move bash script based tests to python with coqpit

This commit is contained in:
Eren Gölge 2021-05-05 02:38:19 +02:00
parent 647163397d
commit 35341d5482
5 changed files with 51 additions and 3 deletions

View File

@ -398,7 +398,6 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
"Prior to November 22, 1963.",
]
# test sentences
test_audios = {}
test_figures = {}

View File

@ -2,12 +2,13 @@
# -*- coding: utf-8 -*-
"""Argument parser for training scripts."""
import torch
import argparse
import glob
import os
import re
import torch
from TTS.tts.utils.text.symbols import parse_symbols
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.generic_utils import create_experiment_folder, get_git_branch

View File

@ -111,7 +111,7 @@ def set_init_dict(model_dict, checkpoint_state, c):
# 2. filter out different size layers
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
# 3. skip reinit layers
if c.has('reinit_layers') and c.reinit_layers is not None:
if c.has("reinit_layers") and c.reinit_layers is not None:
for reinit_layer_name in c.reinit_layers:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k}
# 4. overwrite entries in the existing state dict

View File

View File

@ -0,0 +1,48 @@
import glob
import os
from tests import get_tests_output_path, run_cli
from TTS.config import BaseDatasetConfig
from TTS.tts.configs import SpeedySpeechConfig
config_path = os.path.join(get_tests_output_path(), "test_speedy_speech_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = SpeedySpeechConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_val_loader_workers=0,
text_cleaner="english_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"),
run_eval=True,
test_delay_epochs=-1,
epochs=1,
print_step=1,
print_eval=True,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='' python TTS/bin/train_speedy_speech.py --config_path {config_path} "
f"--coqpit.output_path {output_path} "
"--coqpit.datasets.0.name ljspeech "
"--coqpit.datasets.0.meta_file_train metadata.csv "
"--coqpit.datasets.0.meta_file_val metadata.csv "
"--coqpit.datasets.0.path tests/data/ljspeech "
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt"
)
run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='' python TTS/bin/train_speedy_speech.py --continue_path {continue_path} "
run_cli(command_train)