Merge pull request #581 from Edresson/dev

Compute speaker embeddings in batch for the LSTM  Speaker Encoder and Compute embeddings/ finding chars using config file.
This commit is contained in:
Eren Gölge 2021-07-23 17:22:51 +02:00 committed by GitHub
commit 30eed347b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 106 additions and 591 deletions

View File

@ -1,80 +1,46 @@
import argparse import argparse
import glob
import os import os
import torch
from tqdm import tqdm from tqdm import tqdm
from TTS.config import BaseDatasetConfig, load_config from argparse import RawTextHelpFormatter
from TTS.speaker_encoder.utils.generic_utils import setup_model from TTS.config import load_config
from TTS.tts.datasets import load_meta_data from TTS.tts.datasets import load_meta_data
from TTS.tts.utils.speakers import SpeakerManager from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.' description="""Compute embedding vectors for each wav file in a dataset.\n\n"""
"""
Example runs:
python TTS/bin/compute_embeddings.py speaker_encoder_model.pth.tar speaker_encoder_config.json dataset_config.json embeddings_output_path/
""",
formatter_class=RawTextHelpFormatter,
) )
parser.add_argument("model_path", type=str, help="Path to model outputs (checkpoint, tensorboard etc.).") parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
parser.add_argument( parser.add_argument(
"config_path", "config_path",
type=str, type=str,
help="Path to config file for training.", help="Path to model config file.",
) )
parser.add_argument("data_path", type=str, help="Data path for wav files - directory or CSV file")
parser.add_argument("output_path", type=str, help="path for output speakers.json.")
parser.add_argument( parser.add_argument(
"--target_dataset", "config_dataset_path",
type=str, type=str,
default="", help="Path to dataset config file.",
help="Target dataset to pick a processor from TTS.tts.dataset.preprocess. Necessary to create a speakers.json file.",
) )
parser.add_argument("output_path", type=str, help="path for output speakers.json and/or speakers.npy.")
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True) parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
parser.add_argument("--separator", type=str, help="Separator used in file if CSV is passed for data_path", default="|") parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args() args = parser.parse_args()
c_dataset = load_config(args.config_dataset_path)
c = load_config(args.config_path) meta_data_train, meta_data_eval = load_meta_data(c_dataset.datasets, eval_split=args.eval)
ap = AudioProcessor(**c["audio"]) wav_files = meta_data_train + meta_data_eval
data_path = args.data_path speaker_manager = SpeakerManager(encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda)
split_ext = os.path.splitext(data_path)
sep = args.separator
if args.target_dataset != "":
# if target dataset is defined
dataset_config = [
BaseDatasetConfig(name=args.target_dataset, path=args.data_path, meta_file_train=None, meta_file_val=None),
]
wav_files, _ = load_meta_data(dataset_config, eval_split=False)
else:
# if target dataset is not defined
if len(split_ext) > 0 and split_ext[1].lower() == ".csv":
# Parse CSV
print(f"CSV file: {data_path}")
with open(data_path) as f:
wav_path = os.path.join(os.path.dirname(data_path), "wavs")
wav_files = []
print(f"Separator is: {sep}")
for line in f:
components = line.split(sep)
if len(components) != 2:
print("Invalid line")
continue
wav_file = os.path.join(wav_path, components[0] + ".wav")
# print(f'wav_file: {wav_file}')
if os.path.exists(wav_file):
wav_files.append(wav_file)
print(f"Count of wavs imported: {len(wav_files)}")
else:
# Parse all wav files in data_path
wav_files = glob.glob(data_path + "/**/*.wav", recursive=True)
# define Encoder model
model = setup_model(c)
model.load_state_dict(torch.load(args.model_path)["model"])
model.eval()
if args.use_cuda:
model.cuda()
# compute speaker embeddings # compute speaker embeddings
speaker_mapping = {} speaker_mapping = {}
@ -85,27 +51,24 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
else: else:
speaker_name = None speaker_name = None
mel_spec = ap.melspectrogram(ap.load_wav(wav_file, sr=ap.sample_rate)).T # extract the embedding
mel_spec = torch.FloatTensor(mel_spec[None, :, :]) embedd = speaker_manager.compute_d_vector_from_clip(wav_file)
if args.use_cuda:
mel_spec = mel_spec.cuda()
embedd = model.compute_embedding(mel_spec)
embedd = embedd.detach().cpu().numpy()
# create speaker_mapping if target dataset is defined # create speaker_mapping if target dataset is defined
wav_file_name = os.path.basename(wav_file) wav_file_name = os.path.basename(wav_file)
speaker_mapping[wav_file_name] = {} speaker_mapping[wav_file_name] = {}
speaker_mapping[wav_file_name]["name"] = speaker_name speaker_mapping[wav_file_name]["name"] = speaker_name
speaker_mapping[wav_file_name]["embedding"] = embedd.flatten().tolist() speaker_mapping[wav_file_name]["embedding"] = embedd
if speaker_mapping: if speaker_mapping:
# save speaker_mapping if target dataset is defined # save speaker_mapping if target dataset is defined
if ".json" not in args.output_path: if '.json' not in args.output_path:
mapping_file_path = os.path.join(args.output_path, "speakers.json") mapping_file_path = os.path.join(args.output_path, "speakers.json")
else: else:
mapping_file_path = args.output_path mapping_file_path = args.output_path
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
speaker_manager = SpeakerManager()
# pylint: disable=W0212 # pylint: disable=W0212
speaker_manager._save_json(mapping_file_path, speaker_mapping) speaker_manager._save_json(mapping_file_path, speaker_mapping)
print("Speaker embeddings saved at:", mapping_file_path) print("Speaker embeddings saved at:", mapping_file_path)

View File

@ -227,7 +227,7 @@ def main(args): # pylint: disable=redefined-outer-name
ap = AudioProcessor(**c.audio) ap = AudioProcessor(**c.audio)
# load data instances # load data instances
meta_data_train, meta_data_eval = load_meta_data(c.datasets) meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=args.eval)
# use eval and training partitions # use eval and training partitions
meta_data = meta_data_train + meta_data_eval meta_data = meta_data_train + meta_data_eval
@ -271,6 +271,7 @@ if __name__ == "__main__":
parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug") parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug")
parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files") parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files")
parser.add_argument("--quantized", action="store_true", help="Save quantized audio files") parser.add_argument("--quantized", action="store_true", help="Save quantized audio files")
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args() args = parser.parse_args()
c = load_config(args.config_path) c = load_config(args.config_path)

View File

@ -1,41 +1,42 @@
"""Find all the unique characters in a dataset""" """Find all the unique characters in a dataset"""
import argparse import argparse
import os
from argparse import RawTextHelpFormatter from argparse import RawTextHelpFormatter
from TTS.tts.datasets import load_meta_data
from TTS.tts.datasets import _get_preprocessor_by_name from TTS.config import load_config
def main(): def main():
# pylint: disable=bad-option-value # pylint: disable=bad-option-value
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
description="""Find all the unique characters or phonemes in a dataset.\n\n""" description="""Find all the unique characters or phonemes in a dataset.\n\n"""
"""Target dataset must be defined in TTS.tts.datasets.formatters\n\n"""
""" """
Example runs: Example runs:
python TTS/bin/find_unique_chars.py --dataset ljspeech --meta_file /path/to/LJSpeech/metadata.csv python TTS/bin/find_unique_chars.py --config_path config.json
""", """,
formatter_class=RawTextHelpFormatter, formatter_class=RawTextHelpFormatter,
) )
parser.add_argument( parser.add_argument(
"--dataset", type=str, default="", help="One of the target dataset names in TTS.tts.datasets.formatters." "--config_path", type=str, help="Path to dataset config file.", required=True
) )
parser.add_argument("--meta_file", type=str, default=None, help="Path to the transcriptions file of the dataset.")
args = parser.parse_args() args = parser.parse_args()
preprocessor = _get_preprocessor_by_name(args.dataset) c = load_config(args.config_path)
items = preprocessor(os.path.dirname(args.meta_file), os.path.basename(args.meta_file))
# load all datasets
train_items, eval_items = load_meta_data(c.datasets, eval_split=True)
items = train_items + eval_items
texts = "".join(item[0] for item in items) texts = "".join(item[0] for item in items)
chars = set(texts) chars = set(texts)
lower_chars = filter(lambda c: c.islower(), chars) lower_chars = filter(lambda c: c.islower(), chars)
chars_force_lower = [c.lower() for c in chars]
chars_force_lower = set(chars_force_lower)
print(f" > Number of unique characters: {len(chars)}") print(f" > Number of unique characters: {len(chars)}")
print(f" > Unique characters: {''.join(sorted(chars))}") print(f" > Unique characters: {''.join(sorted(chars))}")
print(f" > Unique lower characters: {''.join(sorted(lower_chars))}") print(f" > Unique lower characters: {''.join(sorted(lower_chars))}")
print(f" > Unique all forced to lower characters: {''.join(sorted(chars_force_lower))}")
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -1,4 +1,5 @@
import torch import torch
import numpy as np
from torch import nn from torch import nn
@ -70,24 +71,32 @@ class LSTMSpeakerEncoder(nn.Module):
d = torch.nn.functional.normalize(d, p=2, dim=1) d = torch.nn.functional.normalize(d, p=2, dim=1)
return d return d
def compute_embedding(self, x, num_frames=160, overlap=0.5): def compute_embedding(self, x, num_frames=250, num_eval=10, return_mean=True):
""" """
Generate embeddings for a batch of utterances Generate embeddings for a batch of utterances
x: 1xTxD x: 1xTxD
""" """
num_overlap = int(num_frames * overlap)
max_len = x.shape[1] max_len = x.shape[1]
embed = None
cur_iter = 0 if max_len < num_frames:
for offset in range(0, max_len, num_frames - num_overlap): num_frames = max_len
cur_iter += 1
end_offset = min(x.shape[1], offset + num_frames) offsets = np.linspace(0, max_len-num_frames, num=num_eval)
frames_batch = []
for offset in offsets:
offset = int(offset)
end_offset = int(offset+num_frames)
frames = x[:, offset:end_offset] frames = x[:, offset:end_offset]
if embed is None: frames_batch.append(frames)
embed = self.inference(frames)
else: frames_batch = torch.cat(frames_batch, dim=0)
embed += self.inference(frames) embeddings = self.inference(frames_batch)
return embed / cur_iter
if return_mean:
embeddings = torch.mean(embeddings, dim=0, keepdim=True)
return embeddings
def batch_compute_embedding(self, x, seq_lens, num_frames=160, overlap=0.5): def batch_compute_embedding(self, x, seq_lens, num_frames=160, overlap=0.5):
""" """
@ -110,9 +119,11 @@ class LSTMSpeakerEncoder(nn.Module):
return embed / num_iters return embed / num_iters
# pylint: disable=unused-argument, redefined-builtin # pylint: disable=unused-argument, redefined-builtin
def load_checkpoint(self, config: dict, checkpoint_path: str, eval: bool = False): def load_checkpoint(self, config: dict, checkpoint_path: str, eval: bool = False, use_cuda: bool = False):
state = torch.load(checkpoint_path, map_location=torch.device("cpu")) state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"]) self.load_state_dict(state["model"])
if use_cuda:
self.cuda()
if eval: if eval:
self.eval() self.eval()
assert not self.training assert not self.training

View File

@ -199,3 +199,12 @@ class ResNetSpeakerEncoder(nn.Module):
embeddings = torch.mean(embeddings, dim=0, keepdim=True) embeddings = torch.mean(embeddings, dim=0, keepdim=True)
return embeddings return embeddings
def load_checkpoint(self, config: dict, checkpoint_path: str, eval: bool = False, use_cuda: bool = False):
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"])
if use_cuda:
self.cuda()
if eval:
self.eval()
assert not self.training

View File

@ -202,16 +202,20 @@ def libri_tts(root_path, meta_files=None):
items = [] items = []
if meta_files is None: if meta_files is None:
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True) meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
else:
if isinstance(meta_files, str):
meta_files = [os.path.join(root_path, meta_files)]
for meta_file in meta_files: for meta_file in meta_files:
_meta_file = os.path.basename(meta_file).split(".")[0] _meta_file = os.path.basename(meta_file).split(".")[0]
speaker_name = _meta_file.split("_")[0]
chapter_id = _meta_file.split("_")[1]
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
with open(meta_file, "r") as ttf: with open(meta_file, "r") as ttf:
for line in ttf: for line in ttf:
cols = line.split("\t") cols = line.split("\t")
wav_file = os.path.join(_root_path, cols[0] + ".wav") file_name = cols[0]
text = cols[1] speaker_name, chapter_id, *_ = cols[0].split("_")
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
wav_file = os.path.join(_root_path, file_name + ".wav")
text = cols[2]
items.append([text, wav_file, "LTTS_" + speaker_name]) items.append([text, wav_file, "LTTS_" + speaker_name])
for item in items: for item in items:
assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}" assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}"
@ -287,6 +291,17 @@ def vctk_slim(root_path, meta_files=None, wavs_path="wav48"):
return items return items
def mls(root_path, meta_files=None):
"""http://www.openslr.org/94/"""
items = []
with open(os.path.join(root_path, meta_files), "r") as meta:
for line in meta:
file, text = line.split('\t')
text = text[:-1]
speaker, book, *_ = file.split('_')
wav_file = os.path.join(root_path, os.path.dirname(meta_files), 'audio', speaker, book, file + ".wav")
items.append([text, wav_file, "MLS_" + speaker])
return items
# ======================================== VOX CELEB =========================================== # ======================================== VOX CELEB ===========================================
def voxceleb2(root_path, meta_file=None): def voxceleb2(root_path, meta_file=None):

View File

@ -59,6 +59,7 @@ class SpeakerManager:
speaker_id_file_path: str = "", speaker_id_file_path: str = "",
encoder_model_path: str = "", encoder_model_path: str = "",
encoder_config_path: str = "", encoder_config_path: str = "",
use_cuda: bool = False,
): ):
self.data_items = [] self.data_items = []
@ -67,6 +68,7 @@ class SpeakerManager:
self.clip_ids = [] self.clip_ids = []
self.speaker_encoder = None self.speaker_encoder = None
self.speaker_encoder_ap = None self.speaker_encoder_ap = None
self.use_cuda = use_cuda
if data_items: if data_items:
self.speaker_ids, self.speaker_names, _ = self.parse_speakers_from_data(self.data_items) self.speaker_ids, self.speaker_names, _ = self.parse_speakers_from_data(self.data_items)
@ -222,11 +224,11 @@ class SpeakerManager:
""" """
self.speaker_encoder_config = load_config(config_path) self.speaker_encoder_config = load_config(config_path)
self.speaker_encoder = setup_model(self.speaker_encoder_config) self.speaker_encoder = setup_model(self.speaker_encoder_config)
self.speaker_encoder.load_checkpoint(config_path, model_path, True) self.speaker_encoder.load_checkpoint(config_path, model_path, eval=True, use_cuda=self.use_cuda)
self.speaker_encoder_ap = AudioProcessor(**self.speaker_encoder_config.audio) self.speaker_encoder_ap = AudioProcessor(**self.speaker_encoder_config.audio)
# normalize the input audio level and trim silences # normalize the input audio level and trim silences
self.speaker_encoder_ap.do_sound_norm = True # self.speaker_encoder_ap.do_sound_norm = True
self.speaker_encoder_ap.do_trim_silence = True # self.speaker_encoder_ap.do_trim_silence = True
def compute_d_vector_from_clip(self, wav_file: Union[str, list]) -> list: def compute_d_vector_from_clip(self, wav_file: Union[str, list]) -> list:
"""Compute a d_vector from a given audio file. """Compute a d_vector from a given audio file.
@ -242,6 +244,8 @@ class SpeakerManager:
waveform = self.speaker_encoder_ap.load_wav(wav_file, sr=self.speaker_encoder_ap.sample_rate) waveform = self.speaker_encoder_ap.load_wav(wav_file, sr=self.speaker_encoder_ap.sample_rate)
spec = self.speaker_encoder_ap.melspectrogram(waveform) spec = self.speaker_encoder_ap.melspectrogram(waveform)
spec = torch.from_numpy(spec.T) spec = torch.from_numpy(spec.T)
if self.use_cuda:
spec = spec.cuda()
spec = spec.unsqueeze(0) spec = spec.unsqueeze(0)
d_vector = self.speaker_encoder.compute_embedding(spec) d_vector = self.speaker_encoder.compute_embedding(spec)
return d_vector return d_vector
@ -272,6 +276,8 @@ class SpeakerManager:
feats = torch.from_numpy(feats) feats = torch.from_numpy(feats)
if feats.ndim == 2: if feats.ndim == 2:
feats = feats.unsqueeze(0) feats = feats.unsqueeze(0)
if self.use_cuda:
feats = feats.cuda()
return self.speaker_encoder.compute_embedding(feats) return self.speaker_encoder.compute_embedding(feats)
def run_umap(self): def run_umap(self):

File diff suppressed because one or more lines are too long

View File

@ -35,7 +35,7 @@ class LSTMSpeakerEncoderTests(unittest.TestCase):
assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}" assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}"
# compute d for a given batch # compute d for a given batch
dummy_input = T.rand(1, 240, 80) # B x T x D dummy_input = T.rand(1, 240, 80) # B x T x D
output = model.compute_embedding(dummy_input, num_frames=160, overlap=0.5) output = model.compute_embedding(dummy_input, num_frames=160, num_eval=5)
assert output.shape[0] == 1 assert output.shape[0] == 1
assert output.shape[1] == 256 assert output.shape[1] == 256
assert len(output.shape) == 2 assert len(output.shape) == 2