mirror of https://github.com/coqui-ai/TTS.git
train.py - replace data[0] with item()
This commit is contained in:
parent
6bea3f1f93
commit
3970491451
32
train.py
32
train.py
|
@ -118,19 +118,18 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
||||||
epoch_time += step_time
|
epoch_time += step_time
|
||||||
|
|
||||||
# update
|
# update
|
||||||
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
|
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||||
('linear_loss',
|
('linear_loss', linear_loss.item()),
|
||||||
linear_loss.data[0]),
|
('mel_loss', mel_loss.item()),
|
||||||
('mel_loss', mel_loss.data[0]),
|
('grad_norm', grad_norm.item())])
|
||||||
('grad_norm', grad_norm)])
|
avg_linear_loss += linear_loss.item()
|
||||||
avg_linear_loss += linear_loss.data[0]
|
avg_mel_loss += mel_loss.item()
|
||||||
avg_mel_loss += mel_loss.data[0]
|
|
||||||
|
|
||||||
# Plot Training Iter Stats
|
# Plot Training Iter Stats
|
||||||
tb.add_scalar('TrainIterLoss/TotalLoss', loss.data[0], current_step)
|
tb.add_scalar('TrainIterLoss/TotalLoss', loss.item(), current_step)
|
||||||
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.data[0],
|
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.item(),
|
||||||
current_step)
|
current_step)
|
||||||
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.data[0], current_step)
|
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.item(), current_step)
|
||||||
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
|
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
|
||||||
current_step)
|
current_step)
|
||||||
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
|
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
|
||||||
|
@ -139,7 +138,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
|
||||||
if current_step % c.save_step == 0:
|
if current_step % c.save_step == 0:
|
||||||
if c.checkpoint:
|
if c.checkpoint:
|
||||||
# save model
|
# save model
|
||||||
save_checkpoint(model, optimizer, linear_loss.data[0],
|
save_checkpoint(model, optimizer, linear_loss.item(),
|
||||||
OUT_PATH, current_step, epoch)
|
OUT_PATH, current_step, epoch)
|
||||||
|
|
||||||
# Diagnostic visualizations
|
# Diagnostic visualizations
|
||||||
|
@ -225,13 +224,12 @@ def evaluate(model, criterion, data_loader, current_step):
|
||||||
epoch_time += step_time
|
epoch_time += step_time
|
||||||
|
|
||||||
# update
|
# update
|
||||||
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
|
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||||
('linear_loss',
|
('linear_loss', linear_loss.item()),
|
||||||
linear_loss.data[0]),
|
('mel_loss', mel_loss.item())])
|
||||||
('mel_loss', mel_loss.data[0])])
|
|
||||||
|
|
||||||
avg_linear_loss += linear_loss.data[0]
|
avg_linear_loss += linear_loss.item()
|
||||||
avg_mel_loss += mel_loss.data[0]
|
avg_mel_loss += mel_loss.item()
|
||||||
|
|
||||||
# Diagnostic visualizations
|
# Diagnostic visualizations
|
||||||
idx = np.random.randint(mel_input.shape[0])
|
idx = np.random.randint(mel_input.shape[0])
|
||||||
|
|
Loading…
Reference in New Issue