mirror of https://github.com/coqui-ai/TTS.git
Add evaluation during encoder training
This commit is contained in:
parent
0e372e0b9b
commit
33fd07a209
|
@ -33,148 +33,218 @@ print(" > Number of GPUs: ", num_gpus)
|
||||||
|
|
||||||
|
|
||||||
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
|
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
|
||||||
|
num_utter_per_class = c.num_utter_per_class if not is_val else c.eval_num_utter_per_class
|
||||||
|
num_classes_in_batch = c.num_classes_in_batch if not is_val else c.eval_num_classes_in_batch
|
||||||
|
|
||||||
|
dataset = EncoderDataset(
|
||||||
|
ap,
|
||||||
|
meta_data_eval if is_val else meta_data_train,
|
||||||
|
voice_len=c.voice_len,
|
||||||
|
num_utter_per_class=num_utter_per_class,
|
||||||
|
num_classes_in_batch=num_classes_in_batch,
|
||||||
|
verbose=verbose,
|
||||||
|
augmentation_config=c.audio_augmentation if not is_val else None,
|
||||||
|
use_torch_spec=c.model_params.get("use_torch_spec", False),
|
||||||
|
)
|
||||||
|
# get classes list
|
||||||
|
classes = dataset.get_class_list()
|
||||||
|
|
||||||
|
sampler = PerfectBatchSampler(
|
||||||
|
dataset.items,
|
||||||
|
classes,
|
||||||
|
batch_size=num_classes_in_batch*num_utter_per_class, # total batch size
|
||||||
|
num_classes_in_batch=num_classes_in_batch,
|
||||||
|
num_gpus=1,
|
||||||
|
shuffle=False if is_val else True,
|
||||||
|
drop_last=True)
|
||||||
|
|
||||||
|
if len(classes) < num_classes_in_batch:
|
||||||
|
if is_val:
|
||||||
|
raise RuntimeError(f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !")
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !")
|
||||||
|
|
||||||
|
# set the classes to avoid get wrong class_id when the number of training and eval classes are not equal
|
||||||
if is_val:
|
if is_val:
|
||||||
loader = None
|
dataset.set_classes(train_classes)
|
||||||
else:
|
|
||||||
dataset = EncoderDataset(
|
|
||||||
ap,
|
|
||||||
meta_data_eval if is_val else meta_data_train,
|
|
||||||
voice_len=c.voice_len,
|
|
||||||
num_utter_per_class=c.num_utter_per_class,
|
|
||||||
num_classes_in_batch=c.num_classes_in_batch,
|
|
||||||
verbose=verbose,
|
|
||||||
augmentation_config=c.audio_augmentation if not is_val else None,
|
|
||||||
use_torch_spec=c.model_params.get("use_torch_spec", False),
|
|
||||||
)
|
|
||||||
|
|
||||||
sampler = PerfectBatchSampler(
|
loader = DataLoader(
|
||||||
dataset.items,
|
dataset,
|
||||||
dataset.get_class_list(),
|
num_workers=c.num_loader_workers,
|
||||||
batch_size=c.num_classes_in_batch*c.num_utter_per_class, # total batch size
|
batch_sampler=sampler,
|
||||||
num_classes_in_batch=c.num_classes_in_batch,
|
collate_fn=dataset.collate_fn,
|
||||||
num_gpus=1,
|
)
|
||||||
shuffle=False if is_val else True,
|
|
||||||
drop_last=True)
|
|
||||||
|
|
||||||
loader = DataLoader(
|
return loader, classes, dataset.get_map_classid_to_classname()
|
||||||
dataset,
|
|
||||||
num_workers=c.num_loader_workers,
|
|
||||||
batch_sampler=sampler,
|
|
||||||
collate_fn=dataset.collate_fn,
|
|
||||||
)
|
|
||||||
|
|
||||||
return loader, dataset.get_num_classes(), dataset.get_map_classid_to_classname()
|
def evaluation(model, criterion, data_loader, global_step):
|
||||||
|
eval_loss = 0
|
||||||
|
for step, data in enumerate(data_loader):
|
||||||
|
with torch.no_grad():
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# setup input data
|
||||||
|
inputs, labels = data
|
||||||
|
|
||||||
def train(model, optimizer, scheduler, criterion, data_loader, global_step):
|
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
|
||||||
|
labels = torch.transpose(labels.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch), 0, 1).reshape(labels.shape)
|
||||||
|
inputs = torch.transpose(inputs.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
||||||
|
|
||||||
|
# dispatch data to GPU
|
||||||
|
if use_cuda:
|
||||||
|
inputs = inputs.cuda(non_blocking=True)
|
||||||
|
labels = labels.cuda(non_blocking=True)
|
||||||
|
|
||||||
|
# forward pass model
|
||||||
|
outputs = model(inputs)
|
||||||
|
|
||||||
|
# loss computation
|
||||||
|
loss = criterion(outputs.view(c.eval_num_classes_in_batch, outputs.shape[0] // c.eval_num_classes_in_batch, -1), labels)
|
||||||
|
|
||||||
|
eval_loss += loss.item()
|
||||||
|
|
||||||
|
eval_avg_loss = eval_loss/len(data_loader)
|
||||||
|
# save stats
|
||||||
|
dashboard_logger.eval_stats(global_step, {"loss": eval_avg_loss})
|
||||||
|
# plot the last batch in the evaluation
|
||||||
|
figures = {
|
||||||
|
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
|
||||||
|
}
|
||||||
|
dashboard_logger.eval_figures(global_step, figures)
|
||||||
|
return eval_avg_loss
|
||||||
|
|
||||||
|
def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader, global_step):
|
||||||
model.train()
|
model.train()
|
||||||
epoch_time = 0
|
|
||||||
best_loss = float("inf")
|
best_loss = float("inf")
|
||||||
avg_loss = 0
|
|
||||||
avg_loss_all = 0
|
|
||||||
avg_loader_time = 0
|
avg_loader_time = 0
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
print(len(data_loader))
|
for epoch in range(c.epochs):
|
||||||
for _, data in enumerate(data_loader):
|
tot_loss = 0
|
||||||
start_time = time.time()
|
epoch_time = 0
|
||||||
|
for step, data in enumerate(data_loader):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
# setup input data
|
# setup input data
|
||||||
inputs, labels = data
|
inputs, labels = data
|
||||||
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
|
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
|
||||||
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
||||||
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
||||||
"""
|
"""
|
||||||
labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
# ToDo: move it to a unit test
|
||||||
inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
||||||
idx = 0
|
inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
||||||
for j in range(0, c.num_classes_in_batch, 1):
|
idx = 0
|
||||||
for i in range(j, len(labels), c.num_classes_in_batch):
|
for j in range(0, c.num_classes_in_batch, 1):
|
||||||
if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
|
for i in range(j, len(labels), c.num_classes_in_batch):
|
||||||
print("Invalid")
|
if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
|
||||||
print(labels)
|
print("Invalid")
|
||||||
exit()
|
print(labels)
|
||||||
idx += 1
|
exit()
|
||||||
labels = labels_converted
|
idx += 1
|
||||||
inputs = inputs_converted
|
labels = labels_converted
|
||||||
print(labels)
|
inputs = inputs_converted
|
||||||
print(inputs.shape)"""
|
print(labels)
|
||||||
|
print(inputs.shape)"""
|
||||||
|
|
||||||
loader_time = time.time() - end_time
|
loader_time = time.time() - end_time
|
||||||
global_step += 1
|
global_step += 1
|
||||||
|
|
||||||
# setup lr
|
# setup lr
|
||||||
if c.lr_decay:
|
if c.lr_decay:
|
||||||
scheduler.step()
|
scheduler.step()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
# dispatch data to GPU
|
# dispatch data to GPU
|
||||||
if use_cuda:
|
if use_cuda:
|
||||||
inputs = inputs.cuda(non_blocking=True)
|
inputs = inputs.cuda(non_blocking=True)
|
||||||
labels = labels.cuda(non_blocking=True)
|
labels = labels.cuda(non_blocking=True)
|
||||||
|
|
||||||
# forward pass model
|
# forward pass model
|
||||||
outputs = model(inputs)
|
outputs = model(inputs)
|
||||||
|
|
||||||
# loss computation
|
# loss computation
|
||||||
loss = criterion(outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels)
|
loss = criterion(outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
grad_norm, _ = check_update(model, c.grad_clip)
|
grad_norm, _ = check_update(model, c.grad_clip)
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
step_time = time.time() - start_time
|
step_time = time.time() - start_time
|
||||||
epoch_time += step_time
|
epoch_time += step_time
|
||||||
|
|
||||||
# Averaged Loss and Averaged Loader Time
|
# acumulate the total epoch loss
|
||||||
avg_loss = 0.01 * loss.item() + 0.99 * avg_loss if avg_loss != 0 else loss.item()
|
tot_loss += loss.item()
|
||||||
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
|
|
||||||
avg_loader_time = (
|
|
||||||
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
|
|
||||||
if avg_loader_time != 0
|
|
||||||
else loader_time
|
|
||||||
)
|
|
||||||
current_lr = optimizer.param_groups[0]["lr"]
|
|
||||||
|
|
||||||
if global_step % c.steps_plot_stats == 0:
|
# Averaged Loader Time
|
||||||
# Plot Training Epoch Stats
|
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
|
||||||
train_stats = {
|
avg_loader_time = (
|
||||||
"loss": avg_loss,
|
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
|
||||||
"lr": current_lr,
|
if avg_loader_time != 0
|
||||||
"grad_norm": grad_norm,
|
else loader_time
|
||||||
"step_time": step_time,
|
|
||||||
"avg_loader_time": avg_loader_time,
|
|
||||||
}
|
|
||||||
dashboard_logger.train_epoch_stats(global_step, train_stats)
|
|
||||||
figures = {
|
|
||||||
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
|
|
||||||
}
|
|
||||||
dashboard_logger.train_figures(global_step, figures)
|
|
||||||
|
|
||||||
if global_step % c.print_step == 0:
|
|
||||||
print(
|
|
||||||
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
|
|
||||||
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
|
|
||||||
global_step, loss.item(), avg_loss, grad_norm, step_time, loader_time, avg_loader_time, current_lr
|
|
||||||
),
|
|
||||||
flush=True,
|
|
||||||
)
|
)
|
||||||
avg_loss_all += avg_loss
|
current_lr = optimizer.param_groups[0]["lr"]
|
||||||
|
|
||||||
if global_step >= c.max_train_step or global_step % c.save_step == 0:
|
if global_step % c.steps_plot_stats == 0:
|
||||||
# save best model only
|
# Plot Training Epoch Stats
|
||||||
best_loss = save_best_model(model, optimizer, criterion, avg_loss, best_loss, OUT_PATH, global_step)
|
train_stats = {
|
||||||
avg_loss_all = 0
|
"loss": loss.item(),
|
||||||
if global_step >= c.max_train_step:
|
"lr": current_lr,
|
||||||
break
|
"grad_norm": grad_norm,
|
||||||
|
"step_time": step_time,
|
||||||
|
"avg_loader_time": avg_loader_time,
|
||||||
|
}
|
||||||
|
dashboard_logger.train_epoch_stats(global_step, train_stats)
|
||||||
|
figures = {
|
||||||
|
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
|
||||||
|
}
|
||||||
|
dashboard_logger.train_figures(global_step, figures)
|
||||||
|
|
||||||
end_time = time.time()
|
if global_step % c.print_step == 0:
|
||||||
|
print(
|
||||||
|
" | > Step:{} Loss:{:.5f} GradNorm:{:.5f} "
|
||||||
|
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
|
||||||
|
global_step, loss.item(), grad_norm, step_time, loader_time, avg_loader_time, current_lr
|
||||||
|
),
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
|
||||||
return avg_loss, global_step
|
if global_step % c.save_step == 0:
|
||||||
|
# save model
|
||||||
|
save_checkpoint(model, optimizer, criterion, loss.item(), OUT_PATH, global_step, epoch)
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
|
||||||
|
print("")
|
||||||
|
print(
|
||||||
|
" | > Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} "
|
||||||
|
"EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format(
|
||||||
|
epoch, tot_loss/len(data_loader), grad_norm, epoch_time, avg_loader_time, current_lr
|
||||||
|
),
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
# evaluation
|
||||||
|
if c.run_eval:
|
||||||
|
model.eval()
|
||||||
|
eval_loss = evaluation(model, criterion, eval_data_loader, global_step)
|
||||||
|
print("\n\n")
|
||||||
|
print("--> EVAL PERFORMANCE")
|
||||||
|
print(
|
||||||
|
" | > Epoch:{} AvgLoss: {:.5f} ".format(
|
||||||
|
epoch, eval_loss
|
||||||
|
),
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
# save the best checkpoint
|
||||||
|
best_loss = save_best_model(model, optimizer, criterion, eval_loss, best_loss, OUT_PATH, global_step, epoch)
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
return best_loss, global_step
|
||||||
|
|
||||||
|
|
||||||
def main(args): # pylint: disable=redefined-outer-name
|
def main(args): # pylint: disable=redefined-outer-name
|
||||||
# pylint: disable=global-variable-undefined
|
# pylint: disable=global-variable-undefined
|
||||||
global meta_data_train
|
global meta_data_train
|
||||||
global meta_data_eval
|
global meta_data_eval
|
||||||
|
global train_classes
|
||||||
|
|
||||||
ap = AudioProcessor(**c.audio)
|
ap = AudioProcessor(**c.audio)
|
||||||
model = setup_speaker_encoder_model(c)
|
model = setup_speaker_encoder_model(c)
|
||||||
|
@ -184,8 +254,12 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
# pylint: disable=redefined-outer-name
|
# pylint: disable=redefined-outer-name
|
||||||
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True)
|
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True)
|
||||||
|
|
||||||
train_data_loader, num_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
|
train_data_loader, train_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
|
||||||
# eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
|
if c.run_eval:
|
||||||
|
eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
|
||||||
|
else:
|
||||||
|
eval_data_loader = None
|
||||||
|
num_classes = len(train_classes)
|
||||||
|
|
||||||
if c.loss == "ge2e":
|
if c.loss == "ge2e":
|
||||||
criterion = GE2ELoss(loss_method="softmax")
|
criterion = GE2ELoss(loss_method="softmax")
|
||||||
|
@ -235,7 +309,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
criterion.cuda()
|
criterion.cuda()
|
||||||
|
|
||||||
global_step = args.restore_step
|
global_step = args.restore_step
|
||||||
_, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, global_step)
|
_, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, eval_data_loader, global_step)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
|
@ -39,15 +39,18 @@ class BaseEncoderConfig(BaseTrainingConfig):
|
||||||
# logging params
|
# logging params
|
||||||
tb_model_param_stats: bool = False
|
tb_model_param_stats: bool = False
|
||||||
steps_plot_stats: int = 10
|
steps_plot_stats: int = 10
|
||||||
checkpoint: bool = True
|
epochs: int = 10000
|
||||||
save_step: int = 1000
|
save_step: int = 1000
|
||||||
print_step: int = 20
|
print_step: int = 20
|
||||||
|
run_eval: bool = False
|
||||||
|
|
||||||
# data loader
|
# data loader
|
||||||
num_classes_in_batch: int = MISSING
|
num_classes_in_batch: int = MISSING
|
||||||
num_utter_per_class: int = MISSING
|
num_utter_per_class: int = MISSING
|
||||||
|
eval_num_classes_in_batch: int = MISSING
|
||||||
|
eval_num_utter_per_class: int = MISSING
|
||||||
|
|
||||||
num_loader_workers: int = MISSING
|
num_loader_workers: int = MISSING
|
||||||
skip_classes: bool = False
|
|
||||||
voice_len: float = 1.6
|
voice_len: float = 1.6
|
||||||
|
|
||||||
def check_values(self):
|
def check_values(self):
|
||||||
|
|
|
@ -104,7 +104,11 @@ class EncoderDataset(Dataset):
|
||||||
return len(self.classes)
|
return len(self.classes)
|
||||||
|
|
||||||
def get_class_list(self):
|
def get_class_list(self):
|
||||||
return list(self.classes)
|
return self.classes
|
||||||
|
def set_classes(self, classes):
|
||||||
|
self.classes = classes
|
||||||
|
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
|
||||||
|
|
||||||
|
|
||||||
def get_map_classid_to_classname(self):
|
def get_map_classid_to_classname(self):
|
||||||
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
|
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
|
||||||
|
|
|
@ -209,7 +209,7 @@ def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_s
|
||||||
save_fsspec(state, checkpoint_path)
|
save_fsspec(state, checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step):
|
def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step, epoch):
|
||||||
if model_loss < best_loss:
|
if model_loss < best_loss:
|
||||||
new_state_dict = model.state_dict()
|
new_state_dict = model.state_dict()
|
||||||
state = {
|
state = {
|
||||||
|
@ -217,6 +217,7 @@ def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path
|
||||||
"optimizer": optimizer.state_dict(),
|
"optimizer": optimizer.state_dict(),
|
||||||
"criterion": criterion.state_dict(),
|
"criterion": criterion.state_dict(),
|
||||||
"step": current_step,
|
"step": current_step,
|
||||||
|
"epoch": epoch,
|
||||||
"loss": model_loss,
|
"loss": model_loss,
|
||||||
"date": datetime.date.today().strftime("%B %d, %Y"),
|
"date": datetime.date.today().strftime("%B %d, %Y"),
|
||||||
}
|
}
|
||||||
|
|
|
@ -36,7 +36,7 @@ class PerfectBatchSampler(Sampler):
|
||||||
|
|
||||||
def __init__(self, dataset_items, classes, batch_size, num_classes_in_batch, num_gpus=1, shuffle=True, drop_last=False):
|
def __init__(self, dataset_items, classes, batch_size, num_classes_in_batch, num_gpus=1, shuffle=True, drop_last=False):
|
||||||
|
|
||||||
assert batch_size % (len(classes) * num_gpus) == 0, (
|
assert batch_size % (num_classes_in_batch * num_gpus) == 0, (
|
||||||
'Batch size must be divisible by number of classes times the number of data parallel devices (if enabled).')
|
'Batch size must be divisible by number of classes times the number of data parallel devices (if enabled).')
|
||||||
|
|
||||||
label_indices = {}
|
label_indices = {}
|
||||||
|
|
Loading…
Reference in New Issue