e2e import ForwardTTSE2E, ForwardTTSE2EConfig
>>> config = ForwardTTSE2EConfig()
>>> model = ForwardTTSE2E(config)
>>> from TTS.tts.models.forward_tts_e2e import ForwardTTSE2e, ForwardTTSE2eConfig
>>> config = ForwardTTSE2eConfig()
>>> model = ForwardTTSE2e(config)
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
config: Coqpit,
ap: "AudioProcessor" = None,
tokenizer: "TTSTokenizer" = None,
speaker_manager: SpeakerManager = None,
):
super().__init__(config, ap, tokenizer, speaker_manager)
super().__init__(config=config, tokenizer=tokenizer, speaker_manager=speaker_manager)
self._set_model_args(config)
self.init_multispeaker(config)
self.encoder_model = ForwardTTS(config=self.args, ap=ap, tokenizer=tokenizer, speaker_manager=speaker_manager)
self.encoder_model = ForwardTTS(config=self.args, ap=None, tokenizer=tokenizer, speaker_manager=speaker_manager)
# self.vocoder_model = GAN(config=self.args.vocoder_config, ap=ap)
self.waveform_decoder = HifiganGenerator(
self.args.out_channels,
self.args.hidden_channels,
1,
self.args.resblock_type_decoder,
self.args.resblock_dilation_sizes_decoder,
@ -179,16 +432,16 @@ class ForwardTTSE2E(BaseTTSE2E):
encoder_outputs = self.encoder_model(
x=x, x_lengths=x_lengths, y_lengths=spec_lengths, y=spec, dr=dr, pitch=pitch, aux_input=aux_input
)
spec_encoder_output = encoder_outputs["model_outputs"]
spec_encoder_output_slices, slice_ids = rand_segments(
x=spec_encoder_output.transpose(1, 2),
o_en_ex = encoder_outputs["o_en_ex"].transpose(1, 2) # [B, C_en, T_max2] -> [B, T_max2, C_en]
o_en_ex_slices, slice_ids = rand_segments(
x=o_en_ex.transpose(1, 2),
x_lengths=spec_lengths,
segment_size=self.args.spec_segment_size,
let_short_samples=True,
pad_short=True,
)
vocoder_output = self.waveform_decoder(
x=spec_encoder_output_slices.detach() if self.args.detach_vocoder_input else spec_encoder_output_slices,
x=o_en_ex_slices.detach() if self.args.detach_vocoder_input else o_en_ex_slices,
g=encoder_outputs["g"],
)
wav_seg = segment(
@ -205,33 +458,35 @@ class ForwardTTSE2E(BaseTTSE2E):
return model_outputs
@torch.no_grad()
def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None}): # pylint: disable=unused-argument
encoder_outputs = self.encoder_model.inference(x=x, aux_input=aux_input)
# vocoder_output = self.vocoder_model.model_g(x=encoder_outputs["model_outputs"].transpose(1, 2))
vocoder_output = self.waveform_decoder(
x=encoder_outputs["model_outputs"].transpose(1, 2), g=encoder_outputs["g"]
)
def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None}):
encoder_outputs = self.encoder_model.inference(x=x, aux_input=aux_input, skip_decoder=True)
o_en_ex = encoder_outputs["o_en_ex"]
vocoder_output = self.waveform_decoder(x=o_en_ex, g=encoder_outputs["g"])
model_outputs = {**encoder_outputs}
model_outputs["encoder_outputs"] = encoder_outputs["model_outputs"]
model_outputs["model_outputs"] = vocoder_output
return model_outputs
@torch.no_grad()
def inference_spec_decoder(self, x, aux_input={"d_vectors": None, "speaker_ids": None}):
encoder_outputs = self.encoder_model.inference(x=x, aux_input=aux_input, skip_decoder=False)
model_outputs = {**encoder_outputs}
return model_outputs
@staticmethod
def init_from_config(config: "ForwardTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=False):
"""Initiate model from config
Args:
config (ForwardTTSE2EConfig): Model config.
config (ForwardTTSE2eConfig): Model config.
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
Defaults to None.
"""
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.processor import AudioProcessor
ap = AudioProcessor.init_from_config(config, verbose=verbose)
tokenizer, new_config = TTSTokenizer.init_from_config(config)
speaker_manager = SpeakerManager.init_from_config(config, samples)
# language_manager = LanguageManager.init_from_config(config)
return ForwardTTSE2E(config=new_config, ap=ap, tokenizer=tokenizer, speaker_manager=speaker_manager)
return ForwardTTSE2e(config=new_config, tokenizer=tokenizer, speaker_manager=speaker_manager)
def load_checkpoint(
self, config, checkpoint_path, eval=False
@ -248,7 +503,7 @@ class ForwardTTSE2E(BaseTTSE2E):
token_lenghts = batch["text_lengths"]
spec = batch["mel_input"]
spec_lens = batch["mel_lengths"]
waveform = batch["waveform"].transpose(1, 2) # [B, T, C] -> [B, C, T]
waveform = batch["waveform"] # [B, T, C] -> [B, C, T]
pitch = batch["pitch"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
@ -316,6 +571,8 @@ class ForwardTTSE2E(BaseTTSE2E):
pitch_output=self.model_outputs_cache["pitch_avg"] if self.args.use_pitch else None,
pitch_target=self.model_outputs_cache["pitch_avg_gt"] if self.args.use_pitch else None,
input_lens=batch["text_lengths"],
waveform=self.model_outputs_cache["waveform_seg"],
waveform_hat=self.model_outputs_cache["model_outputs"],
aligner_logprob=self.model_outputs_cache["aligner_logprob"],
aligner_hard=self.model_outputs_cache["aligner_mas"],
aligner_soft=self.model_outputs_cache["aligner_soft"],
@ -340,29 +597,53 @@ class ForwardTTSE2E(BaseTTSE2E):
def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int):
return self.train_step(batch, criterion, optimizer_idx)
@staticmethod
def __copy_for_logging(outputs):
"""Change keys and copy values for logging."""
encoder_outputs = outputs[1].copy()
encoder_outputs["model_outputs"] = encoder_outputs["encoder_outputs"]
vocoder_outputs = outputs.copy()
vocoder_outputs[1]["model_outputs"] = outputs[1]["model_outputs"]
return encoder_outputs, vocoder_outputs
def _log(self, batch, outputs, name_prefix="train"):
figures, audios = {}, {}
def _log(self, ap, batch, outputs, name_prefix="train"):
encoder_outputs, vocoder_outputs = self.__copy_for_logging(outputs)
y_hat = vocoder_outputs[1]["model_outputs"]
y = vocoder_outputs[1]["waveform_seg"]
# encoder outputs
encoder_figures, encoder_audios = self.encoder_model.create_logs(
batch=batch, outputs=encoder_outputs, ap=self.ap
)
model_outputs = outputs[1]["encoder_outputs"]
alignments = outputs[1]["alignments"]
mel_input = batch["mel_input"]
pred_spec = model_outputs[0].data.cpu().numpy()
gt_spec = mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
"prediction": plot_spectrogram(pred_spec, None, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, None, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
# plot pitch figures
if self.args.use_pitch:
pitch_avg = abs(outputs[1]["pitch_avg_gt"][0, 0].data.cpu().numpy())
pitch_avg_hat = abs(outputs[1]["pitch_avg"][0, 0].data.cpu().numpy())
chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy())
pitch_figures = {
"pitch_ground_truth": plot_avg_pitch(pitch_avg, chars, output_fig=False),
"pitch_avg_predicted": plot_avg_pitch(pitch_avg_hat, chars, output_fig=False),
}
figures.update(pitch_figures)
# plot the attention mask computed from the predicted durations
if "attn_durations" in outputs[1]:
alignments_hat = outputs[1]["attn_durations"][0].data.cpu().numpy()
figures["alignment_hat"] = plot_alignment(alignments_hat.T, output_fig=False)
# Sample audio
encoder_audio = mel_to_wav_numpy(mel=pred_spec.T, mel_basis=self.__mel_basis, **self.config.audio)
audios[f"{name_prefix}/encoder_audio"] = encoder_audio
# vocoder outputs
vocoder_figures = plot_results(y_hat, y, ap, name_prefix)
y_hat = outputs[1]["model_outputs"]
y = outputs[1]["waveform_seg"]
vocoder_figures = plot_results(y_hat=y_hat, y=y, audio_config=self.config.audio, name_prefix=name_prefix)
figures.update(vocoder_figures)
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
audios = {f"{name_prefix}/real_audio": sample_voice}
audios[f"{name_prefix}/encoder_audio"] = encoder_audios["audio"]
figures = {**encoder_figures, **vocoder_figures}
audios[f"{name_prefix}/real_audio"] = sample_voice
return figures, audios
def train_log(
@ -374,21 +655,20 @@ class ForwardTTSE2E(BaseTTSE2E):
be projected onto Tensorboard.
Args:
ap (AudioProcessor): audio processor used at training.
batch (Dict): Model inputs used at the previous training step.
outputs (Dict): Model outputs generated at the previous training step.
Returns:
Tuple[Dict, np.ndarray]: training plots and output waveform.
"""
figures, audios = self._log(ap=self.ap, batch=batch, outputs=outputs, name_prefix="vocoder/")
figures, audios = self._log(batch=batch, outputs=outputs, name_prefix="vocoder/")
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, self.ap.sample_rate)
logger.train_audios(steps, audios, self.config.audio.sample_rate)
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
figures, audios = self._log(ap=self.ap, batch=batch, outputs=outputs, name_prefix="vocoder/")
figures, audios = self._log(batch=batch, outputs=outputs, name_prefix="vocoder/")
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
logger.eval_audios(steps, audios, self.config.audio.sample_rate)
def get_aux_input_from_test_sentences(self, sentence_info):
if hasattr(self.config, "model_args"):
@ -438,6 +718,78 @@ class ForwardTTSE2E(BaseTTSE2E):
"language_name": None,
}
def synthesize(self, text: str, speaker_id, language_id, d_vector):
# TODO: add language_id
is_cuda = next(self.parameters()).is_cuda
# convert text to sequence of token IDs
text_inputs = np.asarray(
self.tokenizer.text_to_ids(text, language=language_id),
dtype=np.int32,
)
# pass tensors to backend
if speaker_id is not None:
speaker_id = id_to_torch(speaker_id, cuda=is_cuda)
if d_vector is not None:
d_vector = embedding_to_torch(d_vector, cuda=is_cuda)
# if language_id is not None:
# language_id = id_to_torch(language_id, cuda=is_cuda)
text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=is_cuda)
text_inputs = text_inputs.unsqueeze(0)
# synthesize voice
outputs = self.inference(text_inputs, aux_input={"d_vectors": d_vector, "speaker_ids": speaker_id})
# collect outputs
wav = outputs["model_outputs"][0].data.cpu().numpy()
alignments = outputs["alignments"]
return_dict = {
"wav": wav,
"alignments": alignments,
"text_inputs": text_inputs,
"outputs": outputs,
}
return return_dict
def synthesize_with_gl(self, text: str, speaker_id, language_id, d_vector):
# TODO: add language_id
is_cuda = next(self.parameters()).is_cuda
# convert text to sequence of token IDs
text_inputs = np.asarray(
self.tokenizer.text_to_ids(text, language=language_id),
dtype=np.int32,
)
# pass tensors to backend
if speaker_id is not None:
speaker_id = id_to_torch(speaker_id, cuda=is_cuda)
if d_vector is not None:
d_vector = embedding_to_torch(d_vector, cuda=is_cuda)
# if language_id is not None:
# language_id = id_to_torch(language_id, cuda=is_cuda)
text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=is_cuda)
text_inputs = text_inputs.unsqueeze(0)
# synthesize voice
outputs = self.inference_spec_decoder(text_inputs, aux_input={"d_vectors": d_vector, "speaker_ids": speaker_id})
# collect outputs
wav = mel_to_wav_numpy(mel=outputs["model_outputs"].cpu().numpy()[0].T, mel_basis=self.__mel_basis, **self.config.audio)
alignments = outputs["alignments"]
return_dict = {
"wav": wav[None, :],
"alignments": alignments,
"text_inputs": text_inputs,
"outputs": outputs,
}
return return_dict
@torch.no_grad()
def test_run(self, assets) -> Tuple[Dict, Dict]:
"""Generic test run for `tts` models used by `Trainer`.
@ -453,30 +805,147 @@ class ForwardTTSE2E(BaseTTSE2E):
test_sentences = self.config.test_sentences
for idx, s_info in enumerate(test_sentences):
aux_inputs = self.get_aux_input_from_test_sentences(s_info)
wav, alignment, _, _ = synthesis(
self,
outputs = self.synthesize(
aux_inputs["text"],
self.config,
"cuda" in str(next(self.parameters()).device),
speaker_id=aux_inputs["speaker_id"],
d_vector=aux_inputs["d_vector"],
style_wav=aux_inputs["style_wav"],
language_id=aux_inputs["language_id"],
use_griffin_lim=True,
do_trim_silence=False,
).values()
test_audios["{}-audio".format(idx)] = wav
test_figures["{}-alignment".format(idx)] = plot_alignment(alignment, output_fig=False)
)
outputs_gl = self.synthesize_with_gl(
aux_inputs["text"],
speaker_id=aux_inputs["speaker_id"],
d_vector=aux_inputs["d_vector"],
language_id=aux_inputs["language_id"],
)
test_audios["{}-audio".format(idx)] = outputs["wav"].T
test_audios["{}-audio_encoder".format(idx)] = outputs_gl["wav"].T
test_figures["{}-alignment".format(idx)] = plot_alignment(outputs["alignments"], output_fig=False)
return {"figures": test_figures, "audios": test_audios}
def test_log(
self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument
) -> None:
logger.test_audios(steps, outputs["audios"], self.ap.sample_rate)
logger.test_audios(steps, outputs["audios"], self.config.audio.sample_rate)
logger.test_figures(steps, outputs["figures"])
def format_batch(self, batch: Dict) -> Dict:
"""Compute speaker, langugage IDs and d_vector for the batch if necessary."""
speaker_ids = None
language_ids = None
d_vectors = None
# get numerical speaker ids from speaker names
if self.speaker_manager is not None and self.speaker_manager.speaker_ids and self.args.use_speaker_embedding:
speaker_ids = [self.speaker_manager.speaker_ids[sn] for sn in batch["speaker_names"]]
if speaker_ids is not None:
speaker_ids = torch.LongTensor(speaker_ids)
batch["speaker_ids"] = speaker_ids
# get d_vectors from audio file names
if self.speaker_manager is not None and self.speaker_manager.d_vectors and self.args.use_d_vector_file:
d_vector_mapping = self.speaker_manager.d_vectors
d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_files"]]
d_vectors = torch.FloatTensor(d_vectors)
# get language ids from language names
if (
self.language_manager is not None
and self.language_manager.language_id_mapping
and self.args.use_language_embedding
):
language_ids = [self.language_manager.language_id_mapping[ln] for ln in batch["language_names"]]
if language_ids is not None:
language_ids = torch.LongTensor(language_ids)
batch["language_ids"] = language_ids
batch["d_vectors"] = d_vectors
batch["speaker_ids"] = speaker_ids
return batch
def format_batch_on_device(self, batch):
"""Compute spectrograms on the device."""
ac = self.config.audio
# compute spectrograms
batch["mel_input"] = wav_to_mel(
batch["waveform"],
hop_length=ac.hop_length,
win_length=ac.win_length,
n_fft=ac.fft_size,
num_mels=ac.num_mels,
sample_rate=ac.sample_rate,
fmin=ac.mel_fmin,
fmax=ac.mel_fmax,
center=False,
)
assert (
batch["pitch"].shape[2] == batch["mel_input"].shape[2]
), f"{batch['pitch'].shape[2]}, {batch['mel'].shape[2]}"
batch["mel_lengths"] = (batch["mel_input"].shape[2] * batch["waveform_rel_lens"]).int()
# zero the padding frames
batch["mel_input"] = batch["mel_input"] * sequence_mask(batch["mel_lengths"]).unsqueeze(1)
batch["mel_input"] = batch["mel_input"].transpose(1, 2)
return batch
def get_data_loader(
self,
config: Coqpit,
assets: Dict,
is_eval: bool,
samples: Union[List[Dict], List[List]],
verbose: bool,
num_gpus: int,
rank: int = None,
) -> "DataLoader":
if is_eval and not config.run_eval:
loader = None
else:
# init dataloader
dataset = ForwardTTSE2eDataset(
samples=samples,
audio_config=self.config.audio,
batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size,
min_text_len=config.min_text_len,
max_text_len=config.max_text_len,
min_audio_len=config.min_audio_len,
max_audio_len=config.max_audio_len,
phoneme_cache_path=config.phoneme_cache_path,
precompute_num_workers=config.precompute_num_workers,
compute_f0=config.compute_f0,
f0_cache_path=config.f0_cache_path,
verbose=verbose,
tokenizer=self.tokenizer,
start_by_longest=config.start_by_longest,
)
# wait all the DDP process to be ready
if num_gpus > 1:
dist.barrier()
# sort input sequences from short to long
dataset.preprocess_samples()
# get samplers
sampler = self.get_sampler(config, dataset, num_gpus)
loader = DataLoader(
dataset,
batch_size=config.eval_batch_size if is_eval else config.batch_size,
shuffle=False, # shuffle is done in the dataset.
drop_last=False, # setting this False might cause issues in AMP training.
sampler=sampler,
collate_fn=dataset.collate_fn,
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
return loader
def get_criterion(self):
return [VitsDiscriminatorLoss(self.config), ForwardTTSE2ELoss(self.config)]
return [VitsDiscriminatorLoss(self.config), ForwardTTSE2eLoss(self.config)]
def get_optimizer(self) -> List:
"""Initiate and return the GAN optimizers based on the config parameters.
@ -516,3 +985,12 @@ class ForwardTTSE2E(BaseTTSE2E):
"""Schedule binary loss weight."""
self.encoder_model.config.binary_loss_warmup_epochs = self.config.binary_loss_warmup_epochs
self.encoder_model.on_train_step_start(trainer)
def on_init_start(self, trainer: "Trainer"):
self.__mel_basis = build_mel_basis(
sample_rate=self.config.audio.sample_rate,
fft_size=self.config.audio.fft_size,
num_mels=self.config.audio.num_mels,
mel_fmax=self.config.audio.mel_fmax,
mel_fmin=self.config.audio.mel_fmin,
)