mirror of https://github.com/coqui-ai/TTS.git
config update for ljspeech
This commit is contained in:
parent
5afd3d980b
commit
303dc9d62e
18
config.json
18
config.json
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"run_name": "bos",
|
||||
"run_description": "finetune entropy model due to some spelling mistakes.",
|
||||
"run_name": "ljspeech",
|
||||
"run_description": "finetune 4241 for align with architectural changes",
|
||||
|
||||
"audio":{
|
||||
// Audio processing parameters
|
||||
|
@ -40,10 +40,10 @@
|
|||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
"attention_norm": "softmax", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
"prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"prenet_type": "bn", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"use_forward_attn": false, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"eval_batch_size":16,
|
||||
"r": 1, // Number of frames to predict for step.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
|
@ -55,16 +55,16 @@
|
|||
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 2, //Until attention is aligned, testing only wastes computation time.
|
||||
"data_path": "/media/erogol/data_ssd/Data/Nancy/", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": "prompts_train.data", // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "nancy", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"data_path": "/home/erogol/Data/LJSpeech-1.1", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": "metadata_train.csv", // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 150, // DATASET-RELATED: maximum text length
|
||||
"output_path": "/media/erogol/data_ssd/Data/models/ljspeech_models/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"phoneme_cache_path": "nancy_us_phonemes2", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"phoneme_cache_path": "ljspeech_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
"text_cleaner": "phoneme_cleaners"
|
||||
|
|
Loading…
Reference in New Issue