From 34eeaee58b940aa7a952d209b8d5ed3e1e89ce40 Mon Sep 17 00:00:00 2001 From: Eren Date: Fri, 21 Sep 2018 17:27:02 +0200 Subject: [PATCH] Make audio folder and save audio with scipy --- train.py | 2 +- utils/audio.py | 4 +++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/train.py b/train.py index d8a75b1d..55659a4b 100644 --- a/train.py +++ b/train.py @@ -474,7 +474,7 @@ if __name__ == '__main__': OUT_PATH = create_experiment_folder(OUT_PATH, c.model_name, args.debug) CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints') AUDIO_PATH = os.path.join(OUT_PATH, 'test_audios') - os.mkdir(AUDIO_PATH) + os.makedirs(AUDIO_PATH, exist_ok=True) shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json')) # setup tensorboard diff --git a/utils/audio.py b/utils/audio.py index 4ea5bfe0..9849cc93 100644 --- a/utils/audio.py +++ b/utils/audio.py @@ -3,6 +3,7 @@ import librosa import pickle import copy import numpy as np +import scipy from scipy import signal _mel_basis = None @@ -38,7 +39,8 @@ class AudioProcessor(object): def save_wav(self, wav, path): wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) - librosa.output.write_wav(path, wav_norm.astype(np.int16), self.sample_rate) + # librosa.output.write_wav(path, wav_norm.astype(np.int16), self.sample_rate) + scipy.io.wavfile.write(path, self.sample_rate, wav.astype(np.int16)) def _linear_to_mel(self, spectrogram): global _mel_basis