mirror of https://github.com/coqui-ai/TTS.git
LR and time loggin on TB, checkpoint fix
This commit is contained in:
parent
191e2b3f1e
commit
2eca96bfbb
|
@ -11,7 +11,7 @@
|
|||
"embedding_size": 256,
|
||||
"text_cleaner": "english_cleaners",
|
||||
|
||||
"epochs": 200,
|
||||
"epochs": 2000,
|
||||
"lr": 0.01,
|
||||
"lr_patience": 2,
|
||||
"lr_decay": 0.5,
|
||||
|
@ -20,7 +20,7 @@
|
|||
"power": 1.5,
|
||||
"r": 5,
|
||||
|
||||
"save_step": 1,
|
||||
"save_step": 200,
|
||||
"data_path": "/data/shared/KeithIto/LJSpeech-1.0",
|
||||
"output_path": "result",
|
||||
"log_dir": "/home/erogol/projects/TTS/logs/"
|
||||
|
|
16
train.py
16
train.py
|
@ -42,7 +42,7 @@ def main(args):
|
|||
pickle.dump(c, open(tmp_path, "wb"))
|
||||
|
||||
# setup tensorboard
|
||||
LOG_DIR = c.log_dir
|
||||
LOG_DIR = OUT_PATH
|
||||
tb = SummaryWriter(LOG_DIR)
|
||||
|
||||
# Ctrl+C handler to remove empty experiment folder
|
||||
|
@ -101,7 +101,7 @@ def main(args):
|
|||
|
||||
lr_scheduler = ReduceLROnPlateau(optimizer, factor=c.lr_decay,
|
||||
patience=c.lr_patience, verbose=True)
|
||||
|
||||
epoch_time = 0
|
||||
for epoch in range(c.epochs):
|
||||
|
||||
dataloader = DataLoader(dataset, batch_size=c.batch_size,
|
||||
|
@ -166,14 +166,20 @@ def main(args):
|
|||
|
||||
optimizer.step()
|
||||
|
||||
time_per_step = time.time() - start_time
|
||||
step_time = time.time() - start_time
|
||||
epoch_time += step_time
|
||||
|
||||
progbar.update(i+1, values=[('total_loss', loss.data[0]),
|
||||
('linear_loss', linear_loss.data[0]),
|
||||
('mel_loss', mel_loss.data[0])])
|
||||
|
||||
tb.add_scalar('Train/TotalLoss', loss.data[0], current_step)
|
||||
tb.add_scalar('Train/LinearLoss', linear_loss.data[0], current_step)
|
||||
tb.add_scalar('Train/LinearLoss', linear_loss.data[0],
|
||||
current_step)
|
||||
tb.add_scalar('Train/MelLoss', mel_loss.data[0], current_step)
|
||||
tb.add_scalar('LearningRate', optimizer.param_groups[0]['lr'],
|
||||
current_step)
|
||||
tb.add_scalar('Time/StepTime', step_time, current_step)
|
||||
|
||||
if current_step % c.save_step == 0:
|
||||
checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step)
|
||||
|
@ -188,6 +194,8 @@ def main(args):
|
|||
checkpoint_path)
|
||||
print("\n | > Checkpoint is saved : {}".format(checkpoint_path))
|
||||
lr_scheduler.step(loss.data[0])
|
||||
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
|
||||
epoch_time = 0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue