UPDATE add audio edit function

This commit is contained in:
Aaron-Li 2024-01-04 14:14:56 +08:00
parent 5dcc16d193
commit 3559581dc9
1 changed files with 174 additions and 0 deletions

View File

@ -691,6 +691,180 @@ class Xtts(BaseTTS):
last_tokens = []
yield wav_chunk
def init_for_audio_edit(self, dvae_checkpoint, mel_norm_file):
from TTS.tts.layers.xtts.dvae import DiscreteVAE
from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram
dvae_sample_rate: int = 22050
# Load DVAE
self.dvae = DiscreteVAE(
channels=80,
normalization=None,
positional_dims=1,
num_tokens=self.args.gpt_num_audio_tokens - 2,
codebook_dim=512,
hidden_dim=512,
num_resnet_blocks=3,
kernel_size=3,
num_layers=2,
use_transposed_convs=False,
)
self.dvae.eval()
dvae_dict = torch.load(dvae_checkpoint, map_location=torch.device("cpu"))
self.dvae.load_state_dict(dvae_dict, strict=False)
print(">> DVAE weights restored from:", dvae_checkpoint)
# Mel spectrogram extractor for DVAE
self.torch_mel_spectrogram_dvae = TorchMelSpectrogram(
mel_norm_file=mel_norm_file, sampling_rate=dvae_sample_rate
)
self.dvae = self.dvae.to(self.device)
self.torch_mel_spectrogram_dvae = self.torch_mel_spectrogram_dvae.to(self.device)
@torch.inference_mode()
def audio_edit(
self,
text_left,
text_edit,
text_right,
audio_left_path,
audio_right_path,
language,
gpt_cond_latent,
speaker_embedding,
generate_times=5,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
num_beams=1,
speed=1.0,
enable_text_splitting=False,
**hf_generate_kwargs,):
load_sr: int = 22050
audio_left = load_audio(audio_left_path, load_sr)
audio_left = audio_left.to(self.device)
audio_right = load_audio(audio_right_path, load_sr)
audio_right = audio_right.to(self.device)
dvae_mel_spec_left = self.torch_mel_spectrogram_dvae(audio_left)
codes_left = self.dvae.get_codebook_indices(dvae_mel_spec_left)
dvae_mel_spec_right = self.torch_mel_spectrogram_dvae(audio_right)
codes_right = self.dvae.get_codebook_indices(dvae_mel_spec_right)
language = language.split("-")[0] # remove the country code
length_scale = 1.0 / max(speed, 0.05)
gpt_cond_latent = gpt_cond_latent.to(self.device)
speaker_embedding = speaker_embedding.to(self.device)
wavs = []
with torch.no_grad():
sent = text_left + text_edit
sent = sent.strip().lower()
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device)
sent_left = text_left.strip().lower()
text_left_tokens = torch.IntTensor(self.tokenizer.encode(sent_left, lang=language)).unsqueeze(0).to(self.device)
sent_right = text_edit + text_right
sent_right = sent_right.strip().lower()
text_right_tokens = torch.IntTensor(self.tokenizer.encode(sent_right, lang=language)).unsqueeze(0).to(self.device)
assert (
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
gpt_inputs = self.gpt.compute_embeddings(gpt_cond_latent, text_tokens)
# add codes_left to inputs
gpt_inputs = torch.cat([gpt_inputs, codes_left], dim=1)
best_gpt_latents = None
best_logits = 0
for _ in range(generate_times):
gen = self.gpt.gpt_inference.generate(
gpt_inputs,
bos_token_id=self.gpt.start_audio_token,
pad_token_id=self.gpt.stop_audio_token,
eos_token_id=self.gpt.stop_audio_token,
max_length=self.gpt.max_gen_mel_tokens + gpt_inputs.shape[-1],
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=self.gpt_batch_size,
num_beams=num_beams,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
output_attentions=False,
**hf_generate_kwargs,
)
gpt_codes = gen[:, gpt_inputs.shape[1]: -1]
gen_len = gpt_codes.shape[-1]
gpt_right_codes = torch.cat([gpt_codes, codes_right], dim=1)
expected_output_len = torch.tensor(
[gpt_right_codes.shape[-1] * self.gpt.code_stride_len], device=text_right_tokens.device
)
text_len = torch.tensor([text_right_tokens.shape[-1]], device=self.device)
gpt_latents = self.gpt(
text_right_tokens,
text_len,
gpt_right_codes,
expected_output_len,
cond_latents=gpt_cond_latent,
return_attentions=False,
return_latent=True,
)
right_logits = torch.gather(F.softmax(gpt_latents[:, gen_len:], dim=-1),
-1,
codes_right.unsqueeze(0).transpose(-1, -2))
sum_logits = torch.sum(right_logits, dim=-2)
sum_logits = float(sum_logits[0,0])
if sum_logits > best_logits:
best_logits = sum_logits
best_gpt_latents = gpt_latents.detach()
expected_left_len = torch.tensor(
[codes_left.shape[-1] * self.gpt.code_stride_len], device=text_left_tokens.device
)
text_left_len = torch.tensor([text_left_tokens.shape[-1]], device=self.device)
gpt_left_latents = self.gpt(
text_left_tokens,
text_left_len,
codes_left,
expected_left_len,
cond_latents=gpt_cond_latent,
return_attentions=False,
return_latent=True,
)
# if length_scale != 1.0:
# best_gpt_latents = F.interpolate(
# best_gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear"
# ).transpose(1, 2)
# wavs.append(load_audio(audio_left_path, self.args.output_sample_rate).cpu().squeeze())
# wavs.append(self.hifigan_decoder(best_gpt_latents, g=speaker_embedding).cpu().squeeze())
# wavs.append(load_audio(audio_right_path, self.args.output_sample_rate).cpu().squeeze())
wavs.append(self.hifigan_decoder(torch.cat([gpt_left_latents, best_gpt_latents], dim=1),
g=speaker_embedding).cpu().squeeze())
return {
"wav": torch.cat(wavs, dim=0).numpy(),
}
def forward(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"