train_encoder refactoring for coqpit

This commit is contained in:
Eren Gölge 2021-05-07 17:25:40 +02:00
parent 9ee70af9bb
commit 3fde2001b1
2 changed files with 18 additions and 55 deletions

View File

@ -13,7 +13,7 @@ from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import MyDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss
from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.speaker_encoder.utils.generic_utils import check_config_speaker_encoder, save_best_model
from TTS.speaker_encoder.utils.io import save_best_model, save_checkpoint
from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor
@ -28,6 +28,8 @@ from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, check_update
from TTS.utils.arguments import init_training
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
@ -105,8 +107,9 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
# Averaged Loss and Averaged Loader Time
avg_loss = 0.01 * loss.item() + 0.99 * avg_loss if avg_loss != 0 else loss.item()
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
avg_loader_time = (
1 / c.num_loader_workers * loader_time + (c.num_loader_workers - 1) / c.num_loader_workers * avg_loader_time
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
if avg_loader_time != 0
else loader_time
)
@ -139,8 +142,13 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
# save best model
best_loss = save_best_model(model, optimizer, avg_loss, best_loss, OUT_PATH, global_step)
end_time = time.time()
# checkpoint and check stop train cond.
if global_step >= c.max_train_step or global_step % c.save_step == 0:
save_checkpoint(model, optimizer, avg_loss, OUT_PATH, global_step)
if global_step >= c.max_train_step:
break
return avg_loss, global_step
@ -149,12 +157,12 @@ def main(args): # pylint: disable=redefined-outer-name
global meta_data_train
global meta_data_eval
ap = AudioProcessor(**c.audio)
ap = AudioProcessor(**c.audio.to_dict())
model = SpeakerEncoder(
input_dim=c.model["input_dim"],
proj_dim=c.model["proj_dim"],
lstm_dim=c.model["lstm_dim"],
num_lstm_layers=c.model["num_lstm_layers"],
input_dim=c.model_params["input_dim"],
proj_dim=c.model_params["proj_dim"],
lstm_dim=c.model_params["lstm_dim"],
num_lstm_layers=c.model_params["num_lstm_layers"],
)
optimizer = RAdam(model.parameters(), lr=c.lr)
@ -168,11 +176,6 @@ def main(args): # pylint: disable=redefined-outer-name
if args.restore_path:
checkpoint = torch.load(args.restore_path)
try:
# TODO: fix optimizer init, model.cuda() needs to be called before
# optimizer restore
# optimizer.load_state_dict(checkpoint['optimizer'])
if c.reinit_layers:
raise RuntimeError
model.load_state_dict(checkpoint["model"])
except KeyError:
print(" > Partial model initialization.")
@ -207,47 +210,7 @@ def main(args): # pylint: disable=redefined-outer-name
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--restore_path", type=str, help="Path to model outputs (checkpoint, tensorboard etc.).", default=0
)
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Path to config file for training.",
)
parser.add_argument("--debug", type=bool, default=True, help="Do not verify commit integrity to run training.")
parser.add_argument("--data_path", type=str, default="", help="Defines the data path. It overwrites config.json.")
parser.add_argument("--output_path", type=str, help="path for training outputs.", default="")
parser.add_argument("--output_folder", type=str, default="", help="folder name for training outputs.")
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
check_config_speaker_encoder(c)
_ = os.path.dirname(os.path.realpath(__file__))
if args.data_path != "":
c.data_path = args.data_path
if args.output_path == "":
OUT_PATH = os.path.join(_, c.output_path)
else:
OUT_PATH = args.output_path
if args.output_folder == "":
OUT_PATH = create_experiment_folder(OUT_PATH, c.run_name, args.debug)
else:
OUT_PATH = os.path.join(OUT_PATH, args.output_folder)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name="Speaker_Encoder")
args, c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
try:
main(args)

View File

@ -9,7 +9,7 @@ from TTS.utils.generic_utils import find_module
def _search_configs(model_name):
config_class = None
paths = ["TTS.tts.configs", "TTS.vocoder.configs"]
paths = ["TTS.tts.configs", "TTS.vocoder.configs", "TTS.speaker_encoder"]
for path in paths:
try:
config_class = find_module(path, model_name + "_config")