diff --git a/datasets/.LJSpeech.py.swp b/datasets/.LJSpeech.py.swp index 2cc0c4af..72acb3f7 100644 Binary files a/datasets/.LJSpeech.py.swp and b/datasets/.LJSpeech.py.swp differ diff --git a/datasets/LJSpeech.py b/datasets/LJSpeech.py index 4c4ddc2d..b15bc29e 100644 --- a/datasets/LJSpeech.py +++ b/datasets/LJSpeech.py @@ -52,6 +52,8 @@ class LJSpeechDataset(Dataset): keys = list() text = [d['text'] for d in batch] + text_lenghts = [len(x) for x in text] + max_text_len = np.max(text_lengths) wav = [d['wav'] for d in batch] # PAD sequences with largest length of the batch diff --git a/train.py b/train.py index 72d58d19..3bf3f4ee 100644 --- a/train.py +++ b/train.py @@ -97,7 +97,7 @@ def main(args): else: criterion = nn.L1Loss() -n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq) + n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq) #lr_scheduler = ReduceLROnPlateau(optimizer, factor=c.lr_decay, # patience=c.lr_patience, verbose=True) @@ -121,7 +121,7 @@ n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq) current_step = i + args.restore_step + epoch * len(dataloader) + 1 # setup lr - current_lr = lr_decay(init_lr, current_step) + current_lr = lr_decay(c.lr, current_step) for params_group in optimizer.param_groups: param_group['lr'] = current_lr