mirror of https://github.com/coqui-ai/TTS.git
update default hifigan config
This commit is contained in:
parent
105e0b4d62
commit
2b529f60c8
|
@ -11,10 +11,10 @@
|
|||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
"log_func": "np.log",
|
||||
"log_func": "np.log10",
|
||||
"do_sound_norm": true,
|
||||
|
||||
// Silence trimming
|
||||
|
@ -23,17 +23,17 @@
|
|||
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": false, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
"stats_path": "/home/erogol/.local/share/tts/tts_models--en--ljspeech--speedy-speech-wn/scale_stats.npy"
|
||||
},
|
||||
|
||||
// DISTRIBUTED TRAINING
|
||||
|
@ -70,7 +70,7 @@
|
|||
|
||||
"l1_spec_loss_params": {
|
||||
"use_mel": true,
|
||||
"sample_rate": 16000,
|
||||
"sample_rate": 22050,
|
||||
"n_fft": 1024,
|
||||
"hop_length": 256,
|
||||
"win_length": 1024,
|
||||
|
@ -104,7 +104,7 @@
|
|||
},
|
||||
|
||||
// DATASET
|
||||
"data_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/vo_voice_quality_transformation/",
|
||||
"data_path": "/home/erogol/gdrive/Datasets/LJSpeech-1.1/wavs/",
|
||||
"feature_path": null,
|
||||
// "feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/",
|
||||
"seq_len": 8192,
|
||||
|
@ -127,25 +127,30 @@
|
|||
"wd": 0.0, // Weight decay weight.
|
||||
"gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0
|
||||
"disc_clip_grad": -1, // Discriminator gradient clipping threshold.
|
||||
// "lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
// "lr_scheduler_gen_params": {
|
||||
// "gamma": 0.999,
|
||||
// "last_epoch": -1
|
||||
// },
|
||||
// "lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
// "lr_scheduler_disc_params": {
|
||||
// "gamma": 0.999,
|
||||
// "last_epoch": -1
|
||||
// },
|
||||
"lr_gen": 0.00001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_disc": 0.00001,
|
||||
"lr_gen": 0.0002, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_disc": 0.0002,
|
||||
"optimizer": "AdamW",
|
||||
"optimizer_params":{
|
||||
"betas": [0.8, 0.99],
|
||||
"weight_decay": 0.0
|
||||
},
|
||||
"lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
"lr_scheduler_gen_params": {
|
||||
"gamma": 0.999,
|
||||
"last_epoch": -1
|
||||
},
|
||||
"lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
"lr_scheduler_disc_params": {
|
||||
"gamma": 0.999,
|
||||
"last_epoch": -1
|
||||
},
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log traning on console.
|
||||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
|
@ -153,7 +158,7 @@
|
|||
"eval_split_size": 10,
|
||||
|
||||
// PATHS
|
||||
"output_path": "/home/erogol/gdrive/Trainings/sam/"
|
||||
"output_path": "/home/erogol/gdrive/Trainings/LJSpeech/"
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue