Refactor Speaker Encoder training

This commit is contained in:
Eren Gölge 2021-09-30 14:29:43 +00:00
parent 043dca61b4
commit 2e9b6b4f90
2 changed files with 99 additions and 4 deletions

View File

@ -12,9 +12,9 @@ from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import SpeakerEncoderDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.speaker_encoder.utils.generic_utils import save_best_model, setup_model
from TTS.speaker_encoder.utils.training import init_training
from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.trainer import init_training
from TTS.tts.datasets import load_meta_data
from TTS.tts.datasets import load_tts_samples
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.io import load_fsspec
@ -156,7 +156,7 @@ def main(args): # pylint: disable=redefined-outer-name
optimizer = RAdam(model.parameters(), lr=c.lr)
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=False)
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=False)
data_loader, num_speakers = setup_loader(ap, is_val=False, verbose=True)
@ -208,7 +208,7 @@ def main(args): # pylint: disable=redefined-outer-name
if __name__ == "__main__":
args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training(sys.argv)
args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training()
try:
main(args)

View File

@ -0,0 +1,95 @@
import os
from typing import List, Union
from coqpit import Coqpit
from TTS.config import load_config, register_config
from TTS.trainer import TrainingArgs
from TTS.tts.utils.text.symbols import parse_symbols
from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch
from TTS.utils.io import copy_model_files
from TTS.utils.logging import init_dashboard_logger
from TTS.utils.logging.console_logger import ConsoleLogger
from TTS.utils.trainer_utils import get_last_checkpoint
def getarguments():
train_config = TrainingArgs()
parser = train_config.init_argparse(arg_prefix="")
return parser
def process_args(args, config=None):
"""Process parsed comand line arguments and initialize the config if not provided.
Args:
args (argparse.Namespace or dict like): Parsed input arguments.
config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None.
Returns:
c (TTS.utils.io.AttrDict): Config paramaters.
out_path (str): Path to save models and logging.
audio_path (str): Path to save generated test audios.
c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does
logging to the console.
dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging
TODO:
- Interactive config definition.
"""
if isinstance(args, tuple):
args, coqpit_overrides = args
if args.continue_path:
# continue a previous training from its output folder
experiment_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
if not args.best_path:
args.best_path = best_model
# init config if not already defined
if config is None:
if args.config_path:
# init from a file
config = load_config(args.config_path)
else:
# init from console args
from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel
config_base = BaseTrainingConfig()
config_base.parse_known_args(coqpit_overrides)
config = register_config(config_base.model)()
# override values from command-line args
config.parse_known_args(coqpit_overrides, relaxed_parser=True)
experiment_path = args.continue_path
if not experiment_path:
experiment_path = get_experiment_folder_path(config.output_path, config.run_name)
audio_path = os.path.join(experiment_path, "test_audios")
config.output_log_path = experiment_path
# setup rank 0 process in distributed training
dashboard_logger = None
if args.rank == 0:
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
# if model characters are not set in the config file
# save the default set to the config file for future
# compatibility.
if config.has("characters") and config.characters is None:
used_characters = parse_symbols()
new_fields["characters"] = used_characters
copy_model_files(config, experiment_path, new_fields)
dashboard_logger = init_dashboard_logger(config)
c_logger = ConsoleLogger()
return config, experiment_path, audio_path, c_logger, dashboard_logger
def init_arguments():
train_config = TrainingArgs()
parser = train_config.init_argparse(arg_prefix="")
return parser
def init_training(config: Coqpit = None):
"""Initialization of a training run."""
parser = init_arguments()
args = parser.parse_known_args()
config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config)
return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger