diff --git a/vocoder/train.py b/vocoder/train.py index fd44c470..dc081a5e 100644 --- a/vocoder/train.py +++ b/vocoder/train.py @@ -124,6 +124,7 @@ def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D, y_hat_vis = y_hat y_G_sub = model_G.pqmf_analysis(y_G) + scores_fake, feats_fake, feats_real = None, None, None if global_step > c.steps_to_start_discriminator: # run D with or without cond. features @@ -146,8 +147,6 @@ def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D, _, feats_real = D_out_real else: scores_fake = D_out_fake - else: - scores_fake, feats_fake, feats_real = None, None, None # compute losses loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake, @@ -328,6 +327,7 @@ def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch) y_G_sub = model_G.pqmf_analysis(y_G) + scores_fake, feats_fake, feats_real = None, None, None if global_step > c.steps_to_start_discriminator: if len(signature(model_D.forward).parameters) == 2: @@ -349,8 +349,7 @@ def evaluate(model_G, criterion_G, model_D, criterion_D, ap, global_step, epoch) _, feats_real = D_out_real else: scores_fake = D_out_fake - else: - scores_fake, feats_fake, feats_real = None, None, None + feats_fake, feats_real = None, None # compute losses loss_G_dict = criterion_G(y_hat, y_G, scores_fake, feats_fake,