mirror of https://github.com/coqui-ai/TTS.git
Add text encoder based on adaptive Weight
This commit is contained in:
parent
99635193f5
commit
2bdc7a5675
|
@ -4,7 +4,6 @@ import torch
|
|||
from torch import nn
|
||||
|
||||
from TTS.tts.layers.glow_tts.glow import WN
|
||||
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
|
||||
from TTS.tts.utils.helpers import sequence_mask
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
@ -25,81 +24,6 @@ def init_weights(m, mean=0.0, std=0.01):
|
|||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_vocab: int,
|
||||
out_channels: int,
|
||||
hidden_channels: int,
|
||||
hidden_channels_ffn: int,
|
||||
num_heads: int,
|
||||
num_layers: int,
|
||||
kernel_size: int,
|
||||
dropout_p: float,
|
||||
language_emb_dim: int = None,
|
||||
):
|
||||
"""Text Encoder for VITS model.
|
||||
|
||||
Args:
|
||||
n_vocab (int): Number of characters for the embedding layer.
|
||||
out_channels (int): Number of channels for the output.
|
||||
hidden_channels (int): Number of channels for the hidden layers.
|
||||
hidden_channels_ffn (int): Number of channels for the convolutional layers.
|
||||
num_heads (int): Number of attention heads for the Transformer layers.
|
||||
num_layers (int): Number of Transformer layers.
|
||||
kernel_size (int): Kernel size for the FFN layers in Transformer network.
|
||||
dropout_p (float): Dropout rate for the Transformer layers.
|
||||
"""
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
|
||||
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
||||
|
||||
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
||||
|
||||
if language_emb_dim:
|
||||
hidden_channels += language_emb_dim
|
||||
|
||||
self.encoder = RelativePositionTransformer(
|
||||
in_channels=hidden_channels,
|
||||
out_channels=hidden_channels,
|
||||
hidden_channels=hidden_channels,
|
||||
hidden_channels_ffn=hidden_channels_ffn,
|
||||
num_heads=num_heads,
|
||||
num_layers=num_layers,
|
||||
kernel_size=kernel_size,
|
||||
dropout_p=dropout_p,
|
||||
layer_norm_type="2",
|
||||
rel_attn_window_size=4,
|
||||
)
|
||||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, lang_emb=None):
|
||||
"""
|
||||
Shapes:
|
||||
- x: :math:`[B, T]`
|
||||
- x_length: :math:`[B]`
|
||||
"""
|
||||
assert x.shape[0] == x_lengths.shape[0]
|
||||
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
|
||||
# concat the lang emb in embedding chars
|
||||
if lang_emb is not None:
|
||||
x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1)
|
||||
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) # [b, 1, t]
|
||||
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
stats = self.proj(x) * x_mask
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return x, m, logs, x_mask
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
|
|
@ -0,0 +1,653 @@
|
|||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from TTS.tts.utils.helpers import sequence_mask
|
||||
from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2
|
||||
# import sys
|
||||
# sys.setrecursionlimit(9999999)
|
||||
class AdaptiveWeightConv(nn.Module):
|
||||
def __init__(self, conv_module, in_channels, out_channels, kernel_size, r=0, alpha=1, dropout=0., num_classes=None, **kwargs):
|
||||
super(AdaptiveWeightConv, self).__init__()
|
||||
self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
|
||||
self.r = r
|
||||
|
||||
# it is only support when kernel_size is equal to 1
|
||||
if kernel_size != 1:
|
||||
self.r = 0
|
||||
|
||||
self.alpha = alpha
|
||||
self.num_classes = num_classes
|
||||
|
||||
self.weight = self.conv.weight
|
||||
# Optional dropout
|
||||
if dropout > 0.:
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
else:
|
||||
self.dropout = lambda x: x
|
||||
|
||||
assert isinstance(kernel_size, int)
|
||||
# Actual trainable parameters
|
||||
if self.r > 0:
|
||||
# create layers for each class
|
||||
|
||||
# self.W_Ms = nn.Parameter(
|
||||
# self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
|
||||
# )
|
||||
|
||||
# self.W_Bs = nn.Parameter(
|
||||
# self.conv.weight.new_zeros((out_channels//self.conv.groups*kernel_size, r*kernel_size))
|
||||
# )
|
||||
W_Ms_layers = [nn.Parameter(self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))) for _ in range(0, num_classes)]
|
||||
self.W_Ms = nn.ParameterList(W_Ms_layers)
|
||||
W_Bs_layers = [nn.Parameter(self.conv.weight.new_zeros((out_channels//self.conv.groups*kernel_size, r*kernel_size))) for _ in range(0, num_classes)]
|
||||
self.W_Bs = nn.ParameterList(W_Bs_layers)
|
||||
|
||||
# self.m_shape = (r * kernel_size, in_channels * kernel_size)
|
||||
# self.W_Ms = nn.Embedding(num_classes, self.m_shape[0] * self.m_shape[1])
|
||||
# self.b_shape = (out_channels//self.conv.groups*kernel_size, r*kernel_size)
|
||||
# self.W_Bs = nn.Embedding(num_classes, self.b_shape[0] * self.b_shape[1])
|
||||
self.scaling = self.alpha / self.r
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
self.conv.reset_parameters()
|
||||
if hasattr(self, 'W_Ms'):
|
||||
# initialize A the same way as the default for nn.Linear and B to zero
|
||||
|
||||
# nn.init.kaiming_uniform_(self.W_Ms, a=math.sqrt(5))
|
||||
# nn.init.zeros_(self.W_Bs)
|
||||
|
||||
for i in range(0, self.num_classes):
|
||||
nn.init.kaiming_uniform_(self.W_Ms[i], a=math.sqrt(5))
|
||||
nn.init.zeros_(self.W_Bs[i])
|
||||
|
||||
# nn.init.kaiming_uniform_(self.W_Ms.weight, a=math.sqrt(5))
|
||||
# nn.init.zeros_(self.W_Bs.weight)
|
||||
|
||||
def train(self, mode=True):
|
||||
super(AdaptiveWeightConv, self).train(mode)
|
||||
|
||||
def forward(self, x, class_id=None):
|
||||
if self.r > 0:
|
||||
# W_M_layer = self.W_Ms(class_ids).view(class_ids.size(0), *self.m_shape)
|
||||
# W_B_layer = self.W_Bs(class_ids).view(class_ids.size(0), *self.b_shape)
|
||||
W_M_layer = self.W_Ms[class_id]
|
||||
W_B_layer = self.W_Bs[class_id]
|
||||
# W_M_layer = self.W_Ms
|
||||
# W_B_layer = self.W_Bs
|
||||
|
||||
# print(self.conv.weight.shape, (W_B_layer @ W_M_layer).shape, W_M_layer.shape, W_B_layer.shape)
|
||||
return self.conv._conv_forward(
|
||||
x,
|
||||
self.conv.weight + (W_B_layer @ W_M_layer).view(self.conv.weight.shape) * self.scaling,
|
||||
self.conv.bias
|
||||
)
|
||||
return self.conv(x)
|
||||
|
||||
class Conv2d(AdaptiveWeightConv):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(Conv2d, self).__init__(nn.Conv2d, *args, **kwargs)
|
||||
|
||||
class Conv1d(AdaptiveWeightConv):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(Conv1d, self).__init__(nn.Conv1d, *args, **kwargs)
|
||||
|
||||
# Can Extend to other ones like this
|
||||
|
||||
class Conv3d(AdaptiveWeightConv):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(Conv3d, self).__init__(nn.Conv3d, *args, **kwargs)
|
||||
|
||||
|
||||
class RelativePositionMultiHeadAttention(nn.Module):
|
||||
"""Multi-head attention with Relative Positional embedding.
|
||||
https://arxiv.org/pdf/1809.04281.pdf
|
||||
|
||||
It learns positional embeddings for a window of neighbours. For keys and values,
|
||||
it learns different set of embeddings. Key embeddings are agregated with the attention
|
||||
scores and value embeddings are aggregated with the output.
|
||||
|
||||
Note:
|
||||
Example with relative attention window size 2
|
||||
|
||||
- input = [a, b, c, d, e]
|
||||
- rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)]
|
||||
|
||||
So it learns 4 embedding vectors (in total 8) separately for key and value vectors.
|
||||
|
||||
Considering the input c
|
||||
|
||||
- e(t-2) corresponds to c -> a
|
||||
- e(t-2) corresponds to c -> b
|
||||
- e(t-2) corresponds to c -> d
|
||||
- e(t-2) corresponds to c -> e
|
||||
|
||||
These embeddings are shared among different time steps. So input a, b, d and e also uses
|
||||
the same embeddings.
|
||||
|
||||
Embeddings are ignored when the relative window is out of limit for the first and the last
|
||||
n items.
|
||||
|
||||
Args:
|
||||
channels (int): input and inner layer channels.
|
||||
out_channels (int): output channels.
|
||||
num_heads (int): number of attention heads.
|
||||
rel_attn_window_size (int, optional): relation attention window size.
|
||||
If 4, for each time step next and previous 4 time steps are attended.
|
||||
If default, relative encoding is disabled and it is a regular transformer.
|
||||
Defaults to None.
|
||||
heads_share (bool, optional): [description]. Defaults to True.
|
||||
dropout_p (float, optional): dropout rate. Defaults to 0..
|
||||
input_length (int, optional): intput length for positional encoding. Defaults to None.
|
||||
proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False.
|
||||
proximal_init (bool, optional): enable/disable poximal init as in the paper.
|
||||
Init key and query layer weights the same. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
out_channels,
|
||||
num_heads,
|
||||
rel_attn_window_size=None,
|
||||
heads_share=True,
|
||||
dropout_p=0.0,
|
||||
input_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False,
|
||||
num_adaptive_weight_classes=None,
|
||||
):
|
||||
super().__init__()
|
||||
assert channels % num_heads == 0, " [!] channels should be divisible by num_heads."
|
||||
# class attributes
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.num_heads = num_heads
|
||||
self.rel_attn_window_size = rel_attn_window_size
|
||||
self.heads_share = heads_share
|
||||
self.input_length = input_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.dropout_p = dropout_p
|
||||
self.attn = None
|
||||
# query, key, value layers
|
||||
self.k_channels = channels // num_heads
|
||||
self.conv_q = Conv1d(channels, channels, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
self.conv_k = Conv1d(channels, channels, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
self.conv_v = Conv1d(channels, channels, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
# output layers
|
||||
self.conv_o = Conv1d(channels, out_channels, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
# relative positional encoding layers
|
||||
if rel_attn_window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else num_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
emb_rel_k = nn.Parameter(
|
||||
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
|
||||
)
|
||||
emb_rel_v = nn.Parameter(
|
||||
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
|
||||
)
|
||||
self.register_parameter("emb_rel_k", emb_rel_k)
|
||||
self.register_parameter("emb_rel_v", emb_rel_v)
|
||||
|
||||
# init layers
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
# proximal bias
|
||||
if proximal_init:
|
||||
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
||||
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
|
||||
def forward(self, x, c, attn_mask=None, class_id=None):
|
||||
"""
|
||||
Shapes:
|
||||
- x: :math:`[B, C, T]`
|
||||
- c: :math:`[B, C, T]`
|
||||
- attn_mask: :math:`[B, 1, T, T]`
|
||||
"""
|
||||
q = self.conv_q(x, class_id=class_id)
|
||||
k = self.conv_k(c, class_id=class_id)
|
||||
v = self.conv_v(c, class_id=class_id)
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
x = self.conv_o(x, class_id=class_id)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
# compute raw attention scores
|
||||
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
||||
# relative positional encoding for scores
|
||||
if self.rel_attn_window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
# get relative key embeddings
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
|
||||
rel_logits = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores_local = rel_logits / math.sqrt(self.k_channels)
|
||||
scores = scores + scores_local
|
||||
# proximan bias
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype)
|
||||
# attention score masking
|
||||
if mask is not None:
|
||||
# add small value to prevent oor error.
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.input_length is not None:
|
||||
block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length)
|
||||
scores = scores * block_mask + -1e4 * (1 - block_mask)
|
||||
# attention score normalization
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
# apply dropout to attention weights
|
||||
p_attn = self.dropout(p_attn)
|
||||
# compute output
|
||||
output = torch.matmul(p_attn, value)
|
||||
# relative positional encoding for values
|
||||
if self.rel_attn_window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
@staticmethod
|
||||
def _matmul_with_relative_values(p_attn, re):
|
||||
"""
|
||||
Args:
|
||||
p_attn (Tensor): attention weights.
|
||||
re (Tensor): relative value embedding vector. (a_(i,j)^V)
|
||||
|
||||
Shapes:
|
||||
-p_attn: :math:`[B, H, T, V]`
|
||||
-re: :math:`[H or 1, V, D]`
|
||||
-logits: :math:`[B, H, T, D]`
|
||||
"""
|
||||
logits = torch.matmul(p_attn, re.unsqueeze(0))
|
||||
return logits
|
||||
|
||||
@staticmethod
|
||||
def _matmul_with_relative_keys(query, re):
|
||||
"""
|
||||
Args:
|
||||
query (Tensor): batch of query vectors. (x*W^Q)
|
||||
re (Tensor): relative key embedding vector. (a_(i,j)^K)
|
||||
|
||||
Shapes:
|
||||
- query: :math:`[B, H, T, D]`
|
||||
- re: :math:`[H or 1, V, D]`
|
||||
- logits: :math:`[B, H, T, V]`
|
||||
"""
|
||||
# logits = torch.einsum('bhld, kmd -> bhlm', [query, re.to(query.dtype)])
|
||||
logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1))
|
||||
return logits
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
"""Convert embedding vestors to a tensor of embeddings"""
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.rel_attn_window_size + 1), 0)
|
||||
slice_start_position = max((self.rel_attn_window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
@staticmethod
|
||||
def _relative_position_to_absolute_position(x):
|
||||
"""Converts tensor from relative to absolute indexing for local attention.
|
||||
Shapes:
|
||||
x: :math:`[B, C, T, 2 * T - 1]`
|
||||
Returns:
|
||||
A Tensor of shape :math:`[B, C, T, T]`
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0])
|
||||
# Pad extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
|
||||
return x_final
|
||||
|
||||
@staticmethod
|
||||
def _absolute_position_to_relative_position(x):
|
||||
"""
|
||||
Shapes:
|
||||
- x: :math:`[B, C, T, T]`
|
||||
- ret: :math:`[B, C, T, 2*T-1]`
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
@staticmethod
|
||||
def _attn_proximity_bias(length):
|
||||
"""Produce an attention mask that discourages distant
|
||||
attention values.
|
||||
Args:
|
||||
length (int): an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape :math:`[1, 1, T, T]`
|
||||
"""
|
||||
# L
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
# L x L
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
# scale mask values
|
||||
diff = -torch.log1p(torch.abs(diff))
|
||||
# 1 x 1 x L x L
|
||||
return diff.unsqueeze(0).unsqueeze(0)
|
||||
|
||||
|
||||
class FeedForwardNetwork(nn.Module):
|
||||
"""Feed Forward Inner layers for Transformer.
|
||||
|
||||
Args:
|
||||
in_channels (int): input tensor channels.
|
||||
out_channels (int): output tensor channels.
|
||||
hidden_channels (int): inner layers hidden channels.
|
||||
kernel_size (int): conv1d filter kernel size.
|
||||
dropout_p (float, optional): dropout rate. Defaults to 0.
|
||||
"""
|
||||
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False, num_adaptive_weight_classes=None):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dropout_p = dropout_p
|
||||
|
||||
if causal:
|
||||
self.padding = self._causal_padding
|
||||
else:
|
||||
self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = Conv1d(in_channels, hidden_channels, kernel_size, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
self.conv_2 = Conv1d(hidden_channels, out_channels, kernel_size, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
|
||||
def forward(self, x, x_mask, class_id=None):
|
||||
x = self.conv_1(self.padding(x * x_mask), class_id=class_id)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
x = self.conv_2(self.padding(x * x_mask), class_id=class_id)
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, self._pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, self._pad_shape(padding))
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def _pad_shape(padding):
|
||||
l = padding[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
class RelativePositionTransformer(nn.Module):
|
||||
"""Transformer with Relative Potional Encoding.
|
||||
https://arxiv.org/abs/1803.02155
|
||||
|
||||
Args:
|
||||
in_channels (int): number of channels of the input tensor.
|
||||
out_chanels (int): number of channels of the output tensor.
|
||||
hidden_channels (int): model hidden channels.
|
||||
hidden_channels_ffn (int): hidden channels of FeedForwardNetwork.
|
||||
num_heads (int): number of attention heads.
|
||||
num_layers (int): number of transformer layers.
|
||||
kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1.
|
||||
dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0.
|
||||
rel_attn_window_size (int, optional): relation attention window size.
|
||||
If 4, for each time step next and previous 4 time steps are attended.
|
||||
If default, relative encoding is disabled and it is a regular transformer.
|
||||
Defaults to None.
|
||||
input_length (int, optional): input lenght to limit position encoding. Defaults to None.
|
||||
layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm
|
||||
primitive. Use type "2", type "1: is for backward compat. Defaults to "1".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
hidden_channels: int,
|
||||
hidden_channels_ffn: int,
|
||||
num_heads: int,
|
||||
num_layers: int,
|
||||
kernel_size=1,
|
||||
dropout_p=0.0,
|
||||
rel_attn_window_size: int = None,
|
||||
input_length: int = None,
|
||||
layer_norm_type: str = "1",
|
||||
num_adaptive_weight_classes: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.hidden_channels_ffn = hidden_channels_ffn
|
||||
self.num_heads = num_heads
|
||||
self.num_layers = num_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.dropout_p = dropout_p
|
||||
self.rel_attn_window_size = rel_attn_window_size
|
||||
|
||||
self.dropout = nn.Dropout(dropout_p)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
|
||||
for idx in range(self.num_layers):
|
||||
self.attn_layers.append(
|
||||
RelativePositionMultiHeadAttention(
|
||||
hidden_channels if idx != 0 else in_channels,
|
||||
hidden_channels,
|
||||
num_heads,
|
||||
rel_attn_window_size=rel_attn_window_size,
|
||||
dropout_p=dropout_p,
|
||||
input_length=input_length,
|
||||
num_adaptive_weight_classes=num_adaptive_weight_classes,
|
||||
)
|
||||
)
|
||||
if layer_norm_type == "1":
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
elif layer_norm_type == "2":
|
||||
self.norm_layers_1.append(LayerNorm2(hidden_channels))
|
||||
else:
|
||||
raise ValueError(" [!] Unknown layer norm type")
|
||||
|
||||
if hidden_channels != out_channels and (idx + 1) == self.num_layers:
|
||||
self.proj = Conv1d(hidden_channels, out_channels, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
|
||||
self.ffn_layers.append(
|
||||
FeedForwardNetwork(
|
||||
hidden_channels,
|
||||
hidden_channels if (idx + 1) != self.num_layers else out_channels,
|
||||
hidden_channels_ffn,
|
||||
kernel_size,
|
||||
dropout_p=dropout_p,
|
||||
num_adaptive_weight_classes=num_adaptive_weight_classes,
|
||||
)
|
||||
)
|
||||
|
||||
if layer_norm_type == "1":
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels))
|
||||
elif layer_norm_type == "2":
|
||||
self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels))
|
||||
else:
|
||||
raise ValueError(" [!] Unknown layer norm type")
|
||||
|
||||
def forward(self, x, x_mask, class_id=None):
|
||||
"""
|
||||
Shapes:
|
||||
- x: :math:`[B, C, T]`
|
||||
- x_mask: :math:`[B, 1, T]`
|
||||
"""
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
for i in range(self.num_layers):
|
||||
x = x * x_mask
|
||||
y = self.attn_layers[i](x, x, attn_mask, class_id=class_id)
|
||||
y = self.dropout(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask, class_id=class_id)
|
||||
y = self.dropout(y)
|
||||
|
||||
if (i + 1) == self.num_layers and hasattr(self, "proj"):
|
||||
x = self.proj(x, class_id=class_id)
|
||||
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_vocab: int,
|
||||
out_channels: int,
|
||||
hidden_channels: int,
|
||||
hidden_channels_ffn: int,
|
||||
num_heads: int,
|
||||
num_layers: int,
|
||||
kernel_size: int,
|
||||
dropout_p: float,
|
||||
language_emb_dim: int = None,
|
||||
num_adaptive_weight_classes: int = None,
|
||||
):
|
||||
"""Text Encoder for VITS model.
|
||||
|
||||
Args:
|
||||
n_vocab (int): Number of characters for the embedding layer.
|
||||
out_channels (int): Number of channels for the output.
|
||||
hidden_channels (int): Number of channels for the hidden layers.
|
||||
hidden_channels_ffn (int): Number of channels for the convolutional layers.
|
||||
num_heads (int): Number of attention heads for the Transformer layers.
|
||||
num_layers (int): Number of Transformer layers.
|
||||
kernel_size (int): Kernel size for the FFN layers in Transformer network.
|
||||
dropout_p (float): Dropout rate for the Transformer layers.
|
||||
"""
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
|
||||
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
||||
|
||||
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
||||
|
||||
if language_emb_dim:
|
||||
hidden_channels += language_emb_dim
|
||||
|
||||
self.encoder = RelativePositionTransformer(
|
||||
in_channels=hidden_channels,
|
||||
out_channels=hidden_channels,
|
||||
hidden_channels=hidden_channels,
|
||||
hidden_channels_ffn=hidden_channels_ffn,
|
||||
num_heads=num_heads,
|
||||
num_layers=num_layers,
|
||||
kernel_size=kernel_size,
|
||||
dropout_p=dropout_p,
|
||||
layer_norm_type="2",
|
||||
rel_attn_window_size=4,
|
||||
num_adaptive_weight_classes=num_adaptive_weight_classes,
|
||||
)
|
||||
|
||||
self.proj = Conv1d(hidden_channels, out_channels * 2, 1, r=1 if num_adaptive_weight_classes else 0, num_classes=num_adaptive_weight_classes)
|
||||
|
||||
def forward(self, x, x_lengths, lang_emb=None, class_id=None):
|
||||
"""
|
||||
Shapes:
|
||||
- x: :math:`[B, T]`
|
||||
- x_length: :math:`[B]`
|
||||
"""
|
||||
assert x.shape[0] == x_lengths.shape[0]
|
||||
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
|
||||
# concat the lang emb in embedding chars
|
||||
if lang_emb is not None:
|
||||
x = torch.cat((x, lang_emb.transpose(2, 1).expand(x.size(0), x.size(1), -1)), dim=-1)
|
||||
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) # [b, 1, t]
|
||||
|
||||
x = self.encoder(x * x_mask, x_mask, class_id=class_id)
|
||||
stats = self.proj(x, class_id=class_id) * x_mask
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return x, m, logs, x_mask
|
||||
|
||||
if __name__ == '__main__':
|
||||
txt_enc = TextEncoder(
|
||||
n_vocab=100,
|
||||
out_channels=192,
|
||||
hidden_channels=192,
|
||||
hidden_channels_ffn=80,
|
||||
num_heads=2,
|
||||
num_layers=1,
|
||||
kernel_size=3,
|
||||
dropout_p=0.0,
|
||||
language_emb_dim=None,
|
||||
num_adaptive_weight_classes=5,
|
||||
)
|
||||
|
||||
B = 3
|
||||
T = 50
|
||||
x = torch.ones(B, 100).long()
|
||||
x_lengths = torch.ones(B).long()
|
||||
x_lengths[0]=50
|
||||
class_id = 1
|
||||
|
||||
out = txt_enc(
|
||||
x,
|
||||
x_lengths,
|
||||
class_id=class_id
|
||||
)
|
||||
print("With adaptive Weights:",out[0].shape)
|
||||
|
||||
txt_enc = TextEncoder(
|
||||
n_vocab=100,
|
||||
out_channels=192,
|
||||
hidden_channels=192,
|
||||
hidden_channels_ffn=80,
|
||||
num_heads=2,
|
||||
num_layers=1,
|
||||
kernel_size=3,
|
||||
dropout_p=0.0,
|
||||
language_emb_dim=None,
|
||||
num_adaptive_weight_classes=5,
|
||||
)
|
||||
|
||||
out = txt_enc(
|
||||
x,
|
||||
x_lengths,
|
||||
class_id=class_id
|
||||
)
|
||||
print("Without adaptive Weights:",out[0].shape)
|
|
@ -22,7 +22,8 @@ from TTS.tts.configs.shared_configs import CharactersConfig
|
|||
from TTS.tts.datasets.dataset import TTSDataset, _parse_sample
|
||||
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
|
||||
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
|
||||
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder
|
||||
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks
|
||||
from TTS.tts.layers.vits.text_encoder import TextEncoder
|
||||
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
|
||||
from TTS.tts.models.base_tts import BaseTTS
|
||||
from TTS.tts.utils.fairseq import rehash_fairseq_vits_checkpoint
|
||||
|
|
Loading…
Reference in New Issue