mirror of https://github.com/coqui-ai/TTS.git
Remove TTSDatasetCached. It is merged to TTSDataset.py
This commit is contained in:
parent
345e87b181
commit
37476e136c
|
@ -25,10 +25,10 @@
|
|||
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
},
|
||||
|
||||
"embedding_size": 256,
|
||||
"embedding_size": 256,
|
||||
"text_cleaner": "english_cleaners",
|
||||
"epochs": 1000,
|
||||
|
||||
|
||||
"lr": 0.001,
|
||||
"lr_decay": false,
|
||||
"warmup_steps": 4000,
|
||||
|
@ -52,4 +52,4 @@
|
|||
"output_path": "../keep/", // output path for all training outputs.
|
||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4 // number of evaluation data loader processes.
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,162 +0,0 @@
|
|||
import os
|
||||
import random
|
||||
import numpy as np
|
||||
import collections
|
||||
import librosa
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from utils.text import text_to_sequence
|
||||
from datasets.preprocess import tts_cache
|
||||
from utils.data import (prepare_data, pad_per_step, prepare_tensor,
|
||||
prepare_stop_target)
|
||||
|
||||
|
||||
class MyDataset(Dataset):
|
||||
# TODO: Not finished yet.
|
||||
def __init__(self,
|
||||
root_path,
|
||||
meta_file,
|
||||
outputs_per_step,
|
||||
text_cleaner,
|
||||
ap,
|
||||
batch_group_size=0,
|
||||
min_seq_len=0,
|
||||
**kwargs
|
||||
):
|
||||
self.ap = ap
|
||||
self.root_path = root_path
|
||||
self.batch_group_size = batch_group_size
|
||||
self.feat_dir = os.path.join(root_path, 'loader_data')
|
||||
self.items = tts_cache(root_path, meta_file)
|
||||
self.outputs_per_step = outputs_per_step
|
||||
self.sample_rate = ap.sample_rate
|
||||
self.cleaners = text_cleaner
|
||||
self.min_seq_len = min_seq_len
|
||||
print(" > Reading LJSpeech from - {}".format(root_path))
|
||||
print(" | > Number of instances : {}".format(len(self.items)))
|
||||
self.sort_items()
|
||||
|
||||
def load_wav(self, filename):
|
||||
try:
|
||||
audio = self.ap.load_wav(filename)
|
||||
return audio
|
||||
except RuntimeError as e:
|
||||
print(" !! Cannot read file : {}".format(filename))
|
||||
|
||||
def load_np(self, filename):
|
||||
data = np.load(filename).astype('float32')
|
||||
return data
|
||||
|
||||
def sort_items(self):
|
||||
r"""Sort text sequences in ascending order"""
|
||||
lengths = np.array([len(ins[-1]) for ins in self.items])
|
||||
|
||||
print(" | > Max length sequence {}".format(np.max(lengths)))
|
||||
print(" | > Min length sequence {}".format(np.min(lengths)))
|
||||
print(" | > Avg length sequence {}".format(np.mean(lengths)))
|
||||
|
||||
idxs = np.argsort(lengths)
|
||||
new_frames = []
|
||||
ignored = []
|
||||
for i, idx in enumerate(idxs):
|
||||
length = lengths[idx]
|
||||
if length < self.min_seq_len:
|
||||
ignored.append(idx)
|
||||
else:
|
||||
new_frames.append(self.items[idx])
|
||||
print(" | > {} instances are ignored by min_seq_len ({})".format(
|
||||
len(ignored), self.min_seq_len))
|
||||
# shuffle batch groups
|
||||
if self.batch_group_size > 0:
|
||||
print(" | > Batch group shuffling is active.")
|
||||
for i in range(len(new_frames) // self.batch_group_size):
|
||||
offset = i * self.batch_group_size
|
||||
end_offset = offset + self.batch_group_size
|
||||
temp_frames = new_frames[offset : end_offset]
|
||||
random.shuffle(temp_frames)
|
||||
new_frames[offset : end_offset] = temp_frames
|
||||
self.items = new_frames
|
||||
|
||||
def __len__(self):
|
||||
return len(self.items)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
wav_name = self.items[idx][0]
|
||||
mel_name = self.items[idx][1]
|
||||
linear_name = self.items[idx][2]
|
||||
text = self.items[idx][-1]
|
||||
text = np.asarray(
|
||||
text_to_sequence(text, [self.cleaners]), dtype=np.int32)
|
||||
if wav_name.split('.')[-1] == 'npy':
|
||||
wav = self.load_np(wav_name)
|
||||
else:
|
||||
wav = np.asarray(self.load_wav(wav_name), dtype=np.float32)
|
||||
mel = self.load_np(mel_name)
|
||||
linear = self.load_np(linear_name)
|
||||
sample = {
|
||||
'text': text,
|
||||
'wav': wav,
|
||||
'item_idx': self.items[idx][0],
|
||||
'mel': mel,
|
||||
'linear': linear
|
||||
}
|
||||
return sample
|
||||
|
||||
def collate_fn(self, batch):
|
||||
r"""
|
||||
Perform preprocessing and create a final data batch:
|
||||
1. PAD sequences with the longest sequence in the batch
|
||||
2. Convert Audio signal to Spectrograms.
|
||||
3. PAD sequences that can be divided by r.
|
||||
4. Convert Numpy to Torch tensors.
|
||||
"""
|
||||
|
||||
# Puts each data field into a tensor with outer dimension batch size
|
||||
if isinstance(batch[0], collections.Mapping):
|
||||
keys = list()
|
||||
|
||||
wav = [d['wav'] for d in batch]
|
||||
item_idxs = [d['item_idx'] for d in batch]
|
||||
text = [d['text'] for d in batch]
|
||||
mel = [d['mel'] for d in batch]
|
||||
linear = [d['linear'] for d in batch]
|
||||
|
||||
text_lenghts = np.array([len(x) for x in text])
|
||||
max_text_len = np.max(text_lenghts)
|
||||
mel_lengths = [m.shape[1] + 1 for m in mel] # +1 for zero-frame
|
||||
|
||||
# compute 'stop token' targets
|
||||
stop_targets = [
|
||||
np.array([0.] * (mel_len - 1)) for mel_len in mel_lengths
|
||||
]
|
||||
|
||||
# PAD stop targets
|
||||
stop_targets = prepare_stop_target(stop_targets,
|
||||
self.outputs_per_step)
|
||||
|
||||
# PAD sequences with largest length of the batch
|
||||
text = prepare_data(text).astype(np.int32)
|
||||
wav = prepare_data(wav)
|
||||
|
||||
# PAD features with largest length + a zero frame
|
||||
linear = prepare_tensor(linear, self.outputs_per_step)
|
||||
mel = prepare_tensor(mel, self.outputs_per_step)
|
||||
timesteps = mel.shape[2]
|
||||
|
||||
# B x T x D
|
||||
linear = linear.transpose(0, 2, 1)
|
||||
mel = mel.transpose(0, 2, 1)
|
||||
|
||||
# convert things to pytorch
|
||||
text_lenghts = torch.LongTensor(text_lenghts)
|
||||
text = torch.LongTensor(text)
|
||||
linear = torch.FloatTensor(linear).contiguous()
|
||||
mel = torch.FloatTensor(mel).contiguous()
|
||||
mel_lengths = torch.LongTensor(mel_lengths)
|
||||
stop_targets = torch.FloatTensor(stop_targets)
|
||||
|
||||
return text, text_lenghts, linear, mel, mel_lengths, stop_targets, item_idxs
|
||||
|
||||
raise TypeError(("batch must contain tensors, numbers, dicts or lists;\
|
||||
found {}".format(type(batch[0]))))
|
|
@ -14,7 +14,7 @@ from utils.data import (prepare_data, pad_per_step, prepare_tensor,
|
|||
|
||||
|
||||
class MyDataset(Dataset):
|
||||
# TODO: Not finished yet.
|
||||
# TODO: Merge to TTSDataset.py, but it is not fast as it is supposed to be
|
||||
def __init__(self,
|
||||
root_path,
|
||||
meta_file,
|
||||
|
|
Loading…
Reference in New Issue