mirror of https://github.com/coqui-ai/TTS.git
correct imports after refactoring, add AlignTTS (old SSMAS) and some formatting
This commit is contained in:
parent
ecb6b0d6ad
commit
2b3e12ea49
|
@ -0,0 +1,541 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
import traceback
|
||||||
|
import numpy as np
|
||||||
|
from random import randrange
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from TTS.utils.arguments import parse_arguments, process_args
|
||||||
|
# DISTRIBUTED
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP_th
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
|
from TTS.tts.datasets.preprocess import load_meta_data
|
||||||
|
from TTS.tts.datasets.TTSDataset import MyDataset
|
||||||
|
from TTS.tts.layers.losses import AlignTTSLoss
|
||||||
|
from TTS.tts.utils.generic_utils import setup_model
|
||||||
|
from TTS.tts.utils.io import save_best_model, save_checkpoint
|
||||||
|
from TTS.tts.utils.measures import alignment_diagonal_score
|
||||||
|
from TTS.tts.utils.speakers import parse_speakers
|
||||||
|
from TTS.tts.utils.synthesis import synthesis
|
||||||
|
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
||||||
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||||
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
from TTS.utils.distribute import init_distributed, reduce_tensor
|
||||||
|
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
|
||||||
|
remove_experiment_folder, set_init_dict)
|
||||||
|
from TTS.utils.radam import RAdam
|
||||||
|
from TTS.utils.training import NoamLR, setup_torch_training_env
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
||||||
|
# torch.autograd.set_detect_anomaly(True)
|
||||||
|
|
||||||
|
def setup_loader(ap, r, is_val=False, verbose=False):
|
||||||
|
if is_val and not c.run_eval:
|
||||||
|
loader = None
|
||||||
|
else:
|
||||||
|
dataset = MyDataset(
|
||||||
|
r,
|
||||||
|
c.text_cleaner,
|
||||||
|
compute_linear_spec=False,
|
||||||
|
meta_data=meta_data_eval if is_val else meta_data_train,
|
||||||
|
ap=ap,
|
||||||
|
tp=c.characters if 'characters' in c.keys() else None,
|
||||||
|
add_blank=c['add_blank'] if 'add_blank' in c.keys() else False,
|
||||||
|
batch_group_size=0 if is_val else c.batch_group_size *
|
||||||
|
c.batch_size,
|
||||||
|
min_seq_len=c.min_seq_len,
|
||||||
|
max_seq_len=c.max_seq_len,
|
||||||
|
phoneme_cache_path=c.phoneme_cache_path,
|
||||||
|
use_phonemes=c.use_phonemes,
|
||||||
|
phoneme_language=c.phoneme_language,
|
||||||
|
enable_eos_bos=c.enable_eos_bos_chars,
|
||||||
|
use_noise_augment=not is_val,
|
||||||
|
verbose=verbose,
|
||||||
|
speaker_mapping=speaker_mapping if c.use_speaker_embedding and c.use_external_speaker_embedding_file else None)
|
||||||
|
|
||||||
|
if c.use_phonemes and c.compute_input_seq_cache:
|
||||||
|
# precompute phonemes to have a better estimate of sequence lengths.
|
||||||
|
dataset.compute_input_seq(c.num_loader_workers)
|
||||||
|
dataset.sort_items()
|
||||||
|
|
||||||
|
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
||||||
|
loader = DataLoader(
|
||||||
|
dataset,
|
||||||
|
batch_size=c.eval_batch_size if is_val else c.batch_size,
|
||||||
|
shuffle=False,
|
||||||
|
collate_fn=dataset.collate_fn,
|
||||||
|
drop_last=False,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=c.num_val_loader_workers
|
||||||
|
if is_val else c.num_loader_workers,
|
||||||
|
pin_memory=False)
|
||||||
|
return loader
|
||||||
|
|
||||||
|
|
||||||
|
def format_data(data):
|
||||||
|
# setup input data
|
||||||
|
text_input = data[0]
|
||||||
|
text_lengths = data[1]
|
||||||
|
speaker_names = data[2]
|
||||||
|
mel_input = data[4].permute(0, 2, 1) # B x D x T
|
||||||
|
mel_lengths = data[5]
|
||||||
|
item_idx = data[7]
|
||||||
|
attn_mask = data[9]
|
||||||
|
avg_text_length = torch.mean(text_lengths.float())
|
||||||
|
avg_spec_length = torch.mean(mel_lengths.float())
|
||||||
|
|
||||||
|
if c.use_speaker_embedding:
|
||||||
|
if c.use_external_speaker_embedding_file:
|
||||||
|
# return precomputed embedding vector
|
||||||
|
speaker_c = data[8]
|
||||||
|
else:
|
||||||
|
# return speaker_id to be used by an embedding layer
|
||||||
|
speaker_c = [
|
||||||
|
speaker_mapping[speaker_name] for speaker_name in speaker_names
|
||||||
|
]
|
||||||
|
speaker_c = torch.LongTensor(speaker_c)
|
||||||
|
else:
|
||||||
|
speaker_c = None
|
||||||
|
# dispatch data to GPU
|
||||||
|
if use_cuda:
|
||||||
|
text_input = text_input.cuda(non_blocking=True)
|
||||||
|
text_lengths = text_lengths.cuda(non_blocking=True)
|
||||||
|
mel_input = mel_input.cuda(non_blocking=True)
|
||||||
|
mel_lengths = mel_lengths.cuda(non_blocking=True)
|
||||||
|
if speaker_c is not None:
|
||||||
|
speaker_c = speaker_c.cuda(non_blocking=True)
|
||||||
|
return text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
|
||||||
|
avg_text_length, avg_spec_length, item_idx
|
||||||
|
|
||||||
|
|
||||||
|
def train(data_loader, model, criterion, optimizer, scheduler,
|
||||||
|
ap, global_step, epoch):
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
epoch_time = 0
|
||||||
|
keep_avg = KeepAverage()
|
||||||
|
if use_cuda:
|
||||||
|
batch_n_iter = int(
|
||||||
|
len(data_loader.dataset) / (c.batch_size * num_gpus))
|
||||||
|
else:
|
||||||
|
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
|
||||||
|
end_time = time.time()
|
||||||
|
c_logger.print_train_start()
|
||||||
|
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
|
||||||
|
for num_iter, data in enumerate(data_loader):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# format data
|
||||||
|
text_input, text_lengths, mel_targets, mel_lengths, speaker_c,\
|
||||||
|
avg_text_length, avg_spec_length, _ = format_data(data)
|
||||||
|
|
||||||
|
loader_time = time.time() - end_time
|
||||||
|
|
||||||
|
global_step += 1
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
# forward pass model
|
||||||
|
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
|
||||||
|
decoder_output, dur_output, dur_mas_output, alignments, mu, log_sigma, logp_max_path = model.forward(
|
||||||
|
text_input, text_lengths, mel_targets, mel_lengths, g=speaker_c)
|
||||||
|
|
||||||
|
# compute loss
|
||||||
|
loss_dict = criterion(mu, log_sigma, logp_max_path, decoder_output, mel_targets, mel_lengths, dur_output, dur_mas_output, text_lengths, global_step)
|
||||||
|
|
||||||
|
# backward pass with loss scaling
|
||||||
|
if c.mixed_precision:
|
||||||
|
scaler.scale(loss_dict['loss']).backward()
|
||||||
|
scaler.unscale_(optimizer)
|
||||||
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
|
||||||
|
c.grad_clip)
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
else:
|
||||||
|
loss_dict['loss'].backward()
|
||||||
|
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
|
||||||
|
c.grad_clip)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# setup lr
|
||||||
|
if c.noam_schedule:
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
# current_lr
|
||||||
|
current_lr = optimizer.param_groups[0]['lr']
|
||||||
|
|
||||||
|
# compute alignment error (the lower the better )
|
||||||
|
align_error = 1 - alignment_diagonal_score(alignments, binary=True)
|
||||||
|
loss_dict['align_error'] = align_error
|
||||||
|
|
||||||
|
step_time = time.time() - start_time
|
||||||
|
epoch_time += step_time
|
||||||
|
|
||||||
|
# aggregate losses from processes
|
||||||
|
if num_gpus > 1:
|
||||||
|
loss_dict['loss_l1'] = reduce_tensor(loss_dict['loss_l1'].data, num_gpus)
|
||||||
|
loss_dict['loss_ssim'] = reduce_tensor(loss_dict['loss_ssim'].data, num_gpus)
|
||||||
|
loss_dict['loss_dur'] = reduce_tensor(loss_dict['loss_dur'].data, num_gpus)
|
||||||
|
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
|
||||||
|
|
||||||
|
# detach loss values
|
||||||
|
loss_dict_new = dict()
|
||||||
|
for key, value in loss_dict.items():
|
||||||
|
if isinstance(value, (int, float)):
|
||||||
|
loss_dict_new[key] = value
|
||||||
|
else:
|
||||||
|
loss_dict_new[key] = value.item()
|
||||||
|
loss_dict = loss_dict_new
|
||||||
|
|
||||||
|
# update avg stats
|
||||||
|
update_train_values = dict()
|
||||||
|
for key, value in loss_dict.items():
|
||||||
|
update_train_values['avg_' + key] = value
|
||||||
|
update_train_values['avg_loader_time'] = loader_time
|
||||||
|
update_train_values['avg_step_time'] = step_time
|
||||||
|
keep_avg.update_values(update_train_values)
|
||||||
|
|
||||||
|
# print training progress
|
||||||
|
if global_step % c.print_step == 0:
|
||||||
|
log_dict = {
|
||||||
|
|
||||||
|
"avg_spec_length": [avg_spec_length, 1], # value, precision
|
||||||
|
"avg_text_length": [avg_text_length, 1],
|
||||||
|
"step_time": [step_time, 4],
|
||||||
|
"loader_time": [loader_time, 2],
|
||||||
|
"current_lr": current_lr,
|
||||||
|
}
|
||||||
|
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
|
||||||
|
log_dict, loss_dict, keep_avg.avg_values)
|
||||||
|
|
||||||
|
if args.rank == 0:
|
||||||
|
# Plot Training Iter Stats
|
||||||
|
# reduce TB load
|
||||||
|
if global_step % c.tb_plot_step == 0:
|
||||||
|
iter_stats = {
|
||||||
|
"lr": current_lr,
|
||||||
|
"grad_norm": grad_norm,
|
||||||
|
"step_time": step_time
|
||||||
|
}
|
||||||
|
iter_stats.update(loss_dict)
|
||||||
|
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
||||||
|
|
||||||
|
if global_step % c.save_step == 0:
|
||||||
|
if c.checkpoint:
|
||||||
|
# save model
|
||||||
|
save_checkpoint(model, optimizer, global_step, epoch, 1, OUT_PATH, model_characters,
|
||||||
|
model_loss=loss_dict['loss'])
|
||||||
|
|
||||||
|
# wait all kernels to be completed
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
|
||||||
|
# Diagnostic visualizations
|
||||||
|
idx = np.random.randint(mel_targets.shape[0])
|
||||||
|
pred_spec = decoder_output[idx].detach().data.cpu().numpy().T
|
||||||
|
gt_spec = mel_targets[idx].data.cpu().numpy().T
|
||||||
|
align_img = alignments[idx].data.cpu()
|
||||||
|
|
||||||
|
figures = {
|
||||||
|
"prediction": plot_spectrogram(pred_spec, ap),
|
||||||
|
"ground_truth": plot_spectrogram(gt_spec, ap),
|
||||||
|
"alignment": plot_alignment(align_img),
|
||||||
|
}
|
||||||
|
|
||||||
|
tb_logger.tb_train_figures(global_step, figures)
|
||||||
|
|
||||||
|
# Sample audio
|
||||||
|
train_audio = ap.inv_melspectrogram(pred_spec.T)
|
||||||
|
tb_logger.tb_train_audios(global_step,
|
||||||
|
{'TrainAudio': train_audio},
|
||||||
|
c.audio["sample_rate"])
|
||||||
|
end_time = time.time()
|
||||||
|
|
||||||
|
# print epoch stats
|
||||||
|
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
|
||||||
|
|
||||||
|
# Plot Epoch Stats
|
||||||
|
if args.rank == 0:
|
||||||
|
epoch_stats = {"epoch_time": epoch_time}
|
||||||
|
epoch_stats.update(keep_avg.avg_values)
|
||||||
|
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
||||||
|
if c.tb_model_param_stats:
|
||||||
|
tb_logger.tb_model_weights(model, global_step)
|
||||||
|
return keep_avg.avg_values, global_step
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
||||||
|
model.eval()
|
||||||
|
epoch_time = 0
|
||||||
|
keep_avg = KeepAverage()
|
||||||
|
c_logger.print_eval_start()
|
||||||
|
if data_loader is not None:
|
||||||
|
for num_iter, data in enumerate(data_loader):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# format data
|
||||||
|
text_input, text_lengths, mel_targets, mel_lengths, speaker_c,\
|
||||||
|
avg_text_length, avg_spec_length, _ = format_data(data)
|
||||||
|
|
||||||
|
# forward pass model
|
||||||
|
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
|
||||||
|
decoder_output, dur_output, dur_mas_output, alignments, mu, log_sigma, logp_max_path = model.forward(
|
||||||
|
text_input, text_lengths, mel_targets, mel_lengths, g=speaker_c)
|
||||||
|
|
||||||
|
# compute loss
|
||||||
|
loss_dict = criterion(mu, log_sigma, logp_max_path, decoder_output, mel_targets, mel_lengths, dur_output, dur_mas_output, text_lengths, global_step)
|
||||||
|
|
||||||
|
# step time
|
||||||
|
step_time = time.time() - start_time
|
||||||
|
epoch_time += step_time
|
||||||
|
|
||||||
|
# compute alignment score
|
||||||
|
align_error = 1 - alignment_diagonal_score(alignments, binary=True)
|
||||||
|
loss_dict['align_error'] = align_error
|
||||||
|
|
||||||
|
# aggregate losses from processes
|
||||||
|
if num_gpus > 1:
|
||||||
|
loss_dict['loss_l1'] = reduce_tensor(loss_dict['loss_l1'].data, num_gpus)
|
||||||
|
loss_dict['loss_ssim'] = reduce_tensor(loss_dict['loss_ssim'].data, num_gpus)
|
||||||
|
loss_dict['loss_dur'] = reduce_tensor(loss_dict['loss_dur'].data, num_gpus)
|
||||||
|
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
|
||||||
|
|
||||||
|
# detach loss values
|
||||||
|
loss_dict_new = dict()
|
||||||
|
for key, value in loss_dict.items():
|
||||||
|
if isinstance(value, (int, float)):
|
||||||
|
loss_dict_new[key] = value
|
||||||
|
else:
|
||||||
|
loss_dict_new[key] = value.item()
|
||||||
|
loss_dict = loss_dict_new
|
||||||
|
|
||||||
|
# update avg stats
|
||||||
|
update_train_values = dict()
|
||||||
|
for key, value in loss_dict.items():
|
||||||
|
update_train_values['avg_' + key] = value
|
||||||
|
keep_avg.update_values(update_train_values)
|
||||||
|
|
||||||
|
if c.print_eval:
|
||||||
|
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
||||||
|
|
||||||
|
if args.rank == 0:
|
||||||
|
# Diagnostic visualizations
|
||||||
|
idx = np.random.randint(mel_targets.shape[0])
|
||||||
|
pred_spec = decoder_output[idx].detach().data.cpu().numpy().T
|
||||||
|
gt_spec = mel_targets[idx].data.cpu().numpy().T
|
||||||
|
align_img = alignments[idx].data.cpu()
|
||||||
|
|
||||||
|
eval_figures = {
|
||||||
|
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
|
||||||
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
|
||||||
|
"alignment": plot_alignment(align_img, output_fig=False)
|
||||||
|
}
|
||||||
|
|
||||||
|
# Sample audio
|
||||||
|
eval_audio = ap.inv_melspectrogram(pred_spec.T)
|
||||||
|
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
|
||||||
|
c.audio["sample_rate"])
|
||||||
|
|
||||||
|
# Plot Validation Stats
|
||||||
|
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
||||||
|
tb_logger.tb_eval_figures(global_step, eval_figures)
|
||||||
|
|
||||||
|
if args.rank == 0 and epoch >= c.test_delay_epochs:
|
||||||
|
if c.test_sentences_file is None:
|
||||||
|
test_sentences = [
|
||||||
|
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
||||||
|
"Be a voice, not an echo.",
|
||||||
|
"I'm sorry Dave. I'm afraid I can't do that.",
|
||||||
|
"This cake is great. It's so delicious and moist.",
|
||||||
|
"Prior to November 22, 1963."
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
with open(c.test_sentences_file, "r") as f:
|
||||||
|
test_sentences = [s.strip() for s in f.readlines()]
|
||||||
|
|
||||||
|
# test sentences
|
||||||
|
test_audios = {}
|
||||||
|
test_figures = {}
|
||||||
|
print(" | > Synthesizing test sentences")
|
||||||
|
if c.use_speaker_embedding:
|
||||||
|
if c.use_external_speaker_embedding_file:
|
||||||
|
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding']
|
||||||
|
speaker_id = None
|
||||||
|
else:
|
||||||
|
speaker_id = 0
|
||||||
|
speaker_embedding = None
|
||||||
|
else:
|
||||||
|
speaker_id = None
|
||||||
|
speaker_embedding = None
|
||||||
|
|
||||||
|
style_wav = c.get("style_wav_for_test")
|
||||||
|
for idx, test_sentence in enumerate(test_sentences):
|
||||||
|
try:
|
||||||
|
wav, alignment, _, postnet_output, _, _ = synthesis(
|
||||||
|
model,
|
||||||
|
test_sentence,
|
||||||
|
c,
|
||||||
|
use_cuda,
|
||||||
|
ap,
|
||||||
|
speaker_id=speaker_id,
|
||||||
|
speaker_embedding=speaker_embedding,
|
||||||
|
style_wav=style_wav,
|
||||||
|
truncated=False,
|
||||||
|
enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument
|
||||||
|
use_griffin_lim=True,
|
||||||
|
do_trim_silence=False)
|
||||||
|
|
||||||
|
file_path = os.path.join(AUDIO_PATH, str(global_step))
|
||||||
|
os.makedirs(file_path, exist_ok=True)
|
||||||
|
file_path = os.path.join(file_path,
|
||||||
|
"TestSentence_{}.wav".format(idx))
|
||||||
|
ap.save_wav(wav, file_path)
|
||||||
|
test_audios['{}-audio'.format(idx)] = wav
|
||||||
|
test_figures['{}-prediction'.format(idx)] = plot_spectrogram(
|
||||||
|
postnet_output, ap)
|
||||||
|
test_figures['{}-alignment'.format(idx)] = plot_alignment(
|
||||||
|
alignment)
|
||||||
|
except: #pylint: disable=bare-except
|
||||||
|
print(" !! Error creating Test Sentence -", idx)
|
||||||
|
traceback.print_exc()
|
||||||
|
tb_logger.tb_test_audios(global_step, test_audios,
|
||||||
|
c.audio['sample_rate'])
|
||||||
|
tb_logger.tb_test_figures(global_step, test_figures)
|
||||||
|
return keep_avg.avg_values
|
||||||
|
|
||||||
|
|
||||||
|
# FIXME: move args definition/parsing inside of main?
|
||||||
|
def main(args): # pylint: disable=redefined-outer-name
|
||||||
|
# pylint: disable=global-variable-undefined
|
||||||
|
global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
|
||||||
|
# Audio processor
|
||||||
|
ap = AudioProcessor(**c.audio)
|
||||||
|
if 'characters' in c.keys():
|
||||||
|
symbols, phonemes = make_symbols(**c.characters)
|
||||||
|
|
||||||
|
# DISTRUBUTED
|
||||||
|
if num_gpus > 1:
|
||||||
|
init_distributed(args.rank, num_gpus, args.group_id,
|
||||||
|
c.distributed["backend"], c.distributed["url"])
|
||||||
|
|
||||||
|
# set model characters
|
||||||
|
model_characters = phonemes if c.use_phonemes else symbols
|
||||||
|
num_chars = len(model_characters)
|
||||||
|
|
||||||
|
# load data instances
|
||||||
|
meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=True)
|
||||||
|
|
||||||
|
# set the portion of the data used for training if set in config.json
|
||||||
|
if 'train_portion' in c.keys():
|
||||||
|
meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
|
||||||
|
if 'eval_portion' in c.keys():
|
||||||
|
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]
|
||||||
|
|
||||||
|
# parse speakers
|
||||||
|
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
|
||||||
|
|
||||||
|
# setup model
|
||||||
|
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim=speaker_embedding_dim)
|
||||||
|
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
|
||||||
|
criterion = AlignTTSLoss(c)
|
||||||
|
|
||||||
|
if args.restore_path:
|
||||||
|
print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
|
||||||
|
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||||
|
try:
|
||||||
|
# TODO: fix optimizer init, model.cuda() needs to be called before
|
||||||
|
# optimizer restore
|
||||||
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||||
|
if c.reinit_layers:
|
||||||
|
raise RuntimeError
|
||||||
|
model.load_state_dict(checkpoint['model'])
|
||||||
|
except: #pylint: disable=bare-except
|
||||||
|
print(" > Partial model initialization.")
|
||||||
|
model_dict = model.state_dict()
|
||||||
|
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
|
||||||
|
model.load_state_dict(model_dict)
|
||||||
|
del model_dict
|
||||||
|
|
||||||
|
for group in optimizer.param_groups:
|
||||||
|
group['initial_lr'] = c.lr
|
||||||
|
print(" > Model restored from step %d" % checkpoint['step'],
|
||||||
|
flush=True)
|
||||||
|
args.restore_step = checkpoint['step']
|
||||||
|
else:
|
||||||
|
args.restore_step = 0
|
||||||
|
|
||||||
|
if use_cuda:
|
||||||
|
model.cuda()
|
||||||
|
criterion.cuda()
|
||||||
|
|
||||||
|
# DISTRUBUTED
|
||||||
|
if num_gpus > 1:
|
||||||
|
model = DDP_th(model, device_ids=[args.rank])
|
||||||
|
|
||||||
|
if c.noam_schedule:
|
||||||
|
scheduler = NoamLR(optimizer,
|
||||||
|
warmup_steps=c.warmup_steps,
|
||||||
|
last_epoch=args.restore_step - 1)
|
||||||
|
else:
|
||||||
|
scheduler = None
|
||||||
|
|
||||||
|
num_params = count_parameters(model)
|
||||||
|
print("\n > Model has {} parameters".format(num_params), flush=True)
|
||||||
|
|
||||||
|
if args.restore_step == 0 or not args.best_path:
|
||||||
|
best_loss = float('inf')
|
||||||
|
print(" > Starting with inf best loss.")
|
||||||
|
else:
|
||||||
|
print(" > Restoring best loss from "
|
||||||
|
f"{os.path.basename(args.best_path)} ...")
|
||||||
|
best_loss = torch.load(args.best_path,
|
||||||
|
map_location='cpu')['model_loss']
|
||||||
|
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||||
|
keep_all_best = c.get('keep_all_best', False)
|
||||||
|
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
|
||||||
|
|
||||||
|
# define dataloaders
|
||||||
|
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
|
||||||
|
eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)
|
||||||
|
|
||||||
|
global_step = args.restore_step
|
||||||
|
for epoch in range(0, c.epochs):
|
||||||
|
c_logger.print_epoch_start(epoch, c.epochs)
|
||||||
|
train_avg_loss_dict, global_step = train(train_loader, model, criterion, optimizer,
|
||||||
|
scheduler, ap, global_step,
|
||||||
|
epoch)
|
||||||
|
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
|
||||||
|
global_step, epoch)
|
||||||
|
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
||||||
|
target_loss = train_avg_loss_dict['avg_loss']
|
||||||
|
if c.run_eval:
|
||||||
|
target_loss = eval_avg_loss_dict['avg_loss']
|
||||||
|
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
|
||||||
|
global_step, epoch, c.r, OUT_PATH, model_characters,
|
||||||
|
keep_all_best=keep_all_best, keep_after=keep_after)
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_arguments(sys.argv)
|
||||||
|
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
|
||||||
|
args, model_type='tts')
|
||||||
|
|
||||||
|
try:
|
||||||
|
main(args)
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
remove_experiment_folder(OUT_PATH)
|
||||||
|
try:
|
||||||
|
sys.exit(0)
|
||||||
|
except SystemExit:
|
||||||
|
os._exit(0) # pylint: disable=protected-access
|
||||||
|
except Exception: # pylint: disable=broad-except
|
||||||
|
remove_experiment_folder(OUT_PATH)
|
||||||
|
traceback.print_exc()
|
||||||
|
sys.exit(1)
|
|
@ -23,7 +23,6 @@ def generate_path(duration, mask):
|
||||||
mask: [b, t_x, t_y]
|
mask: [b, t_x, t_y]
|
||||||
"""
|
"""
|
||||||
device = duration.device
|
device = duration.device
|
||||||
|
|
||||||
b, t_x, t_y = mask.shape
|
b, t_x, t_y = mask.shape
|
||||||
cum_duration = torch.cumsum(duration, 1)
|
cum_duration = torch.cumsum(duration, 1)
|
||||||
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
||||||
|
|
|
@ -0,0 +1,257 @@
|
||||||
|
import torch
|
||||||
|
import math
|
||||||
|
from torch import nn
|
||||||
|
from TTS.tts.layers.feed_forward.decoder import Decoder
|
||||||
|
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
|
||||||
|
from TTS.tts.layers.feed_forward.encoder import Encoder, PositionalEncoding
|
||||||
|
from TTS.tts.utils.generic_utils import sequence_mask
|
||||||
|
from TTS.tts.layers.glow_tts.monotonic_align import maximum_path, generate_path
|
||||||
|
from TTS.tts.layers.align_tts.mdn import MDNBlock
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class AlignTTS(nn.Module):
|
||||||
|
"""Speedy Speech model with Monotonic Alignment Search
|
||||||
|
https://arxiv.org/abs/2008.03802
|
||||||
|
https://arxiv.org/pdf/2005.11129.pdf
|
||||||
|
|
||||||
|
Encoder -> DurationPredictor -> Decoder
|
||||||
|
|
||||||
|
This model is able to achieve a reasonable performance with only
|
||||||
|
~3M model parameters and convolutional layers.
|
||||||
|
|
||||||
|
This model requires precomputed phoneme durations to train a duration predictor. At inference
|
||||||
|
it only uses the duration predictor to compute durations and expand encoder outputs respectively.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_chars (int): number of unique input to characters
|
||||||
|
out_channels (int): number of output tensor channels. It is equal to the expected spectrogram size.
|
||||||
|
hidden_channels (int): number of channels in all the model layers.
|
||||||
|
positional_encoding (bool, optional): enable/disable Positional encoding on encoder outputs. Defaults to True.
|
||||||
|
length_scale (int, optional): coefficient to set the speech speed. <1 slower, >1 faster. Defaults to 1.
|
||||||
|
encoder_type (str, optional): set the encoder type. Defaults to 'residual_conv_bn'.
|
||||||
|
encoder_params (dict, optional): set encoder parameters depending on 'encoder_type'. Defaults to { "kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13 }.
|
||||||
|
decoder_type (str, optional): decoder type. Defaults to 'residual_conv_bn'.
|
||||||
|
decoder_params (dict, optional): set decoder parameters depending on 'decoder_type'. Defaults to { "kernel_size": 4, "dilations": 4 * [1, 2, 4, 8] + [1], "num_conv_blocks": 2, "num_res_blocks": 17 }.
|
||||||
|
num_speakers (int, optional): number of speakers for multi-speaker training. Defaults to 0.
|
||||||
|
external_c (bool, optional): enable external speaker embeddings. Defaults to False.
|
||||||
|
c_in_channels (int, optional): number of channels in speaker embedding vectors. Defaults to 0.
|
||||||
|
"""
|
||||||
|
# pylint: disable=dangerous-default-value
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_chars,
|
||||||
|
out_channels,
|
||||||
|
hidden_channels,
|
||||||
|
positional_encoding=True,
|
||||||
|
length_scale=1,
|
||||||
|
encoder_type='residual_conv_bn',
|
||||||
|
encoder_params={
|
||||||
|
"kernel_size": 4,
|
||||||
|
"dilations": 4 * [1, 2, 4] + [1],
|
||||||
|
"num_conv_blocks": 2,
|
||||||
|
"num_res_blocks": 13
|
||||||
|
},
|
||||||
|
decoder_type='residual_conv_bn',
|
||||||
|
decoder_params={
|
||||||
|
"kernel_size": 4,
|
||||||
|
"dilations": 4 * [1, 2, 4, 8] + [1],
|
||||||
|
"num_conv_blocks": 2,
|
||||||
|
"num_res_blocks": 17
|
||||||
|
},
|
||||||
|
num_speakers=0,
|
||||||
|
external_c=False,
|
||||||
|
c_in_channels=0):
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
self.length_scale = float(length_scale) if isinstance(
|
||||||
|
length_scale, int) else length_scale
|
||||||
|
self.emb = nn.Embedding(num_chars, hidden_channels)
|
||||||
|
self.encoder = Encoder(hidden_channels, hidden_channels, encoder_type,
|
||||||
|
encoder_params, c_in_channels)
|
||||||
|
if positional_encoding:
|
||||||
|
self.pos_encoder = PositionalEncoding(hidden_channels)
|
||||||
|
self.decoder = Decoder(out_channels, hidden_channels, decoder_type,
|
||||||
|
decoder_params)
|
||||||
|
self.duration_predictor = DurationPredictor(hidden_channels +
|
||||||
|
c_in_channels)
|
||||||
|
|
||||||
|
self.mod_layer = nn.Conv1d(hidden_channels, hidden_channels, 1)
|
||||||
|
# self.wn_spec_encoder = WNSpecEncoder(out_channels, hidden_channels, c_in_channels=c_in_channels)
|
||||||
|
self.mdn_block = MDNBlock(hidden_channels, 2*out_channels)
|
||||||
|
|
||||||
|
if num_speakers > 1 and not external_c:
|
||||||
|
# speaker embedding layer
|
||||||
|
self.emb_g = nn.Embedding(num_speakers, c_in_channels)
|
||||||
|
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)
|
||||||
|
|
||||||
|
if c_in_channels > 0 and c_in_channels != hidden_channels:
|
||||||
|
self.proj_g = nn.Conv1d(c_in_channels, hidden_channels, 1)
|
||||||
|
|
||||||
|
def compute_mas_path(self, mu, log_sigma, y, x_mask, y_mask):
|
||||||
|
# find the max alignment path
|
||||||
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
|
||||||
|
with torch.no_grad():
|
||||||
|
scale = torch.exp(-2 * log_sigma)
|
||||||
|
# [B, T_en, 1]
|
||||||
|
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - log_sigma,
|
||||||
|
[1]).unsqueeze(-1)
|
||||||
|
# [B, T_en, D] x [B, D, T_dec] = [B, T_en, T_dec]
|
||||||
|
logp2 = torch.matmul(scale.transpose(1, 2), -0.5 * (y**2))
|
||||||
|
# [B, T_en, D] x [B, D, T_dec] = [B, T_en, T_dec]
|
||||||
|
logp3 = torch.matmul((mu * scale).transpose(1, 2), y)
|
||||||
|
# [B, T_en, 1]
|
||||||
|
logp4 = torch.sum(-0.5 * (mu**2) * scale,
|
||||||
|
[1]).unsqueeze(-1)
|
||||||
|
# [B, T_en, T_dec]
|
||||||
|
logp = logp1 + logp2 + logp3 + logp4
|
||||||
|
# import pdb; pdb.set_trace()
|
||||||
|
# [B, T_en, T_dec]
|
||||||
|
attn = maximum_path(logp,
|
||||||
|
attn_mask.squeeze(1)).unsqueeze(1).detach()
|
||||||
|
# logp_max_path = logp.new_ones(logp.shape) * -1e4
|
||||||
|
# logp_max_path += logp * attn.squeeze(1)
|
||||||
|
logp_max_path = None
|
||||||
|
dr_mas = torch.sum(attn, -1)
|
||||||
|
return dr_mas.squeeze(1), logp_max_path
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def expand_encoder_outputs(en, dr, x_mask, y_mask):
|
||||||
|
"""Generate attention alignment map from durations and
|
||||||
|
expand encoder outputs
|
||||||
|
|
||||||
|
Example:
|
||||||
|
encoder output: [a,b,c,d]
|
||||||
|
durations: [1, 3, 2, 1]
|
||||||
|
|
||||||
|
expanded: [a, b, b, b, c, c, d]
|
||||||
|
attention map: [[0, 0, 0, 0, 0, 0, 1],
|
||||||
|
[0, 0, 0, 0, 1, 1, 0],
|
||||||
|
[0, 1, 1, 1, 0, 0, 0],
|
||||||
|
[1, 0, 0, 0, 0, 0, 0]]
|
||||||
|
"""
|
||||||
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
|
||||||
|
attn = generate_path(dr, attn_mask.squeeze(1)).to(en.dtype)
|
||||||
|
o_en_ex = torch.matmul(
|
||||||
|
attn.squeeze(1).transpose(1, 2), en.transpose(1,
|
||||||
|
2)).transpose(1, 2)
|
||||||
|
return o_en_ex, attn
|
||||||
|
|
||||||
|
def format_durations(self, o_dr_log, x_mask):
|
||||||
|
o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale
|
||||||
|
o_dr[o_dr < 1] = 1.0
|
||||||
|
o_dr = torch.round(o_dr)
|
||||||
|
return o_dr
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _concat_speaker_embedding(o_en, g):
|
||||||
|
g_exp = g.expand(-1, -1, o_en.size(-1)) # [B, C, T_en]
|
||||||
|
o_en = torch.cat([o_en, g_exp], 1)
|
||||||
|
return o_en
|
||||||
|
|
||||||
|
def _sum_speaker_embedding(self, x, g):
|
||||||
|
# project g to decoder dim.
|
||||||
|
if hasattr(self, 'proj_g'):
|
||||||
|
g = self.proj_g(g)
|
||||||
|
return x + g
|
||||||
|
|
||||||
|
def _forward_encoder(self, x, x_lengths, g=None):
|
||||||
|
if hasattr(self, 'emb_g'):
|
||||||
|
g = nn.functional.normalize(self.emb_g(g)) # [B, C, 1]
|
||||||
|
|
||||||
|
if g is not None:
|
||||||
|
g = g.unsqueeze(-1)
|
||||||
|
|
||||||
|
# [B, T, C]
|
||||||
|
x_emb = self.emb(x)
|
||||||
|
# [B, C, T]
|
||||||
|
x_emb = torch.transpose(x_emb, 1, -1)
|
||||||
|
|
||||||
|
# compute sequence masks
|
||||||
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]),
|
||||||
|
1).to(x.dtype)
|
||||||
|
|
||||||
|
# encoder pass
|
||||||
|
o_en = self.encoder(x_emb, x_mask)
|
||||||
|
|
||||||
|
# speaker conditioning for duration predictor
|
||||||
|
if g is not None:
|
||||||
|
o_en_dp = self._concat_speaker_embedding(o_en, g)
|
||||||
|
else:
|
||||||
|
o_en_dp = o_en
|
||||||
|
return o_en, o_en_dp, x_mask, g
|
||||||
|
|
||||||
|
def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g):
|
||||||
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None),
|
||||||
|
1).to(o_en_dp.dtype)
|
||||||
|
# expand o_en with durations
|
||||||
|
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask)
|
||||||
|
# positional encoding
|
||||||
|
if hasattr(self, 'pos_encoder'):
|
||||||
|
o_en_ex = self.pos_encoder(o_en_ex, y_mask)
|
||||||
|
# speaker embedding
|
||||||
|
if g is not None:
|
||||||
|
o_en_ex = self._sum_speaker_embedding(o_en_ex, g)
|
||||||
|
# decoder pass
|
||||||
|
o_de = self.decoder(o_en_ex, y_mask, g=g)
|
||||||
|
|
||||||
|
return o_de, attn.transpose(1, 2)
|
||||||
|
|
||||||
|
# def _forward_mas(self, o_en, y, y_lengths, x_mask):
|
||||||
|
# # MAS potentials and alignment
|
||||||
|
# o_en_mean = self.mod_layer(o_en)
|
||||||
|
# y_mask = torch.unsqueeze(sequence_mask(y_lengths, None),
|
||||||
|
# 1).to(o_en.dtype)
|
||||||
|
# z = self.wn_spec_encoder(y)
|
||||||
|
# dr_mas, y_mean, y_scale = self.compute_mas_path(o_en_mean, z, x_mask, y_mask)
|
||||||
|
# return dr_mas, z, y_mean, y_scale
|
||||||
|
|
||||||
|
def _forward_mdn(self, o_en, y, y_lengths, x_mask):
|
||||||
|
# MAS potentials and alignment
|
||||||
|
mu, log_sigma = self.mdn_block(o_en)
|
||||||
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype)
|
||||||
|
dr_mas, logp_max_path = self.compute_mas_path(mu, log_sigma, y, x_mask, y_mask)
|
||||||
|
return dr_mas, mu, log_sigma, logp_max_path
|
||||||
|
|
||||||
|
def forward(self, x, x_lengths, y, y_lengths, g=None): # pylint: disable=unused-argument
|
||||||
|
"""
|
||||||
|
Shapes:
|
||||||
|
x: [B, T_max]
|
||||||
|
x_lengths: [B]
|
||||||
|
y_lengths: [B]
|
||||||
|
dr: [B, T_max]
|
||||||
|
g: [B, C]
|
||||||
|
"""
|
||||||
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
|
||||||
|
dr_mas, mu, log_sigma, logp_max_path = self._forward_mdn(o_en, y, y_lengths, x_mask)
|
||||||
|
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
|
||||||
|
# TODO: compute attn once
|
||||||
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
|
||||||
|
dr_mas_log = torch.log(1 + dr_mas).squeeze(1)
|
||||||
|
return o_de, o_dr_log.squeeze(1), dr_mas_log, attn, mu, log_sigma, logp_max_path
|
||||||
|
|
||||||
|
def inference(self, x, x_lengths, g=None): # pylint: disable=unused-argument
|
||||||
|
"""
|
||||||
|
Shapes:
|
||||||
|
x: [B, T_max]
|
||||||
|
x_lengths: [B]
|
||||||
|
g: [B, C]
|
||||||
|
"""
|
||||||
|
# pad input to prevent dropping the last word
|
||||||
|
x = torch.nn.functional.pad(x, pad=(0, 5), mode='constant', value=0)
|
||||||
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
|
||||||
|
# duration predictor pass
|
||||||
|
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
|
||||||
|
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
|
||||||
|
y_lengths = o_dr.sum(1)
|
||||||
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g)
|
||||||
|
return o_de, attn
|
||||||
|
|
||||||
|
def load_checkpoint(self, config, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin
|
||||||
|
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
||||||
|
self.load_state_dict(state['model'])
|
||||||
|
if eval:
|
||||||
|
self.eval()
|
||||||
|
assert not self.training
|
|
@ -1,8 +1,8 @@
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from TTS.tts.layers.speedy_speech.decoder import Decoder
|
from TTS.tts.layers.feed_forward.decoder import Decoder
|
||||||
from TTS.tts.layers.speedy_speech.duration_predictor import DurationPredictor
|
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
|
||||||
from TTS.tts.layers.speedy_speech.encoder import Encoder, PositionalEncoding
|
from TTS.tts.layers.feed_forward.encoder import Encoder, PositionalEncoding
|
||||||
from TTS.tts.utils.generic_utils import sequence_mask
|
from TTS.tts.utils.generic_utils import sequence_mask
|
||||||
from TTS.tts.layers.glow_tts.monotonic_align import generate_path
|
from TTS.tts.layers.glow_tts.monotonic_align import generate_path
|
||||||
|
|
||||||
|
|
|
@ -2,8 +2,8 @@
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
|
||||||
from TTS.tts.layers.gst_layers import GST
|
from TTS.tts.layers.tacotron.gst_layers import GST
|
||||||
from TTS.tts.layers.tacotron import Decoder, Encoder, PostCBHG
|
from TTS.tts.layers.tacotron.tacotron import Decoder, Encoder, PostCBHG
|
||||||
from TTS.tts.models.tacotron_abstract import TacotronAbstract
|
from TTS.tts.models.tacotron_abstract import TacotronAbstract
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
|
||||||
from TTS.tts.layers.gst_layers import GST
|
from TTS.tts.layers.tacotron.gst_layers import GST
|
||||||
from TTS.tts.layers.tacotron2 import Decoder, Encoder, Postnet
|
from TTS.tts.layers.tacotron.tacotron2 import Decoder, Encoder, Postnet
|
||||||
from TTS.tts.models.tacotron_abstract import TacotronAbstract
|
from TTS.tts.models.tacotron_abstract import TacotronAbstract
|
||||||
|
|
||||||
# TODO: match function arguments with tacotron
|
# TODO: match function arguments with tacotron
|
||||||
|
@ -17,7 +17,7 @@ class Tacotron2(TacotronAbstract):
|
||||||
r (int): initial model reduction rate.
|
r (int): initial model reduction rate.
|
||||||
postnet_output_dim (int, optional): postnet output channels. Defaults to 80.
|
postnet_output_dim (int, optional): postnet output channels. Defaults to 80.
|
||||||
decoder_output_dim (int, optional): decoder output channels. Defaults to 80.
|
decoder_output_dim (int, optional): decoder output channels. Defaults to 80.
|
||||||
attn_type (str, optional): attention type. Check ```TTS.tts.layers.common_layers.init_attn```. Defaults to 'original'.
|
attn_type (str, optional): attention type. Check ```TTS.tts.layers.tacotron.common_layers.init_attn```. Defaults to 'original'.
|
||||||
attn_win (bool, optional): enable/disable attention windowing.
|
attn_win (bool, optional): enable/disable attention windowing.
|
||||||
It especially useful at inference to keep attention alignment diagonal. Defaults to False.
|
It especially useful at inference to keep attention alignment diagonal. Defaults to False.
|
||||||
attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax".
|
attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax".
|
||||||
|
|
|
@ -77,7 +77,7 @@ def run_model_torch(model, inputs, CONFIG, truncated, speaker_id=None, style_mel
|
||||||
# these only belong to tacotron models.
|
# these only belong to tacotron models.
|
||||||
decoder_output = None
|
decoder_output = None
|
||||||
stop_tokens = None
|
stop_tokens = None
|
||||||
elif 'speedy_speech' in CONFIG.model.lower():
|
elif CONFIG.model.lower() in ['speedy_speech', 'align_tts']:
|
||||||
inputs_lengths = torch.tensor(inputs.shape[1:2]).to(inputs.device) # pylint: disable=not-callable
|
inputs_lengths = torch.tensor(inputs.shape[1:2]).to(inputs.device) # pylint: disable=not-callable
|
||||||
if hasattr(model, 'module'):
|
if hasattr(model, 'module'):
|
||||||
# distributed model
|
# distributed model
|
||||||
|
@ -88,6 +88,8 @@ def run_model_torch(model, inputs, CONFIG, truncated, speaker_id=None, style_mel
|
||||||
# these only belong to tacotron models.
|
# these only belong to tacotron models.
|
||||||
decoder_output = None
|
decoder_output = None
|
||||||
stop_tokens = None
|
stop_tokens = None
|
||||||
|
else:
|
||||||
|
raise ValueError('[!] Unknown model name.')
|
||||||
return decoder_output, postnet_output, alignments, stop_tokens
|
return decoder_output, postnet_output, alignments, stop_tokens
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
import unittest
|
import unittest
|
||||||
import torch as T
|
import torch as T
|
||||||
|
|
||||||
from TTS.tts.layers.tacotron import Prenet, CBHG, Decoder, Encoder
|
from TTS.tts.layers.tacotron.tacotron import Prenet, CBHG, Decoder, Encoder
|
||||||
from TTS.tts.layers.losses import L1LossMasked, SSIMLoss
|
from TTS.tts.layers.losses import L1LossMasked, SSIMLoss
|
||||||
from TTS.tts.utils.generic_utils import sequence_mask
|
from TTS.tts.utils.generic_utils import sequence_mask
|
||||||
|
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from TTS.tts.layers.speedy_speech.encoder import Encoder
|
from TTS.tts.layers.feed_forward.encoder import Encoder
|
||||||
from TTS.tts.layers.speedy_speech.decoder import Decoder
|
from TTS.tts.layers.feed_forward.decoder import Decoder
|
||||||
from TTS.tts.layers.speedy_speech.duration_predictor import DurationPredictor
|
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
|
||||||
from TTS.tts.utils.generic_utils import sequence_mask
|
from TTS.tts.utils.generic_utils import sequence_mask
|
||||||
from TTS.tts.models.speedy_speech import SpeedySpeech
|
from TTS.tts.models.speedy_speech import SpeedySpeech
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue