mirror of https://github.com/coqui-ai/TTS.git
Changes for review
This commit is contained in:
parent
c79a82ed07
commit
25832eb97b
|
@ -769,9 +769,9 @@ class Trainer:
|
|||
return None # TODO: Fix inference on WaveGrad
|
||||
if hasattr(self.eval_loader.dataset, "load_test_samples"):
|
||||
samples = self.eval_loader.dataset.load_test_samples(1)
|
||||
figures, audios = self.model.test_run(self.ap, samples, None, self.use_cuda)
|
||||
figures, audios = self.model.test_run(self.ap, samples, None)
|
||||
else:
|
||||
figures, audios = self.model.test_run(self.ap, self.use_cuda)
|
||||
figures, audios = self.model.test_run(self.ap)
|
||||
self.tb_logger.tb_test_audios(self.total_steps_done, audios, self.config.audio["sample_rate"])
|
||||
self.tb_logger.tb_test_figures(self.total_steps_done, figures)
|
||||
return None
|
||||
|
|
|
@ -200,7 +200,7 @@ class BaseTTS(BaseModel):
|
|||
)
|
||||
return loader
|
||||
|
||||
def test_run(self, ap, use_cuda) -> Tuple[Dict, Dict]:
|
||||
def test_run(self, ap) -> Tuple[Dict, Dict]:
|
||||
"""Generic test run for `tts` models used by `Trainer`.
|
||||
|
||||
You can override this for a different behaviour.
|
||||
|
@ -218,7 +218,7 @@ class BaseTTS(BaseModel):
|
|||
self,
|
||||
sen,
|
||||
self.config,
|
||||
use_cuda,
|
||||
"cuda" in str(next(self.parameters()).device),
|
||||
ap,
|
||||
speaker_id=aux_inputs["speaker_id"],
|
||||
d_vector=aux_inputs["d_vector"],
|
||||
|
|
|
@ -261,9 +261,7 @@ class Wavegrad(BaseModel):
|
|||
def eval_log(self, ap: AudioProcessor, batch: Dict, outputs: Dict) -> Tuple[Dict, np.ndarray]:
|
||||
return None, None
|
||||
|
||||
def test_run(
|
||||
self, ap: AudioProcessor, samples: List[Dict], ouputs: Dict, use_cuda
|
||||
): # pylint: disable=unused-argument
|
||||
def test_run(self, ap: AudioProcessor, samples: List[Dict], ouputs: Dict): # pylint: disable=unused-argument
|
||||
# setup noise schedule and inference
|
||||
noise_schedule = self.config["test_noise_schedule"]
|
||||
betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"])
|
||||
|
@ -271,8 +269,7 @@ class Wavegrad(BaseModel):
|
|||
for sample in samples:
|
||||
sample = self.format_batch(sample)
|
||||
x = sample["input"]
|
||||
if use_cuda:
|
||||
x = x.cuda()
|
||||
x = x.to(next(self.parameters()).device)
|
||||
y = sample["waveform"]
|
||||
# compute voice
|
||||
y_pred = self.inference(x)
|
||||
|
|
|
@ -322,7 +322,7 @@ class Wavernn(BaseVocoder):
|
|||
|
||||
with torch.no_grad():
|
||||
if isinstance(mels, np.ndarray):
|
||||
mels = torch.FloatTensor(mels)
|
||||
mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device))
|
||||
|
||||
if mels.ndim == 2:
|
||||
mels = mels.unsqueeze(0)
|
||||
|
@ -571,14 +571,13 @@ class Wavernn(BaseVocoder):
|
|||
|
||||
@torch.no_grad()
|
||||
def test_run(
|
||||
self, ap: AudioProcessor, samples: List[Dict], output: Dict, use_cuda # pylint: disable=unused-argument
|
||||
self, ap: AudioProcessor, samples: List[Dict], output: Dict # pylint: disable=unused-argument
|
||||
) -> Tuple[Dict, Dict]:
|
||||
figures = {}
|
||||
audios = {}
|
||||
for idx, sample in enumerate(samples):
|
||||
x = torch.FloatTensor(sample[0])
|
||||
if use_cuda:
|
||||
x = x.cuda()
|
||||
x = x.to(next(self.parameters()).device)
|
||||
y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples)
|
||||
x_hat = ap.melspectrogram(y_hat)
|
||||
figures.update(
|
||||
|
|
Loading…
Reference in New Issue