Add evaluation during encoder training

This commit is contained in:
Edresson Casanova 2022-03-04 17:30:59 -03:00
parent 0e372e0b9b
commit 33fd07a209
5 changed files with 203 additions and 121 deletions

View File

@ -33,148 +33,218 @@ print(" > Number of GPUs: ", num_gpus)
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
num_utter_per_class = c.num_utter_per_class if not is_val else c.eval_num_utter_per_class
num_classes_in_batch = c.num_classes_in_batch if not is_val else c.eval_num_classes_in_batch
dataset = EncoderDataset(
ap,
meta_data_eval if is_val else meta_data_train,
voice_len=c.voice_len,
num_utter_per_class=num_utter_per_class,
num_classes_in_batch=num_classes_in_batch,
verbose=verbose,
augmentation_config=c.audio_augmentation if not is_val else None,
use_torch_spec=c.model_params.get("use_torch_spec", False),
)
# get classes list
classes = dataset.get_class_list()
sampler = PerfectBatchSampler(
dataset.items,
classes,
batch_size=num_classes_in_batch*num_utter_per_class, # total batch size
num_classes_in_batch=num_classes_in_batch,
num_gpus=1,
shuffle=False if is_val else True,
drop_last=True)
if len(classes) < num_classes_in_batch:
if is_val:
raise RuntimeError(f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !")
else:
raise RuntimeError(f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !")
# set the classes to avoid get wrong class_id when the number of training and eval classes are not equal
if is_val:
loader = None
else:
dataset = EncoderDataset(
ap,
meta_data_eval if is_val else meta_data_train,
voice_len=c.voice_len,
num_utter_per_class=c.num_utter_per_class,
num_classes_in_batch=c.num_classes_in_batch,
verbose=verbose,
augmentation_config=c.audio_augmentation if not is_val else None,
use_torch_spec=c.model_params.get("use_torch_spec", False),
)
dataset.set_classes(train_classes)
sampler = PerfectBatchSampler(
dataset.items,
dataset.get_class_list(),
batch_size=c.num_classes_in_batch*c.num_utter_per_class, # total batch size
num_classes_in_batch=c.num_classes_in_batch,
num_gpus=1,
shuffle=False if is_val else True,
drop_last=True)
loader = DataLoader(
dataset,
num_workers=c.num_loader_workers,
batch_sampler=sampler,
collate_fn=dataset.collate_fn,
)
loader = DataLoader(
dataset,
num_workers=c.num_loader_workers,
batch_sampler=sampler,
collate_fn=dataset.collate_fn,
)
return loader, classes, dataset.get_map_classid_to_classname()
return loader, dataset.get_num_classes(), dataset.get_map_classid_to_classname()
def evaluation(model, criterion, data_loader, global_step):
eval_loss = 0
for step, data in enumerate(data_loader):
with torch.no_grad():
start_time = time.time()
# setup input data
inputs, labels = data
def train(model, optimizer, scheduler, criterion, data_loader, global_step):
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
labels = torch.transpose(labels.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs = torch.transpose(inputs.view(c.eval_num_utter_per_class, c.eval_num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
# dispatch data to GPU
if use_cuda:
inputs = inputs.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# forward pass model
outputs = model(inputs)
# loss computation
loss = criterion(outputs.view(c.eval_num_classes_in_batch, outputs.shape[0] // c.eval_num_classes_in_batch, -1), labels)
eval_loss += loss.item()
eval_avg_loss = eval_loss/len(data_loader)
# save stats
dashboard_logger.eval_stats(global_step, {"loss": eval_avg_loss})
# plot the last batch in the evaluation
figures = {
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
}
dashboard_logger.eval_figures(global_step, figures)
return eval_avg_loss
def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader, global_step):
model.train()
epoch_time = 0
best_loss = float("inf")
avg_loss = 0
avg_loss_all = 0
avg_loader_time = 0
end_time = time.time()
print(len(data_loader))
for _, data in enumerate(data_loader):
start_time = time.time()
for epoch in range(c.epochs):
tot_loss = 0
epoch_time = 0
for step, data in enumerate(data_loader):
start_time = time.time()
# setup input data
inputs, labels = data
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
"""
labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
idx = 0
for j in range(0, c.num_classes_in_batch, 1):
for i in range(j, len(labels), c.num_classes_in_batch):
if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
print("Invalid")
print(labels)
exit()
idx += 1
labels = labels_converted
inputs = inputs_converted
print(labels)
print(inputs.shape)"""
# setup input data
inputs, labels = data
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
"""
# ToDo: move it to a unit test
labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
idx = 0
for j in range(0, c.num_classes_in_batch, 1):
for i in range(j, len(labels), c.num_classes_in_batch):
if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
print("Invalid")
print(labels)
exit()
idx += 1
labels = labels_converted
inputs = inputs_converted
print(labels)
print(inputs.shape)"""
loader_time = time.time() - end_time
global_step += 1
loader_time = time.time() - end_time
global_step += 1
# setup lr
if c.lr_decay:
scheduler.step()
optimizer.zero_grad()
# setup lr
if c.lr_decay:
scheduler.step()
optimizer.zero_grad()
# dispatch data to GPU
if use_cuda:
inputs = inputs.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# dispatch data to GPU
if use_cuda:
inputs = inputs.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# forward pass model
outputs = model(inputs)
# forward pass model
outputs = model(inputs)
# loss computation
loss = criterion(outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels)
loss.backward()
grad_norm, _ = check_update(model, c.grad_clip)
optimizer.step()
# loss computation
loss = criterion(outputs.view(c.num_classes_in_batch, outputs.shape[0] // c.num_classes_in_batch, -1), labels)
loss.backward()
grad_norm, _ = check_update(model, c.grad_clip)
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
step_time = time.time() - start_time
epoch_time += step_time
# Averaged Loss and Averaged Loader Time
avg_loss = 0.01 * loss.item() + 0.99 * avg_loss if avg_loss != 0 else loss.item()
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
avg_loader_time = (
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
if avg_loader_time != 0
else loader_time
)
current_lr = optimizer.param_groups[0]["lr"]
# acumulate the total epoch loss
tot_loss += loss.item()
if global_step % c.steps_plot_stats == 0:
# Plot Training Epoch Stats
train_stats = {
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time,
"avg_loader_time": avg_loader_time,
}
dashboard_logger.train_epoch_stats(global_step, train_stats)
figures = {
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
}
dashboard_logger.train_figures(global_step, figures)
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), avg_loss, grad_norm, step_time, loader_time, avg_loader_time, current_lr
),
flush=True,
# Averaged Loader Time
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
avg_loader_time = (
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
if avg_loader_time != 0
else loader_time
)
avg_loss_all += avg_loss
current_lr = optimizer.param_groups[0]["lr"]
if global_step >= c.max_train_step or global_step % c.save_step == 0:
# save best model only
best_loss = save_best_model(model, optimizer, criterion, avg_loss, best_loss, OUT_PATH, global_step)
avg_loss_all = 0
if global_step >= c.max_train_step:
break
if global_step % c.steps_plot_stats == 0:
# Plot Training Epoch Stats
train_stats = {
"loss": loss.item(),
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time,
"avg_loader_time": avg_loader_time,
}
dashboard_logger.train_epoch_stats(global_step, train_stats)
figures = {
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), c.num_classes_in_batch),
}
dashboard_logger.train_figures(global_step, figures)
end_time = time.time()
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), grad_norm, step_time, loader_time, avg_loader_time, current_lr
),
flush=True,
)
return avg_loss, global_step
if global_step % c.save_step == 0:
# save model
save_checkpoint(model, optimizer, criterion, loss.item(), OUT_PATH, global_step, epoch)
end_time = time.time()
print("")
print(
" | > Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} "
"EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format(
epoch, tot_loss/len(data_loader), grad_norm, epoch_time, avg_loader_time, current_lr
),
flush=True,
)
# evaluation
if c.run_eval:
model.eval()
eval_loss = evaluation(model, criterion, eval_data_loader, global_step)
print("\n\n")
print("--> EVAL PERFORMANCE")
print(
" | > Epoch:{} AvgLoss: {:.5f} ".format(
epoch, eval_loss
),
flush=True,
)
# save the best checkpoint
best_loss = save_best_model(model, optimizer, criterion, eval_loss, best_loss, OUT_PATH, global_step, epoch)
model.train()
return best_loss, global_step
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train
global meta_data_eval
global train_classes
ap = AudioProcessor(**c.audio)
model = setup_speaker_encoder_model(c)
@ -184,8 +254,12 @@ def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=True)
train_data_loader, num_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
# eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
train_data_loader, train_classes, map_classid_to_classname = setup_loader(ap, is_val=False, verbose=True)
if c.run_eval:
eval_data_loader, _, _ = setup_loader(ap, is_val=True, verbose=True)
else:
eval_data_loader = None
num_classes = len(train_classes)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method="softmax")
@ -235,7 +309,7 @@ def main(args): # pylint: disable=redefined-outer-name
criterion.cuda()
global_step = args.restore_step
_, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, global_step)
_, global_step = train(model, optimizer, scheduler, criterion, train_data_loader, eval_data_loader, global_step)
if __name__ == "__main__":

View File

@ -39,15 +39,18 @@ class BaseEncoderConfig(BaseTrainingConfig):
# logging params
tb_model_param_stats: bool = False
steps_plot_stats: int = 10
checkpoint: bool = True
epochs: int = 10000
save_step: int = 1000
print_step: int = 20
run_eval: bool = False
# data loader
num_classes_in_batch: int = MISSING
num_utter_per_class: int = MISSING
eval_num_classes_in_batch: int = MISSING
eval_num_utter_per_class: int = MISSING
num_loader_workers: int = MISSING
skip_classes: bool = False
voice_len: float = 1.6
def check_values(self):

View File

@ -104,7 +104,11 @@ class EncoderDataset(Dataset):
return len(self.classes)
def get_class_list(self):
return list(self.classes)
return self.classes
def set_classes(self, classes):
self.classes = classes
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
def get_map_classid_to_classname(self):
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())

View File

@ -209,7 +209,7 @@ def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_s
save_fsspec(state, checkpoint_path)
def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step):
def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step, epoch):
if model_loss < best_loss:
new_state_dict = model.state_dict()
state = {
@ -217,6 +217,7 @@ def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path
"optimizer": optimizer.state_dict(),
"criterion": criterion.state_dict(),
"step": current_step,
"epoch": epoch,
"loss": model_loss,
"date": datetime.date.today().strftime("%B %d, %Y"),
}

View File

@ -36,7 +36,7 @@ class PerfectBatchSampler(Sampler):
def __init__(self, dataset_items, classes, batch_size, num_classes_in_batch, num_gpus=1, shuffle=True, drop_last=False):
assert batch_size % (len(classes) * num_gpus) == 0, (
assert batch_size % (num_classes_in_batch * num_gpus) == 0, (
'Batch size must be divisible by number of classes times the number of data parallel devices (if enabled).')
label_indices = {}