Data loader bug fix and Attention bug fix

This commit is contained in:
Eren Golge 2018-03-26 10:43:36 -07:00
parent 632c08a638
commit 3c084177c6
8 changed files with 71 additions and 53 deletions

View File

@ -12,7 +12,7 @@
"text_cleaner": "english_cleaners",
"epochs": 2000,
"lr": 0.0003,
"lr": 0.001,
"warmup_steps": 4000,
"batch_size": 32,
"eval_batch_size":32,

View File

@ -7,7 +7,7 @@ from torch.utils.data import Dataset
from TTS.utils.text import text_to_sequence
from TTS.utils.audio import AudioProcessor
from TTS.utils.data import (prepare_data, pad_data, pad_per_step,
from TTS.utils.data import (prepare_data, pad_per_step,
prepare_tensor, prepare_stop_target)
@ -96,10 +96,10 @@ class LJSpeechDataset(Dataset):
linear = [self.ap.spectrogram(w).astype('float32') for w in wav]
mel = [self.ap.melspectrogram(w).astype('float32') for w in wav]
mel_lengths = [m.shape[1] for m in mel]
mel_lengths = [m.shape[1] + 1 for m in mel] # +1 for zero-frame
# compute 'stop token' targets
stop_targets = [np.array([0.]*mel_len) for mel_len in mel_lengths]
stop_targets = [np.array([0.]*(mel_len-1)) for mel_len in mel_lengths]
# PAD stop targets
stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step)
@ -108,25 +108,12 @@ class LJSpeechDataset(Dataset):
text = prepare_data(text).astype(np.int32)
wav = prepare_data(wav)
# PAD features with largest length of the batch
linear = prepare_tensor(linear)
mel = prepare_tensor(mel)
# PAD features with largest length + a zero frame
linear = prepare_tensor(linear, self.outputs_per_step)
mel = prepare_tensor(mel, self.outputs_per_step)
assert mel.shape[2] == linear.shape[2]
timesteps = mel.shape[2]
# PAD with zeros that can be divided by outputs per step
if (timesteps + 1) % self.outputs_per_step != 0:
pad_len = self.outputs_per_step - \
((timesteps + 1) % self.outputs_per_step)
pad_len += 1
else:
pad_len = 1
linear = pad_per_step(linear, pad_len)
mel = pad_per_step(mel, pad_len)
# update mel lengths
mel_lengths = [l+pad_len for l in mel_lengths]
# B x T x D
linear = linear.transpose(0, 2, 1)
mel = mel.transpose(0, 2, 1)

View File

@ -48,7 +48,7 @@ class AttentionRNN(nn.Module):
def __init__(self, out_dim, annot_dim, memory_dim,
score_mask_value=-float("inf")):
super(AttentionRNN, self).__init__()
self.rnn_cell = nn.GRUCell(annot_dim + memory_dim, out_dim)
self.rnn_cell = nn.GRUCell(out_dim + memory_dim, out_dim)
self.alignment_model = BahdanauAttention(annot_dim, out_dim, out_dim)
self.score_mask_value = score_mask_value

View File

@ -304,8 +304,7 @@ class Decoder(nn.Module):
# Attention RNN
attention_rnn_hidden, current_context_vec, alignment = self.attention_rnn(
processed_memory, current_context_vec, attention_rnn_hidden,
inputs)
processed_memory, current_context_vec, attention_rnn_hidden, inputs)
# Concat RNN output and attention context vector
decoder_input = self.project_to_decoder_in(

View File

@ -33,17 +33,15 @@ class CBHGTests(unittest.TestCase):
class DecoderTests(unittest.TestCase):
def test_in_out(self):
layer = Decoder(in_features=128, memory_dim=32, r=5)
dummy_input = T.autograd.Variable(T.rand(4, 8, 128))
dummy_memory = T.autograd.Variable(T.rand(4, 120, 32))
layer = Decoder(in_features=256, memory_dim=80, r=2)
dummy_input = T.autograd.Variable(T.rand(4, 8, 256))
dummy_memory = T.autograd.Variable(T.rand(4, 2, 80))
print(layer)
output, alignment = layer(dummy_input, dummy_memory)
print(output.shape)
assert output.shape[0] == 4
assert output.shape[1] == 120 / 5
assert output.shape[2] == 32 * 5
assert output.shape[1] == 1, "size not {}".format(output.shape[1])
assert output.shape[2] == 80 * 2, "size not {}".format(output.shape[2])
class EncoderTests(unittest.TestCase):

View File

@ -72,8 +72,9 @@ class TestDataset(unittest.TestCase):
c.power
)
# Test for batch size 1
dataloader = DataLoader(dataset, batch_size=1,
shuffle=True, collate_fn=dataset.collate_fn,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
@ -93,11 +94,53 @@ class TestDataset(unittest.TestCase):
assert linear_input[0, -1].sum() == 0
assert linear_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target[0, -2] == 0
assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
print(mel_lengths)
print(mel_input)
assert mel_lengths[0] == mel_input[0].shape[0]
# Test for batch size 2
dataloader = DataLoader(dataset, batch_size=2,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=False, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the first item in the batch
assert mel_input[idx, -1].sum() == 0
assert mel_input[idx, -2].sum() != 0, mel_input
assert linear_input[idx, -1].sum() == 0
assert linear_input[idx, -2].sum() != 0
assert stop_target[idx, -1] == 1
assert stop_target[idx, -2] == 0
assert stop_target[idx].sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[idx] == mel_input[idx].shape[0]
# check the second itme in the batch
assert mel_input[1-idx, -1].sum() == 0
assert linear_input[1-idx, -1].sum() == 0
assert stop_target[1-idx, -1] == 1
assert len(mel_lengths.shape) == 1
# check batch conditions
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0

View File

@ -98,16 +98,6 @@ def train(model, criterion, data_loader, optimizer, epoch):
mel_lengths_var = Variable(mel_lengths)
linear_spec_var = Variable(linear_input, volatile=True)
# sort sequence by length for curriculum learning
# TODO: might be unnecessary
sorted_lengths, indices = torch.sort(
text_lengths.view(-1), dim=0, descending=True)
sorted_lengths = sorted_lengths.long().numpy()
text_input_var = text_input_var[indices]
mel_spec_var = mel_spec_var[indices]
mel_lengths_var = mel_lengths_var[indices]
linear_spec_var = linear_spec_var[indices]
# dispatch data to GPU
if use_cuda:
text_input_var = text_input_var.cuda()

View File

@ -1,7 +1,7 @@
import numpy as np
def pad_data(x, length):
def _pad_data(x, length):
_pad = 0
assert x.ndim == 1
return np.pad(x, (0, length - x.shape[0]),
@ -11,30 +11,31 @@ def pad_data(x, length):
def prepare_data(inputs):
max_len = max((len(x) for x in inputs))
return np.stack([pad_data(x, max_len) for x in inputs])
return np.stack([_pad_data(x, max_len) for x in inputs])
def pad_tensor(x, length):
def _pad_tensor(x, length):
_pad = 0
assert x.ndim == 2
return np.pad(x, [[0, 0], [0, length- x.shape[1]]], mode='constant', constant_values=_pad)
return np.pad(x, [[0, 0], [0, length - x.shape[1]]], mode='constant', constant_values=_pad)
def prepare_tensor(inputs):
max_len = max((x.shape[1] for x in inputs))
return np.stack([pad_tensor(x, max_len) for x in inputs])
def prepare_tensor(inputs, out_steps):
max_len = max((x.shape[1] for x in inputs)) + 1 # zero-frame
remainder = max_len % out_steps
return np.stack([_pad_tensor(x, max_len + remainder) for x in inputs])
def pad_stop_target(x, length):
def _pad_stop_target(x, length):
_pad = 1.
assert x.ndim == 1
return np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)
def prepare_stop_target(inputs, out_steps):
max_len = max((x.shape[0] for x in inputs))
max_len = max((x.shape[0] for x in inputs)) + 1 # zero-frame
remainder = max_len % out_steps
return np.stack([pad_stop_target(x, max_len + out_steps - remainder) for x in inputs])
return np.stack([_pad_stop_target(x, max_len + remainder) for x in inputs])
def pad_per_step(inputs, pad_len):