mirror of https://github.com/coqui-ai/TTS.git
Make style
This commit is contained in:
parent
9a8352b8da
commit
37b558ccb9
|
@ -191,10 +191,10 @@ lock = Lock()
|
|||
@app.route("/api/tts", methods=["GET", "POST"])
|
||||
def tts():
|
||||
with lock:
|
||||
text = request.headers.get('text') or request.values.get("text", "")
|
||||
speaker_idx = request.headers.get('speaker-id') or request.values.get("speaker_id", "")
|
||||
language_idx = request.headers.get('language-id') or request.values.get("language_id", "")
|
||||
style_wav = request.headers.get('style-wav') or request.values.get("style_wav", "")
|
||||
text = request.headers.get("text") or request.values.get("text", "")
|
||||
speaker_idx = request.headers.get("speaker-id") or request.values.get("speaker_id", "")
|
||||
language_idx = request.headers.get("language-id") or request.values.get("language_id", "")
|
||||
style_wav = request.headers.get("style-wav") or request.values.get("style_wav", "")
|
||||
style_wav = style_wav_uri_to_dict(style_wav)
|
||||
|
||||
print(f" > Model input: {text}")
|
||||
|
|
|
@ -184,7 +184,6 @@ def generate_text_semantic(
|
|||
Returns:
|
||||
np.ndarray: The generated semantic tokens.
|
||||
"""
|
||||
print(f"history_prompt in gen: {history_prompt}")
|
||||
assert isinstance(text, str)
|
||||
text = _normalize_whitespace(text)
|
||||
assert len(text.strip()) > 0
|
||||
|
|
|
@ -1855,7 +1855,7 @@ class Vits(BaseTTS):
|
|||
dummy_input += (speaker_id,)
|
||||
input_names.append("sid")
|
||||
|
||||
if hasattr(self, 'num_languages') and self.num_languages > 0 and self.embedded_language_dim > 0:
|
||||
if hasattr(self, "num_languages") and self.num_languages > 0 and self.embedded_language_dim > 0:
|
||||
language_id = torch.LongTensor([0])
|
||||
dummy_input += (language_id,)
|
||||
input_names.append("langid")
|
||||
|
@ -1913,11 +1913,7 @@ class Vits(BaseTTS):
|
|||
[self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp],
|
||||
dtype=np.float32,
|
||||
)
|
||||
input_params = {
|
||||
"input": x,
|
||||
"input_lengths": x_lengths,
|
||||
"scales": scales
|
||||
}
|
||||
input_params = {"input": x, "input_lengths": x_lengths, "scales": scales}
|
||||
if not speaker_id is None:
|
||||
input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
|
||||
if not language_id is None:
|
||||
|
|
Loading…
Reference in New Issue