Use pyworld for pitch

This commit is contained in:
Eren Gölge 2021-09-06 14:29:22 +00:00
parent c1513ec4cd
commit 2c4bbbf9b9
6 changed files with 19 additions and 163 deletions

View File

@ -2,6 +2,7 @@ from typing import Dict, Tuple
import librosa
import numpy as np
import pyworld as pw
import scipy.io.wavfile
import scipy.signal
import soundfile as sf
@ -9,7 +10,6 @@ import torch
from torch import nn
from TTS.tts.utils.data import StandardScaler
from TTS.utils.yin import compute_yin
class TorchSTFT(nn.Module): # pylint: disable=abstract-method
@ -640,59 +640,28 @@ class AudioProcessor(object):
>>> wav = ap.load_wav(WAV_FILE, sr=22050)[:5 * 22050]
>>> pitch = ap.compute_f0(wav)
"""
# f0, t = pw.dio(
# x.astype(np.double),
# fs=self.sample_rate,
# f0_ceil=self.mel_fmax,
# frame_period=1000 * self.hop_length / self.sample_rate,
# )
# f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
# f0, _, _, _ = compute_yin(
# x,
# self.sample_rate,
# self.win_length,
# self.hop_length,
# 65 if self.mel_fmin == 0 else self.mel_fmin,
# self.mel_fmax,
# )
# # import pyworld as pw
# # f0, _ = pw.dio(x.astype(np.float64), self.sample_rate,
# # frame_period=self.hop_length / self.sample_rate * 1000)
f0, t = pw.dio(
x.astype(np.double),
fs=self.sample_rate,
f0_ceil=self.mel_fmax,
frame_period=1000 * self.hop_length / self.sample_rate,
)
f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
# pad = int((self.win_length / self.hop_length) / 2)
# f0 = [0.0] * pad + f0 + [0.0] * pad
# f0 = np.pad(f0, (pad, pad), mode="constant", constant_values=0)
# f0 = np.array(f0, dtype=np.float32)
f0, _, _ = librosa.pyin(
x,
fmin=65 if self.mel_fmin == 0 else self.mel_fmin,
fmax=self.mel_fmax,
frame_length=self.win_length,
sr=self.sample_rate,
fill_na=0.0,
)
# f02 = librosa.yin(
# f01, _, _ = librosa.pyin(
# x,
# fmin=65 if self.mel_fmin == 0 else self.mel_fmin,
# fmax=self.mel_fmax,
# frame_length=self.win_length,
# sr=self.sample_rate
# sr=self.sample_rate,
# fill_na=0.0,
# )
# spec = self.melspectrogram(x)
# from matplotlib import pyplot as plt
# plt.figure()
# plt.plot(f0, linewidth=2.5, color='red')
# plt.plot(f01, linewidth=2.5, linestyle='-.')
# plt.plot(f02, linewidth=2.5)
# plt.xlabel('time')
# plt.ylabel('F0')
# plt.savefig('save_img.png')
# # plt.figure()
# plt.imshow(spec, aspect="auto", origin="lower")
# plt.savefig('save_img2.png')
return f0
### Audio Processing ###

View File

@ -1,118 +0,0 @@
# adapted from https://github.com/patriceguyot/Yin
import numpy as np
def differenceFunction(x, N, tau_max):
"""
Compute difference function of data x. This corresponds to equation (6) in [1]
This solution is implemented directly with Numpy fft.
:param x: audio data
:param N: length of data
:param tau_max: integration window size
:return: difference function
:rtype: list
"""
x = np.array(x, np.float64)
w = x.size
tau_max = min(tau_max, w)
x_cumsum = np.concatenate((np.array([0.0]), (x * x).cumsum()))
size = w + tau_max
p2 = (size // 32).bit_length()
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
fc = np.fft.rfft(x, size_pad)
conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
return x_cumsum[w : w - tau_max : -1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv
def cumulativeMeanNormalizedDifferenceFunction(df, N):
"""
Compute cumulative mean normalized difference function (CMND).
This corresponds to equation (8) in [1]
:param df: Difference function
:param N: length of data
:return: cumulative mean normalized difference function
:rtype: list
"""
cmndf = df[1:] * range(1, N) / np.cumsum(df[1:]).astype(float) # scipy method
return np.insert(cmndf, 0, 1)
def getPitch(cmdf, tau_min, tau_max, harmo_th=0.1):
"""
Return fundamental period of a frame based on CMND function.
:param cmdf: Cumulative Mean Normalized Difference function
:param tau_min: minimum period for speech
:param tau_max: maximum period for speech
:param harmo_th: harmonicity threshold to determine if it is necessary to compute pitch frequency
:return: fundamental period if there is values under threshold, 0 otherwise
:rtype: float
"""
tau = tau_min
while tau < tau_max:
if cmdf[tau] < harmo_th:
while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
tau += 1
return tau
tau += 1
return 0 # if unvoiced
def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500, harmo_thresh=0.1):
"""
Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.
:param sig: Audio signal (list of float)
:param sr: sampling rate (int)
:param w_len: size of the analysis window (samples)
:param w_step: size of the lag between two consecutives windows (samples)
:param f0_min: Minimum fundamental frequency that can be detected (hertz)
:param f0_max: Maximum fundamental frequency that can be detected (hertz)
:param harmo_tresh: Threshold of detection. The yalgorithmù return the first minimum of the CMND function below this treshold.
:returns:
* pitches: list of fundamental frequencies,
* harmonic_rates: list of harmonic rate values for each fundamental frequency value (= confidence value)
* argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
* times: list of time of each estimation
:rtype: tuple
"""
tau_min = int(sr / f0_max)
tau_max = int(sr / f0_min)
timeScale = range(0, len(sig) - w_len, w_step) # time values for each analysis window
times = [t / float(sr) for t in timeScale]
frames = [sig[t : t + w_len] for t in timeScale]
pitches = [0.0] * len(timeScale)
harmonic_rates = [0.0] * len(timeScale)
argmins = [0.0] * len(timeScale)
for i, frame in enumerate(frames):
# Compute YIN
df = differenceFunction(frame, w_len, tau_max)
cmdf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max)
p = getPitch(cmdf, tau_min, tau_max, harmo_thresh)
# Get results
if np.argmin(cmdf) > tau_min:
argmins[i] = float(sr / np.argmin(cmdf))
if p != 0: # A pitch was found
pitches[i] = float(sr / p)
harmonic_rates[i] = cmdf[p]
else: # No pitch, but we compute a value of the harmonic rate
harmonic_rates[i] = min(cmdf)
return pitches, harmonic_rates, argmins, times

View File

@ -11,7 +11,6 @@ def to_camel(text):
def setup_model(config: Coqpit):
"""Load models directly from configuration."""
print(" > Vocoder Model: {}".format(config.model))
if "discriminator_model" in config and "generator_model" in config:
MyModel = importlib.import_module("TTS.vocoder.models.gan")
MyModel = getattr(MyModel, "GAN")
@ -28,6 +27,7 @@ def setup_model(config: Coqpit):
MyModel = getattr(MyModel, to_camel(config.model))
except ModuleNotFoundError as e:
raise ValueError(f"Model {config.model} not exist!") from e
print(" > Vocoder Model: {}".format(config.model))
model = MyModel(config)
return model

View File

@ -43,6 +43,7 @@ config = FastPitchConfig(
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=True,
use_espeak_phonemes=False,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=50,

View File

@ -25,3 +25,4 @@ unidic-lite==1.0.8
# gruut+supported langs
gruut[cs,de,es,fr,it,nl,pt,ru,sv]~=1.2.0
fsspec>=2021.04.0
pyworld

View File

@ -7,7 +7,10 @@ from TTS.utils.generic_utils import get_cuda
def get_device_id():
use_cuda, _ = get_cuda()
if use_cuda:
GPU_ID = "0"
if 'CUDA_VISIBLE_DEVICES' in os.environ and os.environ['CUDA_VISIBLE_DEVICES'] != "":
GPU_ID = os.environ['CUDA_VISIBLE_DEVICES'].split(',')[0]
else:
GPU_ID = "0"
else:
GPU_ID = ""
return GPU_ID