mirror of https://github.com/coqui-ai/TTS.git
Fix style tests
This commit is contained in:
parent
0ae1e0248c
commit
3435bc8fca
|
@ -4,6 +4,7 @@ import os
|
|||
import pathlib
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from TTS.utils.vad import get_vad_model_and_utils, remove_silence
|
||||
|
||||
|
||||
|
@ -16,7 +17,13 @@ def adjust_path_and_remove_silence(audio_path):
|
|||
# create all directory structure
|
||||
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
# remove the silence and save the audio
|
||||
output_path = remove_silence(model_and_utils, audio_path, output_path, trim_just_beginning_and_end=args.trim_just_beginning_and_end, use_cuda=args.use_cuda)
|
||||
output_path = remove_silence(
|
||||
model_and_utils,
|
||||
audio_path,
|
||||
output_path,
|
||||
trim_just_beginning_and_end=args.trim_just_beginning_and_end,
|
||||
use_cuda=args.use_cuda,
|
||||
)
|
||||
|
||||
return output_path
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import torch
|
||||
import torchaudio
|
||||
|
||||
|
||||
def read_audio(path):
|
||||
wav, sr = torchaudio.load(path)
|
||||
|
||||
|
@ -9,39 +10,42 @@ def read_audio(path):
|
|||
|
||||
return wav.squeeze(0), sr
|
||||
|
||||
|
||||
def resample_wav(wav, sr, new_sr):
|
||||
wav = wav.unsqueeze(0)
|
||||
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=new_sr)
|
||||
wav = transform(wav)
|
||||
return wav.squeeze(0)
|
||||
|
||||
|
||||
def map_timestamps_to_new_sr(vad_sr, new_sr, timestamps, just_begging_end=False):
|
||||
factor = new_sr / vad_sr
|
||||
new_timestamps = []
|
||||
if just_begging_end and timestamps:
|
||||
# get just the start and end timestamps
|
||||
new_dict = {'start': int(timestamps[0]['start']*factor), 'end': int(timestamps[-1]['end']*factor)}
|
||||
new_dict = {"start": int(timestamps[0]["start"] * factor), "end": int(timestamps[-1]["end"] * factor)}
|
||||
new_timestamps.append(new_dict)
|
||||
else:
|
||||
for ts in timestamps:
|
||||
# map to the new SR
|
||||
new_dict = {'start': int(ts['start']*factor), 'end': int(ts['end']*factor)}
|
||||
new_dict = {"start": int(ts["start"] * factor), "end": int(ts["end"] * factor)}
|
||||
new_timestamps.append(new_dict)
|
||||
|
||||
return new_timestamps
|
||||
|
||||
|
||||
def get_vad_model_and_utils(use_cuda=False):
|
||||
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
|
||||
model='silero_vad',
|
||||
force_reload=True,
|
||||
onnx=False)
|
||||
model, utils = torch.hub.load(repo_or_dir="snakers4/silero-vad", model="silero_vad", force_reload=True, onnx=False)
|
||||
if use_cuda:
|
||||
model = model.cuda()
|
||||
|
||||
get_speech_timestamps, save_audio, _, _, collect_chunks = utils
|
||||
return model, get_speech_timestamps, save_audio, collect_chunks
|
||||
|
||||
def remove_silence(model_and_utils, audio_path, out_path, vad_sample_rate=8000, trim_just_beginning_and_end=True, use_cuda=False):
|
||||
|
||||
def remove_silence(
|
||||
model_and_utils, audio_path, out_path, vad_sample_rate=8000, trim_just_beginning_and_end=True, use_cuda=False
|
||||
):
|
||||
|
||||
# get the VAD model and utils functions
|
||||
model, get_speech_timestamps, save_audio, collect_chunks = model_and_utils
|
||||
|
@ -62,7 +66,9 @@ def remove_silence(model_and_utils, audio_path, out_path, vad_sample_rate=8000,
|
|||
speech_timestamps = get_speech_timestamps(wav_vad, model, sampling_rate=vad_sample_rate, window_size_samples=768)
|
||||
|
||||
# map the current speech_timestamps to the sample rate of the ground truth audio
|
||||
new_speech_timestamps = map_timestamps_to_new_sr(vad_sample_rate, gt_sample_rate, speech_timestamps, trim_just_beginning_and_end)
|
||||
new_speech_timestamps = map_timestamps_to_new_sr(
|
||||
vad_sample_rate, gt_sample_rate, speech_timestamps, trim_just_beginning_and_end
|
||||
)
|
||||
|
||||
# if have speech timestamps else save the wav
|
||||
if new_speech_timestamps:
|
||||
|
|
Loading…
Reference in New Issue